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Plan

Tuesday

e Introduce & enumerate
— Alternating sign matrices (ASMs)
— Alternating sign triangles (ASTSs)
— Descending plane partitions (DPPs)
— Totally symmetric self-complementary plane partitions (TSSCPPs)

— Double-staircase semistandard Young tableaux

Today

e Discuss refined enumeration of ASMs with
— Fixed values of statistics

— Invariance under symmetry operations

e Sketch proofs for enumerations of
— Unrestricted ASMs
— (Odd-order diagonally & antidiagonally symmetric ASMs



The story so far

Introduced 4 combinatorial objects:

e nxn alternating sign matrices (ASMs)

e.g. Thereare 7 3x3 ASMs:
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e Order n alternating sign triangles (ASTSs)
e.d. There are 7 order 3 ASTs:
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e Order n descending plane partitions (DPPs)
e.g. There are 7 order 3 DPPs:

0, 2, 3, 31, 32, 33, 33
2

e Totally symmetric self-complementary plane partitions in a 2nx2n x2n box
e.g. There are are 7 TSSCPP in a 6x6x6 box:




Also considered

SSYT((n—1,n-1,...,2,2,1,1),2n)

SSYT((2n—2,2n—4,...,6,4,2),n)

=SSYT((n—-1,n-1,...,2,2,1,1),2n) /3""1)/2

where SSYT(\ k) = (

# of semistandard Young tableaux of
shape M\ with entries from {1,2,...,k})

e (n—1,n—-1,...,2,2,1,1) & (2n—-2,2n—4,...,6,4,2) are conjugate partitions of

double-staircase shape.

e.g. for n = 3:

SSYT((2,2,1,1),6)

SSYT((4,2),3)

= SSYT <

,6) /SSYT(

,3) = 189/3° =189/27 =7



Main result

e T he following are all equal
— # of nxn ASMs
— #£ of order n ASTs
— # of order n DPPs
— #£ of TSSCPPs in 2nx2nx2n box
— SSYT((n—1,n—1,...,2,2,1,1),2n) /37n-1)/2

n—1
T Bit1)!
EO (n+3)!

e Several of the equalities were conjectured long before being proved.

e NO bijective proofs currently known for equality involving any of the pairs
of combinatorial objects.



Refined Enumeration

e Many further results and conjectures are known for #'s of ASMs, ASTSs,
DPPs or TSSCPPs with fixed values of statistics and/or invariance under

symmetry operations.

e An example involving statistics is equality of all the following:
n—2

_ (n+k—-—1)'2n—k—2)! H (314 1)!
E'(n—k—-1) (2n —2)! izo(n—i—z’—l)!
— # of nxn ASMs with the 1 of the first row in column k£ + 1

— # of order n ASTs with (# of 1's on left boundary)
+ (# of 0's on right boundary in columns with sum 1) = k41

— # of order n DPPs with k£ parts equal to n

— # of TSSCPPs in 2nx2nx2n box with k£ “maximal”’ entries in
“fundamental region”

(Mills, Robbins, Rumsey 1982; Zeilberger 1996;
Razumov, Stroganov, Zinn-Justin 2007; Fischer)

e Again, several of the equalities were conjectured long before being proved.

e Again, no bijective proofs currently known.



e An example involving symmetry operations is equality of all the following:
3 ﬁ (67 —2)!
bl (2n—+27)!
— # of (2n+1)x(2n—+1) vertically symmetric ASMs
— # of 2nx2n diagonally symmetric ASMs with only 0's on diagonal

— #£ of order 2n + 1 vertically symmetric ASTs

— # of order 2n + 1 DPPs whose associated rhombus tiling is invariant under
reflection in a line bisecting two sides of hexagon

— # of TSSCPPs in (4n+4+2)x(4n+2) x (4n+2) box invariant under certain
composition of local involutions

(Mills, Robbins, Rumsey 1987; Kuperberg 2002; Ishikawa 2006, RB, Fischer)
e Again, several of the equalities were conjectured long before being proved.

e Again, no bijective proofs currently known.



e C.J.

“Classical” ASM Statistics

For an nxn ASM A

e Bulk statistics:
Minus(A):= # of —1'sin A

InV(A) '= ) 1<icicn Aij Aivy = Zﬁjzl(Z?:l Aij’)(zz;ll A

1<5'<j<n
= #£ of “inversions” in A

e Boundary statistics:
TOP(A) := column of the 1 in top row of A
RIGHT(A):
BOTTOM(A):
LEFT(A):= row of the 1 in left-most column of A

row of the 1 in right-most column of A

column of the 1 in bottom row of A

i’j)

0 0 0 1 00y
01 0-110
4_|1-11 000
— oo o100
01 0-101
000 1 00/

= Minus(A) =3, Inv(A) =5,

TOP(A) =4, RIGHT(A) =5, BOTTOM(A) =4, LEFT(A) =3




e Enumerative results for n x n ASMs with fixed values of classical statistics:
— Minus: Le Gac 2011
— Inv: RB 2008
— TOP: Zeilberger 1996
— TOP & BOTTOM: Colomo, Pronko 2005; Stroganov 2006
— TOP & LEFT: Stroganov 2006
— Minus, Inv & TOP: RB, Di Francesco, Zinn—Justin 2012
— Minus, Inv, TOP & BOTTOM: RB, Di Francesco, Zinn—Justin 2013
— TOP, BOTTOM, LEFT & RIGHT: Ayyer, Romik 2013
— Minus, Inv, TOP, BOTTOM, LEFT & RIGHT: RB 2013

e In some, but not all cases, statistics with same enumerative properties as classical ASM
statistics are known for ASTs, DPPs or TSSCPPs.

e T his already seen for TOP, for which statistics are known for ASTs, DPPs & TSSCPPs.

e For each of ASTs & DPPs (but not TSSCPPs) two statistics are known which have
the same joint enumerative properties as Minus & Inv for ASMs.
(RB, Di Francesco, Zinn-Justin 2012; Ayyer, RB, Fischer 2016)

e Another important example of refined enumeration is # of nxn ASMs whose associated
“fully packed loop configuration” has a fixed “link pattern’.
(Razumov, Stroganov 2004; Cantini, Sportiello 2011)



ASM Symmetry Classes

Symmetry group of square is dihedral group D4 ={Z, V, H, D, A, Ry/2, Rr, R3z/2},
with Z = identity,

V, H, D, A = reflection in vertical, horizontal, diagonal, antidiagonal axes,

Rr/2, Rx, Rar/2 = counterclockwise quarter-turn, half-turn, three-quarter turn rotation.

D4 has 10 subgroups: {Z}, {Z,V} = {Z,H}, {Z,V,H, R}, {Z,Rr}, {Z,Rr/2RrsR3r/2},
{Z,D, A, R} {Z,D}~{Z, A} & Das (where = is conjugacy).

D4 has natural action on set of n x n ASMSs.

Consider # of n x n ASMSs invariant under action of a subgroup of Dy.
Gives 8 symmetry classes:
1. Unrestriced {Z}: product formula known (Kuperberg 1996, Zeilberger 1996)

2. Vertically symmetric {Z,V}: n even empty;
n odd product formula known (Kuperberg 2002)

3. Vertically & horizontally symmetric {Z,V,H,R-}: n even empty;
n odd product formula known (Okada 2006)

4. Half-turn symmetric {Z,R-}: n even product formula known (Kuperberg 2002);
n odd product formula known (Razumov, Stroganov 2006)



5. Quarter-turn symmetric {Z, R, />, Rr, Rax/2}:

n = 0 mod 4 product formula known (Kuperberg 2002);

n = 1,3 mod 4 product formula known (Razumov, Stroganov 2006);
n =2 mod4 empty

6. Diagonally & antidiagonally symmetric {Z,D, A, R,}:
n odd product formula known (RB, Fischer, Konvalinka 2017); (More details soon!)
no formula currently known for n even

7. Diagonally symmetric {Z,D}: no formula currently known

8. Totally symmetric Ds: n even empty;
no formula currently known for n odd

e In some cases, symmetry operations with same enumerative properties as ASM
symmetry operations are known for ASTs, DPPs or TSSCPPs.

e T his already seen for vertical reflection, for which operations are known for ASTSs,
DPPs & TSSCPPs.

e In some cases, results or conjectures involving invariance under symmetry operations
and fixed values of statistics are known.



Cyclic Sieving & Homomesy for ASMs

3141
The set {n xn ASMs}, cyclic group {Z, R 2, Rx, Rax/2} & function f,.(q) = H —[[ Z::__ ]]q
tg-

exhibit the cyclic sieving phenomenon. (Stanton)

i.e. fn(l) = (# n xn ASMs), f,(—1) = (# half-turn symmetric n x n ASMs)
& (7)) = (## quarter-turn symmetric n x n ASMs)

This is an unusual cyclic sieving example since {Z, R/, Rx, R3x/2} acts on n x n ASMs,
but f,(q) is not a generating function for n xn ASMs with any currently-known statistic.

Instead, it is only known that f,(q) is a generating function for order n DPPs,

fn(q) = Z qzﬁmj (& no order 4 cyclic action on DPPs is currently known).
ordern DPPs«

The set {n x n ASMs}, group G & statistic 2Inv+Minus exhibit homomesy with
value n(n—1)/2, for G = {Z,V}, {Z,H}, {Z,R~/2,Rr, R3r/2} OF Da. (RB, Roby)

i.e. average of 2Inv + Minus over any orbit of G on {n x n ASMs} is n(n—1)/2.

Certain cyclic sieving phenomena & homomesies also observed for ASTs, DPPs &
TSSCPPs.



Sketch of Proof of ASM Enumeration Formula

ASM: square matrix in which
e cach entry is 0, 1 or —1
e cach row & column contains at least one 1

e along each row & column, the nonzero entries alternate in sign,
starting & ending with a 1

n—1

(3i+1)!

(# of nxn ASMs) = [[ T2
z’l;[o (n+1)!

Proof method (Kuperberg 1996)

(1) Apply bijection between nxn ASMs & configurations of statistical mechanical
Six-vertex model on nxn square with domain-wall boundary conditions.

(2) Introduce parameter-dependent weights & consider weighted sum over all
configurations of model, i.e., generating function or partition function.

(3) Use Yang—Baxter equation & other properties to obtain Izergin—Korepin formula
for partition function as nxn determinant.

(4) Evaluate determinant at certain values of parameters for which all weights are 1.



o Let

6VDW (n) = {

e €.J.

e €.J.

Configurations of Six-Vertex Model on Square
with Domain-Wall Boundary Conditions (DWBC)

(

\

edge orientations
of n X n grid

e 2 in & 2 out arrows at each degree 4 vertex)
(= 6 cases)

e all arrows out at top & bottom boundaries
e all arrows in at left & right boundaries )
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Six-Vertex Model Configuration — ASM Bijection

six-vertex model ASM
+$+ — 1
Y

e Ly

oo o

e Gives bijection between 6VDW(n) & {nxn ASMs}.
(Elkies, Kuperberg, Larsen, Propp 1992)
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Vertex Weights

o(zx) =z —x !

u = local parameter e ¢ = global parameter
_ — 0(Pu)

W(+ “) = W<*$* u) = o
_ — o(Pu)

W<+ u) = W(+ “) = o)

W(*~$+,u> = W(+,u) =1

At u=1 & g=¢€"%  W(e, 1>yq:em/6 =1 for all c

d d
At u = q:I:Q: W<a+c ’ q_2) — 5ab 6Cd1 W(a+c ) q2) — 6ad 6bc
b b

Yang—Baxter Equation:




Partition (Generating) Function

o Z(u1,...,Un,V1,...,Vp) = Z H W(C’Z-j,uivj_l)

Ce6VDW(n) i,j=1

[where C;; = local configuration at vertex in row i & column j of grid]

1

U1V3

e €.¢ Z(u17 3 3 7U27U3) — M ) ¢ vyt Vgl +—
[ 71. U 1 v T | L J
o Therefore Z(1,...,1)| _ .. = |6VDW(n)| = (# of n x n ASMs)
L lg=e

2n



Izergin—Korepin Formula

Z(ui, ..., Up,V1,...,Un)

[T} =1 o(qPuiv; V) o (¢®u; tv;) 1
o(q?u;v

4\n(n—1) -1 -1 1<-e.< 1 5> —1
o(q*) H1§i<j§n U(Uiuj Yo (v; "vj) 1sijsn j ) o(q%u; "vj)
(Izergin 1987)

Proof outline:

e Show that a function X (ui,...,un,v1,...,v,) Which satisfies the following properties is
uniquely determined:

(1) X(ui,v1) =1
(2) X(u1,...,un,v1,...,v,) @ Laurent polynomial in u; of lower degree > —n—+1,
upper degree < n—1

[T, o(qg™2u1v; Do (g um;t)
O—(q4)2n—2

(3) X(ut,. . Un, V1, 00) |ypimgee = X(uz,...,Un,v2,...,0n)
(4) X(u1,...,un,v1,...,v,) SYymmetric in vy,...,v,

e Show that LHS & RHS of Izergin—Korepin formula both satisfy all of these properties.



Examples of parts of proof:

e Reduction of Z(u1, u»,

Z(U1, U2, )
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Partition Function at ¢ = ¢/

n —n+1
— —-1)/2 2 2 .2 2
Z(’LLl, ceeyUn, V1, .. ey Un) ’q:em/e = 3 n(n=1)/ (H uiv%) S(n—l,n—l,...,Q,Q,l,l)(ulv ceey Upy, Upy ey, Uy
=1
(Okada 2006)

Proof outline:

e Substitute g = ei™/6 into determinantal expression for partition function.

e Apply identity which converts certain n x n determinant to 2n x 2n determinant.
(Okada 1998)

A+k—j
o Use s (x1,...,x1) = 1g§7t<k(:cz + J)/H1§i<j§k:(:ci — ZCj).

Final Step

e Setuy=...=u,=v1=...=v, =1 & recall Z(1,...,1)
2

= (# of n x n ASMs).

q:eiﬂ'/6

n—1
+ 1)!
e Obtain (# of n x n ASMs) = 3"(""1D/2SSYT ((n—1,n-1,...,2,2,1,1),2n) = [] ((?’Zj: .)),
n 1):

1=0

as required.



Diagonally and Antidiagonally Symmetric
Alternating Sign Matrices (DASASMS)

DASASM: ASM which is invariant under
e reflection in the diagonal
e reflection in the

e i.e. invariant under action of subgroup {Z,D, A, R} of D4

e.d.

Observations: e any DASASM uniquely determined by its entries in a triangle
bounded by diagonal and antidiagonal
e central entry of an odd-order DASASM is +1



Number D, of (2n—1)x(2n—1) DASASMs
& numbers D of (2n—1)x(2n—1) DASASMs with central entry +1
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= D =1
g P _ 0
Dy 1
n=2
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O 0 1 1 0 O O 1 O
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o Di_ 1
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General Case

n—1
3i)!
# of (2n—1)x(2n—1) DASASMs: D,, = H( j_,z) o= 1, 3, 15, 126, 1782, ...
n 11— .
1=0

Recursion: (Qn N 1) Dy11 = (3n> D,
n n

= 37 D0=D/255y T ((n—1,n-2,n~2,...,2,2,1,1),2n—1)

n—1
(32)!
z’l;[o (n+i—1)!

Conjecture: Robbins 1985
Proof: RB, Fischer, Konvalinka 2017 (Adv. Math. 315, 324—-365)

#'s of (2n—1)x(2n—1) DASASMs with central entry +1: oF
n n

Conjecture:. Stroganov 2008
Proof: RB, Fischer, Konvalinka 2017




(1)

(2)
(3)

(4)

Sketch of Proof of Odd-Order DASASM Formula

Obtain bijection between (2n + 1) x(2n + 1) DASASMs & configurations of
Six-vertex model on certain triangle.

Introduce bulk weights, boundary weights & associated partition function.

Use Yang—Baxter equation, reflection equation & other properties to prove formula
for partition function involving sum of two (n+1)x(n+1) determinants.

Evaluate determinantal formula at values of parameters for which all weights
are 1.



Configurations of Six-Vertex Model on Triangle

<~—— 2n-+1cols. —>

SIROUN,

o Let 7, n—4+2 rows
RE l
( e 2 in & 2 out arrows at each degree 4 vertex )
- - (= 6 cases)
6VT(n) =« ZQSQ?&O;,S T o no restriction at degree 2 vertices (= 4 cases)
" e all arrows up on top edges
L e Nno restriction on single bottom edge (= 2 cases) )

os avry = {LEELLELLY)

e c.J.

3 € 6VT(3)

~”




Six-Vertex Model Configuration — DASASM Bijection

SiXx-vertex model DASASM
+ t« »ii — 1

++++LLJJ<_> 0

e Also use reflections in diagonal and antidiagonal
e Gives bijection between 6VT(n) & {(2n+1)x(2n+1) DASASMs}

e €.J.
£=A=%<I<A<I<£ O 0 1 O O 0O (O 0 1 O O O O\
Lo % 1 0 1 0 0 0 1 0 0
[t' — o 1 |1 0 1 1 0
00 1 1 00
0 1 1 0 1
00 1 0 10
\0 0 0 0 1 0 0



o(z) =x—2 !

u = local parameter ° g

Vertex Weights

— global parameter

Bulk weights: W (+f+,u) = W (<+,u) = 2L
W(%‘U) = W(*‘i‘*u) — ol )
W (e u) = w(du) =1

Left boundary weights: W (., u) = W, u) = "(,(?;3)
W(te,u) =WEs,u) =1

Right boundary weights: W («$,u) = W (34, u) = 242

1

OB

Wid,u) =W(d,u) =1

Weights at u = 1 & ¢q = €'/6:

W (e, 1)\q=€m/6 =1 for all ¢



e Yang—Baxter equation

b? b?

ai ao 3 3
as bz
2 1
7y = or
as [)3
UIII qu
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b1 b>

uv v
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Odd-Order DASASM Partition Function

o Z('LL]_, c e ,'U,n+1)
n 2n+1—1
= Z H W (Cii, ui) H W (Cij, wi umingjont+2—5)) | W(Ci2nt1-i,u:)
Ce6VT (n) i=1 j=it1

[where C;; = local configuration at vertex in row i & column j of T,]

® °
Uy U UrUs3 Uy UrUs U1 Uy
e €.9. Z(’u, u ) e ° ® ® 'y 'y
g 1, Y 3, U3 U3
°® ® ®
U3z U3 U3

= |6VT(n)| = (# of (2n+1) x (2n+1) DASASMs)

q:eiw/6

e Therefore Z(1,...,1)|
t1



Sum of Determinants Formula for Partition Function

Z(ul, . e ,un_|_1)
n — _ _ o . 2
. 0‘(q2)n H U(Ui)a(qui)a(qui 1)0(q2uiun+1)0(q2ui 1un_}_1) H U(QQUin)U(qzui 1uj 1)
()" o (g)" L4 o (uiuy ) e o (uzu; )
+q +uitu? . P+q+u +u? )
o(qPu;) o(qu;  u:t)? 1SN o(q?uiu;) o(q?u;  u; ')’ L
X det o o + det P
1<i,j<n+1 ;;1_1 , 1=n—+1 1<i,j<n+1 J;Ql_l 7 i=n-+1
Proof outline:
e Show that a function X (ui,...,u,+1) which satisfies the following properties is uniquely
determined:
(1) X(u1) =1
(2) X(u1,...,uy+1) @ Laurent polynomial in u,41 of lower degree > —n, upper degree <n
o (qui) (o(qu;)+o (@) [, o(Puru)o(gPui)
(3) X(U]_, s e 7un+1)|u1un+1:q2 — 2 Hi: 2n—2 X(’UQ, ceey Uny, U1)
o(q)?o(q*)
(4) X(u1,...,upg1) SYymmetric in ui, ..., u,
(5) X(u{l,... n+1) = X(u1,...,Up+1)
(6) X(u1,...,upt1) €veninu;, fori=1,...,n

e Show that LHS & RHS of required formula both satisfy all of these properties.



Part of proof:

Use Yang—Baxter and reflection equations (YBE, LRE, RRE) to show that Z(ui,...,un+1)
is symmetric in u; and w41, 1=1,...,n—1.

egd n=3 & i1=2:

Wb, 2ustus) Z(ua, us, us, s)

o— e
*— 0
*——0

<

W

m
®
®




Partition Function at ¢ = /6

— 2—"n(n—-1)/2 Uy 2 D 5 _o
Z('U/ly .o 7un—|—1) ’q:e”/(’ - 3 ( )/ (—u77,+1+1 S(n,n—l,n—l,...,Q,Q,l,l)(ul? ’U,l g oo ,’U,n, n n—l—l)
Ui 2,2 2 -2 .2
+ u7i1 S(n n—1 = 1 2725171)(?1/17 ul AR ’un? u’n ?un+1))

Proof outline:

e Substitute ¢ = €"/% into determinantal expression for partition function.

e Apply identity which converts certain (n+1) x (n+1) determinant to (2n+2) x (2n+2)
determinant. (Okada 1998)

e Use 8>\(CI}1, cen ,Cljk) = d_et <£Iji\j+k_j)/nlgi<j§k($i — CIJj).

1<i,j<k

Final Step

e Setu; = ... =u,11 =1 & recall Z(l,..+.1,1)|

e Obtain ((2n+1)x (2n+1) DASASMs) = 3(=D/2SSYT((n,n-1,n-1,...,2,2,1,1),2n+1)

= (39)!
= H((—Z) as required.

= (# of (2n+1) x (2n+1) DASASMS).

q:eiw/6



7= of Odd-Order DASASMs with Fixed Central Entry

# of (2n+1) x (2n+1) DASASMs with central entry —1 n

# of (2n+1) x (2n+1) DASASMs with central entry 1 n—+1

Proof outline:

e Introduce partition functions Zi(u1,...,upt+1) for (2n+1) x (2n+1) DASASMs
with central entry +1.

e Show that Zi(ui,...,upt1) = % (Z(ul, ey Un, Upt1) £ (=1)"Z(u1, ..., up, —un_|_1)).

e Use previous results for Z(ui,...,un+1).



Features of Odd-Order DASASM Generating Function

Only a single set ui,...,u,+1 Of parameters used.
e Last parameter u,41 plays special role.

e Yang—Baxter and reflection equation needed (with certain boundary weights not
previously used for ASM enumeration).

e Partition function formula involves sum of two determinantal terms.



Final Messages

e ASMs, ASTs, DPPs & TSSCPPs are intriguing combinatorial objects.
e Many results have been proved.

e Many aspects are still not properly understood.



