
PICARD GROUPS OF TORSION FREE CLASSES

NAOYA HIRAMATSU

Let k be a commutative ring and A be a commutative k-algebra. We denote
by A-Mod the module category over A. The notion of Picard group of additive
full subcategory appears in [3]. It defined as an automorphism group of such
a subcategory. In this note, we investigate the picard groups of torsion free
classes in A-Mod.

Let F be an additive full subcategory of A-Mod which is closed under sub-
modules, direct products and extensions. Note from this assumption, there
exists an additive full subcategory T in A-Mod such that (T,F) is a torsion
pair. The following proposition is well-known (see [1]).

Proposition 1. Let (T,F) be a torsion pair in A-Mod and M be an A-module.
There exists a short exact sequence

0 −−−→ t(M) −−−→ M −−−→ M/t(M) −−−→ 0

with t(M) ∈ T and M/t(M) ∈ F.

We denote by Pic A the ordinary Picard group of the ring A. Recall that
an A-module M is called invertible if there is an A-module M ′ such that
M ⊗A M ′ ∼= A as A-modules. Then Pic A consists of all the isomorphism
classes of invertible A-modules, and the multiplication in Pic A is defined by
tensor product over A.

Lemma 2. Let A be a commutative ring and let C be a full subcategory of
A-Mod that is additively closed and A ∈ C. Then the classes of invertible
A-modules are elements of Pic(C), and hence Pic A is naturally a subgroup of
Pic(C).

Proposition 3. Let A be a commutative ring. Let F be an additive full sub-
category of A-Mod which contains A as an object. Suppose that F is closed
under submodules, direct products and extensions. Then we have the equalities

Pic(F) = Pic A.

Proof. Since F is additively closed, the inclusion Pic A ⊆ Pic(F) holds by
Lemma 2.

To prove the other inclusion, assume [M ] ∈ Pic(F). We have only to show
that M is an invertible A-module. Take an A-module [N ] ∈ Pic(F) such that
HomA(M ⊗A N,−) ∼= 1 as functors on F. We note that HomA(N,A) ∼= M .
We define the torsion-free tensor product by

M⊗̄AN := (M ⊗A N)/t(M ⊗A N).
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It is easy to see that every A-homomorphism from M ⊗A N to an element of F
factors through the natural surjection M ⊗A N → M⊗̄AN . Hence the above
isomorphism of functors induces an isomorphism

HomA(M⊗̄AN,−) ∼= 1,

as functors on F. Since M⊗̄AN is an object in F, it follows from Yoneda’s
lemma that M⊗̄AN ∼= A as A-modules. Note from this isomorphism that M
has rank one.

Now we prove the following claim.

Claim: Assume that M⊗̄AN ∼= A for torsion-free A-modules M and N . Then
M and N are projective as A-modules.

In fact, take an element
∑r

i=1 mi ⊗ ni ∈ M ⊗A N which maps to 1 by the
natural epimorphism

π : M ⊗A N → M⊗̄AN ∼= A.

We define an A-linear homomorphism gi : A → M by gi(a) = ami. And
we also define an A-linear homomorphism g = Σmgi : A → M . Tensoring
N of this morphism and composition with π, we have a following splitting
epimorphism

g̃ : ⊕mN
g⊗N−−−→ M ⊗ N

π−−−→ A.
Hence, we have

⊕mN ∼= A ⊕ K,

where K is a kernel of g̃. Tensoring M and applying HomA(−, A) to this, we
have the following isomorphism.

HomA(⊕m(N ⊗A M), A) ∼= HomA(M,A) ⊕ HomA(K ⊗A M,A).

Since LHS is isomorphic to ⊕mA and HomA(M,A) ∼= N , we see that N is a
direct summand of free A-module. Thus, N is projective. Also M so is. This
completes the proof of the claim.

Now from the claim we have that M⊗N is a projective A-modules, especially
submodule of direct sums of A. Since F is additive and closed under submodule,
M ⊗ N is an element of F. Therefore, M ⊗ N ∼= M⊗̄AN ∼= A, which shows
that M is an invertible A-module. ¤
Example 4. The following subcategories of A-Mod satisfy the assumption of
Proposition 3.

(1) A-Mod itself and the full subcategory A-mod consiting of all finitely
generated A-modules.

(2) the full subcategories Tf(A) (resp. tf(A)) consisting of all torsion-free
A-modules (resp. all finitely generated torsion-free A-modules) in case
A is an integral domain (see [1, 3]).

(3) the full subcategory d≥i(A) which consists of all the finitely generated
A-modules M with depth M ≥ i when A is a Noetherian local ring
with depth A ≥ i, where i is any natural number (see [3]).

(4) the full subcategory of (I, J)-torsion free A-modules for ideals I, J of
A in case A is a Noetherian ring (see [2]).



PICARD GROUPS OF TORSION FREE CLASSES 3

References
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