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Abstract. For reaction-diffusion equations, equilibrium solutions or
traveling wave solutions with thin transition layers are constructed by
singular perturbation methods. It is usually difficult to study their sta-
bility. This is because the linearized eigenvalue problem has a critical
eigenvalue in a small neighborhood of zero, and its location is difficult to
determine. The SLEP method is known as one of the most powerful tools
to study this critical eigenvalue. To apply this method rigorously, a uni-
form convergence theorem for the inverse of a differential operator, for
instance the inverse Allen-Cahn operator, in some function space plays
a crucial role. However, there has been a significant difficulty in the
cases of unbounded intervals including those of traveling waves, and no
rigorous result was available previously. This paper presents a uniform
convergence theorem in a general framework. Our new uniform conver-
gence theorem makes the SLEP method applicable to various kinds of
problems including stability of traveling waves.

1. Introduction

In a coupled system of reaction-diffusion equations of bistable type, solu-
tions often have thin transition layers. We study them in one-dimensional
intervals. Equilibrium solutions or traveling wave solutions with such layers
are constructed by singular perturbation methods and are called singularly
perturbed solutions. Studying their stability is usually quite difficult. This
is because the linearized eigenvalue problem has a critical eigenvalue in a
small neighborhood of zero in the complex plane. Let ε > 0 be a parameter
associated with the thickness of transition layers. In some cases this critical
eigenvalue approaches zero as ε→ 0. The location of the critical eigenvalue
is usually very difficult to determine. The so-called SLEP (singular limit
eigenvalue problem) method is known as one of the most powerful tools to
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study such a critical eigenvalue. This method was introduced by Nishiura
and Fujii [9] to prove the stability of singularly perturbed equilibrium so-
lutions in a finite interval for activator-inhibitor systems in chemistry or
mathematical biology.

The SLEP method is very powerful because it determines the location
of the critical eigenvalue completely, and it has been modified and used in
various forms by many people. Nishiura, Mimura, Ikeda and Fujii [10] study
traveling waves of activator-inhibitor systems by using this method, Tsu-
jikawa [12] applies this method to a chemotaxis model with a growth effect.
Kan-on and Mimura [6] and Ikeda [4, 5] apply this method to three compo-
nent reaction-diffusion systems. Kan-on and Mimura [6] study a model of
two competing preys with a common predator, and Ikeda [4, 5] studies that
of three competing species.

To apply the SLEP method, an uniform convergence theorem for the in-
verse of a differential operator, for instance the inverse Allen-Cahn operator,
in some function space plays a crucial role. However, in the case of un-
bounded intervals, no rigorous uniform convergence theorem was available
previously, which has posed a difficulty in applying the SLEP method to
solutions on unbounded intervals. In the following we briefly explain where
the problem lies for two-component systems.

A typical example of a two-component system is as follows:

ετUt = ε2Uxx+U−U3−V, Vt = Vxx+U−β1V +β2, x ∈ R, t > 0. (1.1)

Here, U(x, t), V (x, t) represent the density of an activator and an inhibitor,
respectively, and β1, β2 are positive constants with 3 + 3

√
3β2 < 2β1. These

nonlinear terms are those of the bistable FitzHugh-Nagumo equations. To
analyze the stability of a singularly perturbed solution for a two-component
system, one studies the linearized eigenvalue problem, which, in a typical
situation, can be stated as follows: find λ ∈ C+ = {λ ∈ C : Reλ ≥ 0} and
(û(x, ε), v̂(x, ε)) ∈ L2(I)× L2(I) that satisfy

Lεû+ p(x, ε)v̂ = −ετλû (1.2)

−g(x, ε)û+ (−Dxx + σ(x, ε)Dx + q(x, ε))v̂ = −λv̂ (1.3)

in I, where I = (−1, 1) or I = R. Here, Lε is the so-called Allen-Cahn
operator

Lε = −ε2Dxx + εs(x, ε)Dx + a(x, ε),

and ε > 0 is a small number. If I = (−1, 1), then the Neumann boundary
condition ûx = 0, v̂x = 0 are imposed at x = ∂I. See §2 for the assump-
tions on the coefficients. This operator Lε has a spectral gap near λ = 0.
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See Nishiura and Fujii [9] and Hale and Sakamoto [3]. See also Carr and
Pego [2], de Mottoni and Schatzman [8] and Chen [1]. To explain the sit-
uation precisely, let us consider the case where the solution of the original
reaction-diffusion system has a single layer at x = 0 for simplicity. Then −Lε
has a positive eigenvalue ζε near the origin, which goes to zero as ε → 0,
while the rest of the spectra lie in {λ ∈ C : Reλ < 0} and they are separated
away from the imaginary axis uniformly in ε > 0. Let P ε and Qε be the
projections in L2(I) associated with ζε and σ(Lε)\{ζε}, respectively.

The SLEP method goes as follows. For simplicity, we put p(x, ε) ≡ 1. By
using (1.2), one solves Qεû in terms of P εû and v̂, and by using (1.3) one
solves Qεû in terms of P εû and v̂ again. Then the compatibility condition
gives a scalar equation on eigenvalues called the SLEP equation, and it
gives the location of the critical eigenvalue. In carrying out the argument,
one should study the convergence of (Lε)−1Qεv̂(x, ε) as ε goes to zero as is
shown in §2. If necessary, one can assume ‖v̂(x, ε)‖H1(I) = 1 without loss of
generality. Since v̂(x, ε) depends on ε, one needs the uniform convergence of
(Lε)−1Qε in some function space. Let a∗ = a∗(x) be as in §2. Nishiura and
Fujii [9], Nishiura, Mimura, Ikeda and Fujii [10] and Tsujikawa [12] showed
the strong convergence of (Lε)−1Qε, that is, the convergence

lim
ε→0

(Lε)−1Qεh = (a∗)−1h in L2(I) (1.4)

for fixed h ∈ L2(I)∩L∞(I). If the given interval I is bounded, the imbedding
of H1(I) into L2(I) ∩ L∞(I) is compact, and then (1.4) implies

lim
ε→0

(Lε)−1Qε = (a∗)−1 in L(H1(I), L2(I)).

However, if I is unbounded, the imbedding is no longer compact, and the
strong convergence theorem of (Lε)−1Qε is insufficient, which cannot be
recovered if one uses weighted normed spaces as explained in §2. A new
uniform convergence theorem is needed for the application of the SLEP
method if I is unbounded.

This paper shows that (Lε)−1Qε converges to (a∗)−1 in L(L2(I), (Hθ(I))′)
with any θ ∈ (0, 1

2). Here,
(
Hθ(I)

)′ is the dual space of Hθ(I). For the
definition of the interpolation space see Lions and Magenes [7] for instance.
This uniform convergence theorem enables the SLEP method to be applied
to the stability analysis of singularly perturbed solutions for I = R including
traveling wave solutions as in §2.

A similar uniform convergence theorem is presented for a matrix of differ-
ential operators Lε in §4. This theorem can also apply both in the case I is
a finite interval and in the case I is unbounded including I = R. It allows
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the SLEP method to apply to the stability analysis of singularly perturbed
traveling waves for three component reaction-diffusion systems. We discuss
it in a general framework in §5.

2. Preliminaries

In this section we explain how the SLEP method applies to singular limit
linearized eigenvalue problems. First we study differential operators appear-
ing in [9], [10] and [12]. More generally, we consider

Lε = −ε2Dxx + εs(x, ε)Dx + a(x, ε) in I. (2.1)

Here, I is R = (−∞,∞) or a finite interval, say, (−1, 1). We assume ε > 0
is small, say, ε ∈ (0, ε0). A given function a(x, ε) is smooth in x. The
symbols Dx, Dxx stand for d/dx, (d/dx)2, respectively. Define y = x/ε and
ã(y, ε) = a(εy, ε) for y in Ĩ = {y ∈ R : εy ∈ I}. Define s̃(y, ε) = s(εy, ε) and
set

T ε = −Dyy + s̃(y, ε)Dy + ã(y, ε) in Ĩ

for all ε ∈ (0, ε0). Put ã(y, 0) = ã∗(y), where ã∗(y) is as in (A2), and put
s̃(y, 0) ≡ s̃∗, where s̃∗ is a constant as in (A3). Then T ε is defined up to
ε = 0. Denote the spectrum sets of −Lε and −T ε by σ(−Lε) and σ(−T ε),
respectively. They agree with each other for ε ∈ (0, ε0). Let B(0; r) = {µ ∈
C : |µ| < r} and define a counterclockwise circle Γ (r) = {µ ∈ C : |µ| = r}
for r > 0. The assumptions on Lε in §2 and §3 are as follows.

(A1) lim
ε→0
‖a(x, ε)−a∗(x)‖L∞(I\J(ε)) = 0 is valid, where J(ε) = (−r(ε), r(ε))

and r(ε) is a positive number with lim
ε→0

r(ε) = 0. sup
x∈I\J(ε)

|ax(x, ε)| is

bounded uniformly in ε ∈ (0, ε0). Here, a∗(x) is a bounded function
that is continuous except x = 0 with a∗(x) > k > 0 for all x ∈ R.

(A2) sup
y∈Ĩ
|Dyã(y, ε)| is bounded uniformly in ε ∈ (0, ε0). lim

ε→0
ã(y, ε) =

ã∗(y) holds uniformly on any fixed compact subset of R. Here, ã∗(y)
is a smooth function. There exists a constant m > 0 that is inde-
pendent of ε so that ã(y, ε) > k holds for all ε ∈ (0, ε0), |y| > m.

(A3) s(x, ε) satisfies one of the following conditions.
(a1) I = R and s(x, ε) = cε, where cε is a constant independent of x

and satisfies limε→0 c
ε = c∗ ∈ (−∞,∞). Define s̃∗ def= c∗.

(a2) I = (−1, 1) and Lεu is equipped with the Neumann boundary
condition ux(±1) = 0 for given u = u(x). In this case s(x, ε) ≡ 0
is assumed, and define s̃∗ def= 0.



a uniform convergence theorem 33

(a3) I = R. |s(x, ε)| and |sx(x, ε)| are bounded uniformly in ε ∈
(0, ε0) and x ∈ I. lim

ε→0
s(x, ε) = s∗(x) holds uniformly in x ∈ R.

s∗(x) is a bounded continuous function on R. lim
ε→0

s̃(y, ε) =

s∗(0) uniformly on any compact subset of R. In this case define
s̃∗

def= s∗(0).
(A4) σ(−T ε) = σ1 ∪ σ2 for all ε ∈ [0, ε0). Here, σ1 = {ζε} and σ1 ⊂

B(0; r0) holds with r0 < k. Also σ2 ⊂ B(0; r1)c ∩ {µ ∈ C : π2 + θ0 <
| argµ| ≤ π} holds. Here, θ0, r0, r1 (r0 < r1) are positive constants
independent of ε and λ. The eigenspace associated with ζε is one-
dimensional. For ε > 0, let φ(x, ε) be the eigenfunction of −Lε
associated with ζε, and let φ(x, ε) be normalized in L2(I). Then

lim
ε→0
‖φ(x, ε)‖L1(I) = lim

ε→0

∫
I
|φ(x, ε)| dx = 0

holds true.
(A5) For all ε ∈ (0, ε0), |a(x, ε)| < M and ε|ax(x, ε)| < M hold for x ∈ I.

Here, M > 0 is a constant independent of ε.
Usually r(ε) = O(ε| log ε|) as ε→ 0, and so mε ≤ r(ε) holds for small ε > 0.
Without loss of generality, we assume mε ≤ r(ε) for all ε ∈ (0, ε0). The
underground function spaces in §2 and §3 are as follows. Let Y = L2(I),
X = H1(I) and let the dual space of X be denoted by X ′. If I = R,
X ′ = H−1(R) is valid. We denote the inner product of Y = L2(I) by ( · , · )
in §2 and §3. Let P ε and Qε be the projections associated with σ1 and
σ2, respectively. Define Y1 = P εY and Y2 = QεY . Then Lε is completely
reduced by (Y1, Y2). Fix positive constants r2, r3 independently of ε, λ so
that r0 < r3 < r2 < k < r1 is valid. It holds that

P ε
def=

1
2πi

∫
Γ (r2)

(µ+ Lε)−1 dµ, Qε
def= I − P ε.

Define Ỹ = L2(Ĩ) and X̃ = H1(Ĩ). Let X̃ ′ be the dual space of X̃. The
following projections

P̃ ε
def=

1
2πi

∫
Γ (r2)

(µ+ T ε)−1 dµ, Q̃ε
def= I − P̃ ε

give a direct sum decomposition Ỹ = Ỹ1⊕ Ỹ2 with Ỹ1 = P̃ εỸ and Ỹ2 = Q̃εỸ .
We denote {λ ∈ C : Reλ ≥ 0} by C+.

Remark 1. The assumption (A4) implies that ζε should be a real number.
If one assumes in addition to (A4) that ζε is a pole of order 1 for the resolvent
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(µ+ Lε)−1 for µ ∈ C, then P ε = (φ, ψ)−1( · , ψ)φ is valid. Here, φ = φ(x, ε)
is as in (A4), and ψ is a non-zero function in the null space N (ζε + (Lε)∗),
where (Lε)∗ is the formal adjoint operator given by

(Lε)∗ = −ε2Dxx − εsDx − εsx + a(x, ε).

This fact follows from R(ζε + Lε) = (N (ζε + (Lε)∗))⊥. See for [11] for
instance.

We consider (1.2)–(1.3) in §1. If I = (−1, 1), then the Neumann boundary
condition ûx = 0, v̂x = 0 are imposed at x = ∂I. We assume either τ > 0 is
a given constant or τ = ε−1. Functions p(x, ε), g(x, ε), q(x, ε), σ(x, ε) and
σx(x, ε) are uniformly bounded in x ∈ I and ε ∈ (0, ε0) with

lim
ε→0
‖p(x, ε)− p∗(x)‖L2(I) = 0, lim

ε→0
‖q(x, ε)− q∗(x)‖L2(I) = 0, (2.2)

lim
ε→0
‖g(x, ε)− g∗(x)‖L2(I) = 0, lim

ε→0
‖g(x, ε)− g∗(x)‖H1(I\(− 1

2
, 1
2

)) = 0,

(2.3)

lim
ε→0
‖σ(x, ε)− σ∗(x)‖L∞(I\J(ε)) = 0, lim

ε→0
‖σx(x, ε)− σ∗x(x)‖L∞(I\J(ε)) = 0.

(2.4)

Functions p∗(x), q∗(x), g∗(x), σ∗(x) and σ∗x(x) are continuous except at
x = 0, and belong to H1(I ∩ (0,+∞)) and H1(I ∩ (−∞, 0)). Assume that

inf
x∈I

(
q∗(x) + a∗(x)−1p∗(x)g∗(x)− 1

2
σ∗x(x)

)
> 0. (2.5)

Under the assumptions stated above, one can obtain a scalar equation for
λ ∈ C+ by the SLEP method. The procedure is as follows. First

(Lε + ετλ)û = −p(x, ε)v̂. (2.6)

Then it is necessary that

û = −(Lε + ετλ)−1Qε(p(x, ε)v̂) + k0φ(x, ε) (2.7)

holds with some k0 ∈ C. Substituting this into (1.3), one has

Aε,λv̂
def= (−Dxx + σ(x, ε)Dx + q + λ)v̂ + g(Lε + ετλ)−1Qε(pv̂) = k0gφ(x, ε).

(2.8)
Define a bilinear form

B(z1, z2) = (z1
x, z

2
x)+

(
σ(x, ε)z1

x + (q + λ)z1, z2
)
+((Lε+ετλ)−1Qε(pz1), gz2).

(2.9)
for z1, z2 ∈ X = H1(I). Now one proves that this bilinear form is coercive
and applies the Lax-Milgram theorem. For this purpose one should study
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g(x, ε)(Lε + ετλ)−1Qε(p(x, ε) · ). The following is a strong convergence theo-
rem due to Nishiura and Fujii [9] and Nishiura, Mimura, Ikeda and Fujii [10].

Theorem 1 ([9], [10]). For each fixed h(x) ∈ L2(I) ∩ L∞(I),

lim
ε→0

(Lε + ετλ)−1Qε(p(x, ε)h(x)) = (a∗)−1p∗h(x) in L2(I).

If I is bounded, the imbedding H1(I) ⊂ L2(I) ∩ L∞(I) is compact, and
Theorem 1 gives a uniform convergence of g(x, ε)(Lε + ετλ)−1Qε(p(x, ε) · )
in L(H1(I), L2(I)). However, if I is unbounded, say I = R, then it is no
longer compact. If one considers B( · , · ) on a space with an exponentially
weighted norm:

H1
ρ (R) =

{
u ∈ H1(R) : ‖u‖2H1

ρ(R) =
∫
R

exp(ρ|x|)(|u|2 + |ux|2) dx <∞
}

with ρ > 0, then the imbedding H1
ρ (R) ⊂ L2(R) ∩ L∞(R) is compact, and

g(x, ε)(Lε+ετλ)−1Qε(p(x, ε) · ) converges to g∗(a∗)−1p∗ in L(H1
ρ (R), L2(R))

by virtue of Theorem 1. However, B( · , · ) is not coercive on H1
ρ (R) unfor-

tunately. Therefore, B( · , · ) should be a bilinear form on H1(I), and the
strong convergence theorem is insufficient.

To prove that B( · , · ) is coercive even when I is unbounded, the uniform
convergence theorem as in Theorem 2 in §3 is useful as follows. As is shown
in Remark 2,

lim
ε→0
‖g(x, ε)z(x)− g∗(x)z(x)‖Hθ(I) = 0 (2.10)

holds true for z(x) ∈ X with some θ ∈ (0, 1
2) and the convergence is uniform

on {z ∈ X : ‖z‖X = 1}. Here, X = H1(I). Theorem 2 in §3 implies (Lε +
ετλ)−1Qε(p(x, ε)·) converges to (a∗)−1p∗ in L(Y, (Hθ(I))′). Then ((Lε +
ετλ)−1Qε(p(x, ε)z), g(x, ε)z) converges to

∫
I(a
∗)−1p∗zg∗z dx uniformly on

‖z‖X = 1. For all z ∈ X with ‖z‖X = 1, one has

ReB(z, z) = ‖zx‖2Y +
(
(− 1

2σx(x, ε) + q + Reλ)|z|2, 1
)

+
(
g(Lε + ετλ)−1Qε(pz), z

)
.

The right-hand side equals

‖zx‖2Y +
∫
I

(
−1

2σ
∗
x + q∗ + Reλ+ (a∗)−1p∗g∗

)
|z|2 dx+ r̂(ε)‖z‖2Y

for all z ∈ X, where r̂(ε) satisfies limε→0 r̂(ε) = 0. From the assumption
(2.5), B( · , · ) is proved to be coercive. Thus, the Lax-Milgram theorem is
applicable and it gives a bounded linear inverse operator Kε,λ def= (Aε,λ)−1
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from X ′ to X. Kε,λ is bounded in L(X ′, X) uniformly in ε and λ . Thus,
(2.8) yields

v̂ = k0K
ε,λ(gφ). (2.11)

From (2.7), P εû = k0φ(x, ε) follows. Acting P ε on (2.6), one has

(Lε + ετλ)P εû = −P ε(p(x, ε)v̂).

Substituting (2.11) and P εû = k0φ into this equation and using k0 6= 0, one
obtains

Λ(λ)φ def= (−ε−1ζε + τλ)φ+ ε−1P ε(p(x, ε)Kε,λ(g(x, ε)φ)) = 0. (2.12)

Conversely, we show (2.12), (2.11) and (2.7) give (1.2) and (1.3). It suffices
to prove the solvability condition for (2.6). For this purpose it suffices to
show when Lε+ετλ has zero-eigenvalue. That is, ζε+ετλ = 0. Then (2.12)
and (2.11) give P ε(pv̂) = 0. Because (Lε+ετλ)|Y2 is invertible, (2.6) satisfies
the solvability condition. Thus, one obtains a scalar equation (2.12) from a
singular limit eigenvalue problem as follows.

Proposition 1. For sufficiently small ε > 0, λ ∈ C+ is an eigenvalue of
(1.2)-(1.3) if and only if λ satisfies (2.12).

Equation (2.12) is called the SLEP equation. Theorem 2 also implies that
Kε,λ converges to K0,λ in L(X ′, X) uniformly in λ ∈ C+. Here, K0,λ =
(A0,λ)−1 and

A0,λ = −Dxx + σ∗(x)Dx + q∗(x) + a∗(x)−1p∗(x)g∗(x) + λ.

Under the assumption of Remark 1, define

ζ̂(ε) = ε−1ζε, β(ε) = (φ(x, ε), ψ(x, ε))−1,

h1(x, ε) = ε−
1
2 p(x, ε)ψ(x, ε), h2(x, ε) = ε−

1
2 g(x, ε)φ(x, ε).

Then
Λ(λ) = −ζ̂(ε) + τλ+ β(ε)(Kε,λh2(x, ε), h1(x, ε)).

In the cases as in [9], [10] and [12],

ζ̂(0) def= lim
ε→0

ζ̂(ε) and β(0) def= lim
ε→0

β(ε)

exist, and hj(x, ε) converges to k∗j δ(x) in X ′ as ε → 0. Here, δ(x) is the
Dirac function concentrated on x = 0, and k∗j is a constant (j = 1, 2). Then
sending ε→ 0 in (2.12), one has

−ζ̂(0) + τλ+ β(0)k∗1k
∗
2z
∗(0) = 0, (2.13)
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where z∗(x) = K0,λδ(x) satisfies(
−Dxx + σ∗Dx + q∗ + (a∗)−1p∗g∗ + λ

)
z∗(x) = 0 in I\{0},

z∗x(+0)− z∗x(−0) = −1.

Equation (2.13) is called the SLEP equation for ε = 0. This equation charac-
terizes the critical eigenvalue λ, and is useful to prove stability and bifurca-
tion of equilibrium solutions and traveling wave solutions. Using Theorem 2
in this paper, one can obtain the SLEP equation (2.13) rigorously even when
I = R.

Remark 2. The proof of (2.10) is as follows. First note that g∗(x) belongs
to Hθ(I) if 0 < θ < 1

2 . See [7, Theorem 11.4] for instance. Put ĝ(x, ε) =
g(x, ε)−g∗(x). From (2.3), ‖ĝ(x, ε)z(x)‖H1(I\(− 1

2
, 1
2

)) converges to 0 as ε→ 0
uniformly in z with ‖z‖X = 1. Because

‖ĝ(x, ε)z‖Hθ(I) = ‖ĝ(x, ε)z‖Hθ(I\(− 1
2
, 1
2

)) + ‖ĝ(x, ε)z‖Hθ(− 1
2
, 1
2

)

is valid, it suffices to prove that ‖ĝ(x, ε)z(x)‖H1(− 1
2
, 1
2

) converges to 0 as ε→ 0

uniformly in z with ‖z‖X = 1. From g∗(x) ∈ Hθ(−1
2 ,

1
2) and limε→0 ‖g(x, ε)−

g∗‖Y = 0, {‖g(x, ε)‖Hθ(− 1
2
, 1
2

)}0<ε<ε0 turns out bounded. Using the intrinsic

norm of Hθ(−1
2 ,

1
2), one has

‖g(x, ε)z‖2
Hθ(− 1

2
, 1
2

)

= ‖g(x, ε)z‖2
L2(− 1

2
, 1
2

)
+
∫ 1

2

− 1
2

∫ 1
2

− 1
2

|g(x1, ε)z(x1)− g(x2, ε)z(x2)|2
|x1 − x2|1+2θ

dx1dx2.

From ‖z‖X = 1 and the boundedness of g(x, ε) stated above, the right-
hand side is bounded uniformly in ε ∈ (0, ε0) and ‖z‖X = 1. Take θ′ with
0 < θ′ < θ. From the compact imbedding Hθ(−1

2 ,
1
2) ⊂ Hθ′(−1

2 ,
1
2), g(x, ε)z

converges in Hθ′(−1
2 ,

1
2) as ε→ 0. The convergence limit is g∗(x)z(x). This

convergence is uniform in z with ‖z‖X = 1. Denoting θ′ simply by θ, one
obtains (2.10).

3. A uniform convergence theorem for differential operators

In this section, we present Theorem 2 which already appeared in §2.
First we show that ‖(λ + Lε)−1Qε‖L(Y ) is uniformly bounded in ε and

λ ∈ C+
def= {λ : Reλ ≥ 0}. If Lε is self-adjoint, this fact follows immedi-

ately from (A4). However, if Lε is not self-adjoint, it needs a proof. The
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following is a brief proof of this boundedness. We put

T ∗
def= −Dyy + s̃∗Dy + ã∗(y).

Lemma 1. There exists a constant M1 > 0 such that∥∥(λ+ Lε)−1Qε
∥∥
L(Y )

< M1(1 + |λ|)−1

holds true for sufficiently small ε > 0 and all λ ∈ C+.

Proof. It suffices to prove∥∥(λ+ T ε)−1Q̃ε
∥∥
L(Ỹ )

< M1(1 + |λ|)−1

for all small ε > 0 and all λ ∈ C+. Assume ũ(y) ∈ Ỹ2 and f̃(y) ∈ Ỹ2 satisfy

(λ+ T ε)ũ = f̃ in Ĩ.

First we prove the lemma when |λ| is large enough. In this case the Lax-
Milgram theorem implies that (T ∗ + λ)−1 is well defined and satisfies∥∥(T ∗ + λ)−1

∥∥
L(X̃′,X̃)

≤ (const.)|λ|−1. (3.1)

From the definitions of T ε and T ∗,

T ε + λ = (T ∗ + λ)
(
I − (T ∗ + λ)−1 ((s̃(y, ε)− s̃∗)Dy − ã(y, ε) + ã∗)

)
.

If |λ| is large enough,∥∥(T ∗ + λ)−1 ((s̃(y, ε)− s̃∗)Dy − ã(y, ε) + ã∗(y))
∥∥
L(X̃)

<
1
2

and thus
‖(T ε + λ)−1‖L(X̃′,X̃)

< 2‖(T ∗ + λ)−1‖L(X̃′,X̃)
.

Combining this inequality and (3.1), one proves the lemma if |λ| is large
enough.

Next we prove the lemma when λ belongs to a bounded closed subset
in (C+ ∩B(0; r3)c) ∪ Γ (r2) for all sufficiently small ε > 0. We denote this
subset by B0, which is independent of ε. Here, r2, r3 are as in §2. Assume
the contrary. Then there exists (ũε, f̃ε) that satisfies

(λε + T ε)ũε = f̃ε in Ĩ (3.2)

with λε ∈ B0, ‖ũε‖
Ỹ

= 1 and limε→0 ‖f̃ε‖Ỹ = 0. Multiplying (3.2) by the
complex conjugate of ũε and integrating the real parts over Ĩ , one has

‖Dyũ
ε‖2
Ỹ
− ε

2

∫
Ĩ
sx(εx, ε)|ũε(y)|2 dy +

∫
Ĩ

(ã(y, ε) + Reλ) |ũε(y)|2 dy

= Re (f̃ε, ũε) ≤ ‖f̃ε‖
Ỹ
‖ũε‖

Ỹ
.
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Thus, ‖Dyũ
ε‖
Ỹ

is bounded uniformly in ε. From this boundedness and (3.2),
‖Dyyũ

ε‖
Ỹ

turns out bounded uniformly in ε. By the Sobolev imbedding
theorem, ũε(y) converges in C1 on any compact subset of R as ε → 0. Let
ũ∗(y) be the convergence limit. Then ũ∗(y) belongs to L2(R). If ũ∗(y) 6≡ 0,
then one obtains a contradiction to the assumption (A4) by sending ε → 0
in (3.2). Indeed, by taking a subsequence one can assume that λε converges
to λ0 ∈ B0. Multiplying (3.2) by a test function z(x) ∈ X̃ and integrating
over Ĩ, one has∫
Ĩ
Dyũ

εDy z̄ dy +
∫
Ĩ

(λεũε + s̃(y, ε)Dyũ
ε + ã(y, ε)ũε) z̄ dy =

∫
Ĩ
f̃ε(y)z̄(y) dy.

Sending ε→ 0, one sees that ũ∗(y) is a weak solution of

T ∗ũ∗(y) def=
(
−Dyy + s̃∗Dy + ã∗(y) + λ0

)
ũ∗(y) = 0.

Because ã∗(y) is a smooth function, ũ∗(y) becomes a strong solution of
T ∗ũ∗(y) = 0, which contradicts (A4). If ũ∗ ≡ 0, then one has

lim
ε→0

(
‖Dyũ

ε‖2
Ỹ

+
∫ ∞
−∞

(ã(y, ε) + Reλε)|ũε(y)|2 dy
)

= 0

and also limε→0 ũ
ε(y) = 0 in C2[−m,m]. Thus,

lim
ε→0

∫
Ĩ\[−m,m]

|ũε(y)|2 dy = 0

follows from this equality and (A2). This contradicts ‖ũε‖
Ỹ

= 1. Thus, (λ+
T ε)−1 is bounded in L(Ỹ ) uniformly in ε ∈ [0, ε0) and λ ∈ (C+ ∩B(0; r3)c)∪
Γ (r2).

Third we prove the lemma when λ ∈ C+ ∩B(0; r3). By using
1

2πi

∫
Γ (r2)

(µ− λ)−1 dµ = I,

the projection Q̃ε is given by

Q̃ε =
1

2πi

∫
Γ (r2)

(µ− λ)−1 dµ− 1
2πi

∫
Γ (r2)

(µ+ T ε)−1 dµ.

From

(µ− λ)−1 − (µ+ T ε)−1 = (µ− λ)−1(λ+ T ε)(µ+ T ε)−1,

one has

Qε =
1

2πi

∫
Γ (r2)

(µ− λ)−1(λ+ T ε)(µ+ T ε)−1 dµ,
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and thus

(λ+ T ε)−1Qε =
1

2πi

∫
Γ (r2)

(µ− λ)−1(µ+ T ε)−1 dµ.

Because (µ+T ε)−1 is bounded in L(Ỹ ) uniformly in ε ∈ [0, ε0) and µ ∈ Γ (r2),
the right-hand side is bounded uniformly in sufficiently small ε > 0 and all
λ ∈ C+ ∩B(0; r3). This completes the proof. ¤

We begin with the following assertion.

Proposition 2. Assume (A1)–(A5). Then

(1 + |λ|)
∥∥∥(λ+ Lε)−1Qε − (λ+ a∗(x))−1

∥∥∥
L(L2(I),(H1(I))′)

converges to zero as ε→ 0 uniformly in λ ∈ C+.

The main theorem is as follows.

Theorem 2. Let θ ∈ (0, 1] be arbitrarily fixed. Assume (A1)–(A5). Then
for sufficiently small ε > 0 and all λ ∈ C+,

(λ+ Lε)−1Qε = (λ+ a∗(x))−1 +Rε1(λ) in L(L2(I),
(
Hθ(I)

)′)
holds true, where Rε1(λ) is a bounded linear operator with

‖Rε1(λ)‖L(L2(I),(Hθ(I))′) ≤ (1 + |λ|)−1 r̂1(ε).

Here, r̂1(ε) is a positive number that is independent of λ and satisfies

lim
ε→0

r̂1(ε) = 0.

First we prove Proposition 2, and then we will prove Theorem 2.
Proof of Proposition 2. Let h ∈ Y be arbitrarily fixed. Set f = Qεh.
Then h = f + P εh.(

(λ+ Lε)−1Qε − 1
λ+ a∗(x)

)
h =

(
(λ+ Lε)−1 − 1

λ+ a∗(x)

)
f − P εh

λ+ a∗(x)
.

Note that P εh = c1φ(x, ε) is valid with |c1| ≤ ‖h‖Y . For any z ∈ X = H1(I),∣∣∣ ∫
I

P εh

λ+ a∗(x)
z(x) dx

∣∣∣ ≤ (const.)
‖h‖Y
|λ|+ 1

∫
I
|φ(x)z(x)| dx.

The letter (const.) means a constant that is independent of ε and λ. Because∫
I |φ(x)z(x)| dx = (const.)‖z‖X

∫
I |φ(x, ε)| dx and limε→0

∫
I |φ(x, ε)| dx = 0,

it suffices to estimate the term
(
(λ+ Lε)−1 − (λ+ a∗)−1

)
f . Thus, it suffices

to prove the proposition for h = f ∈ Y2. Without loss of generality, we
assume f is real-valued.
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Assume f ∈ Y2 and u ∈ Y2 satisfy (λ + Lε)u = f with f 6≡ 0. From
Lemma 1, ‖u‖Y ≤M1(1 + |λ|)−1‖f‖Y . Define α(x, ε) so that one has

(1) α(x, ε) = a(x, ε) for |x| ≥ mε.
(2) α(x, ε) belongs to C∞[−mε,mε] and satisfies

|α(x, ε)| ≤M2 <∞ for all x ∈ I,
ε|αx(x, ε)| ≤M2 <∞ for all x ∈ [−mε,mε].

(3) α(x, ε) ≥ k > 0 for all x ∈ I.

Here, M2 > 0 is a constant. From the definition of α(x, ε) and the assump-
tions on a(x, ε), sup

x∈J(ε)
ε|αx(x, ε)| is bounded uniformly in ε. sup

x∈I\J(ε)
|αx(x, ε)|

is bounded uniformly in ε. As ε goes to zero,

(1 + |λ|)2
∥∥ (α(x, ε) + λ)−1 − (a∗(x) + λ)−1

∥∥
L(Y )

converges to 0 uniformly in λ ∈ C+. Therefore, it suffices to show that

(1 + |λ|)
∥∥(Lε + λ)−1Qε − (α(x, ε) + λ)−1

∥∥
L(Y,X′)

converges to 0 uniformly in λ ∈ C+. Define w = (α(x, ε) + λ)−1f . Then

u− w = −(α(x, ε) + λ)−1(Lε − α(x, ε))u.

For every z(x) ∈ X,

−X〈z, u−w〉X′ =
∫
I
(α(x, ε) + λ̄)−1z(x) (Lε − α(x, ε))u dx = K1 +K2 +K3,

(3.3)
where

K1 =
∫
I
(α(x, ε) + λ̄)−1z(−ε2uxx) dx,

K2 =
∫
I
(α(x, ε) + λ̄)−1z(−εs(x, ε)ux) dx,

K3 =
∫
I
(α(x, ε) + λ̄)−1z(a(x, ε)− α(x, ε))u dx.

By applying the Schwarz inequality to K3,

|K3| ≤
(∫

I
|α(x, ε) + λ̄|−2(a(x, ε)− α(x, ε))2|z|2 dx

) 1
2 ‖u‖Y
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follows. From the Sobolev imbedding H1(I) ⊂ C
1
2 (Ī), supx∈I |z(x)| ≤

(const.)‖z‖X holds. Then one has(∫
I
|α(x, ε) + λ̄|−2(a(x, ε)− α(x, ε))2|z|2 dx

) 1
2

≤
(∫

I
|α(x, ε) + λ̄|−2(a(x, ε)− α(x, ε))2 dx

) 1
2 sup
x∈I
|z(x)|

≤ (const.)(1 + |λ|)−1ε
1
2 ‖z‖X .

Combining this estimate and ‖u‖Y ≤ (const.)(1 + |λ|)−1‖f‖Y , one obtains

|K3| ≤ (const.)(1 + |λ|)−2ε
1
2 ‖z‖X‖f‖Y . (3.4)

Lemma 2. There exists a constant M3 such that

ε‖ux‖Y ≤M3(1 + |λ|)− 1
2 ‖f‖Y

holds true for sufficiently small ε > 0 and all λ ∈ C+.

Proof. Multiplying (Lε + λ)u = f by ū, one gets

ε2‖ux‖2Y +
ε

2

∫
I
sx(x, ε)|u|2 dx+

∫
I

(a(x, ε) + Reλ) |u|2 dx

= Re (f, u)Y ≤ ‖f‖Y ‖u‖Y .

Combining this calculation and ‖u‖Y ≤ M1(1 + |λ|)−1‖f‖Y , one completes
the proof of the lemma. ¤

Now we estimate K2 and K1 as follows by using this lemma. Integration
by parts gives

K2 = ε

∫
I
s(x, ε)(α(x, ε) + λ̄)−1zxu dx+ ε

∫
J(ε)

(s(x, ε)(α(x, ε) + λ̄)−1)xzu dx

+ ε

∫
I\J(ε)

(
s(x, ε)(α(x, ε) + λ̄)−1

)
x
zu dx. (3.5)

Now, ∣∣∣ ∫
I
s(x, ε)(α(x, ε) + λ̄)−1zxu dx

∣∣∣ ≤ (const.)(1 + |λ|)−1‖zx‖Y ‖u‖Y

and thus,

ε
∣∣∣ ∫

I
s(x, ε)(α(x, ε) + λ̄)−1zxu dx

∣∣∣ ≤ (const.)ε(1 + |λ|)−2‖z‖X‖f‖Y
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follows. For the second term of (3.5),

ε

∫
J(ε)

∣∣(s(x, ε)(α(x, ε) + λ̄)−1)xzu
∣∣ dx ≤ (const.)r(ε)(1 + |λ|)−1‖z‖X‖u‖Y

≤ (const.)r(ε)(1 + |λ|)−2‖z‖X‖f‖Y .
For the third term of (3.5),

ε

∫
I\J(ε)

∣∣(s(x, ε)(α(x, ε) + λ̄)−1)xzu
∣∣ dx

≤ (const.) ε
∫
I\J(ε)

(1 + |λ|)−1|z||u| dx ≤ (const.) ε(1 + |λ|)−2‖z‖Y ‖f‖Y .

Combining the estimates stated above, one has

|K2| ≤ (const.)(1 + |λ|)−2 max{r(ε), ε}‖z‖X‖f‖Y .
Finally, we estimate K1 as follows:

K1 =
∫
I
ε
(
(α(x, ε) + λ̄)−1z

)
x
εux dx

=
∫
I
ε(α(x, ε) + λ̄)−1zxεux dx+

∫
I
ε
(
(α(x, ε) + λ̄)−1

)
x
zεux dx. (3.6)

For the first term of (3.6), one has∫
I
ε
∣∣(α(x, ε) + λ̄)−1

∣∣ |zx|ε|ux| dx ≤ (const.)(1 + |λ|)−1‖zx‖Y ‖εux‖Y

≤ (const.)(1 + |λ|)−1‖zx‖Y ‖f‖Y
by virtue of Lemma 2. For the second term of (3.6),∫

I
ε
(
(α(x, ε) + λ̄)−1

)
x
zεux dx ≤

∥∥ε ((α(x, ε) + λ̄)−1
)
x
z
∥∥
Y
‖εux‖Y . (3.7)

Here,∥∥ε ((α(x, ε) + λ̄)−1
)
x
z
∥∥2

Y
=
(∫

J(ε)
+
∫
I\J(ε)

)
ε2
∣∣((α(x, ε) + λ̄)−1

)
x

∣∣2 |z|2 dx
≤ (const.)r(ε)(1 + |λ|)−2‖z‖2X + ε2(1 + |λ|)−2‖z‖2Y .

Thus, the second term of (3.6) is no more than

(const.) max{r(ε), ε}(1 + |λ|)−1‖z‖Y ‖f‖Y .
Combining the estimates on K1, one has

|K1| ≤ (const.)(1 + |λ|)−1 max{r(ε), ε}‖z‖X‖f‖Y .
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Finally, combining the estimates on K1, K2 and K3, one obtains

|K1|+ |K2|+ |K3| ≤ (const.)(1 + |λ|)−1 max{r(ε), ε, ε 1
2 }‖z‖X‖f‖Y .

From this estimate and (3.3),

‖u− w‖X′ ≤ (const.)(1 + |λ|)−1 max{r(ε), ε, ε 1
2 }‖f‖Y

follows. This completes the proof of Proposition 2. ¤
Proof of Theorem 2. From Hθ(I) =

[
H1(I), L2(I)

]
1−θ and the duality

theorem,
(
Hθ(I)

)′ = [L2(I), (H1(I))′
]
θ

follows. Thus, one has

‖T‖L(L2(I),(Hθ(I))′) ≤ c‖T‖1−θL(L2(I))
‖T‖θL(L2(I),(H1(I))′) (3.8)

with a constant c > 0. Then Theorem 2 follows from Lemma 1 and Propo-
sition 2. ¤

Let us go back to the arguments in §2. The SLEP method and Theorem 2
give (2.12) in §2. In the following we briefly explain how to study (2.12)
for the stability of traveling waves on I = R. By the definition of Λ( · ),
limλ→+∞ Λ(λ) = −∞ follows. Kε,λ is analytic in λ ∈ C+ with

∂

∂λ
Kε,λ = −Kε,λ

(
I − ετg(Lε + ετλ)−2Qε(p · )

)
Kε,λ in L(X ′, X).

Thus, Λ(λ) is also analytic in λ ∈ C+. Particularly,

Λλ(0)φ = τφ− ε−1P ε
(
pKε,0

(
I − ετg(Lε)−2Qε(p · )

)
,Kε,0(gφ)

)
holds true.

In particular, we consider the case of I = R under the assumption as in
Remark 1. Then

Λλ(0) = τ − β(ε)
(
Kε,0(I − ετg(Lε)−2(p ·, ))Kε,0h2, h1

)
. (3.9)

If (1.2)–(1.3) is the linearized eigenvalue problem to a traveling wave, (1.2)–
(1.3) has zero eigenvalue, that is, Λ(0) = 0. In this case Λλ(0) ≤ 0 is
always a necessary condition for stability of this traveling wave. Indeed,
there exists at least one positive eigenvalue to (1.2)–(1.3) if Λλ(0) > 0 by
virtue of limλ→∞ Λ(λ) = −∞. If ζ̂(0) def= limε→0 ζ̂(ε) and β(0) def= limε→0 β(ε)
exist, and hj(x, ε) converges to k∗j δ(x) in X ′ as ε → 0 as in §2, then the
right-hand side of (3.9) converges to τ − β(0)k∗1k

∗
2X〈(K0,0)2δ, δ〉X′ = τ −

β(0)k∗1k
∗
2‖K0,0δ‖2Y as ε → 0. Thus, the SLEP method and Theorem 2 give

a general necessary condition for stability of a traveling wave.
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4. A uniform convergence theorem for
systems of differential operators

The SLEP method is useful to study the stability of equilibrium solutions
or traveling wave solutions for three component reaction-diffusion systems.
In this section we present a uniform convergence theorem for this purpose.
Theorem 3 in this section enables the SLEP method to apply to the cases of
I = R including the stability analysis of traveling wave solutions for three
component systems.

A typical example of a three-component system is as follows:

(U1)t = ε2DxxU1 + U1(1− U1 − a3U2 − V )
(U2)t = ε2DxxU2 + U2(a1 − a2U1 − U2 − kV )
Vt = 1

σ0
DxxV + a5V (−a4 + U1 + a6kU2)

for x ∈ I, t > 0. (4.1)

Here, Uj(x, t) (j = 1, 2) are two competing preys, and V (x, t) is a common
predator. All coefficients are positive constants. Kan-on and Mimura [6]
study (4.1) for I = (−1, 1) with the Neumann boundary condition (U1)x =
(U2)x = Vx = 0 for x = ±1, t > 0, and proved the stability of equilibrium
solution with an internal layer by the SLEP method under some condition.
This condition is satisfied, for instance, if one assumes a5 = a6 = 1, a1a3 <
1 < a2a3, a2a4 < a1, and that k, σ0 are small enough. We assume ε > 0 is
small enough compared with the other constants.

The following is a general singular limit eigenvalue problem to three-
component systems as in [6] and [4, 5]. Find λ ∈ C+,

û(x, ε) = t(û1(x, ε), û2(x, ε)) ∈ Y

and v̂(x, ε) ∈ L2(I) that satisfy

(−ε2Dxx + εs1(x, ε)Dx + a1(x, ε))û1 + b1(x, ε)û2 + p1(x, ε)v̂ = −ετλû1,
b2(x, ε)û1 + (−ε2Dxx + εs2(x, ε)Dx + a2(x, ε))û2 + p2(x, ε)v̂ = −ετλû2,
−g1(x, ε)û1 − g2(x, ε)û2 + (−Dxx + σ(x, ε)Dx + q(x, ε))v̂ = −λv̂.

(4.2)
If I = (−1, 1), then the Neumann boundary conditions ûx = 0, v̂x = 0 are
imposed at x = ∂I. We assume either τ > 0 is a constant or τ = ε−1. Here,
σ(x, ε) and q(x, ε) are as in §2. pj(x, ε) and gj(x, ε) satisfy the assumptions
on p(x, ε) and g(x, ε) in §2 by replacing p∗ by p∗j and g∗ by g∗j for j = 1, 2.
Both p∗j (x) and g∗j (x) are bounded continuous functions except x = 0, and
belong to H1(I ∩ (0,∞)) and H1(I ∩ (−∞, 0)) for j = 1, 2.



46 Masaharu Taniguchi

First we study a system of differential operators appearing in [6] and [4, 5].
More generally we consider

Lε =
(
−ε2Dxx + εs1(x, ε)Dx + a1(x, ε) b1(x, ε)

b2(x, ε) −ε2Dxx + εs2(x, ε)Dx + a2(x, ε)

)
(4.3)

for x ∈ I, where I = (−1, 1) or R. Here, ε is small enough, say, ε ∈ (0, ε0).
The assumptions are as follows. Put y = x/ε and

ãj(y, ε) = aj(εy, ε), b̃j(y, ε) = bj(εy, ε), s̃j(y, ε) = sj(εy, ε)

for y ∈ Ĩ = {y ∈ R | εy ∈ I} and for j = 1, 2. Define

A(x, ε) =
(
a1(x, ε) b1(x, ε)
b2(x, ε) a2(x, ε)

)
, Ã(y, ε) =

(
ã1(y, ε) b̃1(y, ε)
b̃2(y, ε) ã2(y, ε)

)
,

for x ∈ I and y ∈ Ĩ. We assume that A(x, ε) is smooth in x ∈ I. Define

T ε =

(
−Dyy + s̃1(y, ε)Dy + ã1(y, ε) b̃1(y, ε)

b̃2(y, ε) −Dyy + s̃2(y, ε)Dy + ã2(y, ε)

)
,

and

T ε0 =

(
−Dyy + ã1(y, ε) b̃1(y, ε)

b̃2(y, ε) −Dyy + ã2(y, ε)

)
.

We define T ∗ = T ε|ε=0 and T ∗0 = T ε0 |ε=0 as

T ∗ =

(
−Dyy + s̃∗1Dy + ã∗1(y) b̃∗1(y)

b̃∗2(y) −Dyy + s̃∗2Dy + ã∗2(y)

)
,

T ∗0 =

(
−Dyy + ã∗1(y) b̃∗1(y)

b̃∗2(y) −Dyy + ã∗2(y)

)
.

Here, ã∗1(y), ã∗2(y), b̃∗1(y) and b̃∗2(y) are as in (B2) and s̃∗1, s̃∗2 are as in (B3).
In §4 and §5 let Y be L2(I)× L2(I). The following properties (B1)–(B6)

hold true for Lε appearing in [6] and [4, 5]. We assume (B1)–(B6) in §4 and
§5.

(B1) For j = 1, 2, limε→0 ‖aj(x, ε)−a∗j (x)‖L∞(I\J(ε)) and limε→0 ‖bj(x, ε)−
b∗j (x)‖L∞(I\J(ε)) are valid. supx∈I\J(ε) |Ax(x, ε)| is uniformly bounded
in ε ∈ (0, ε0). Here, J(ε) is as in §2, and a∗j (x), b∗j (x) are bounded
functions that are continuous except x = 0 with

inf
x∈I

a∗j (x) > 0 for j = 1, 2,
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inf
x∈I,λ∈C+

∣∣∣∣det
(
λ+ a∗1(x) b∗1(x)
b∗2(x) λ+ a∗2(x)

)∣∣∣∣ > 0.

(B2) sup
y∈Ĩ |Dyãj(y, ε)| and sup

y∈Ĩ |Dy b̃j(y, ε)| are bounded uniformly in

ε ∈ (0, ε0) for j = 1, 2. limε→0 ãj(y, ε) = ã∗j (y) and limε→0 b̃j(y, ε) =
b̃∗j (y) hold uniformly in y on any compact subset of R. Here, ã∗j (y)
and b̃∗j (y) are smooth functions for j = 1, 2. There exists a constant
m > 0 that is independent of ε and λ such that one has

inf
ε∈(0,ε0),|y|>m

ãj(y, ε) > 0 for j = 1, 2,

inf
λ∈C+,ε∈(0,ε0),|y|>m

∣∣∣det
(
λ+ Ã(y, ε)

)∣∣∣ > 0.

(B3) sj(x, ε) satisfies one of the following three conditions.
(b1) I = R and s1(x, ε) = s2(x, ε) = cε. Here, cε is a constant with

limε→0 c
ε = c∗ ∈ (−∞,∞). Define s̃∗1 = s̃∗2 = c∗.

(b2) I = (−1, 1) and Lεû is equipped with the Neumann boundary
condition ûx(±1) = 0 for û = t(u1, u2). In this case sj(x, ε) ≡ 0
is assumed for j = 1, 2. Define s̃∗j = 0 for j = 1, 2.

(b3) I = R. sj(x, ε) satisfies (a3) in (A3) by replacing s∗(x) and s̃∗

by s∗j (x) and s̃∗j . Define s̃∗j = s∗j (0) for j = 1, 2.
(B4) For all ε ∈ [0, ε0), the spectrum set σ(−T ε) satisfies (A4). The

eigenspace associated with ζε is one-dimensional. Let φ(x, ε) =
t(φ1(x, ε), φ2(x, ε)) be the associated eigenfunction of −Lε with
‖φ(x, ε)‖Y = 1. Then φ(x, ε) satisfies lim

ε→0
‖φ(x, ε)‖L1(I)×L1(I) = 0.

(B5) aj(x, ε) and bj(x, ε) satisfy (A5).
(B6) Let Ỹ+ =L2(m,∞)×L2(m,∞) and Ỹ−=L2(−∞,−m)×L2(−∞,−m).

There exist positive constants k∗, θ+
1 , θ−1 , θ+

2 , θ−2 that are indepen-
dent of ε such that(

T ε0

(
w1

w2

)
,

(
θ+

1 w1

θ+
2 w2

))
Ỹ+

≥ k∗
∥∥∥(w1

w2

)∥∥∥2

Ỹ+

for all wj ∈ C∞0 (m,∞), j = 1, 2,(
T ε0

(
w1

w2

)
,

(
θ−1 w1

θ−2 w2

))
Ỹ−
≥ k∗

∥∥∥(w1

w2

)∥∥∥2

Ỹ−
for all wj ∈ C∞0 (−∞,−m), j = 1, 2

hold true for all ε ∈ [0, ε0).
Without loss of generality, we assume mε ≤ r(ε) for all ε ∈ (0, ε0). We define

A∗(x) =
(
a∗1(x) b∗1(x)
b∗2(x) a∗2(x)

)
.
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In §4 and §5, the underground function space is Y = L2(I) × L2(I), and
X = H1(I) × H1(I), and its dual space X ′. The inner product of Y is
denoted by ( · , · ) in §4 and §5. We use the same notation as in §2 and §3
since no confusion will occur.

Let P ε, Qε be the projections associated with σ1, σ2 respectively. Put
Y1 = P εY and Y2 = QεY . Then Lε is completely reduced by (Y1, Y2). Set

P ε
def=

1
2πi

∫
Γ (r2)

(µ+Lε)−1 dµ, Qε
def= I − P ε.

Here, r2 is as in §2. For Ỹ = L2(Ĩ)× L2(Ĩ), the following projections

P̃ ε
def=

1
2πi

∫
Γ (r2)

(µ+Lε)−1 dµ, Q̃ε
def= I − P̃ ε

give Ỹ = Ỹ1⊕ Ỹ2 with Ỹ1 = P̃ εỸ and Ỹ2 = Q̃εỸ . Define X̃ = H1(Ĩ)×H1(Ĩ)
and X̃ ′ be the dual space of X̃.

Remark 3. The assumption (B4) implies that ζε is a real number. If one
assumes in addition to (B4) that ζε is a pole of order 1 for (µ+Lε)−1, then
P ε = (φ,ψ)−1( · ,ψ)φ holds true. Here, ψ(x, ε) = t(ψ1(x, ε), ψ2(x, ε)) is a
non-zero function in N (ζε + (Lε)∗). The formal adjoint operator of Lε is
given by

(Lε)∗=
(
−ε2Dxx − εs1Dx − ε(s1)x + a1(x, ε) b2(x, ε)

b1(x, ε) −ε2Dxx − ε2s2Dx − ε(s2)x + a2(x, ε)

)
.

Lemma 3. There exists a constant M4 such that∥∥(λ+Lε)−1Qε
∥∥
L(Y )

< M4(1 + |λ|)−1

holds true for sufficiently small ε > 0 and all λ ∈ C+.

Proof. The proof is almost parallel to the proof of Lemma 1, where the
argument consists of three cases. We only show the second case, because the
other two cases can be shown by similar arguments as in Lemma 1.

We prove the lemma when λ belongs to a compact subset in
(C+ ∩B(0; r3)c) ∪ Γ (r2) for all sufficiently small ε > 0. We denote this
subset by B0, which is independent of ε. Here, r2, r3 are as in §2. Assume
the contrary, then there exists (ũε, f̃

ε
) that satisfy

(λε + T ε)ũε = f̃
ε

in Ĩ (4.4)

with λε ∈ B0, ‖ũε‖
Ỹ

= 1 and limε→0 ‖f̃
ε‖
Ỹ

= 0. Put

Θ± def=
(
θ±1 0
0 θ±2

)
,
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respectively. Multiplying (4.4) by the complex conjugate of Θ±ũε and inte-
grating the real parts over Ĩ, one has

Re
(
T ε0ũ

ε,Θ±ũε
)

+ (Reλε)
(
θ±1 ‖ũ1‖2Ỹ + θ±2 ‖ũ2‖2Ỹ

)
− 1

2
ε

∫
Ĩ

(
θ±1 (Dxs1)(εy, ε)|ũε1|2 + θ±2 (Dxs2)(εy, ε)|ũε2|2

)
dy

≤ min{θ±1 , θ±2 }‖f̃
ε‖
Ỹ
‖ũε‖

Ỹ
.

Thus, ‖(ũε)y‖Ỹ is bounded uniformly in ε. Then (4.4) implies ‖ (ũε)yy ‖Ỹ
is also bounded uniformly in ε. From the Sobolev imbedding theorem, ũε

converges to a limiting function, say ũ∗(y), in C1 on any compact subset
of R as ε → 0. Then ũ∗(y) belongs to L2(R). From the above inequality,
(B6) and ‖ũε‖

Ỹ
= 1, one obtains ũ∗ 6≡ 0. Sending ε → 0 in (4.4), one

has (λ0 + T ∗)ũ∗ = 0, which contradicts the assumption (B4). Indeed, by
taking a subsequence we can assume that λε converges to λ0 ∈ B0 as ε→ 0.
Multiplying (4.4) by a test function in X̃, integrating over Ĩ and sending ε→
0, one sees that ũ∗(y) is a weak solution of

(
λ0 + T ∗

)
ũ∗ = 0. Because ã∗j (y)

and b̃∗j (y) are smooth functions for j = 1, 2, ũ∗(y) becomes a strong solution
of
(
λ0 + T ∗

)
ũ∗ = 0, which contradicts (B4). Thus, (λ + T ε)−1 is bounded

in L(Ỹ ) uniformly in ε ∈ [0, ε0) and λ ∈ (C+ ∩B(0; r3)c) ∪ Γ (r2). ¤
Associated with Proposition 2, we have

Proposition 3. Assume (B1)–(B6). Then∥∥(λ+Lε)−1Qε − (λ+A∗)−1
∥∥
L(L2(I)×L2(I),(H1(I))′×(H1(I))′)

converges to zero as ε→ 0 uniformly in λ ∈ C+.

The main assertion is as follows.

Theorem 3. Let θ ∈ (0, 1] be arbitrarily fixed. Assume (B1)–(B6). Then
for sufficiently small ε > 0 and all λ ∈ C+,

(λ+Lε)−1Qε = (λ+A∗)−1+Rε2(λ) in L(L2(I)× L2(I), (Hθ(I))′ × (Hθ(I))′)

holds true, where Rε2(λ) is a bounded linear operator with

‖Rε2(λ)‖L(L2(I)×L2(I),(Hθ(I))′×(Hθ(I))′) ≤ (1 + |λ|)−1 r̂2(ε)

and r̂2(ε) is a positive number with limε→0 r̂2(ε) = 0. Here, r̂2(ε) is inde-
pendent of λ.
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Proof of Proposition 3. By a similar argument as in the proof of Propo-
sition 2, it suffices to prove

lim
ε→0

∥∥(λ+Lε)−1Qε − (λ+A∗)−1
∥∥
L(Y2,(H1(I))′×(H1(I))′) = 0.

Assume f ∈ Y2 and u ∈ Y2 satisfy (λ + Lε)u = f , where f is a real
vector-valued function that does not vanish identically. From Lemma 3,
‖u‖Y ≤M4(1 + |λ|)−1‖f‖Y .

Let η(x) ∈ C∞(R) be any cut-off function with η(x) ≡ 1 if x ≥ 1,
0 < η(x) < 1 if 0 < x < 1,
η(x) ≡ 0 if x ≤ 0.

Define B(x, λ, ε) as

B(x, λ, ε) = (λ+A(x, ε))−1 if x 6∈ (−mε,mε),
and

B(x, λ, ε) = η
( x

mε

) (
−(λ+A(mε, ε))−2Ax(mε, ε)(x−mε) + (λ+A(mε, ε))−1

)
+ η

(−x
mε

)(
−(λ+A(−mε, ε))−2Ax(−mε, ε)(x+mε) + (λ+A(−mε, ε))−1

)
,

if x ∈ (−mε,mε). Then, by using (B1) and (−mε,mε) ⊂ J(ε), B(x, λ, ε)
satisfies

|B(x, λ, ε)| ≤M5(1 + |λ|)−1 for all ε ∈ (0, ε0), λ ∈ C+, x ∈ I
ε|Bx(x, λ, ε)| ≤M5(1 + |λ|)−1 for all ε ∈ (0, ε0), λ ∈ C+, x ∈ I
|Bx(x, λ, ε)| ≤M5(1 + |λ|)−1 for all ε ∈ (0, ε0), λ ∈ C+, x ∈ I\J(ε),

with a constant M5 > 0 that is independent of ε and λ. The adjoint matrix
B∗(x, λ, ε) def= tB(x, λ, ε) also satisfies the above estimates. As ε goes to zero,
(1 + |λ|)2

∥∥B(x, λ, ε)− (λ+A∗(x))−1
∥∥
L(Y )

converges to 0 uniformly in λ ∈
C+. Thus, it suffices to show that

(1 + |λ|)
∥∥(λ+Lε)−1Qε −B(x, λ, ε)

∥∥
L(Y2,(H1(I))′×(H1(I))′)

converges to 0 uniformly in λ ∈ C+. Define w = B(x, λ, ε)f for f ∈ Y2.
Then

−u+w = (−I +B(x, λ, ε)(λ+Lε))u. (4.5)
Thus, for every z ∈ X,

X〈z,−u+w〉X′ =
∫
I

(z, (−I +B(x, λ, ε)(λ+Lε))u) dx.
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Then
−X〈z,−u+w〉X′ = L1 + L2 + L3

follows, where

L1 =
∫
I

(z, (−I +B(x, λ, ε)(λ+A(x, ε)))u) dx,

L2 = ε

∫
I

(
B∗(x, λ, ε)

(
z1

z2

)
,

(
s1Dxu1

s2Dxu2

))
dx,

L3 = −ε2

∫
I

(B∗(x, λ, ε)z, Dxxu) dx.

The following assertion holds true.

Lemma 4. There exists a positive constant M6 with

ε‖Dxu‖Y ≤M6(1 + |λ|)− 1
2 ‖f‖Y ,

for sufficiently small ε > 0 and all λ ∈ C+.

Proof. We multiply (λ + Lε)u = f by u, and take the real parts, and
apply Lemma 3. Then by a similar argument as in the proof of Lemma 2 we
complete the proof. ¤

By similar calculations as in the proof of Proposition 2, we finally obtain

|L1| ≤ (const.)(1 + |λ|)−2ε
1
2 ‖f‖Y ‖z‖X ,

|L2| ≤ (const.)(1 + |λ|)−1 max{ε, r(ε)}‖f‖Y ‖z‖X ,
|L3| ≤ (const.)(1 + |λ|)− 3

2 max{ε, r(ε)}‖f‖Y ‖z‖X .
The letter (const.) means a constant that is independent of ε and λ. These
estimates on L1, L2 and L3 complete the proof of Proposition 3. ¤
Proof of Theorem 3. For any λ ∈ C+ and h = t(h1, h2) ∈ Y with
‖h‖Y = 1, define

v = (λ+Lε)−1h− (λ+A∗(x))−1h

with v = t(v1, v2). Then Proposition 3 implies that

‖vj‖(H1(I))′ ≤ (1 + |λ|)−1r0(ε) for j = 1, 2.

Here, r0(ε) satisfies limε→0 r0(ε) = 0 and is independent of λ ∈ C+. Lemma 3
implies that ‖vj‖L2(I) ≤M4(1 + |λ|)−1. Then, using

‖vj‖(Hθ(I))′ ≤ c‖vj‖θ(H1(I))′‖vj‖1−θL2(I)
,
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one has ‖vj‖(Hθ(I))′ ≤ (1 + |λ|)−1r̂2(ε). Here, r̂2(ε) satisfies limε→0 r̂2(ε) = 0
and is independent of λ ∈ C+. Thus ‖v‖(Hθ(I))′×(Hθ(I))′ ≤ (1 + |λ|)−1r̂2(ε)
holds true. This completes the proof of Theorem 3. ¤

5. Application of Theorem 3 to
singular limit eigenvalue problems

This section is devoted to the application of Theorem 3 to a linearized
eigenvalue problem (4.2).

We put p(x, ε) = t(p1(x, ε), p2(x, ε)), g(x, ε) = t(g1(x, ε), g2(x, ε)). We
define p∗(x) = t(p∗1(x), p∗2(x)) and g∗(x) = t(g∗1(x), g∗2(x)). The operator Lε

given by (4.3) satisfies (B1)–(B6). Assume that

inf
x∈I

(
q∗(x) + t(g∗(x))(A∗(x))−1p∗(x)− 1

2
σ∗x(x)

)
> 0. (5.1)

Then (4.2) becomes

(Lε + ετλ)û = −p(x, ε)v̂, (5.2)
−tg(x, ε)û+ (−Dxx + σ(x, ε)Dx + q(x, ε) + λ)v̂ = 0. (5.3)

Associated with

Aε,λv̂
def= (−Dxx+σ(x, ε)Dx+q(x, ε)+λ)v̂+tg(x, ε)(Lε+ετλ)−1Qε(v̂p(x, ε)),

we define a bilinear form

B(z1, z2) =
(
z1
x, z

2
x

)
+
(
σ(x, ε)z1

x + (q(x, ε) + λ)z1, z2
)

+
(
(Lε + ετλ)−1Qε(p(x, ε)z1), z2g(x, ε)

)
for z1, z2 ∈ H1(I). As is shown in §2, one has

lim
ε→0
‖z(x)g(x, ε)− z(x)g∗(x)‖Hθ(I)×Hθ(I).

The convergence is uniform on {z ∈ H1(I) : ‖z‖H1(I) = 1}. Then Theorem 3
implies that this bilinear form is coercive and has a bounded linear operator
Kε,λ def= (Aε,λ)−1 in L((H1(I))′, H1(I)). This operator Kε,λ is bounded in
L((H1(I))′, H1(I)) uniformly in ε ∈ (0, ε0) and λ ∈ C+. Theorem 3 also
implies that

lim
ε→0
‖Kε,λ −K0,λ‖L((H1(I))′,H1(I)) = 0

uniformly in λ ∈ C+, where K0,λ = (A0,λ)−1 and A0,λ is given by

A0,λ = −Dxx + σ∗(x)Dx + q∗(x) + t(g∗(x))A∗(x)−1p∗(x) + λ.

Associated with Proposition 1 of the scalar case, we have
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Proposition 4. For sufficiently small ε > 0, λ ∈ C+ is an eigenvalue of
the linearized eigenvalue problem (4.2) if and only if λ satisfies

Λ(λ)φ def= (−ε−1ζε + τλ)φ(x, ε) + ε−1P ε(p(x, ε)Kε,λ(tg(x, ε)φ(x, ε))) = 0.
(5.4)

In this case (û, v̂) is given by

v̂ = Kε,λ(tg(x, ε)φ(x, ε)), û = φ− (Lε + ετλ)−1Qε(p(x, ε)v̂).

We omit the proof, since the argument is the same as in Proposition 1.
Equation (5.4) is called the SLEP equation, which is a scalar equation

for the critical eigenvalues. By the definition of Λ( · ), limλ→+∞ Λ(λ) = −∞
follows. Λ(λ) is analytic in λ ∈ C+ with

Λλ(0)φ = τφ− ε−1P ε
(
p(x, ε)Kε,0

(
I − ετ tg(x, ε)(Lε)−2Qε( ·p(x, ε))

)
×
(
Kε,0(tg(x, ε)φ)

) )
.

Then the procedure is the same as in the scalar case in §2 and §3. By a
similar argument as in §3, one can study the stability of traveling waves for
three component systems by using the SLEP method.
Acknowledgements. The author thanks Professor Seiji Ukai of Yokohama
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