PICARD GROUPS OF TORSION FREE CLASSES

NAOYA HIRAMATSU

Let k be a commutative ring and A be a commutative k-algebra. We denote by A-Mod the module category over A. The notion of Picard group of additive full subcategory appears in [3]. It defined as an automorphism group of such a subcategory. In this note, we investigate the picard groups of torsion free classes in A-Mod.

Let \mathfrak{F} be an additive full subcategory of A-Mod which is closed under submodules, direct products and extensions. Note from this assumption, there exists an additive full subcategory \mathfrak{T} in A-Mod such that $(\mathfrak{T}, \mathfrak{F})$ is a torsion pair. The following proposition is well-known (see [1]).

Proposition 1. Let $(\mathfrak{T}, \mathfrak{F})$ be a torsion pair in A-Mod and M be an A-module. There exists a short exact sequence

$$0 \longrightarrow t(M) \longrightarrow M \longrightarrow M/t(M) \longrightarrow 0$$

with $t(M) \in \mathfrak{T}$ and $M/t(M) \in \mathfrak{F}$.

We denote by Pic A the ordinary Picard group of the ring A. Recall that an A-module M is called invertible if there is an A-module M' such that $M \otimes_A M' \cong A$ as A-modules. Then Pic A consists of all the isomorphism classes of invertible A-modules, and the multiplication in Pic A is defined by tensor product over A.

Lemma 2. Let A be a commutative ring and let \mathfrak{C} be a full subcategory of A-Mod that is additively closed and $A \in \mathfrak{C}$. Then the classes of invertible A-modules are elements of $\operatorname{Pic}(\mathfrak{C})$, and hence $\operatorname{Pic} A$ is naturally a subgroup of $\operatorname{Pic}(\mathfrak{C})$.

Proposition 3. Let A be a commutative ring. Let \mathfrak{F} be an additive full subcategory of A-Mod which contains A as an object. Suppose that \mathfrak{F} is closed under submodules, direct products and extensions. Then we have the equalities

$$\operatorname{Pic}(\mathfrak{F}) = \operatorname{Pic} A.$$

Proof. Since \mathfrak{F} is additively closed, the inclusion Pic $A \subseteq \text{Pic}(\mathfrak{F})$ holds by Lemma 2.

To prove the other inclusion, assume $[M] \in \operatorname{Pic}(\mathfrak{F})$. We have only to show that M is an invertible A-module. Take an A-module $[N] \in \operatorname{Pic}(\mathfrak{F})$ such that $\operatorname{Hom}_A(M \otimes_A N, -) \cong 1$ as functors on \mathfrak{F} . We note that $\operatorname{Hom}_A(N, A) \cong M$. We define the torsion-free tensor product by

$$M\bar{\otimes}_A N := (M \otimes_A N)/t(M \otimes_A N).$$

Date: November 29, 2010.

NAOYA HIRAMATSU

It is easy to see that every A-homomorphism from $M \otimes_A N$ to an element of \mathfrak{F} factors through the natural surjection $M \otimes_A N \to M \bar{\otimes}_A N$. Hence the above isomorphism of functors induces an isomorphism

$$\operatorname{Hom}_A(M\bar{\otimes}_A N, -) \cong 1,$$

as functors on \mathfrak{F} . Since $M \bar{\otimes}_A N$ is an object in \mathfrak{F} , it follows from Yoneda's lemma that $M \bar{\otimes}_A N \cong A$ as A-modules. Note from this isomorphism that M has rank one.

Now we prove the following claim.

Claim: Assume that $M \bar{\otimes}_A N \cong A$ for torsion-free A-modules M and N. Then M and N are projective as A-modules.

In fact, take an element $\sum_{i=1}^{r} m_i \otimes n_i \in M \otimes_A N$ which maps to 1 by the natural epimorphism

$$\pi : M \otimes_A N \to M \bar{\otimes}_A N \cong A.$$

We define an A-linear homomorphism $g_i : A \to M$ by $g_i(a) = am_i$. And we also define an A-linear homomorphism $g = \Sigma^m g_i : A \to M$. Tensoring N of this morphism and composition with π , we have a following splitting epimorphism

$$\tilde{g} : \oplus^m N \xrightarrow{g \otimes N} M \otimes N \xrightarrow{\pi} A.$$

Hence, we have

$$\oplus^m N \cong A \oplus K,$$

where K is a kernel of \tilde{g} . Tensoring M and applying $\operatorname{Hom}_A(-, A)$ to this, we have the following isomorphism.

 $\operatorname{Hom}_{A}(\oplus^{m}(N\otimes_{A}M), A) \cong \operatorname{Hom}_{A}(M, A) \oplus \operatorname{Hom}_{A}(K\otimes_{A}M, A).$

Since LHS is isomorphic to $\oplus^m A$ and $\operatorname{Hom}_A(M, A) \cong N$, we see that N is a direct summand of free A-module. Thus, N is projective. Also M so is. This completes the proof of the claim.

Now from the claim we have that $M \otimes N$ is a projective A-modules, especially submodule of direct sums of A. Since \mathfrak{F} is additive and closed under submodule, $M \otimes N$ is an element of \mathfrak{F} . Therefore, $M \otimes N \cong M \otimes_A N \cong A$, which shows that M is an invertible A-module.

Example 4. The following subcategories of A-Mod satisfy the assumption of Proposition 3.

- (1) A-Mod itself and the full subcategory A-mod consiting of all finitely generated A-modules.
- (2) the full subcategories Tf(A) (resp. tf(A)) consisting of all torsion-free A-modules (resp. all finitely generated torsion-free A-modules) in case A is an integral domain (see [1, 3]).
- (3) the full subcategory $d^{\geq i}(A)$ which consists of all the finitely generated *A*-modules *M* with depth $M \geq i$ when *A* is a Noetherian local ring with depth $A \geq i$, where *i* is any natural number (see [3]).
- (4) the full subcategory of (I, J)-torsion free A-modules for ideals I, J of A in case A is a Noetherian ring (see [2]).

References

- I, Assem, D. Simson and A. Skowroński Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory, London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge, 2006. x+458 pp.
- 2. R. Takahashi, Y. Yoshino and T. Yoshizawa Local cohomology based on a nonclosed support defined by a pair of ideals. J. Pure Appl. Algebra **213** (2009), no. 4, 582–600.
- 3. N. Hiramatsu, and Y. Yoshino Automorphism groups and Picard groups of additive full subcategories. Math. Scand., to appear.
- Y. Yoshino, Cohen-Macaulay Modules over Cohen-Macaulay Rings, London Mathematical Society Lecture Note Series 146. Cambridge University Press, Cambridge, 1990. viii+177 pp.