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Abstrat

Abstrat

It is famous that the number of domino tilings of an Azte diamond

is 2 to n + 1 hoose 2. We study the number of domino tilings of

an Azte retangle with even number of onneted holes in a line

and we obtain a formula whih express the number of suh domino

tilings by a produt of a similar power of 2, linear fators and a

polynomial of the oordinates of the holes in a line. We will �nd a

formula whih expresses this polynomial as a determinant of

terminating Gauss hypergeometri series and show that this

polynomial possesses interesting properties. First we use the

Lindstr
¨
om-Gessel-Viennot theorem to enumerate the domino

tilings of an Azte retangle with onneted holes and obtain a

determinant whose entries are generalized large Shr
¨
oder

numbers.
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Abstrat

Abstrat

Then we onsider a more general determinant whose entries are

the moments of the Laurent biorthogonal polynomials, whih

enable us to apply the Desnanot-Jaobi adjoint matrix theorem.

This general determinant redues to the ase q = t = 1 in

Kamioka's result if we have no hole, i.e., the Azte diamond ase.

Then the evaluation of the determinant redues to a quadrati

relation of the above polynomials. This projet is still a work in

progress and we believe that we are very lose to the omplete

proof. This is a joint work with Fumihiko Nakano, Taizo Sadahiro

and Hiroyuki Tagawa.
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Large Shr
¨
oder numbers
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The large Shr
¨
oder number S(n)

De�nition

A Shr
¨
oder path is a path in the plane, starting from the origin (0; 0) and

ending at (2n; 0) never going below the x-axis, using the steps

U = (1; 1) up; D = (1;�1) down; L = (2; 0) level.

The large Shr
¨
oder number, denoted by S(n), is the number of suh

paths.

✲

✻

✒
❘

✒
✲

✒
❘

❘
0 1 2 3 4 5 6 7 8

1

2

UDULUDD S(4) = 90
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Example of the large Shr
¨
oder numbers

Example

If n = 2, then the Shr
¨
oder paths are the followings. hene we

obtain S(2) = 6.

✲

✻

✒❘✒❘

UDUD

✲

✻

✒
✲
❘

ULD

✲

✻

✒
✒❘

❘

UUDD

✲

✻

✲ ✲

LL

✲

✻

✲✒❘

LUD

✲

✻

✒❘ ✲

UDL

Similarly one easily gets

S(0) = 1; S(1) = 2; S(2) = 6; S(3) = 22

S(4) = 90; S(5) = 394; S(6) = 1806; : : :
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S

m

(n)

De�nition

More generally, we onsider a path starting from the origin (0; 0)
and ending at (2n +m;m) never going below the x-axis, using the

steps U, D and L .

✲

✻

✒
✲

✒

✒
❘ ✲

0 1 2 3 4 5 6 7 8

1

2

ULUUDL S

2

(3) = 146

Let S

m

(n) denote the number of suh paths. Espeially,

S(n) = S

0

(n).

Masao Ishikawa Domino tilings of Azte retangles with onneted holes



Example of S

m

(n)

Example

If m = 2 and n = 1, then suh paths are the followings. hene we

obtain S

2

(1) = 6.

✲

✻

✒
✒❘✒

UUDU

✲

✻

✒
✒

✲
UUH

✲

✻

✒
✒
✒❘
UUDD

✲

✻

✲✒
✒

HUU

✲

✻

✒❘✒
✒

UDUU

✲

✻

✒
✲✒

UHU

Similarly one easily gets

S

2

(0) = 1; S

2

(1) = 6; S

2

(2) = 30

S

2

(3) = 146; S

2

(4) = 714; : : :
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Gauss hypergeometri series

The Gauss hypergeometri funtion is de�ned by the power series

De�nition

2

F

1

 

a; b;

;
x

!

=
1

X

n=0

(a)
n

(b)
n

n!()
n

x

n

;

where (a)
n

= a(a + 1) � � � (a + n � 1) is alled the rising fatorial

or Pohhammer symbol. If a or b is a negative integer, then

2

F

1

(
a; b;;x) is alled terminating.

Proposition

If m; n � 0 are integers, then S

m

(n) has that following expression

by the Gauss hypergeometri series:

S

m

(n) =

8

>

>

>

>

<

>

>

>

>

:

1 if n = 0,

2

 

n +m

m

!

2

F

1

 

�n + 1;m + n + 2;

m + 2;
� 1

!

if n � 1.
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Gauss hypergeometri series
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m

(n) has that following expression

by the Gauss hypergeometri series:
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m

(n) =

8

>

>

>

>

<

>

>

>

>

:
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n +m

m

!
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F
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Proof

Proof. The key idea is

S

m

(n) = S

m+1

(n � 1) + S

m

(n � 1) + S

m�1

(n) if m > 0.

✒
❘✲ S

m

(n)

S

m�1

(n)

S

m+1

(n � 1)

S

m

(n � 1)

Corollary

If n � 0 are integers, then

S(n) =

8

>

>

>

>

<

>

>

>

>

:

1 if n = 0,

2

2

F

1

 

�n + 1; 2;

2;
� 1

!

if n � 1.
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Laurent biorthogonal polynomials
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The Laurent biorthogonal polynomials P

n

(z)

De�nition (The Laurent biorthogonal polynomials)

The (moni) Laurent biorthogonal polynomials (LBPs) P

n

(z), n 2 N, are

the polynomials determined from the three term relation

P

n+1

(z) = (z � 1)P
n

(z) � z P

n�1

(z) (n � 1)

with P

�1

(z) = 0 and P

0

(z) = 1. (Kamioka de�ned the LBPs with

parameters fb

n

g and f

n

g, but here we restrit our attention to the ase

where we need.)

Example

The �rst few terms are as follows:

P

1

(z) = z � 1

P

2

(z) = z

2

� 3 z + 1

P

3

(z) = z

3

� 5 z

2 + 5 z � 1
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The Laurent biorthogonal polynomials P

n

(z)
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Linear funtional F and Moments f(n)

Theorem (Favard type theorem for LBPs [Ka℄)

There exists a linear funtional F de�ned over Laurent

polynomials in z with respet to whih the LBPs P

n

(z) satisfy the

orthogonality

F [P
n

(z)z�k ] = h

n

Æ

n;k

; 0 � k � n

with some onstants h

n

, 0, where Æ

n;k

denotes the Kroneker

delta. The linear funtional F is unique up to a onstant fator.

Hene we assume F [1] = 1 hereafter.

De�nition (moments)

We write the moments of the linear funtional F ,

f(n) = F [zn]; n 2 Z:
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Linear funtional F and Moments f(n)
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Example of the moments f(n)

Example

For example, we have

P

1

(z) = z � 1 ) f(1) = f(0) = 1;

P

2

(z) = z

2

� 3 z + 1 ) f(2) = 3 f(1) � f(0) = 2;

P

3

(z) = z

3

� 5 z

2 + 5 z � 1 ) f(3) = 5 f(2) � 5 f(1) + f(0) = 6:

Similarly we obtain

P

2

(z) = z

2

� 3 z + 1 ) f(�1) = �

�

3 f(0) � f(1)
	

= 2;

P

3

(z) = z

3

� 5 z

2 + 5 z � 1

) f(�2) = �

�

�5 f(2) + 5 f(1) � f(0)
	

= 6:
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The Laurent biorthogonal polynomials P

n

(z)

De�nition

For m 2 N and n 2 Z we de�ne f

m

(n) by

f

m

(n) = F [
P

m

(z)zn] :

Example

Atually, we an ompute f

m

(n) by

f

m

(n) =
m

X

k=0

[zk ]P
m

(z) � f(k + n)

where [zk ]P
m

(z) stands for the oef�ient of z

k

in P

m

(z).

f

1

(�3) = �16; f

1

(�2) = �4; f

1

(�1) = �1;

f

1

(0) = 0; f

1

(1) = 1; f

1

(2) = 4; f

1

(4) = 16; : : :
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The moments and the large Shr
¨
oder numbers

Proposition

For m 2 N and n 2 Z we obtain

f

m

(n) =

8

>

>

<

>

>

:

S

m

(n � 1) (n � 1),

(�1)m S

m

(�m � n) (n � 0).
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Azte diamond Theorem
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Azte diamond AD

n

De�nition

For n 2 N, the Azte diamond AD

n

of order n is the union of all unit

squares whih lie inside the losed region jx j+ jy j � n + 1.

Example

AD

5
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Domino

De�nition

A domino denotes a one-by-two or two-by-one retangle.

Example

1 � 2

2 � 1
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Domino tiling

De�nition

A domino tiling, or simply a tiling, of AD

n

is a olletion of

non-overlapping dominoes whih exatly overs AD

n

.

Example

A tiling of AD

5
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Azte diamond theorem

Theorem (Azte diamond theorem)

For n 2 N, Let T

n

denote the set of all tilings of AD

n

. Then

℄T

n

= 2

n(n+1)

2

Many proofs are known, e.g., Elkies-Kuperberg-Larsen-Propp

(1992), Ciuu (1996), Brualdi-Kirkland (2003), Kuo (2004), Eu-Fu

(2005), and Kamioka (2014).
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Azte Retangle with onneted

holes in line
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Azte retangle AR

a;b

De�nition

For a; b 2 N, the Azte retangle AR

a;b

is the union of all unit squares

whih lie inside the losed region

b � 2a � 1 � x + y � b + 1; �b � 1 � y � x � b + 1:

(Hereafter we assume a � b.) Let S

x;y

denote the square with the vertex

(x; y), (x + 1; y), (x + 1; y + 1) and (x; y + 1). We all S

x;y

white (resp.

blak) if x + y + b is even (resp. odd).

Example

AR

6;8

(x ; y) (x + 1; y)

(x ; y + 1) (x + 1; y + 1)

S

x;y
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Azte retangle AR

a;b

De�nition

For a; b 2 N, the Azte retangle AR

a;b

is the union of all unit squares

whih lie inside the losed region

b � 2a � 1 � x + y � b + 1; �b � 1 � y � x � b + 1:

(Hereafter we assume a � b.) Let S

x;y

denote the square with the vertex

(x; y), (x + 1; y), (x + 1; y + 1) and (x; y + 1). We all S

x;y

white (resp.

blak) if x + y + b is even (resp. odd).

Example

AR

6;8

(x ; y) (x + 1; y)

(x ; y + 1) (x + 1; y + 1)

S

x;y
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Example of Azte retangle

Example

The Azte retangle AR

a;b

has (a + 1)b blak squares and a(b + 1)
white squares, so that there are b � a more blak squares than white

ones. Meanwhile, eah domino oupies 1 blak square and 1 white

square.

AR

6;8
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Example of Azte retangle

Example

The Azte retangle AR

a;b

has (a + 1)b blak squares and a(b + 1)
white squares, so that there are b � a more blak squares than white

ones. Meanwhile, eah domino oupies 1 blak square and 1 white

square.

AR

6;8
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Azte Retangle with onneted holes in line

De�nition (AR

L

a;b

(�; �) and ARS

a;b

(�; �))

We remove r = b � a onneted blak squares in a line parallel to the

long or short side of AR

a;b

, whih we all holes. We use the oordinates

(�; �) of the lowest hole of the series of holes in line, where � inreases

along the short side and � inreases along the long side. Here we

assume the oordinates of the lowest blak square is (0; 0). If the holes

are parallel to the long (resp. short) side, we write the remaining area as

AR

L

a;b

(�; �) (resp. ARS

a;b

(�; �)).

■
�

✒
�

AR

6;8

(�; �) = (0; 0)
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Example of AR

L

a;b

(�; �)

Example

■

�

✒

�

AR

L

6;8

(1; 3)
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Example of AR

L

a;b

(�; �)

Example

■

�

✒

�

AR

L

6;8

(2; 3)
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Example of AR

L

a;b

(�; �)

Example

■

�

✒

�

AR

L

6;8

(2; 4)
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Example of AR

S

a;b

(�; �)

Example

■

�

✒

�

AR

S

6;8

(1; 3)
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Example of domino tiling of Azte tetangle

An example of domino tiling of AR

L

6;8

(2; 5)

AR

L

6;8

(2; 5)
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Example of domino tiling of Azte tetangle

An example of domino tiling of AR

L

6;8

(2; 5)

AR

L

6;8

(2; 5)
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Example of domino tiling of Azte tetangle

An example of domino tiling of AR

L

6;8

(2; 5)

AR

L

6;8

(2; 5)
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Our Qestion

Problem

What is the number of domino tilings of AR

L

a;b

(�; �) and

AR

S

a;b

(�; �)?
Is it nie or ugly?

De�nition

Let T

L

a;b

(�; �) (resp. TS

a;b

(�; �)) denote the set of domino tilings of

AR

L

a;b

(�; �) (resp. ARS

a;b

(�; �)), where (�; �) ranges

0 � � � a and 0 � � � a

(resp. 0 � � � a � r + 1 and 0 � � � a + r � 1):

Here r = b � a.

Masao Ishikawa Domino tilings of Azte retangles with onneted holes



Our Guess

Answer

Let r = b � a � 0.

If r is even,

℄T

L

a;b

(�; �) = 2

a(a+1)

2

+r�

�

r�1

Y

k=0

k !

(k + �)!
� f

(r)
�

�

a; � �

a

2

�

= 2

a(a+1)

2

+r�

�

r�1

Y

k=0

k !(k + a � �)!

(k + �)!(k + a � �)!
� f

(r)
�

�

a; � �

a

2

�

where f

(r)
n

(
a; x

)
is a polynomial of degree rn with respet to x suh

that f

(r)
n

(
a;�x

) = f

(r)
n

(
a; x

)
.

If r is odd, ℄T

L

a;b

(�; �) is ugly!
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Our Guess

Answer

Let r = b � a � 0.

If r is even, then ℄T

S

a;b

(�; �) equals

2

a(a+1)

2

+r��

r(r�1)

2

r�1

Y

k=0

k !

(k + � � r + 1)!
� g

(r)
��r+1

 

a; � �

a � r + 1

2

!

= 2

a(a+1)

2

+r�+
r(r�1)

2

�

r�1

Y

k=0

k !(k + a � r + 1 � �)!

(k + � � r + 1)!(k + a � �)!

� g

(r)
�

 

a; � �

a + r � 1

2

!

for r � 1 � � � a, otherwise ℄T

S

a;b

(�; �) equals 0. Here g

(r)
n

(
a; x

)
is also a

polynomial of degree rn with respet to x suh that

g

(r)
n

(
a;�x

) = g

(r)
n

(
a; x

)
.

If r is odd, ℄T

S

a;b

(�; �) is ugly again!
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Example of f

(r)
n

(
a; x

)

Example

f

(2)
0

(a; x) = 1

f

(2)
1

(a; x) = x

2 +
a � 1

4

f

(2)
2

(a; x) = x

4

� x

2 +
3

16

(a � 1)2

f

(2)
3

(a; x) = x

6

�

3 a + 5

4

x

4 +
9 a

2

� 24 a + 31

16

x

2

+
9

64

(a � 3)(a � 1)2
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Example of g

(r)
n

(
a; x

)

Example

g

(2)
0

(a; x) = 1

g

(2)
1

(a; x) = x

2 +
a

4

g

(2)
2

(a; x) = x

4

� x

2 +
3

16

a

2

g

(2)
3

(a; x) = x

6

�

3 a + 8

4

x

4 +
1

16

(9 a2

� 6 a + 16)x2

+
9

64

a

2(a � 2)
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What are f

(r)
n

(
a; x

)
and g

(r)
n

(
a; x

)
?

De�nition

Let r ; n � 0. De�ne f

(r)
n

(a; x) by

f

(r)
n

(a; x)

= 2

�rn

r�1

Y

k=0

(n + k)!(�a � k)
n

k !
� det

0

B

B

B

B

B

B

B

B

B

B

B

�

2

F

1

�

�n�j+i;�

a

2

�x;

�a�j+1;
2

�

(n + j � i)!

1

C

C

C

C

C

C

C

C

C

C

C

A

1�i;j�r

:

Here we use the onvention that

1

m! = 0 if m < 0. Note that this is

a determinant of size r (the number of holes).

De�ne g

(r)
n

(
a; x

)
by

g

(r)
n

(
a; x

) = f

(r)
n

(
a � r + 1; x

)
:
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Example of f

(r)
n

(a; x)

Example

If r = 1 then

f

(1)
n

(a; x) =
(�a)

n

2

n

�

2

F

1

 

�n;�

a

2

� x;

�a;
2

!

:

skip If r = 2 then

f

(2)
n

(a; x) =
n!(n + 1)!(�a)

n

(�a � 1)
n

2

2n

�

�

�

�

�

�

�

�

1

n! � 2F1

�

�n;�

a

2

�x;
�a; 2

�

1

(n+1)!
�

2

F

1

�

�n�1;�

a

2

�x;

�a�1;
2

�

1

(n�1)!
�

2

F

1

�

�n+1;�

a

2

�x;
�a; 2

�

1

n! � 2F1

�

�n;�

a

2

�x;

�a�1;
2

�

:

�

�

�

�

�

�

�
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How to ount the tilings?
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Lindstr
¨
om-Gessel-Viennot Lemma

De�nition

Let G be a loally �nite direted ayli graph. Consider base

verties u = (u
1

; : : : ; u

n

) and destination verties v = (v
1

; : : : ; v

n

),
and also assign a weight !

e

to eah direted edge e. For eah

direted path P between two verties, let !(P) be the produt of

the weights of the edges of the path. For any two verties u and v,

write h(u; v) for the sum h(u; v) =
P

P:u!v

!(P) over all paths from
u to v. If one assigns the weight 1 to eah edge, then h(u; v)
ounts the number of paths from u to v.

Theorem (Lindstr
¨
om-Gessel-Viennot Lemma)

X

�2S

n

X

(P
1

;:::;P

n

): u!v

�

sgn(�(P))
n

Y

i=1

!(P
i

) = det
(
h(u

i

; v

j

))
1�i;j;�n

where the sum is over all n-tuples (P
1

; : : : ;P

n

) of non-interseting
paths with P

i

taking u

i

to v

�(i).
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Lindstr
¨
om-Gessel-Viennot Lemma

De�nition

Let G be a loally �nite direted ayli graph. Consider base

verties u = (u
1

; : : : ; u

n

) and destination verties v = (v
1

; : : : ; v

n

),
and also assign a weight !

e

to eah direted edge e. For eah

direted path P between two verties, let !(P) be the produt of

the weights of the edges of the path. For any two verties u and v,

write h(u; v) for the sum h(u; v) =
P

P:u!v

!(P) over all paths from
u to v. If one assigns the weight 1 to eah edge, then h(u; v)
ounts the number of paths from u to v.

Theorem (Lindstr
¨
om-Gessel-Viennot Lemma)

X

�2S

n

X

(P
1

;:::;P

n

): u!v

�

sgn(�(P))
n

Y

i=1

!(P
i

) = det
(
h(u

i

; v

j

))
1�i;j;�n

where the sum is over all n-tuples (P
1

; : : : ;P

n

) of non-interseting
paths with P

i

taking u

i

to v

�(i).
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Direted Graph G for AR

L

a;b

(�; �)

De�nition

We onsider the direted graph G = (V ;E) where V is the set of

(x ; y) suh that x + y is even, and the edge set E is omposed of

U, D and L . We use the oordinates hx ; yi = (2 x + y ; y).

Given a; b ; � and �, de�ne the verties u

i

and v

j

(1 � i; j � b) as

follows:

u

i

= hb � i; 0i (1 � i � b);

v

j

=

8

>

>

<

>

>

:

hj + b � 1; 0i (1 � j � a)

ha + b � � � j; j � a � 1+ � + �i (a < j � b)

:
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Example

Example

AR

L

6;8

(2; 5)
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Example

Example

AR

L

6;8

(2; 5)
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Example

Example
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✒
✒
✒
✒
✒
✒
✒
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✒
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✒
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✒
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✒
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❘
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❘
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❘
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❘
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✲
✲
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✲
✲
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✲
✲
✲
✲
✲

✲
✲
✲
✲
✲
✲
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✲
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✲
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✲
✲
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✲
✲
✲
✲
✲
✲
✲
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✲
✲
✲
✲
✲
✲
✲
✲
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✲
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✲
✲
✲
✲

✲
✲
✲
✲
✲
✲

✲
✲
✲
✲
✲

✲
✲
✲
✲

✲
✲
✲

✲
✲
✲

! : edges

AR

L

6;8

(2; 5)
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Example
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✲
✲
✲
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✲
✲
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✲
✲
✲
✲
✲
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✲
✲
✲
✲
✲
✲
✲
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✲
✲
✲
✲
✲
✲
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✲

✲
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✲
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✲

✲
✲
✲

! : edges

u

8

u

7

u

6

u

5

u

4

u

3

u

2

u

1

v

1

v

2

v

3

v

4

v

5

v

6

v

7

v

8

u

i

: starting points

v

j

: ending points

AR

L

6;8

(2; 5)
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Bijetion

Theorem

There is a bijetion between domino tilings and non-interseting

lattie paths.

Domino and path

There are four kinds of dominos:

1 � 2 2 � 1
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Bijetion

Theorem

There is a bijetion between domino tilings and non-interseting

lattie paths.

Domino and path

There are four kinds of dominos:

1 � 2 2 � 1
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Bijetion

Theorem

There is a bijetion between domino tilings and non-interseting

lattie paths.

Domino and path

There are four kinds of dominos:

1 � 2 2 � 1

✲
✒

❘
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From domino tiling to path

Bijetion

AR

L

6;8

(2; 5)
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From domino tiling to path

Bijetion

AR

L

6;8

(2; 5)
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From domino tiling to path

Bijetion

AR

L

6;8

(2; 5)
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From domino tiling to path

Bijetion

u

8

u

7

u

6

u

5

u

4

u

3

u

2

u

1

v

1

v

2

v

3

v

4

v

5

v

6

v

7

v

8

AR

L

6;8

(2; 5)
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From domino tiling to path

Bijetion

u

8

u

7

u

6

u

5

u

4

u

3

u

2

u

1

v

1

v

2

v

3

v

4

v

5

v

6

v

7

v

8

✲
✲ ✲

✲✒
✲
❘

✲✒
✒
✒❘

❘
❘

✲✒
✒
✒

✲
❘
❘
❘

✒
✒✒

✒✒
✒
✒❘✒

✒❘
❘
❘✒❘

❘
❘
❘

✒
✒
✒
✒
✒
✒
✒

✒
✒
✒
✒
✒
✒

✒
✒
✒
✒
✒

✒
✒
✒
✒

✒
✒
✒

✒
✒
✒ ❘

❘
❘

❘
❘
❘

❘
❘
❘
❘

❘
❘
❘
❘
❘

AR

L

6;8

(2; 5)
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The result obtained by applying the LGV Lemma

Theorem

Assume r = b � a is even integer. Then

℄T

L

a;b

(�; �) = det(ehL

i;j

(a; b ; �; �))
1�i;j�b

where

e

h

L

i;j

(a; b ; �; �) =

8

>

>

<

>

>

:

S(i + j � 1) for 1 � j � a,

S

j�a�1+�+�

(a � �+ i � j) for a + 1 � j � b

℄T

S

a;b

(�; �) = det(ehS

i;j

(a; b ; �; �))
1�i;j�b

where

e

h

S

i;j

(a; b ; �; �) =

8

>

>

<

>

>

:

S(i + j � 1) for 1 � j � a,

S

j�a�1+�+�

(i � � � 1) for a + 1 � j � b

Note that these are determinants of size b (long side).
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Example

If a = 4, b = 7 (r = b � a = 3), � = 2 and � = 1, then

(ehL

i;j

(a; b ; �; �))
1�i;j�b

is

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

2 6 22 90 0 0 0

6 22 90 394 1 0 0

22 90 394 1806 8 1 0

90 394 1806 8558 48 10 1

394 1806 8558 41586 264 70 12

1806 8558 41586 206098 1408 430 96

8558 41586 206098 1037718 7432 2490 652

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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Example

If a = 4, b = 8 (r = b � a = 4), � = 2 and � = 1, then

(ehS

i;j

(a; b ; �; �))
1�i;j�b

is

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

2 6 22 90 0 0 0

6 22 90 394 1 1 1

22 90 394 1806 8 10 12

90 394 1806 8558 48 70 96

394 1806 8558 41586 264 430 652

1806 8558 41586 206098 1408 2490 4080

8558 41586 206098 1037718 7432 14002 24396

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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Introduing a new parameter .
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The Desnanot-Jaobi adjoint matrix theorem

The Desnanot-Jaobi adjoint matrix theorem

Let M be an n by n matrix. M

i

j

is matrix M with row i and olumn j

removed.

detM

1;n

1;n

� detM = detM

1

1

� detM

n

n

� detM

1

n

� detM

n

1

:

= �

This formula is also alled the Luis Carroll ondensation formula or

Sylvester's determinant identity.
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Why the Laurent biorthogonal polynomials?

Fat

The ondensation formula DO NOT work with

det(ehL

i;j

(a; b ; �; �))
1�i;j�b

nor det(ehS

i;j

(a; b ; �; �))
1�i;j�b

.

But, the large Shr
¨
oder numbers are the moments of the Laurent

biorthogonal polynomials. Hene we extend S

m

(n) for n < 0 as

f

m

(n) = S

m

(n � 1)

always holds.

De�nition

Let m be a nonnegative integer.

S

m

(n) =

8

>

>

<

>

>

:

0 if �m �< n < 0,

(�1)m S

m

(�n �m � 1) if N < �m.
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Introduing a new parameter 

De�nition

Let a; b 2 N (a � b) and  2 Z. Let's onsider the b � b matries

H

L(a; b; ; �; �) =
�

h

L

i;j

(a; b; ; �; �)
�

1�i;j�b

and

H

S(a; b; ; �; �) =
�

h

S

i;j

(a; b; ; �; �)
�

1�i;j�b

de�ned by

h

L

i;j

(a; b; ; �; �) =

8

>

>

<

>

>

:

S(i + j +  � 1) for 1 � j � a,

S

j�a�1+�+�

(a � � + i � j + ) for a + 1 � j � b,

and

h

S

i;j

(a; b; ; �; �) =

8

>

>

<

>

>

:

S(i + j +  � 1) for 1 � j � a,

S

j�a�1+�+�

(i +  � � � 1) for a + 1 � j � b.

Note that h

L

i;j

(a; b; 0; �; �) = e

h

L

i;j

(a; b; �; �) and

h

S

i;j

(a; b; 0; �; �) = e

h

S

i;j

(a; b; �; �). We introdued a new parameter  to

apply D-J adjoint matrix theorem, but  has no ombinatorial meaning!.

(It omes from the moments.)
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Example

If a = 4, b = 7 (r = b � a = 3),  = �3, � = 2 and � = 1, then

(ehL

i;j

(a; b ; �; �))
1�i;j�b

is

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

2 1 1 2 �1 1 �1

1 1 2 6 0 0 0

1 2 6 22 0 0 0

2 6 22 90 0 0 0

6 22 90 394 1 0 0

22 90 394 1806 8 1 0

90 394 1806 8558 48 10 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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Example

If a = 4, b = 8 (r = b � a = 4),  = �3, � = 2 and � = 1, then

(ehS

i;j

(a; b ; �; �))
1�i;j�b

is

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

2 1 1 2 �1 0 0

1 1 2 6 0 0 0

1 2 6 22 0 0 0

2 6 22 90 0 0 0

6 22 90 394 1 1 1

22 90 394 1806 8 10 12

90 394 1806 8558 48 70 96

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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Main Result for F

L(a; b; ; �; �)

Main Result (Not yet ompletely proved)

Let a; b;  be integers suh that 0 � a � b and �a �  � 0. We put

b � a = r .

(i) If � � � � a and 0 � � � a + , then F

L(a; b; ; �; �) is equal to

(�1)r(�+a)
� 2

(a+)(a++1)

2

+r�

�

r�1

Y

k=0

k !

(k + �)!
� f

(r)
�

�

a + ; � �

a � 

2

�

= (�1)r(�+a+)
� 2

(a+)(a++1)

2

+r(�+)
�

r�1

Y

k=0

k !(k + a � �)!

(k + �)!(k + a +  � �)!

� f

(r)
�+

�

a + ; � �

a + 

2

�

;
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Main Result for F

S(a; b; ; �; �)

Main Result (Not yet ompletely proved)

(ii) If � � � � a � r + 1 , then F

S(a; b; ; �; �) is equal to

(�1)r(�+a)
� 2

(a+)(a++1)

2

+r��

r(r�1)

2

�

r�1

Y

k=0

k !

(k + � � r + 1)!

� g

(r)
��r+1

 

a + ; � �

a �  � r + 1

2

!

= (�1)r(�+a+)
� 2

(a+)(a++1)

2

+r(�+)+
r(r�1)

2

�

r�1

Y

k=0

k !(k + a � r + 1 � �)!

(k + � � r + 1)!(k + a +  � �)!
� g

(r)
�+

 

a + ; � �

a +  + r � 1

2

!

for r � 1 � � � a + , and 0 otherwise.
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Strategy of our proof
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The effet of the new parameter 

Theorem

By applying the D-J adjoint matrix theorem, we obtain the following

quadrati formula, i.e., the both of F

L(a; b ; ; �; �) and
F

S(a; b ; ; �; �) satisfy

F(a; b � 1; ; �; �)F(a + 1; b + 1;  � 2; � + 1; � � 1)

= F(a + 1; b ;  � 2; � + 1; � � 1)F(a; b ; ; �; �)

�F(a + 1; b ;  � 1; � + 1; � � 1)F(a; b ;  � 1; �; �):
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G

L

1

(a; b; ; �; �) and GL

2

(a; b; ; �; �)

De�nition

Let a; b;  be integers suh that 0 � a � b and �a �  � 0. We put

b � a = r .

Let G

L

1

(a; b; ; �; �) be

(�1)r(�+a)
� 2

(a+)(a++1)

2

+r�

�

r�1

Y

k=0

k !

(k + �)!
� f

(r)
�

�

a + ; � �

a � 

2

�

;

and let G

L

2

(a; b; ; �; �) be

(�1)r(�+a+)
� 2

(a+)(a++1)

2

+r(�+)
�

r�1

Y

k=0

k !(k + a � �)!

(k + �)!(k + a +  � �)!

� f

(r)
�+

�

a + ; � �

a + 

2

�

;
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G

S

1

(a; b; ; �; �) and GS

2

(a; b; ; �; �)

De�nition

Let G

S

1

(a; b; ; �; �) be

(�1)r(�+a)
� 2

(a+)(a++1)

2

+r��

r(r�1)

2

�

r�1

Y

k=0

k !

(k + � � r + 1)!

� g

(r)
��r+1

 

a + ; � �

a �  � r + 1

2

!

;

and let G

S

2

(a; b; ; �; �) be

(�1)r(�+a+)
� 2

(a+)(a++1)

2

+r(�+)+
r(r�1)

2

�

r�1

Y

k=0

k !(k + a � r + 1 � �)!

(k + � � r + 1)!(k + a +  � �)!
� g

(r)
�+

 

a + ; � �

a +  + r � 1

2

!

:
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De�nition of f

(r)
n

(
a; x

)
and g

(r)
n

(
a; x

)

Reall the de�nition of f

(r)
n

(
a; x

)
and g

(r)
n

(
a; x

)
:

De�nition

Let r ; n � 0. De�ne f

(r)
n

(a; x) by

f

(r)
n

(a; x)

= 2

�rn

r�1

Y

k=0

(n + k)!(�a � k)
n

k !
� det

0

B

B

B

B

B

B

B

B

B

B

B

�

2

F

1

�

�n�j+i;�

a

2

�x;

�a�j+1;
2

�

(n + j � i)!

1

C

C

C

C

C

C

C

C

C

C

C

A

1�i;j�r

:

Here we use the onvention that

1

m! = 0 if m < 0.

De�ne g

(r)
n

(
a; x

)
by

g

(r)
n

(
a; x

) = f

(r)
n

(
a � r + 1; x

)
:

Masao Ishikawa Domino tilings of Azte retangles with onneted holes



Fundamental quadrati equation for f

(r)
n

(a; x)

Applying the D-J adjoint matrix theorem, we obtain

Lemma

(r + n) f
(r)
n

(
a; x

)
f

(r)
n

 

a + 1; x �

1

2

!

� n f

(r)
n�1

(
a; x

)
f

(r)
n+1

 

a + 1; x �

1

2

!

= r f

(r�1)
n

 

a + 1; x �

1

2

!

f

(r+1)
n

(
a; x

)
:

From this lemma we obtain

Proposition

f

(r)
n

(a; x) = (�1)rn f
(n)
r

(a; x) and f

(r)
n

(�a; x) = f

(n)
r

(a; x):
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Important quadrati equations for f

(r)
n

(a; x)

Theorem

The f

(r)
n

(
a; x

)
satis�es the following quadrati formulas:

f

(r�1)
n�1

 

a � 1; x �

1

2

!

f

(r)
n

(
a; x

)
� f

(r�1)
n�1

(
a; x

)
f

(r)
n

 

a � 1; x �

1

2

!

=
n + r � 1

2

� f

(r�1)
n

(
a; x

)
f

(r)
n�1

 

a � 1; x �

1

2

!

;

�

x �

a

2

�

f

(r�1)
n

(
a; x � 1

)
f

(r)
n�1

 

a � 1; x +
1

2

!

+
�

x +
a

2

+ r � 1

�

f

(r�1)
n

(
a; x

)
f

(r)
n�1

 

a � 1; x �

1

2

!

= 2 f

(r�1)
n�1

 

a � 1; x �

1

2

!

f

(r)
n

(
a; x

)
:
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Important quadrati relations for g

(r)
n

(a; x)

Theorem

The g

(r)
n

(
a; x

)
satis�es the following quadrati formulas:

g

(r�1)
n

 

a � 1; x �

1

2

!

g

(r)
n

 

a; x +
1

2

!

� g

(r�1)
n

(
a; x

)
g

(r)
n

(
a � 1; x

)

=
n

2

� g

(r�1)
n+1

(
a; x

)
g

(r)
n�1

(
a � 1; x

)
;

 

x �

a � r + 1

2

!

g

(r�1)
n

 

a; x �

1

2

!

g

(r)
n�1

 

a � 1; x +
1

2

!

+

 

x +
a � r + 1

2

!

g

(r�1)
n

 

a; x +
1

2

!

g

(r)
n�1

 

a � 1; x �

1

2

!

= 2 g

(r�1)
n�1

(
a � 1; x

)
g

(r)
n

(
a; x

)
:
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The RHS satis�es the same quadrati equation!

Theorem

All of G

L

1

(a; b; ; �; �), GL

2

(a; b; ; �; �), GS

1

(a; b; ; �; �), and
G

S

2

(a; b; ; �; �) satisfy

G(a; b � 1; ; �; �)G(a + 1; b + 1;  � 2; � + 1; � � 1)

= G(a + 1; b;  � 2; � + 1; � � 1)G(a; b; ; �; �)

�G(a + 1; b;  � 1; � + 1; � � 1)G(a; b;  � 1; �; �):
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A speial value for F

L(a; b; ; �; �)

Proposition

Let a; r � 0 be integers.

(i) If �2a � r � 1 �  � r then

F

L(a; a + r ; ; �; 0) = (�1)r(�+a)
2

(a+)(a++1)

2

:

(ii) If  � 0 then

F

L(a; a+r ; ;�; �) = (�1)r(�+a+)
2

(a+)(a++1)

2

r�1

Y

k=0

k !(a + )!

(k + �)!(k + a +  � �)!
:
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A speial value for F

S(a; b; ; �; �)

Proposition

(iii) If �2 a � r � 1 �  � r then

F

S(a; a + r ; ; �; r � 1) = (�1)r(�+a)
2

(a+)(a++1)

2

+
r(r�1)

2

:

(iv) If  � 0 then

F

S(a; a + r ; ;�; �) = (�1)r(�+a+)
2

(a+)(a++1)

2

+
r(r�1)

2

�

r�1

Y

k=0

k !(k + a +  � r + 1)!

(k + � � r + 1)!(k + a +  � �)!
:
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Misellanies
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Another expression for f

(r)
n

(a; x).

Proposition

If r = 2, f

(2)
n

(a; x) is expressed by the following terminating

hypergeometri series

4

F

3

:

f

(2)
n

(a; x)

= (�1)n
�

a

2

+ 1 � n + x

�

n

�

a

2

+ 1 � n � x

�

n

�

4

F

3

0

B

B

B

B

B

�

a

2

+ 1 � n;

a+1

2

� n; a + 2 � n;�n;
a

2

+ 1 � n + x ;

a

2

+ 1 � n � x ; a + 1 � 2n;
1

1

C

C

C

C

C

A

:

For r � 3 we CANNOT �nd an expression by one hypergeometri

series.
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A reursive equation for f

(r)
n

(a; x).

Proposition

If r = 1, then f

(1)
n

(a; x) satis�es the initial ondition f

(1)
0

(a; x) = 1

and the following 3 term reurrene:

f

(1)
n+2

(a; x) � xf

(1)
n+1

(a; x) +
(n + 1)(a � n)

4

� f

(1)
n

(a; x) = 0

for n � �1.
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A reursive equation for f

(r)
n

(a; x).

Proposition

If r = 2, then f

(2)
n

(a; x) satis�es the initial ondition f

(2)
0

(a; x) = 1 and the

following 4 term reurrene:

f

(2)
n+3

(a; x) �

(

x

2

�

(n + 1)a � (n � 2)(n + 2)

4

)

f

(2)
n+2

(a; x)

+
(n + 2)(a � n)

4

�

(

x

2

�

(n + 4)a � (n + 1)(n + 5)

4

)

f

(2)
n+1

(a; x)

�

(n + 1)(n + 2)2(a � n)2(a � n + 1)

64

� f

(2)
n

(a; x) = 0 (n � �2):

For r � 3 we CANNOT �nd any reursive equation for f

(r)
n

(a; x).
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Future Problem

Weighted version?

For Azte diamond one an de�ne the hight funtion and rank of

tiling. In the ase of Azte retangle with holes, we don't know how

to de�ne the hight funtions. For Azte diamond one an onsider

the weighted enumeration with the number of vertial dominos and

rank of tiling.
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The end

Thank you for your attention!
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