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.. Poset

.
Definition (Poset)
..

......

A poset (partially ordered set) is a pair (P,≤) of a (finite) set P
and a binary relation ≤ satisfying the axioms below:

...1 a ≤ a (reflexivity).

...2 if a ≤ b and b ≤ a, then a = b (antisymmetry).

...3 if a ≤ b and b ≤ c, then a ≤ c (transitivity).

Let |P | denote the number of elements of P.

.
Definition (Cover)
..

......

An element a is said to be covered by another element b ,
written a <. b , if a < b and there is no element c such that
a < c < b .
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.. Hasse diagram
.
Definition (Hasse diagram)
..

......
A poset can be visualized through its Hasse diagram, which depicts
the ordering relation.

.
Example
..

......

Let S = {a, b , c} be 3 element set, P = 2S the set of all subsets of
S . of a (finite) set P and the order ≤ is defined by inclusion ⊆.

{a, b , c}

{a, b} {a, c} {b , c}

{a} {b} {c}

∅
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.. (P , ω)-partition

Let P be a finite poset of cardinality p. Let
ω : P → [p] = {1, . . . , p} be a bijection, called a labeling of P.
.
Definition ((P , ω)-partition)
..

......

Let N denote the set of nonnegative integers.

...1 if a ≤ b , σ(a) ≥ σ(b) (order reversing).

...2 if a ≤ b and ω(a) > ω(b), then σ(a) > σ(b).

If ω is natural, i.e., s < t ⇒ ω(s) < ω(t), then a (P , ω)-partition
is just an order-reversing map σ : P → N. We then call σ
simply a P-partition. Write A (P , ω) for the set of all
(P , ω)-partitions σ : P → N. If ω is a natural labeling, we
simply write A (P). Let |σ| = ∑s∈P σ(s) denote the sum of the
entries of σ.
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.. (P , ω)-partition

.
Example
..

......

If P = 2{a,b ,c} is the Boolean poset.

ω 4

2 6 8

1 3 5

7

σ 0

1 0 0

3 2 3

3
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.. Hook Length Property

For a labeled poset (P , ω), we write

F(P , ω; q) =
∑

σ∈A (P,ω)

q|σ|,

which we call the one variable generating function of (P , ω)-partitions.
When ω is natural, we write F(P; q) for F(P , ω; q).
.
Definition
..

......

We say that P has hook-length property if there exists a map h from P
to N satisfying

F(P; q) =
∏
x∈P

1

1 − qh(x)
.

If P has hook-length property, then h(x) is called the hook length of
x, and h is called the hook-length function. A hook-length poset is a
poset which has hook length property. The hook-length property
was first defined by B. Sagan.
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.. Colored Hook Length Property

Let (P , ω) be a labeled poset, and z = (z1, . . . , zk ) be variables.
Assume there exists a sujective map c : P → {1, 2, . . . , k }, which we
call the color function. We write

Fc(P , ω; z) =
∑

σ∈A (P ,ω)

zσ,

where zσ =
∏

x∈P zσ(x)
c(x)

. We call Fc(P , ω; z) the colored generating

function or multi-variable generating function.
.
Definition
..

......

We say that P has k -colored hook-length property if there exists a map
h from P to Nk satisfying

F(P; q) =
∏
x∈P

1

1 − zh(x)
,

where zh(x) =
∏

x∈P zh(x)

c(x)
. A colored hook-length poset is a poset

which has colored hook length property.
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.. (Shifted) diagrams
.
Definition
..

......

A partiton is a nonincreasing sequence λ = (λ1, λ2, . . . ) of nonnegative
integers with finitely many λi unequal to zero.

The length and weight of
λ, denoted by ℓ(λ) and |λ|, are the number and sum of the non-zero λi

respectively. A strict partition is a partition in which its parts are strictly
decreasing. If λ is a partition (resp. strict partition), then its diagram
D(λ) (resp. shifted diagram S(λ)) is defined by

D(λ) = { (i, j) ∈ Z2 : 1 ≤ j ≤ λi}
S(λ) = { (i, j) ∈ Z2 : i ≤ j ≤ λi + i − 1 }.

.
Example (The diagram and shifted diagram for λ = (4, 3, 1))
..

......

D(λ) = S(λ) =
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.. (Shifted) diagrams

.
Definition
..

......

We define the order on D(λ) (or S(λ)) by

(i1, j1) ≥ (i2, j2) ⇔ i1 ≤ i2 and j1 ≤ j2

We rotate the Hasse diagram of the poset by 45◦ counterclockwise.
Hence a vertex in the north-east is bigger than a vertex in south-west.
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.. Examples

shape

−→

shifted shape −→
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d-complete poset
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.. d-complete poset

.
Contents of this section
..

......

...1 The d-complete posets arise from the dominant
minuscule heaps of the Weyl groups of simply-laced
Kac-Moody Lie algebras.

...2 Proctor gave completely combinatorial description of
d-complete poset, which is a graded poset with
d-complete coloring.

...3 Proctor showed that any d-complete poset can be
obtained from the 15 irreducible classes by slant-sum.

...4 The d-complete coloring is important for the multivariate
generating function. The content should be replaced by
color for d-complete posets.

...5 Okada defined (q, t)-weight WP(π; q, t) for d-compete
posets.

Masao Ishikawa Leaf poset and hook length property



. . . . . .

.. d-complete poset

.
Contents of this section
..

......

...1 The d-complete posets arise from the dominant
minuscule heaps of the Weyl groups of simply-laced
Kac-Moody Lie algebras.

...2 Proctor gave completely combinatorial description of
d-complete poset, which is a graded poset with
d-complete coloring.

...3 Proctor showed that any d-complete poset can be
obtained from the 15 irreducible classes by slant-sum.

...4 The d-complete coloring is important for the multivariate
generating function. The content should be replaced by
color for d-complete posets.

...5 Okada defined (q, t)-weight WP(π; q, t) for d-compete
posets.

Masao Ishikawa Leaf poset and hook length property



. . . . . .

.. d-complete poset

.
Contents of this section
..

......

...1 The d-complete posets arise from the dominant
minuscule heaps of the Weyl groups of simply-laced
Kac-Moody Lie algebras.

...2 Proctor gave completely combinatorial description of
d-complete poset, which is a graded poset with
d-complete coloring.

...3 Proctor showed that any d-complete poset can be
obtained from the 15 irreducible classes by slant-sum.

...4 The d-complete coloring is important for the multivariate
generating function. The content should be replaced by
color for d-complete posets.

...5 Okada defined (q, t)-weight WP(π; q, t) for d-compete
posets.

Masao Ishikawa Leaf poset and hook length property



. . . . . .

.. d-complete poset

.
Contents of this section
..

......

...1 The d-complete posets arise from the dominant
minuscule heaps of the Weyl groups of simply-laced
Kac-Moody Lie algebras.

...2 Proctor gave completely combinatorial description of
d-complete poset, which is a graded poset with
d-complete coloring.

...3 Proctor showed that any d-complete poset can be
obtained from the 15 irreducible classes by slant-sum.

...4 The d-complete coloring is important for the multivariate
generating function. The content should be replaced by
color for d-complete posets.

...5 Okada defined (q, t)-weight WP(π; q, t) for d-compete
posets.

Masao Ishikawa Leaf poset and hook length property



. . . . . .

.. d-complete poset

.
Contents of this section
..

......

...1 The d-complete posets arise from the dominant
minuscule heaps of the Weyl groups of simply-laced
Kac-Moody Lie algebras.

...2 Proctor gave completely combinatorial description of
d-complete poset, which is a graded poset with
d-complete coloring.

...3 Proctor showed that any d-complete poset can be
obtained from the 15 irreducible classes by slant-sum.

...4 The d-complete coloring is important for the multivariate
generating function. The content should be replaced by
color for d-complete posets.

...5 Okada defined (q, t)-weight WP(π; q, t) for d-compete
posets.

Masao Ishikawa Leaf poset and hook length property



. . . . . .

.. d-complete poset

.
Contents of this section
..

......

...1 The d-complete posets arise from the dominant
minuscule heaps of the Weyl groups of simply-laced
Kac-Moody Lie algebras.

...2 Proctor gave completely combinatorial description of
d-complete poset, which is a graded poset with
d-complete coloring.

...3 Proctor showed that any d-complete poset can be
obtained from the 15 irreducible classes by slant-sum.

...4 The d-complete coloring is important for the multivariate
generating function. The content should be replaced by
color for d-complete posets.

...5 Okada defined (q, t)-weight WP(π; q, t) for d-compete
posets.

Masao Ishikawa Leaf poset and hook length property



. . . . . .

.. Double-tailed diamond poset
.
Definition
..

......

The double-tailed diamond poset dk (1) is the poset depicted
below:

k − 2

k − 2

top

side side

bottom

A dk -interval is an interval isomorphic to dk (1).

A d−
k

-interval (k ≥ 4) is an interval isomorphic to
dk (1) − {top}.
A d−

3
-interval consists of three elements x, y and w such that

w is covered by x and y.
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.. Definition of d-complete poset

.
Definition
..

......

A poset P is d-complete if it satisfies the following three
conditions for every k ≥ 3:

...1 If I is a d−
k

-interval, then there exists an element v such
that v covers the maximal elements of I and I ∪ {v} is a
dk -interval.

...2 If I = [w , v] is a dk -interval and the top v covers u in P,
then u ∈ I.

...3 There are no d−
k

-intervals which differ only in the minimal
elements.
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.. Examples

rooted tree

shape

shifted shape

swivel
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.. Properties of d-complete posets

.
Fact
..

......

If P is a connected d-complete poset, then

(a) P has a unique maximal element.

(b) P is ranked, i.e., there exists a rank function r : P → N
such that r(x) = r(y) + 1 if x covers y.

.
Fact
..

......

(a) Any connected d-complete poset is uniquely
decomposed into a slant sum of one-element posets and
slant-irreducible d-complete posets.

(b) Slant-irreducible d-complete posets are classified into 15
families : shapes, shifted shapes, birds, insets, tailed
insets, banners, nooks, swivels, tailed swivels, tagged
swivels, swivel shifts, pumps, tailed pumps, near bats,
bat.

Masao Ishikawa Leaf poset and hook length property



. . . . . .

.. Properties of d-complete posets

.
Fact
..

......

If P is a connected d-complete poset, then

(a) P has a unique maximal element.

(b) P is ranked, i.e., there exists a rank function r : P → N
such that r(x) = r(y) + 1 if x covers y.

.
Fact
..

......

(a) Any connected d-complete poset is uniquely
decomposed into a slant sum of one-element posets and
slant-irreducible d-complete posets.

(b) Slant-irreducible d-complete posets are classified into 15
families : shapes, shifted shapes, birds, insets, tailed
insets, banners, nooks, swivels, tailed swivels, tagged
swivels, swivel shifts, pumps, tailed pumps, near bats,
bat.

Masao Ishikawa Leaf poset and hook length property



. . . . . .

.. Properties of d-complete posets

.
Fact
..

......

If P is a connected d-complete poset, then

(a) P has a unique maximal element.

(b) P is ranked, i.e., there exists a rank function r : P → N
such that r(x) = r(y) + 1 if x covers y.

.
Fact
..

......

(a) Any connected d-complete poset is uniquely
decomposed into a slant sum of one-element posets and
slant-irreducible d-complete posets.

(b) Slant-irreducible d-complete posets are classified into 15
families : shapes, shifted shapes, birds, insets, tailed
insets, banners, nooks, swivels, tailed swivels, tagged
swivels, swivel shifts, pumps, tailed pumps, near bats,
bat.

Masao Ishikawa Leaf poset and hook length property



. . . . . .

.. Properties of d-complete posets

.
Fact
..

......

If P is a connected d-complete poset, then

(a) P has a unique maximal element.

(b) P is ranked, i.e., there exists a rank function r : P → N
such that r(x) = r(y) + 1 if x covers y.

.
Fact
..

......

(a) Any connected d-complete poset is uniquely
decomposed into a slant sum of one-element posets and
slant-irreducible d-complete posets.

(b) Slant-irreducible d-complete posets are classified into 15
families : shapes, shifted shapes, birds, insets, tailed
insets, banners, nooks, swivels, tailed swivels, tagged
swivels, swivel shifts, pumps, tailed pumps, near bats,
bat.
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.. Irreducible d-complete poset

.
Definition (Filter)
..

......

Let S be a subset of a poset P. If S satisfies the condition

x ∈ S and y ≥ x ⇒ y ∈ S

then S is said to be a filter.

.
Irreducible d-complete posets
..

......

...1 Proctor defined the notion of irreducible d-complete
posets and classified them into 15 families.

...2 A filter of a d-complete poset is a d-complete poset .

...3 1) Shapes, 2) Shifted shapes, 3) Birds, 4) Insets, 5) Tailed
insets, 6) Banners, 7) Nooks, 8) Swivels, 9) Tailed swivels,
10) Tagged swivels, 11) Swivel shifteds, 12) Pumps, 13)
Tailed pumps, 14) Near bats, 15) Bat
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.. Shapes

.
Definition (Shapes)
..

......

1) Shapes
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.. Shifted shapes

.
Definition (Shifted shapes)
..

......

2) Shifted shapes
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.. Birds

.
Definition (Birds)
..

......

3) Birds
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.. Insets

.
Definition (Insets)
..

......

4) Insets
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.. Tailed insets

.
Definition (Tailed insets)
..

......

5) Tailed insets
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.. Banners

.
Definition (Banners)
..

......

6) Banners
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.. Nooks

.
Definition (Nooks)
..

......

7) Nooks
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.. Swivels

.
Definition (Swivels)
..

......

8) Swivels
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.. Tailed swivels

.
Definition (Tailed swivels)
..

......

9) Tailed swivels
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.. Tagged swivels

.
Definition (Tagged swivels)
..

......

10) Tagged swivels
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.. Swivel shifteds

.
Definition (Swivel shifteds)
..

......

11) Swivel shifteds
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.. Pumps

.
Definition (Pumps)
..

......

12) Pumps
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.. Tailed pumps

.
Definition (Tailed pumps)
..

......

13) Tailed pumps

Masao Ishikawa Leaf poset and hook length property



. . . . . .

.. Near bats

.
Definition (Near bats)
..

......

14) Near bats
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.. Bat

.
Definition (Bat)
..

......

15) Bat
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.. Colored hook length property of d-complete posets

.
Theorem (Peterson-Proctor)
..
......d-complete poset has the colored hook-length property.

.
Remark
..

......

Recently, Jan Soo Kim and Meesue Yoo gave a proof of the
hook-length property by q-integral.
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Leaf Posets
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.. Leaf Posets

.
Contents of this section
..

......

...1 We define 6 family of posets, which we call the basic leaf
posets. (It is not possible to define “irreducibility”.)

...2 Leaf poset is defined as joint-sum of the basic leaf
posets. (“joint-sum” is a more genral notion than the
slant-sum.)

...3 Any d-complete poset is a leaf poset.

...4 If two posets has colored hook-length property then their
joint-sum has colored hook-length property.

...5 The colored hook-length property of the basic leaf posets
reduces to the Schur function identities.
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.. Basic Leaf Posets
.
Definition
..

......

ginkgo(銀杏) bamboo(笹)
ivy(蔦)

wisteria(藤)
fir(樅)

chrysanthemum(菊)
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.. Basic Leaf Posets
.
Definition
..

......

ginkgo(銀杏) bamboo(笹)
ivy(蔦)

wisteria(藤)
fir(樅)

chrysanthemum(菊)

basic leaf posets.
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.
Definition
..

......

(i) m ≥ 2, α = (α1, α2, . . . , αm), β = (β1, β2, . . . , βm): strict
partitions

G(α, β, γ) :=
β1 β2 β3 βm

α1

α2

α3

αm

γ

cγ

cγ

cγ

cγ = γ

ginkgo (銀杏)
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.
Definition
..

......

(ii) m ≥ 2, α = (α1, α2, . . . , αm), β = (β1, β2, . . . , βm−1),
γ = (γ1, γ2): strict partition, v = 1, 2

β1 β2 β3 βm−1

α1

α2

α3

α4

αm

β1

cγv

cγv

cγv

γ1 γ2

B(α, β, γ, v) :=

bamboo (笹)
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.
Definition
..

......

(iii) α = (α1, α2, α3), β = (β1, β2, β3, β4, β5), γ = (γ1, γ2):
strict partition for v = 1, 2

α2

α3

α2

β1 α1

γ1

α1γ1

α3

β1 β2 β3 β4 β5

γ2
γ2

cγv

cγvI(α, β, γ, v) :=

ivy (蔦)
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.
Definition
..

......

(iv) m ≥ 2, α = (α1, α2, . . . , αm), β = (β1, β2), γ = (γ1, γ2):
strict partition

β1 β2

γ1 γ2

β1 β2

γ1 γ2

g1 g2

α1

α2

α3

α4

α5

αm

γ1

chv

(g1, g2, hv)

:=

(β1, β2, γv) if m: even
(γ1, γ2, βv) if m: odd

W(α, β, γ, v) =

wisteria (藤).
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.
Definition
..

......

(v) m ≥ 3,
α = (α1, α2, α3),
β = (β1, β2, . . . , βm−1),
γ = (γ1, γ2)
: strict partitions,
s, t ≥ 1 (1 ≤ s < t ≤ 3),

v =

s or t if m: even,
1 or 2 if m: odd β1 β2 β3 β4 β5 β6 β7 βm−1

γ1 γ2

α1

α2
α3
γ1

αs

γ1

αs

γ1

g1

γ2

αt

γ2

αt

γ2

g2

β1

chv

(g1 , g2 , hv ) :=

(β1 , β2 , αv ) if m: even
(αs , αt , γv ) if m: odd

F(α, β, γ, s, t , v) =

fir (樅).
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.
Definition
..

......

(vi) α = (α1, α2, α3), β = (β1, β2, β3, β4) and γ = (γ1, γ2):
strict partitions, δ ≥ 0 for v = 1, 2, 3, 4

α2

α3

α2

α3

β1 β2 β3

γ1

β1 α1

γ1

γ2
α1γ1 γ2

β4

γ2

cβv
C(α, β, γ, v) =

chrysanthemum (菊).
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.. Goal of This Talk

.
Property of leaf posets
..

......

...1 Any d-complete poset is a leaf poset.

...1 1) Shapes, 3) Birds ⊆ Ginkgo

...2 2) Shifted shapes, 6) Banners ⊆Wisteria

...3 5) Tailed insets, 4) Insets ⊆ Bamboo

...4 7) Nooks, 9) Tailed swivels, 10) Tagged swivels, 11) Swivel
shifteds ⊆ Fir

...5 8) Swivels ⊆ Ivy

...6 12) Pumps, 13) Tailed pumps, 14) Near bats, 15) Bat ⊆
Chrysanthemum

.
Theorem
..
......A leaf poset has multi-colored hook length property.
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.. Schur Function

.
Definition (Schur Function)
..

......

If λ = (λ1, . . . , λn) is a partition of length≤ n, then

sλ(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣
xλ1+n−1

1
. . . xλn

1
...

. . .
...

xλ1+n−1
n . . . xλn

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xn−1

1
. . . 1

...
. . .

...
xn−1

n . . . 1

∣∣∣∣∣∣∣∣∣∣
.

The Schur functions are the irreducible characters of the
polynomial representations of the General Linear Group.
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.. Symmetric Functions
.
Theorem (Cauchy’s formula)
..

......

If n is a positive integer, then

∑
λ

sλ(x1, . . . , xn)sλ(y1, . . . , yn) =
n∏

i=1

n∏
j=1

1
1 − xiyj

.

.
Proposition
..

......

If n is a positive integer, then

n∏
j=1

1
1 − txi

=
∑
r≥0

hr(x1, . . . , xn)tn,

n∏
j=1

(1 + txi) =
n∑

r=0

er(x1, . . . , xn)tn

where hr is the complete symmetric function and er is the
elementary symmetric function.

Masao Ishikawa Leaf poset and hook length property



. . . . . .

.. Symmetric Functions
.
Theorem (Cauchy’s formula)
..

......

If n is a positive integer, then

∑
λ

sλ(x1, . . . , xn)sλ(y1, . . . , yn) =
n∏

i=1

n∏
j=1

1
1 − xiyj

.

.
Proposition
..

......

If n is a positive integer, then

n∏
j=1

1
1 − txi

=
∑
r≥0

hr(x1, . . . , xn)tn,

n∏
j=1

(1 + txi) =
n∑

r=0

er(x1, . . . , xn)tn
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.. Symmetric Functions

.
Theorem (Pieri’s rule)
..

......

If n is a positive integer and µ is a partition, then

sµ(x1, . . . , xn)hr(x1, . . . , xn) =
∑
λ

sλ(x1, . . . , xn),

where the sum runs over all partitions λ such that λ/µ is horizontal
r-strip.

.
Theorem (Littlewood’s formula)
..

......

If n is a positive integer, then∑
ν

sν(x1, . . . , xn) =
∏

1≤i<j≤n

1
1 − xixj

where the sum runs over all partitions ν such that ν′ are even
partitions.
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.. Pre-Leaf Poset

.
Definition
..

......

If λ is a strict partition with length p = ℓ(λ), let

P(λ) = {(i, j) | 1 ≤ i ≤ p and i ≤ j ≤ i + λi}.

We say x = (i, j) ≥ y = (i′, j′) in P(λ) if i ≤ i′ and j ≤ j′.

.
Example P(λ)
..

......

If λ = (5, 3, 2) then P(λ) is as follows:
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.. Pre-Leaf Poset

.
Definition
..

......

If λ is a strict partition with length p = ℓ(λ), let
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.. Pre-Leaf Poset

.
Definition (Pre-Leaf Poset)
..

......

Let λ(k) (k = 1, . . . ,m) be strict partitions with ℓ
(
λ(k)
)
= p(k), and let

s(k) be positive integers. Let

n = max{s(k) + p(k) − 1|k = 1, . . . ,m},
C = {(i, i)|1 ≤ i ≤ n}.

Let P
[
(λ(k), s(k))1≤k≤m

]
denote the set obtained by identifying

(s(k) + i − 1, s(k) + i − 1) in C and (i, i) in P(λ(k)).

.
Definition (Order)
..

......

We say x = (i, j) ≥ y = (i′, j′) in P
[
(λ(k), s(k))1≤k≤m

]
if x and y are

both in some λ(i) and x ≥ y, or, x ∈ C and y ∈ λ(k) and i = j ≤ i′. We
call P

[
(λ(k), s(k))1≤k≤m

]
the pre-leaf poset associated with

(λ(k), s(k))1≤k≤m. We call C the central chain of length n.
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.. Example (Pre-Leaf Poset)
.
Example (Pre-Leaf Poset)
..

......

If (λ(1), s(1)) = (421, 3), (λ(2), s(2)) = (10, 3),
(λ(3), s(3)) = (31, 4), and (λ(4), s(4)) = (2, 5), then we have

Pre-Leaf Poset P
[
(λ(k), s(k))1≤k≤4

]

λ(1) = 421

λ(2) = 10

λ(3) = 31
λ(4) = 2
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.. Notation

.
Definition
..

......

If λ is a strict partition, then we define the weight wP(λ) of P(λ)
by

wP(λ)(i, j) :=

pi if i = j,
qj−i if i < j

.

.
Examle wP(λ)
..

......

If λ = (5, 3, 2) then wP(λ) is as follows:

p1 q1 q2 q3 q4 q5

p2 q1 q2 q3

p3 q1 q2
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.. Notation
.
Definition
..

......

If q = (. . . , q−1, q0, q1, q2 . . . ) be variables, then we use the
notation:

q[k ,l] =
l∏

i=k

qi = qk · · · ql ,

(q)n =
n∏

k=1

1 − k∏
i=1

qi


= (1 − q1)(1 − q1q2) · · · (1 − q1 · · · qk ),

⟨q⟩n =
n∏

k=1

1 − n∏
i=k

qi


= (1 − qn)(1 − qn−1qn) · · · (1 − q1 · · · qk ).

Especially we write q[k ] for q[1,k ].
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.. Generating Function

.
Definition
..

......

Let P be a poset. If w is a weight of P and σ ∈ A (P), we write

wσ =
∏
x∈P

w(x)σ(x), F(P; w) =
∑

σ∈A (P)

wσ.

.
Theorem
..

......

Let λ = (λ1, . . . , λm) be a strict partition, and x1, . . . , xm ∈ Z be
integers such that 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm. Then we have

∑
φ∈A (P(λ))

σ(i,i)=xi (1≤i≤m)

wσ
P(λ)

=

∏m
i=1

pxi

i

∏
1≤i<j≤m(1 − q[λj+1,λi])∏m

i=1
⟨q⟩λi

× s(xm ,xm−1,...,x1)(q[λ1], . . . , q[λm]).
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∏
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.. Weight of Pre-Leaf Poset

.
Definition (Weight)
..

......

Let λ(k) be strict partitions with ℓ
(
λ(k)
)
= p(k), and let s(k) be

positive integers for k = 1, . . . ,m. Let
P = P

[
(λ(k), s(k))1≤k≤m

]
be the pre-leaf poset associated with

(λ(k), s(k))1≤k≤m, and let q(k) = (q(k)
i

)1≤i≤λ1 be variables

associated with each diagonal of λ(k), and p = (pi)1≤i≤n be
variables associated with the central chain C . We write

w
[
(q(k))1≤k≤m, p

]
for this weight.
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.. Weight of Pre-Leaf Poset
.
Example (Weight of Pre-Leaf Poset)
..

......

If (λ(1), s(1)) = (421, 3), (λ(2), s(2)) = (10, 3), (λ(3), s(3)) = (31, 4),
and (λ(4), s(4)) = (2, 5), then we have

Pre-Leaf Poset P
[
(λ(k), s(k))1≤k≤4

]

λ(1) = 421

λ(2) = 10

λ(3) = 31
λ(4) = 2

p1 p2 p3 q(1)
1

q(1)
2

q(1)
3

q(1)
4

q(2)
1

p4 q(1)
1

q(1)
2

q(3)
1

p5 q(1)
1

q(3)
2

q(3)
1

q(4)
1

q(3)
3

q(4)
2
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.. Generating Function

.
Theorem
..

......

Let P = P
[
(λ(k), s(k))1≤k≤m

]
be the pre-leaf poset associated with

(λ(k), s(k))1≤k≤m, and let q(k) = (q(k)
i

)1≤i≤λ1 be variables associated
with each diagonal of λ, and p = (pi)1≤i≤n be variables associated
with the central chain C .

∑
σ∈A (P)

wσ
P(λ)

=

∏m
k=1

∏
1≤i<j≤p(k)(1 − q

[λ
(k)
j

+1,λ(k)
i

]
)

∏m
k=1

∏p(k)

i=1
⟨q⟩
λ
(k)
i

×
∑

λ=(λ1,...,λn)

n∏
i=1

pλn+1−i

i

m∏
k=1

sλ[n+2−sk−p(k),n+1−sk ](q
(k)

[λ
(k)
1

]
, . . . , q(k)

[λ
(k)

p(k)
]
).

where λ[i, j] stands for (λi , . . . , λj).
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Schur Function Identities
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.
Lemma
..

......

[ginkgo] ∑
λ=(λ1,λ2,...,λm)∈P

wλm sλ(x1, . . . , xm)sλ(y1, . . . , ym)

=
1 −∏m

i=1
xiyi

(1 − w
∏m

i=1
xiyi)

∏m
i,j=1

(1 − xiyj)
.
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.
Lemma
..

......

[ginkgo] ∑
λ=(λ1,λ2,...,λm)∈P

wλm sλ(x1, . . . , xm)sλ(y1, . . . , ym)

=
1 −∏m

i=1
xiyi

(1 − w
∏m

i=1
xiyi)

∏m
i,j=1

(1 − xiyj)
.

[bamboo]∑
λ∈P

wλm s(λ1,...,λm−1)(x1, . . . , xm−1)s(λm−1,λm)(1, z2)sλ(y1, . . . , ym)

=

∏m−1
i=1

(1 − z2xi
∏m−1

k=1
xk
∏m

k=1
yk )

(1 − wz2
∏m−1

k=1
xk
∏m

k=1
yk )
∏m−1

i=1

∏m
j=1

(1 − xiyj)

× 1∏m
i=1

(1 − y−1
i

z2
∏m−1

k=1
xk
∏m

k=1
yk )
.
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.
Lemma
..

......

[ivy] ∑
λ=(λ1,λ2,...,λ6)∈P

wλ6s(λ1,λ2,λ3)(x1, x2, x3)s(λ3,λ4)(1, z2)s(λ4,λ5,λ6)(x1, x2, x3)
×s(λ1,...,λ5)(y1, . . . , y5)s(λ5,λ6)(1, z2)

=
1

(1 − wz2
2

∏3
k=1

x2
k

∏5
k=1

yk )
∏3

i=1

∏5
j=1

(1 − xiyj)

×
∏5

i=1
(1 − yiz2

2

∏3
k=1

x2
k

∏5
k=1

yk )∏3
i=1

(1 − x−1
i

z2
2

∏3
k=1

x2
k

∏5
k=1

yk )

× 1∏
1≤i<j≤5(1 − y−1

i
y−1

j
z2
∏3

k=1
xk
∏5

k=1
yk )
.
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.
Lemma
..

......

[wisteria]

∑
λ=(λ1 ,λ2 ,...,λ2m)∈P

wλ2m sλ(y1 , . . . , y2m)
m∏

i=1

s(λ2i−1 ,λ2i )
(x1 , x2)

m−1∏
i=1

s(λ2i ,λ2i+1)
(1, z2)

=
(1 − zm−1

2

∏2
k=1

xm
k

∏2m
k=1

yk )(1 − zm
2

∏2
k=1

xm
k

∏2m
k=1

yk )

(1 − wzm−1
2

∏2
k=1

xm
k

∏2m
k=1

yk )
∏2

i=1

∏2m
j=1

(1 − xi yj)
∏

1≤i<j≤2m(1 − yi yj z2
∏2

k=1
xk )
.

∑
λ=(λ1 ,λ2 ,...,λ2m+1)∈P

wλ2m+1 sλ(y1 , . . . , y2m+1)
m∏

i=1

s(λ2i−1 ,λ2i )
(x1 , x2)

m∏
i=1

s(λ2i ,λ2i+1)
(1, z2)

=

∏2
i=1

(1 − xi zm
2

∏2
k=1

xm
k

∏2m+1
k=1

yk )

(1 − wzm
2

∏2
k=1

xm
k

∏2m+1
k=1

yk )
∏2

i=1

∏2m+1
j=1

(1 − xi yj)
∏

1≤i<j≤2m+1(1 − yi yj z2
∏2

k=1
xk )
.
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.
Lemma
..

......

[fir]

∑
λ=(λ1 ,λ2 ,...,λ2m)∈P

wλ2m s(λ1 ,...,λ2m−1)
(y1 , . . . , y2m−1)s(λ2m−2 ,λ2m−1 ,λ2m)(z1 , z2 , z3)

×∏m
i=1

s(λ2i−1 ,λ2i )
(x1 , x2)

∏m−2
i=1

s(λ2i ,λ2i+1)
(1, z2)

=
1

(1 − wzm−1
2

z3
∏2

k=1
xm

k

∏2m−1
k=1

yk )
∏2

i=1

∏2m−1
j=1

(1 − xi yj)
∏

1≤i<j≤2m−1(1 − yi yj z2
∏2

k=1
xk )

×

∏2m−1
i=1

(1 − yi zm−1
2

z3
∏2

k=1
xm

k

∏2m−1
k=1

yk )∏2
i=1

(1 − xi zm−1
2

z3
∏2

k=1
xm−1

k

∏2m−1
k=1

yk )
∏2m−1

i=1
(1 − y−1

i
zm−2

2
z3
∏2

k=1
xm−1

k

∏2m−1
k=1

yk )
.

∑
λ=(λ1 ,λ2 ,...,λ2m+1)∈P

wλ2m+1 s(λ1 ,...,λ2m)(y1 , . . . , y2m)s(λ2m−1 ,λ2m ,λ2m+1)
(x1 , x2 , x3)

×∏m
i=1

s(λ2i ,λ2i+1)
(1, z2)

∏m−1
i=1

s(λ2i−1 ,λ2i )
(x1 , x2)

=
1

(1 − wx3zm
2

∏2
k=1

xm
k

∏2m
k=1

yk )
∏2

i=1

∏2m
j=1

(1 − xi yj)
∏

1≤i<j≤2m(1 − yi yj z2
∏2

k=1
xk )

×

∏2m
i=1

(1 − x3yi zm
2

∏2
k=1

xm
k

∏2m
k=1

yk )∏2
i=1

(1 − x3xi zm
2

∏2
k=1

xm−1
k

∏2m
k=1

yk )
∏2m

i=1
(1 − x3y−1

i
zm−1

2

∏2
k=1

xm−1
k

∏2m
k=1

yk )
.
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.
Lemma
..

......

[chrysanthemum]

∑
λ=(λ1,...,λ6)∈P

wλ6s(λ1,λ2)(x1, x2)s(λ2,...,λ5)(1, z2, z3, z4)s(λ5,λ6)(x1, x2)
×s(λ1,λ2,λ3)(y1, y2, y3)s(λ3,λ4)(x1, x2)s(λ4,λ5,λ6)(y1, y2, y3)

=

(1 −∏2
k=1

x3
k

∏3
k=1

y2
k

∏4
k=2

zk )
∏4

j=2
(1 − zj

∏2
k=1

x3
k

∏3
k=1

y2
k

∏4
k=2

zk )

(1 − w
∏2

k=1
x3

k

∏3
k=1

y2
k

∏4
k=2

zk )
∏2

i=1

∏3
j=1

(1 − xi yj)
∏3

i=1
(1 − yi

∏2
k=1

x2
k

∏3
k=1

yk
∏4

k=2
zk )

× 1∏4
j=2

∏2
i=1

(1 − xi z−1
j

∏2
k=1

xk
∏3

k=1
yk
∏4

k=2
zk )
∏4

j=2

∏3
i=1

(1 − y−1
i

zj
∏2

k=1
xk
∏3

k=1
yk )
.
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A Proof of
the Schur Function Identities
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.. Schur Function Indentity

.
Lemma
..

......

If m is a nonnegative integer, then∑
λ=(λ1,...,λ2m+1)

sλ(y1, . . . , y2m+1)s(λ2m+1)(x1, x2)

×
m∏

i=1

s(λ2i−1,λ2i)(x1, x2)
m∏

i=1

s(λ2i ,λ2i+1)(1, z2)

=
1∏2

i=1

∏2m+1
j=1

(1 − xiyj)
∏

1≤i<j≤2m+1

(
1 − yiyjz2

∏2
k=1

xk

)
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.. Proof

By the Littlewood formula, we have∏
1≤i<j≤2m+1

1
1 − tyiyj

=
∑
ν

t |ν|/2sν(y),

where the sum rons over all ν with ν′ even. Hence we can write
ν = (ν1, ν1, ν2, ν2, . . . , νm, νm), where

ν1 ≥ ν2 ≥ · · · ≥ νm ≥ 0.

By the Pieri rule, we obtain

1∏2m+1
j=1

(1 − x1yj)
· R1 =

∑
µ,ν

sµ(y)x
∑m

k=1
(µk−νk )+µm+1

1

m∏
k=1

(x1x2)
νk

m∏
k=1

zνk
2
,

where the sum on the right-hand side µ runs over all partitions such
that µ = (µ1, ν1, µ2, ν2, . . . , µm, νm, µm+1) with

µ1 ≥ ν1 ≥ µ2 ≥ ν2 ≥ · · · ≥ µm ≥ νm ≥ 0.
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.. Proof

Here we write

|µ| − |ν| =
m∑

k=1

(µk − νk ) + µm+1 = µ1 − ν1 + · · ·+ µm − νm + µm+1

in short. We use the Pieri rule again and obtain

R =
1∏2

i=1

∏2m+1
j=1

(1 − xiyj)
· R1 =

∑
λ,µ,ν

sλ(y)x
|µ|−|ν|
1

x |λ|−|µ|
2

m∏
k=1

(x1x2)
νk

m∏
k=1

zνk
2
,

where λ in the sum in the right-hand side is of the form
λ = (λ1, λ2, . . . , λ2m, λ2m+1) with

λ1 ≥ µ1 ≥ λ2 ≥ ν1 ≥ · · · ≥ λ2m−1 ≥ µm ≥ λ2m ≥ νm ≥ λ2m+1 ≥ µm+1 ≥ 0.

Here we write

|λ| − |µ| =
m+1∑
k=1

(λ2k−1 − µk ) +
m∑

k=1

(λ2k − νk ).
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.. Proof

Note that∑
µk

λ2k−1≥µk ≥λ2k

xµk−νk
1

xλ2k−1−µk+λ2k−νk
2

(x1x2)
νk = s(λ2k−1,λ2k )(x1, x2)

holds for k = 1, 2, . . . ,m. Similarly,∑
µk

λ2m+1≥µm+1≥0

xµm+1

1
xλ2m+1−µm+1

2
= s(λ2m+1)(x1, x2)

holds. Meanwhile, it is also easy to see that∑
νk

λ2k ≥νk ≥λ2k+1

zνk
2

= s(λ2k ,λ2k+1)(1, z2)

holds for k = 1, 2, . . . ,m. From these identities we coclude thar

RHS =
∑
λ

sλ(y)
m∏

k=1

s(λ2k−1,λ2k )(x1, x2)
m∏

k=1

s(λ2k ,λ2k+1)(1, z2)
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.. Wisteria Identity

.
Theorem
..

......

If m is nonnegative integer, then we have

∑
λ=(λ1,λ2,...,λ2m)

wλ2m sλ(y1, . . . , y2m)
m∏

i=1

s(λ2i−1,λ2i)(x1, x2)
m−1∏
i=1

s(λ2i ,λ2i+1)(1, z2)

=

(
1 − zm−1

2

∏2
k=1

xm
k

∏2m
k=1

yk

)
(
1 − wzm−1

2

∏2
k=1

xm
k

∏2m
k=1

yk

)
×

(
1 − zm

2

∏2
k=1

xm
k

∏2m
k=1

yk

)
∏2

i=1

∏2m
j=1

(1 − xiyj)
∏

1≤i<j≤2m

(
1 − yiyjz2

∏2
k=1

xk

) .
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.. Proof

First we assume w = 0. If we put x = (x1, x2), y = (y1, . . . , y2m),
z = (1, z2), X =

∏2
k=1

xk , Y =
∏2m

k=1
yk , then the above identity

reads
1(

1 − zm−1
2

XmY
) (

1 − zm
2

XmY
) ∑
ν=(µ1,...,µ2m−1)

sµ(y)s(µ2m−1)(x)

×
m−1∏
i=1

s(µ2i−1,µ2i)(x)
m−1∏
i=1

s(µ2i ,µ2i+1)(z)

=
1∏2

i=1

∏2m
j=1

(1 − xiyj)
∏

1≤i<j≤2m (1 − yiyjz2X)

The left-hand side of this identity equals

L =
1

1 − zm
2

XmY

∑
t≥0

∑
µ

sµ+t2m(y) s(µ2m−1+t ,t)(x)

×
m−1∏
i=1

s(µ2i−1+t ,µ2i+t)(x)
m−1∏
i=1

s(µ2i+t ,µ2i+1+t)(z)

=
∑
u≥0

∑
t≥0

∑
µ

zu
2

sµ+(t+u)2m(y) s(µ2m−1+t+u,t+u)(x)

×
m−1∏
i=1

s(µ2i−1+t+u,µ2i+t+u)(x)
m−1∏
i=1

s(µ2i+t+u,µ2i+1+t+u)(z)
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.. Proof

L =
∑
u≥0

∑
t≥0

∑
µ

zu
2

sµ+(t+u)2m(y) s(µ2m−1+t+u,t+u)(x)

×
m−1∏
i=1

s(µ2i−1+t+u,µ2i+t+u)(x)
m−1∏
i=1

s(µ2i+t+u,µ2i+1+t+u)(z)

If we set λi = µi + t + u (i = 1, . . . , 2m − 1), λ2m = t + u, then we
obtain

∑λ2m

u=0
zu

2
= s(λ2m)(1, z2), which implies

L =
∑
λ

sλ(y)
m∏

i=1

s(λ2i−1,λ2i)(x)
m−1∏
i=1

s(λ2i ,λ2i+1)(z) · s(λ2m)(z).

This is true if we set y2m+1 = 0 in the identity of the above formula.
The general case follows immediately from the w = 0 case. This
compete the proof. 2
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Thank you!
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