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Plane parition
Plane partition

Definition
A plane partition is a two-dimensional array (r;;);;>1 of nonnegative integers that
is nonincreasing both from left to right in each row and top to bottom in each
column, i.e.,

Tij = Mje and Tij = Wiyt j for all i and j,

in which only finitely many of the entries are nonzero. A nonzero entries are
called a part and the sum || = 3; ;.1 ;; Of parts is called weight of the plane
partition. The partition A = (11, A, ...) defined by A; = #{j| 7; # 0} is called the
shape of = and denoted by sh(x).
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is a plane partion with shape 432
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Section 1. Introduction Plane partition

Plane partitions

Definition
A plane partition (), =1 is said to be row-strict (resp. column-strict) if mj.1j > mjj
(resp. mij.1 > m;j) holds whenever the both sides nonzero. The Ferrers graph of «
is defined to be

F(7T) = {(I,],k)|l,]2 1,1<k Sﬂ',/}

which is regarded as a subset of Z°.
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Plane partition
Plane partitions

Definition
If a plane partition (7;));j>1 has the shape (n,n—1,...,1), we call it n-staircase.
We set
Bimn={(i.j k)1 <i<1<j<m1<k<n).

and we say 7 € B, if sh(z) € /™ and ;; < n.
For example,

4 3 1

=2 1

1

is 3-staircase column strict plane partition such that 7 C By 4.4
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Shifted plane partition
Shifted plane partitions

Definition

A shifted plane partition is a two-dimensional array (rr;;)1<i<; of nonnegative
integers that is nonincreasing both from left to right in each row and top to bottom
in each column, and the sum || = }; ;-4 7;; of parts is called weight of the shifted
plane partition. The strict partition it = (w1, o, . . . ) defined by p; = #{j| 7 # 0} is
called the shape of = and denoted by ssh(r), and the strict partition (71,1, 722, . . . ),
denoted by pr(n), is called the profile of .

- N W

is a shifted plane partion with shape 421 and weight |x| = 18
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Shifted plane partition
Shifted plane partition

Definition
The row-strictness (resp. column-strictness) of a shifted plane partition is defined
similarly. The Ferrers graph of m of a shifted plane partition is defined to be
Flr)={(L,,K)I1<i<j1<k<mh
4 4 3 1
n= 2 2 |
1 T
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Shifted plane partition
Shifted plane partitions

Definition
If a shifted plane partition (7;;)ij=1 has the shape (n,n—1,...,1), we say itis
n-staircase. We set

CBmn=1{(.j,k)[1<i<j<m 1<k<n}

and we say m € S8, if ssh(r) € (m,m—1,...,1)and ;; < n.

For example,

- N W

is 3-staircase column-strict shifted plane partition such that 7 € S84 3
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Alternating sign matrix
Alternating sign matrices

Definition

An alternating sign matrix A of size nis an n by n square matrix of 0s, 1s, and
—1s such that the sum of each row and column is 1 and the nonzero entries in
each row and column alternate in sign. Let <7, denote the set of alternating sign

matrices of size n. )
0O 1t 0 0 O
1 -1 0 1 O
A=|10 0 1 0 O0|e.ah
o 1 0 -1 1
0O 0 0 1 0O

is an alternating sign matrix of size 5.
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Alternating sign matrix
The weights for alternating sign matrices

Definition
For an alternating sign matrix A = (A;)1<ij<n Of Size n, let s(A) denote the number
of —1s, set p(A) = k — 1 where the 1 in the top row occurs in position k and

|nv Z Z A,]Ak/

i<k j>1
An alternating sign matrix
0 1t 0 0 O
1 -1 0 1 0
A=0 0 1 0 O
o 1t 0 -1 1
0 0 0 1 O

has s(A) = 2, p(A) = 1 and inv(A) = 5.

o
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Alternating sign matrix
Generating function for ASMs

Definition
Let us define the generating function of <7, as

A(n; g, t, x) = Z g P A)
Acgal,

A@2;q, t,x)=qt+1,
AB:q.t.x) = (g+1) P +{Px+q(g+ D) t+q+1,
A4:q.t.x) = ¢ [x+ (g +1) (P +g+1)} £
+q2{q3X +q(q2+4q+2) (g+1) (q2+q+1)}
+q{q2X2+q(2q2+4q+1)X+ (g+1) (q2+q+1)}
+q2X+(q+1)(q2+q+1).
T Bl several classes of plane partitions with the s 0P 1 oPects of °°“""“‘°7‘§l“‘




Alternating sign matrix
Vertical-Symmetric alternating sign matrix

Definition

Let <7,/ , denote the set of (2n + 1) X (2n + 1) vertically symmetric ASMs
(VSASMs). For a symmetric ASM, we set s(A) = m if A has m of the orbits of the
entries under symmetry excluding any —1s that are forced by symmetry. Set
p(A) = k — 1 where the 1 in the leftmost column occurs in position k.

An alternating sign matrix

0 0 0 +1 O 0 0
0 0 +1 -1 +1 0 0
+1 0 -1 +1 -1 0 +1
A=|0 0 +1 -1 +1 0 0
0 +1 -1 +1 -1 +1 0
0 0 +1 -1 1 0 0
0 0 0 +1 O 0 0

has s(A) = 2 and p(A) = 2.
.
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Alternating sign matrix
Generating function for VSASMs

Definition
Let us define the generating function of <7, , as

A@n+titx)= > W

Ae QjZn-H

We have Ay(3;t, x) = 1 and
Av(5;t,x) =2+ xt +1,
Av(7;t,x) =(x+2)t4+2x(x+2)t3+(x+1)(x2+x+2)t2+2x(x+2)t+x+2,
Av(@1,X) = (X* +6X2 +13x+6)° +3x(X* +6 X2 + 13 x+6) 1°
+(3X5+18X4+44X3+42X2+25X+6)t4
+X(X+2)2(X3+2X2+9X+6)t3+(3x5+18X4+44X3+42X2+25X+6)t‘2
+3X(X3+6X2+13X+6)t+x3+6X2+13X+6.

ot
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Section 1. Introduction Alternating sign matrix

Relations between the generating functions

There exists a polynomial ZV(Zn; t, x) such that the following identities hold:

A(2n;q,t, X, y)|q=y=1 =(t+ 1)Av(@n+1;t, X)ZV(Zn;Lx),

A(n-1;q,t,x, y)|q=y=1 =Av(2n-1; 1,X)ZV(2n; t, x).

We have 2\\,(2; t,x)=1and

Avdit,x) =21 + (x +2)t +2,

Av(B;t,X) = 2(x + B)t* + (x +B)(Bx + 2% + (x® + 6 X2 + 26 x + 12)1% + (X + 6)(3x + 2)t + 2(x + 6)
Av(8; 1, x) = 2(x° + 12 X% + 70 x + 60)1° + (5 x +2) (x° + 12x% + 70 x + 60) 1°

+2(2x° +25x* +161x% +352 X% + 310 x + 60) t* + (x° + 12x° + 85 x* + 452 x* + 834 x* + 680 x + 120
+2(2x5+25x4+161 x® +352 X% + 310 x + 60) 12

+(5x+2)(x3+12x% + 70 x + 60) t + 2(x° + 12 X* + 70 X + 60).
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Six vertex model
Six vertex model

Definition
A configuration in the six vertex model correspond to an alternating sign matrix:
1 3 5
A i A
= 0 > = 0 > = 0 <
by by b
2 4 6
\ A ]
< o =< < o< < 0 —>
T
0O 1 O ALY A
>0<0>0<=<
1 -1 1 AR
0 1 0 >0>0=<0<
Yy v v )
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Six vertex model
UU-Turn Alternating Sign Matrices (UUASMSs)

Definition

The following figure shows the boundary condition of a UUASM. A UUASM is a
2n x 2n matrix vertically just like an ASM. in which both the columns and the rows
of a UUASM are like the rows of a UASM.

VN VA
o0 o ,.. O o>
>0 O o o

o
>0 O ... o© o>
0 o ,., O o©O
v oy Yy v

.

Let <7, denote the set of UUASMs of size 4n.
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Six vertex model
UU-Turn Alternating Sign Matrices (UUASMSs)

Definition

We define the x-weight s of a UUASM be the number of —1s, as before. We
define the y-weight of a UUASM to be y* if u of the U-turns are oriented upward
in the corresponding square ice state, and define the z-weight of a UUASM to be
z" if r of the U-turns on the top are oriented to the right. We set

Auu4an, ZX}/Z

N 8 ~ N ™
>0>0 >0 =<0 >0>0 >0 o >0 [e]

) Y AoY) D) D)
>0>0 > 0> 0 >0=<O0 >0 o >0 [e]

v v vy v v v v v v v
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Six vertex model
UU-Turn Alternating Sign Matrices (UUASMSs)

We have
A x,y,2) =xz+(z+1)(y+1),
A8, y,2) =22x* +z(2yz+y+6z+2) x°
+(2Y22 48y 2+ 11y + Y2 +12yz 4182 + 8y + 112+ 2) X
+(z+1)(y+1)Byz+3y+11z+5)x+2 (z+ 1) (y + 1)2.

There exists a polynomial AL(JZL)J(4n; X, Yy, Z) such that

Auu(4n; x.y,2) = Av2n + 1;t.x)|_AR(4m x.y.2)
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Six vertex model
Half-Turn-Symmetric alternating sign matrix

Definition
Let «7,1™S denote the set of 2n x 2n half-turn-symmetric ASMs (HTSASMs). Let
TS denote the set of half-turn symmetric ASMs with size 2n.
We consider SVMs in 2n x n rectangle with the following boundary condition:
AA A
>0 o e o
> 0 (0] e o
>0 o O>
>0 o o
Yy v Y
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Six vertex model

Section 1. Introduction

Half-Turn-Symmetric alternating sign matrix

2 then the following 10 SVMs are with this boundary condition.

For example, if n

<0 <0>0=<0 >

A A Y A
<0 =<0=<03>0 >
A A A A
VPN
<0 =<03>03>0 >
A A A Y
<0=<0=<0=<0 >
A A A A
7O\
<0=<0=<0=<0 >
A A Y A
<0 =<0=<03>0 >
A A A A
7O\
<0 =<0=<03>0 >
A A A Y
<0 =<0=<0=<0 >
A A A A

/53
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Six vertex model
Half-Turn-Symmetric alternating sign matrix

These SVM’s correspond to the following ASM’s.
0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 1 0 1 0 0 0 1 -1 1 1 0 0 0
0 1 0 0 1 0 0 0 0 0 1 0 1 -1 1 0 0 0 0 1
1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0o 0 0 1 0 0 1 0o 0 0 1 0 0 0
0o 0 0 1 1 0 0o 0 1 -1 1 0 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 1 0 1 -1 1 0 1 0 0 0o 0 1 0
0o 0 1 0 0 0 1 0 0 0 1 0 0 0o 0 1 0o 0 0 1
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Six vertex model
Generating function for HTSASMs

Definition
We set Aqr(2n;t, X, y, w) = Z t*1x™y“w”, where u denotes the number of upward arrow on the
ACTS

east wall, and let v denotes the number of nonzero entries in the upper half part, A has m of the orbits

of the entries under symmetry, and the 1 in the first column occurs in position k.
.

For example, we have Aut(2;t, x,y, w) = wyt + 1 and

Ant(4;t,x,y,w) = yz(yz +1) 3 {yz x+yz(yz+1)} +(yzx+yz+ 1) t+yz+1,
Aut(6;t, X, y,w) = { (z +1 x+2yz(yz+1)]t5
#

+ (z +2 x +yz(yz +6y23+2yz+422+1)x+2yz(yz+1)2}

+{x3y22% 4+ yz (yz +3yz+222+2)x2+y22(722y+3y+82)x+2yz(yz+1)2]t3

+{yz (22 +1)x +(yz +4y27% +2y7° +6yz+1)x+2(yz+1) ]t

2

{
+{x3yz +yz(2yz +2yz+327° +1)x +yz(8yz+32 +7)x+2(yz+1)}
{

(

+ 22+1)yzx+2 (yz+1)2.

.
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Six vertex model
Relations between the generating functions

There exists a polynomial AlffT)(Zn; t, x, y) such that the following identities hold:

Ac@ntxyw)|  =Amatxy)  ARentxy),

g-y=
Alf{ZT)(2n; t, x,—y).

w=1

AHT(2n; t,X,Y» W)| :A(n;q’ t’X’y)‘

w=1 g=y=1

We have AZ(2;t,x,y) = yt + 1 and

At x,y)=y(y+ )P +txy+y+1,

A,E'ZT)(S;t,x,y) =y{xy+(y+1)2]t3+xy[xy+2 (+ 1P +xyix+2 (y+ D) t+xy+(y+1)>2,
A,E'ZT)(S;t,x,y) :y{y(y+1)x2+5y(y+1)x+(y+1)3}t4

xyly(y+2x2+3y Ry +3)x+3 (y + 12} B+ xy{x®y +4xy +3 (Y2 + 3y +1)x+3 (y + 12} £
+xy{@y+ )X +3 @y +2)x+3 (y+ 12}ty (y+ DX +5y(y+ Nx+(y+1)°
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Six vertex model
Relations between the generating functions

There exists a polynomial Z&%Mn; t, x) such that the following identities hold:

) . @) (4 A2 .
Air(@4n+2;t,x,y) ot = (t+1)Aj 4n;x,y, 2) y=z=1AUU(4n +4;t x)

We have 262&(4; t,x)=1and

AB@tx) = Lo (x—1)t+1
ZEJ%“&LX): (X+1)t4+(x+1)(2x—1)t3+(X3+X+1)t2
+(x+1)2x—-1)t+x+1
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Six vertex model
Vertcal Symmetric Alternating Sign Matrices with a defect

Definition
We consider SVMs in (2n + 1) X n rectangle with the following boundary condition.

But this boundary condition has 2n + n = 3n outgoing arrows and
(2n+1)+(n+1) = 3n+2 incoming arrows. Hence we have to change the direction
of one of the n + 1 incoming arrows on the east wall to the outgong direction.

o

RIMS Workshop Aspects of Combinatorial Re
EEER SO TEER(OIENET ERVLTIETET Y IS everal classes of plane partitions with the s /53



Six vertex model
Vertcal Symmetric Alternating Sign Matrices with a defect

> 0> 0> > 0> 0> >O>é> >0<0< >0>0< > 0> 0<
A A A A A A Y oA A Y A Y
> 0> 0> > 0> 0> > 0> 0> > 0> 0> >0 <0> > 0> 0>
A A A A A A Y oA Y oA A Y
>0<0< >0>0< >0>0< > 0> 0> > 0> 0> >0 <0>
Y oA AY A Y Y oA Y oA Y oA
> 0> 0> >0 <O0> > 0> 0> > 0> 0> > 0> 0> > 0> 0>
Y A Y A A Y Y A Y A Y A
> 0> 0< >0>0< >0=<0< > 0> 0 =< > 0> 0 =< > 0> 0=<
Yy v Yy v Yy v Yy v Yy v Y v
A A A A A A A A
> 0> 0 =< > 0> 0 < > 0=<0=< > 0> 0 =< > 0> 0 =<
A Y A Y Y A A Y A Y
> 0> 0> > 0> 0> > 0> 0> >0 <0> > 0> 0>
AY A Y Y oA Y oA A Y
> 0> 0> > 0> 0> >0>0<=< > 0> 0=< >0=<0<=<
A Y A Y Y Y Y Y Y Y
>0 <0> > 0> 0> > 0> 0> > 0> 0> > 0> 0>
Y A A Y Y Y Y Y Y Y
>0>0<=< >0=<0< > 0> 0> > 0> 0> > 0> 0>
Y v Y v Yy v

Yy Y Yy Y
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Six vertex model
Vertcal Symmetric Alternating Sign Matrices with a defect

The corresponding ASMs are

0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 1 -1 0 0
1 0 0 1 0 1 0 0 0 0 1 =
0 0 1 -1 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 1 0 1 0 1
0 1 0 1 1 0 0 1 0 1
0 0 0 0 0 0 1 = 0 0
0 0 0 0 0 1 0 1 1 0].
1 =i 0 0 0 0 0 0 0 0
0 1 1 0. 0 0 0 0 0 0.
.
Definition
Let #/2S denote the set of corresponding ASMs.
w

RIMS Workshop Aspects of Combinatorial Re
EEER SO TEER(OIENET ERVLTIETET Y IS everal classes of plane partitions with the s /53



Six vertex model
Generating function for dVSASMs

Definition
We set Aqy(2n + 1;t, X, Z) = Z t*"'x5z""1 where Let s be the number of (—1)'s. Assume that kth
AeSVS
row of the first column has the unique 1, and Let w denote the parameter such that 2w — 1th vertex on
the east wall has ourward arrow in the corresponding SVM.
.

For example, we have Aqy(3;t,x,2) = zt2 + 1 and

Ad\/(5;t,x,z):z(z+1)t4+z(z+1)xt3 (z +xz+1)t2 x(z+1)t+z+1

Adv(7;t,x,z):z{(22+32+1)x+2(z +z+1 } {22(22+32+1)x2+4zx(22+z+1)}t5
+{z(zz+32+1)x3+2z(22+2z+2)x +(32 +52° +4z+1)x+2z3+222+2}t4
+2(z+1)x{zx2+(z+1)2x+2(22+1)}t3+{(22+32+1)x3+(422+4z+2)x2

+ 23+422+52+3)X+223+22+2}1‘2+{(222+62+2)X2+(422+4z+4)x]t

(
(

+ 22+32+1)X+2(22+Z+1).
i
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Six vertex model
Cardinalities

We have the following table:
| n T 2 [ 3 ] 7 [ 5 [ 5 ES
A(n;1,1,1,1) 1 2 7 42 429 7436 A005130
Ay(@2n+1;1,1) 1 3 26 646 45885 9304650 A005156
Ay(2n;1,1) 1 7 143 8398 1411510 677688675
Apu(4n;1,1,1) 5 198 63206 163170556 3410501048325 577465332522075000 A107445
AEJZL)J (4n;1,1,1) 5 66 2431 252586 74327145 62062015500 A059489
Ayr(2n;1,1,1) 2 10 140 5544 622908 198846076 A059475
ALZT)(ZH; 1,1,1) 2 5 20 132 1452 26741 A006366
2&2& (4n;1,1,1) 2 11 170 7429 920460 323801820 A051255
Agv(@n+1;1,1,1) 2 11 170 7429 920460 323801820 A051255
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Cyclically (m, n)-twisted shifted plane partition
Cyclically (m, n)-twisted shifted plane partition

Definition
If a n-staircase shifted plane partition 7 = (7j)1<i<; contained in B, satisfies

(i,j,k) € F(r) & (j, k — 2m, i) € F(x)

whenever 1 <i<j< k —-2m < n,we call & cyclically (m, n)-twisted. (The case
when m = 1 is defined by Mills-Robbins-Rumsey.) Let %, , denote the set of
cyclically (m, n)-twisted SPPs. If a part rj satisfies i+ m < m; < j+ m, we call ita
special part. Let s() denote the number of special parts, p(r) the number of the

parts equal to n + 2m and in the first row, the number of the parts such that
7 > [+ m, and the number of the parts in the main diagonal such that
i >+ m. D
5 5 3 has 2 special part, 2 maximal parts in the first row,
5 3 parts > i + m, 2 parts > i + m in the main diagonal.
0 (m=1andn-=23)

i
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Cyclically (m, n)-twisted shifted plane partition
Cyclically (m, n)-twisted shifted plane partition

If m=0and n =2, there are 5 cyclically (0, 2)-twisted SPPs:

0 0 1 0 2 1 2 2 2 2
0 0 0 1 2
(06,0,0,00  (0,0,1,1) (1,1,1,2) (2,0,1,2) (20,23)

If m=1and n =2, there are 7 cyclically (1, 2)-twisted SPPs:

00 3 0 4 1 4 2
0 0 0 0
(0,0,0,00  (0,0,1,1)  (1,0,1,1)  (1,1,1,2)
4 3 4 4 4 4
0 1 4

(1,0,1,2) (2,0,1,2) (2,0,2,3)

o
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Section 2, Enumeration of a class of shifted plane partitions (m, n)-profile-shape column-strict shifted plane partition

(m, n)-profile-shape shifted plane partition

Definition
If a n-staircase column-strict shifted plane partition 7 = (m)1<i<; contained in
SB), nrom Satisfies

mi = uj + 2m  where u is the shape of

then we call & (m, n)-profile-shape column-strict shifted plane partition or

(m, n)-profile-shape shifted plane partition in short. (The case when m =1 is
defined by Mills-Robbins-Rumsey.) Let 2., denote the set of cyclically

(m, n)-twisted SPPs. If a part 7 satisfies 1 + m < 7y < j— i+ m, then we call it
special, and if a part satisfies 7y = n + 2m, we call it maximal. Let s(r) (resp. p(r))
denote the number of special parts (resp. maximal parts), let denote the
number of the parts greater than m, and let the number of rows of 7.

has 2 special part, 2 maximal parts,

° 5 3 parts > 2, and 2 rows. (m=1andn=3)

4 2
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(m, n)-profile-shape column-strict shifted plane partition
(m, n)-profile-shape shifted plane partition

If m=0and n =2, there are 5 (0, 2)-profile-shape SPPs:

(0,0,0,0) (0,0,1, 1) (1,1,1,2) 2,0,1,2) (2,0,2,3)

0 3 4 1 4 2
(0,0,0,0) (0,0,1, 1) (1,0,1,1) (1,1,1,2)
4 4 4 4
3

(1,0,1,2) (2,0,1,2) (2,0,2,3)
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Section 2, Enumeration of a class of shifted plane partitions (m, n)-profile-shape column-strict shifted plane partition

A map from a = (aj) € €mn to b = (bj) = ®(a) € Dm.n» defined by

a,-,-—i+1 ifa,'/'Z/—1

bj = .
0 otherwise

gives a bijection from %, onto %, . By this bijection all the statistics s(x), p(),
, are invariant.

In the case of m = 1 and n = 3, this bijection is illustrated by

5 5 3 5 5 3
a= 53 - b= 4 2.
0
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Section 2, Enumeration of a class of shifted plane partitions (m, n)-profile-shape column-strict shifted plane partition

A bijection

Definition
Let us define the generating function of ., (or €m.n) as

Fra(@ t.x,y) = ) qmOP0xe e

€D mn
w

In the case of m = 0 we have

Foa(g.t.x,y) = qty + 1

Foa(q 1. x.y) = Gy (qy +1) 2 + txy + qy + 1

Foala. t.x.y) = Py {dPxy + (qy + 1) (Py + 1)} £ + Pxy{Pxy +2 (qy + 1)} £
+Pxyix+2 (qy+ Dt + Pxy + (qy +1)(oPy + 1)
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(m, n)-profile-shape column-strict shifted plane partition
Generating function

In the case of m = 1 we have

Fi2(q,t. %, y) = qty + 1

Fia(@. t.x.y) = y(ay + 1) +qyigx+ (q+ 1)}t +qy +1

Fra(gt.xy) ={@x2 + Py (@2 + 2y +2qy + 1)} £
+Py{Ply +q(dy+aqy+2)x+(q+ 1) (Py+ay+1)) £
ray{@x®+q2fy+4q+1)x+(q+1)(Py+q+ 1)}t
+Fxy+ Ty +2¢y +2qy + 1

When m = 1, there is a bijection between 2, , and the set of descending plane
partitions of of order n + 1.

o
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Section 2, Enumeration of a class of shifted plane partitions (m, n)-profile-shape column-strict shifted plane partition

Determinantal formula

(i) When m = 0, let us define the n by n matrix Aon = (a,-,,-(q, t, x, y)) by

1<ij<n

Ay X () it i <n,

ai’j(q’ el = {qIYZ1<v<k</ (I i 1)(j 1)tvxl “ ifi=n

then we have
Fo.n(g, t, x, y) = det(l, + Ao.n).

(i) When m > 0, let us define the n by n matrix Amn = (ai(g. t, X, ¥))1<ij<n DY

) i yZ1SkSIS_(i+rr_1—1)(l—_1 )( lem- 1)qx fi<n,
Z L {YZ1<v<k<lI<jEi+1mk_gi1i(;i_13(1 em= 1)q txk it i=n,

then we have

Fmn(g,t, x, y) = det(lh + Am.n).
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(m, n)-profile-shape column-strict shifted plane partition
Proof of the theorem

We use the lattice path method. For example, if m =1 and n=7, the

(1, 7)-profile-shape SPP
9 @
1 €Dz

@ ©
D N ©

@
@
1

IS e N
NGICHG)

correspond to the following lattice path
10 .

o) 2 4 6 8
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(m, n)-profile-shape column-strict shifted plane partition
Proof of the theorem

When m = 0, we take the starting vertices u; = (1, i), and the ending
vertices v; = (1,)) (i,j=1,...,n).

When m > 1, we take the starting verticesu; = (1, i + 2m), nd the ending
vertices v; = (1,)) (i,j=1,...,n).

The details are omitted because it is too much technical. O

If we put x =0 and g = t = 1 then we obtain

Frn(1,1,0,y) = (1 = "+‘Z(/+1

which is the Eulerian polynomial ¥ .z, y*©

Proof. The left-hand side equals det [6,, + yz ( 1)]

k=1 1<i,j<n
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(m, n)-profile-shape column-strict shifted plane partition
Eulerian polynomial

The Eulerian polynomial E,(y) = Z y?s(9) has the generating function

oes,

S X" (1-yety
Z En(y)— = L

| _ 1
£ n! 1 — yex(-y)

Meanwhile, the des and inv has the following simultaneous generating function:

Z Z qmv ydes B = y)expg{x(1 - y)}
[n]g! - ’

1—yequ{ 1=y}

oeC,

where [n],! =

Z ol . J. Striker gave a bijection which maps

n>0
the descending plane partitions with no special part onto the permutation matrix.

By her bijection the number of rows in a DPP does not correspond to the number
of descents.

.
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Section 2, Enumeration of a class of shifted plane partitions (m, n)-profile-shape column-strict shifted plane partition

The table of F,(1,1,1,1) is as follows:

| n J[1]2] 3] 4 | 5 ] 6 | OEIS |
m=0{2| 5| 20 132 1452 26741 A006366
m=11|2| 7 | 42 | 429 | 7436 | 218348 | A005130
m=21{2| 9 | 72 | 1040 | 26000 | 1130500
m=3 1| 2|11 | 110 | 2125 | 72250 | 4420255 | A051255

When m = 1, the special values are as follows:

| n 1T [ 2 | 3 | 4 |
| F1.n(1,1,0,y) || y+1 | V2 +dy+1 | yrr1ly?+ 11y +1 | y*+26y°+66y°+26y + 1 |
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Section 2, Enumeration of a class of shifted plane partitions (m, n)-profile-shape column-strict shifted plane partition

The following formulas are conjectured by Hiroyuki Tagawa:
1
22n(n+m-1)

(6i +2m — 1)!(6i + 2m — 7)1)(3i + 2m — 2) 12
dl (@i +2m— 1)(&i + 2m — 3)[2(4i + 2m — 5)I(2i — )I(2i — 3)!I(i + m— 1)12

Fm,2n(1»1»1»1)=

n

i1
1
Fm,2n+1(1,1»1,1):W
ﬁ 6/ + 2m — 1)12(3i + 2m + 1)\(3i + 2m — 2)!

@i+ 2m + 1)1(4i + 2m — 1)[2(47i + 2m — 3)1(2i — 1)12(i + m)l(i + m — 1)

i=1
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(m.n)transpose complement
(m, n)-transpose complement

Definition
For a cyclically (m, n)-twisted SPP 7 = (7j)1<i<j € €m,n, We define its
(m, n)-transpose complement n’ = (n;j)m-g,- € Gmn by
(i,j,k)e F(n') = (n+1—j,n+1—in+2m+1—k) ¢ F(n),

or, equivalently,

i + Mnst—jnst—i = N +2M for 1<i<j<n,

Let ¢m n denote the map 7 — . This map is well-defined and clearly an
involution.

3 5 2 2
3 - = 0 0
0 0

o
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(m.n)transpose complement
(m, n)-transpose self-complement

Definition
A cyclically (m, 2n)-twisted SPP 7 = (m)1<i<j € Gm2n is said to be
(m, 2n)-transpose self-complement if ¢m2n(7) = m holds. Let ., , denote the set
of all cyclically-twisted (m, 2n)-transpose self-complement SPPs.
If m =1 and n = 3 then we obtain the following 11 PPs:
0 0 1 0 1 0 1 1 1 1 2 0
0 0 1 0 1 0
(0,3) 1,2) 2, 1) (2,2) 3, 1) (2,2)
2 0 2 1 2 1 2 2 2 2
1 0 1 0 1
3, 1) (3,2) 4,1) 4,1) (5,0)
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(m.n)-restricted plane partition
(m, n)-restricted plane partition

Definition

A plane partition & = () >1 is said to be m-bounded if it satisfies
O<mp<m-—i+1.

Let .7,., denote the set of all (n + m)-bounded n-staircase PPs. We call an

element of 7, » an (m, n)-restricted plane partition. A part 7 is said to be special
if it satisfies 7 < J.

.

If m =0 and n = 3 then we obtain the following 11 PPs:

0 0 1.0 1.0 11 11 2 0
0 0 1 0 1 0
(0,3) (1,2) @1 2,2) @1 2,2)
2 0 2 1 2 1 2 2 2 2

1 0 1 0 1

3,1 (3,2) 4,1) 4,1) (5,0)
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Section 3, Enumeration of a class of plane partitions (m, n)-restricted plane partition

Another bijection

Theorem
A map W from a = (a;) € Smnto b = (by) = ®(a) € Tn.n defined by

bj = @jjn — (N + m) (1<i<n-1,1<j<n-))

gives a bijection from ., , onto Z,.». By this bijection the statistics s(r) is kept
invariant.

Definition
Let us define the generating function G n(x) of Fm.n by

Gm.n(x Z xS

7€ Tmn
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(m.n)-restricted plane partition
Generating Function

In the case of m = 0 we have Gpo(x) = 1 and

Go,1(X)=X+1,
Gpo(x) =x*+4x°>+5x+1,

Gos(x) = x5 +9x° +34x* +62x° +49x® + 14x + 1.

In the case of m =1 we have Gjp(x) =1 and

G1,1(X) = X+2,
Gio(x) =x3 +6 X2 +13x +6,
Gia(x) =x® +12x° +63x* + 176 x* + 234 x° + 136 x + 24
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(m.n)-restricted plane partition
Generating Function

In the case of m = 2 we have Gop(x) = 1 and

Gg_1 (X) =X+ 3,
Goo(x) = x® +8x% + 24 x + 17,

Gos(x) = x5+ 15x° + 100 x* + 366 x° + 666 x° + 559 x + 155.

The table of G, n(1) is as follows:

| n J[1]2] 3 ] 4 | 5 | 6 | OEIS ]
m=0{ 2|11 | 170 7429 920460 323801820 A051255
m=11] 3|26 | 646 | 45885 9304650 5382618660 | A005156
m=2 1| 4|50 | 1862 | 202860 | 64080720 1130500
m=3 | 5| 85 | 4508 | 720360 | 340695828 | 471950744980
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Section 3, Enumeration of a class of plane partitions (m, n)-restricted plane partition

Generating Function

We have

i+m J 2j-k-1
g{; k—i+1\k—-j+1

1<ij<n

How can we intriduce t?

[m] [mr) = = = D
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Abijection
Generating Function

Definition
If an n-staircase column-strict plane partition 7 = () 1<j<n,1<j<n+1-; Satisfies

mi<m+n+1—j

then we say x is a (m, n)-constrained column-strict plane partition. Let
m.n denote the set of (m, n)-constrained column-strict plane partition. For
7t = (mj)1<i<ni<j<n+1-i € m,n, @ part is siad to be saturated if
mij=n+m+1—j. Let U,r) denote the number of parts equal to r plus the
number of saturated parts smaller than r.

If m =0 and n = 2 then we have the following 7 PPs.

0 1 1o © @ o 6 @ O
1 1
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Section 4, Future work A bijection

Future work

Definition
Let ¥m.n denote the pair (a, b) of palne partitions such that a € %, and
b € % , with the same shape,i.e.,

Vmn = {(a, b)la € %mnn, b € %,n, sh(a) = Sh(b)}

If m =0 and n = 2 then we have the following 11 pairs of PPs.

G R N
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A bijection
Future work

If we put p,(a, b) = U,(a) + U(b), then this statistics is independent of r and
give the statistics corresponding to the position of 1. For example, if m = 0,

Z @b = Ay (2n+1;t, x, 2)
(a,b)n

x=z=1

REINETS

There is a bijection between the set of totally symmetric
self-complementary plane partitions and %

| A\

The pair %m,» of plane partition can be restated in the word of domino
plane partitions.
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