Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

......

(b, n, p)

process

Kiffle Shuffl

(-b, n, p) - process

Miscellaneous

Application

Summary

Generalized carry process and riffle shuffle

Fumihiko NAKANO¹ Taizo SADAHIRO²

¹Gakushuin University

²Tsuda College

2018年2月

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

Amazing

(b, n, p)

Riffle Shuffl

(-b, n, p)

Miscellaneous

Summan

Carries in addition

Adding $\underline{2}$ numbers with randomly chosen digits,

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo **SADAHIRO**

Introduction

Carries in addition

Adding 2 numbers with randomly chosen digits,

01111	00001	00000	01101	11111	00000	1100
71578	52010	72216	15692	99689	80452	46312
20946	60874	82351	32516	23823	30046	06870
92525	12885	54567	48209	20513	10498	53182

0 and 1 seem to appear at equal rate.

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

(b, n, p)

Riffle Shuffle

(-b, n, p)

orocess

viiscenaricou

Summar

Carries in addition

Adding 2 numbers with randomly chosen digits,

01111	00001	00000	01101	11111	00000	1100
71578	52010	72216	15692	99689	80452	46312
20946	60874	82351	32516	23823	30046	06870
92525	12885	54567	48209	20513	10498	53182

0 and 1 seem to appear at equal rate. Adding $\underline{3}$ numbers,

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo **SADAHIRO**

Introduction

Carries in addition

Adding 2 numbers with randomly chosen digits,

01111	00001	00000	01101	11111	00000	1100
71578	52010	72216	15692	99689	80452	46312
20946	60874	82351	32516	23823	30046	06870
92525	12885	54567	48209	20513	10498	53182

0 and 1 seem to appear at equal rate.

Adding 3 numbers,

10111	10210	11102	11122	01011	11210	2112	
43443	07082	04401	15299	64642	73497	38426	
00171	55077	11440	95932	91116	17255	19649	
49339	70267	68885	98147	70311	43856	37376	
92954	32426	84728	09380	26070	34608	95451	

then 1 seems to appear frequently. $(\sharp 0 : \sharp 1 : \sharp 2 = 7 : 20 : 7)_{\circ}$ (b, n, p)

Riffle Shuffl

(-b, n, p)

Miscellaneou

Application

Summary

Transition Probability 1

$$P_{ij} := \mathbf{P}(C_{k+1} = j \mid C_k = i), \quad i, j \in \{0, 1, \dots, n-1\}$$

Transition Probability 1

$$P_{ij} := \mathbf{P}(C_{k+1} = j \mid C_k = i), \quad i, j \in \{0, 1, \dots, n-1\}$$

Example 1 (
$$b = 2, n = 2$$
)

Application

Summary

Transition Probability 1

 $\implies (P_{0,0}, P_{0,1}) = \frac{1}{2^2} (3, 1)$

$$P_{ij} := \mathbf{P}(C_{k+1} = j \mid C_k = i), \quad i, j \in \{0, 1, \dots, n-1\}$$

Example 1 (b = 2, n = 2)

For
$$b=2, n=2$$

$$P = \frac{1}{2^2} \left(\begin{array}{cc} 3 & 1 \\ 1 & 3 \end{array} \right) \quad \Longrightarrow \quad \text{Stationary dist. } \pi = \left(\frac{1}{2}, \frac{1}{2} \right)$$

(b, n, p) process

Riffle Shuffl

(-b, n, p)

Miscellaneou

Application

Transition Probability 2

Example 2 (
$$b = 2, n = 3$$
)

Summar

Transition Probability 2

Example 2 (b = 2, n = 3)

0 0	0 0	1 0	1 0
0	1	1	1
0	0	1	1
0	0	0	1
0		0	1

$$\implies (P_{0,0}, P_{0,1}, P_{0,2}) = \frac{1}{2^3} \cdot (4, 4, 0)$$

Riffle Shuffle

(-b, n, p) process

iviiscellaneot

Summary

Transition Probability 2

Example 2 (b = 2, n = 3)

$$\implies (P_{0,0}, P_{0,1}, P_{0,2}) = \frac{1}{2^3} \cdot (4, 4, 0)$$

For
$$b=2, n=3$$

$$P = \frac{1}{2^3} \begin{pmatrix} 4 & 4 & 0 \\ 1 & 6 & 1 \\ 0 & 4 & 4 \end{pmatrix} \implies \pi = \frac{1}{3!} \cdot (1, 4, 1)$$

(b, n, p)

Riffle Shuffl

(-b, n, p)

Miscellaneou

Application

Carries Process

Add n base- b numbers $(b, n \in \mathbb{N}, b, n \ge 2)$

Riffle Shuffl

(-b, n, p) process

Miscellaneou

Summan

Carries Process

Add n base- b numbers $(b, n \in \mathbb{N}, b, n \ge 2)$

 C_k : the carry coming out in the k-th digit.

Carries Process

Add n base- b numbers $(b, n \in \mathbb{N}, b, n \ge 2)$

 C_k : the carry coming out in the k-th digit.

Choose $X_{j,k}$ uniformly at random from $D_b := \{0, 1, \dots, b-1\}.$ Given C_k , C_{k+1} is determined by

Summary

Carries Process

Add n base- b numbers $(b, n \in \mathbb{N}, b, n \ge 2)$

 C_k : the carry coming out in the k-th digit.

Choose $X_{j,k}$ uniformly at random from $D_b:=\{0,1,\cdots,b-1\}.$ Given $C_k,\,C_{k+1}$ is determined by

$$C_k + X_{1,k} + \dots + X_{n,k} = C_{k+1}b + S_k, \quad S_k \in D_b$$

(b, n, p)

process

Mille Siluili

(-b, n, p) process

Miscellaneous

Summary

Carries Process

Add n base- b numbers $(b, n \in \mathbb{N}, b, n \ge 2)$

 $\mathbf{C}_{\mathbf{k}}$: the carry coming out in the k-th digit.

Choose $X_{j,k}$ uniformly at random from $D_b := \{0, 1, \dots, b-1\}$. Given C_k , C_{k+1} is determined by

$$C_k + X_{1,k} + \dots + X_{n,k} = \frac{C_{k+1}b}{b} + S_k, \quad S_k \in D_b$$

 $\{C_k\}_{k=0}^{\infty}$ $(C_k \in \{0, \cdots, n-1\})$ is called the **carries process**.

(b, n, p)

Diffin Charg

(-b, n, p)

Miscellaneou

Application

Summary

Amazing Matrix : Holte(1997)

$$P_{ij} := \mathbf{P}(C_{k+1} = j \mid C_k = i), \quad i, j = \underline{0}, 1, \dots, n-1$$

Amazing Matrix : Holte(1997)

$$P_{ij} := \mathbf{P}(C_{k+1} = j \mid C_k = i), \quad i, j = \underline{0}, 1, \dots, n-1$$

E-values and left E-vectors of Amazing Matrix

E-values/ E-vectors depends only on $b\ /\ n.$

$$P = L^{-1}DL$$
, $D = \text{diag } \left(1, \frac{1}{b}, \frac{1}{b^2}, \cdots, \frac{1}{b^{n-1}}\right)$
 $L_{ij} = v_{ij}(n) = [x^j] (A_m(x))$.

$$A_m(x) := (1-x)^{n+1} \sum_{j>0} (j+1)^m x^j$$
: Eulerian polynomial.

Miscellaneous

Summary

Amazing Matrix: Holte(1997)

$$P_{ij} := \mathbf{P}(C_{k+1} = j \mid C_k = i), \quad i, j = \underline{0}, 1, \dots, n-1$$

E-values and left E-vectors of Amazing Matrix -

E-values/ E-vectors depends only on $b \ / \ n$.

$$P = L^{-1}DL, \quad D = \text{diag } \left(1, \frac{1}{b}, \frac{1}{b^2}, \cdots, \frac{1}{b^{n-1}}\right)$$

 $L_{ij} = v_{ij}(n) = [x^j] (A_m(x)).$

$$A_m(x) := (1-x)^{n+1} \sum_{j \geq 0} (j+1)^m x^j$$
 : Eulerian polynomial. Remark. $P(b_1)P(b_2) = P(b_1 \cdot b_2)$.

 Matrix (b,n,p)

Dittil" Chiitti

(-b, n, p)

Miscellaneou

Summan

Property of Left Eigenvectors

$$[1] \quad L = \left(\begin{array}{c} \text{$(n$-th Eulerian num.)} \\ \vdots \\ (-1)^j \big((n-1) \text{-th Pascal num.} \big) \end{array} \right)$$

(-b, n, p)

process

Miscellaneous

Summan

Property of Left Eigenvectors

$$[1] \quad L = \left(\begin{array}{c} (n\text{-th Eulerian num.}) \\ \vdots \\ (-1)^j ((n-1)\text{-th Pascal num.}) \end{array} \right)$$

$$\left(\begin{array}{ccc} 1 & 1 \\ 1 & -1 \end{array} \right), \left(\begin{array}{ccc} 1 & 4 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{array} \right), \left(\begin{array}{cccc} 1 & 11 & 11 & 1 \\ 1 & 3 & -3 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -3 & 3 & -1 \end{array} \right)$$

Summary

Property of Left Eigenvectors

$$[1] \quad L = \begin{pmatrix} (n\text{-th Eulerian num.}) \\ \vdots \\ (-1)^j ((n-1)\text{-th Pascal num.}) \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 4 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 11 & 11 & 1 \\ 1 & 3 & -3 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix}$$

 $E(n,k):=\sharp\{\ \sigma\in S_n\ \text{with}\ k\text{-descents}\ \}:\ n\text{-th}\ \text{Eulerian num}.$

(-b, n, p) process

Miscellaneous

Summary

Property of Left Eigenvectors

$$[1] \quad L = \begin{pmatrix} (n\text{-th Eulerian num.}) \\ \vdots \\ (-1)^j ((n-1)\text{-th Pascal num.}) \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 4 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 11 & 11 & 1 \\ 1 & 3 & -3 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix}$$

$$E(n,k) := \sharp \{ \sigma \in S_n \text{ with } k\text{-descents } \} : n\text{-th Eulerian num}.$$

$$\begin{split} E(3,0) &= \sharp \{(123)\} = \mathbf{1}, \\ E(3,1) &= \sharp \{(1\underline{32}), (\underline{31}2), (2\underline{31}), (\underline{21}3)\} = \mathbf{4}, \\ E(3,2) &= \sharp \{(321)\} = \mathbf{1}. \end{split}$$

(-b, n, p) process

Miscellaneous

Summary

Property of Left Eigenvectors

$$\begin{bmatrix} 1 \end{bmatrix} \quad L = \begin{pmatrix} (n\text{-th Eulerian num.}) \\ \vdots \\ (-1)^j ((n-1)\text{-th Pascal num.}) \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 4 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 11 & 11 & 1 \\ 1 & 3 & -3 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix}$$

$$E(n,k):=\sharp\{\ \sigma\in S_n\ \text{with}\ k\text{-descents}\ \}:\ n\text{-th}\ \text{Eulerian num}.$$

$$E(3,0) = \sharp\{(123)\} = 1,$$

 $E(3,1) = \sharp\{(1\underline{32}), (\underline{312}), (2\underline{31}), (\underline{213})\} = 4,$
 $E(3,2) = \sharp\{(321)\} = 1.$

[2] L is equal to the <u>Foulkes character table</u> of S_n (Diaconis-Fulman, 2012).

Dittle Charl

Mille Siluili

(-b, n, p)

Miscellaneou

Application

Foulkes character

Example

$$\sharp \{ \sigma \in S_4 \mid \sigma(1) < \sigma(2) > \sigma(3) < \sigma(4) \}$$

= \{ (1324), (1423), (2314), (2413), (3412) \} = 5

 $\begin{aligned} &\mathsf{Matrix}\\ &(b,n,p) \end{aligned}$

Riffle Shuffl

(-b, n, p)

Miscellaneou

Summar

Foulkes character

Example

$$\sharp \{ \sigma \in S_4 \mid \sigma(1) < \sigma(2) > \sigma(3) < \sigma(4) \}$$

= \{ (1324), (1423), (2314), (2413), (3412) \} = 5

$$+-+ \implies +\times \implies \boxed{+\times +-}$$

Miscellaneous

Applicat

Foulkes character

Example

$$\sharp \{ \sigma \in S_4 \mid \sigma(1) < \sigma(2) > \sigma(3) < \sigma(4) \}$$

= \{ (1324), (1423), (2314), (2413), (3412) \} = 5

$$+-+$$
 \Longrightarrow $\stackrel{+}{+}$ \Longrightarrow $\stackrel{\lceil - \rceil}{+}$ \times

$$\dim = 3$$
 $\dim = 2$

(-b, n, p)

Miscellaneous

Summan

Property of Right Eigenvectors

Right Eigenvector of P

$$P = RDR^{-1}$$

$$R_{ij} = \sum_{r=n-j}^{n} (-1)^{n-r} \begin{bmatrix} n \\ r \end{bmatrix} \begin{pmatrix} r \\ n-j \end{pmatrix} (n-1-i)^{r-(n-j)}$$

Аррисаці

Property of Right Eigenvectors

Right Eigenvector of P

$$P = RDR^{-1}$$

$$R_{ij} = \sum_{r=n-j}^{n} (-1)^{n-r} \begin{bmatrix} n \\ r \end{bmatrix} \begin{pmatrix} r \\ n-j \end{pmatrix} (n-1-i)^{r-(n-j)}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad \begin{pmatrix} 1 & 3 & 2 \\ 1 & 0 & -1 \\ 1 & -3 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 6 & 11 & 6 \\ 1 & 2 & -1 & -2 \\ 1 & -2 & -1 & 2 \\ 1 & -6 & 11 & -6 \end{pmatrix}$$

(-b, n, p) process

Miscellaneous

Application

Property of Right Eigenvectors

Right Eigenvector of P

$$P = RDR^{-1}$$

$$R_{ij} = \sum_{r=n-j}^{n} (-1)^{n-r} \begin{bmatrix} n \\ r \end{bmatrix} \begin{pmatrix} r \\ n-j \end{pmatrix} (n-1-i)^{r-(n-j)}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad \begin{pmatrix} 1 & 3 & 2 \\ 1 & 0 & -1 \\ 1 & -3 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 6 & 11 & 6 \\ 1 & 2 & -1 & -2 \\ 1 & -2 & -1 & 2 \\ 1 & -6 & 11 & -6 \end{pmatrix}$$

$$R(0,j) = S(n,n-j)$$

 $S(n,j) := \sharp \{ \sigma \in S_n \text{ with } j\text{-cycles } \}$ Stirling num. of 1st kind

Kittle Shuttl

(-b, n, p) process

Miscellaneou

Summar

Riffle Shuffle

Let $\{\sigma_1, \sigma_2, \cdots\}$ $(\sigma_0 = id)$, be the Markov chain on S_n induced by the repeated <u>b-riffle shuffles</u> on n-cards.

(-b, n, p) process

Miscellaneou

Summar

Riffle Shuffle

Let $\{\sigma_1, \sigma_2, \cdots\}$ $(\sigma_0 = id)$, be the Markov chain on S_n induced by the repeated <u>b-riffle shuffles</u> on n-cards.

Relation to Riffle Shuffles (Diaconis-Fulman, 2009)

$$\{C_k\}_{k=1}^{\infty}\stackrel{d}{=}\{d(\sigma_k)\}_{k=1}^{\infty},\quad {\color{red}d(\sigma)}: \text{ the descent of }\sigma\in S_n.$$

Summary

Riffle Shuffle

Let $\{\sigma_1, \sigma_2, \cdots\}$ $(\sigma_0 = id)$, be the Markov chain on S_n induced by the repeated <u>b-riffle shuffles</u> on n-cards.

Relation to Riffle Shuffles (Diaconis-Fulman, 2009)

$$\{C_k\}_{k=1}^{\infty}\stackrel{d}{=}\{d(\sigma_k)\}_{k=1}^{\infty},\quad {\color{red}d(\sigma)}: \text{ the descent of }\sigma\in S_n.$$

Since the stationary dist. of $\{\sigma_k\}$ is uniform on S_n ,

$$L_{0j} = \lim_{k \to \infty} \mathbf{P}(C_k = j) = \lim_{k \to \infty} \mathbf{P}(d(\sigma_k) = j)$$
$$= \mathbf{P}_{unif}(d(\sigma) = j) = E(n, j)/n!$$

explaining why Eulerian num. appears.

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

Amazing Matrix

(b, n, p)

Riffle Shuffl

(-b, n, p)

Miscellaneous

Аррисации

Summary on Known Results

Amazing Matrix (the transition probability matrix ${\cal P}$ of the carries process) has the following properties.

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

Amazing Matrix

(b,n,p)process

Riffle Shuffle

(-b, n, p)

Miscellaneous

_

Summary on Known Results

Amazing Matrix (the transition probability matrix P of the carries process) has the following properties.

(0) E-values depend only on \it{b} , and E-vectors depend only on \it{n}

(b, n, p)process

Riffle Shuffle

(-b, n, p)

Miscellaneous

Summar

Summary on Known Results

Amazing Matrix (the transition probability matrix P of the carries process) has the following properties.

- (0) E-values depend only on $\it b$, and E-vectors depend only on $\it n$
- (1) Eulerian num. appears in the stationary distribution.

(b, n, p)process

Riffle Shuffle

(-b,n,p) process

viiscellaneou

Summan

Summary on Known Results

Amazing Matrix (the transition probability matrix P of the carries process) has the following properties.

- (0) E-values depend only on $\it b$, and E-vectors depend only on $\it n$
- (1) Eulerian num. appears in the stationary distribution.
- (2) Left eigenvector matrix L equals to the Foulkes character table of S_n .

(-b, n, p) process

Miscellaneous

Summary

Summary on Known Results

Amazing Matrix (the transition probability matrix P of the carries process) has the following properties.

- (0) E-values depend only on $\it b$, and E-vectors depend only on $\it n$
- (1) Eulerian num. appears in the stationary distribution.
- (2) Left eigenvector matrix L equals to the Foulkes character table of S_n .
- (3) Stirling num. of 1st kind appears in the right eigenvector matrix R.

 $(-b,n,p) \\ \text{process}$

wiiscellaneous

Summary

Summary on Known Results

Amazing Matrix (the transition probability matrix P of the carries process) has the following properties.

- (0) E-values depend only on \emph{b} , and E-vectors depend only on \emph{n}
- (1) Eulerian num. appears in the stationary distribution.
- (2) Left eigenvector matrix L equals to the Foulkes character table of S_n .
- (3) Stirling num. of 1st kind appears in the right eigenvector matrix R.
- (4) carries process has the same distribution to the descent process of the riffle shuffle.

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo

SADAHIRO

(b, n, p)process

(b, n, p)-Carries Process

(b, n, p)process

Riffle Shuffl

(-b, n, p)

Miscellaneous

_

(b, n, p)-Carries Process

Add n base- b numbers. Let $\frac{b-1}{p} \in \mathbf{N}$, $\frac{1}{p} + \frac{1}{p^*} = 1$.

(b,n,p)- process

Riffle Shuffl

(-b, n, p) process

Miscellaneous

Summar

(b, n, p)-Carries Process

Add n base- b numbers. Let $\frac{b-1}{p} \in \mathbf{N}$, $\frac{1}{p} + \frac{1}{p^*} = 1$.

Carry	C_{k+1}	C_k		C_1	$C_0 = 0$
Addends		$X_{1,k}$		$X_{1,1}$	$X_{1,0}$
		:		÷	:
		$X_{n,k}$		$X_{n,1}$	$X_{n,0}$
		$\frac{b-1}{p^*}$	• • •	$\frac{b-1}{p^*}$	$\frac{b-1}{p^*}$
Sum		S_k		S_1	$\overline{S_0}$

(-b,n,p) process

Miscellaneous

Summary

(b, n, p)-Carries Process

Add n base- $\frac{b}{p}$ numbers. Let $\frac{b-1}{p} \in \mathbf{N}$, $\frac{1}{p} + \frac{1}{p^*} = 1$.

Choose $X_{j,k}$ uniformly at random from $D_b := \{0, 1, \dots, b-1\}$. Given C_k , C_{k+1} is determined by

(-b, n, p) process

Miscellaneous

Summary

(b, n, p)-Carries Process

Add n base- $\frac{b}{p}$ numbers. Let $\frac{b-1}{p} \in \mathbf{N}$, $\frac{1}{p} + \frac{1}{p^*} = 1$.

Choose $X_{j,k}$ uniformly at random from $D_b := \{0, 1, \dots, b-1\}$. Given C_k , C_{k+1} is determined by

$$C_k + X_{1,k} + \dots + X_{n,k} + \frac{b-1}{n^*} = C_{k+1}b + S_k, \quad S_k \in D_b.$$

(b,n,p)process

Riffle Shuffle

(-b, n, p) process

Miscellaneous

Summary

(b, n, p)-Carries Process

Add n base- $\frac{b}{p}$ numbers. Let $\frac{b-1}{p} \in \mathbf{N}$, $\frac{1}{p} + \frac{1}{p^*} = 1$.

Choose $X_{j,k}$ uniformly at random from $D_b := \{0, 1, \dots, b-1\}$. Given C_k , C_{k+1} is determined by

$$C_k + X_{1,k} + \dots + X_{n,k} + \frac{b-1}{p^*} = C_{k+1}b + S_k, \quad S_k \in D_b.$$

 $\{C_k\}_{k=0}^{\infty}$ is called the (b,n,p)-carries process.

Fumihiko NAKANO, Taizo SADAHIRO

Introduct

Amazing Matrix

(b,n,p)process

Riffle Shuffl

(-b, n, p) process

iviiscellaneous

Summary

(b, n, p)-Carries Process

Add n base- b numbers. Let $\frac{b-1}{p} \in \mathbf{N}$, $\frac{1}{p} + \frac{1}{p^*} = 1$.

Carry	C_{k+1}	C_k		C_1	$C_0 = 0$
Addends		$X_{1,k}$	• • •	$X_{1,1}$	$X_{1,0}$
		:		:	:
		$X_{n,k}$		$X_{n,1}$	$X_{n,0}$
		$\frac{b-1}{p^*}$	• • •	$\frac{b-1}{p^*}$	$\frac{b-1}{p^*}$
Sum		S_k		S_1	S_0
Sum		S_k		S_1	S_0

Choose $X_{j,k}$ uniformly at random from $D_b := \{0, 1, \dots, b-1\}$. Given C_k , C_{k+1} is determined by

$$C_k + X_{1,k} + \dots + X_{n,k} + \frac{b-1}{n^*} = C_{k+1}b + S_k, \quad S_k \in D_b.$$

 $\{C_k\}_{k=0}^{\infty}$ is called the (b,n,p)-carries process.

$$(p = 1)$$
: usual carries process)

(-b, n, p) -

Miscellaneous

Summan

Remarks

(1) If we generalize the usual carries process by changing the digit set such as

$$D_b = \{0, 1, \dots, b-1\} \implies D_b = \{d, d+1, \dots, d+b-1\},\$$

we get (b, n, p)-carries process, after some change of variables.

Summary

Remarks

(1) If we generalize the usual carries process by changing the digit set such as

$$D_b = \{0, 1, \dots, b-1\} \implies D_b = \{d, d+1, \dots, d+b-1\},\$$

we get (b,n,p)-carries process, after some change of variables.

(2) $C_k \in \mathcal{C}_p(n)$ where $\mathcal{C}_p(n)$ is the <u>carries set</u> given by

(b, n, p)process

Riffle Shuffl

(-b, n, p)

Miscellaneou

Summar

Left Eigenvectors

 $\tilde{P} = \{\tilde{P}_{ij}\}$: Transition probability of (b,n,p)- process :

$$\tilde{P}_{ij} = \mathbf{P}\left(C_{k+1} = j \mid C_k = i\right).$$

(-b, n, p)

Miscellaneous

Summary

Left Eigenvectors

 $\tilde{P} = \{\tilde{P}_{ij}\}$: Transition probability of (b,n,p)- process :

$$\tilde{P}_{ij} = \mathbf{P} \left(C_{k+1} = j \mid C_k = i \right).$$

Theorem 1

E-values/ E-vectors depend only on b / n.

$$ilde{P} = L_p^{-1}DL_p, \ D = \operatorname{diag}\left(1, \frac{1}{b}, \cdots, \frac{1}{b^{\sharp \mathcal{C}_p(n)-1}}\right)$$

Summary

Left Eigenvectors

 $\tilde{P} = \{\tilde{P}_{ij}\}$: Transition probability of (b,n,p)- process :

$$\tilde{P}_{ij} = \mathbf{P} \left(C_{k+1} = j \mid C_k = i \right).$$

Theorem 1

E-values/ E-vectors depend only on $b\ /\ n.$

$$\tilde{P} = L_p^{-1}DL_p, \ D = \operatorname{diag}\left(1, \frac{1}{b}, \cdots, \frac{1}{b^{\sharp \mathcal{C}_p(n) - 1}}\right)$$

$$L_{ij}^{(p)}(n) = [x^j] (A_{m,p}(x)).$$

Summary

Left Eigenvectors

 $\tilde{P} = \{\tilde{P}_{ij}\}$: Transition probability of (b,n,p)- process :

$$\tilde{P}_{ij} = \mathbf{P} \left(C_{k+1} = j \mid C_k = i \right).$$

Theorem 1

E-values/ E-vectors depend only on b / n.

$$\tilde{P} = L_p^{-1}DL_p, \ D = \operatorname{diag}\left(1, \frac{1}{b}, \cdots, \frac{1}{b^{\sharp \mathcal{C}_p(n)-1}}\right)$$

$$L_{ij}^{(p)}(n) = [x^j] (A_{m,p}(x)).$$

$$A_{m,p}(x) := (1-x)^{n+1} \sum_{j>0} (pj+1)^m x^j$$

(b, n, p)process

Riffle Shuffl

(-b, n, p)

Miscellaneou

Combinatorial meaning of L

[1] The stationary distribution $L_{0j}^{(p)}(n)$ gives

(1) p=1: Eulerian number (descent statistics of the permutation group)

(b,n,p)process

Riffle Shuffl

(-b, n, p)

Miscellaneou

Summar

Combinatorial meaning of L

[1] The stationary distribution $L_{0j}^{(p)}(n)$ gives

(1) p=1 : Eulerian number (descent statistics of the permutation group)

(2) p=2: Macmahon number (descent statistics of the <u>signed</u> permutation group: $1-<2-<\cdots< n-<\overline{1+<2}+<\cdots< n+$)

Summan

Combinatorial meaning of L

- [1] The stationary distribution $L_{0j}^{(p)}(n)$ gives
- (1) p = 1: Eulerian number (descent statistics of the permutation group)
- (2) p=2: Macmahon number (descent statistics of the <u>signed</u> permutation group: $1-<2-<\cdots< n-<\overline{1+<2}+<\cdots< n+$)

$$\begin{split} M(2,0) &= \sharp \{ (1-,2-) \} = 1, \\ M(2,1) &= \sharp \{ (1+,2+), (1+,2-), (1-,2+), (2+,1-), \end{split}$$

$$(2-,1+),(2-,1-)$$
 = 6, $M(2,2) = \sharp\{(2+,1+)\} = 1$.

(-b,n,p) process

Miscellaneous

Summary

Combinatorial meaning of L

- [1] The stationary distribution $L_{0j}^{(p)}(n)$ gives
- (1) p = 1: Eulerian number (descent statistics of the permutation group)
- (2) p=2: Macmahon number (descent statistics of the <u>signed</u> permutation group: $1-<2-<\cdots< n-<\overline{1+<2}+<\cdots< n+$)

$$M(2,0) = \sharp \{(1-,2-)\} = 1,$$

 $M(2,1) = \sharp \{(1+,2+), (1+,2-), (1-,2+), (2+,1-),$
 $(2-,1+), (2-,1-)\} = 6, M(2,2) = \sharp \{(2+,1+)\} = 1.$

(3) general $p \in \mathbf{N}$: descent statistics of the <u>colored</u> permutation group $G_{p,n}(\simeq \mathbf{Z}_p \wr S_n)$

Miscellaneous

Summary

Combinatorial meaning of L

- [1] The stationary distribution $L_{0j}^{(p)}(n)$ gives
- (1) p = 1: Eulerian number (descent statistics of the permutation group)
- (2) p=2: Macmahon number (descent statistics of the <u>signed</u> permutation group: $1-<2-<\cdots< n-<\overline{1+<2}+<\cdots< n+$)

$$\begin{split} &M(2,0)=\sharp\{(1-,2-)\}=1,\\ &M(2,1)=\sharp\{(1+,2+),(1+,2-),(1-,2+),(2+,1-),\\ &(2-,1+),(2-,1-)\}=6,\ M(2,2)=\sharp\{(2+,1+)\}=1. \end{split}$$

- (3) general $p \in \mathbf{N}$: descent statistics of the <u>colored</u> permutation group $G_{p,n}(\simeq \mathbf{Z}_p \wr S_n)$
- [2] The left eigenvector matrix L equals to the Foulkes character table of $G_{n,n}$.

Combinatorial meaning of L

- [1] The stationary distribution $L_{0j}^{(\mathbf{p})}(n)$ gives
- (1) p = 1: Eulerian number (descent statistics of the permutation group)
- (2) p=2: Macmahon number (descent statistics of the <u>signed</u> permutation group: $1-<2-<\cdots< n-<\overline{1+<2}+<\cdots< n+$)

$$M(2,0) = \sharp\{(1-,2-)\} = 1,$$

 $M(2,1) = \sharp\{(1+,2+),(1+,2-),(1-,2+),(2+,1-),$
 $(2-,1+),(2-,1-)\} = 6, M(2,2) = \sharp\{(2+,1+)\} = 1.$

- (3) general $p \in \mathbf{N}$: descent statistics of the <u>colored</u> permutation group $G_{p,n}(\simeq \mathbf{Z}_p \wr S_n)$
- [2] The left eigenvector matrix L equals to the Foulkes character table of $G_{p,n}$.
- [3] For $p \notin \mathbf{N}$, we do not know...

(b,n,p)process

Riffle Shuffle

(-b, n, p)

Miscellaneo

Examples of L(n=3)

$$p = 1: \begin{pmatrix} 1 & 4 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix} \quad p = 2: \begin{pmatrix} 1 & 23 & 23 & 1 \\ 1 & 5 & -5 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -3 & 3 & -1 \end{pmatrix}$$

(-b, n, p) process

Miscellaneous

Summan

Examples of L(n=3)

$$p = 1: \begin{pmatrix} 1 & 4 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix} \quad p = 2: \begin{pmatrix} 1 & 23 & 23 & 1 \\ 1 & 5 & -5 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -3 & 3 & -1 \end{pmatrix}$$
$$p = 3: \begin{pmatrix} 1 & 60 & 93 & 8 \\ 1 & 23 & -9 & -4 \\ 1 & 0 & -3 & 2 \\ 1 & -3 & 3 & -1 \end{pmatrix} \quad p = 3/2: \begin{pmatrix} 1 & \frac{93}{8} & \frac{15}{2} & \frac{1}{8} \\ 1 & \frac{9}{4} & -3 & -\frac{1}{4} \\ 1 & -\frac{3}{2} & 0 & \frac{1}{2} \\ 1 & -3 & 3 & -1 \end{pmatrix}$$

(b,n,p)process

Riffle Shuffle

(-b,n,p) -process

Miscellaneous

Summan

Examples of L(n=3)

$$p = 1: \begin{pmatrix} 1 & 4 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix} \quad p = 2: \begin{pmatrix} 1 & 23 & 23 & 1 \\ 1 & 5 & -5 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -3 & 3 & -1 \end{pmatrix}$$

$$p = 3: \begin{pmatrix} 1 & 60 & 93 & 8 \\ 1 & 23 & -9 & -4 \\ 1 & 0 & -3 & 2 \\ 1 & -3 & 3 & -1 \end{pmatrix} \quad p = 3/2: \begin{pmatrix} 1 & \frac{93}{8} & \frac{15}{2} & \frac{1}{8} \\ 1 & \frac{9}{4} & -3 & -\frac{1}{4} \\ 1 & -\frac{3}{2} & 0 & \frac{1}{2} \\ 1 & -3 & 3 & -1 \end{pmatrix}$$

$$p = 5/2: \begin{pmatrix} 1 & \frac{311}{8} & \frac{101}{2} & \frac{27}{8} \\ 1 & \frac{33}{4} & -7 & -\frac{9}{4} \\ 1 & -\frac{1}{2} & -2 & \frac{3}{2} \\ 1 & -3 & 3 & -1 \end{pmatrix}$$
?

No hits on OEIS...

(b, n, p)-

process

Right Eigenvector

Theorem 2

$$R_p := L_p^{-1} = \{R_{ij}^{(p)}(n)\}_{i,j=0,\cdots,\sharp\mathcal{C}_p(n)-1}$$

Miscellaneou

Summar

Right Eigenvector

Theorem 2

$$\begin{split} R_p &:= L_p^{-1} = \{R_{ij}^{(p)}(n)\}_{i,j=0,\cdots,\sharp \mathcal{C}_p(n)-1} \\ R_{ij}^{(p)} &= [x^{n-j}] \left(\begin{array}{c} n + \frac{x-1}{p} - i \\ n \end{array} \right) \end{split}$$

Riffle Shuffl

(-b, n, p) process

Miscellaneou

Summary

Right Eigenvector

Theorem 2

$$R_p := L_p^{-1} = \{ R_{ij}^{(p)}(n) \}_{i,j=0,\cdots,\sharp \mathcal{C}_p(n)-1}$$

$$R_{ij}^{(p)} = [x^{n-j}] \begin{pmatrix} n + \frac{x-1}{p} - i \\ n \end{pmatrix}$$

If $p \in \mathbf{N}$

(1) $\overline{n!p^nR_{0,n-j}^{(p)}}$ is equal to the Stirling-Frobenius cycle number.

(b,n,p)process

Riffle Shuffl

(-b, n, p) process

Miscellaneous

Summarv

Right Eigenvector

Theorem 2

$$R_p := L_p^{-1} = \{ R_{ij}^{(p)}(n) \}_{i,j=0,\cdots,\sharp \mathcal{C}_p(n)-1}$$

$$R_{ij}^{(p)} = [x^{n-j}] \begin{pmatrix} n + \frac{x-1}{p} - i \\ n \end{pmatrix}$$

If $p \in \mathbf{N}$,

- (1) $n!p^nR_{0,n-j}^{(p)}$ is equal to the Stirling-Frobenius cycle number.
- (2) $R_{ij}^{(p)}(n) =$

$$[x^{n-j}]\sharp\left\{\sigma\in G_{p,n}\,\middle|\,\sigma:(x,n,p)\text{-shuffle with }d(\sigma^{-1})=i
ight\}$$

Riffle Shuffle

(-b, n, p)

Miscellaneous

Summan

$$\Sigma := [n] \times \mathbf{Z}_p \ ([n] := \{1, 2, \cdots, n\}), \ \underline{p \in \mathbf{N}}$$

Riffle Shuffle

(-b, n, p)

Miscellaneous

Summan

$$\begin{array}{l} \underline{\Sigma} := [n] \times \mathbf{Z}_p \ ([n] := \{1, 2, \cdots, n\}), \ \underline{p \in \mathbf{N}} \\ \underline{T_q} : \ (i, r) \mapsto (i, r + q), \ (i, r) \in \Sigma : \ q\text{-shift on colors} \end{array}$$

(-b, n, p) -

Miscellaneous

Summan

$$\begin{split} & \boldsymbol{\Sigma} := [n] \times \mathbf{Z}_p \; ([n] := \{1, 2, \cdots, n\}), \, \underline{p} \in \mathbf{N} \\ & \boldsymbol{T}_q : \; (i, r) \mapsto (i, r + q), \; (i, r) \in \boldsymbol{\Sigma} : \; q\text{-shift on colors} \\ & \boldsymbol{G}_{p,n} := \{\sigma : \text{ bijection on } \boldsymbol{\Sigma} \, | \, \sigma \circ \boldsymbol{T}_q = \boldsymbol{T}_q \circ \sigma \}. \end{split}$$

(-b, n, p)

Miscellaneou

Summan

$$\begin{split} & \Sigma := [n] \times \mathbf{Z}_p \; ([n] := \{1, 2, \cdots, n\}), \; \underline{p \in \mathbf{N}} \\ & T_q : \; (i, r) \mapsto (i, r + q), \; (i, r) \in \Sigma : \; q\text{-shift on colors} \\ & G_{p,n} := \{\sigma : \; \text{bijection on} \; \Sigma \, | \, \sigma \circ T_q = T_q \circ \sigma \}. \end{split}$$
 Example $(n = 4, \; p = 3)$:

$$(1,0)$$
 $(2,0)$ $(3,0)$ $(4,0)$

$$(4,1)$$
 $(1,0)$ $(2,2)$ $(3,2)$

Riffle Shuffle

(-b,n,p) - process

Miscellaneou

Summan

$$\begin{split} & \boldsymbol{\Sigma} := [n] \times \mathbf{Z}_p \; ([n] := \{1, 2, \cdots, n\}), \, \underline{p} \in \mathbf{N} \\ & \boldsymbol{T}_q : \; (i, r) \mapsto (i, r + q), \; (i, r) \in \boldsymbol{\Sigma} : \; q\text{-shift on colors} \\ & \boldsymbol{G}_{p,n} := \{\sigma : \text{ bijection on } \boldsymbol{\Sigma} \, | \, \sigma \circ \boldsymbol{T}_q = \boldsymbol{T}_q \circ \sigma \}. \end{split}$$

(-b,n,p) process

Miscellaneous

Summai

Colored Permutation Group

$$\begin{split} & \boldsymbol{\Sigma} := [n] \times \mathbf{Z}_p \ ([n] := \{1, 2, \cdots, n\}), \ \underline{p \in \mathbf{N}} \\ & \boldsymbol{T}_q : \ (i, r) \mapsto (i, r + q), \ (i, r) \in \boldsymbol{\Sigma} : \ q\text{-shift on colors} \\ & \boldsymbol{G}_{p, n} := \{\sigma : \text{ bijection on } \boldsymbol{\Sigma} \,|\, \sigma \circ \boldsymbol{T}_q = \boldsymbol{T}_q \circ \sigma\}. \end{split}$$

This σ is determined by (4,1) (1,0) (2,2) (3,2). so we abuse to write $\sigma = ((4,1),(1,0),(2,2),(3,2))$.

Riffle Shuffle

Colored Permutation Group

$$\begin{split} & \boldsymbol{\Sigma} := [n] \times \mathbf{Z}_p \; ([n] := \{1, 2, \cdots, n\}), \, \underline{p} \in \mathbf{N} \\ & \boldsymbol{T}_q : \; (i, r) \mapsto (i, r + q), \; (i, r) \in \boldsymbol{\Sigma} : \; q\text{-shift on colors} \\ & \boldsymbol{G}_{p,n} := \{\sigma : \text{ bijection on } \boldsymbol{\Sigma} \,|\, \sigma \circ \boldsymbol{T}_q = \boldsymbol{T}_q \circ \sigma\}. \end{split}$$

Example
$$(n = 4, p = 3)$$
:
 $(1,0) (2,0) (3,0) (4,0)$ $(1,1) (3,1)$

$$\boxed{} \boxed{} \boxed{\phantom{$$

This σ is determined by (4,1) (1,0) (2,2) (3,2). so we abuse to write $\sigma = ((4, 1), (1, 0), (2, 2), (3, 2)).$

In general, setting $(\sigma(i), \sigma^c(i)) := \sigma(i, 0) \in \Sigma$, $i = 1, 2, \dots, n$.

Colored Permutation Group

$$\begin{split} & \boldsymbol{\Sigma} := [n] \times \mathbf{Z}_p \; ([n] := \{1, 2, \cdots, n\}), \, \underline{p} \in \mathbf{N} \\ & \boldsymbol{T}_q : \; (i, r) \mapsto (i, r + q), \; (i, r) \in \boldsymbol{\Sigma} : \; q\text{-shift on colors} \\ & \boldsymbol{G}_{p,n} := \{\sigma : \text{ bijection on } \boldsymbol{\Sigma} \, | \, \sigma \circ \boldsymbol{T}_q = \boldsymbol{T}_q \circ \sigma \}. \end{split}$$

Example
$$(n = 4, p = 3)$$
:

$$\boxed{} \boxed{} \boxed{\phantom{$$

$$(4,2)$$
 $(2,0)$

This σ is determined by (4,1) (1,0) (2,2) (3,2). so we abuse to write $\sigma = ((4, 1), (1, 0), (2, 2), (3, 2)).$

In general, setting
$$(\sigma(i), \sigma^c(i)) := \sigma(i, 0) \in \Sigma$$
, $i = 1, 2, \dots, n$, we write $\sigma = ((\sigma(1), \sigma^c(1)), (\sigma(2), \sigma^c(2)), \dots, (\sigma(n), \sigma^c(n)))$.

(b, n, p)

Riffle Shuffle

(-b, n, p) process

Miscellaneous

Аррисаціон

Summary

Descent on $G_{p,n}$

(1) Define a ordering on Σ

$$(1,0) < (2,0) < \dots < (n,0)$$

$$<(1,p-1) < (2,p-1) < \dots < (n,p-1)$$

$$<(1,p-2) < (2,p-2) < \dots < (n,p-2)$$

$$\dots$$

$$<(1,1) < \dots < (n,1).$$

(-b,n,p) process

Miscellaneous

Summary

Descent on $G_{p,n}$

(1) Define a ordering on Σ

$$(1,0) < (2,0) < \dots < (n,0)$$

$$<(1,p-1) < (2,p-1) < \dots < (n,p-1)$$

$$<(1,p-2) < (2,p-2) < \dots < (n,p-2)$$

$$\dots$$

$$<(1,1) < \dots < (n,1).$$

(2) " $\sigma \in G_{p,n}$ has a descent at i "

$$\stackrel{def}{\Longleftrightarrow} \text{(i) } (\sigma(i), \sigma^c(i)) > (\sigma(i+1), \sigma^c(i+1)) \text{ (for } 1 \leq i \leq n-1)$$

$$\stackrel{\text{(ii) }}{\Longrightarrow} \sigma^c(n) \neq 0 \text{ (for } i=n).$$

Miscellaneous

Application

Summary

Descent on $G_{p,n}$

(1) Define a ordering on Σ

$$(1,0) < (2,0) < \dots < (n,0)$$

 $<(1,p-1) < (2,p-1) < \dots < (n,p-1)$
 $<(1,p-2) < (2,p-2) < \dots < (n,p-2)$
 \dots
 $<(1,1) < \dots < (n,1).$

(2) " $\sigma \in G_{p,n}$ has a descent at i"

$$\stackrel{def}{\Longleftrightarrow} \text{(i) } (\sigma(i), \sigma^c(i)) > (\sigma(i+1), \sigma^c(i+1)) \text{ (for } 1 \leq i \leq n-1)$$

$$\text{(ii) } \sigma^c(n) \neq 0 \text{ (for } i=n).$$

(3) $d(\sigma)$: the number of descents of σ .

Ex.
$$(p=3)$$
: $d((5,0) \times (3,0) \nearrow (2,1) \times (4,2) \nearrow (1,1) \times)=3$

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introduc

Amazing

(b, n, p)

Riffle Shuffle

(-b, n, p)

Miscellaneou

_

Generalized Riffle Shuffle

 $\begin{array}{l} n \ {\rm cards} \\ {\rm with} \ p \ {\rm colors} \end{array}$

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

.

(b, n, p)

Riffle Shuffle

(-b, n, p)

Miscellaneou

Cummar

Generalized Riffle Shuffle

 $\begin{array}{l} n \ {\rm cards} \\ {\rm with} \ p \ {\rm colors} \end{array}$

b-piles by multinomial

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

.

(b, n, p)

Riffle Shuffle

(-b, n, p)

Miscellaneou

Summar

Generalized Riffle Shuffle

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introductio

....

Amazing

(b, n, p)

Riffle Shuffle

(-b, n, p)

iviiscellaneous

Summar

Generalized Riffle Shuffle

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introducti

Amazing

(b, n, p) process

Riffle Shuffle

(-b, n, p) - process

iviiscellaneous

Summan

Generalized Riffle Shuffle

This process defines a Markov chain $\{\sigma_r\}_{r=0}^{\infty}$ on $G_{p,n}$. (called the (b,n,p)-shuffle)

(b, n, p)

Riffle Shuffle

(-b, n, p)

Miscellaneou

Carries Process and Riffle Shuffle

$$p \in \mathbf{N}, b \equiv 1 \pmod{p}$$

 $\{C_r\}_{r=1}^{\infty} : (b, n, p) - \text{process}$

(b, n, p) process

Riffle Shuffle

(-b, n, p) -

Miscellaneous

_

Carries Process and Riffle Shuffle

```
p \in \mathbf{N}, b \equiv 1 \pmod{p}
\{C_r\}_{r=1}^{\infty} : (b, n, p) - process
\{\sigma_r\}_{r=1}^{\infty} : (b, n, p) - shuffle
```

(-b, n, p)

Miscellaneou

Summan

Carries Process and Riffle Shuffle

$$p \in \mathbf{N}, b \equiv 1 \pmod{p}$$

 $\{C_r\}_{r=1}^{\infty} : (b, n, p)$ - process
 $\{\sigma_r\}_{r=1}^{\infty} : (b, n, p)$ - shuffle

Theorem 3

$$\{C_r\} \stackrel{d}{=} \{d(\sigma_r)\}$$

Summa

Carries Process and Riffle Shuffle

$$p \in \mathbf{N}, b \equiv 1 \pmod{p}$$

 $\{C_r\}_{r=1}^{\infty} : (b, n, p)$ - process
 $\{\sigma_r\}_{r=1}^{\infty} : (b, n, p)$ - shuffle

Theorem 3

$$\{C_r\} \stackrel{d}{=} \{d(\sigma_r)\}$$

Remarks

(1) Theorem 3 explains why the descent statistics of $G_{p,n}$ appears in the stationary distribution of (b, n, p) - process.

Summa

Carries Process and Riffle Shuffle

$$p \in \mathbf{N}, b \equiv 1 \pmod{p}$$

 $\{C_r\}_{r=1}^{\infty} : (b, n, p) - \text{process}$
 $\{\sigma_r\}_{r=1}^{\infty} : (b, n, p) - \text{shuffle}$

Theorem 3

$${C_r} \stackrel{d}{=} {d(\sigma_r)}$$

Remarks

- (1) Theorem 3 explains why the descent statistics of $G_{p,n}$ appears in the stationary distribution of (b, n, p) process.
- (2) By Theorem 3, $\{d(\sigma_r)\}_r$ turns out to be a Markov chain.

(-b, n, p) -

Miscellaneou

Summan

What about (-b)-case ?

Any $x \in \mathbf{Z}$ can be expanded uniquely as

$$x = a_n(-b)^n + a_{n-1}(-b)^{n-1} + \dots + a_0,$$

$$a_k \in \{d, d+1, \dots, d+b-1\}.$$

(b, n, p]

Riffle Shuffl

(-b,n,p) - process

Miscellaneous

Summan

What about (-b)-case ?

Any $x \in \mathbf{Z}$ can be expanded uniquely as

$$x = a_n(-b)^n + a_{n-1}(-b)^{n-1} + \dots + a_0,$$

$$a_k \in \{d, d+1, \dots, d+b-1\}.$$

 \implies a notion of carries process using (-b)-expansion

Summar

What about (-b)-case ?

Any $x \in \mathbf{Z}$ can be expanded uniquely as

$$x = a_n(-b)^n + a_{n-1}(-b)^{n-1} + \dots + a_0,$$

$$a_k \in \{d, d+1, \dots, d+b-1\}.$$

 \Longrightarrow a notion of carries process using $(-b)\mbox{-expansion}$

 \implies (-b, n, p) - process (by a change of variable)

Summary

What about (-b)-case ?

Any $x \in \mathbf{Z}$ can be expanded uniquely as

$$x = a_n(-b)^n + a_{n-1}(-b)^{n-1} + \dots + a_0,$$

$$a_k \in \{d, d+1, \dots, d+b-1\}.$$

- \Longrightarrow a notion of carries process using $(-b)\mbox{-expansion}$
- \implies (-b, n, p) process (by a change of variable)
- \Longrightarrow E-values of $\tilde{P}_{-b} = \left\{1, \left(-\frac{1}{b}\right), \left(-\frac{1}{b}\right)^2, \cdots, \right\}$

What about (-b)-case ?

Any $x \in \mathbf{Z}$ can be expanded uniquely as

$$x = a_n(-b)^n + a_{n-1}(-b)^{n-1} + \dots + a_0,$$

$$a_k \in \{d, d+1, \dots, d+b-1\}.$$

 \Longrightarrow a notion of carries process using $(-b)\mbox{-expansion}$

$$\implies$$
 $(-b, n, p)$ - process (by a change of variable)

$$\implies$$
 E-values of $\tilde{P}_{-b} = \left\{1, \left(-\frac{1}{b}\right), \left(-\frac{1}{b}\right)^2, \cdots, \right\}$

$$\Longrightarrow$$
 E-vectors of \tilde{P}_{-b} : $L_{-}=L_{+}$, $R_{-}=R_{+}$.

Riffle Shuffl

(-b, n, p) -

Miscellaneous

Summan

Dash - Descent on $G_{p,n}$

(1) " Dash - order " <' on Σ :

$$(1,0) <' (2,0) <' \cdots <' (n,0)$$
 $<' (1,1) <' (2,1) <' \cdots <' (n,1)$
 $<' \cdots$
 $<' (1,p-1) <' (2,p-1) <' \cdots <' (n,p-1)$

(b, n, p) process

Riffle Shuffl

(-b,n,p) - process

Miscellaneous

Summary

Dash - Descent on $G_{p,n}$

(1) " Dash - order " <' on Σ :

$$(1,0) <' (2,0) <' \cdots <' (n,0)$$
 $<' (1,1) <' (2,1) <' \cdots <' (n,1)$
 $<' \cdots$
 $<' (1,p-1) <' (2,p-1) <' \cdots <' (n,p-1)$

(2) " $\sigma \in G_{p,n}$ has a <u>dash-descent</u> at i "

$$\stackrel{def}{\iff} \text{(i) } (\sigma(i), \sigma^c(i)) >' (\sigma(i+1), \sigma^c(i+1)) \text{ } (1 \leq i \leq n-1)$$

$$\text{(ii) } \sigma^c(n) = p-1 \text{ } (i=n).$$

(-b, n, p) process

Miscellaneous

Summary

Dash - Descent on $G_{p,n}$

(1) " Dash - order " <' on Σ :

$$(1,0) <' (2,0) <' \cdots <' (n,0)$$
 $<' (1,1) <' (2,1) <' \cdots <' (n,1)$
 $<' \cdots$
 $<' (1,p-1) <' (2,p-1) <' \cdots <' (n,p-1)$

(2) " $\sigma \in G_{p,n}$ has a dash-descent at i "

$$\stackrel{def}{\iff} \text{(i) } (\sigma(i), \sigma^c(i)) >' (\sigma(i+1), \sigma^c(i+1)) \text{ } (1 \le i \le n-1)$$

$$\text{(ii) } \sigma^c(n) = p-1 \text{ } (i=n).$$

(3) $d'(\sigma)$: the number of dash-descents of $\sigma \in G_{p,n}$.

(-b,n,p) - process

Miscellaneous

Application

Summary

Dash - Descent on $G_{p,n}$

(1) " Dash - order " <' on Σ :

$$(1,0) <' (2,0) <' \cdots <' (n,0)$$

 $<' (1,1) <' (2,1) <' \cdots <' (n,1)$
 $<' \cdots$
 $<' (1,p-1) <' (2,p-1) <' \cdots <' (n,p-1)$

(2) " $\sigma \in G_{p,n}$ has a dash-descent at i "

$$\stackrel{def}{\iff} \text{(i) } (\sigma(i), \sigma^c(i)) >' (\sigma(i+1), \sigma^c(i+1)) \text{ (} 1 \leq i \leq n-1 \text{)}$$

$$\text{(ii) } \sigma^c(n) = p-1 \text{ (} i=n \text{)}.$$

(3) $d'(\sigma)$: the number of dash-descents of $\sigma \in G_{p,n}$.

$$d(\sigma) = d'(\sigma)$$
 for $p = 1$, $E'_n(n, k) = E_n(n, n - k)$.

(-b, n, p) -

(-b, n, p) process

iviiscellalieous

Summary

Dash - Descent on $G_{p,n}$

(1) " Dash - order " <' on Σ :

$$(1,0) <' (2,0) <' \cdots <' (n,0)$$

 $<' (1,1) <' (2,1) <' \cdots <' (n,1)$
 $<' \cdots$
 $<' (1,p-1) <' (2,p-1) <' \cdots <' (n,p-1)$

(2) " $\sigma \in G_{p,n}$ has a dash-descent at i "

$$\stackrel{def}{\iff} \text{(i) } (\sigma(i), \sigma^c(i)) >' (\sigma(i+1), \sigma^c(i+1)) \text{ (} 1 \leq i \leq n-1 \text{)}$$

$$\text{(ii) } \sigma^c(n) = p-1 \text{ (} i=n \text{)}.$$

(3) $d'(\sigma)$: the number of dash-descents of $\sigma \in G_{p,n}$.

$$d(\sigma) = d'(\sigma)$$
 for $p = 1$, $E'_p(n, k) = E_p(n, n - k)$.
Ex. $(p = 3)$ $d((5, 0))(3, 0) \nearrow (2, 1)(4, 2) \nearrow (1, 1) = 3$, $d'((5, 0))(3, 0) \nearrow (2, 1)\nearrow (4, 2)(1, 1) = 2$.

(h n n)

process

Riffle Shuff

(-b, n, p) -

Miscellaneou

Summan

Shuffles for (-b, n, p) - process

$$p \in \mathbf{N}$$
 , $(-b) \equiv 1 \pmod{p}$ $\{C_r^-\}_{r=1}^{\infty}$: $(-b,n,p)$ - process

(b, n, p)

Riffle Shuffl

(-b, n, p) process

Miscellaneou

Summan

Shuffles for (-b, n, p) - process

$$\begin{split} & p \in \mathbf{N}\text{, } (-b) \equiv 1 \pmod{p} \\ & \{C_r^-\}_{r=1}^{\infty} : (-b, n, p) \text{ - process} \\ & \{\sigma_r\}_{r=1}^{\infty} : (+b, n, p) \text{-shuffle} \\ & \mathbf{d}_r^- := \left\{ \begin{array}{ll} n - d'(\sigma_r) & (r: \text{ odd }) \\ d(\sigma_r) & (r: \text{ even }) \end{array} \right. \end{split}$$

Riffle Shuffl

(-b, n, p) - process

Miscellaneous

Summar

Shuffles for (-b, n, p) - process

$$\begin{split} & p \in \mathbf{N}\text{, } (-b) \equiv 1 \pmod{p} \\ & \{C_r^-\}_{r=1}^{\infty} : (-b, n, p) \text{ - process} \\ & \{\sigma_r\}_{r=1}^{\infty} : (+b, n, p) \text{-shuffle} \\ & \underline{d_r^-} := \left\{ \begin{array}{ll} n - d'(\sigma_r) & (r: \text{ odd }) \\ d(\sigma_r) & (r: \text{ even }) \end{array} \right. \end{split}$$

Theorem 4

$$\{C_r^-\}_r \stackrel{d}{=} \{d_r^-\}_r$$

iviiscenaneou.

Summai

Shuffles for (-b, n, p) - process

$$\begin{split} p \in \mathbf{N}, & (-b) \equiv 1 \pmod{p} \\ \{C_r^-\}_{r=1}^\infty : (-b, n, p) \text{ - process} \\ \{\sigma_r\}_{r=1}^\infty : (+b, n, p) \text{-shuffle} \\ \\ \frac{\mathbf{d}_r^-}{d} := \left\{ \begin{array}{ll} n - d'(\sigma_r) & (r: \text{ odd }) \\ d(\sigma_r) & (r: \text{ even }) \end{array} \right. \end{split}$$

Theorem 4

$$\{C_r^-\}_r \stackrel{d}{=} \{d_r^-\}_r$$

Remark.

 $\{d_r^-\}_r$ turns out to be a Markov chain.

Amazing

(b, n, p)

Riffle Shuffl

(-b, n, p)

Miscellaneous

Summan

Description by the group algebra

$$\Theta_i := \sum_{d(\sigma^{-1})=i} \sigma \in \mathbf{C}[G_{p,n}]$$

Miscellaneous

Description by the group algebra

$$\Theta_i := \sum_{d(\sigma^{-1})=i} \sigma \in \mathbf{C}[G_{p,n}]$$

 $P_{shuffle}$: the trans. prob. matrix of the (b, n, p) - shuffle.

Summary

Description by the group algebra

$$\Theta_i := \sum_{d(\sigma^{-1})=i} \sigma \in \mathbf{C}[G_{p,n}]$$

 $P_{shuffle}$: the trans. prob. matrix of the (b,n,p) - shuffle.

Theorem 4

(1) E-values of $P_{shuffle} = \left\{1, \frac{1}{b}, \cdots, \frac{1}{b^n}\right\}$.

Description by the group algebra

$$\Theta_i := \sum_{d(\sigma^{-1})=i} \sigma \quad \in \mathbf{C}[G_{p,n}]$$

 $P_{shuffle}$: the trans. prob. matrix of the (b,n,p) - shuffle.

Theorem 4

- (1) E-values of $P_{shuffle} = \left\{1, \frac{1}{b}, \cdots, \frac{1}{b^n}\right\}$.
- (2) E-space corr. to $b^{-j} = RanL(E_j)$, $E_j = \sum_i R_{ij}\Theta_i$

Description by the group algebra

$$\Theta_i := \sum_{d(\sigma^{-1})=i} \sigma \in \mathbf{C}[G_{p,n}]$$

 $P_{shuffle}$: the trans. prob. matrix of the (b,n,p) - shuffle.

Theorem 4

- (1) E-values of $P_{shuffle} = \{1, \frac{1}{b}, \cdots, \frac{1}{b^n}\}.$
- (2) E-space corr. to $b^{-j}=RanL(E_j), E_j=\sum_i R_{ij}\Theta_i$ with multiplicitiy $=trL(E_j)=R_{0,j}p^nn!$ (=Stirling Frobenius cycle number)

L: the left regular representation of $G_{p,n}$ on $\mathbf{C}[G_{p,n}]$.

Riffle Shuffl

(-b, n, p)

Miscellaneous

Summary

Define e_0, \cdots, e_n such that

$$\sum_{i} {n + \frac{x-1}{p} - i \choose n} \Theta_{i} = \sum_{k=0}^{n} x^{n-k} e_{n-k}$$

Summary

Define e_0, \cdots, e_n such that

$$\sum_{i} \binom{n + \frac{x-1}{p} - i}{n} \Theta_i = \sum_{k=0}^{n} x^{n-k} e_{n-k}$$

Theorem 5

$$\Theta_i = \sum_k L_{ki} e_{n-k}, \quad e_{n-k} = \sum_i R_{ik} \Theta_i$$

(b,n,p) process

Riffle Shuffl

(-b, n, p) process

Miscellaneous

Summan

Cut off

Let Q : distribution of (b,n,p)-shuffle on ${\cal G}_{p,n}$, and

$$m := \frac{3}{2} \log_b n + \log_b c,$$

$$\Phi(a) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-\frac{x^2}{2}} dx.$$

Fumihiko NAKANO, Taizo SADAHIRO

Introduct

(b, n, p)

Riffle Shuffle

(-b, n, p) - process

Miscellaneous

Summary

Cut off

Let Q: distribution of (b,n,p)-shuffle on $G_{p,n}$, and

$$\begin{split} m &:= \frac{3}{2} \log_b n + \log_b c, \\ \Phi(a) &:= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-\frac{x^2}{2}} dx. \end{split}$$

Theorem 6

$$||Q^m - \mathsf{Unif.}||_{TV} = 1 - 2\Phi\left(-\frac{p}{4\sqrt{3}c}\right) + O(n^{-\frac{1}{2}})$$

Remark

$$1 - 2\Phi\left(-\frac{p}{4\sqrt{3}c}\right) \sim \left\{\begin{array}{cc} \frac{p}{2c\sqrt{6\pi}} & (c \to \infty) \\ 1 - \frac{4c\sqrt{3}}{p\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(\frac{-p}{4c\sqrt{3}}\right)^2\right\} & (c \to 0) \end{array}\right.$$

(b, n, p)

Riffle Shuffl

(-b, n, p)

Miscellaned

Application

Summar

Limit Theorem

For any $p \ge 1$, and for $n \ge 2$, $k = 0, 1, \dots, n$, let

$$\left\langle \begin{array}{c} n \\ k \end{array} \right\rangle_p := \left[x^k \right] \left(A_{p,n}(x) \right)$$

Riffle Shuffle

(-b, n, p)

Application

Summar

Limit Theorem

For any $p \ge 1$, and for $n \ge 2$, $k = 0, 1, \dots, n$, let

$$\left\langle \begin{array}{c} n \\ k \end{array} \right\rangle_p := \left[x^k \right] \left(A_{p,n}(x) \right)$$

Let Y_1, \dots, Y_n be the independent, uniformly distributed r.v.'s on [0,1],

Miscellaned

Application

Summar

Limit Theorem

For any $p \ge 1$, and for $n \ge 2$, $k = 0, 1, \dots, n$, let

$$\left\langle \begin{array}{c} n \\ k \end{array} \right\rangle_p := \left[x^k \right] \left(A_{p,n}(x) \right)$$

Let Y_1,\cdots,Y_n be the independent, uniformly distributed r.v.'s on [0,1], and let $S_n:=Y_1+\cdots+Y_n.$

Limit Theorem

For any p > 1, and for n > 2, $k = 0, 1, \dots, n$, let

$$\left\langle \begin{array}{c} n \\ k \end{array} \right\rangle_p := \left[x^k \right] \left(A_{p,n}(x) \right)$$

Let Y_1, \dots, Y_n be the independent, uniformly distributed r.v.'s on [0, 1], and let $S_n := Y_1 + \cdots + Y_n$.

Theorem 5

$$\mathbf{P}\left(S_n\in\frac{1}{p}+[k-1,k]\right)=\left\langle\begin{array}{c}n\\k\end{array}\right\rangle_p(p^nn!)^{-1}$$
 for $k=0,1,\cdots,n.$

Matrix

process

Riffle Shuffl

(-b, n, p)

Application Application

Summan

(1)
$$n = 3$$
, $p = 1$: (Eulerian number)

(b, n, p)

Riffle Shuffl

(-b, n, p)

Application Application

Summan

Riffle Shuffl

(-b, n, p)

Application Application

Summan

(1)
$$n = 3$$
, $p = 1$: (Eulerian number)
$$1 \qquad 1 \qquad 4 \qquad \times \frac{1}{3}$$

Riffle Shuffl

(-b, n, p)

Application Application

Summar

(1)
$$n=3$$
, $p=1$: (Eulerian number)
$$1 \qquad 1 \qquad 4 \qquad 1 \qquad 3 \qquad \times \frac{1}{5}$$

Riffle Shuffle

(-b, n, p) - process

Application

Summary

(1)
$$n = 3$$
, $p = 1$: (Eulerian number)

(2)
$$n = 3$$
, $p = 2$: (Macmahon number)

(b,n,p)process

Riffle Shuffle

(-b,n,p) - process

Application

Summary

(1)
$$n = 3$$
, $p = 1$: (Eulerian number)

(2)
$$n=3$$
, $p=2$: (Macmahon number)

(b, n, p)

Riffle Shuffl

(-b, n, p) - process

Application

Summary

(2)
$$n = 3$$
, $p = 2$: (Macmahon number)

Riffle Shuffle

(-b,n,p) - process

Application Application

Summary

(1)
$$n = 3$$
, $p = 1$: (Eulerian number)
$$1 \qquad 1 \qquad 4 \qquad 1 \qquad 3 \qquad \times \frac{1}{3!}$$

(2)
$$n = 3$$
, $p = 2$: (Macmahon number)

Riffle Shuffle

(-b, n, p) - process

Application

Summary

(1)
$$n = 3$$
, $p = 1$: (Eulerian number)
$$1 \qquad 1 \qquad 4 \qquad 1 \qquad 3 \qquad \times \frac{1}{3!}$$

(2)
$$n = 3$$
, $p = 2$: (Macmahon number)

Amazing

(b, n, p)

Riffle Shuffl

(-b, n, p)

Miscellaned

Application

Summar

Idea of Proof

Application

Summar

Idea of Proof

Carry	C_k	C_{k-1}		C_1	C_0	
Addend	S	$X_{1,k}$		$X_{1,2}$	$X_{1,1}$	$=X_1^{(k)}$
		:		÷	:	:
		$X_{m,k}$		$X_{m,2}$	$X_{m,1}$	$=X_m^{(k)}$
Sum		S_k	• • •	S_2	S_1	

Application

Summary

Idea of Proof

Since
$$X_i^{(k)} \overset{k \to \infty}{\to} X_i'$$
, $X_1^{(k)} + \dots + X_m^{(k)} \overset{k \to \infty}{\to} S_m'$.

Riffle Shuffl

(-b, n, p) process

Application

Summary

Idea of Proof

Since
$$X_i^{(k)} \overset{k \to \infty}{\to} X_i'$$
, $X_1^{(k)} + \dots + X_m^{(k)} \overset{k \to \infty}{\to} S_m'$.

$$\mathbf{P}(C_k = j) = \mathbf{P}(X_1^{(k)} + \dots + X_m^{(k)} \in [l, l+1] + j)$$

Riffle Shuffle

(-b, n, p) process

Application

Summary

Idea of Proof

Let X_1', \dots, X_m' be independent, uniformly distributed r.v.'s on [l, l+1], and let $S_m' := X_1' + \dots + X_m'$.

Since $X_i^{(k)} \stackrel{k \to \infty}{\to} X_i'$, $X_1^{(k)} + \dots + X_m^{(k)} \stackrel{k \to \infty}{\to} S_m'$.

$$\mathbf{P}(C_k = j) = \mathbf{P}(X_1^{(k)} + \dots + X_m^{(k)} \in [l, l+1] + j)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\pi(j) \quad \mathbf{P}(S_m' \in [l, l+1] + j)$$

(b, n, p)

Riffle Shuffl

(-b, n, p)

Miscellaneous

Summary

Summary

[1] We study the generalization of the carries process $\{\kappa_r\}_r$, called $(\pm b, n, p)$ - process, and derived the left/right eigenvectors of its transition probability matrix.

(b, n, p)

Riffle Shuffle

(-b, n, p)

Miscellaneous

Summary

Summary

[1] We study the generalization of the carries process $\{\kappa_r\}_r$, called $(\pm b, n, p)$ - process, and derived the left/right eigenvectors of its transition probability matrix.

For $p \in \mathbf{N}$,

(1) Stationary distribution gives the descent statistics of $G_{p,n}$

Miscellaneou

Summary

Summary

[1] We study the generalization of the carries process $\{\kappa_r\}_r$, called $(\pm b, n, p)$ - process, and derived the left/right eigenvectors of its transition probability matrix.

- (1) Stationary distribution gives the descent statistics of $G_{p,n}$
- (2) Left eigenvector matrix is equal to the Foulkes character table of ${\cal G}_{p,n}$

Summary

Summary

[1] We study the generalization of the carries process $\{\kappa_r\}_r$, called $(\pm b, n, p)$ - process, and derived the left/right eigenvectors of its transition probability matrix.

- (1) $\overline{\mathsf{Station}}$ distribution gives the descent statistics of $G_{p,n}$
- (2) Left eigenvector matrix is equal to the Foulkes character table of ${\cal G}_{p,n}$
- (3) Stirling Frobenius cycle number and the number of (b,n,p)-shuffles appear in the right eigenvector matrix

iviisceiianeous

Summary

Summary

[1] We study the generalization of the carries process $\{\kappa_r\}_r$, called $(\pm b, n, p)$ - process, and derived the left/right eigenvectors of its transition probability matrix.

- (1) Stationary distribution gives the descent statistics of $G_{p,n}$
- (2) Left eigenvector matrix is equal to the Foulkes character table of ${\cal G}_{p,n}$
- (3) Stirling Frobenius cycle number and the number of (b,n,p)-shuffles appear in the right eigenvector matrix
- [2] We consider a generalization of riffle shuffle $\{\sigma_r\}$ on $G_{p,n}$, called (b,n,p) shuffle, for $p \in \mathbf{N}$.

Summary

[1] We study the generalization of the carries process $\{\kappa_r\}_r$, called $(\pm b, n, p)$ - process, and derived the left/right eigenvectors of its transition probability matrix.

- (1) $\overline{\mathsf{Station}}$ distribution gives the descent statistics of $G_{p,n}$
- (2) Left eigenvector matrix is equal to the Foulkes character table of ${\cal G}_{p,n}$
- (3) Stirling Frobenius cycle number and the number of (b,n,p)-shuffles appear in the right eigenvector matrix
- [2] We consider a generalization of riffle shuffle $\{\sigma_r\}$ on $G_{p,n}$, called (b,n,p) shuffle, for $p \in \mathbf{N}$.
- (4) $\{\kappa_r\}_r \stackrel{d}{=} \{d(\sigma_r)\}_r$ or $\stackrel{d}{=} \{d_r^-\}_r$, which explains (1).

Summary

[1] We study the generalization of the carries process $\{\kappa_r\}_r$, called $(\pm b, n, p)$ - process, and derived the left/right eigenvectors of its transition probability matrix.

- (1) Stationary distribution gives the descent statistics of $G_{p,n}$
- (2) Left eigenvector matrix is equal to the Foulkes character table of ${\cal G}_{p,n}$
- (3) Stirling Frobenius cycle number and the number of (b,n,p)-shuffles appear in the right eigenvector matrix
- [2] We consider a generalization of riffle shuffle $\{\sigma_r\}$ on $G_{p,n}$, called (b,n,p) shuffle, for $p \in \mathbf{N}$.
- (4) $\{\kappa_r\}_r \stackrel{d}{=} \{d(\sigma_r)\}_r$ or $\stackrel{d}{=} \{d_r^-\}_r$, which explains (1).
- [3] for $p \notin \mathbf{N}$, no combinatorial meaning is known so far...

Riffle Shuffl

(-b, n, p)

Wiscellaneou

Application

Summary

References

- [1] Nakano, F., and Sadahiro, T., A generalization of carries process and Eulerian numbers, Adv. in Appl. Math., **53**(2014), 28-43.
- [2] Nakano, F., and Sadahiro, T., A generalization of carries process and riffle shuffles, Disc. Math. **339**(2016), 974-991.
- [3] Fujita, T., Nakano, F., and Sadahiro, T., A generalization of carries process, DMTCS proc. **AT**(2014), 61-70.
- [4] Nakano, F., and Sadahiro, T., in preparation.