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Abstract

Abstract

It is famous that the number of domino tilings of an Aztec diamond
is 21to n+ 1 choose 2. We study the number of domino tilings of
an Aztec rectangle with even number of connected holes in a line
and we obtain a formula which express the number of such domino
tilings by a product of a similar power of 2, linear factors and a
polynomial of the coordinates of the holes in a line. We will find a
formula which expresses this polynomial as a determinant of
terminating Gauss hypergeometric series and show that this
polynomial possesses interesting properties. First we use the
Lindstrdm-Gessel-Viennot theorem to enumerate the domino
tilings of an Aztec rectangle with connected holes and obtain a
determinant whose entries are generalized large Schréder
numbers.
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Abstract

Abstract

Then we consider a more general determinant whose entries are
the moments of the Laurent biorthogonal polynomials, which
enable us to apply the Desnanot-Jacobi adjoint matrix theorem.
This general determinant reduces to the case g=t =1 in
Kamioka'’s result if we have no hole, i.e., the Aztec diamond case.
Then the evaluation of the determinant reduces to a quadratic
relation of the above polynomials. This project is still a work in
progress and we believe that we are very close to the complete
proof. This is a joint work with Fumihiko Nakano, Taizo Sadahiro
and Hiroyuki Tagawa.
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Large Schroder numbers
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The large Schréder number S(n)

Definition

A Schréder path is a path in the plane, starting from the origin (0, 0) and
ending at (2n, 0) never going below the x-axis, using the steps

U=(1,1) up, D=(1,-1) down, L =(2,0) level

The large Schréder number, denoted by S(n), is the number of such
paths.

UDULUDD S(4) =90

ot
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Example of the large Schroder numbers

If n = 2, then the Schrdder paths are the followings. hence we
obtain S(2) = 6.

LL LUD uDL
bW

uDUD ULD uuDD

Pah

Similarly one easily gets

S0)=1, S(1)= S(2)=6, S(3)=22
S(4) = 90, 3(5) S(6) = 1806, ...

'
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More generally, we consider a path starting from the origin (0, 0)
and ending at (2n + m, m) never going below the x-axis, using the
steps U, D and L.

ULUUDL S2(3) = 146

0o 1 2 3 4 5 6 7 8

Let S;,(n) denote the number of such paths. Especially,
S(n) = So(n).
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Example of S;,(n)

If m=2and n = 1, then such paths are the followings. hence we
obtain Sy(1) = 6.

HUU ubuu UHU
uubuU UUH uubDD

Similarly one easily gets

S»(0) =
S»(3)
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. S(1)=86,  S(2)=30
46,  Sy(4)=T714,...

1
1

'



Gauss hypergeometric series

The Gauss hypergeometric function is defined by the power series

; — (a)n(b
E (a’b'x) _ Z (a)n( )an,
Cr frd n'(c)n
where (a), = a(a+1)---(a+ n—1) is called the rising factorial

or Pochhammer symbol. If a or b is a negative integer, then
oF1 (a, b;c;x) is called terminating.
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Gauss hypergeometric series

The Gauss hypergeometric function is defined by the power series
— (a)n(b
2,__1 (a b ): Z ( )n( )an,
c; =4 ni(c)n
where (a), = a(a+1)---(a+ n—1) is called the rising factorial

or Pochhammer symbol. If a or b is a negative integer, then
2F1 (a, b;c;x) is called terminating.

If m, n > 0 are integers, then S;;(n) has that following expression
by the Gauss hypergeometric series:

1 ifn=0,
Sm(n) = 2(n+m)2,__1(—n+1,m+n+2;

—1) ifn>1.
m+ 2;

- >
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Proof. The key idea is
Sm(n) = Spy1(n—1) 4+ Sp(n—1) + Sp_1(n) it m > 0.

Smia(n—1)

Sm(n—-1) >

Sm_1 (n)

If n > 0 are integers, then

1 if n=0,

-n+1,2;
22F1( nz_’ '—1) ifn>1.

Masao Ishikawa Domino tilings of Aztec rectangles with connected holes



Laurent biorthogonal polynomials
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The Laurent biorthogonal polynomials P,(z)

Definition (The Laurent biorthogonal polynomials)

The (monic) Laurent biorthogonal polynomials (LBPs) P,(z), n € N, are
the polynomials determined from the three term relation

Pri1(2) = (z=1)Pn(2) — z Pn-1(2) (n=1)

with P_1(z) = 0 and Py(z) = 1. (Kamioka defined the LBPs with
parameters {b,} and {c,}, but here we restrict our attention to the case
where we need.)

Masao Ishikawa Domino tilings of Aztec rectangles with connected holes



The Laurent biorthogonal polynomials P,(z)

Definition (The Laurent biorthogonal polynomials)

The (monic) Laurent biorthogonal polynomials (LBPs) P,(z), n € N, are
the polynomials determined from the three term relation

Pri1(2) = (z=1)Pn(2) — z Pn-1(2) (n=1)

with P_1(z) = 0 and Py(z) = 1. (Kamioka defined the LBPs with
parameters {b,} and {c,}, but here we restrict our attention to the case
where we need.)

| A\

Example
The first few terms are as follows:

Pi(z) =z-1
Py(z) =2 -3z + 1
Py(z) =2 -572° +52z -1

o'
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Linear functional .# and Moments f(n)

Theorem (Favard type theorem for LBPs [Ka])

There exists a linear functional .7 defined over Laurent
polynomials in z with respect to which the LBPs P,(z) satisfy the
orthogonality

F[Pa(2)z7¥] = hpSnk, 0<k<n

with some constants h, # 0, where 6, denotes the Kronecker
delta. The linear functional . is unique up to a constant factor.
Hence we assume .#[1] = 1 hereafter.
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Linear functional .# and Moments f(n)

Theorem (Favard type theorem for LBPs [Ka])

There exists a linear functional .7 defined over Laurent
polynomials in z with respect to which the LBPs P,(z) satisfy the
orthogonality

F[Pa(2)z7¥] = hpSnk, 0<k<n

with some constants h, # 0, where 6, denotes the Kronecker
delta. The linear functional . is unique up to a constant factor.
Hence we assume .#[1] = 1 hereafter.

A\

Definition (moments)

We write the moments of the linear functional .%#,

f(n) = Z[2"], nez.

v
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Example of the moments f(n)

For example, we have
Pi(z2)=z-1= f(1) = f(0) =1,
Py(z) =722 -3z + 1= f(2) =3f(1) - f(0) = 2,
Py(z) =2*-5722+52-1= f(8) =5f(2) -5f(1) + f(0) = 6.
Similarly we obtain
Py(2) =22 -3z+1= f(-1) = = {3f(0) - f(1)} = 2,

P3y(z) =z-5722 45z~ 1
= f(-2) = —{-5f(2) + 5f(1) - £(0)} = 6.
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The Laurent biorthogonal polynomials P,(z)

Definition

For m € N and n € Z we define f,(n) by

fm(n) = F [Pm(2)2"].
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The Laurent biorthogonal polynomials P,(z)

Definition

For m € N and n € Z we define f,(n) by

fm(n) = F [Pm(2)2"].

Example

Actually, we can compute fn(n) by
m
fn(n) = ) [2"1Pm(2) - f(k + )
k=0

where [zX]P,,(z) stands for the coefficient of z¥ in Pp(z).

fi(-3)=-16,  f(-2)=—-4,  fi(-1) =1,
[(0)=0, f(1)=1, f(2)=4,  f1(4) =16,...

-
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The moments and the large Schroder numbers

Proposition

For m e N and n € Z we obtain

() = {Sm(n— 1) (n>1
(-1)"Sn(-m-n) (n<0).
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Aztec diamond Theorem
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Aztec diamond AD,

Definition

For n € N, the Aztec diamond AD , of order n is the union of all unit
squares which lie inside the closed region |x| + |y| < n+ 1.
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Aztec diamond AD,

For n € N, the Aztec diamond AD , of order n is the union of all unit
squares which lie inside the closed region |x| + |y| < n+ 1.

'

Example

ADs

-
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Aztec diamond AD,

For n € N, the Aztec diamond AD , of order n is the union of all unit
squares which lie inside the closed region |x| + |y| < n+ 1.

'

Example

ADs

-
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Domino

Definition

A domino denotes a one-by-two or two-by-one rectangle.
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Domino

Definition

A domino denotes a one-by-two or two-by-one rectangle.

1x2

2X%1
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Domino tiling

Definition

A domino tiling, or simply a tiling, of AD, is a collection of
non-overlapping dominoes which exactly covers AD,,.
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Domino tiling

A domino tiling, or simply a tiling, of AD, is a collection of
non-overlapping dominoes which exactly covers AD,,.

'

Example

A tiling of AD5

-
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Domino tiling

A domino tiling, or simply a tiling, of AD, is a collection of
non-overlapping dominoes which exactly covers AD,,.

'

Example

A tiling of AD5

-
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Domino tiling

A domino tiling, or simply a tiling, of AD, is a collection of
non-overlapping dominoes which exactly covers AD,,.

4

Example

A tiling of AD5
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Domino tiling

A domino tiling, or simply a tiling, of AD, is a collection of
non-overlapping dominoes which exactly covers AD,,.

A tiling of AD5
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Aztec diamond theorem

Theorem (Aztec diamond theorem)

For n e N, Let T, denote the set of all tilings of AD,. Then

n(n+1)

T, =272

Many proofs are known, e.g., Elkies-Kuperberg-Larsen-Propp
(1992), Ciucu (1996), Brualdi-Kirkland (2003), Kuo (2004), Eu-Fu
(2005), and Kamioka (2014).
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Aztec Rectangle with connected
holes in line

Masao Ishikawa Domino tilings of Aztec rectangles with connected holes



Aztec rectangle AR,

For a, b € N, the Aztec rectangle AR ,, is the union of all unit squares
which lie inside the closed region

b-2a-1<x+y<b+1,-b-1<y-x<b+1.

(Hereafter we assume a < b.) Let S, , denote the square with the vertex
(xy), x+1,y), (x+1,y+1)and (x,y + 1). We call Sy, white (resp.
black) if x + y + b is even (resp. odd).
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Aztec rectangle AR,

For a, b € N, the Aztec rectangle AR ,, is the union of all unit squares
which lie inside the closed region

b-2a-1<x+y<b+1,-b-1<y-x<b+1.
(Hereafter we assume a < b.) Let S, , denote the square with the vertex

(xy), x+1,y), (x+1,y+1)and (x,y + 1). We call Sy, white (resp.
b/ack) if x + y + b is even (resp. odd).

(xy+1) (x+1,y+1)

Sxy

(%, ) (x+1.,y)
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Example of Aztec rectangle

Example

The Aztec rectangle AR, has (a + 1)b black squares and a(b + 1)
white squares, so that there are b — a more black squares than white
ones. Meanwhile, each domino occupies 1 black square and 1 white
square.

ARgg
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Example of Aztec rectangle

Example

The Aztec rectangle AR, has (a + 1)b black squares and a(b + 1)
white squares, so that there are b — a more black squares than white
ones. Meanwhile, each domino occupies 1 black square and 1 white
square.

ARgg
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Aztec Rectangle with conneted holes in line

Definition (AR}, ,(£,77) and AR ,(£,7))

We remove r = b — a connected black squares in a line parallel to the
long or short side of AR, p, which we call holes. We use the coordinates
(& n) of the lowest hole of the series of holes in line, where ¢ increases
along the short side and 7 increases along the long side. Here we
assume the coordinates of the lowest black square is (0, 0). If the holes
are parallel to the long (resp. short) side, we write the remaining area as
AR;b(«f, 1) (resp. Aij(f. n))-

[T1  ARgg

4))

&ny= (0,
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Example of AR} ,(&,7)

Example

ARg’8(1 ,3)

n l. ¢
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Example of AR} ,(&,7)

Example

ARg’B(z, 3)

R :
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Example of AR , (¢,7)

a,

Example

ARg’B(z, 4)
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Example of AR? (£, 7)

Example

AR§’8(1 ,3)

n .l ¢

v
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Example of domino tiling of Aztec tectangle

An example of domino tiling of ARE’B(Z, 5)

ARg’S(Z, 5)
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Example of domino tiling of Aztec tectangle

An example of domino tiling of AR (2, 5)

ARg,e(z, 5)

4
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Example of domino tiling of Aztec tectangle

An example of domino tiling of AR (2, 5)

I_I___\_I ARS4(2,5)
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Our Qestion

What is the number of domino tilings of AR;’b(f, n) and

ARSb(f n)?
Is it nice or ugly?

Let T, (¢, ) (resp. st(gﬂ])) denote the set of domino tilings of
AR b(f n) (resp. ARS , (£,77)), where (¢,7) ranges

0<é<aand0<np<a
(resp.0<é<a-r+1and0<np<a+r-1).

Herer = b - a.
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Our Guess

Answer
Letr=b-a>0.
If r is even,

r—1
_ e, KU _a
tToten) =25 [ o 10 (ae- 3)

1 Kl(k+a-¢) (r) a
o (k+n)l(k +a-n) ff(a’n__)

||:]

S X

= 23(3+1 +ré |

||:]

2

where f,(,r) (a, x) is a polynomial of degree rn with respect to x such
that £ (a, —x) = £ (a, x).
If ris odd, #7; (&, 7) is ugly!
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Our Guess

Letr=b-a=>0.
If r is even, then #T5 ,(£,7) equals

r-1
a(a+1) r(r-1) k! —r+1
2=z th-—7— —_ a, _
;D)(k""l—f‘H)! '7’“( T g )

R CEIN. =5 1’;‘[ Ki(k+a-r+1-¢)
- (

o (k+n—r+1)Y(k+a-n)

%) a+r—1
Xge \an-——5—
forr—1 <7< a, otherwise ﬁTib(f, n) equals 0. Here gf,’) (a,x) is also a
polynomial of degree rn with respect to x such that
gy (a.-x) = g (a ).

If ris odd, ﬁTSb(f n) is ugly again!

o'
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Example of £, (a, x)

2 (a,x) = 1
a-—1
P (a,x) = x% + 2
3
fz(z)(a,x):x4—x2+ﬁ(a—1)2
5 9a?-24a+ 31
féz)(a,x):XG—Sa—’_ X4+ a a-—+ X2

4 16
9
=~ (a- —1)2
+64(a 3)(a-1)

Masao Ishikawa Domino tilings of Aztec rectangles with connected holes



Example of g, (a, x)

g (a,x) =1
a
952)(51,)() =x°+ 1
@) 4 2, 3 2
9 (a,x)=x"-x +Ea
(2) B Sa+8 4 1 2 2
g5 (a,x) =x g X +ﬁ(9a -6a+16)x
9 2
+aa (a-2)
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What are f,” (a, x) and g, (a, x)?

Let r,n > 0. Define £ (a, x) by

(2. )
- —n—j+i,—5-x; )
_o-m ﬁ (n+ K)l(-a—k), et 2F; ( Cajie 2
k=0 k! (n+j—i)
1<ij<r
Here we use the convention that = 0if m < 0. Note that this is

a determlnant of size r (the number of holes).

Define g,7 (a x) by

g (a,x) = (a-r+1,x).
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Example of f,”(a, x)

If r=1 then

(1) _ (_a)n —n,_é - X;
@) =" '2F1( s 2

skip If r = 2 then

(0 + 1)(=a)o(-a = 1),

f,(12) (a, X) _ -
| AR () yeeR (TT2)
o eF (MY g aR (TR 2).
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How to count the tilings?
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Lindstrom-Gessel-Viennot Lemma

Definition

Let G be a locally finite directed acyclic graph. Consider base
vertices u = (u,..., up) and destination vertices v = (v1,..., V),
and also assign a weight we to each directed edge e. For each
directed path P between two vertices, let w(P) be the product of
the weights of the edges of the path. For any two vertices v and v,
write h(u, v) for the sum h(u, v) = ¥ p.,_,, w(P) over all paths from
u to v. If one assigns the weight 1 to each edge, then h(u, v)
counts the number of paths from u to v.
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Lindstrom-Gessel-Viennot Lemma

Definition

Let G be a locally finite directed acyclic graph. Consider base
vertices u = (u,..., up) and destination vertices v = (v1,..., V),
and also assign a weight we to each directed edge e. For each
directed path P between two vertices, let w(P) be the product of
the weights of the edges of the path. For any two vertices v and v,
write h(u, v) for the sum h(u, v) = ¥ p.,_,, w(P) over all paths from
u to v. If one assigns the weight 1 to each edge, then h(u, v)
counts the number of paths from u to v.

Theorem (Lindstrom-Gessel-Viennot Lemma)

Z Z sgn P) ]_ICU PI) = det( (U,', V/))1§i,j,sn

0€Sy (P1 ,...,Pn) CU—-ve

I
1
| \

where the sum |s over all n-tuples (P4, ..., Pp) of non-intersecting
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Directed Graph G for AR (£, 1)

Definition

We consider the directed graph G = (V. E) where V is the set of
(x,y) such that x + y is even, and the edge set E is composed of
U, D and L. We use the coordinates (x,y) = (2x + y. ).

Given a, b, ¢ and n, define the vertices v; and v; (1 </,j < b) as
follows:

u=(b-i0y (1<i<b),
{<f+b—1,0> (1<j<a)
Vi =

(a+b-n—jj—a-1+&é+n) (@a<j<b)
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Example

ARg’S(Z, 5)

-
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Example

ARg’S(Z, 5)

-
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Example

ARg’S(Z, 5)

: edges

B
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Example

u; : starting points ARg’S(Z, 5)

v; - ending points : edges

VR%
4

.

L 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2
Ug U7 Us Us Us Uz Uz U 1 Vo V3 V4 V5 VB
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There is a bijection between domino tilings and non-intersecting
lattice paths.
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There is a bijection between domino tilings and non-intersecting
lattice paths.

Domino and path

There are four kinds of dominos:

1x2 2x1

Masao Ishikawa Domino tilings of Aztec rectangles with connected holes



There is a bijection between domino tilings and non-intersecting
lattice paths.

Domino and path

There are four kinds of dominos:

1x2 2x1
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There is a bijection between domino tilings and non-intersecting
lattice paths.

Domino and path

There are four kinds of dominos:

1x2 2x1

AN
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From domino tiling to path

ARg’S(Z, 5)

m
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From domino tiling to path

ARg,S(z, 5)
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From domino tiling to path

ARg,S(z, 5)
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From domino tiling to path

ARg’S(Z, 5)

Ug U7 Us Us Ug U3 U2
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From domino tiling to path

L
AR} 4(2,5)
A
b\
X b.d
R\ R\
A R\ &l X
AV
AV h
R\ R\
X b.d b.d
R\ R\ R\
A A
R\ R\
b.d
R\
R\
Ug U7 Us Us Us U3z U U7 Vi Vo V3 V4 V5 Vg
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The result obtained by applying the LGV Lemma

Assume r = b — a is even integer. Then

ﬁT;,b(f, n) = det(Fb(a, b,&,m))1<ij<b

where

S(ii+j-1) for1<j<a,

h-(a,b,&,n) = )
IJ( ° 7) {Sj_a_1+§:+,](a -n + /—j) for a -+ 1 S] < b

HTS (& m) = det(h (@, b.€,1))1<ijzb
where

S(ii+j-1) fort<j<a,

hS a,b,é&n)=
i@ b:&m) {Sj_a_1+§+,](i—7]—1) fora+1<j<b

Note that these are determinants of size b (long side).
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2 6 22 90 0 0 0
6 22 90 394 1 0 0
22 90 394 1806 8 1 0
90 394 1806 8558 48 10 1

394 1806 8558 41586 | 264 70 12
1806 8558 41586 206098 | 1408 430 96
| 8558 41586 206098 1037718 | 7432 2490 652 |
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2 6 22 90 0 0
6 22 90 394 1 1 1
22 90 394 1806 8 10 12

90 394 1806 8558 48 70 96
394 1806 8558 41586 | 264 430 652
1806 8558 41586 206098 | 1408 2490 4080
| 8558 41586 206098 1037718 | 7432 14002 24396 |
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Introducing a new parameter c.
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The Desnanot-Jacobi adjoint matrix theorem

The Desnanot-Jacobi adjoint matrix theorem

Let M be an n by n matrix. Mj’ is matrix M with row i and column j
removed.

det M7 - det M = det M] - det M}, — det M}, - det M.

This formula is also called the Luis Carroll condensation formula or
Sylvester’s determinant identity.
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Why the Laurent biorthogonal polynomials?

Thegondensation formula DO NQT work with
det(hb.(a, b,&,m))1<ij<b NOY det(hfj(a, b,&,m))1<ijsb-

But, the large Schréder numbers are the moments of the Laurent
biorthogonal polynomials. Hence we extend S,(n) for n < 0 as

fm(n) = Sp(n—-1)

always holds.

Definition

Let m be a nonnegative integer.

0 if —-m<<n<O,

Sm(n) = {(_1)m Sm(_n_ m— 1) if N < —m.
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Introducing a new parameter ¢

Definition

Let a,b e N (a < b) and ¢ € Z. Let’s consider the b x b matrices
H-(a,b,c, &1 :(/abcfry)1<<b and
HS(a,b,c,&,1) = (Sjabcfry) _,, defined by
S(i+j -1 for1<j<a,
hi(a,b,c,én) = (jve-1) /=4
~ Sia—tten(@-n+i-j+c) fora+1<j<b,
and
S(i+j -1 for1<j<a,
hi(a. b, c.&n) = (ii+e=1) /=4
‘ Sicai4ern(i+c—n—1) fora+1<j<b.

Note that hj(a, b,0,£,7) = ij(a, b,&,n) and

hfj(a, b,0,&,1) = Ffj(a, b, &,1). We introduced a new parameter ¢ to
apply D-J adjoint matrix theorem, but ¢ has no combinatorial meaning!.
(It comes from the moments.)
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=7(r=b-a=238),c=-3,§{=2andnp =1, then
<

2 1 1 2 |-1 1 -1
1 1 2 6 0 0 O
1 2 6 22 0 0 O
2 6 22 90 0 0 O
6 22 90 394 |1 0 O
22 90 394 1806 8 1 O

| 90 394 1806 8558 |48 10 1 |
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fa=4,b=8(r=b-a=4),c=-3,{=2andn =1, then
(h,?/( ’b’é:’ n))1SI]Sb is

2 1 1 2 |-1 0 0]

1 1 2 6 0O 0 O

1 2 6 22 0O 0 O

2 6 22 90 0O 0 O

6 22 90 394 1 1 1

22 90 394 1806 | 8 10 12

| 90 394 1806 8558 |48 70 96 |
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Main Result for F-(a, b, ¢, &, 1)

Main Result (Not yet completely proved)
Let a, b, c be integers such that 0 < a < b and —a < ¢ < 0. We put

b—a=r.

(VIf-c<é<aand0<py<a+c,then is equal to

r-1
(ato)(atot1) k! a-c
—1 r(f+a).2 > ~+rn | | . f(r) (a+C,§1_ )
(=1) o (k+mn)! g 2

—1
- (_1)f(l]+a+0) . 2(a+c )(a+c+1) +r(f+c 1—[ kl k"‘ a— f)
(k+n)l(k+a+c—n)!

(n a+c
><f§+c(a—|—c,11— > )
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Main Result for F5(a, b, ¢, &,17)

Main Result (Not yet completely proved)

(i)lf-c<é<a-r+1,then is equal to

=1
(a+c)(a+c+1) r(r- 1)
—1 r(é+a) | o——s——+r-
(1) 1_[ (k+n—r+1)!
a-c—-r+1
2

X g,(ii)pH (a +c, é: -

(_1 )r(77+a+0) 5 2@44(54»0)4»@

r-1
ki(k+a-r+1-¢)! atc+r-1
xl_[ ( ¢) -gé;)c(aJrc,n——
i (k+n—r+1)(k+a+c-n) 2

forr—1 <75 < a+ ¢, and 0 otherwise.
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Strategy of our proof
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The effect of the new parameter ¢

Theorem

By applying the D-J adjoint matrix theorem, we obtain the following
quadratic formula, i.e., the both of F-(a, b, ¢, £,7) and
FS(a, b, c,¢,n) satisfy

F(a,b-1,c.é&,n)Fla+1,b+1,c-2¢+1,7-1)
=F(a+1,b,c-2,¢6+1,n-1)F(a,b,c,&,1)
~Fla+1,b,c—1,6+1,n-1)F(a,b,c—1,&n).
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Gi(a,b,c,&,n) and Gs(a, b, c,&,n)

Definition

Let a, b, ¢ be integers such that 0 < a < b and —a < ¢ < 0. We put
b-a=r.
Let Gt(a, b, ¢, &, 1) be

r—1

_ r(§+a) ) (a+c)(a+c+1)+n] ( _ C)
(-1) ]_[ +od- =),

k= 0

and let G5(a, b, c,&,n) be

.l
(_1)r(77+a+c) i 2(a+c)(:+c+1)+r(§+c) . lr—[ k'(k +a-—- f)'

o (k+mli(k+a+c—n)
a+C)
2 b

xfé?c(a—i—c,n—
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Gy (a,b,c,&n) and G5(a, b, c,&,1)

Let G¥(a, b, ¢,&,1) be
=1
(a+c)(a+c+1
_q)f(E+a) o —F—
1) 1:[ kK+n—r+1)!
a-c—r+1
><gf]'_),+1 (a+c,§——2 )
and let G5(a. b, ¢, &,1) be
(—1)r+ate)  pEe ety A
le—_‘[ kKi(k+a-r+1-¢) @ (a+c _a+c+r—1)
weo (K+n—r+1)i(k+a+c-n) Jete 7 2 ’

v
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Recall the definition of £\") (a, x) and g\ (a, x):

Let r,n > 0. Define £")(a, x) by

(2. x)

3 —n—j+i,—5-x;
_ o ﬁ (n+ K)l(-a—k), . 2F1( —a—j+1; 2)

e k! (n+j-1i)!
1<ij<r

Here we use the convention that ml =0ifm<O.

Define g,7 (a x) by

(f)(

" (a,x) = (a-r+1,x).

ot
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r

Fundamental quadratic equation for f;

Applying the D-J adjoint matrix theorem, we obtain

Lemma

1 1
(r+n f,(,r) (a, x) f,(,r) (a—|—1,x— 5)_”’?(1?1 (a,x) f,(121 (a—|—1,x— 3

= 1
=5 ff,(7r 1)(a+1,X—§)f,(7r+1) (a,X).

From this lemma we obtain

Proposition

f,(,r)(a,x) =(-1)" f,(n)(a,x) and f,(,r)(—a,x) = f,(")(a,x).
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r

Important quadratic equations for £,

The f,(,r) (a, x) satisfies the following quadratic formulas:

= = 1
flgf;11) (a - 17X - %) ff(lr) (a’ X) - flgf;11) (a,X) flgr) (a - 1’X_ E)

n+r-—1 (r-1) (r) 1
:—2 ‘fnr (a,X)fnr_1 a_1,X_§ s
ay (r-1) (r 1
(X—E)f,, (a,x—1)fn_1(a—1,x+§)
= 1
+(x+g+r—1)f,(,r 1)(a,x)f,(7i)1(a—1,x—§)
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r

Important quadratic relations for g,,

The gf,r) (a, x) satisfies the following quadratic formulas:

1
o\~ ”(a 1,x )gﬁ’)(a X+ ) o (ax) g (a-1,x)
N ()

a-r—+1 (r-1) (r) 1
T T

a-r+1 = 1
+(X+T+)gf,r 1)(a X+ = )gfﬂ( —1,x—§)

= 2gff__11) (a- 1,x)g,7 (a,x).
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The RHS satisfies the same quadratic equation!

Allof Gk(a, b, c,&,n), G5(a, b, c.&,n), G{(a, b, c,&n), and
G3(a, b, c,& n) satisfy

G(a,b-1,c.&,n)Ga+1,b+1,c-2,64+1,n-1)
=G(a+1,b,c-2,¢6+1,7-1)G(a,b,c,&n)
—-G(a+1,b,c—-1,6+1,n-1)G(a,b,c—1,&n).
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A special value for F-(a, b, ¢, &, 1)

Proposition

Let a, r > 0 be integers.
(yIf-2a—-r—1<c<rthen

a+c)(atc+1)
2

F-(a,a+r, c,£0) = (-1)¢+) ot

(ii) If ¢ < 0 then

eagen) = kl(a+ o)!
F-(a,a+tr,c,—c,n) = (=1)0tato) po—s— :
| v g(k+n)!(k+a+c—q)!

4
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A special value for F5(a, b, ¢, &, 1)

(i) If -2a—r—1 < ¢ < rthen

(a+0)(a+0+1) (r=1)

FS(a,a+r,cé&r—1)=(-1)¢+a2 o

(iv) If ¢ < 0 then

(ate)ator) | (r1)

FS(a,a+r,c,—c,n) = (—1)0rta+c) o=+

ﬁ kKi(k+a+c—r+1)
L(k+n-r+1)(k+a+c-n)
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Miscellanies
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Another expression for f,”(a, x).

Ifr=2, f,(,z)(a,x) is expressed by the following terminating
hypergeometric series 4F3:

i (a.x)
a a
(B4 1) (B4 1 =)
(=1) 2+ + n2+ n
241-n21_na+2-n-n;
X4F3( 2 2 1].

$8+1-n+x,8+1-n-x,a+1-2n;

For r > 3 we CANNOT find an expression by one hypergeometric
series.
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A recursive equation for £, (a, x).

Proposition

If r =1, then f,(,1)(a,x) satisfies the initial condition fé”(a,x) =1
and the following 3 term recurrence:

(n+1)(a-n)

4 A(a.x) =0

1 1
A1 (a,x) - x), (a, %) +

forn> —1.
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A recursive equation for £, (a, x).

If r =2, then f,(,z)(a, x) satisfies the initial condition féz)(a, x) =1 and the
following 4 term recurrence:

(e - e - D CZAE DN 4
N (n+2)4(a—n) _{Xz_ (n+4)a—(z+1)(n+5)}f,(7?1(a’x)
_(n+1)(n+ 2)2(:4— nFa-n+1) % (a,x) = 0 (n>-2).

For r > 3 we CANNOT find any recursive equation for f,(,r)(a, X).
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Future Problem

Weighted version?

For Aztec diamond one can define the hight function and rank of
tiling. In the case of Aztec rectangle with holes, we don’t know how
to define the hight functions. For Aztec diamond one can consider
the weighted enumeration with the number of vertical dominos and
rank of tiling.
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Thank you for your attention!
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