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Overview

Very rough overview

@ Azenhas’ procedure: LR(\/p,v) = LR\ v, ), T — TV
(1999 or 2000)

@ She expressed hope to interpret her procedure using
R-modules of the following form (R: PID, p € R prime):

R/(p*) @ R/(p2) @ --- @ R/(PY).
@ We give a possible answer for R = C[f], p = t (an indet.).

Set M = C[t]/(t*) & C[t]/(t*2) & - - - @ C[1]/(tY).
Then, for most submodules N yielding a given LR-tableau T,
the submodule N+ c M* yields TV.

A precise result is phrased using the irreducible
components of certain submodule varieties.
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outer shape
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beforerow 1 row 1 rows 1-2 rows 1-3 rows 1-4
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Preliminaries

Littlewood-Richardson sequences

1]1]

2

111
2|12(2]83
[

[

[] [T 1] [1] [1]
I [] |

Such a sequence of partitions is called a Littlewood-Richardson
(LR) sequence.
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Azenhas’ procedure
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Hall varieties

@ Let C[t] be the polynomial ring in t over C.

@ Consider C[f]-modules only of the form
M = C[i]/(tM) @ Cl1]/(P2) @ - & C[t]/ (1Y),
A= (A, A2,..., \)) being a partition.

@ Call it a (nilpotent) C[f]-module of type A, write type M = .

@ dimc M = |)\‘ =M A A+ 4 A

@ A submodule or a quotient of M is also of that kind.

@ Fix partitions A, u, v with |A\| = |u| + |v|, and M of type .

@ Tentatively call
GM = { N c M submodule | type M/ny = i, typeN=v} a
Hall variety.

@ ltis a locally closed subvariety of a Grassmannian.

e If Cis replaced by Fq, then #G, = g),,(q), the Hall
polynomial evaluated at q. (P. Hall, T. Klein, I. G.
Macdonald
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@ Toeach N ¢ g,w,

Tu(N) € LR(N /).

M J.A. Green associeﬁed a LR tableau
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Tu(N) € LR(N /).
@ Setting 11(9) = type M/ss\ for all s, he showed that

((u@Y, (uMY,..., (1)) is a LR sequence (u = +).
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@ Toeach N ¢ g/%, J. A. Green associated a LR tableau
Tu(N) € LR(N /).

@ Setting 11(9) = type M/ss\ for all s, he showed that
(@Y, (MY, ... (1Y) is a LR sequence (u = v1).

@ Tuy(N) is the corresponding LR tableau.

@ Note p(® = 4, p(¥) = X,
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Green-Klein tableaux, Green-Klein varieties

Let ' denote the conjugate partition, e.g. —— = [T 111

@ Toeach N ¢ g/%, J. A. Green associated a LR tableau
Tu(N) € LR(N /).

@ Setting 11(9) = type M/ss\ for all s, he showed that
(@Y, (MY, ... (1Y) is a LR sequence (u = v1).

@ Tuy(N) is the corresponding LR tableau.

@ Note p(® = 4, p(¥) = X,

@ Foreach T € LR(N/,/,v/), set
GY ={Negh | Tu(N)=T}.

° gy = HTG[,R(X/M/,V’) g¥.

@ Temporarily call each g"T/’ a Green-Klein variety.
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@ dimG¥ = n(\) — n(u) — n(v), where n(X) = > (i — 1)\,
i=1

e dimG¥ is constant for fixed A, u and v.
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More facts about the Green-Klein varieties

@ Each GM is irreducible, nonsingular, locally closed in gﬂ/z’/-
/

@ dimG¥ = n(\) — n(u) — n(v), where n(X) = > (i — 1)\,
i=1

e dim G¥ is constant for fixed A, » and v.
o gM Te ﬁR()\'/N/, '), are the irreducible components of
M.
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@ Each GM is irreducible, nonsingular, locally closed in gﬁ/z’,

@ dimG¥ = n(\) — n(u) — n(v), where n(\) = Zl:(i — 1)\

e dimG¥ is constant for fixed A, u and v.
o GV, T e LR(N/y.v'), are the irreducible components of
GM.
The above is sufficient to state the main theorem, but here are
some more facts useful for the proof.
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More facts about the Green-Klein varieties

@ Each GM is irreducible, nonsingular, locally closed in gﬁ/z’,

@ dimG¥ = n(\) — n(u) — n(v), where n(\) = Zl:(i — 1)\

e dimG¥ is constant for fixed A, u and v.
o GV, T e LR(N/y.v'), are the irreducible components of
GM,.
The above is sufficient to state the main theorem, but here are
some more facts useful for the proof.
@ N (N,IN,t2N,...) embeds GM into a slightly larger
variety QA’}” = {(No, Ny, ..., Ny) submodules | tNs_1 C
Ns, type M/n, = (u(®))’ (Ys) } as an open subvariety.
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Preliminaries

More facts about the Green-Klein varieties

@ Each GM is irreducible, nonsingular, locally closed in gﬁ/z’,

@ dimG¥ = n(\) — n(u) — n(v), where n(\) = Zl:(i — 1)\

e dimG¥ is constant for fixed A, u and v.
o GV, T e LR(N/y.v'), are the irreducible components of
GM.
The above is sufficient to state the main theorem, but here are
some more facts useful for the proof.
@ N (N,IN,t2N,...) embeds GM into a slightly larger
variety QA’}” = {(No, Ny, ..., Ny) submodules | tNs_1 C
Ns, type M/, = (u(®))’ (Ys) } as an open subvariety.
° @/’ has an open covering by subsets isomorphic to affine
spaces.
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Main Theorem

@ If M is a nilpotent C[t]-module of type ), so is
M* = Hom¢(M, C) (t ™ M* as the transpose of t ™ M).
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Main Theorem

@ If M is a nilpotent C[t]-module of type ), so is
M* = Hom¢(M, C) (t ™ M* as the transpose of t ™ M).
@ N Nt ={aec M |aly=0} gives an isomorphism of
varieties | : g})’L = gﬂ{j switching p and v.
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@ If M is a nilpotent C[t]-module of type ), so is
M* = Hom¢(M, C) (t ™ M* as the transpose of t ™ M).

@ N Nt ={aec M |aly=0} gives an isomorphism of
varieties L: GM = gM" switching 1. and v.

@ | induces a bijection between the irreducible components
of GM and M.
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Main Theorem

@ If M is a nilpotent C[t]-module of type ), so is
M* = Hom¢(M, C) (t ™ M* as the transpose of t ™ M).

@ N Nt ={aec M |aly=0} gives an isomorphism of
varieties L: GM = gM" switching 1. and v.

@ | induces a bijection between the irreducible components
of GM and M.

Thm. (T)
L(g¥) =gl
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@ If M is a nilpotent C[t]-module of type ), so is
M* = Hom¢(M, C) (t ™ M* as the transpose of t ™ M).

@ N Nt ={aec M |aly=0} gives an isomorphism of
varieties L: GM = gM" switching 1. and v.

@ | induces a bijection between the irreducible components
of GM and M.

L(@) = ﬁ In particular, for most N € g¥ , l.e. for all N in
some dense open subset of G¥, we have N* € G¥.
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Main Theorem

@ If M is a nilpotent C[t]-module of type ), so is
M* = Hom¢(M, C) (t ™ M* as the transpose of t ™ M).

@ N Nt ={aec M |aly=0} gives an isomorphism of
varieties L: GM = gM" switching 1. and v.

@ | induces a bijection between the irreducible components
of GM and M.

Thm. (T)

L(@) = ﬁ In particular, for most N € g¥ , l.e. for all N in
some dense open subset of G¥, we have N* € G¥.

Lem.
Let T’ denote the result of applying the full \1-deletion to T.
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@ If M is a nilpotent C[t]-module of type ), so is
M* = Hom¢(M, C) (t ™ M* as the transpose of t ™ M).

@ N Nt ={aec M |aly=0} gives an isomorphism of
varieties L: GM = gM" switching 1. and v.

@ | induces a bijection between the irreducible components
of GM and M.

Thm. (T)

L(@) = ﬁ In particular, for most N € g¥ , l.e. for all N in
some dense open subset of G¥, we have N* € G¥.

Lem.

Let T’ denote the result of applying the full \1-deletion to T.
Then for most N € G, we have N nker t\1—1 e gkert™ ™"
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Coordinates

The isomorphism from an affine space to a piece of an open
covering of G¥ can be recursively given as follows.

Itaru Terada A module model



Main Theorem

Coordinates

The isomorphism from an affine space to a piece of an open
covering of G¥ can be recursively given as follows.

@ Consider 7: ﬂ/’ — Gy (kert), (Ns)g_o = Nu—1-
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Coordinates

The isomorphism from an affine space to a piece of an open
covering of G¥ can be recursively given as follows.

@ Consider 7: ﬂ/’ — Gy (kert), (Ns)g_o = Nu—1-

@ The condition type M/, , = (=)’ can be specified by
dimensions of the intersections of N,_1 with the various
components of the partial flag (ker t N 12M)._, (r = Ay).
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Coordinates

The isomorphism from an affine space to a piece of an open
covering of G¥ can be recursively given as follows.

@ Consider 7: ﬂ/’ — Gy (kert), (Ns)g_o = Nu—1-

@ The condition type M/, , = (=)’ can be specified by
dimensions of the intersections of N,_1 with the various
components of the partial flag (ker t N 12M)._, (r = Ay).

@ The subvariety of G, (ker t) specified by such dimensions
has an open covering by certain affine spaces (U, ).
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Coordinates

The isomorphism from an affine space to a piece of an open
covering of G¥ can be recursively given as follows.

o Consider 7: G¥ — G, (kert), (Ns)4_o — Ny_1.

@ The condition type M/, , = (=)’ can be specified by
dimensions of the intersections of N,_1 with the various
components of the partial flag (ker t N 12M)._, (r = Ay).

@ The subvariety of G, (ker t) specified by such dimensions
has an open covering by certain affine spaces (U, ).

@ For each U, and N,_1 € U,, the isomorphism A? — U,
can be lifted to A9 x 771 (Ny_1) = 77 1(Uy).
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Coordinates

The isomorphism from an affine space to a piece of an open
covering of G¥ can be recursively given as follows.

@ Consider 7: ﬂ/’ — Gy (kert), (Ns)g_o = Nu—1-
@ The condition type M/, , = (=)’ can be specified by
dimensions of the intersections of N,_1 with the various

components of the partial flag (ker t N 12M)._, (r = Ay).

@ The subvariety of G, (ker t) specified by such dimensions
has an open covering by certain affine spaces (U, ).

@ For each U, and N,_1 € U,, the isomorphism A? — U,
can be lifted to A9 x 771 (Ny_1) = 77 1(Uy).

o —

o The fiber 7= (N,_1) is isomorphic to G/ -1

7 , which allows
an open covering by affine spaces by induction

(T =T\ {[u}).
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Coordinates, example

@ The pieces of the open covering of ,C’E” are parametrized by
the fillings = of the Young diagram of )\’ which are column
increasing and rowwise permutations of T.
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Coordinates, example

@ The pieces of the open covering of ,C’E” are parametrized by
the fillings = of the Young diagram of )\’ which are column
increasing and rowwise permutations of T.

1 1

e If T = 1]1]2], then one such Zis [1]1] [2].
2|2 2|2
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Coordinates, example

@ The pieces of the open covering of ,C’E” are parametrized by
the fillings = of the Young diagram of )\’ which are column
increasing and rowwise permutations of T.

1 1

e If T = 1]1]2], then one such Zis [1]1] [2].
2|2 2|2

@ In this example the dimension is 4, and U= N G¥ = U-=.

Itaru Terada A module model



Main Theorem

Coordinates, example

@ The pieces of the open covering of ,C’E” are parametrized by
the fillings = of the Young diagram of )\’ which are column
increasing and rowwise permutations of T.

1 1

e If T = 1]1]2], then one such Zis [1]1] [2].
2|2 2|2

@ In this example the dimension is 4, and U= N G¥ = U-=.

@ The submodule corresponding to (&, x, v, z) € A% is the
one generated by the column vectors of the matrix product
in the next slide.
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Coordinate, example (continued)

£ 1 t1 1 t1
£3 1 1 1 1
12 1a 1 xyiz 1
t2 1 t1 1 t1
t t\ /0\ /0 0
t —~ off¢t]]o 0
T xtytt2zt+a ’N‘<(xt Nyt |2 )] zt+a >C@m4
1 0/ \o/\o 1
3\ /0\ /0\ /0 3\ /0\ /0\ /0
__ 3 3
w0 {2 o) cned{a {1 & [{ ]
0/\o/\o/\# 0/\o/\o/ \#
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Remarks

@ Even though Lemma is an essential ingredient, the proof of
the Theorem still requires a technique similar to
Steinberg’s result on the Steinberg variety, showing that
T+ < TV holds for a certain ordering < on LR(X/,/, ')
and then using the fact that both T+— T+ and T — TV are
bijections.
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@ Even though Lemma is an essential ingredient, the proof of
the Theorem still requires a technique similar to
Steinberg’s result on the Steinberg variety, showing that
T+ < TV holds for a certain ordering < on LR(X/,/, ')
and then using the fact that both T+— T+ and T — TV are
bijections.

@ The parametrization of the irreducible components of g}f,’,
and their dimension were given by M. van Leeuwen (2000).
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@ Even though Lemma is an essential ingredient, the proof of
the Theorem still requires a technique similar to
Steinberg’s result on the Steinberg variety, showing that
T+ < TV holds for a certain ordering < on LR(X/,/, ')
and then using the fact that both T+— T+ and T — TV are
bijections.

@ The parametrization of the irreducible components of g}f,’,
and their dimension were given by M. van Leeuwen (2000).

@ The affine coordinates of the open covering of G¥ was
given in the form of “generic vectors” by T. Maeda (2003
and later).
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Remarks

@ Even though Lemma is an essential ingredient, the proof of
the Theorem still requires a technique similar to
Steinberg’s result on the Steinberg variety, showing that
T+ < TV holds for a certain ordering < on LR(X/,/, ')
and then using the fact that both T+— T+ and T — TV are
bijections.

@ The parametrization of the irreducible components of g}f,’,
and their dimension were given by M. van Leeuwen (2000).

@ The affine coordinates of the open covering of G¥ was
given in the form of “generic vectors” by T. Maeda (2003
and later).

@ This also proves the involutiveness of Azenhas’ procedure.
(A combinatorial proof of the involutiveness has been given
by Azenhas, R. C. Kingand T (2017).)
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