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Abstract

Abstract

Okada presented a conjecture on (g, t)-hook formula for general
d-complete posets in the paper, Soichi Okada, (g, t)-Deformations
of multivariate hook product formulae, J. Algebr. Comb. (2010) 32,
399 — 416. We consider the Tailed Inset case, and reduce the
conjectured identity to an indentity of the Macodonald polynomials
rephrasing Okada’s (q,t)-weights via Pieri coefficients of the
Macodonald polynomials. Joint work with Frederic Jouhet
(University of Lyon I).
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P-partitions

Definition

A partially ordered set (also called a posei) is a set P with a binary
relation “<” which is antisymmetric, transitive, and reflexive.
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P-partitions

Definition
A partially ordered set (also called a posei) is a set P with a binary
relation “<” which is antisymmetric, transitive, and reflexive.

Definition (Stanley '72)
Let P be a poset. A P-partitionis a map n : P — N satisfying

x<yinP = a(x)>n(y)inN,

where N is the set of nonnegative integers.
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P-partitions

A partially ordered set (also called a posei) is a set P with a binary
relation “<” which is antisymmetric, transitive, and reflexive.

Definition (Stanley '72)

Let P be a poset. A P-partitionis a map n : P — N satisfying

x<yinP = a(x)>n(y)inN,

where N is the set of nonnegative integers. Let </ (FP) be the set of
P-partitions.

’

Example (P-partitions)
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P-partitions

A partially ordered set (also called a posei) is a set P with a binary
relation “<” which is antisymmetric, transitive, and reflexive.
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Definition (Stanley '72)
Let P be a poset. A P-partitionis a map n : P — N satisfying

x<yinP = a(x)>n(y)inN,

where N is the set of nonnegative integers. Let </ (FP) be the set of

P-partitions.

A

Example (P-partitions)

Masao Ishikawa (q. t)-hook formula for Tailed Insets



P-partitions

A partially ordered set (also called a posei) is a set P with a binary
relation “<” which is antisymmetric, transitive, and reflexive.

A\

Definition (Stanley '72)
Let P be a poset. A P-partitionis a map n : P — N satisfying

x<yinP = a(x)>n(y)inN,

A

Example (P-partitions)

where N is the set of nonnegative integers. Let </ (FP) be the set of
1

P-partitions.
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P-partitions

A partially ordered set (also called a posei) is a set P with a binary
relation “<” which is antisymmetric, transitive, and reflexive.

A\

Definition (Stanley '72)
Let P be a poset. A P-partitionis a map n : P — N satisfying

x<yinP = a(x)>n(y)inN,

where N is the set of nonnegative integers. Let </ (FP) be the set of
P-partitions.
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Example (P-partitions)
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A partially ordered set (also called a posei) is a set P with a binary
relation “<” which is antisymmetric, transitive, and reflexive.
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Definition (Stanley '72)
Let P be a poset. A P-partitionis a map n : P — N satisfying
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P-partitions

A partially ordered set (also called a posei) is a set P with a binary
relation “<” which is antisymmetric, transitive, and reflexive.

A\

Definition (Stanley '72)
Let P be a poset. A P-partitionis a map n : P — N satisfying

x<yinP = a(x)>n(y)inN,

where N is the set of nonnegative integers. Let </ (FP) be the set of

P-partitions.
1 N 2

A

Example (P-partitions)
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(Shifted) diagrams

A partiton is a nonincreasing sequence A = (44, 4z, . .. ) of nonnegative
integers with finitely many A; unequal to zero.
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(Shifted) diagrams

A partiton is a nonincreasing sequence A = (44, 4z, . .. ) of nonnegative
integers with finitely many A; unequal to zero. The /ength and weight of

A, denoted by £(1) and |1/, are the number and sum of the non-zero 2;
respectively.
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(Shifted) diagrams

A partiton is a nonincreasing sequence A = (44, 4z, . .. ) of nonnegative
integers with finitely many A; unequal to zero. The /ength and weight of
A, denoted by £(1) and |1/, are the number and sum of the non-zero 2;

respectively. A strict partition is a partition in which its parts are strictly
decreasing.
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(Shifted) diagrams

A partiton is a nonincreasing sequence A = (44, 4z, . .. ) of nonnegative
integers with finitely many A; unequal to zero. The /ength and weight of
A, denoted by £(1) and |1/, are the number and sum of the non-zero 2;
respectively. A strict partition is a partition in which its parts are strictly
decreasing. If A is a partition (resp. strict partition), then its diagram
D(1) (resp. shifted diagram S(1)) is defined by

D(A) ={(i.j)eZ? : 1<j<A)
S(A)={(i,)eZ? :i<j<q+i-1}
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(Shifted) diagrams

A partiton is a nonincreasing sequence A = (44, 4z, . .. ) of nonnegative
integers with finitely many A; unequal to zero. The /ength and weight of
A, denoted by £(1) and |1/, are the number and sum of the non-zero 2;
respectively. A strict partition is a partition in which its parts are strictly
decreasing. If A is a partition (resp. strict partition), then its diagram
D(1) (resp. shifted diagram S(1)) is defined by

D(A) ={(i.j)eZ? : 1<j<A)
S(A)={(i,)eZ? :i<j<q+i-1}

Example (The diagram and shifted diagram for 2 = (4,3, 1))
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(Shifted) shapes

A diagram D(2) or a shifted diagram S(A) is regarded as a poset
by defining its order structure by

(i1, j1)=(i2s o) & i < b and ji < fo.

By this order the poset represented by a diagram P = D(2) is
called a shape, and the posets P = S(1) is called shifted shapes.
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(Shifted) shapes

Definition
A diagram D(2) or a shifted diagram S(A) is regarded as a poset
by defining its order structure by

(i1, j1)=(l. o) &= i1 < lp and i < Ja.

By this order the poset represented by a diagram P = D(2) is
called a shape, and the posets P = S(1) is called shifted shapes.

Example (The shape and shifted shape for 2 = (4,3, 1))
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(Shifted) shapes

Definition
A diagram D(2) or a shifted diagram S(A) is regarded as a poset
by defining its order structure by

(i1, j1)=(i2s o) & i < b and ji < fo.

By this order the poset represented by a diagram P = D(2) is
called a shape, and the posets P = S(1) is called shifted shapes.

Example (The shape and shifted shape for 1 = (4,3, 1))

() - {II“ s = ’_IIIII
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Hook

For a partition (resp. strict partition) A and a cell (i, ) € D(1) (resp.
S(Q)), the hook at (i,]) in D(Q) (resp. S(X)), is defined by

Hpy (1)) = (L)) V(i 1) € D(A) : 1> pU{(k,j) € D(A) : k > i}
(resp.

Hsy (i) = {(i DY U {(i, 1) € S(A) : 1> j}
U{(k,j)e D(A) : k> iYu{(j+1,)) e S(2):1>j})

o
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Hook

Definition
For a partition (resp. strict partition) A and a cell (i, ) € D(1) (resp.
S(Q)), the hook at (i,]) in D(Q) (resp. S(X)), is defined by

Hpy (1)) = (L)) V(i 1) € D(A) : 1> pU{(k,j) € D(A) : k > i}
(resp.

Hsy (i) = {(i DY U {(i, 1) € S(A) : 1> j}
U{(k,j)e D(A) : k> iYu{(j+1,)) e S(2):1>j})

o

Example (The hook at (1,2) in D(1) and S(2) for A = (4,3,1))
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Content and hook length

Definition

The hook length at (i, j) is defined by hpa) (i, /) = [Hp(ay(is /)| (resp.
hs( (i, J) = IHs(ay (i, j)I)- Further c(i, j) = j— i is called the content

at (i, j).
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Content and hook length

Definition

The hook length at (i, j) is defined by hpa) (i, /) = [Hp(ay(is /)| (resp.
hs( (i, J) = IHs(ay (i, j)I)- Further c(i, j) = j— i is called the content
at (i, j).

Example (The hook lenghs in D(1) and S(2) for 2 = (4,3, 1))

6.4 3 1 7.5 4 2

Y- 4 S() -
1 1
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Content and hook length

The hook length at (i, j) is defined by hpa) (i, /) = [Hp(ay(is /)| (resp.
hs( (i, J) = IHs(ay (i, j)I)- Further c(i, j) = j— i is called the content

at (i, j).

N

Example (The hook lenghs in D(1) and S(2) for 2 = (4,3, 1))

6.4 3 1 7.5 4 2

1) = 4 S(1) =
1 1

Example (The contents in D(1) and S(2) for A = (4,3, 1))

012 3 0

1.2 3
Y- —1 S() -
) 0
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One Variable Hook Length Formula

Theorem (Frame-Robinson-Thrall ’54, Stanley ’72))
If P = D(A) or S(1), then we have

1

[l
zZ7 = —
1— Z"’P(’J)

e (P) (if)eP

where the sum on the left-hand side runs over all P-partitions, and

|7t = erPﬂ(X)'
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One Variable Hook Length Formula
Theorem (Frame-Robinson-Thrall ’54, Stanley ’72))

If P = D(A) or S(1), then we have

1
zlﬂl = n - . .~
e (P) (ij)ep 1 = zhe(t)

where the sum on the left-hand side runs over all P-partitions, and
|7T|:ZX€P7T(X)' )

Example (An example of P-partition)

0012
00 i = 16
- Al — 16
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Example of One Variable Hook Length Formula

Example (The shape for 2 = (4,3,1))

T TT127T137T14 6.4 3 1
D(/l)_”21 D(2) = 4l 2] 1]
731 1

Z Z2(i)eD(2) Tij — 5 > L 3 4\2 6)"
A (1-2)3(1 = 22)(1 = 23)(1 — 24)2(1 - 26)

v
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Multivariate Hook Length Formula

Theorem (Gansner ‘81, Sagan '82)

Let...,z 1,20, 21, 20,... be variables. If P = D(1) or S(4), then
we have

1
Z' = ————
ne/(P) (ipep 1~ ZHR()]

where the sum on the left-hand side runs over all P-partitions,

7" = [(ijyep Zco(ijy™ and z[H| = (i jeH Z¢(ij) for any finite subset
H c 72. (Gansner used Hillman-Grassl '76 algorithm.)
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Multivariate Hook Length Formula

Theorem (Gansner ‘81, Sagan '82)

Let...,z 1,20, 21, 20,... be variables. If P = D(1) or S(4), then
we have

1
Z' = ————
ne/(P) (ipep 1~ ZHR()]
where the sum on the left-hand side runs over all P-partitions,
7" = [(ijyep Zco(ijy™ and z[H| = (i jeH Z¢(ij) for any finite subset
H c 72. (Gansner used Hillman-Grassl '76 algorithm.)

Example (An example of P-partition)
0 01 2

T = 2
= T A 2 53 2
4 7" =2%,7% 2320 2,25
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Example of Multivariate Hook Length Formula

Example (The shape for 2 = (4,3,1))

111127113714 20 21 22 Z3
D(1) = Te1frezged D(1) =21
734 22
A +
Z 27_312?12811 772221712 "232727132g14
ned (P)
_ 1
(1 —Z 22 12021 2223)(1 — 2024 2223)(1 — Zq 2223)(1 = 23)
1
X

(1 - Z_22_1ZOZ1)(1 — 2021)(1 — Z1)(1 - Z_g).
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The Cauchy formula and the Littlewood formula

Therem (The Cauchy formula)

Let x = (x1,...,Xy) and y = (y1, ..., yn) are n-tuples of variables.
Then we have

n
1
sai(x)sa(y) = :
Zﬁl :1/__[1 I =2
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The Cauchy formula and the Littlewood formula

Therem (The Cauchy formula)

Let x = (x1,...,Xy) and y = (y1, ..., yn) are n-tuples of variables.
Then we have

Therem (The Littlewood formula)

Let x = (x4, ..., Xn) is an n-tuples of variables. Then we have
§ 1
2om=[l7= 11 =5
=1 Xi 1<l</<n - XiXj
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(g, t)-hook formula

Conjecture (Okada '10)
If P is a d-complete poset, then we have

D We(mq )2 = [ | FalHe(ii)]:a:1),

ned (P) (ij)eP

where the sum on the left-hand side runs over all P-partitions, and

F(x;q,t) =
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(g, t)-hook formula

Example (The shape for 2 = (4,3, 1))

TT117T127T1377T14 20 Z1 22 273
D(1) = ”21 D(1) =7
731 Z2

WP(ﬂ'; q. t) ZT; zfz11 Zg11+7r2221112+ﬂ232721132§14
ned (P)
= F (222120212223, q, 1) F (20212223, . t) F (212223, q. 1)
X F(2z3;9,t) F(z-22-12021; Q. t) F (2021; Q. 1) F (21; 9, ) F (2-2; g, 1)

v
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Current situation

Current situation
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Current situation

Q@ If Pis (1) Shape or (2) Shfted Shape, the (g, t)-hook formula
is proven in the paper by Okada(2010).
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Current situation

@ If Pis (1) Shape or (2) Shfted Shape, the (g, t)-hook formula
is proven in the paper by Okada(2010).

Q If Pis (3) Bird or (6) Banner, the (g, t)-hook formula is proven
by me (not yet published) 2013. We use Gasper’s identity.
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Current situation

@ If Pis (1) Shape or (2) Shfted Shape, the (g, t)-hook formula
is proven in the paper by Okada(2010).

Q If Pis (3) Bird or (6) Banner, the (g, t)-hook formula is proven
by me (not yet published) 2013. We use Gasper’s identity.

@ This talk is about the Tailed Inset case (not yet completed).

v
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The Cauchy type identity for Macdonald polynomials

Let x = (xy,...,X,) and y = (y1, ..., yn) are n-tuples of variables.
Then we have

ZPqu, )Qu(y:a,1) ]_[Fx,y, a.1)
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Warnaar’s formula

Theorem (Warnaar '06)

(1 + wx)(qtx?; 7)o 1_[ (txix;; q
(xix;: g

2 Wb nP(xan =] |
A

i>1 ( i ; q2)°° i<j

where r(1) is the number of rows of odd length.
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Warnaar’s formula
Theorem (Warnaar '06)

1+ wx;)(gtx%; 6%) o XX Q) e
3 Wb pira = [ | D BT [T 00D
4 i>1 (Xi q )00 i<j (Xin; q)oo

where r(2) is the number of rows of odd length.

Corollary

, twxi; @)oo 17 (20X Qo
w b (q, H)Py(x; q. t) = (8w :
Z‘ 4 1;[ (Wxi; @)oo 7 (XiXji @)oo
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Warnaar’s formula
Theorem (Warnaar '06)

1+ wx;)(gtx%; 6%) o XX Q) e
> wbg(q, )Pa(x: g, t) = 1_[( ’2)(672 ) (&xix;; 9) ’
4 i>1 (Xi q )00 i<j (Xin; q)oo

where r(1) is the number of rows of odd length.

Corollary

: twxi; Q)eo 11 (1XiXji G)oo
w b (g, t)Py(x; g, t) = (8w :
2w nran =| o=l 16

i<j

Proof. Applying the F-algebra homomorphism wy; to the above
identity.
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Warnaar’s formula
Theorem (Warnaar '06)

1+ wx;)(gtx%; 6%) oo XX Q)
D wbg(q, )Pa(x; g, t) = l_[( ’2)(‘72 9 (txix;: q) ’
4 i>1 (X7 @%)o i<j (XiXj: 9) oo

where r(1) is the number of rows of odd length.

Further Corollary

H (twxi; @)oo 1 ((WXiXj: G)co
b (W Q) L (WX Q)

[Al+r(2) o
D iwTE b(g. )Pi(xi g 1) =
A

Al=r() (tXi; q)oo (tWX/X/'; q)°°
w—z b¥(qt)Pi(x; q.t) = :
z}: a 1/;[ (Xi; q)oo i<j (WXI'X]'; q)oo
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d-complete poset
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d-complete poset

Contents of this section
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d-complete poset

Contents of this section

@ The d-complete posets arise from the dominant minuscule
heaps of the Weyl groups of simply-laced Kac-Moody Lie
algebras.

4
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d-complete poset

Contents of this section

@ The d-complete posets arise from the dominant minuscule
heaps of the Weyl groups of simply-laced Kac-Moody Lie
algebras.

© Proctor gave completely combinatorial description of

d-complete poset, which is a graded poset with d-complete
coloring.
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d-complete poset

Contents of this section

@ The d-complete posets arise from the dominant minuscule
heaps of the Weyl groups of simply-laced Kac-Moody Lie
algebras.

@ Proctor gave completely combinatorial description of

d-complete poset, which is a graded poset with d-complete
coloring.

© Proctor showed that any d-complete poset can be obtained
from the 15 irreducible classes by slant-sum.
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d-complete poset

Contents of this section

@ The d-complete posets arise from the dominant minuscule
heaps of the Weyl groups of simply-laced Kac-Moody Lie
algebras.

@ Proctor gave completely combinatorial description of

d-complete poset, which is a graded poset with d-complete
coloring.

© Proctor showed that any d-complete poset can be obtained
from the 15 irreducible classes by slant-sum.

©Q The d-complete coloring is important for the multivariate

generating function. The content should be replaced by color
for d-complete posets.
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d-complete poset

Contents of this section

@ The d-complete posets arise from the dominant minuscule
heaps of the Weyl groups of simply-laced Kac-Moody Lie
algebras.

@ Proctor gave completely combinatorial description of
d-complete poset, which is a graded poset with d-complete
coloring.

© Proctor showed that any d-complete poset can be obtained
from the 15 irreducible classes by slant-sum.

©Q The d-complete coloring is important for the multivariate
generating function. The content should be replaced by color
for d-complete posets.

@ Okada’s (g, t)-weight Wp(x; g, t)
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d-complete poset

Contents of this section

@ The d-complete posets arise from the dominant minuscule
heaps of the Weyl groups of simply-laced Kac-Moody Lie
algebras.

@ Proctor gave completely combinatorial description of
d-complete poset, which is a graded poset with d-complete
coloring.

© Proctor showed that any d-complete poset can be obtained
from the 15 irreducible classes by slant-sum.

©Q The d-complete coloring is important for the multivariate
generating function. The content should be replaced by color
for d-complete posets.

@ Okada’s (g, t)-weight Wp(7; g, t)

Q Hook monomials for d-complete posets
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Double-tailed diamond poset

Masao Ishikawa (q. t)-hook formula for Tailed Insets



Double-tailed diamond poset

@ The double-tailed diamond poset dk(1) is the poset depicted

below:
Itop
side<>side
k-2 i
bottom
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Double-tailed diamond poset

@ The double-tailed diamond poset dk(1) is the poset depicted

below:

Itop
k-2|!
side<>side
k-2 i

bottom

@ A dk-interval is an interval isomorphic to di(1).
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Double-tailed diamond poset

@ The double-tailed diamond poset dk(1) is the poset depicted

below:

Itop
k-2|!
side<>side
k-2 i

bottom

@ A di-interval is an interval isomorphic to di(1).
@ A d,-interval (k > 4) is an interval isomorphic to d (1) — {top}.
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Double-tailed diamond poset

@ The double-tailed diamond poset dk(1) is the poset depicted

below:

Itop
k-2|!
side<>side
k-2 i

bottom

@ A di-interval is an interval isomorphic to di(1).
@ A d -interval (k > 4) is an interval isomorphic to dk (1) — {top}.

@ A d;-interval consists of three elements x, y and w such that
w is covered by x and y.
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Definition of d-complete poset

A poset P is d-complete if it satisfies the following three conditions
for every k > 3:
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Definition of d-complete poset

A poset P is d-complete if it satisfies the following three conditions
for every k > 3:

Q Iflisa d, -interval, then there exists an element v such that v
covers the maximal elements of / and /U {v} is a dk-interval.
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Definition of d-complete poset

A poset P is d-complete if it satisfies the following three conditions
for every k > 3:

Q Ifl/isa d, -interval, then there exists an element v such that v
covers the maximal elements of / and /U {v} is a dk-interval.

Q If / = [w,v]is a dk-interval and the top v covers uin P, then
uel.
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Definition of d-complete poset

A poset P is d-complete if it satisfies the following three conditions
for every k > 3:

Q Ifl/isa d, -interval, then there exists an element v such that v
covers the maximal elements of / and /U {v} is a dk-interval.

Q If I = [w, V] is a dk-interval and the top v covers uin P, then
uel.

© There are no d, -intervals which differ only in the minimal
elements.
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Properties of d-complete posets

If P is a connected d-complete poset, then
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Properties of d-complete posets

If P is a connected d-complete poset, then

(a) P has a uniqgue maximal element.

Masao Ishikawa (q. t)-hook formula for Tailed Insets



Properties of d-complete posets

If P is a connected d-complete poset, then

(a) P has a unigue maximal element.

(b) P is graded, i.e., there exists a rank function r : P — N such
that r(x) = r(y) + 1 if x covers y.
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Properties of d-complete posets

If P is a connected d-complete poset, then

(a) P has a unigue maximal element.

(b) Pis graded, i.e., there exists a rank function r : P — N such
that r(x) = r(y) + 1 if x covers y.

”
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Properties of d-complete posets

If P is a connected d-complete poset, then

(a) P has a unigue maximal element.

(b) Pis graded, i.e., there exists a rank function r : P — N such
that r(x) = r(y) + 1 if x covers y.

(a) Any connected d-complete poset is uniquely decomposed into
a slant sum of one-element posets and slant-irreducible
d-complete posets.

”
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Properties of d-complete posets

If P is a connected d-complete poset, then

(a) P has a unigue maximal element.

(b) Pis graded, i.e., there exists a rank function r : P — N such
that r(x) = r(y) + 1 if x covers y.

(a) Any connected d-complete poset is uniquely decomposed into
a slant sum of one-element posets and slant-irreducible
d-complete posets.

(b) Slant-irreducible d-complete posets are classified into 15
families : (1) Shapes, (2) Shifted shapes, (3) Birds, (4) Insets,
(5) Tailed insets, (6) Banners, (7) Nooks, (8) Swivels, (9)
Tailed swivels, (10) Tagged swivels, (11) Swivel shifts, (12)
Pumps, (13) Tailed pumps, (14) Near bats, (15) Bat.

”
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Examples

rooted tree /@\ swivel
- /<2>\

shifted shape E
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15 irreducible d-complete posets
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15 irreducible d-complete posets
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15 irreducible d-complete posets
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15 irreducible d-complete posets

!
!

a4 (15)
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Top Tree and d-Complete Coloring

Definition

For a connected d-complete poset P, we define its top tree by
putting

T ={xe P: every y > x is covered by at most one other element }
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Top Tree and d-Complete Coloring

For a connected d-complete poset P, we define its top tree by
putting

T ={xe P: every y > x is covered by at most one other element }

Let / be a set of colors such that #/ = #T. Then a bijection
¢ : T — | can be uniquely extended to a map ¢ : P — [ satisfying
the following three conditions:

Suchamap c: P — lis called a d-complete coloring.
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Top Tree and d-Complete Coloring

For a connected d-complete poset P, we define its top tree by
putting

T ={xe P: every y > x is covered by at most one other element }

Let / be a set of colors such that #/ = #T. Then a bijection
¢ : T — | can be uniquely extended to a map ¢ : P — [ satisfying
the following three conditions:

@ If x and y are incomparable, then c(x) # c(y).

Suchamap c: P — lis called a d-complete coloring.
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Top Tree and d-Complete Coloring

For a connected d-complete poset P, we define its top tree by
putting

T ={xe P: every y > x is covered by at most one other element }

Let / be a set of colors such that #/ = #T. Then a bijection
¢ : T — | can be uniquely extended to a map ¢ : P — [ satisfying
the following three conditions:

@ If x and y are incomparable, then c(x) # c(y).

@ If aninterval [w, v] is a chain, then the colors c(x) (x € [w, v])
are distinct.

Suchamap c: P — lis called a d-complete coloring.
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Top Tree and d-Complete Coloring

For a connected d-complete poset P, we define its top tree by
putting

T ={xe P: every y > x is covered by at most one other element }

Let / be a set of colors such that #/ = #T. Then a bijection
¢ : T — | can be uniquely extended to a map ¢ : P — [ satisfying
the following three conditions:

@ If x and y are incomparable, then c(x) # c(y).

@ If aninterval [w, v] is a chain, then the colors ¢(x) (x € [w, v])
are distinct.

@ If [w, v] is a d-interval then c(w) = c(v).

Suchamap c: P — lis called a d-complete coloring.
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Top Tree and d-Complete Coloring

of ds-interval

[ ]
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Top Tree and d-Complete Coloring

Top Tree of ds-interval
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Top Tree and d-Complete Coloring

Top Tree and d-Complete Coloring of ds-interval
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Top Tree and d-Complete Coloring

Top Tree and d-Complete Coloring of ds-interval

e
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Shapes

Let r be a postive integer, and a = (a1,..., ;) and
B = (B1,...,Br) be strict partitions such that

ay>--->ar >0, B1>-->620,
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Shapes

Let r be a postive integer, and a = (a1,..., ;) and
B = (B1,...,Br) be strict partitions such that

ay>--->ar >0, B1>-->620,
Let P be the set P = P_ U Py of lattice points in Z2, where

Pr={(ij) :1<i<j<ai+i-1(1<i<r)},
PL={(ij) : 1<j<i<Bi+j-1 (1<jeqr)},
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Shapes

Let r be a postive integer, and a = (a1,..., ;) and
B = (B1,...,Br) be strict partitions such that

ay > >ar 20, B1>:-->620,
Let P be the set P = P_ U Py of lattice points in Z2, where

Pr={(ij) :1<i<j<ai+i-1(1<i<r)},
PL={(ij) : 1<j<i<Bi+j-1 (1<jeqr)},

We regard P as a poset by defining the order relation

(i, /1)=(i2, jo) &= iy < lp and jy < jo.

We call this poset a shape and denote it by P = Pi(a,p).
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Shapes

(1.1)

T
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Shifted Shapes

Let r be a postive integer, and a = (a1, ..., a,) be a strict partition
such that

a1 >-->ar>0.
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Shifted Shapes

Let r be a postive integer, and a = (a1, ..., a,) be a strict partition
such that

a1 >-->ar>0.

Define the shifted shape P = P(a) by

P={(ij) :i<j<a+i-1(1<i<n)}h
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Shifted Shapes

Let r be a postive integer, and a = (a1, ..., a,) be a strict partition
such that

a1 >-->ar>0.

Define the shifted shape P = P(a) by
P={(ij):i<j<ai+i-1(1<i<r)}
We regard it as a poset by defining its order structure

(i j1)=(lo o) = i1 <l and jy < fo.
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Shifted Shape

(1.1)

BESHEEHE R
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Birds

Let @ = (a1, a2) and B = (B1,82) be strict partitions such that @y > az > 0
and ﬁ1 > ﬁg > 0.
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Birds

Let @ = (a1, a2) and B = (B1,82) be strict partitions such that @y > az > 0
and 31 > B> > 0. Define the bird P = P;3(a,8; f) by

P=P4qUPRUP.UP;

where
Py=1{(1,)) : -f+1<j<1},
Pe=1{(ij): i<j<aj+i-1(i=1,2)},
Po={(ij) : j<i<Bi+j-1(G=1,2)},
Pr={(ii) : 2<i<f+2}

as a set
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Birds

Let @ = (a1, a2) and B = (B1,82) be strict partitions such that @y > az > 0
and 31 > B> > 0. Define the bird P = P;3(a,8; f) by

P=P4qUPRUP.UP;

where
Py=1{(1,)) : -f+1<j<1},
Pe=1{(ij): i<j<aj+i-1(i=1,2)},
PL:{(/,]) jSISﬁ/+j—1 (/:1’2)}’
Pr={(ii) : 2<i<f+2}

as a set and we regard it as a poset by defining its order structure

(i1,j1)2(f2,j2) — i1 <ipand j1 Sjg.

if and only if the both of (i, j;) and (i, =) are in Py U P U P or in Pr
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Tailed Insets

Let @ = (a1, @2, a3) and B = (B4, B2) be strict partitions such that

a1 > ao > a3 >0, B1>62>0.
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Tailed Insets
Let @ = (a1, @2, a3) and B = (B4, B2) be strict partitions such that
a1 > ao > a3 >0, B1>62>0.

Let P be the set P = P4 U Py U P_ U Pg U Py of lattice points in Z2,
where Py ={(2,1)}, Pr ={(4,4)} and

Py={(1,j) : -B1+1<j<0},
Pr={(hj) :1<i<j<ai+i(i=1,2,3)},
Po={(i+1,j+1):1<j<i<B+j(j=1,2)}
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Tailed Insets

Let @ = (a1, @2, a3) and B = (B4, B2) be strict partitions such that

a1 > ao > a3 >0, B1>62>0.

Let P be the set P = P4 U Py U P_ U Pg U Py of lattice points in Z2,
where Py ={(2,1)}, Pr ={(4,4)} and

Py
Pr
P

{(1,)) : -B1+1<j<0},
{(i) :1<i<j<ai+i(i=1,2,3)},
{(i+1,j+1) 1<j<i<B+j(i=12)})

We regard P as a poset by defining the order relation
(i1, 1)=(l2, o) & it < b and ji < jp.

if neither of (i1, /1) and (i, j2) is not in Pr, whereas (3, 3) < (4,4). We calll
this poset a Tailed Inset, denoted by Ps(a, ).
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Tailed Insets

(1.1)
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Banners

Let @ = (@1, a2, a3, a4) be a strict partition such that
a1 > az > agz > aq4 > 0, and let f > 2 be a positive integer.
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Banners

Definition

Let @ = (@1, a2, a3, a4) be a strict partition such that

a1 > az > a3z > a4 >0, and let f > 2 be a positive integer. Let P
be the set P = Py U Py U Py of lattice points in Z2, where

PH:{(1aj)_f+2SjS1}’
Py=1{(ij) :i<j<ai+i-1(i=1,2,3,4)},
Pr={(i,3) : 3<i<f+2}.
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Banners

Definition

Let @ = (@1, a2, a3, a4) be a strict partition such that

a1 > az > a3z > a4 >0, and let f > 2 be a positive integer. Let P
be the set P = Py U Py U Py of lattice points in Z2, where

PH:{(1aj)_f+2SjS1}’
Pw={(ij):i<j<ai+i-1(i=1,234)},
Pr={(i,3) : 3<i<f+2}.

We regard P as a poset by defining the order relation
(1. 4)=(lo, jo) & it <o and jy < jo.

if both of (i1, /1) and (i2, j2) are in P4 U Pw or in Pr, and call it a
banner
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Banners

LTI
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Hook Monomials

Definition

Let P be a connected d-complete poset and T its top tree. Let z,
(v € T) be indeterminate. Let ¢ : P — T be the d-complete
coloring. For each v € P, we define monomials z [Hp(Vv)] by
induction as follows:
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Hook Monomials

Definition

Let P be a connected d-complete poset and T its top tree. Let z,
(v € T) be indeterminate. Let ¢ : P — T be the d-complete
coloring. For each v € P, we define monomials z [Hp(Vv)] by
induction as follows:

(a) If vis not the top of any dk-interval, then we deine

z[Hp(v)] = I_I Zo(w)-

w<v

Masao Ishikawa (q. t)-hook formula for Tailed Insets



Hook Monomials

Definition

Let P be a connected d-complete poset and T its top tree. Let z,
(v € T) be indeterminate. Let ¢ : P — T be the d-complete
coloring. For each v € P, we define monomials z [Hp(Vv)] by
induction as follows:

(a) If vis not the top of any dk-interval, then we deine

z[Hp(V)] = [ | ze(w)-

w<v

(b) If vis the top of a dk-interval [w, v], then we de?ne

2 [Hp(x)] 2 [He(Y)]
2P = W]

where x and y are the sides of [w, v].
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An example of hook monomials

Example

We consider the following poset P = d;(5).

]
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An example of hook monomials

Example

We consider the following poset P = d;(5). We give the following
assignment of variavles for z;(,), x € P.

4
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Hook Monomials for P = d;(5)

Example

We consider the following poset P = d;(5).

]
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Hook Monomials for P = d;(5)

Example

We consider the following poset P = d;(5). The monomials
associated to hooks of P = dj(5) are as follows:

=20

2
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Hook Monomials for P = d;(5)

Example

We consider the following poset P = d;(5). The monomials
associated to hooks of P = dj(5) are as follows:

=20

Z122

2
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Hook Monomials for P = d;(5)

Example

We consider the following poset P = d;(5). The monomials
associated to hooks of P = dj(5) are as follows:

=20

\Z12223
Z122

2
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Hook Monomials for P = d;(5)

We consider the following poset P = d;(5). The monomials
associated to hooks of P = d;(5) are as follows:
21222324
o
\Z12223
Z122
2
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Hook Monomials for P = d;(5)

We consider the following poset P = d;(5). The monomials
associated to hooks of P = dj(5) are as follows:

21222324
————

212223275 \Z12223

Z122

2
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Hook Monomials for P = d;(5)

We consider the following poset P = d;(5). The monomials
associated to hooks of P = dj(5) are as follows:

21202324275 21222324

212223275 \Z12223

Z122

2
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Hook Monomials for P = d;(5)

We consider the following poset P = d;(5). The monomials
associated to hooks of P = dj(5) are as follows:

21202324275 21222324

2122252475

212223275 \Z12223

Z122

2
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Hook Monomials for P = d;(5)

We consider the following poset P = d;(5). The monomials
associated to hooks of P = dj(5) are as follows:

2122222475 2120237425 71222374
o

2122252475

212223275 \Z12223

Z122

2
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(g, t)-Weight associated with P-partition

Let P be a connected d-complete poset with top tree T. Given a
P-partition 7 € <7 (P), we define Wp(x; g, t) by

M e (70 -70) | 272))

¢(x) and c(y) are adjacent in T

Mayercer () - (). | 5 ) (20 - (). | 52| 1)

c(x)=c
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(g, t)-Weight associated with P-partition

Let P be a connected d-complete poset with top tree T. Given a
P-partition 7 € <7 (P), we define Wp(x; g, t) by

M e (70 -70) | 272))

¢(x) and c(y) are adjacent in T

Mayercer () - (). | 5 ) (20 - (). | 52| 1)

c(x)=c

4

Compute this weight Wp(7; g, t) for P = di(5).
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Example

We consider the following poset P = d5(1).

[ ]
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Example

We consider the following poset P = ds5(1). A P-partition

T4 M2 743 T4

D
L123 T24
4

T34

Ta4
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Example

We consider the following poset P = ds5(1). A P-partition 7 must
satisfy the following inequalities

T4 < M2 < 743 < 7114
Al '/\I
23 < ZT24
Al
T34
Al

Ta4
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Numerator of (P = di(5))

Example

A P-partition
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Numerator of (P = di(5))

Example

A P-partition # extends to F—partition 7.

0 T4 T2 T3 T4

o o o
]

23 24

34

44
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Numerator of (P = di(5))

Example

A P-partition # extends to F—partition 7.

0 T4 T2 T3 T4
o 9o o

1
23 24
34
44

numer Wp(r; q,t) = f(7r11;0)f(ma4; 3)
X f(m12 = m11; 0) (734 — m11; 2)f(maa — m12; 2) (w44 — 734; 0)
X f(m13 — m12; 0) (w24 — m12; 1)f(m34 — m13; 1) (734 — 713, 0)
X f(m14 — m13; 0) (724 — 713; 0)f(ma3 — m13; 0) (724 — 723; 0)
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Denominator of (P = d(5))

Example

A P-partition &
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Denominator of (P = d(5))

Example

A P-partition &

%23 L124
34
44
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Denominator of (P = d(5))

Example

A P-partition &

denom We(r; g, t) = f(maa — m11; 2)f(ma4 — m11; 3)

X f(7r3a — m12; 1) (734 — m12; 2)f(m24 — 713; 0) (w24 — 713; 1)
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Okada’s (g, t)-hook formula conjecture

Okada’s Conjecture

Then the following identity would hold for any d-complete posets P:

DL We(mq.0)7" = | | F(z[Hp(v

el (P) veP

where Zz* = ]_[ z;’g)) Here the sum on the left-hand side runs over

xeP
all P-partitions 7 € .2/ (P), and the right-hand side is the product of
all hook monomials for v € P.
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Macdonald polynomials
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Arm-length and leg-length

Definition

Let A be a partition. Let s = (i, /) be a square in the diagram of 4, and let
a(s) and /(s) be the arm-length and leg-length of s, i.e.,

a(s) =i —j, I(s) = ; —i.
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Arm-length and leg-length

Let A be a partition. Let s = (i, /) be a square in the diagram of 4, and let
a(s) and /(s) be the arm-length and leg-length of s, i.e.,

a(s) =i —j, I(s) = ; —i.

Define

)

o) = [ 1T _ [ 0 s
WG, 1) 1= 1 — ga(s)+1¢l(s) - (= A, m)

Sed
m=0

a = [] LI [ A )
T . 1=l (= digm, m)

bP(a.t) = ] bu(siq.t).

sed
a(s) odd

”
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Monomial symmeytric function

Definition

If x = (X1, %2,...) and y = (y1, ¥», ... ) are two sequences of independent
indeterminates, then we write

(txiy; g
N(x;y;q,t) = H(” l_[Fx,y,qt

Xiyj; q
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Monomial symmeytric function

Definition
If x = (X1, %2,...) and y = (y1, ¥», ... ) are two sequences of independent
indeterminates, then we write

(txiy; g
N(x;y;q.t) = H (x’yj l_[F (xiyj; g, 1).
7]

Let A, = Z[x1,..., X,]°" and A denote the ring of symmetric polynomials
in n independent variables and the ring of symmetric polynomials in
countably many variables, respectively. For A = (44,..., 4,) a partition of
at most n parts the monomial symmetric function m, is defined as

)=
where the sum is over all distinct permutations « of A.
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Macdonald scalar product

Definition
For r a nonnegative integer the power sums p, are given by pg = 1
and p, = m(;) for r > 1. More generally the power-sum products

are defined as p,(x) := pa, (X)pa,(x) - - - for an arbitrary partition
= (A4, A2,...). Define the Macdonald scalar product (-, -)q,: on

the ring of symmetric functions by

(Pas Puq.t = 0au2a 1_[ 1_[ 1 _ t/l,

with zy = 151 ™M m;! and m; = m;(A).
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Macdonald’s P-function

Definition

If we denote the ring of symmetric functions in A, variables over the field
F = Q(q, t) of rational functions in g and t by A, =, then the Macdonald
polynomial P,(x) = P,(x; g, t) is the unique symmetric polynomial in A,z

such that :
Py = Z u(g, t)m,(x)

HSA

with uy; = 1 and
<P/1,Pﬂ>q’[ =0 If/l;t,u

The Macdonald polynomials P,(x; g, t) with £(2) < n form an F-basis of
Ang. If €(2) > nthen P,(x; g,t) = 0. Py(x; g, t) is called Macdonald’s
P-function. Since Py(X1,...,Xn,0;q,t) = Py(X1, ..., Xn; g, t) one can
extend the Macdonald polynomials to symmetric functions containing an
infinite number of independent variables x = (xy, X2, ... ), to obtain a
basis of F = A®F.
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Macdonald’s Q-function

Definition
A second Macdonald symmetric function, called Macdonald’s
Q-function, is defined as

Qi(x; g, t) = ba(g, t)Pa(x; g, 1).

The normalization of the Macdonald inner product is then
(Pa, Qu)qt = 04 for all 4, u, which is equivalent to

D Pax; g DQu(yi g 1) = N(x; y: g, 1),
A
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Pieri coefficients ¢,,, and ¢,

Definition

Let r be a positive integer, and let A, u be partitions such that 1 > u
and A — u is a horizontal r-strip. The Pieri coefficients g,/ and ¥y,
are defined by

Pugr - Z Pa/u Py,
A

Q.gr = Z Yaju Qas
1

where gr = Q(p).
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Another direct expression for ¢,,, and ¢,

From Macdonald’s book Chap.VI, §6, Ex.2(c), we have
(i = pjs = ) (i = Ajgers = 1)
SD/I/ (q, t) - . n 2
’ 1silj_[s€(/l) F(4i = /l/ J= (i = pj1i = 1)

b= [ ezt i)
2u(gst) = S iy
’ 1<i<j<t(u) f(ui = pji j = D) (A = Ajrs = 1)
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Macdonald’s skew Q-function and skew P-function

For any three partitions 4, u, v let ljfv be the coefficient P, in the product
[Pl P

P.(X: a )P,(x; g, 1) Z [ Pa(x; q.1)
Now let 4, 4 be partitions and define Q;, € Ar by

Quu(x; g, 1) Z L(X; g, 1)

Then Qu/u(x; g, t) = 0 unless A O u, and Q,, is homogeneous of degree
[4] — |ul, which is called Macdonald’s skew Q-function.

Masao Ishikawa (q. t)-hook formula for Tailed Insets



Macdonald’s skew Q-function and skew P-function

For any three partitions 4, u, v let ljfv be the coefficient P, in the product
[Pl P

P.(X: a )P,(x; g, 1) Z [ Pa(x; q.1)
Now let 4, 4 be partitions and define Q;, € Ar by

Quu(x; g, 1) Z L(X; g, 1)

Then Qu/u(x; g, t) = 0 unless A O u, and Q,, is homogeneous of degree
[4] — |ul, which is called Macdonald’s skew Q-function.

| A

Definition
We define Macdonald’s skew P-function P,;, by
b,(q,t)
Quu(X; g, 1) = ———=Pau(x; g, ).
’ bu(g.t) "

’
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Lemma

Lemma

Let u and v be partitions, and x = (xy, x2,...)and y = (y1,¥2,...)
are independent indeterminates.

Z Quu(x; 9, t)Pay(y; q. t)
2

=N(x;¥: G,1) D Que(X: G ) Puse(y: 0, 1)
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Lemma

Lemma

Let u and v be partitions, and x = (xy, x2,...)and y = (y1,¥2,...)
are independent indeterminates.

Z Quu(x; 9, t)Pay(y; q. t)
2

=N(x;¥: G,1) D Que(X: G ) Puse(y: 0, 1)

Proof.

Z Z Quu(X) Pap(y) Qu(2) Py(w)
my A
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Lemma

Lemma

Let u and v be partitions, and x = (xy, x2,...)and y = (y1,¥2,...)
are independent indeterminates.

Z Quu(x; 9, t)Pay(y; q. t)
2

=N(x;¥: G,1) D Que(X: G ) Puse(y: 0, 1)

Proof.

Z Z Qu/u(X)Pap () Qu(z) Py (w)
my A
- Z Z Qa(x, 2)Pa(y, w)

my A
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Lemma

Lemma

Let u and v be partitions, and x = (xy, x2,...)and y = (y1,¥2,...)
are independent indeterminates.

Z Quu(x; 9, t)Pay(y; q. t)
2

=N(x;¥: G,1) D Que(X: G ) Puse(y: 0, 1)

Proof.

Z Z Qu/u(X)Pap () Qu(z) Py (w)
my A
- Z Z Qa(x, 2)Pa(y, w)

my A

=MN(x,z;y,w)
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Lemma

Let u and v be partitions, and x = (xy, x2,...)and y = (y1,¥2,...)
are independent indeterminates.

Z Quu(x; 9, t)Pay(y; q. t)
2

=N(x;¥: G,1) D Que(X: G ) Puse(y: 0, 1)

Proof.

Z Z Qu/u(X)Pap () Qu(z) Py (w)
my A
- Z Z Qa(x, 2)Pa(y, w)

my A

=MN(x,z;y,w)
= N(x; y)N(x; w)N(z; y)N(z; w)



=1(x6y) ), Q(x)Pe(w) ) Qu(2)Py(y) D Qe(2)Pe(w)
3
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: n T
by, b-
=N06y) 2, QPY) 2, =1 Qu(2) ) ePuw)
&nt H v
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=T(x; y) Z Qe(X)Pe(w) ) Qy(2)Py(y) D, Qe(2)Pe(w)

n T
b, b,
N(x:y) > Q()Py(y) D ;ﬂ #eQu(2) D 1 Py(w)
&nT M v
n(x; y) Zov/f Pure(¥) Qu(2) Py ()

MUV, T

Hence, by comparing the coefficients of Q,(z)P,(w) in the both
sides, we obtain the desired identity. This completes the proof.
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A generalization of Vuleti¢’s formula

Fix a positive integer T and two partitions x® and u”. Let x°,..., x"1,

y',...,yT be sets of variables. Then we have

T
l_l Q/p'/#i—1 (XI_1 v q, t)P/li/“/'(y’; q, t)

(/11 ’”1 ,/12,»..,/1T) =1

— ]_[ nx', y; q.t) Z Qurpy(X0, ... x5 g, )Pup (.. ..y g, 1)

0<i<j<T

where the sum runs over (2T — 1)-tuples (1", ", A2,...,u"", A7) of
partitions satisfying

71

Wecalopcoc-ou™ca’ ol
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A generalization of Vuleti¢’s formula

Fix a positive integer T and two partitions x® and u”. Let x°,..., x"1,
y',...,yT be sets of variables. Then we have

T
l_l Q/p'/#i—1 (XI_1 v q, t)P/li/“i(yI; q, t)

(/11 ’”1 ,/12,...,/1T) =1

— ]_[ nx', y; q.t) Z Qurpy(X0, ... x5 g, )Pup (.. ..y g, 1)

0<i<j<T

where the sum runs over (2T — 1)-tuples (1", ", A2,...,u"", A7) of
partitions satisfying

71

Wecalopcoc-ou™ca’ ol

Proof. Use induction and the above lemma.
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A corollary

We define P[SM(X; g, t) and Q&#](x; g, t) for a pair (4, 1) of partitions, a

set x = (x1, X, .. . ) of independent variables and & = + by

PA/H(X; q, t) if8:+,

Pha(xia.t) = .
a0 {Qu/z(x:q,f) if e = -,

O/l/y(X; q, t) if e = o

Q@ a(a.1) =
(a1 {P#M(X;q,t) if & = —.

Here we assume A D uife=+,andAcpuife = —.
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A corollary

Theorem

Let n be a positive integer, and € = (e, . . ., €;) a sequence of +, Fix a
positive integer n and two partitions 2% and A”. Let x', ..., x" be sets of
variables. Then we have

l_[P[MI xig)= [ NKidiat

(A1,22,..,a71) =1

i<j
(6:)=(~+)

X Z C)/l”/v e,——v q, )P/ID/V({Xi}ef:+; q, t)»

where the sum runs over (n - 1)-tuples (', 22,..., 1) of partitions
satisfying

Ao ife =+,
AMcd ifg=-
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A corollary

Theorem

Let n be a positive integer, and € = (e, . . ., €;) a sequence of +, Fix a
positive integer n and two partitions 2% and A”. Let x', ..., x" be sets of
variables. Then we have

l_[P[MI xig)= [ NKidiat

(A1,22,..,a71) =1

i<j
(6:)=(~+)

X Z C)/l”/v e,——v q, )P/ID/V({Xi}ef:+; q, t)»

where the sum runs over (n - 1)-tuples (', 22,..., 1) of partitions
satisfying

Ao ife =+,
AMcd ifg=-
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A corollary

Theorem

Let n be a positive integer, and € = (e, . . ., €;) a sequence of +, Fix a
positive integer n and two partitions 2% and A”. Let x', ..., x" be sets of
variables. Then we have

n

HPBM’A:](X/?Q’ t) = l_[ rl(XIlev q’ t)

(A1,22,...,am1) i=1 i<j
(66)=(=+)

X Z Q/l”/v({xi}ei:—; g, t)P/lo/v({Xi}ef:+; q, t)»

where the sum runs over (n - 1)-tuples (', 22,..., 1) of partitions
satisfying

AN oA ifg =+,

A cd ifg=-.

Proof. Take T =nandput X' =0and Y = x/ if ¢ = +1, and
X 1=xand Y =0if ¢ = —1.
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Definition
Under the assumption that A 2 pif e = —, or 2 C u if e = +, we write
" Y} ife =—, . ©way ife = —,
WA/u = o _ cb/l/,u = o _
Puja if e =+, Yusa if e = +.
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Under the assumption that A 2 pif e = —, or 2 C u if e = +, we write
- Y} if e = —, . ©way ife = —,
Vi = ‘ if o — Py = - _
Puja Te =+, l//”//l if e = +.

Here we assume A > uif 6 = +1,and A < pif 6 = —1. We also write

N—pl if6=+1,
|4 —pls = :
—2a ifs=-1.
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Notation

Definition

Let n be a positive integer. Let e = (e1,...,€,) be a sequence of +1. Let
(2%,47,...,4") be an (n + 1)-tuple of partitions such that A" > A’ if

€ =+1,and ' < A if e = —1. Then we write

(/)Elo A" q’ 1—[ ¢[}r 1 /l’](q’ ’ l’[]ilo A7) q’ l_[ lﬁ[/l’ i ﬁ’](q’
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Notation

Definition

Let n be a positive integer. Let e = (e1,...,€,) be a sequence of +1. Let
(2%,47,...,4") be an (n + 1)-tuple of partitions such that A" > A’ if

€ =+1,and ' < A if e = —1. Then we write

(/)EIO l”] q’ 1—[¢[/p 1 /ll](q’ s lIJE{O [/7] Q’ l_[w[/lr 1 /ll](q’

Definition

Let @ be a strict partition, and let n be an integer such that n > a4. Define
a sequence e,(@) = (&(a), ..., e(@)) of £1 by putting

(a) +1 if kis a part of ¢,
Ex\) =
‘ -1 if kis not a part of a.
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Example of €(a) and kth trace n[k]

Definition

For each integer k = 0, ..., n we define the kth trace n[k| to be the
sequence (..., T2 k12,1 k+1) Obtained by reading the kth diagonal from
SE to NW. Here we use the convention that #[k] = 0 if k > a4.

Masao Ishikawa (q. t)-hook formula for Tailed Insets



Example of €(a) and kth trace n[k]

For each integer k = 0, ..., n we define the kth trace n[k| to be the

sequence (..., 72 k12,1 k1) Obtained by reading the kth diagonal from
SE to NW. Here we use the convention that #[k] = 0 if k > a4.

For example, if « = (8,5,2,1) and n = 10, then we have
e=(++--+--+--).

11 T2 T3 _J14 _J015 _TT16 _J117 7118

T2 | 123 |24 | 7125 | 726

TT33 | 734

T44

We have 71'[0] = (71'44,71'33,71’22,7T11), 71'[1] = (7T34,7l'23,71’12),. cey 7'([10] =0,
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Tailed Inset Case
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Tailed Insets

Let @ = (a1, @2, a3) and B = (B4, B2) be strict partitions such that

a1 > ao > a3 >0, B1>62>0.
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Tailed Insets
Let @ = (a1, @2, a3) and B = (B4, B2) be strict partitions such that
a1 > ao > a3 >0, B1>62>0.

Let P be the set P = P4 U Py U P_ U Pg U Py of lattice points in Z2,
where Py ={(2,1)}, Pr ={(4,4)} and

Py={(1,j) : -B1+1<j<0},
Pr={(hj) :1<i<j<ai+i(i=1,2,3)},
Po={(i+1,j+1):1<j<i<B+j(j=1,2)}
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Tailed Insets

Let @ = (a1, @2, a3) and B = (B4, B2) be strict partitions such that

a1 > ao > a3 >0, B1>62>0.

Let P be the set P = P4 U Py U P_ U Pg U Py of lattice points in Z2,
where Py ={(2,1)}, Pr ={(4,4)} and

Py
Pr
P

{(1,)) : -B1+1<j<0},
{(i) :1<i<j<ai+i(i=1,2,3)},
{(i+1,j+1) 1<j<i<B+j(i=12)})

We regard P as a poset by defining the order relation
(i1, 1)=(l2, o) & it < b and ji < jp.

if neither of (i1, /1) and (i, j2) is not in Pr, whereas (3, 3) < (4,4). We calll
this poset a Tailed Inset, denoted by Ps(a, ).
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Tailed Insets

(1.1)
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Tailed Insets
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P-partition for Tailed Insets

Let # = (o, 7,p,7,6) € o/ (P) be a P-partition as in the following
figure.

P4 _pP3 _pP2 :,p1

011 012 013 014 015 016 017 018

022 1023 ‘0'24 ‘0'25 ,[0'26
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Banner partition

Definition

Let p; (resp. g;) denote the number of vertices in the ith diagonal of 2
(resp. p) for i > 1, whereas we set py = 3 and gy = 2. We define

& = (&co+1)cez as follows. If ¢ > 1,

e — + If pC = pC—1l
T fpe=per -1,

andifc <0,

= ;= - if Q-c+1 = G-,
T+ fQeer =g 1.

The color of each vetex is shown in the figure above. In this example, we
have (p;)i=1 = (332211100...), (gi)i=1 = (221100...) and py = 3,

Qo = 2 by definition. Hence we have
g=(--—-+-+-—-++-+—-++—-++---) asin the above figure.
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(g, t)-weight

If we set

wilma =[] fa (ﬁ(x) —7(y): {MJ)
o) = and o) = 0

if c and d are adjacent colors in T, and

Wgrmia.n = [ tfe(nt0-n0| L272))

X,yeP, x<y
c(x)=c(y)=c

W (man= [] f(ﬂ(x) ~y) {MJ . 1),

X,yeP, x<y
c(x)=c(y)=c

7 Wi(r q.t)

c and d are adjacentin T

Hc allcolorsin T W[C)(ﬂ; a, t)
WE(m; q.t) = Wg’+ (m g, )W, (m; g, t).
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then we have Wp(r; g,t) =




Whk(r; g, t) for Banners

If A and u are partitions such that 1 — u is a horizontal strip, then it is
known that
fout(Ai = pjs J = Nfqua(pi = a3/ = )
Yau(a.t) = H - - :
1<i<j<t(u) 9 t(ﬂ’ I) qf( — A1) - I)
fout(i = pji J = (i = 137 = )
eau(a 1) = - A’ P !
1<i<j<l(A) at( jiJ = Dq.e(pi = pja:J = i)
Under the assumption that A 2 pif e = —, or 2 C u if e = +, we write
£ 21, ife=-, 5 3y, ife =—
Vi = b _ o = . _
Qua ife=+, Yua  ife=+.
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I) For 0 < ¢ < 24, we define the partition A of length < p; by

N = (O'pc,pc+c:7 cees 0'1,1+c) = (U'pc+1—i,pc+1—i+c)1§i5pc-
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Definition
I) For 0 < ¢ < 24, we define the partition A of length < p; by

Cc __ —
N = (O'pc,pc+c:7 cees 0'1,1+c) = (U'pc+1—i,pc+1—i+c)1§i5pc-
II) Now we set
=
A :(Tq1+1,q1,-'-772,1,7,/01),
e ————
el
where gy = 1 or 2.

Masao Ishikawa (q. t)-hook formula for Tailed Insets



Definition
I) For 0 < ¢ < 24, we define the partition A of length < p; by

N = (0p,potos - -+ T11+0) = (Tpt1-ip,+1-i+0)1<isp-
II) Now we set
AN = (Tqrt1.gis- > T21,Y5P1)s
i
where gy = 1 or 2.
) If —uy < ¢ <=2, then we set

(o}
N = (Tqo—cgor-->Tl=c1s Vs s YsP=c)s
N———

Q-—c -C

where g_c = 1 or 2.
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I) For 0 < ¢ < 24, we define the partition A of length < p; by

(o] —
N = (0popetos > T111¢) = (Tpeti-ipeti-ite)isisp,-
II) Now we set
-1
A :(Tq1+1,q1,-'-772,1,7,/01),
N’
(e]]

where gy = 1 or 2.
) If —uy < ¢ <=2, then we set

c
/\ = (Tq_,;—c,q_c, e T =@, ,7’, coog ')’,p—c),
N———

Q-—c -C

where g_c = 1 or 2.
IV) If c = —uq —1, then we set

A = (Vs ¥s---57)-
py+1
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(g, t)-weight by Pieri coefficient

If P = Ps(2,u) is the Tailed Insets corresponding to strict partitions A and
4, then we have

We(r; g.t) =

fq,f(?’; 0) H?:1 fq,t(5 — 03— i) 1’1_‘[ yeest
far(6 =7 2)fqu(6—vi1) L1 Nl
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(g, t)-weight by Pieri coefficient

If P = Ps(2,u) is the Tailed Insets corresponding to strict partitions A and
4, then we have

fq,f(y; 0) H?:1 fq,t(5 — 03— i) 1’1_‘[ yeest
far(6 =7 2)fqu(6—vi1) L1 Nl

We set

Wp(m; q,t) =

Z, = ﬁ _ L
c = Zk, Zed == = l_[ Zk,

k:—}l1 -1

where z_,,_1 is a dummy variable which does not appear in the original
7+§

weight. Then we have z" = e H ZINHA,

1_[ Zg/ C=—H1—

C=—1q -1
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Fix Certain Colors

We use the convention that e_,,_1_,, = + and g¢cy1 = —forc < —py — 1.
Note that #i{c < 0| &cc+1 = +} = 2. Because _,,-1—,, = + and
&cct1 = — for ¢ < —pq — 1, we may set

{c <O0|e&cer1 =+ ={c7,6 ).

where —uy — 1 = ¢; < ¢; < 0 Also note that f{c > 0|ecci1 = —} = 3.
Because €, 1,41 = — and g¢c+1 = + for ¢ > 44, we may set
{c20lecert = -} =1{cf.¢cF,c7 )

where 0 < ¢ < ¢ < ¢/ = A1. Hence we have

— A - + + + _
-m-1=c <c <0=c <cy <c; =4.
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Left-Hand Side
D We(manz = [] NZ"zian [] NEZ"zia.n

0<i<j i<j<0
gj 1=t gjjip1=t
EjjH1=" EjjH1="

fat(7: 0) [T+ fa(6 — 071 3 1) ' zﬁfé
11 SR fq.t(6 — v 2)fgt(6 — v 1) HE1=—;11—1 zZ’

7.0,v3

X

X PAo(ZC+,ZC+,ZA1;q, t)
X Quop(Zoh 15 255 @ ) Pront (o Zes - Z-4:.G B),
where the sum runs over
0<v3<011<y<022=<03350

and A° = (033,022,011), N*7 ' = (y,7,...,y) and v = (y,y,v3).
e
1
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Right-hand side

Definiton

Weput P= Py UP>U P3U Py U Ps U Pg, where
Py ={(ii+c)lj>3,1<i<p,1<c<,}
Po={(j+1-cj+1)]i>3,1<j<Qqe, -1 <c<-1},
Ps={(ij)l1<i<8,2<j<3},

Py =1{(2,1),(1,1),(1,0)},
Ps ={(1,c+1)| —u1 <c< -2},
Ps = {(4.4)}
and we write
Ri=[]F(zlHe(V)]:a1),
veP;
fori=1,...,6.
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Right-hand side

(1,-3) (1,1 (1,2) (1,8) - =
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Interpretation of RHS

By direct computation, is is not hard to see

Ry = l_l F(Zij q.t),
gf,?f;i+
gjj+1="

Re= [] Fzsa1).
e,
51 ="

Rz = l_l F(wZj; q.t)
Si,ﬁi*-
51 ="

= F(WZy o1 0 1) F(WZi o3 00 t) F (W2, 3 00 1)
X F(WZes 13 00 t) F (W2, 51 00 t) F (W2, 00 t)
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Interpretation of RHS

Ra = F(WZes o Zor o33 0 ) F (W2 Zer 0 1) F (Wi 5 Zorct 1 9 1)

-1

Ps=[] F(WZZCZ_,C;rZC;,C; i @ t)

o=~

c# 01
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Thank you for your attention!
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