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We study travelling-front solutions of pyramidal shapes in the Allen—Cahn equation
in RN with N > 3. It is well known that two-dimensional V-form travelling fronts
and three-dimensional pyramidal travelling fronts exist and are stable. The aim of
this paper is to show that for V > 4 there exist N-dimensional pyramidal travelling
fronts. We construct a supersolution and a subsolution, and find a pyramidal
travelling-front solution between them. For the construction of a supersolution we use
a multi-scale method.

1. Introduction

Multi-dimensional travelling fronts in the Allen-Cahn equation or the Nagumo
equation have been studied recently. For example, two-dimensional V-form front
solutions have been studied by Ninomiya and Taniguchi [8, 9], Hamel et al. [5, 6]
and Haragus and Scheel [7]; cylindrically symmetric travelling fronts have been
studied by Hamel et al. [5,6] and Chen et al. [1]; three-dimensional travelling
fronts with pyramidal shapes were studied in [12,13]. The aim of this paper is
to study the existence of travelling fronts with pyramidal shapes in the four-or-
higher-dimensional space. A new stationary wave was found by del Pino et al. [2,3]
for dimension N > 9 (see also [11] for the non-existence in lower dimensions).
Thus, the spatial dimension is crucial for the existence and non-existence of multi-
dimensional travelling fronts. It is an interesting but extremely difficult problem to
classify all possible travelling-front solutions in R™. This problem becomes more
interesting and difficult as the spatial dimension N becomes higher. As a first step to
approaching this problem, we consider the existence of pyramidal travelling fronts
in RV,
In this paper we consider the parabolic equation of the form

%:Aquf(u)7 xRN, t>0,
u|t=0 = U, T € RN,

where N > 3 and a given function ug is of class BU(RY), and A stands for the

Laplacian vazl 02 /0z2. Here BU(RY) is the space of bounded uniformly continu-
ous functions with the supremum norm.
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In one-dimensional space, let @(x — kt) be a travelling wave that connects two
stable equilibrium states £1 with speed k. By putting u = = — kt, @ satisfies

—0" () — k' () — f(P(n)) =0, —o00 < < o0, (L.1)
P(—o0) =1, &(o0) = —1. '

To fix the phase we set ¢(0) = 0.
The following are the assumptions on f throughout this paper:

(A1) fis of class C'[—1,1] with f(1) =0, f(—1) =0, f/(1) <0 and f'(-1) < 0;
: 1

(A2) f satisfies [~ f > 0;

(A3) there exists @(u) that satisfies (1.1) for some k € R.

In order to study the travelling-wave solutions in one direction, we adopt the moving
coordinates of speed ¢ towards the zy-axis without loss of generality. We write

x=(21,...,on) ERY and ' = (21,...,2xy_1) € RV~ and put s = 2y — ct and
u(x,t) = w(x', s, t). We denote w(x', s,t) by w(z,t) for simplicity. Then we have
0 0
& Aw-c w—f(w)z() in RN, ¢t >0,

ot 6ch (].2)
w‘t:() = Up in RN.
We denote the solution of this equation by w(,t; up). If v is a travelling wave with
speed ¢, it must satisfy

ov

“Av —
v C(‘)xN

— f(v)=0 inRY, (1.3)

To study this equation, we introduce a nonlinear operator

—f(v) (1.4)

L] == —Av — caxN

for a function v € C?(R™). We assume ¢ > k throughout this paper, because the
curvature effect is expected to accelerate the speed.
Let n > 3 be a given integer, and

2 _ 2
m:>£%JL>O (1.5)

Let {A;}7_; be a set of unit vectors in RN~! such that A; # A; for i # j. Then
Aj=(A1j,...,An_1;) € RN~ satisfies

N-—-1
AP =D (Aij)P=1 forj=1,...,n. (1.6)

i=1

Now (—mA;,1) € RY is the normal vector of {x € RN | 2y = m(A;,2’)}, where
(Aj, ') is the inner product of A; and x’ given by

N-1
(Aj,(l!l) = Z Ai’jxi.
=1



Multi-dimensional travelling fronts 1033

We set

AN X N __ X ! (17)
h(z') == max h;(a) =m max (A;,z')

hi(x") :=m(A;,x'), }

in 2’ € RV"1 We call {z = (z/,7ny_1) € RY | 2y = h(z)} an N-dimensional
pyramid in RY. Setting

Q; = {z' e RV [ h(a') = h;(x")}

for j =1,...,n, we have

We denote the boundary of £2; by 0f2;. Now we put
S; ={x e RY | zn = hj(z') for 2’ € 2;}
for each j, and call U;L S; C RY the lateral faces of a pyramid. We put
Ij:={z eRY |zy = h;(2) for ' € 092}
for j =1,...,n. Then U;L:1 I'; represents the set of all edges of a pyramid.
For every A; with (1.6), (1.3) has a planar front solution ¢(k(zn — hj(x’))/c).
We define
k / k /
v(x) =9 E(xN—h(w ) ) = max &( —(xn — hj(x)) . (1.9)

1<isn c

Then it is easy to see that v becomes a subsolution to (1.3). We define

D(v) = {a: e RN ‘ dist <a: U Fj> > 7} (1.10)

j=1

for v > 0. We will show that the function

o(z) == @(a azy — plax’) ) +eS(az)

V14 [Ve(aa')?

becomes a suitable supersolution with v < 7 to obtain a solution of (1.3) between
them by the comparison principle. Then this solution has a contour surface of a
pyramidal front shape. See (4.7) below for the precise definition of .

The following theorem is the main assertion in this paper.

THEOREM 1.1. Let ¢ >k, and let v(x) be given by (1.9). Under assumptions (A1)-
(A3), there exists a solution V(x) to (1.3) such that

lim sup |[V(z)—v(x)| =0, v(x)<V(x)<1 foralzcRY, (1.11)
Y7 zeD(y)

and
ov

%(:ﬁ) <0 foralaxeRN, (1.12)
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Most of this paper is devoted to constructing a supersolution v. We introduce a
small positive parameter o and rescale the spatial variable as £ = ax. In §§2 and 3,
we take a suitable positive function S(£€) that is used to construct the supersolution
0. This function takes positive values near edges U?Zl I'; and decays to 0 as £ moves
away from the edges. On the other hand, the first term of ¥ converges to a planar
front travelling with a slower speed k € (¢,00) as @ — +0. If we use the moving
coordinate of a speed ¢, we expect that w(x,t;v) is monotone decreasing in ¢ > 0.
This suggests that v is a supersolution of (1.3). We carry out this argument and
prove the main theorem in §4.

2. Preliminaries

In this section we make preparations. We state known results for travelling fronts,
and prepare to construct supersolutions for pyramidal travelling-front solutions.

LeEMMA 2.1 (Fife and McLeod [4]). Under assumptions (A1) and (A3), ®(u) as
in (1.1) satisfies

&' () <0 forall p€R,
max{|® ()], 12" ()], |u" (1)} < Ko exp(—rolpl).
Here Ky, kg are positive constants.
There exists a positive constant d, with 0 < 6, < % and
—f'(s) > B if|s+1] <20, or |s— 1] < 24,
where
8= jmin{—f'(-1),-f'(1)} > 0.
Since the unit vectors {A;}7_; satisfy A; # A; for i # j, we have
-1< (A, Aj) <1 fori##j.

For j,i,3' € {1,...,n} with j # 4, j # ¢’ and i # ¢/, let 6, ,(j) be the angle
between A; — A; and A; — A;. Then we have 0 < 6; (j) < m and

(Aj — Ai, Aj — Al/) = |AJ — AzHA] — A2/| COS 01’2/(j)
We define
Omin == min{0; () | j #14, j #1i', i #4'},
Omax = max{0; i (j) | j # 14, j#i', i #i'}

and have 0 < Opin < Omax < 7.
Let p(r) € C*°[0,00) be a function with the following properties:

pr) >0, p(r)<0 forr >0,

-

1 if r > 0 is small enough,
(r) =

e if 7 > 0 is large enough, say r > Ry,

/ Al')) da’ = 1.
RN-1
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We assume Ry > 1 without loss of generality. We have

~ 1 I (N_ 1)7r(N_1)/2 > -2~
/]RN—l p(|w |)d(l! - F((N+ 1)/2) A TN 2/)(7") d’l",

where [" is the Gamma function.
We put p(z') := p(|z'|). Then p : R¥~1 — R belongs to C°° (RN ~1) and satisfies

/ p(z')dz’ =1, (p*h;)(x') = hj(z)
RN-1
for all ’ € RN~1 and j = 1,2,...,n. Here p x h; implies the convolution of p and
h; given by
pxhj(a') = / p(y)h;(x' —y') dy'.
RN-1

For all non-negative integers ji, jo,...,jn—1 with 0 < Zg;ll Jp < 3, we have

IDIDY D Ip(a')| < Myp(x') for all &' € RN 71, (2.1)
where M7 > 0 is a constant.
We put ¢ := p* h, that is,
o@)i= [ o —ym)dy = [ pha vy (22
RN-1 RN-1

for ' € RV~ We call xx = (') a mollified pyramid for a pyramid xx = h(z’).

We put
c

S(x') = W — k, (2.3)

where V(') = (0¢/0x1,...,00/0xyn_1). We denote (9/dx,)" by Dj. We have
the following lemma.

LEMMA 2.2. Let ¢ and S be as in (2.2) and (2.3), respectively. For any fized
(41,...,in=1) #(0,...,0) withi, 20 (p=1,...,N —1), one has

sup DD - DY) < oc.
xRN~

One has
') < pla) < ha)+m [ o) dy'
|Vo(z')| < m, 0<S()<ce—k
for all x' € RN—1,
Proof. We have

/ / ’ (Nf 1)77(]\’71)/2 ® w_1-
/]RN—I |z’ |p(x") da’ = TN+ 1/2) /0 rv 1p(r)dr.
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Without loss of generality we assume i; > 1 and have
DYDY Do) = [ DETIDE DR e’ — k() dy
— [ DYDYl e~ o)y
RN-1
Then we get
DD - DY Jo(a') = /RN_l D} ~'DE -+ DY} p(y')Dih(z’ — o) dy/,
and thus
DDy --- DR p(a’)| < m D 7'D - DRI p(y')| dy' < oo,
RN-1
Using p > 0, hj(x') < h(z'), px hj(x’) = hj(2') and h;(x') # h(x’), we have
hj(@') = p*hj(x') < p*h(a') = ().
Thus, we get h(z') = maxi<j<n hj(x') < o(2’) for all ' € RV~1. Since we have
|hj(@" —y') = hj(a')] < mly'|

forall j =1,2,...,n, we get
[h(z" —y') = h(z')| < mly'|.

Using this inequality and

/ ply")dy' =1,
]RN—l

we obtain

o)~ ha) = [

RN-1

h(z' —y")p(y') dy' — h(w’)/ p(y')dy’

RN-1

</Rm'h<w—y> (@) p(y') dy’

<m / 1y |p(y
N—-1
Next we have

Vo) = [ ae e —y)a =mY [ e~y A,

Here we used Vh(x') = mA; if ' € 2, for j = 1,2,...,n. Thus, we have an

inequality
(Ve)(a')| <m) /Q plx' —y')dy' =
j=1 J

Since S < ¢ is valid, we obtain 0 < S < ¢ — k. This completes the proof. O
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The following proposition plays a key role in this paper.

PROPOSITION 2.3. One has

. o) — h(z') o) — h(z')
g AT T L&)~ ME)
0< ™ S@) SR TTs@y =
N—-1

For every integer j, >0 forp=1,...,N — 1 with 2 < szl Jp <3,

DEDE Dy ola)
sup < 0o
z’/eRN -1 S(.’B/)

holds true.

We give the proof of this proposition in § 3. In preparation we study ¢(x')—h(z’).
We set
¢(x') := p(x') — h(z') for all 2’ € RN, (2.4)

For each 1 < j < n we have
o) = p(x') — hj(x') = px (h—h;) forall ' € £2;. (2.5)

We put ¢(z') := max{—=z1,0} for ' = (z1,...,2ny_1) € RV"1. We set e; =
(1,0,...,0) € R¥~1 and introduce P as

P(x1) = (pxq)(z1€1)

- /RM ply') max{(y',e1) — 1,0} dy/’

= */ (/ p(y1,y") (w1 — yl)dy1) dy”
RN—Q T

>0 (2.6)

for 1 € R. Since

P(x1) = —/N ] (rm/ p(y1,y") dy —/ ym(yl,y”)dyl) dy”,
RN— xq T

we have

P'(z1) = —/R]H (/j p(y17y”)dy1> dy” <0, (2.7)

1

P//(l,l) — /N p(xhy//) dy//
RN-2

:/ ﬁ( x%+|y”|2) dy” >0,
RN-2
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In particular, we have

Prla) = [ e (<yfad ) dy', (28)
RN -2

P/// — _ L (_ 2 " 2) d //7 2.9
(1) v VT E T Vei+ly'?)dy (2.9)

if 1 > 0 is large enough. We have
P'(z)>-1 forz>0 (2.10)

from (2.7).
Now we have the following lemma.

LEMMA 2.4. Let P be as in (2.6). Then one has

. P(x)
1 =1. 2.11
93520 %F(% N — 1)(2x)(N/2)—1e—rc ( )
Moreover,
PO ()] o [PO ()] [P ()]
P 0SB R SER Pw T

hold true for all i with 1 <i < 3.

Proof. We use the polar coordinates in RV~! given by

EP(T, 91, ce 79]\]_2)

N-3 N-3
= (rcos&hrsinel cosfy,... ,r( H sin0i> COSQNQJ’( H sin9i> Sin9N2>

i=1 i=1

for (01,...,0n_2) € [0,7]V =3 x [0,27]. We put Iy := [0, 7]V =3 x [0,27]. Next we

have

o\ (N-2)/2 oo

P'(x) = Gl Q)ZT / exp (—Va2 +72)rN 3 dr (2.12)
I'(3N) 0

if x > Ry. Putting r = v/s2 + 2sz, we have

/ exp (—\/ 2+ r2) N=3 qr
0

r
:/ e (s? + 252) N Y2 (s 4+ 1) ds
0

o 82 (N—4)/2 s
= %(Qm)(N/Q)_le_x/ e”? (s + ) (1 + ) ds.
0 2z T

By the Lebesgue convergence theorem we have

00 52 (N—4)/2 s o0
lim e ® (s + ) (1 + ) ds = / sWN/D"2e=5ds = M(3N —1).
0 x

T—00 2x 0
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Thus, we get
P//
lim (z) =1

z—oo (N —1)(2z)(N/2)~le~®

Similarly, we calculate
P"(z) = — / L exp (/a2 + [y ) dy”
RN-2 T2 + |y//|2

(N — Q)W(N*2)/2 /°° T 5 3\ N—3
exp (—vVx? +7r?)r dr
T(IN) L, vl )

if x> Ro.
Putting r = v/s2 + 2sx again, we have

P’ (x) = —/ 2o (5% 4 252) N "V/2 4g
0

if x > Ry. Thus, we get
_P///(x)

lim =1

z—oo 1T(EN —1)(2z)(N/2)~le~w

Thus, we obtain
) —P///({E)
B At

Now the Cauchy mean-value theorem gives

P/l(x) _ P”/(l'/)
PI(IL') P//(xl)

for some x’ > x. This yields

) P”(x)
A TPy

Similarly, we have

e i ) N 5 C) B
APy A Tpi) ¢

Thus, we obtain

] —PI(LL‘) L P”(CL‘) L —Pm(.%') _
PRy S P@) ek P

Using these equalities, we obtain

PG PG
0o IPO@I _[PO@)

2P IR PR T
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We choose 77 € C™°[0, 00) with

nr)=1 if0<r<1,
0<n(r)<l ifl<r<?2,
7(r) =0 if r>=2.

We put n(z’) := ij(|z’'|) for ' € RV -1,
Let a > 0 be any given constant. For any ¢ € L> (RN ~1) with

¢(0) =0,
supp( C {(21,...,2n-1) | 21 < O}, (2.13)
|C(x')| < |&'| for all &’ € RV™1,

we set

Qiacyi= [ pwer—yn(L)cway e

axr
R(z;a,() == /wal p(re; — y’)(l - n(i))((y’) dy" for z > 0.

Then we have
P(z) = Q(x;a,q9) + R(z;a,q) for all z > 0.

LEMMA 2.5. Let a > 0 be any given constant. Let ¢ € L=°(RN~1) be a given func-
tion with (2.13). Then there exists K(a) > 0 depending on a such that one has

. 2
s IR0, < K@) esp (-5 0)

1=0,1,2,3

for all x > 0.

Hence, lemma 2.4 holds true by replacing P(x) by Q(z;a,q).

Proof. The latter statement follows from the former one and lemma 2.4. It suffices
to prove the former statement.
We use the polar coordinate in RN~ given by

& =W(r,0y,...,0N_2) for (61,...,0n_2) € [0,7]V 3 x [0,2x].
Here Iy = [0, 7]V =3 x [0, 27]. We have
0<<¢(y) <ax ify € B(0;ax)

for z > 0. Here B(0;ax) is a ball in RY whose centre is the origin and whose radius
is ax. Then we get

o0

O<R(I;Q,C)<27TN72/ exp(f\/zQJer)TN*ldr if r > Ry.

ax
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We obtain
0< / exp (—Va? + 7’2)er1 dr
= / e "5(s% + 252) N/ 2 (s 4 1) ds
(V14a2-1)z
2 4 2a+ 4\ o
< <a+2a+) eﬂ”/ sVle% ds.
a (V14a2-1)z
Here we used (V1 + a2 — 1)z < s, which gives z < a7%(2 + a)s. We also get
0< / sNlem5 ds
(V14+a?2-1)z
V1 21 >
< exp (—_‘_;x> / sV1les/2ds
0

V/ 2 _
<2M(N = 1)lexp (—Mlx).

2

Thus, we obtain

lim R(z;a,()exp

T—00

<1+\/1+a2 )
— %) <™

Next we estimate derivatives of R(x;a, (). Let i = 1,2,3. We have

R (z;a,¢) = /}RN?1 D! (p(xel -v) (1 - n(i)))c(y’) dy’ for z > 0.

By direct calculation, we obtain
i _(1Y']
Di(1—-7(— < M, (2.14)
ax

for all = 0,1, 2,3. Here Ms > 0 is a constant depending only on 7 and is indepen-
dent of a. We have

/
D’ (1 — ﬁ<|y>) =0 forall y' € B(0;ax).

ax

sup
z>1,y’€ERN -1

Using (2.1) yields

|R®(2,4,0)| < 2"M1M2/ pleer —y)IC(y)ldy'.
RN—=1\B(0;ax)

We obtain

oo

/RN . )P(wel —y)C(y)dy’ < 27rN‘2/ exp (—Va? +r2)rV " tdr
- 0;ax

ax

if r > Ry. From the argument stated above we obtain the estimates of the derivatives
of R (z;a,(). This completes the proof. O
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3. Proof of proposition 2.3

We study (2; for each 1 < j < n. Without loss of generality we can assume that
A; =en_1,whereey_1 :=(0,...,0,1) € RN-! For any i # j, we have Ay <1
from A; # en_1. Now hj(z’) > h;(2') is equivalent to

N-2
ay-1 > (1—An_a,)7! Z Ap,itp
p=1

for every ¢ # j. Then from the definition of {2;, we have

N—-2
Yoot ApiT
p=1 “1p,iTp
Tn_1 > max —F————

Q; =2 eRN!
! { i#i 1 —AN_1,

(3.1)

if A; = enx_1. This fact implies that £2; is an (N —1)-dimensional pyramid in RV 1
for every j € {1,...,n}. In particular, {2; is a convex set in RV 1. The lateral faces
of {2; are given by

00, = | (2;ne2).
i€ A’(4)
Here A’(j) is a subset of {1,...,n}\ {j}. We determine A(j) as the minimum of
such an A’(j), that is,

a6y =N oa = U @na}
i€ A’(H)
We see that ¢ € A(j) is equivalent to j € A(:). We call §2; and (2; are adjacent if
and only if i € A(j).
LEmMMA 3.1. If A; = en—1, one has

N-2

> Ay

p=1 “ip,ilp
TN_1 > max ————— 5,

Q; =32 eRNV!
! { i€A(j) 1— An—14

Proof. We obtain this lemma from the definition of A(j) and (3.1). O

A set A(j) has at least two elements. For any i € A(j), H; is given by
N-2
eno=(1—Av 1) Y Apiny.
p=1

The normal vector of H; is given by ey_; — A;. For each i,i’ € A(j) with i # 4/,
let 6; ;» be the angle between H; and H,;» with 0 < 0; ;; < m. We have

0 < Omin < min 91'71'/ < max 01',2'/ < Omax < .
i €A(G) it/ i,i €A(S) il

Let &’ € {2;; the length of a perpendicular onto H; is given by

(A; — Ay, x')

—(b: - ’2 2
A~ A (bij,z') >0 (3.2)
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for each i € A(j). Here we set

A — A,

b, =21 " ¢ RN!

YA - A

for all i # j. The foot of this perpendicular is given by
gi(x') = — (bi;,x)b;; e RN 7!

for all ¢ # j.
Now we return to studying @;(«’) and S(x’). By the definition of S we have

St — B (m? — [Vo(a)?)

N V14 |Vo(@)|?(c+ k14 [Ve(x))

By lemma 2.2, we have

(3.3)

0 <m? —|Vy|?
=m® — V(g +hy)[?
=m® — V3> — |Vh;[* = 2(Vg, Vh;)
=m? - [V@[* —m® —2m(A;,V)
= —|Vg[* — 2m(A;, V) (3.4)

for all ' € (2;. Then using lemma 2.2, we have

B (Com(a,, V) - Vo) < S(@) < -
ez \ AL VP PUIS OIS 0%

(—2m(A;, V) - [Vl?)

for all ' € £2;.
We study S(z') when ' lies near |Jj_, 942;.

LEMMA 3.2. For any given b > 0 one has

o<mf{5( ‘dlst( Ua(z) }

Proof. Let b > 0 be given arbitrarily. Using lemma 3.1, we have

inf '—y)dy' >0 inf "—y)dy >0
m}gnj/gjp(-’v y')dy >0, dist(;;}m)gb/gip(w y')dy' >

for all 4,5 € {1,...,n}. Without loss of generality we can assume x’ € {2; for some
j and dist(2’, £2;) < b for some i € A(j).
By lemma 2.2 and its proof we have
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Using the inequalities stated above, we obtain
n
0 < inf {m— [Vl ’ dist (:L", U I; < b)}
j=1

Using this inequality and (3.3), we complete the proof. O

We study ¢ in £2;. Without loss of generality we assume A; = en_1. Let H be
the Heaviside function given by

For each ¢ € A(j) we set

N-—-2
Xi(w/) = H((l — AN,LZ')_l Z Ap,ixp — CL’N1>
p=1

for all #’ = (v1,...,2ny_1) € RV~L. We set A(j) = {i1,...,i¢}, where 1 < £ < n.
We have

¢
H 1—xx) in RV-1,

k=1

We set
¢
17H17Xn ZXKPK Xla"'aXE)7
k=1

where p, is a polynomial. The degree of p, is no greater than £.

Then we have
¢
0=(h— hj)(l =) xwpelxas - 7Xz)>
k=1

and thus
¢

h=h; = XuPu(X1s - x0) (h = hj). (3.5)

k=1

For any k € {1,...,{} we set
¢ = max{|ps(x1,.--,xe)| | xa =0or 1forall 1 <i<{}.
We put b, := max{l, maxig.<s ¢x} and obtain 1 < b, < co.

LEMMA 3.3. Let A; = en—1. One has

|h(z") — < b Z x))xi(z') for allz’ € RN7L.

i€A(F)

Proof. We obtain 0 < h—h; < h. Then we get this lemma immediately by (3.5). O
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We set

11 1
Ay = 7 SIn §9min cot §9maxa
and obtain 0 < a, < oo.

LEMMA 3.4. For any &' that lies in the interior of £2;, one has

B(gz(:c’), QCL*(biJ',:B/)) Cc U Qj
with respect to any i € A(j) with dist(x’,00) = dist(x’, H;).

Proof. For any s € A(j) with s # ¢ we have

H,NH; N B(gi(a:’);cot(%@max)(bi,j, ') =10.

Thus, we obtain

H; N B(gi(x); cot(30max) (bij, @) C 2, N 12;.

Then we get

B(gi(x'); sin(%@min) cot(%@max)(bi?j, x')) C £, U 8.
This completes the proof. O

Proof of proposition 2.3. It suffices to prove this proposition by assuming ' € (2,
with dist(a’, 042;) > 1 due to lemma 2.2 and lemma 3.2. For &’ € £2; let

C(j) = {i € A(j) | dist(a’,092;) = dist(z’, H;)}.
There exists a constant v > 1 such that we have
vdist(a’, H;) < dist(x’, Hs)
for all ' € £2; and all s € A(j) \ C(j). We set
A= (b, ') =dist(z',H;) forie C(j).

Note that A is independent of i € C(j).
It suffices to prove this proposition by assuming that C(j) remains unchanged,
say Cp, as |&'| = +o0o. Here Cy is a subset of {1,...,n}. We set

A= {x' € ;| dist(z',002;) > 1,{i € A(j) | dist(z’, 0£2;) = dist(z', H;)} = Co}.
We assume ' € A;. We have
B(gi(z'); 2a:\) C £2; N £2;

for all i € C(j) and ' € A;.
We have

1-— Z n(g/;f;@)—o ify/e U B(gi(ﬂ}/);a*)\),

i€C(j) i€C(j)
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For any &' € £2; with dist(a’, 962;) > 1 we have ¢(a') = I(z) + J(2), where

@)= [ =) ¥ o LB o) -t av.

i€C(J)
J@y=[ s - (1- 3 a(LEEN) Y iy - ) ay
Lo =n(1- 3 o(225))
We have
I@)=m Y |Ai—A;|Q\a.,q). (3.6)
1€C(J)

Using lemma 3.3, we obtain

e 2 [l 2 (2559

ieC(j) i€C(j)
h y/ — h y/
X xi(y’)% dy’
h(y') —h;(y')
_ NUY) =Y )
+2mb, > / p(x —y')xi(y') 5 dy
i€ A(H)\C(5)
< 2mb, Z R(X\;ay, q) + 2mb, Z P(Xay,q)

ieC(j) i€EAGNC()

1+4/1 £)2
< 2mbynK (ay) exp (_—i—;—(a))\) + 2mb.nP(v; ax, q).

Putting

1 1 . )2
ag = min{u,—’_;_(a)} € (1, 0),

we have
|J(x')] < Mge™ %A,

where M3 > 0 is a constant.
By (2.14) we have

) - (=) (=5

for j1 >0,...,jy-1 >0 with 35! j, < 3.
Using (2.1) and (3.7), we have

IN
5
=
3

D] DR ()]

<sanis, | pla’ — ) (by') — hy(y)) dy'
RY=NUiec) Blgi(®');axN)
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Now we have
I / h N h / d /
plx’ —y")(h(y') — h;(y)) dy
RNV =1\U;ec ) B(gi(x/)axX)
h(y') — h;(y’
<2mb, Y / p(x’ — y’)xi(y’)—(y )~ A(y) dy’
120l /RN T\ Blgi(@)ia. ) 2m
hy') —hi(y)
_ . / J /
+2mb. Y / p(x' —y )xi(y') 5 dy
1€A(GN\C3)
< 2mb.nR(A; ax, q) + 2mb.nP(vA; ax, q).
Thus, we obtain
DIt DY I (2)] < Mye™** (3.8)
forall A >0, j; 20,...,jn—1 = 0 with Z 1 jp 3. From lemma 2.5, and (3.3),
(3.6) and (3.8), we obtain

lim sup S(') _ 2mh (3.9)
A—+00 g/ €A, (bi,j,x" )=\ Zzec’(])(l (Ai,Aj))Q(/\;CL*,q) c+k .

and

DI DI a(2)| < MsQ(Asan,q) for @' € Ay, (bij, @) =A>0. (3.10)

,

Here M5 > 0 is a constant, and j; > 0,...,jn—1 > 0 satisfy Z;};l Jp < 3. This
completes the proof of proposition 2.3. O

4. Proof of theorem 1.1

In this section we construct a pyramidal travelling-front solution and prove theo-
rem 1.1 by constructing a supersolution and a subsolution and by using the methods
of [8,12].

We put & = (&1,...,&n) € RY and ¢ = (&,...,&v—1) € RY7L. We study
Ev =p(&).

For ae € (0,1) we consider the graph of

{a:ERN

1 !/
=— . 4.1
N = _plox )} (41)
Later we will choose o > 0 to be small enough. We note that

h(az') = h(z").

R+

"). For a given constant b’ € RV =1, the tangent
is expressed by

Putting £ = ax, we have Ey = ¢
plane of (4.1) at (b, (1/a)p(ab’)) i

~—

—(Ve(ab), (@ — b)) + 2 — égp(b’) _o. (4.2)
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Here we denote (0/0¢1,0/02, . ..,0/0¢n—1) by V. The length of the perpendicular
from b = (b,by) € RY onto the tangent plane is given by

by — p(ab’)/al

1+ [Vo(ab)[>
We set
P TN — (p(OéiB/)/Ol _ l §N - 90(5/) (43)
1+ [Ve(aa)? a1+ V(&)
and obtain
op 1 0% B
Oy 1+ [Ve(&)? 0x,
We have
op _ 1 O o Ph_
D, Wafi + aiiF;, i aGy + o? i H;,
where
0 1
Fi(&) =+1+|V 2<>, 4.4
(!
Gi(¢) = _9 (1 W) __ B(E) 8@, (4.5)
i \\/1+ V|2 0§ V14 |[Ve|?2 96
OF;
Hi(€) 1= Gg + (F(€)) (46)
fori=1,...,N — 1. We define
o(x) = &(j) + o(a’), (4.7)

where [ is as in (4.3) and o(z’) := S(ax’). Here we will fix ¢ > 0 in (4.9). We
have
oo 1 & () 0*v 1
orn /1 + |V H, ox% 1+ |Vp|?

().

Since

oo, O 0o 9% L (opY 0% 9%
— /() 2L )54 )+ o

H 0w * oz;’ 2 Ox; K 2 * 0z?

and
N—-1 ~AN2 N-1 2
02 1
(52) - & (e +our)
i=1 mi i—=1 1 + |VQO| gl
N—-1

Vel ( —204F; ¢ 2>
= F,
rever b 2 (Jieamae A )
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fori=1,...,N — 1, we have

N-1 _ N—-1 ~ N-1 A N2
0% 1/A agﬂ 1" 0°
gaxg_dj(“) gaz TP (8x2>+, 07

o = _ 20iF; &p 9 9%
+@" (1) 55 B2 (F)? ) + ek
i=1 vV 1+ |V90\ 51 i1 €5

N
_ 0%v 0v _
R D L 1)
=1 ?
N—-1
) . Vol|?
— _qv)/ 5 HZ _ qv)ll |

() 3 G+ o%pby (e )

N-1 N N-1
( QOZMF 690 2A2(F_)2> _ 8270—

+@"(fi -«
) 2 11|Vl 0& £ 9a?

1 1"/~ & N _
f) — —F——=9 (1) — f(v
v ver” W et W0
N—-1
R ) p— (1) = F(@(3) +0) — (7)Y (aC; + o?iH,)
L+ [Ve|? =
N-1 N-1
X 204F;, Op R 925
+45// ( a2 2 Fi 2) —80&2 .
" = \WV1F[VelP 43 (%) =1 233
We define
N—-1
Y€, pue,0) = -9 (u Z (Gi + auH;)
=1
N N-1g2¢

1 By 22 e
+ 2 Z<\/1+|w|28& o (F’)> “@ oez

Thus, we have
c . R N
() — f(@(f) + o) +aY (£, e, ).

Llo] = -2 (1) — W

Using the first equality of (1.1),

/f )+ s0)ds = F(@(3) + o) — f((2))
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and (2.3), we then obtain

1
2] = & (1)S(¢) — o / F(@(+ 50)) ds + aY (€ fie, a).
We have

V(&' pse, @) < max{|®' ()], |u®' ()], |u@" ()|, |1* 2" (1)}
0?8

N-1
2
X (Z (|G,»|+|Hi|+2|Fi|+|FZ- + o

i=1

))

for 0 < a < 1. Using lemmas 2.1 and 2.2, we have

N—1
825 7 i N
> <|Gi +H 2] + R+ |5 ) <w Y |IDPDE---DRIeE)
i=1 v 2< 05 ip <3
with a constant vy > 0 for all & € RVN~!. Using proposition 2.3, there exists v, > 0
satisfying
V(& me,
Y meal
S(¢')

, € € (0,1) and @ € (0,1). Constants vy and v, are
) and € € (0,1). We continue to calculate £[7] as
Y(S’,ﬂas,a)>

S(&) '

for all ¢ € RV-1, € R
independent of ¢, @ € (0,1

0] = 5(6) (') < | o (@) +50) ds o
Thus, we have

1
L£v] = S(¢) (@l(ﬂ) + 5/0 (—f(®(fp) + s0))ds — oa/*). (4.8)

We set (@) — h(a')
. p(x') — h(x
YT swy €O

by using proposition 2.3. Now we choose £ small enough to satisfy

1 6, 4K in_ _s5. (=9’
O<5<min{ 0 Min_i5 <op<iog,( (p))}. (4.9)

2" ¢ ekko’ 4max|s <14, |f/(5)]

Then we choose a small enough to satisfy

1 ef min_ys, <ap<i-s. (-2 (D) kwrg
el S = . (4.1
0 < o < min { 5 4v, "2clog(4K/ekkoe) (410

Now we show that v is a supersolution and is larger than our subsolution.

LEMMA 4.1. Assume ¢ and « satisfy (4.9) and (4.10), respectively. Let v and v be
as in (1.9) and (4.7), respectively. Then

o] >0 inRY

holds true. Moreover, one has v(x) < v(x) in RY.
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Proof. By lemma 2.2 and (4.9) we have
|seS| < sec < d, for all s € [0,1].

We consider the case of (1) < —14 6, or 1 —d, < @(f1). We have (f1) + seS <
—1+20, or 1 — 24, < P(1) + seS. Since 0 = S, we have

D(fi) + so0 < =14 26, or 1 — 20, < P(fi) + so.

From the definition of §, we have

/0 —f'(@(f) + so)ds > B.

Combining this inequality, —®’(1) > 0 and (4.8), we have
L£lv] = S(€)(eB — avy) > 0.

Next, we consider the case of —1 4 6, < &(f1) < 1 — J,. We have

7@/ ~ 2 . 7@/
(,u) —1+6*<r{1b1(2)<1—6*( (p))

and

1
—€ (@ +0s)ds > —e ma "(s)].
| r@sosass - w170

Combing these inequalities and (4.8), we have

Llo] > S(ﬁ')( min (—=®'(p)) —e max_|f'(s)] — Oll/*> > 0.

— 146, <P(p)<1—3. [s| <1+,

Thus, v is a supersolution.
Now we prove the latter statement. It suffices to prove that

#(on - 1y@)) < o(@) (4.11)

for any fixed j. If we have

we obtain

c

k . _
#(Lon - 1)) < 0 < o(2)
using @’ < 0. Thus, it suffices to consider the case when

k , .
~(en = hy(@) <
Substituting the definition of i into this inequality, we obtain

K on — hy(al)) < TN —2E)/a oy = (@) + (@) — p(€)/a)

¢ V14 [Vel? V1+[Vel?
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and thus

() < (e )

oN — hy(a")).

By (2.3), we have

() (25 ) ovobi

By the definition of w and lemma 2.2 we have

kw ¢ w ,

< e < @) (4.12)
o @) = hie) < Lnie) < Lo
we have
o)~ ( Eaw — hy(e) (wjl;—wffj)) +es(€) - o Eox - ) )
> @(%) _ @(’Z@N - hj(m’))) +eS(E).
Since
G i U /01 @’(( — IWP + k(1 - 9)) (ww — hj(x'))> a6,
we have
v(:c)—@( (zn — hy(a'))

 law = hy(@)S(€
&

1
x [ @ ( 1—9):1: — hj(z’ >d0—|—55 .
L7 (e et~ ©)
By lemma 2.2 and (4.12), we have

Then we have

o(x) — @(IZ(;CN - hj(w’))> > _S(¢) sup

Culzk?w/ca

;mﬁ'(m\ T es(e)

=s€) (- sw e]).

k | Zk2w/ca
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By virtue of lemma 2.1 and (4.10) we have

1
oS ()] < b
|ul> k2w /ca

Then we get
k
o)~ @ Eaw ~ 1i@))) > heS(€) >0
and obtain (4.11). This completes the proof. O

Now we prove the main theorem in this paper.

Proof of theorem 1.1. Recall (1.9) and (4.7), and consider solutions of (1.2) given
by w(x,t;v) and w(x,t;v), respectively. Since v is a subsolution and ¥ is a super-
solution, we have

v < w(z, t;v) < w(zx, t;0) <0

for £ € RN and t > 0 by using [10, theorem 3.4]. Then

V(x) := lim w(x,t;v) (4.13)

t—o0
exists in L (RY) with
v(x) < V(x) <v(x) for x c RY.

This V() is a solution of (1.3). See [10, theorem 3.6] for detailed arguments.
Now we prove (1.11). For any given £ > 0 we prove

sup ((x) —v(x)) < 2¢ (4.14)
z€D(y)

if v > 0 is large enough. We use the same € as in (4.7). Assume the contrary. Then
there exist sequences (7;)%2; C R and (z;)32, C RY such that we have

lim v; =00,  x; € D(y), (4.15)
71— 00
and
. k ,
D) = &( —(ons = h(z))) )| > &, (4.16)
where &; = (z1,4,...,2n,) and @, = (214,...,2n-1,) for i € N. Here we put

A !/
& = ax; and

fi; = 1 &vi—w&)
a I IVeE)P
_ wn — h(xg) — (0(&) — h(&i)) /o
1+ [Ve(&)?
_ TNy~ h(z;) — o(&')/
1+ [Ve(E))P
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From (3.9) and (3.10) we have

Jim [5(€)] =0, [Ve(€)l=m,  lim S(€)=0.

1—00

Then we obtain

lim
1—00

R k
Hi — E(wN,z‘ - h(wé))‘ =0.

This implies

k
1—>00 (&
This contradicts (4.16). This completes the proof of theorem 1.1. O

For the uniqueness and stability of pyramidal travelling fronts, see [13] in R®. In
RN (N > 4) those properties are left to be an interesting open problem.
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