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LIE ALGEBRAS REPRESENTED AS A SUM OF TWO
SUBALGEBRAS

MASANOBU HONDA AND TAKANORI SAKAMOTO

Abstract. Let L be a Lie algebra represented as a sum of two subal-
gebras A and B. We prove that if L belongs to a subclass of the class
of locally finite Lie algebras over a field of characteristic 6= 2 and both
A and B are locally nilpotent, then L is locally soluble. We also prove
that if L is a serially finite Lie algebra over a field of characteristic
zero, then any common serial subalgebra of A and B is serial in L.

1. Introduction

Groups G factorized by two subgroups A and B, i.e. G = AB, have
been investigated by many authors for some decades. Among the works
Kegel [8] and Wielandt [15] established the well-known theorem: if G is
finite, and A and B are nilpotent, then G is soluble.

In Lie algebras there is a corresponding result: If a finite-dimensional
Lie algebra L over a field k of characteristic 6= 2 is represented as a sum of
two nilpotent subalgebras A and B, then L is soluble. Goto [4] proved the
case of char k = 0 and Panyukov [10] did the case of char k = p > 2. On
the other hand, Aldosray [2] showed that if L = A + B is an ideally finite
Lie algebra over a field of characteristic zero, then any common ascendant
subalgebra of both A and B is ascendant in L.

In this paper we shall generalize the result of Goto and Panyukov to
a certain class of infinite-dimensional Lie algebras and extend the result of
Aldosray to a wider class than that of ideally finite Lie algebras.

In Section 2 we shall show that in a locally finite Lie algebra L a
common weakly serial subalgebra of each subalgebra Xi of L for i ∈ I
is always a weakly serial subalgebra of 〈Xi | i ∈ I〉 (Theorem 2). Let L
be a Lie algebra represented as a sum of two subalgebras A and B. In
Section 3 we shall prove that if L is a serially finite Lie algebra (resp. a
hyperfinite, serially finite Lie algebra) over a field of characteristic zero,
then any common serial (resp. ascendant) subalgebra of A and B is serial
(resp. ascendant) in L (Theorem 8 (resp. Corollary 9)). In Section 4 we
shall verify that if L belongs to the subclass l(wser)F of the class of locally
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finite Lie algebras over a field of characteristic 6= 2 and both A and B are
locally nilpotent, then L is locally soluble (Theorem 15).

2. Notation and terminology

Throughout the paper Lie algebras are not necessarily finite-dimen-
sional over a field k of arbitrary characteristic unless otherwise specified.
We mostly follow [3] for the use of notation and terminology.

Let L be a Lie algebra over k and let H be a subalgebra of L. For a
totally ordered set Σ, a series (resp. a weak series) from H to L of type Σ
is a collection {Λσ, Vσ | σ ∈ Σ} of subalgebras (resp. subspaces) of L such
that

(1) H ⊆ Vσ ⊆ Λσ for all σ ∈ Σ,
(2) Λτ ⊆ Vσ if τ < σ,
(3) L\H = ∪σ∈Σ(Λσ\Vσ),
(4) Vσ C Λσ (resp. [Λσ,H] ⊆ Vσ) for all σ ∈ Σ.

H is a serial (resp. a weakly serial) subalgebra of L, which we denote by
HserL (resp. HwserL), if there exists a series (resp. a weak series) from H
to L. For an ordinal σ, H is a σ-step ascendant (resp. weakly ascendant)
subalgebra of L, denoted by H Cσ L (resp. H ≤σ L), if there exists an
ascending chain (Hα)α≤σ of subalgebras (resp. subspaces) of L such that

(1) H0 = H and Hσ = L,
(2) Hα C Hα+1 (resp. [Hα+1,H] ⊆ Hα) for any ordinal α < σ,
(3) Hλ = ∪α<λHα for any limit ordinal λ ≤ σ.

H is an ascendant (resp. a weakly ascendant) subalgebra of L, denoted by
HascL (resp. HwascL), if H Cσ L (resp. H ≤σ L) for some ordinal σ.
When σ is finite, H is a subideal (resp. a weak subideal) of L and denoted
by HsiL (resp. HwsiL). For an ordinal α, we denote by L(α) the α-th
term of the transfinite derived series of L. A subspace H of L invariant
under all derivations of L is said to be a characteristic ideal and denoted
by HchL.

Let X, Y be classes of Lie algebras and let ∆ be any of the relations
≤, C, ch, si, asc, ser, wser. XY is the class of Lie algebras L having an ideal
I ∈ X such that L/I ∈ Y. A Lie algebra L is said to lie l(∆)X if for
any finite subset X of L there exists an X-subalgebra H of L such that
X ⊆ H ∆ L. In particular we write lX for l(≤)X. When L ∈ lX (resp.
l(ser)X), L is called a locally (resp. a serially) X-algebra. F,A, N, Z and
eA are the classes of Lie algebras which are finite-dimensional, abelian,
nilpotent, hypercentral and soluble respectively. The X-residual λX(L) of
L is the intersection of the ideals I of L such that L/I ∈ X. éµ(∆)X is the
class of Lie algebras L having an ascending series (Lα)α≤µ of ∆-subalgebras
such that
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(1) L0 = 0 and Lµ = L,
(2) Lα C Lα+1 and Lα+1/Lα ∈ X for any ordinal α < µ,
(3) Lλ = ∪α<λLα for any limit ordinal λ ≤ µ.

We define é(∆)X = ∪µ>0éµ(∆)X. In particular we write éX for é(≤)X.
When L ∈ é(C)X, L is called a hyper X-algebra. The Hirsch-Plotkin
radical ρ(L) of L is the unique maximal locally nilpotent ideal of L. For
a locally finite Lie algebra L the locally soluble radical σ(L) of L is the
unique maximal locally soluble ideal of L. The set of left Engel elements
of L is denoted by e(L).

3. Common weakly serial subalgebras

Before considering a common ascendant subalgebra of two permutable
subalgebras in Section 4, we shall state more general forms in the following
interesting theorem, which is a generalization of [12, Theorem 7]. To do
this we need the following useful result.

Lemma 1 ([5, Theorem 2.12]). Let H be a subalgebra of a locally finite
Lie algebra L. Then HwserL if and only if λlN(H) C L and H/λlN(H) ⊆
e(L/λlN(H)).

Theorem 2. Let L be a locally finite Lie algebra over any field and let
{Xi}i∈I be a collection of subalgebras of L. If H is a common weakly serial
subalgebra of Xi for any i ∈ I, then H is a weakly serial subalgebra of
〈Xi | i ∈ I〉.

Proof. We may put L = 〈Xi | i ∈ I〉. Using Lemma 1 we have λlN(H) C Xi

for any i ∈ I, and so λlN(H) C L. We may also assume that λlN(H) = 0
by λlN(H/λlN(H)) = 0 and [5, Proposition 2.5]. Then we get H ⊆ e(Xi)
for all i ∈ I by using Lemma 1.

On the other hand, L is spanned by the elements of a form [x1, x2, . . . ,
xn], where each xk belongs to ∪i∈IXi. For any h ∈ H, there is an m ∈ N
such that xk(ad h)m = 0 for 1 ≤ k ≤ n. Then we can show that

[x1, x2, . . . , xn](ad h)nm = 0

by induction on n, using Leibniz formula. Therefore we have H ⊆ e(L).
Thus it follows from Lemma 1 that HwserL.

As a direct result of Theorem 2, we have the following:

Corollary 3. Let L be a Lie algebra over any field and let {Xi}i∈I be a
collection of subalgebras of L.
(1) If L ∈ é(C)(A∩F) and HascXi for any i ∈ I, then Hasc〈Xi | i ∈ I〉.
(2) If L ∈ é(C)F and HwascXi for any i ∈ I, then Hwasc〈Xi | i ∈ I〉.
(3) If L ∈ l(eA ∩ F) and HserXi for any i ∈ I, then Hser〈Xi | i ∈ I〉.
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Proof. (1) Since é(C)F ≤ lF by [7, Corollary 3.3] we obtain L ∈ lF. Hence
Theorem 2 implies that Hwser〈Xi | i ∈ I〉. Because 〈Xi | i ∈ I〉 ∈ é(C
)(A ∩ F) we conclude from [6, Proposition 2] that Hasc〈Xi | i ∈ I〉.

(2) and (3) follow from [6, Theorem 1] and [5, Theorem 2.7] respec-
tively as in the proof of (1).

4. Common ascendant subalgebras

Let L be a Lie algebra and let A,B be subalgebras of L. As in groups
we say that L is factorized by A and B if L = A + B.

Let L be factorized by A and B, and let H ≤ A ∩ B. In this section
we shall consider some conditions under which HascA and HascB implies
HascL. First we easily see the following:

Lemma 4. Let L ∈ é(C)A and let L = A+B be the sum of two subalgebras
A and B. If HascA and HascB, then HascL.

Proof. Since HwascA and HwascB, it is evident that HwascL. Therefore
[12, Corollary to Theorem 2] indicates HascL.

Remark. As in the proof of Lemma 4, we can show the following, which
is a generalization of [9, Corollary to Proposition 2] : Let L ∈ é(C)A and
let H ≤ Xi (i = 1, 2, . . . , n) be subalgebras of L such that 〈X1, . . . , Xn〉 =
X1 + · · · + Xn. If HascXi for any i, then Hasc〈X1, . . . , Xn〉.

The following is originally due to Tôgô and is a generalization of [9,
Remark to Lemma 4], for it is clear that eA ∪ Z ≤ é(ch)A over any field.

Lemma 5. Let L be a Lie algebra such that L = H+K with H ≤ L,K C L
and K ∈ éµ(ch)A. If H ≤λ L, then H Cλµ L.

Proof. Let (Kα)α≤µ be an ascending abelian series of characteristic ideals of
K. We note that Kα C L by [3, Lemma 1.4.4]. Therefore Kα C H+Kα ≤ L
for all α ≤ µ. Now for any α < µ we put H = (H + Kα)/Kα, Kα+1 =
Kα+1/Kα. Then

Kα+1 C H + Kα+1 and Kα+1 ∈ A.

On the other hand, we have H ≤λ H + Kα+1 as H ≤λ H + Kα+1. By
virtue of [12, Lemma 3], we obtain H Cλ H + Kα+1. Hence H + Kα Cλ

H + Kα+1 for all α < µ. For any limit ordinal β ≤ µ it is trivial that
H + Kβ = ∪α<β(H + Kα). Therefore it follows that H Cλµ L.

Now using Lemma 5 we can generalize [9, Proposition 5] to the fol-
lowing:
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Proposition 6. Let L be a Lie algebra such that L = A + B = H + K
with A, B,H ≤ L,K C L and K ∈ éµ(ch)A. If H ≤λ A and H ≤λ B, then
H Cλµ L.

Proof. It is evident that H ≤λ L. Therefore we conclude the assertion from
Lemma 5.

The following corresponds to [9, Theorem 6].

Proposition 7. Let X be a class of Lie algebras and suppose that L =
A + B ∈ X with A,B ≤ L,HascA and HascB, always implies that HascL.
Then L = A+B ∈ (é(ch)A)X with HascA and HascB always implies that
HascL.

Proof. Let L = A + B ∈ (é(ch)A)X with H Cλ A and H Cλ B. Then
there exists an ideal K of L such that K ∈ éµ(ch)A and L/K ∈ X. Here
we denote images under the natural map L −→ L/K by bars. Then

L = A + B ∈ X, H Cλ A and H Cλ B.

By the hypothesis, there exists an ordinal α = α(H,λ) such that H Cα L,
so H + K Cα L. On the other hand, H ≤λ L since H ≤λ A and H ≤λ B.
Hence H ≤λ H+K. On account of Lemma 5, it follows that H Cλµ H+K.
Thus we can reach that H Cλµ+α L.

Let L be factorized by A and B over a field of characteristic zero
and let HascA and HascB. Then Aldosray proved that if L ∈ l(C)F then
HascL ([2, Theorem 6]). We know the facts that l(C)F ≤ é(C)F ([14,
Lemma 4.1]) and that if L ∈ é(C)F, then the notion of serial subalgebras
of L coincides with that of ascendant subalgebras of L ([6, Theorem 1]).
Now we shall prove the main theorem in this section, which generalize the
result of Aldosray.

Theorem 8. Let L be a serially finite Lie algebra over a field of charac-
teristic zero and let H,A,B be subalgebras of L such that L = A + B and
H ≤ A ∩ B. If H is a common serial subalgebra of both A and B, then H
is serial in L.

Proof. From [11, Theorem 5 and Corollary 6] it follows that

λlN(H) C A and H/λlN(H) ≤ ρ(A/λlN(H)),

λlN(H) C B and H/λlN(H) ≤ ρ(B/λlN(H)).
Hence we have λlN(H) C L. Therefore it is enough to show that H/λlN(H)
≤ ρ(L/λlN(H)). Now since HwserL by Theorem 2, Lemma 1 indicates

H/λlN(H) ⊆ e(L/λlN(H)).
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Here we denote images under the natural map L −→ L/λlN(H) by bars.
Then

L = A + B ∈ l(ser)F, HserA, HserB,

H ≤ ρ(A) ∩ ρ(B), H ⊆ e(L),

because of [3, Proposition 13.2.4]. Hence we may replace L, H,A, B by
L,H,A,B.

Then by [13, Theorem 2] L is, so-called, a neoclassical Lie algebra.
That is to say, L = σ(L)+̇Λ, where Λ is a direct sum of finite-dimensional,
non-abelian simple subalgebras (see [3, Chapter 13]). As the first paragraph
of the proof we set L = L/σ(L) = A + B. Then

L ∼= Λ ∈ l(C)F, HserA, HserB.

Moreover A, B ∈ é(C)F owing to [14, Lemma 4.1]. Hence we have HascA,
HascB using [6, Theorem 1(1)]. Now we can derive from [2, Theorem 6]
that HascL, so H + σ(L)ascL. Furthermore H + ρ(L) C H + σ(L) owing
to [3, Corollary 13.3.13]. Hence H + ρ(L)ascL. On the other hand we
obtain H ∈ lN by H ≤ ρ(A) ∩ ρ(B). As H ⊆ e(L), H acts on ρ(L) by
nil derivations, which indicates H + ρ(L) ∈ lN by [3, Theorem 16.3.8(b)].
Thus we can reach H + ρ(L) ≤ ρ(L) by using [3, Theorem 13.3.7], that is,
H ≤ ρ(L). This completes the theorem.

By making use of Theorem 8 and [6, Theorem 1(1)], we can obtain a
better result than [2, Theorem 6].

Corollary 9. Let L be a hyperfinite, serially finite Lie algebra over a field
of characteristic zero and be factorized by A and B. If H is a common
ascendant subalgebra of both A and B, then H is ascendant in L.

Remark. Over any field, l(C)F < é(C)F ∩ l(ser)F. For, let X be an
abelian Lie algebra with basis {x0, x1, . . . } and let σ be the derivation of
X defined by x0σ = 0 and xi+1σ = xi (i ≥ 0). Form the split extension
L = X+̇〈σ〉. Then L ∈ Z ≤ é(C)F∩l(ser)F but L 6∈ l(C)F (see [6, Remark
1]).

Proposition 7 and Corollary 9 directly lead the following:

Corollary 10. Let L be a Lie algebra belonging to (é(ch)A)(é(C)F ∩
l(ser)F) over a field of characteristic zero and be factorized by A and B.
If HascA and HascB, then HascL.

Using Lemma 5 and Corollary 10, we can easily prove the following
corollary, which is a generalization of [1, Corollaries 1 and 2].
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Corollary 11. Let L be a Lie algebra belonging to (é(ch)A)(é(C)F ∩
l(ser)F) over a field of characteristic zero and let Xi (i = 1, 2, ..., n) be
subalgebras of L such that L = X1 +X2 + · · ·+Xn and 〈Xi, Xj〉 = Xi +Xj

for all i, j = 1, 2, ..., n.
(1) If HascXi for all i, then HascL.
(2) For each i, if Xiasc〈Xi, Xj〉 for all j, then XiascL.

5. A generalization for the result of Goto and Panyukov

In this section we shall generalize the following result.

Lemma 12 (Goto, Panyukov). Let L be a finite-dimensional Lie algebra
over a field of characteristic 6= 2. If L is represented as a sum of two
nilpotent subalgebras A and B, then L is soluble.

For our purpose we need the following two lemmas.

Lemma 13. Let H be a finitely generated subalgebra of a Lie algebra L.
(1) If HwascL, then H(ω)chL.
(2) Assume that L ∈ lF. If HwserL, then H(ω) C L.

Proof. (1) Using [12, Theorem 4] we have H ≤ω L. Hence [5, Lemma
2.10] leads H(ω) C L. Next form the split extension M = L+̇DerL. Then
HwascM . The argument above indicates that H(ω) C M , so H(ω)chL.

(2) For any I C H such that H/I ∈ leA, we have H(ω) ≤ I since
H/I ∈ eA. Therefore H(ω) ≤ λleA(H). Since, in general, λleA(H) ≤ H(ω),
it follows from [5, Proposition 2.11] that H(ω) = λleA(H) C L.

Lemma 14. Let L be a Lie algebra over a field of characteristic 6= 2 and
let L = A + B be a sum of Engel subalgebras A and B.
(1) If H ∈ F and HwascL, then H ∈ eA.
(2) Assume that L ∈ lF. If H ∈ F and HwserL, then H ∈ eA.

Proof. (1) Because H(ω) is a finite-dimensional ideal of L by Lemma 13, it
follows from [3, Corollary 1.4.3] that

CL(H(ω)) C L and L/CL(H(ω)) ∈ F.

Now we denote images under the natural map L −→ L/CL(H(ω)) by bars.
Then we have L ∈ F and L = A + B is a sum of nilpotent subalgebras A
and B. Therefore Lemma 12 shows L ∈ eA. In particular, H ∈ eA, so
H(ω) ⊆ CL(H(ω)). Hence H(ω+1) = [H(ω),H(ω)] = 0. This concludes that
H ∈ eA.

(2) Since H(ω) C L by Lemma 13, we can show that H ∈ eA as in
the proof of (1).
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Now we shall prove the main theorem in the section, which is a gen-
eralization of Lemma 12.

Theorem 15. Let L be a Lie algebra over a field of characteristic 6= 2.
If L ∈ l(wser)F and L is represented as a sum of two locally nilpotent
subalgebras A and B, then L is locally soluble.

Proof. Let X be a finite subset of L. Then there exists a subalgebra H of
L such that X ⊆ HwserL and H ∈ F. Therefore it follows from Lemma
14(2) that H ∈ eA. Thus L ∈ leA.

Finally we shall state about any subalgebra of the intersection of
permutable two locally nilpotent subalgebras.

Corollary 16. Let L be a Lie algebra over a field of characteristic 6= 2
and let L be factorized by two locally nilpotent subalgebras A and B.
(1) If L ∈ l(wser)F, then HserL for any subalgebra H of A ∩ B.
(2) If L ∈ l(C)F, then H Cω L for any subalgebra H of A ∩ B.

Proof. (1) Using [3, Proposition 13.2.4] we obtain HserA and HserB. Since
L ∈ leA by Theorem 15 we conclude from Corollary 3 that HserL.

(2) From (1) we have HserL ∈ leA∩l(C)F = l(C)(eA∩F). Therefore
H Cω L in virtue of [5, Theorem 3.3].
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