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Abstract. For reaction-diffusion equations, equilibrium solutions or
traveling wave solutions with thin transition layers are constructed by
singular perturbation methods. It is usually difficult to study their sta-
bility. This is because the linearized eigenvalue problem has a critical
eigenvalue in a small neighborhood of zero, and its location is difficult to
determine. The SLEP method is known as one of the most powerful tools
to study this critical eigenvalue. To apply this method rigorously, a uni-
form convergence theorem for the inverse of a differential operator, for
instance the inverse Allen-Cahn operator, in some function space plays
a crucial role. However, there has been a significant difficulty in the
cases of unbounded intervals including those of traveling waves, and no
rigorous result was available previously. This paper presents a uniform
convergence theorem in a general framework. Our new uniform conver-
gence theorem makes the SLEP method applicable to various kinds of
problems including stability of traveling waves.

1. INTRODUCTION

In a coupled system of reaction-diffusion equations of bistable type, solu-
tions often have thin transition layers. We study them in one-dimensional
intervals. Equilibrium solutions or traveling wave solutions with such layers
are constructed by singular perturbation methods and are called singularly
perturbed solutions. Studying their stability is usually quite difficult. This
is because the linearized eigenvalue problem has a critical eigenvalue in a
small neighborhood of zero in the complex plane. Let € > 0 be a parameter
associated with the thickness of transition layers. In some cases this critical
eigenvalue approaches zero as € — 0. The location of the critical eigenvalue
is usually very difficult to determine. The so-called SLEP (singular limit
eigenvalue problem) method is known as one of the most powerful tools to
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study such a critical eigenvalue. This method was introduced by Nishiura
and Fujii [9] to prove the stability of singularly perturbed equilibrium so-
lutions in a finite interval for activator-inhibitor systems in chemistry or
mathematical biology.

The SLEP method is very powerful because it determines the location
of the critical eigenvalue completely, and it has been modified and used in
various forms by many people. Nishiura, Mimura, Ikeda and Fujii [10] study
traveling waves of activator-inhibitor systems by using this method, Tsu-
jikawa [12] applies this method to a chemotaxis model with a growth effect.
Kan-on and Mimura [6] and Tkeda [4, 5] apply this method to three compo-
nent reaction-diffusion systems. Kan-on and Mimura [6] study a model of
two competing preys with a common predator, and ITkeda [4, 5] studies that
of three competing species.

To apply the SLEP method, an uniform convergence theorem for the in-
verse of a differential operator, for instance the inverse Allen-Cahn operator,
in some function space plays a crucial role. However, in the case of un-
bounded intervals, no rigorous uniform convergence theorem was available
previously, which has posed a difficulty in applying the SLEP method to
solutions on unbounded intervals. In the following we briefly explain where
the problem lies for two-component systems.

A typical example of a two-component system is as follows:

etUp = Uy +U-U—V, V,;=Vo@u+U—V+P, z€ R, t>0. (1.1)

Here, U(z,t), V(x,t) represent the density of an activator and an inhibitor,
respectively, and (31, 32 are positive constants with 3 + 3v/382 < 26;. These
nonlinear terms are those of the bistable FitzHugh-Nagumo equations. To
analyze the stability of a singularly perturbed solution for a two-component
system, one studies the linearized eigenvalue problem, which, in a typical
situation, can be stated as follows: find A € C, = {A € C : Re\ > 0} and
(t(z,e),0(z,€)) € L2(I) x L*(I) that satisfy
L*u+ p(z,e)v = —eTA\u (1.2)
—g(x,e)u+ (=Dgyy + 0(x,6) Dy + q(z,€))0 = = A0 (1.3)
in I, where I = (—1,1) or I = R. Here, L® is the so-called Allen-Cahn
operator
LF = —e?Dyy + es(z,€) Dy + a(z, €),

and € > 0 is a small number. If I = (—1,1), then the Neumann boundary
condition u, = 0, v, = 0 are imposed at x = JI. See §2 for the assump-
tions on the coefficients. This operator L° has a spectral gap near A = 0.
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See Nishiura and Fujii [9] and Hale and Sakamoto [3]. See also Carr and
Pego [2], de Mottoni and Schatzman [8] and Chen [1]. To explain the sit-
uation precisely, let us consider the case where the solution of the original
reaction-diffusion system has a single layer at « = 0 for simplicity. Then —L¢®
has a positive eigenvalue (* near the origin, which goes to zero as ¢ — 0,
while the rest of the spectra lie in {\ € C : Re A < 0} and they are separated
away from the imaginary axis uniformly in € > 0. Let P and Q¢ be the
projections in L2(I) associated with (¢ and o(Lf)\{¢?}, respectively.

The SLEP method goes as follows. For simplicity, we put p(x,e) = 1. By
using (1.2), one solves Q°u in terms of P°u and v, and by using (1.3) one
solves Q°u in terms of P*u and v again. Then the compatibility condition
gives a scalar equation on eigenvalues called the SLEP equation, and it
gives the location of the critical eigenvalue. In carrying out the argument,
one should study the convergence of (Lf)~1Q%%0(z,¢) as € goes to zero as is
shown in §2. If necessary, one can assume |[v(x,€)| g1y = 1 without loss of
generality. Since v(z,e) depends on ¢, one needs the uniform convergence of
(LF)~1Q° in some function space. Let a* = a*(x) be as in §2. Nishiura and
Fujii [9], Nishiura, Mimura, Ikeda and Fujii [10] and Tsujikawa [12] showed
the strong convergence of (LF)~1QF, that is, the convergence

iErg)(LE)_leh = (a*)"'h  in L*(I) (1.4)

for fixed h € L2(I)NL>®(I). If the given interval I is bounded, the imbedding
of HY(I) into L?(I) N L°°(I) is compact, and then (1.4) implies

(L) 71Q = ()i L(HN(IT), I2(T)).

However, if I is unbounded, the imbedding is no longer compact, and the
strong convergence theorem of (Lf)~1Q¢ is insufficient, which cannot be
recovered if one uses weighted normed spaces as explained in §2. A new
uniform convergence theorem is needed for the application of the SLEP
method if I is unbounded.

This paper shows that (L¢)~'QF converges to (a*)~! in L(L(I), (H?(I))")
with any 6 € (0,3). Here, (HG(I))/ is the dual space of HY(I). For the
definition of the interpolation space see Lions and Magenes [7] for instance.
This uniform convergence theorem enables the SLEP method to be applied
to the stability analysis of singularly perturbed solutions for I = R including
traveling wave solutions as in §2.

A similar uniform convergence theorem is presented for a matrix of differ-
ential operators L in §4. This theorem can also apply both in the case I is
a finite interval and in the case I is unbounded including I = R. It allows



32 MASAHARU TANIGUCHI

the SLEP method to apply to the stability analysis of singularly perturbed
traveling waves for three component reaction-diffusion systems. We discuss
it in a general framework in §5.

2. PRELIMINARIES

In this section we explain how the SLEP method applies to singular limit
linearized eigenvalue problems. First we study differential operators appear-
ing in [9], [10] and [12]. More generally, we consider

Lf=—€2D,, + es(z,e)Dy + alx,e) in I. (2.1)

Here, I is R = (—00,00) or a finite interval, say, (—1,1). We assume € > 0
is small, say, ¢ € (0,e9). A given function a(x,e) is smooth in z. The
symbols D,, D, stand for d/dx, (d/dx)?, respectively. Define y = x/e and
a(y,e) = a(ey,e) foryin I = {y € R: ey € I}. Define 5(y,¢) = s(ey, e) and
set
T° = —Dy, +3(y,e)Dy +a(y,e)  inl
for all € € (0,e9). Put a(y,0) = a*(y), where a*(y) is as in (A2), and put
5(y,0) = s*, where s* is a constant as in (A3). Then T° is defined up to
¢ = 0. Denote the spectrum sets of —L° and —T° by o(—L?) and o(—T1%),
respectively. They agree with each other for € € (0,g¢). Let B(0;7) = {u €
C : |u| < r} and define a counterclockwise circle I'(r) = {u € C : |u| = r}
for > 0. The assumptions on L* in §2 and §3 are as follows.
(A1) lin% lla(z, E)_a*(x)HLoo(I\J(E)) = 0is valid, where J(¢) = (—r(g),r(g))
e—
and r(e) is a positive number with lim r(¢) = 0. sup |ay(z,¢)] is
e—0 zel\J(e)
bounded uniformly in € € (0,9). Here, a*(z) is a bounded function
that is continuous except = 0 with a*(z) > k > 0 for all z € R.
(A2) sup|Dya(y,e)| is bounded uniformly in € € (0,¢p). lin})ﬁ(y, £) =
yel -
a*(y) holds uniformly on any fixed compact subset of R. Here, a*(y)
is a smooth function. There exists a constant m > 0 that is inde-
pendent of ¢ so that a(y,e) > k holds for all € € (0,¢0), |y| > m.
(A3) s(x,e) satisfies one of the following conditions.
(al) I = R and s(z,¢) = ¢, where ¢ is a constant independent of
and satisfies lim._,o ¢ = ¢* € (—00,00). Define s* def s,
(a2) I = (—1,1) and Lfu is equipped with the Neumann boundary
condition u,(£1) = 0 for given v = u(z). In this case s(z,e) =0

. ~y def
is assumed, and define 3* = 0.
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(a3) I = R. |s(x,e)| and |sz(x,e)| are bounded uniformly in € €
(0,e0) and x € I. lir% s(x,e) = s*(z) holds uniformly in = € R.
s*(z) is a bounded continuous function on R. lin% s(y,e) =

e—

(A4) o(=T¢) = 01 Uog for all € € [0,e9). Here, 01 = {¢°} and 01 C
B(0;79) holds with ro < k. Also 02 C B(0;r)°N{pe C: 5 +0 <
|arg | < 7} holds. Here, 6y, 79, 71 (19 < r1) are positive constants
independent of € and A. The eigenspace associated with (¢ is one-
dimensional. For ¢ > 0, let ¢(x,e) be the eigenfunction of —L*
associated with ¢, and let ¢(z,¢) be normalized in L?(I). Then

i () 3y = by [ foe, ) do =0
e—0 e—0 I

holds true.
(A5) For all € € (0,e9), |a(z,e)| < M and e|ag(z,e)| < M hold for = € I.
Here, M > 0 is a constant independent of ¢.

Usually r(¢) = O(¢|logel|) as € — 0, and so me < r(e) holds for small € > 0.
Without loss of generality, we assume me < r(e) for all ¢ € (0,&9). The
underground function spaces in §2 and §3 are as follows. Let Y = L2(I),
X = HY(I) and let the dual space of X be denoted by X'. If ] = R,
X" = H-1(R) is valid. We denote the inner product of Y = L2(I) by (-, -)
in §2 and §3. Let P°® and Q° be the projections associated with o7 and
09, respectively. Define Y7 = PFY and Yy = Y. Then L is completely
reduced by (Y1,Y2). Fix positive constants r2, r3 independently of €, A so

that rg < rg < re9 < k <y is valid. It holds that
1
8d§f_/ (/J/"‘LS)_ld/.L, Qad:efI_P&"
I'(r2)

211

Define Y = L2(I) and X = H'(I). Let X’ be the dual space of X. The
following projections
pedet 1

211 F(rg)

give a direct sum decomposition Y = }71 @172 with 171 = P°Y and 172 = @557
We denote {A € C : ReX > 0} by C,.

Remark 1. The assumption (A4) implies that (* should be a real number.
If one assumes in addition to (A4) that ¢ is a pole of order 1 for the resolvent
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(u+ L&)~ for u € C, then P = (¢,9)71(-,9)¢ is valid. Here, ¢ = ¢(x,¢)
is as in (A4), and 1 is a non-zero function in the null space N (¢ + (L¢)*),
where (LF)* is the formal adjoint operator given by

(LF)* = —&2Dyy — 5Dy — €5, + a(z,e).
This fact follows from R(CE + Lf) = (N(¢ + (LF)*))*". See for [11] for

instance.

We consider (1.2)—(1.3) in §1. If I = (—1, 1), then the Neumann boundary
condition @, = 0, U, = 0 are imposed at x = 9I. We assume either 7 > 0 is
a given constant or 7 = ¢~1. Functions p(x,¢), g(z,¢), q¢(z,¢), o(z,¢) and
oz(x,€) are uniformly bounded in z € I and ¢ € (0,e0) with

il_l)l(l) Hp(l’,ﬁ) - p*(‘r)HL2(I) = 07 il_l)l(l) HQ(IL',F:) - q*(l')HLQ([) = 07 (22)
lim flg(2,€) = g* (@)l 2y = 0, lim flg(x,€) = 9" (@)l g (- 1,1)) = O,

(2.3)
lim [lo(z,€) — o™ (@)|[Lo(n\e)) = 0, lim [ow(@,€) = 03(@) || e (1\s(e)) = O-
(2.4)
Functions p*(x), ¢*(x), ¢*(z), c*(z) and oj(x) are continuous except at

x =0, and belong to H*(IN (0, +oo)) and H'(I N (—o0,0)). Assume that

;25( ¢ (x) + a*(2) " p*(x)g" (x) — 504(7)) > 0. (25)
Under the assumptions stated above, one can obtain a scalar equation for
A € C, by the SLEP method. The procedure is as follows. First

(LF +etA\)u = —p(x,e)0. (2.6)
Then it is necessary that
—(LF + et A) Q% (p(z, €)D) + kod(z, €) (2.7)
holds with some kg € C. Substituting this into (1.3), one has
AP (“Dyy + 02, ) Dy + g + N5 + g(LF + e7X) "L Q% (pd) = kogo(z, €).

(2.8)
Define a bilinear form

B(z',2%) = (2. 22)+(0(w,€)zp + (g + N)2', 22) + (L5 +emA) T Q5 (p2'), 92%).

(2.9)
for 21, 22 € X = H(I). Now one proves that this bilinear form is coercive
and applies the Lax-Milgram theorem. For this purpose one should study
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g(x,¢)(LF +etA)71Q%(p(w,€) - ). The following is a strong convergence theo-
rem due to Nishiura and Fujii [9] and Nishiura, Mimura, Ikeda and Fujii [10].

Theorem 1 ([9], [10]). For each fived h(x) € L*(I) N L>(I),
lim (L + e7) 7 Q (pl )h(x)) = (@) phx) i L),

If I is bounded, the imbedding H'(I) C L?(I) N L>(I) is compact, and
Theorem 1 gives a uniform convergence of g(z,e)(L¢ + e7A)~1Q%(p(x,¢) -)
in L(HY(I),L*(I)). However, if I is unbounded, say I = R, then it is no
longer compact. If one considers B(-, -) on a space with an exponentially
weighted norm:

H3(R) = {u e 1R sl = [ explolol)(uf + usf?) do < oo

with p > 0, then the imbedding H}(R) C L*(R) N L>(R) is compact, and
g(x,e)(LF+emA)71Q% (p(x, ) - ) converges to g*(a*)~'p* in L(H,(R), L*(R))
by virtue of Theorem 1. However, B( -, ) is not coercive on H /} (R) unfor-
tunately. Therefore, B(-, -) should be a bilinear form on H'(I), and the
strong convergence theorem is insufficient.

To prove that B( -, -) is coercive even when I is unbounded, the uniform
convergence theorem as in Theorem 2 in §3 is useful as follows. As is shown
in Remark 2,

lim lg(r,€)=() — 6" (2) () o) = 0 (2.10)

holds true for z(z) € X with some 6 € (0, ) and the convergence is uniform
on {z € X : ||z]|x = 1}. Here, X = H'(I). Theorem 2 in §3 implies (L° +
eTA) 7 Q%(p(w,€)-) converges to (a*)~'p* in L(Y,(H?(I))"). Then ((LF +
eTA) T Q% (p(z,€)z), g(x,€)z) converges to [;(a*)"'p*zg*Zdx uniformly on
|z|lx = 1. For all z € X with ||z||x = 1, one has

Re B(2,2) = ||z} + ((—30u(z,€) + ¢+ ReM)|2[%, 1) + (9(L7 +e7A) 71 Q% (p2), 2) -

The right-hand side equals
lzll2 + /I (~1o7 4" + ReA + (a*)"'p*g") |22 da + F(e) |2

for all z € X, where 7(¢e) satisfies lim._,o7(¢) = 0. From the assumption
(2.5), B(-, -) is proved to be coercive. Thus, the Lax-Milgram theorem is

applicable and it gives a bounded linear inverse operator K& def (AsA) 1
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from X’ to X. K°* is bounded in £(X’, X) uniformly in ¢ and A . Thus,
(2.8) yields

0= koK"g9). (2.11)
From (2.7), P°u = ko¢(x,e) follows. Acting P° on (2.6), one has
(LF + et A\)P°u = —P*(p(z,e)0).

Substituting (2.11) and P°u = k¢ into this equation and using kg # 0, one
obtains

AN G (—e 15 + 7N b + e 1P (p(x, ) K5 g(a, €)9)) = 0. (2.12)

Conversely, we show (2.12), (2.11) and (2.7) give (1.2) and (1.3). It suffices
to prove the solvability condition for (2.6). For this purpose it suffices to
show when L¢ 4 &7\ has zero-eigenvalue. That is, (¢ +e7A = 0. Then (2.12)
and (2.11) give P*(pv) = 0. Because (L*+e7)\)|y, is invertible, (2.6) satisfies
the solvability condition. Thus, one obtains a scalar equation (2.12) from a
singular limit eigenvalue problem as follows.

Proposition 1. For sufficiently small € > 0, A € Cy is an eigenvalue of
(1.2)-(1.3) if and only if \ satisfies (2.12).

Equation (2.12) is called the SLEP equation. Theorem 2 also implies that

K®* converges to K% in £(X’, X) uniformly in A € C,. Here, K =
(A%M~1 and

A% = — Doy + 0" (2) Dy + ¢ () + a* (z) L p*(x)g" (x) + .
Under the assumption of Remark 1, define
(o) =5, Ble) = (d(w,e), P(w,e) 7,
hi(z,e) = € p(a,e)i(x,e), ha(w,e) = e 2g(z,e)p(x,¢).
Then R
AN) = —C(e) + A + Be) (K= ha(z, ), I (, €)).
In the cases as in [9], [10] and [12],

9
C(0) ™ lim {(e) and B(0) ™ lim B(e)
E— E—
exist, and h;(z,e) converges to kjd(x) in X’ as ¢ — 0. Here, () is the
Dirac function concentrated on z = 0, and k7 is a constant (j = 1,2). Then
sending € — 0 in (2.12), one has

~

—¢(0) + 7A + B(0)k1k327(0) = 0, (2.13)
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where z*(x) = K%\§(x) satisfies

(—Dm +0*Dy +q* 4 (o) ptgt + /\) z"(x) = 0 in I\{0},
25(+0) — 23(—=0) = -1.

Equation (2.13) is called the SLEP equation for € = 0. This equation charac-
terizes the critical eigenvalue A, and is useful to prove stability and bifurca-
tion of equilibrium solutions and traveling wave solutions. Using Theorem 2
in this paper, one can obtain the SLEP equation (2.13) rigorously even when
I=R.

Remark 2. The proof of (2.10) is as follows. First note that ¢g*(z) belongs
to H?(I) if 0 < 0 < 3. See [7, Theorem 11.4] for instance. Put g(z,¢) =
g(x,e)—g*(x). From (2.3), ||g(z, E)z(x)HHl(I\(_% 1y) converges to Dase — 0
uniformly in z with ||z]|x = 1. Because

19(z; )zl mory = [19(: )2l o\ (1 1)) + 19(z, &) 2l o1 1,

is valid, it suffices to prove that ||g(z, €)z(@)| 11 1) convergestoOase — 0
272
uniformly in z with ||z]|x = 1. From g*(x) € He(—%, 1) and lim._ [|g(z,)—
9*lly =0, {llg(@, &)l go(_1 1) }o<e<s, turns out bounded. Using the intrinsic
22

norm of H‘g(—%,%), one has
||g($75)z||?{0( 1 1)
2
2 |g(x1,¢6)z(x xo,€)z(x
= |lg(=, )|l (-1,1 /1/1 l9(21 1) = 9(@2,€)2(xs)] dridzs.
3773

’xl _:C2‘1+29

From ||z||x = 1 and the boundedness of g(z,e) stated above, the right-
hand side is bounded uniformly in € € (0,£¢) and ||z||x = 1. Take 6’ with
0 < ¢ < 6. From the compact imbedding H’(—1,3) c H (-3, 1), g(z,¢)2
converges in HGI(—%, 1) as € — 0. The convergence limit is g*(z)z(z). This
convergence is uniform in z with [|z|]|x = 1. Denoting 6’ simply by 6, one
obtains (2.10).

3. A UNIFORM CONVERGENCE THEOREM FOR DIFFERENTIAL OPERATORS

In this section, we present Theorem 2 which already appeared in §2.

First we show that [|(A 4+ L°)7'Q°| ¢y is uniformly bounded in e and

re Cy o {A: ReX > 0}. If L¢ is self-adjoint, this fact follows immedi-

ately from (A4). However, if L® is not self-adjoint, it needs a proof. The
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following is a brief proof of this boundedness. We put

1% — Dy, +5 Dy +a'(y).

Lemma 1. There exists a constant My > 0 such that

|(A+L9) 1Q6HW < My(1+ M)~
holds true for sufficiently small € > 0 and all X € C ..
Proof. It suffices to prove

|(A+T7) “1oF <M1+ M)

HL(Y
for all small € > 0 and all A € C,. Assume u(y) € Y3 and f(y) € Y, satisfy
A+Tu=f inl.

First we prove the lemma when |A| is large enough. In this case the Lax-

Milgram theorem implies that (7% + X)~! is well defined and satisfies

(T + A)ilHﬁ()ﬁf’,Xi) < (const.)|A| L. (3.1)
From the definitions of T¢ and T,
TS+ A= (T"+X\) (I - (T*+ NGy, ) — 5Dy, —a(y,e) +a%)).
If |\| is large enough,
|7 + X7 (v, ) — 3D, — aly,2) + @ W) 5, <
and thus

N —

1T+ X ezz) < 2T+ Mgz 5
Combining this inequality and (3.1), one proves the lemma if |A| is large
enough.

Next we prove the lemma when A belongs to a bounded closed subset
in (C, N B(0;7r3)¢) U '(re) for all sufficiently small € > 0. We denote this
subset by By, which is independent of e. Here, ry, r3 are as in §2. Assume
the contrary. Then there exists (u®, f¢) that satisfies

N+THa=f inl (3.2)
with A\* € By, [[u®[|y = 1 and lim._o I |3 = 0. Multiplying (3.2) by the
complex conjugate of u® and integrating the real parts over I , one has

~ 9 ~, ~ ~,
DN =5 [selea 2@ WP dy+ [ o2+ Red i) dy

= Re (f%,%°) < || FFllg 1l
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Thus, || Dyu®|y is bounded uniformly in e. From this boundedness and (3.2),
| Dyyuf||s turns out bounded uniformly in €. By the Sobolev imbedding

theorem, u°(y) converges in C! on any compact subset of R as ¢ — 0. Let
u*(y) be the convergence limit. Then @*(y) belongs to L*(R). If u*(y) # 0,
then one obtains a contradiction to the assumption (A4) by sending ¢ — 0
in (3.2). Indeed, by taking a subsequence one can assume that A\® converges
to A’ € Byg. Multiplying (3.2) by a test function z(x) € X and integrating
over I, one has

/,nyﬂaDyf dy + /T(Xgﬂe + 8y, &) Dyu” + aly, e)u”) 2dy = /ffa(y)i(y) dy.
Sending € — 0, one sees that u*(y) is a weak solution of

* ~k def ~% ~% ~x%
T*u*(y) = (—Dyy—i—s Dy+a (y)—i—)\o)u (y) =0.

Because a*(y) is a smooth function, u*(y) becomes a strong solution of
T*u*(y) = 0, which contradicts (A4). If u* = 0, then one has

iy (10,2 + [ @lo:e) + Re AT (W) dy) = 0
and also lim._o @°(y) = 0 in C?[—m, m]. Thus,
lim | @ (y)[> dy = 0
=0\ [~m,m]
follows from this equality and (A2). This contradicts [[u°||; = 1. Thus, (A+
7%)~! is bounded in £(Y) uniformly in ¢ € [0, o) and A € (C N B(0;r3))U
F(’I“Q).
Third we prove the lemma when A € C, N B(0;r3). By using
1

— p—N"tdp=1I,
27TZ F(rg)( )

the projection @5 is given by

~ 1 1
Q= — (n=X)""dp— 5= (n+T%) " dp.
27 I'(ro) 27 I'(r2)
From
(b= = (u+T) " = (=N A+T)(p+ 1),
one has

(n =N A+ T+ T9) dp,

r2)

Q=

= 3 )i
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and thus

A+T9)71Q7 = (b =X (u+T°) " dp.
i S (ra)

Because (p+T¢) ! is bounded in £(Y) uniformly in ¢ € [0,0) and p € I'(ry),
the right-hand side is bounded uniformly in sufficiently small € > 0 and all
A € C. N B(0;rg). This completes the proof. O

We begin with the following assertion.

Proposition 2. Assume (A1)-(A5). Then

1 5o — * -1

converges to zero as € — 0 uniformly in A € C .
The main theorem is as follows.

Theorem 2. Let 0 € (0,1] be arbitrarily fized. Assume (A1)-(A5). Then
for sufficiently smalle > 0 and all N € C,

A+L)T'Q = (N +a(@) '+ RI(N)  in L(LA(D), (HO(D)))
holds true, where R5(\) is a bounded linear operator with
RS 2z2ny, o ryyy < (L4 I 71 ().
Here, 71 (€) is a positive number that is independent of A\ and satisfies

lim 7 (e) = 0.

e—0
First we prove Proposition 2, and then we will prove Theorem 2.
Proof of Proposition 2. Let h € Y be arbitrarily fixed. Set f = Q°h.

Then h = f 4+ P*h.
((/\ LAl - ﬁ*(m))h = ((/\ + L) - m>f bt

Note that P h = c1é(x, €) is valid with |c1| < ||h|ly. For any z € X = H'(I),
Pah
’/ ac)dac’ < (const.) Ry /\qb x)| dz.

1 Peh

A+ a* A +1
The letter (const.) means a constant that is independent of € and A. Because
J7|p(x)2(x)| dz = (const.)||z]|x [; |o(z 5)|dm and lim._¢ [, |¢(x,e)|dz = 0,

it suﬁﬁces to estimate the term ((A+ Lf)~! — (A +a*)~!) f. Thus, it suffices
to prove the proposition for h = f € Y5. Without loss of generality, we
assume f is real-valued.
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Assume f € Yy and u € Yy satisfy (A + Lf)u = f with f # 0. From
Lemma 1, |lully < Mi(1+ |\)7!||f|ly. Define a(x,€) so that one has
(1) a(z,e) = a(x,e) for |z| > me.

(2) a(z,e) belongs to C*°[—me, me] and satisfies
|, e)] < Mz < o0 for all z € I,
elag(z,e)] < My < 00 for all x € [—me, me].
(3) a(x,e) >k >0forall z €I

Here, My > 0 is a constant. From the definition of a(z,¢) and the assump-

tions on a(x,e), sup €|agz(x,¢e)|is bounded uniformly ine. sup |ay(z,€)]
z€J(e) zel\J(e)
is bounded uniformly in €. As € goes to zero,

1+ AD?]| (a(z,e) + N)7" = (a*(2) + A) 7! [y
converges to 0 uniformly in A € C,. Therefore, it suffices to show that
(L ADIIE+ )77 = (alz,e) + A) 7 | pyxn
converges to 0 uniformly in A € C,. Define w = (a(z,€) + A)~!f. Then
u—w=—(a(r,e) + N\)"HL — a(z,e))u.

For every z(x) € X,

—x{z,u—w)x = /I(oz(x,s) + X" 2(x) (L — a(z,e)) udr = K1 + Ky + K,
(3.3)

where

K, = /I(Oz(a:,a) + X)) 2 (—e%ugy ) da,

Ky = /I(a(a:,s) + Nt 2(—es(z, e)uy) de,

Ky = /I(a(x,s) N e(a(@,€) — ol &))uda.

By applying the Schwarz inequality to K3,

1

K| < ( /I la(e,2) + A "2(a(w,2) - alw,2))|22 dz) * |lully
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follows. From the Sobolev imbedding H(I) ¢ Cz(I), sup,c;|2(x)| <
(const.)||z||x holds. Then one has

(/I |z, ) + A2 (a(z, ) — a($7€))2|z|2dgp>§

-

1

< </I oz, €) + N 2(a(z,€) — a(z,e))? dm) > sup |z(z)]

zel
< (comst.)(1 + \A\)_lséHsz.

Combining this estimate and |Jul|y < (const.)(1 + [A])7!||f|ly, one obtains
[3] < (const.)(1+ X)) 722 |l2l|x I £y (3.4)
Lemma 2. There exists a constant M3 such that
cluslly < Ma(1+ M) 2 flly
holds true for sufficiently small e > 0 and all X € C ..
Proof. Multiplying (L¢ + A\)u = f by u, one gets

e2||ug||¥ + % /sx($,5)|u]2 dx + / (a(z,€) + Re ) |u|? dz
I I

=Re (f,w)y < fllvluly-.

Combining this calculation and |jully < My (1 + |A|)~Y|f|ly, one completes
the proof of the lemma. O

Now we estimate Ko and K as follows by using this lemma. Integration
by parts gives

Ky = E/Is(x@)(a(x,s) + M) zpude + a[](s)(s(x,a)(a(x,a) + A Yezude

+ 5/ (s(z,e)(a(z,e) + A)*l)x zudx. (3.5)
NI
Now,
‘/s(:n,z—:)(oz(a:,e) +X) " zpuda| < (const)(1+ )7z ully
1
and thus,

E’ /Is(a:,a)(a(x,e) + X)*lzxu dx‘ < (comst.)e(1 + ])\])*2HzHX||ny



A UNIFORM CONVERGENCE THEOREM 43
follows. For the second term of (3.5),
8/ |(s(z,€)(e(z, ) + A) " Hpzu| do < (const.)r(e) (L + |A) 7|zl x ||ully
J(e)

< (const.)r(e)(L+ [AD) (|2l x| £y
For the third term of (3.5),

-1
5/I\J( ) |[(s(z,e)(au(z,€) + A) " pzu| do

< (COHSUE/ (L+ [AD 2l lu] dz < (const.) e(1 + X)) 2|2l [ f]ly-
\J(e)

Combining the estimates stated above, one has
| K2| < (const.)(1 + X))~ max{r(e), e}|lz]| x| flly-
Finally, we estimate K7 as follows:
K, = /5 ((a(z,e) + X)_lz)m Ely dx

1

= /e(a(w, ) 4+ N Lapeu, dr + /5 ((a(m,e) + )\)_l)x zeuz dz. (3.6)

I I
For the first term of (3.6), one has

/6 (@@, €) + X7 |zalefua| dz < (const.) (1 + X)) 2z lly [leually
1

< (const.)(1+ [A) "z lly [ £lly

by virtue of Lemma 2. For the second term of (3.6),

/Is ((a(z,e) + N7, zeug dr < ||e ((alm,e) + A7), 2|y lewally. (3.7)

Here,

e ((az,e) + A)~ zHY /J( /I\J a(z,e)+ X)) | 2|2 da
< (const.)r()(1+ [A) (|2l + (1 + [A))~ 2H 15

Thus, the second term of (3.6) is no more than
(const.) max{r(c), e} (1 + [A) " =lly [l fllv-
Combining the estimates on K7, one has

|K1| < (const.)(1+ [A]) ™ max{r(e), e} ||| x| flly-
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Finally, combining the estimates on K7, Ko and K3, one obtains
1
| K1] + [ K| + K| < (const.)(1+ [A) ™ max{r(e), e, €2 }H|z] x| flly-
From this estimate and (3.3),
lu — w]|xr < (const.)(1 + [A)) ™  max{r(e),, &2} [l

follows. This completes the proof of Proposition 2. ]
Proof of Theorem 2. From H’(I) = [Hl(.f),Lz(I)]lﬂ9 and the duality
theorem, (H?(I))" = [L*(I), (H'(I))'], follows. Thus, one has

1Tl zcz2 .m0 nyyy < T NE L2 I TN 2y, ) (3.8)

with a constant ¢ > 0. Then Theorem 2 follows from Lemma 1 and Propo-
sition 2. ([l

Let us go back to the arguments in §2. The SLEP method and Theorem 2
give (2.12) in §2. In the following we briefly explain how to study (2.12)
for the stability of traveling waves on I = R. By the definition of A(-),
limy_ 4 oo A(A) = —oo follows. K®? is analytic in A € C with

0

a}(&A =K (I —erg(L* +etN)2Q%(p-)) K= in L(X', X).

Thus, A()) is also analytic in A € C,. Particularly,

M(0)p =71 —e ' P (pK=° (I —eTg(L)°Q°(p-)) , K%(g9))

holds true.
In particular, we consider the case of I = R under the assumption as in
Remark 1. Then

AX(0) =7 — B(e) (KT — erg(L7)2(p-, ) K*°ho, h1) . (3.9)

If (1.2)—(1.3) is the linearized eigenvalue problem to a traveling wave, (1.2)—
(1.3) has zero eigenvalue, that is, A(0) = 0. In this case Ay(0) < 0 is
always a necessary condition for stability of this traveling wave. Indeed,

there exists at least one positive eigenvalue to (1.2)—(1.3) if Ax(0) > 0 by

virtue of limy_0o A(X) = —o0. IfC(0) % lim._ C(e) and 3(0) % lim._o B(e)

exist, and h;(z,e) converges to k7d(x) in X’ as ¢ — 0 as in §2, then the
right-hand side of (3.9) converges to 7 — 3(0)k}ks x ((K%°)%5,8)x = 7 —
B(0)k; k3| K"068])2- as € — 0. Thus, the SLEP method and Theorem 2 give
a general necessary condition for stability of a traveling wave.
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4. A UNIFORM CONVERGENCE THEOREM FOR
SYSTEMS OF DIFFERENTIAL OPERATORS

The SLEP method is useful to study the stability of equilibrium solutions
or traveling wave solutions for three component reaction-diffusion systems.
In this section we present a uniform convergence theorem for this purpose.
Theorem 3 in this section enables the SLEP method to apply to the cases of
I = R including the stability analysis of traveling wave solutions for three
component systems.

A typical example of a three-component system is as follows:

(Ul)t = €2D$xU1 + U1(1 — Uy —agUs — V)
(Uz)¢ = €2DyUs + Us(ay — agUy — Uz — kV)) forzel, t>0. (4.1)
Vi = G—IODmV + a5V (—a4 + Uy + agkUs)

Here, Uj(z,t) (j = 1,2) are two competing preys, and V (z,t) is a common
predator. All coefficients are positive constants. Kan-on and Mimura [6]
study (4.1) for I = (—1,1) with the Neumann boundary condition (U;), =
(Uz)y =V, =0 for z = £1, t > 0, and proved the stability of equilibrium
solution with an internal layer by the SLEP method under some condition.
This condition is satisfied, for instance, if one assumes a5 = ag = 1, aja3z <
1 < asas, asaq < ay, and that k, op are small enough. We assume ¢ > 0 is
small enough compared with the other constants.

The following is a general singular limit eigenvalue problem to three-
component systems as in [6] and [4, 5]. Find A € C,

u(z,e) = (U1 (z,e),uz(z,€)) €Y

and 9(x,e) € L(I) that satisfy

(—&2Dyy + es1(x,€) Dy + ay(x, €))uy + by (x,€)ta + p1(x,€)0 = —eT N1,
bo(z,€)U1 + (—2Dyy + es2(x, ) Dy + as(x, €))uz + pa(w,€)0 = —e7 AU,
—g1(z,e)uy — go(x,e)ug + (—Dyy + 0(x,6) Dy + q(z,€))U = —A0V.
(4.2)

If I = (—1,1), then the Neumann boundary conditions u, = 0, v, = 0 are
imposed at x = 1. We assume either 7 > 0 is a constant or 7 = ¢~!. Here,
o(z,e) and ¢(x,¢) are as in §2. p;(z,¢) and g;(x,¢) satisfy the assumptions
on p(z,¢) and g(z,€) in §2 by replacing p* by p; and g* by g; for j = 1,2.
Both p}(z) and gj(z) are bounded continuous functions except z = 0, and
belong to H'(I N (0,00)) and H(I N (—0c0,0)) for j = 1,2.
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First we study a system of differential operators appearing in [6] and [4, 5].
More generally we consider

Ie —&2Dyy +e51(x,6) Dy + a1 (z, €) by (z,¢)
ba(z, ) —&2Dyy + e89(w,€) Dy + ag(w, )
(4.3)
for x € I, where I = (—1,1) or R. Here, ¢ is small enough, say, ¢ € (0,&g).
The assumptions are as follows. Put y = /e and
aj(y.2) = ajley,e). bi(y.e) =bjley.e),  3(y.e) = sj(ey,e)
foryel= {y € R|ey € I} and for j = 1,2. Define

Az, e) = ( ai(z,e) bi(w,e) >7 K(y,e) _ ( ai(y,e) gl(y,g) ) |

ba(x,e) ag(w,e) ba(y,e) az(y,e)

for z € I and y € I. We assume that A(z,e) is smooth in x € I. Define

Tf—: — _Dyy +’§1£y75)Dy +al(y7€) gl(yvg)
bQ(yae) _Dyy+§2(y75)Dy +52(y75)
and _
TS = _Dyg +ai(y,e) bi(y, ) )
b2(y7€> _Dyy +62(y7€)
We define T* = T¢|__, and T = T§|._, as
r_ ( ~Duw+ 5D, + () GO
b5(y) —Dyy + s5Dy + as(y)

T:<4@+a@ bi(y) |
° b5 (y) —Dyy + a3(y)

Here, a*(y), a5(y), bi(y) and b}(y) are as in (B2) and 5%, 35 are as in (B3).

In §4 and §5 let Y be L?(I) x L?(I). The following properties (B1)-(B6)

hold true for L® appearing in [6] and [4, 5]. We assume (B1)-(B6) in §4 and
§5.

(B1) For j = 1,2, lim._o |la;(2, ) —aj(x)|| Lo (1\7(c)) and lime_q [[bj(z, €) —

b5 ()| oo (1\ s (e)) are valid. supgep o) | Az (2, €)| is uniformly bounded

in € € (0,e0). Here, J(¢) is as in §2, and aj(z), bj(z) are bounded

J
functions that are continuous except x = 0 with

;Iéfj’a;‘(x) >0 forj=1,2,
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det( At ai() bT(x)x) )’ > 0.

inf by(x) A+ as(

IGI,)\GC+

(B2) supyeﬂDyﬁj (y,e)| and supyef]Dygj (y,e)| are bounded uniformly in

e € (0,e0) for j = 1,2. lim.—o @;(y, ) = @i(y) and lim._q b;(y, ) =

gj (y) hold uniformly in y on any compact subset of R. Here, a}(y)

and g}* (y) are smooth functions for j = 1,2. There exists a constant
m > ( that is independent of € and A such that one has

inf ai(y,e) >0 for j=1,2,
€€(0,e0),|ly|>m J(y ) J

inf ‘det ()\ + Ay, 5)) ‘ > 0.
AeC 4 e€(0,e0),|ly|>m
(B3) sj(x,¢) satisfies one of the following three conditions.

(bl) I = R and s1(z,¢) = sa(x,e) = ¢¢. Here, ¢¢ is a constant with
lim. o€ = ¢* € (—00,00). Define 57 = 54 = ¢*.

(b2) I = (—1,1) and L°u is equipped with the Neumann boundary
condition @, (£1) = 0 for @ = *(uy, u2). In this case s;(z,) =0
is assumed for j = 1,2. Define §;‘ =0forj=1,2.

(b3) I = R. sj(z,¢) satisfies (a3) in (A3) by replacing s*(z) and s*
by s7(z) and §7. Define s = s7(0) for j =1,2.

(B4) For all ¢ € [0,e0), the spectrum set o(—T°) satisfies (A4). The
eigenspace associated with (¢ is one-dimensional. Let ¢(x,e) =

Y1 (x,€), pa(x,€)) be the associated eigenfunction of —Lf with

lo(z,e)|ly = 1. Then ¢(z,e) satisfies gl_r% &z, &)l (=) = 0

(B5) aj(x,e) and b;(x, €) satisfy (A5).
(B6) Let Y, =L?(m, 00)xL?(m, o) and Y_ = L?(—o0, —m)x L?(—oc, —m).

There exist positive constants ki, 67, 67, 65, 65 that are indepen-

dent of € such that

TE w1 Ofwl >k
0 w2 ’ ijg }~,+_ *

e [ W1 91_11.)1
(75 () (o)) 2+

hold true for all € € [0, gp).

Without loss of generality, we assume me < r(¢) for all € € (0,£9). We define

o= (5 56

w1 2 .
for all w; € C§°(m,0), j = 1,2,
<w2> Hfor or all w 5°(m, 00), j

Wy H2 for all w; € C3°(—o0, —m), j = 1,2
ws s or all w; 5°(—00,—m), j =1,
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In §4 and §5, the underground function space is Y = L?(I) x L?(I), and
X = HYI) x H'(I), and its dual space X’. The inner product of Y is
denoted by (-, -) in §4 and §5. We use the same notation as in §2 and §3
since no confusion will occur.

Let P¢, Q¢ be the projections associated with o1, o9 respectively. Put
Y1 = P?Y and Yy = Q°Y. Then L is completely reduced by (Y7, Y2). Set

1
sdéf_'/ (M+LE)_1 du, Qe défl _ p&.
21 I'(r2)

Here, r is as in §2. For Y = L2(I) x L2(I), the following projections
pedet 1
2me

F(Q)

give Y =Y, ®Y, with ¥; = P°Y and Ys = Q°Y. Define X = H'(I) x H'(I)
and X’ be the dual space of X.
Remark 3. The assumption (B4) implies that ¢ is a real number. If one

assumes in addition to (B4) that (¢ is a pole of order 1 for (1 + L°)~!, then
pe = (¢>'¢)71(' 7’(/))¢ holds true. Here7 ¢(x75) = t(lpl(x?‘g))wQ(w:E)) is a

non-zero function in N (¢ + (L?)*). The formal adjoint operator of L® is
given by

(Ls>*: _52Dxa: —es1 Dy, _5(31)w+a1($55) bg(l‘,f)
by (z,¢€) —&2D,y — 289D, — €(52)y + az(w,€) )

Lemma 3. There exists a constant My such that

[+ L) Q% || ) < Ma(L+[AD7
holds true for sufficiently small € > 0 and all X € C ..
Proof. The proof is almost parallel to the proof of Lemma 1, where the
argument consists of three cases. We only show the second case, because the
other two cases can be shown by similar arguments as in Lemma 1.

We prove the lemma when M belongs to a compact subset in
(CL N B(0;r3)°) U I'(re) for all sufficiently small € > 0. We denote this
subset by By, which is independent of €. Here, 72, 3 are as in §2. Assume
the contrary, then there exists (u°, fa) that satisfy

N+THa=f inl (4.4)
1 and lime_ || ||y = 0. Put

Ldef (05 0
o ().

with X° € By, [|[@]y =
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respectively. Multiplying (4.4) by the complex conjugate of ©*u° and inte-
grating the real parts over I, one has

Re (T3, 0%@) + (Re A7) (05 a2 + 05 2
1

- 3¢ [0} (Dusa) (e, )T + 05 (Do), )s) dy

X ~E ~
< min{65, 05 H|f [l ]|°|5-

Thus, [|(@®)yly is bounded uniformly in e. Then (4.4) implies || (a%),, ¢
is also bounded uniformly in . From the Sobolev imbedding theorem, u®
converges to a limiting function, say @*(y), in C' on any compact subset
of R as ¢ — 0. Then @*(y) belongs to L?(R). From the above inequality,
(B6) and |[u[| = 1, one obtains w" # 0. Sending ¢ — 0 in (4.4), one
has (A\Y + T*)u* = 0, which contradicts the assumption (B4). Indeed, by
taking a subsequence we can assume that A° converges to 2\0 € Bpase— 0.
Multiplying (4.4) by a test function in X, integrating over I and sending ¢ —

0, one sees that w*(y) is a weak solution of (A + T™) @* = 0. Because a;(y)

and g}‘ (y) are smooth functions for j = 1,2, u*(y) becomes a strong solution
of (A +T*)u" = 0, which contradicts (B4). Thus, (A + T°)~! is bounded
in £(Y) uniformly in € € [0,0) and A € (C4 N B(0;73)¢) U I'(r9). O

Associated with Proposition 2, we have
Proposition 3. Assume (B1)-(B6). Then
J(A+ L)' — (A + A7)~ Hﬁ(LQ(I)xLQ(I),(Hl(I))’X(HI(I))’)
converges to zero as € — 0 uniformly in A € C .
The main assertion is as follows.

Theorem 3. Let 6 € (0,1] be arbitrarily fized. Assume (B1)-(B6). Then
for sufficiently small e > 0 and all X € C,

(AHLF) Q" = (A+A") T HR5(N) in L(L*(I) x L*(1), (HO(1)) x (H*(I)))
holds true, where R5(\) is a bounded linear operator with
IRS (M 2z (ryxp2(ry, (o (ryy o ryyy < (1+ M) 7 Fa(e)

and r2(€) is a positive number with lim._,o72(e) = 0. Here, T2(g) is inde-
pendent of \.



50 MASAHARU TANIGUCHI

Proof of Proposition 3. By a similar argument as in the proof of Propo-
sition 2, it suffices to prove

. e\—1,e *\—1 _
;I_IZ%H(/\JFL )R —(A+AY) HE(Y27(H1(I))’X(Hl(f))') =0

Assume f € Yy and u € Y, satisfy (A + L°)u = f, where f is a real
vector-valued function that does not vanish identically. From Lemma 3,
lully < Ma(1+ )1 Flly-

Let n(x) € C*°(R) be any cut-off function with

nz)=1 ifzx>1,
O<nz)<l if0<z<l,
nz)=0 ifzx<O0.

Define B(z, A, ¢) as
Bz, \e) =+ A(z,e)™t  ifz & (—me,me),
and

Bla,\e) =1 (mis) (=(\ + A(me, €)) "2 A, (me, &) (z — me) + (A + A(me, )~
+7 (;—i) (—=(A+ A(—me, ) 2 A (—me, e)(xz + me) + (X + A(—me, 5))_1) ,

if x € (—me,me). Then, by using (B1) and (—me,me) C J(g), B(x, \ &)
satisfies

|B(z,\,€)] < Ms(1+ [\))7t for all e € (0,60), \€C,,z €1
e|By(z, M\, )| < Ms(1+ [A))7* foralle € (0,e0), A€ Cy,z €]
|Bx(z,\,€)] < Ms(1+ [\)7! for all € € (0,69), A € C4, x € I\J(e),

with a constant M5 > 0 that is independent of € and A. The adjoint matrix
B*(z,\¢) déftB(a:, A, €) also satisfies the above estimates. As e goes to zero,
(1+ [AD?||B(z, A e) = (A + A*(x))_lHL(n converges to 0 uniformly in A €
C. Thus, it suffices to show that

_1 £
L+ DD O+ L9)77Q% = B X&) | vy (o (yy e ()

converges to 0 uniformly in A € C,. Define w = B(z, \,e)f for f € Ys.
Then

—u+w = (—I+ B(z,\,e)( A+ L)) u. (4.5)
Thus, for every z € X,

x(z,~u+w)x = /I (z, (=1 + B(z,\,e)(A+ LF))u) dx.
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Then
—X<z,—u+'w>X/ =Li1+ Lo+ Lj

follows, where

L, = /I(z, (=1 + B(z, A\, e)(A+ A(z,¢))) u) dz,

_ * 21 s1Dyuq
Ly = E/I (B (x, A\ €) (22> , <52Dxu2)) dz,
Ly = —52/(3*(1‘,)\,5)z,Dmu) dz.
I

The following assertion holds true.
Lemma 4. There exists a positive constant Mg with
el Drully < Mo(1+ M) 2| £y
for sufficiently small e > 0 and all X € C,..
Proof. We multiply (A + L®)u = f by w, and take the real parts, and

apply Lemma 3. Then by a similar argument as in the proof of Lemma 2 we
complete the proof. O

By similar calculations as in the proof of Proposition 2, we finally obtain

[Li] < (const.)(1+ [A) 22| f]lv|=]lx,
|La] < (const.)(1+ [A]) ™ max{e,r(e)} fllv ]l =]l x,
|L3| (const.) (1 + [A[)~2 max{e, () }| £l || 2] x-

The letter (const.) means a constant that is independent of € and A. These
estimates on L1, Ls and Ls complete the proof of Proposition 3. U

Proof of Theorem 3. For any A\ € C, and h = !(hy,hy) € Y with
||h|ly =1, define

A

IN

v=M\+L)th— A+ A4%2)"'h
with v = (v, v2). Then Proposition 3 implies that
vjll ey < (1+ IN)"tro(e) for j=1,2.

Here, ro(e) satisfies lim._,g 79(¢) = 0 and is independent of A € C',.. Lemma 3
implies that [|vjl|z2;) < My(1+ |A])~". Then, using

lvill oy < CHUJH?Hl([))’ijHlL;(GI)’
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one has [[vj|(gonyy < (1+ IA))~172(e). Here, Ta(e) satisfies lim._o72(g) = 0
and is independent of A € Cy. Thus |[v[| o)y xmoy < (1+ IA)"17a(e
holds true. This completes the proof of Theorem 3.

o2

5. APPLICATION OF THEOREM 3 TO
SINGULAR LIMIT EIGENVALUE PROBLEMS

This section is devoted to the application of Theorem 3 to a linearized
eigenvalue problem (4.2).
We put p(x,E) = t(pl(x76)7p2(x7€)>7 ggq;’{f) - t<gl<x7€)792(x75))' We
(g7 (

define p*(z) = '(pj(z),p3(x)) and g*(z) = *(g7(x), g5(x)). The operator L*
given by (4.3) satisfies (B1)—(B6). Assume that
nf (¢"(2) + (9" (@) (A"(2) ') — Los@) >0 (5.)

Then (4.2) becomes
(LF 4+ etAN)u = —p(z, )7, (5.2)

~tg(x,e)tU + (—Dyy + o(x,6) Dy + q(x,€) + \)v = 0. (5.3)
Associated with
APTE (~Dyoto(@,2) Du+ale, €) AT+ g (2, 0) (L +er) ' Q(Bp(z, ©)),
we define a bilinear form

B(z',2%) = (21, 22) + (0(x,€)21 + (q(z,€) + N)2', 2%)
+ ((L6 + €T)\)_1Q5(p($, z—:)zl), ZQQ(J), 5))
for 21, 22 € HY(I). As is shown in §2, one has
tim [2(2)g(z.) — 2(2)g" (@)l mo(rynory

The convergence is uniform on {z € H'(I) : ||z| z1(;) = 1}. Then Theorem 3
implies that this bilinear form is coercive and has a bounded linear operator
KA (4=M =1 in £((HY(I))', HY(I)). This operator K is bounded in
L((HYI)), HY(I)) uniformly in e € (0,60) and A € C,. Theorem 3 also
implies that

lim 15 = KO ey ,myy = O

uniformly in A € C, where K% = (A%*)~! and A%* is given by
AP = =Dy + 0" (2) Dy + ¢ () + ' (g" (2)) A* () "'p* () + A

Associated with Proposition 1 of the scalar case, we have
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Proposition 4. For sufficiently small € > 0, A € C is an eigenvalue of
the linearized eigenvalue problem (4.2) if and only if X satisfies

ANSE (=271 + TN B(w,€) + 27 P (p(w,6) K7 (‘g (2, 2)p(w, 2))) = 0.
(5.4)
In this case (u, ) is given by

U=K(g(,e)p(z,€)), a=— (L°+erA) ' Q(p(z,)D).

We omit the proof, since the argument is the same as in Proposition 1.

Equation (5.4) is called the SLEP equation, which is a scalar equation
for the critical eigenvalues. By the definition of A(-), limy_, 400 A(X) = —00
follows. A(\) is analytic in A € C ;. with

MO0 = 7¢ — 7 P (p(a, )K= (I - e'g(w, ) (L) 2Q7(-p(,2)))
x (K g(x,¢)9)) ).

Then the procedure is the same as in the scalar case in §2 and §3. By a
similar argument as in §3, one can study the stability of traveling waves for
three component systems by using the SLEP method.
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