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Okada presented a conjecture on (q, t)-hook formula for general
d-complete posets in the paper, Soichi Okada, (q, t)-Deformations
of multivariate hook product formulae, J. Algebr. Comb. (2010) 32,
399 – 416. We consider the Tailed Inset case, and reduce the
conjectured identity to an indentity of the Macodonald polynomials
rephrasing Okada’s (q,t)-weights via Pieri coefficients of the
Macodonald polynomials. Joint work with Frederic Jouhet
(University of Lyon I).
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.. P-partitions
.
Definition
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......

A partially ordered set (also called a poset) is a set P with a binary
relation “≤” which is antisymmetric, transitive, and reflexive.

.
Definition (Stanley ’72)
..

......

Let P be a poset. A P-partition is a map π : P → N satisfying

x ≤ y in P =⇒ π(x) ≥ π(y) in N,

where N is the set of nonnegative integers. Let A (P) be the set of
P-partitions.

.
Example (P-partitions)
..

......

1 0

1 2
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.. (Shifted) diagrams
.
Definition
..

......

A partiton is a nonincreasing sequence λ = (λ1, λ2, . . . ) of nonnegative
integers with finitely many λi unequal to zero. The length and weight of
λ, denoted by ℓ(λ) and |λ|, are the number and sum of the non-zero λi

respectively. A strict partition is a partition in which its parts are strictly
decreasing. If λ is a partition (resp. strict partition), then its diagram
D(λ) (resp. shifted diagram S(λ)) is defined by

D(λ) = { (i, j) ∈ Z2 : 1 ≤ j ≤ λi}
S(λ) = { (i, j) ∈ Z2 : i ≤ j ≤ λi + i − 1 }.

.
Example (The diagram and shifted diagram for λ = (4, 3, 1))
..

......

D(λ) = S(λ) =
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.. (Shifted) shapes
.
Definition
..

......

A diagram D(λ) or a shifted diagram S(λ) is regarded as a poset
by defining its order structure by

(i1, j1)≥(i2, j2)⇐⇒ i1 ≤ i2 and j1 ≤ j2.

By this order the poset represented by a diagram P = D(λ) is
called a shape, and the posets P = S(λ) is called shifted shapes.

.
Example (The shape and shifted shape for λ = (4, 3, 1))
..

......

D(λ) = S(λ) =
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.. Hook
.
Definition
..

......

For a partition (resp. strict partition) λ and a cell (i, j) ∈ D(λ) (resp.
S(λ)), the hook at (i, j) in D(λ) (resp. S(λ)), is defined by

HD(λ)(i, j) = {(i, j)} ∪ {(i, l) ∈ D(λ) : l > j} ∪ {(k , j) ∈ D(λ) : k > i}

(resp.

HS(λ)(i, j) = {(i, j)} ∪ {(i, l) ∈ S(λ) : l > j}
∪ {(k , j) ∈ D(λ) : k > i} ∪ {(j + 1, l) ∈ S(λ) : l > j}).

.
Example (The hook at (1, 2) in D(λ) and S(λ) for λ = (4, 3, 1))
..

......

D(λ) = S(λ) =

4 5
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.. Content and hook length
.
Definition
..

......

The hook length at (i, j) is defined by hD(λ)(i, j) = |HD(λ)(i, j)| (resp.
hS(λ)(i, j) = |HS(λ)(i, j)|). Further c(i, j) = j − i is called the content
at (i, j).

.
Example (The hook lenghs in D(λ) and S(λ) for λ = (4, 3, 1))
..

......

D(λ) = S(λ) =

6 4 3 1
4 2 1
1

7 5 4 2
4 3 1

1

.
Example (The contents in D(λ) and S(λ) for λ = (4, 3, 1))
..

......

D(λ) = S(λ) =

0 1 2 3
−1 0 1
−2

0 1 2 3
0 1 2

0
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.. One Variable Hook Length Formula

.
Theorem (Frame-Robinson-Thrall ’54, Stanley ’72))
..

......

If P = D(λ) or S(λ), then we have∑
π∈A (P)

z |π| =
∏
(i,j)∈P

1

1 − zhP(i,j)
,

where the sum on the left-hand side runs over all P-partitions, and
|π| = ∑

x∈P π(x).

.
Example (An example of P-partition)
..

......

π =
|π| = 16

z |π| = z16

0 0 1 2
2 3 4
4
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.. Example of One Variable Hook Length Formula

.
Example (The shape for λ = (4, 3, 1))
..

......

D(λ) = D(λ) =

π11π12π13π14

π21π22π23

π31

6 4 3 1
4 2 1
1

∑
π∈A (D(λ))

z
∑

(i,j)∈D(λ) πi,j =
1

(1 − z)3(1 − z2)(1 − z3)(1 − z4)2(1 − z6)
.
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.. Multivariate Hook Length Formula

.
Theorem (Gansner ’81, Sagan ’82)
..

......

Let . . . , z−1, z0, z1, z2, . . . be variables. If P = D(λ) or S(λ), then
we have ∑

π∈A (P)

zπ =
∏
(i,j)∈P

1
1 − z[HP(i, j)]

,

where the sum on the left-hand side runs over all P-partitions,
zπ =

∏
(i,j)∈P zc(i,j)

πi,j and z[H] =
∏

(i,j)∈H zc(i,j) for any finite subset
H ⊂ Z2. (Gansner used Hillman-Grassl ’76 algorithm.)

.
Example (An example of P-partition)
..

......

π =
zπ = z4

−2z2
−1z3

0z4
1z2z2

3

0 0 1 2
2 3 4
4
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.. Example of Multivariate Hook Length Formula

.
Example (The shape for λ = (4, 3, 1))
..

......

D(λ) = D(λ) =

π11π12π13π14

π21π22π23

π31

z0 z1 z2 z3

z−1 z0 z1

z−2

∑
π∈A (P)

zπ31
−2 zπ21

−1 zπ11+π22
0 zπ12+π23

1 zπ13
2 zπ14

3

=
1

(1 − z−2z−1z0z1z2z3)(1 − z0z1z2z3)(1 − z1z2z3)(1 − z3)

× 1
(1 − z−2z−1z0z1)(1 − z0z1)(1 − z1)(1 − z−2)

.
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.. The Cauchy formula and the Littlewood formula

.
Therem (The Cauchy formula)
..

......

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) are n-tuples of variables.
Then we have ∑

λ

sλ(x)sλ(y) =
n∏

i,j=1

1
1 − xiyj

.

.
Therem (The Littlewood formula)
..

......

Let x = (x1, . . . , xn) is an n-tuples of variables. Then we have

∑
λ

sλ(x) =
n∏

i=1

1
1 − xi

∏
1≤i<j≤n

1
1 − xixj

.
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.. (q, t)-hook formula
.
Conjecture (Okada ’10)
..

......

If P is a d-complete poset, then we have∑
π∈A (P)

WP(π; q, t) zπ =
∏
(i,j)∈P

F (z[HP(i, j)]; q, t) ,

where the sum on the left-hand side runs over all P-partitions, and

F(x; q, t) =
(tx; q)∞
(x; q)∞

.

.
Example (The shape for λ = (4, 3, 1))
..

......

D(λ) = D(λ) =

π11π12π13π14

π21π22π23

π31

z0 z1 z2 z3

z−1 z0 z1

z−2

∑
π∈A (P)

WP(π; q, t) zπ31
−2 zπ21

−1 zπ11+π22
0 zπ12+π23

1 zπ13
2 zπ14

3

= F (z−2z−1z0z1z2z3; q, t)F (z0z1z2z3; q, t)F (z1z2z3; q, t)

× F (z3; q, t)F (z−2z−1z0z1; q, t)F (z0z1; q, t)F (z1; q, t)F (z−2; q, t) .
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.. Current situation

.
Current situation
..

......

...1 If P is (1) Shape or (2) Shfted Shape, the (q, t)-hook formula
is proven in the paper by Okada(2010).

...2 If P is (3) Bird or (6) Banner, the (q, t)-hook formula is proven
by me (not yet published) 2013. We use Gasper’s identity.

...3 This talk is about the Tailed Inset case (not yet completed).
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.. The Cauchy type identity for Macdonald polynomials

.
Theorem
..

......

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) are n-tuples of variables.
Then we have∑

λ

Pλ(x; q, t)Qλ(y; q, t) =
n∏

i,j=1

F(xiyj; q, t).
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.. Warnaar’s formula

.
Theorem (Warnaar ’06)
..

......

∑
λ

w r(λ)boa
λ (q, t)Pλ(x; q, t) =

∏
i≥1

(1 + wxi)(qtx2
i ; q

2)∞

(x2
i ; q

2)∞

∏
i<j

(txixj ; q)∞
(xixj ; q)∞

,

where r(λ) is the number of rows of odd length.

.
Further Corollary
..

......

∑
λ

w
|λ|+r(λ′)

2 bel
λ (q, t)Pλ(x; q, t) =

∏
i≥1

(twxi ; q)∞
(wxi ; q)∞

∏
i<j

(twxixj ; q)∞
(wxixj ; q)∞

,

∑
λ

w
|λ|−r(λ′)

2 bel
λ (q, t)Pλ(x; q, t) =

∏
i≥1

(txi ; q)∞
(xi ; q)∞

∏
i<j

(twxixj ; q)∞
(wxixj ; q)∞

.
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d-complete poset
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.. d-complete poset

.
Contents of this section
..

......

...1 The d-complete posets arise from the dominant minuscule
heaps of the Weyl groups of simply-laced Kac-Moody Lie
algebras.

...2 Proctor gave completely combinatorial description of
d-complete poset, which is a graded poset with d-complete
coloring.

...3 Proctor showed that any d-complete poset can be obtained
from the 15 irreducible classes by slant-sum.

...4 The d-complete coloring is important for the multivariate
generating function. The content should be replaced by color
for d-complete posets.

...5 Okada’s (q, t)-weight WP(π; q, t)

...6 Hook monomials for d-complete posets
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.. Double-tailed diamond poset

.
Definition
..

......

The double-tailed diamond poset dk (1) is the poset depicted
below:

k − 2

k − 2

top

side side

bottom

A dk -interval is an interval isomorphic to dk (1).

A d−k -interval (k ≥ 4) is an interval isomorphic to dk (1) − {top}.
A d−3 -interval consists of three elements x, y and w such that
w is covered by x and y.
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.. Definition of d-complete poset

.
Definition
..

......

A poset P is d-complete if it satisfies the following three conditions
for every k ≥ 3:

...1 If I is a d−k -interval, then there exists an element v such that v
covers the maximal elements of I and I ∪ {v} is a dk -interval.

...2 If I = [w, v] is a dk -interval and the top v covers u in P, then
u ∈ I.

...3 There are no d−k -intervals which differ only in the minimal
elements.
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.. Properties of d-complete posets

.
Fact
..

......

If P is a connected d-complete poset, then

(a) P has a unique maximal element.

(b) P is graded, i.e., there exists a rank function r : P → N such
that r(x) = r(y) + 1 if x covers y.

.
Fact
..

......

(a) Any connected d-complete poset is uniquely decomposed into
a slant sum of one-element posets and slant-irreducible
d-complete posets.

(b) Slant-irreducible d-complete posets are classified into 15
families : (1) Shapes, (2) Shifted shapes, (3) Birds, (4) Insets,
(5) Tailed insets, (6) Banners, (7) Nooks, (8) Swivels, (9)
Tailed swivels, (10) Tagged swivels, (11) Swivel shifts, (12)
Pumps, (13) Tailed pumps, (14) Near bats, (15) Bat.
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.. Examples

rooted tree

shape

shifted shape

swivel
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.. 15 irreducible d-complete posets
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.. Top Tree and d-Complete Coloring
.
Definition
..

......

For a connected d-complete poset P, we define its top tree by
putting

T = {x ∈ P : every y ≥ x is covered by at most one other element }

.
Fact
..

......

Let I be a set of colors such that #I = #T . Then a bijection
c : T → I can be uniquely extended to a map c : P → I satisfying
the following three conditions:

If x and y are incomparable, then c(x) , c(y).

If an interval [w, v] is a chain, then the colors c(x) (x ∈ [w, v])
are distinct.

If [w, v] is a dk -interval then c(w) = c(v).

Such a map c : P → I is called a d-complete coloring.
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.. Top Tree and d-Complete Coloring

.
Example
..
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Top Tree and d-Complete Coloring of d5-interval
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.. Shapes

.
Definition
..

......

Let r be a postive integer, and α = (α1, . . . , αr) and
β = (β1, . . . , βr) be strict partitions such that

α1 > · · · > αr ≥ 0, β1 > · · · > βr ≥ 0,

Let P be the set P = PL ∪ PR of lattice points in Z2, where

PR = { (i, j) : 1 ≤ i ≤ j ≤ αi + i − 1 (1 ≤ i ≤ r) },
PL = { (i, j) : 1 ≤ j ≤ i ≤ βj + j − 1 (1 ≤ j eqr) },

We regard P as a poset by defining the order relation

(i1, j1)≥(i2, j2)⇐⇒ i1 ≤ i2 and j1 ≤ j2.

We call this poset a shape and denote it by P = P1(α, β).
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.. Shapes

(1,1)
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.. Shifted Shapes

.
Definition
..

......

Let r be a postive integer, and α = (α1, . . . , αr) be a strict partition
such that

α1 > · · · > αr ≥ 0.

Define the shifted shape P = P2(α) by

P = { (i, j) : i ≤ j ≤ αi + i − 1 (1 ≤ i ≤ r) }.

We regard it as a poset by defining its order structure

(i1, j1)≥(i2, j2)⇐⇒ i1 ≤ i2 and j1 ≤ j2.
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.. Shifted Shape
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.. Birds
.
Definition
..

......

Let α = (α1, α2) and β = (β1, β2) be strict partitions such that α1 > α2 > 0
and β1 > β2 > 0. Define the bird P = P3(α, β; f) by

P = PH ∪ PR ∪ PL ∪ PT

where

PH = { (1, j) : −f + 1 ≤ j ≤ 1},
PR = { (i, j) : i ≤ j ≤ αi + i − 1 (i = 1, 2) },
PL = { (i, j) : j ≤ i ≤ βj + j − 1 (j = 1, 2) },
PT = { (i, i) : 2 ≤ i ≤ f + 2}

as a set and we regard it as a poset by defining its order structure

(i1, j1)≥(i2, j2)⇐⇒ i1 ≤ i2 and j1 ≤ j2.

if and only if the both of (i1, j1) and (i2, j2) are in PH ∪ PR ∪ PL or in PT
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.. Tailed Insets

.
Definition
..

......

Let α = (α1, α2, α3) and β = (β1, β2) be strict partitions such that

α1 > α2 > α3 ≥ 0, β1 > β2 ≥ 0.

Let P be the set P = PH ∪ PM ∪ PL ∪ PR ∪ PT of lattice points in Z2,
where PM = { (2, 1) }, PT = { (4, 4) } and

PH = { (1, j) : −β1 + 1 ≤ j ≤ 0},
PR = { (i, j) : 1 ≤ i ≤ j ≤ αi + i (i = 1, 2, 3) },
PL = { (i + 1, j + 1) : 1 ≤ j ≤ i ≤ βj + j (j = 1, 2) }.

We regard P as a poset by defining the order relation

(i1, j1)≥(i2, j2)⇐⇒ i1 ≤ i2 and j1 ≤ j2.

if neither of (i1, j1) and (i2, j2) is not in PT, whereas (3, 3) < (4, 4). We call
this poset a Tailed Inset, denoted by P5(α, β).
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.. Banners

.
Definition
..

......

Let α = (α1, α2, α3, α4) be a strict partition such that
α1 > α2 > α3 > α4 > 0, and let f ≥ 2 be a positive integer. Let P
be the set P = PH ∪ PW ∪ PT of lattice points in Z2, where

PH = { (1, j) : −f + 2 ≤ j ≤ 1},
PW = { (i, j) : i ≤ j ≤ αi + i − 1 (i = 1, 2, 3, 4) },
PT = { (i, 3) : 3 ≤ i ≤ f + 2}.

We regard P as a poset by defining the order relation

(i1, j1)≥(i2, j2)⇐⇒ i1 ≤ i2 and j1 ≤ j2.

if both of (i1, j1) and (i2, j2) are in PH ∪ PW or in PT, and call it a
banner
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.. Hook Monomials

.
Definition
..

......

Let P be a connected d-complete poset and T its top tree. Let zv

(v ∈ T ) be indeterminate. Let c : P → T be the d-complete
coloring. For each v ∈ P, we define monomials z [HP(v)] by
induction as follows:

(a) If v is not the top of any dk -interval, then we deine

z [HP(v)] =
∏
w≤v

zc(w).

(b) If v is the top of a dk -interval [w, v], then we de?ne

z [HP(v)] =
z [HP(x)] z [HP(Y)]

z [HP(w)]

where x and y are the sides of [w, v].
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zc(w).

(b) If v is the top of a dk -interval [w, v], then we de?ne

z [HP(v)] =
z [HP(x)] z [HP(Y)]

z [HP(w)]

where x and y are the sides of [w, v].
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.. An example of hook monomials

.
Example
..

......

We consider the following poset P = d1(5). We give the following
assignment of variavles for zc(x), x ∈ P.

z1

z1

z2

z2

z3

z3

z4

z5
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.. Hook Monomials for P = d1(5)

.
Example
..

......

We consider the following poset P = d1(5). The monomials
associated to hooks of P = d1(5) are as follows:

z1z2
2z2

3z4z5

z1

z1z2z2
3z4z5

z1z2

z1z2z3z4z5
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z1z2z3z4

z1z2z3z5
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.. (q, t)-Weight associated with P-partition π

.
Definition
..

......

Let P be a connected d-complete poset with top tree T . Given a
P-partition π ∈ A (P), we define WP(π; q, t) by

∏
x,y∈P̂, x<y

c(x) and c(y) are adjacent in T̂

f
(̂
π(x) − π̂(y),

⌊
r̂(y)−̂r(x)

2

⌋)
∏

x,y∈P, x<y
c(x)=c(y)

f
(
π(x) − π(y),

⌊
r(y)−r(x)

2

⌋)
f
(
π(x) − π(y),

⌊
r(y)−r(x)

2

⌋
− 1

) .
.
Example
..
......Compute this weight WP(π; q, t) for P = d1(5).
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.. Example

.
Example
..

......

We consider the following poset P = d5(1). A P-partition π must
satisfy the following inequalities

π11 π12 π13 π14

π23 π24

π34

π44

≤ ≤ ≤≤≤

≤

≥ ≥
≥

≥
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.. Numerator of WP(π; q, t) (P = d1(5))
.
Example
..

......

A P-partition π extends to P̂-partition π̂.

1̂

0 π11 π12 π13 π14

π23 π24

π34

π44

numer WP(π; q, t) = f(π11; 0)f(π44; 3)

× f(π12 − π11; 0)f(π34 − π11; 2)f(π44 − π12; 2)f(π44 − π34; 0)

× f(π13 − π12; 0)f(π24 − π12; 1)f(π34 − π13; 1)f(π34 − π13; 0)

× f(π14 − π13; 0)f(π24 − π13; 0)f(π23 − π13; 0)f(π24 − π23; 0)
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.. Denominator of WP(π; q, t) (P = d1(5))

.
Example
..

......

A P-partition π

π11 π12 π13 π14

π23 π24

π34

π44

denom WP(π; q, t) = f(π44 − π11; 2)f(π44 − π11; 3)

× f(π34 − π12; 1)f(π34 − π12; 2)f(π24 − π13; 0)f(π24 − π13; 1)
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.. Okada’s (q, t)-hook formula conjecture

.
Okada’s Conjecture
..

......

Then the following identity would hold for any d-complete posets P:∑
π∈A (P)

WP(π; q, t)zπ =
∏
v∈P

F (z[HP(v)])

where zπ =
∏
x∈P

zπ(x)c(x) . Here the sum on the left-hand side runs over

all P-partitions π ∈ A (P), and the right-hand side is the product of
all hook monomials for v ∈ P.
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Macdonald polynomials
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.. Arm-length and leg-length
.
Definition
..

......

Let λ be a partition. Let s = (i, j) be a square in the diagram of λ, and let
a(s) and l(s) be the arm-length and leg-length of s, i.e.,

a(s) = λi − j, l(s) = λ′j − i.

.
Definition
..

......

Define

bλ(q, t) :=
∏
s∈λ

1 − qa(s)t l(s)+1

1 − qa(s)+1t l(s)
=

∏
i≥1

m≥0

f (λi − λi+m+1,m)

f (λi − λi+m,m)
,

bel
λ (q, t) :=

∏
s∈λ

l(s) even

1 − qa(s)t l(s)+1

1 − qa(s)+1t l(s)
=

∏
i≥1

m≥0 even

f (λi − λi+m+1,m)

f (λi − λi+m,m)

boa
λ (q, t) :=

∏
s∈λ

a(s) odd

bλ(s; q, t).
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.. Monomial symmeytric function

.
Definition
..

......

If x = (x1, x2, . . . ) and y = (y1, y2, . . . ) are two sequences of independent
indeterminates, then we write

Π(x; y; q, t) =
∏

i,j

(txiyj ; q)∞
(xiyj ; q)∞

=
∏

i,j

F(xiyj ; q, t).

.
Definition
..

......

Let Λn = Z[x1, . . . , xn]
Sn and Λ denote the ring of symmetric polynomials

in n independent variables and the ring of symmetric polynomials in
countably many variables, respectively. For λ = (λ1, . . . , λn) a partition of
at most n parts the monomial symmetric function mλ is defined as

mλ(x) :=
∑
α

xα

where the sum is over all distinct permutations α of λ.
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.. Macdonald scalar product

.
Definition
..

......

For r a nonnegative integer the power sums pr are given by p0 = 1
and pr = m(r) for r > 1. More generally the power-sum products
are defined as pλ(x) := pλ1(x)pλ2(x) · · · for an arbitrary partition
λ = (λ1, λ2, . . . ). Define the Macdonald scalar product ⟨·, ·⟩q,t on
the ring of symmetric functions by

⟨pλ, pµ⟩q,t := δλµzλ
∏

i

n∏
i=1

1 − qλi

1 − tλi

with zλ =
∏

i≥1 imi mi! and mi = mi(λ).
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.. Macdonald’s P-function

.
Definition
..

......

If we denote the ring of symmetric functions in Λn variables over the field
F = Q(q, t) of rational functions in q and t by Λn,F, then the Macdonald
polynomial Pλ(x) = Pλ(x; q, t) is the unique symmetric polynomial in Λn,F

such that :
Pλ =

∑
µ≤λ

uλµ(q, t)mµ(x)

with uλλ = 1 and
⟨Pλ,Pµ⟩q,t = 0 if λ , µ.

The Macdonald polynomials Pλ(x; q, t) with ℓ(λ) ≤ n form an F-basis of
Λn,F. If ℓ(λ) > n then Pλ(x; q, t) = 0. Pλ(x; q, t) is called Macdonald’s
P-function. Since Pλ(x1, . . . , xn, 0; q, t) = Pλ(x1, . . . , xn; q, t) one can
extend the Macdonald polynomials to symmetric functions containing an
infinite number of independent variables x = (x1, x2, . . . ), to obtain a
basis of F = Λ ⊗ F.
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.. Macdonald’s Q-function

.
Definition
..

......

A second Macdonald symmetric function, called Macdonald’s
Q-function, is defined as

Qλ(x; q, t) = bλ(q, t)Pλ(x; q, t).

The normalization of the Macdonald inner product is then
⟨Pλ,Qµ⟩q,t = δλµ for all λ, µ, which is equivalent to∑

λ

Pλ(x; q, t)Qλ(y; q, t) = Π(x; y; q, t).
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.. Pieri coefficients φλ/µ and ψλ/µ

.
Definition
..

......

Let r be a positive integer, and let λ, µ be partitions such that λ ⊃ µ
and λ − µ is a horizontal r-strip. The Pieri coefficients φλ/µ and ψλ/µ
are defined by

Pµgr =
∑
λ

φλ/µ Pλ,

Qµgr =
∑
λ

ψλ/µ Qλ,

where gr = Q(r).
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.. Another direct expression for ϕλ/µ and ψλ/µ

.
Proposition
..

......

From Macdonald’s book Chap.VI, §6, Ex.2(c), we have

φλ/µ(q, t) =
∏

1≤i<j≤ℓ(λ)

f(λi − µj; j − i)f(µi − λj+1; j − i)

f(λi − λj; j − i)f(µi − µj+1; j − i)
,

ψλ/µ(q, t) =
∏

1≤i<j≤ℓ(µ)

f(λi − µj; j − i)f(µi − λj+1; j − i)

f(µi − µj; j − i)f(λi − λj+1; j − i)
.
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.. Macdonald’s skew Q-function and skew P-function
.
Definition
..

......

For any three partitions λ, µ, ν let fλµν be the coefficient Pλ in the product
PµPν:

Pµ(x; q, t)Pν(x; q, t) =
∑
λ

fλµνPλ(x; q, t)

Now let λ, µ be partitions and define Qλ/µ ∈ ΛF by

Qλ/µ(x; q, t) =
∑
ν

fλµνQν(x; q, t).

Then Qλ/µ(x; q, t) = 0 unless λ ⊃ µ, and Qλ/µ is homogeneous of degree
|λ| − |µ|, which is called Macdonald’s skew Q-function.

.
Definition
..

......

We define Macdonald’s skew P-function Pλ/µ by

Qλ/µ(x; q, t) =
bλ(q, t)

bµ(q, t)
Pλ/µ(x; q, t).
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.. Lemma
.
Lemma
..

......

Let µ and ν be partitions, and x = (x1, x2, . . . ) and y = (y1, y2, . . . )
are independent indeterminates.∑

λ

Qλ/µ(x; q, t)Pλ/ν(y; q, t)

= Π(x; y; q, t)
∑
τ

Qν/τ(x; q, t)Pµ/τ(y; q, t)

Proof. ∑
µ,ν

∑
λ

Qλ/µ(x)Pλ/ν(y)Qµ(z)Pν(w)

=
∑
µ,ν

∑
λ

Qλ(x, z)Pλ(y,w)

= Π(x, z; y,w)

= Π(x; y)Π(x;w)Π(z; y)Π(z;w)
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.. Proof

= Π(x; y)
∑
ξ

Qξ(x)Pξ(w)
∑
η

Qη(z)Pη(y)
∑
τ

Qτ(z)Pτ(w)

= Π(x; y)
∑
ξ,η,τ

Qξ(x)Pη(y)
∑
µ

bηbτ
bµ

fµητQµ(z)
∑
ν

fνξτPν(w)

= Π(x; y)
∑
µ,ν,τ

Qν/τ(x)Pµ/τ(y)Qµ(z)Pν(w)

Hence, by comparing the coefficients of Qµ(z)Pν(w) in the both
sides, we obtain the desired identity. This completes the proof.
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.. A generalization of Vuletić’s formula

.
Theorem
..

......

Fix a positive integer T and two partitions µ0 and µT . Let x0, . . . , xT−1,
y1, . . . , yT be sets of variables. Then we have

∑
(λ1,µ1,λ2,...,λT )

T∏
i=1

Qλi/µi−1(x i−1; q, t)Pλi/µi (y i ; q, t)

=
∏

0≤i<j≤T

Π(x i , y j ; q, t)
∑
ν

QµT /ν(x0, . . . , xT−1; q, t)Pµ0/ν(y1, . . . , yT ; q, t)

where the sum runs over (2T − 1)-tuples (λ1, µ1, λ2, . . . , µT−1, λT ) of
partitions satisfying

µ0 ⊂ λ1 ⊃ µ1 ⊂ λ2 ⊃ µ2 ⊂ · · · ⊃ µT−1 ⊂ λT ⊃ µT .

Proof. Use induction and the above lemma.
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.
Theorem
..

......

Fix a positive integer T and two partitions µ0 and µT . Let x0, . . . , xT−1,
y1, . . . , yT be sets of variables. Then we have

∑
(λ1,µ1,λ2,...,λT )

T∏
i=1

Qλi/µi−1(x i−1; q, t)Pλi/µi (y i ; q, t)

=
∏

0≤i<j≤T

Π(x i , y j ; q, t)
∑
ν

QµT /ν(x0, . . . , xT−1; q, t)Pµ0/ν(y1, . . . , yT ; q, t)

where the sum runs over (2T − 1)-tuples (λ1, µ1, λ2, . . . , µT−1, λT ) of
partitions satisfying

µ0 ⊂ λ1 ⊃ µ1 ⊂ λ2 ⊃ µ2 ⊂ · · · ⊃ µT−1 ⊂ λT ⊃ µT .

Proof. Use induction and the above lemma.

Masao Ishikawa (q, t)-hook formula for Tailed Insets



. . . . . .

.. A corollary

.
Definition
..

......

We define Pε
[λ,µ]

(x; q, t) and Qε
[λ,µ]

(x; q, t) for a pair (λ, µ) of partitions, a
set x = (x1, x2, . . . ) of independent variables and ε = ± by

Pε
[λ,µ](x; q, t) =

Pλ/µ(x; q, t) if ε = +,
Qµ/λ(x; q, t) if ε = −,

Qε
[λ,µ](q, t) =

Qλ/µ(x; q, t) if ε = +,
Pµ/λ(x; q, t) if ε = −.

Here we assume λ ⊃ µ if ε = +, and λ ⊂ µ if ε = −.
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.. A corollary

.
Theorem
..

......

Let n be a positive integer, and ϵ = (ϵ1, . . . , ϵn) a sequence of ±, Fix a
positive integer n and two partitions λ0 and λn. Let x1, . . . , xn be sets of
variables. Then we have∑

(λ1,λ2,...,λn−1)

n∏
i=1

Pϵi
[λi−1,λi ]

(x i ; q, t) =
∏

i<j
(ϵi ,ϵj )=(−,+)

Π(x i ; x j ; q, t)

×
∑
ν

Qλn/ν({x i}ϵi=−; q, t)Pλ0/ν({x i}ϵi=+; q, t),

where the sum runs over (n − 1)-tuples (λ1, λ2, . . . , λn−1) of partitions
satisfying λi−1 ⊃ λi if ϵi = +,

λi−1 ⊂ λi if ϵi = −.

Proof. Take T = n and put X i−1 = 0 and Y i = x i if ϵi = +1, and
X i−1 = x i and Y i = 0 if ϵi = −1.
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.. Notation

.
Definition
..

......

Under the assumption that λ ⊇ µ if ε = −, or λ ⊆ µ if ε = +, we write

Ψε
λ/µ =

ψλ/µ if ε = −,
φµ/λ if ε = +,

Φε
λ/µ =

φλ/µ if ε = −,
ψµ/λ if ε = +.

.
Definition
..

......

Here we assume λ ≻ µ if δ = +1, and λ ≺ µ if δ = −1. We also write

|λ − µ|δ =
|λ − µ| if δ = +1,
|µ − λ| if δ = −1.
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. . . . . .

.. Notation

.
Definition
..

......

Let n be a positive integer. Let ϵ = (ϵ1, . . . , ϵn) be a sequence of ±1. Let
(λ0, λ1, . . . , λn) be an (n + 1)-tuple of partitions such that λi−1 ≻ λi if
ϵ = +1, and λi−1 ≺ λi if ϵ = −1. Then we write

ϕϵ[λ0,λ1,...,λn](q, t) =
n∏

i=1

ϕϵi
[λi−1,λi ]

(q, t), ψϵ[λ0,λ1,...,λn](q, t) =
n∏

i=1

ψϵi
[λi−1,λi ]

(q, t).

.
Definition
..

......

Let α be a strict partition, and let n be an integer such that n ≥ α1. Define
a sequence ϵn(α) = (ϵ1(α), . . . , ϵn(α)) of ±1 by putting

ϵk (α) =

+1 if k is a part of α,
−1 if k is not a part of α.
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.. Example of ϵ(α) and k th trace π[k ]
.
Definition
..

......

For each integer k = 0, . . . , n we define the k th trace π[k ] to be the
sequence (. . . , π2,k+2, π1,k+1) obtained by reading the k th diagonal from
SE to NW. Here we use the convention that π[k ] = ∅ if k ≥ α1.

.
Example
..

......

For example, if α = (8, 5, 2, 1) and n = 10, then we have
ϵ = (+ + − −+ − −+ −−).

π11 π12 π13 π14 π15 π16 π17 π18

π22 π23 π24 π25 π26

π33 π34

π44

We have π[0] = (π44, π33, π22, π11), π[1] = (π34, π23, π12),. . . , π[10] = ∅,
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Tailed Inset Case
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.. Tailed Insets

.
Definition
..

......

Let α = (α1, α2, α3) and β = (β1, β2) be strict partitions such that

α1 > α2 > α3 ≥ 0, β1 > β2 ≥ 0.

Let P be the set P = PH ∪ PM ∪ PL ∪ PR ∪ PT of lattice points in Z2,
where PM = { (2, 1) }, PT = { (4, 4) } and

PH = { (1, j) : −β1 + 1 ≤ j ≤ 0},
PR = { (i, j) : 1 ≤ i ≤ j ≤ αi + i (i = 1, 2, 3) },
PL = { (i + 1, j + 1) : 1 ≤ j ≤ i ≤ βj + j (j = 1, 2) }.

We regard P as a poset by defining the order relation

(i1, j1)≥(i2, j2)⇐⇒ i1 ≤ i2 and j1 ≤ j2.

if neither of (i1, j1) and (i2, j2) is not in PT, whereas (3, 3) < (4, 4). We call
this poset a Tailed Inset, denoted by P5(α, β).
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.. Tailed Insets

(1, 1)
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.. Tailed Insets

−4 −3 −2 −1 0 1 2 3 4 5 6 7

−1′

+ +
−
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−

+ +

−

+
−

−
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.. P-partition for Tailed Insets

.
Definition
..

......

Let π = (σ, τ, ρ, γ, δ) ∈ A (P) be a P-partition as in the following
figure.

ρ4 ρ3 ρ2 ρ1 σ11 σ12 σ13 σ14 σ15 σ16 σ17 σ18

γ σ22 σ23 σ24 σ25 σ26

τ21 σ33 σ34 σ35

τ31 τ32 δ

τ41 τ42

τ51
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.. Banner partition

.
Definition
..

......

Let pi (resp. qi) denote the number of vertices in the ith diagonal of λ
(resp. µ) for i ≥ 1, whereas we set p0 = 3 and q0 = 2. We define
ε = (εc,c+1)c∈Z as follows. If c ≥ 1,

εc,c+1 =

+ if pc = pc−1,
− if pc = pc−1 − 1,

and if c ≤ 0,

εc,c+1 =

− if q−c+1 = q−c ,
+ if q−c+1 = q−c − 1.

The color of each vetex is shown in the figure above. In this example, we
have (pi)i≥1 = (332211100 . . . ), (qi)i≥1 = (221100 . . . ) and p0 = 3,
q0 = 2 by definition. Hence we have
ελ = (· · · − −+ −+ − −++ −+ −++ −++ · · · ) as in the above figure.
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.. (q, t)-weight
.
Definition
..

......

If we set

Wc,d
N (π; q, t) =

∏
x,y∈P̂, x<y

c(x) = c and c(y) = d

fq,t

(̂
π(x) − π̂(y);

⌊
r̂(y) − r̂(x)

2

⌋)

if c and d are adjacent colors in T̂ , and

Wc,+
D (π; q, t) =

∏
x,y∈P, x<y

c(x)=c(y)=c

fq,t

(
π(x) − π(y),

⌊
r(y) − r(x)

2

⌋)
,

Wc,−
D (π; q, t) =

∏
x,y∈P, x<y

c(x)=c(y)=c

f
(
π(x) − π(y);

⌊
r(y) − r(x)

2

⌋
− 1

)
,

then we have WP(π; q, t) =

∏
c and d are adjacent in T̂ Wc,d

N (π; q, t)∏
c all colors in T Wc

D(π; q, t)
. where

Wc
D(π; q, t) = Wc,+

D (π; q, t)Wc,−
D (π; q, t).
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.. WP(π; q, t) for Banners

.
Definition
..

......

If λ and µ are partitions such that λ − µ is a horizontal strip, then it is
known that

ψλ/µ(q, t) =
∏

1≤i≤j≤ℓ(µ)

fq,t(λi − µj ; j − i)fq,t(µi − λj+1; j − i)

fq,t(µi − µj ; j − i)fq,t(λi − λj+1; j − i)
,

φλ/µ(q, t) =
∏

1≤i≤j≤ℓ(λ)

fq,t(λi − µj ; j − i)fq,t(µi − λj+1; j − i)

fq,t(λi − λj ; j − i)fq,t(µi − µj+1; j − i)
.

Under the assumption that λ ⊇ µ if ε = −, or λ ⊆ µ if ε = +, we write

Ψε
λ/µ =

ψλ/µ if ε = −,
φµ/λ if ε = +,

Φε
λ/µ =

φλ/µ if ε = −,
ψµ/λ if ε = +.
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.
Definition
..

......

I) For 0 ≤ c ≤ λ1, we define the partition Λc of length ≤ pc by

Λc = (σpc ,pc+c , . . . , σ1,1+c) = (σpc+1−i,pc+1−i+c)1≤i≤pc .

II) Now we set
Λ−1 = (τq1+1,q1 , . . . , τ2,1︸              ︷︷              ︸

q1

, γ, ρ1),

where q1 = 1 or 2.

III) If −µ1 ≤ c ≤ −2, then we set

Λc = (τq−c−c,q−c , . . . , τ1−c,1︸                   ︷︷                   ︸
q−c

, γ, . . . , γ︸   ︷︷   ︸
−c

, ρ−c),

where q−c = 1 or 2.

IV) If c = −µ1 − 1, then we set

Λ−µ1−1 = (γ, γ, . . . , γ︸      ︷︷      ︸
µ1+1

).
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.. (q, t)-weight by Pieri coefficient
.
Theorem
..

......

If P = P5(λ, µ) is the Tailed Insets corresponding to strict partitions λ and
µ, then we have

WP(π; q, t) =
fq,t(γ; 0)

∏3
i=1 fq,t(δ − σi,i ; 3 − i)

fq,t(δ − γ; 2)fq,t(δ − γ; 1)

λ1∏
c=−µ1−1

Ψ
εc,c+1

Λc/Λc+1
.

.
Proposition
..

......

We set

Zc =
c∏

k=−µ1−1

zk , Zc.d =
Zd

Zc
=

d∏
k=c+1

zk ,

where z−µ1−1 is a dummy variable which does not appear in the original

weight. Then we have zπ =
zγ+δ−1′

−1∏
c=−µ1−1

Zγ
c

·
λ1∏

c=−µ1−1

Z |Λ
c |−|Λc+1 |

c .
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.. Fix Certain Colors

.
Definition
..

......

We use the convention that ε−µ1−1,−µ1 = + and εc,c+1 = − for c < −µ1 − 1.
Note that ♯{c < 0 | εc,c+1 = +} = 2. Because ε−µ1−1,−µ1 = + and
εc,c+1 = − for c < −µ1 − 1, we may set

{c < 0 | εc,c+1 = +} = {c−1 , c−2 }.

where −µ1 − 1 = c−2 < c−1 < 0 Also note that ♯{c ≥ 0 | εc,c+1 = −} = 3.
Because ελ1,λ1+1 = − and εc,c+1 = + for c > λ1, we may set

{c ≥ 0 | εc,c+1 = −} = {c+
1 , c

+
2 , c

+
3 }.

where 0 ≤ c+
1 < c+

2 < c+
3 = λ1. Hence we have

−µ1 − 1 = c−2 < c−1 < 0 ≤ c+
1 < c+

2 < c+
3 = λ1.
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.. Left-Hand Side
.
Theorem
..

......

∑
WP(π; q, t)zπ =

∏
0≤i<j

εi,i+1=+
εj,j+1=−

Π(Z−1
i ;Zj ; q, t)

∏
i<j<0

εi,i+1=+
εj,j+1=−

Π(Z−1
i ;Zj ; q, t)

×
∑

σ1,1 ,σ2,2 ,σ3,3
γ,δ,ν3

fq,t(γ; 0)
∏3

i=1 fq,t(δ − σi,i ; 3 − i)

fq,t(δ − γ; 2)fq,t(δ − γ; 1)
·

zγ+δ−1′∏−1
c=−µ1−1 Zγ

c

× PΛ0(Zc+
2
,Zc+

3
,Zλ1 ; q, t)

× QΛ0/ν(Z
−1
−µ1−1,Z

−1
c−1
; q, t)PΛ−µ1−1/ν(Z−µ1 , . . . , Ẑc−1 , · · ·Z−1; q, t),

where the sum runs over

0 ≤ ν3 ≤ σ1,1 ≤ γ ≤ σ2,2 ≤ σ3,3 ≤ δ

and Λ0 = (σ3,3, σ2,2, σ1,1), Λ−µ1−1 = (γ, γ, . . . , γ︸      ︷︷      ︸
µ1+1

) and ν = (γ, γ, ν3).
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.. Right-hand side

.
Definition
..

......

We put P = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 ∪ P6, where

P1 =
{
(i, i + c) | j > 3, 1 ≤ i ≤ pi , 1 ≤ c ≤ λ1,

}
P2 =

{
(j + 1 − c, j + 1) | i > 3, 1 ≤ j ≤ qc , −µ1 ≤ c ≤ −1

}
,

P3 =
{
(i, j) | 1 ≤ i ≤ 3, 2 ≤ j ≤ 3

}
,

P4 =
{
(2, 1), (1, 1), (1, 0)

}
,

P5 =
{
(1, c + 1) | − µ1 ≤ c ≤ −2

}
,

P6 =
{
(4, 4)

}
and we write

Ri =
∏
v∈Pi

F (z [HP(v)] ; q, t) ,

for i = 1, . . . , 6.
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.. Right-hand side

(1,−3) . . . (1, 1) (1, 2) (1, 3) . . .

(1, 8)

(2, 1)

(6, 2)

(4, 4)

P1

P2

P3

P4P5

P6

+ +
−

+
−

+ +
−

+ + . . .

−

+
−

−
+

−−

−

.

.

.

c−2 = −5, c−1 = −3.

c+
1 = 2, c+

2 = 4, c+
3 = 7.
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.. Interpretation of RHS
.
Proposition
..

......

By direct computation, is is not hard to see

R1 =
∏
0≤i<j

εi,i+1=+
εj,j+1=−

F (Zi,j; q, t) ,

R2 =
∏
i<j<0

εi,i+1=+
εj,j+1=−

F (Zi,j; q, t) .

R3 =
∏
i<0≤j

εi,i+1=+
εj,j+1=−

F (wZi,j; q, t)

= F
(
wZc−1 ,c

+
1
; q, t

)
F

(
wZc−1 ,c

+
2
; q, t

)
F

(
wZc−1 ,c

+
3
; q, t

)
× F

(
wZc−2 ,c

+
1
; q, t

)
F

(
wZc−2 ,c

+
2
; q, t

)
F

(
wZc−2 ,c

+
3
; q, t

)
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. . . . . .

.. Interpretation of RHS

.
Proposition
..

......

R4 = F
(
wZc−2 ,c

+
1

Zc−1 ,c
+
2
; q, t

)
F

(
wZc−2 ,c

+
1

Zc−1 ,c
+
3
; q, t

)
F

(
wZc−2 ,c

+
3

Zc−1 ,c
+
2
; q, t

)

P5 =
−1∏

c=−µ1
c,c−1

F
(
w2Zc−2 ,c

+
1

Zc−1 ,c
+
2

Zc,c+
3
; q, t

)
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.. The end

Thank you for your attention!
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