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Main Theorem (N-Okada)

Theorem
P: a connected d-complete poset, c : P → I coloring.
F : an order filter of P,
A(P \ F ) := {σ : P \ F → N | p ≤ q =⇒ σ(p) ≥ σ(q)}.
Then we have∑

σ∈A(P\F )

zσ =
∑

D∈EP(F )

∏
v∈B(D) z[HP(v)]∏

v∈P\D(1− z[HP(v)])
, (1)

where zσ =
∏

v∈P\F

zσ(v)
c(v) ,

z[HP(v)] is the hook monomial,
EP(F ) is the set of excited giagrams of F in P, and
B(D) is the set of excited peaks of D in P.
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Idea of Proof
Let GP\F be the left hand side and EP\F be the right hand side

of the equation (1). Let ZP\F :=
[
ξwF |wP
ξwP |wP

]
eαi =zi

. For order filters,

F ′ � F means F ′ ⊃ F and F ′\F is non-empty antichain.
1) From Billey type formula we can see ZP\F = EP\F .
2) By Chevalley formula we have a recurrence relation on ZP\F .

ZP\F =
1

1− z[P\F ]

∑
F ′�F

(−1)|F
′\F |−1ZP\F ′ .

3) By inclusion-exclusion principle we can easily deduce the
same recurrence relation on GP\F .

GP\F =
1

1− z[P\F ]

∑
F ′�F

(−1)|F
′\F |−1GP\F ′ .

Comparing initial values we get GP\F = ZP\F .
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Kashiwara thick flag variety G/P−
A = (aij)i,j∈I a symmetrizable generalized Cartan matrix,

Γ the corresponding Dynkin diagram with node set I.

Then the associated Kac–Moody group G over C is constructed
from the following data:

the weight lattice Z-module Λ ' Zm,
the (linearly independent) simple roots Π = {αi : i ∈ I} ⊂ Λ,

the simple coroots Π∨ = {α∨i : i 3 I} ⊂ Λ∗,
the fundamental weights {λi : i ∈ I} ⊂ Λ

where Λ∗ = HomZ(Λ,Z) is the dual lattice. We will write the
canonical pairing 〈 , 〉 : Λ∗ × Λ→ Z. These satisfy

〈α∨i , αj〉 = aij , 〈α∨i , λj〉 = δij .
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The Weyl group W is generated by simple reflections si (i ∈ I)
and it is known to be a crystallographic Coxeter group.

Let B be a Borel subgroup and B− the opposite Borel i.e.
B ∩ B− = T is the maximal torus.

Let us fix a subset J ( I. Then we can consider the subgroup
WJ ⊂W generated by sj , (j ∈ J) and the parabolic subgroup
P− ⊃ B− corresponding to J.

Let W J = W/WJ be the set of minimum length coset
representatives.
Then we can consider

the Kashiwara thick partial flag variety XP− = G/P−.
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XP− = G/P− has cell decomposition.

XP− =
⊔

w∈W J

X ◦w

where X ◦w = BwP−/P− is the B-orbit of T -fixed point
corresponding to w , ew = wP−/P− ∈ XP− .
The Zariski closure Xw = X ◦w of X ◦w is called the Schubert
variety.
Using Bruhat order ≤ on W J induced from W , we have cell
decomposition

Xw =
⊔

u∈W J ,u≥w

X ◦u .

Xw has codimension `(w) in XP− and it is infinite dimensional if
|W | =∞.
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Equivariant K -theory KT (G/P−)
We can consider T -equivariant K -theory of XP− = G/P−
KT (G/P−) is the Grothendieck group of coherent sheaves on
G/P−. It has ring structure and

KT (XP−) ∼=
∏

w∈W J

KT (pt)[Ow ],

where Ow is the structure sheaf of the Schubert variety Xw and
[Ow ] is the corresponding class in KT (XP−).
KT (pt) is the T -equivariant K -theory of a point and it can be
identified with the representation ring of T .

KT (pt) ' R(T ) ' Z[Λ].

Each element in Z[Λ] is expressed as a (Z-)linear combination
of eλ (λ ∈ Λ). eλ corresponds to the class of line bundle Lλ with
character λ.
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Schubert class and Localization map

For w ∈W J , we will write ξw = [Ow ] ∈ KT (XP−) and call it
T -equivariant Schubert class.
Each v ∈W J gives a T -fixed point ev = vP−/P− ∈ X . Then
the inclusion map ιv : {ev} → X induces the pull-back ring
homomorphism, called the localization map at v ,

ι∗v : KT (XP−)→ KT (ev ) ∼= Z[Λ].

For two elements v , w ∈W J , we denote by ξw |v the image of
ξw under the localization map ι∗v :

ξw |v = ι∗v ([Ow ]).
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Billey type formula for ξw |v

(Lam-Schilling-Shimozono 2010)

Proposition
Let v, w ∈W J , and fix a reduced expression v = si1si2 . . . siN of
v. Then we have

ξw |v =
∑

(k1,...,kr )

(−1)r−l(w)
r∏

a=1

(
1− eβ

(ka)
)
, (2)

where the summation is taken over all sequences (k1, . . . , kr )
such that 1 ≤ k1 < k2 < · · · < kr ≤ N and sik1

∗ · · · ∗ sikr
= w

(with respect to the Demazure product), and β(k) is given by
β(k) = si1 . . . sik−1(αik ) for 1 ≤ k ≤ N.
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Littlewood-Richardson coefficients
We consider the structure constants for the multiplication in
KT (X ) with respect to the Schubert classes.

[Ou][Ov ] =
∑

w∈W J

cw
u,v [Ow ],

where u, v , w ∈W J , cw
u,v ∈ KT (pt).

Lemma
If cw

u,v 6= 0, then u ≤ w and v ≤ w.

Lemma
For u, w ∈W J , we have

cw
u,w = ξu|w . (3)
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Lemma
Let u, v, w ∈W J and s ∈W J a simple reflection. If cw

s,w 6= cu
s,u,

then we have

cw
u,v =

1
cw

s,w − cu
s,u

 ∑
u<x≤w

cx
s,ucw

x ,v −
∑

u≤y<w

cw
s,ycy

u,v

 .

In particular, we have

cw
u,w =

1
cw

s,w − cu
s,u

∑
u<x≤w

cx
s,ucw

x ,w .

i.e.

ξu|w =
1

cw
s,w − cu

s,u

∑
u<x≤w

cx
s,uξ

x |w . (4)
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Proof.
Consider the associativity

([Os][Ou]) [Ov ] = [Os] ([Ou][Ov ])

and take the coefficients of [Ow ] in the both hand sides.

cu
s,ucw

u,v +
∑

u<x≤w

cx
s,ucw

x ,v = cw
s,wcw

u,v +
∑

u≤y<w

cw
s,ycy

u,v ,

then we get

cw
u,v =

1
cw

s,w − cu
s,u

 ∑
u<x≤w

cx
s,ucw

x ,v −
∑

u≤y<w

cw
s,ycy

u,v

 .
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T -quivariant Chevalley formula
W -orbit of the set of simple roots Π(resp. simple coroots Π∨)
determine the set of real roots (resp. real coroots)

Φ = W Π (resp. Φ∨ = W Π∨)

and the decomposition of Φ (resp. Φ∨) into the positive system
Φ+ (resp. Φ∨+) and the negative system Φ− (resp. Φ∨−).
For a dominant weight λ ∈ Λ, we define

Hλ = {(γ∨, k) : γ∨ ∈ Φ∨+,0 ≤ k < 〈γ∨, λ〉, k ∈ N}.

Fix a total order on the Dynkin node I so that I = {i1 < · · · < ir}.
define a map ι : Hλ → Qr+1 by

ι

 r∑
j=1

ciα
∨
ij , k

 =
1

〈γ∨, λ〉
(k , c1, · · · , cr ) .

Then it is known that ι is injective.
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We define a total ordering < on Hλ by

h < h′ ⇐⇒ ι(h) <lex ι(h′),

where <lex is the lexicographical ordering on Qr+1. For
h = (γ∨, k), we define affine transformations rh and r̃h on Λ by

rh(µ) = µ− 〈γ∨, µ〉γ,
r̃h(µ) = rh(µ) +

(
〈γ∨, λ〉 − k

)
γ.

Note that rh = sγ is the reflection corresponding to the positive
root γ.
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Lenart-Shimozono (2014)

Proposition
Let s = si ∈W J be a simple reflection. Then for w , v ∈W J we
have

cw
s,v =


1− eλi−vλi if w = v ,∑
(h1,··· ,hr )

(−1)r−1eλi−v r̃h1
···̃rhr λi if w > v, (5)

where the summation is taken over all sequences (h1, · · · ,hr )
of length r ≥ 1 satisfying the following two conditions:

(H1) h1 > h2 > · · · > hr in Hλi ,
(H2) v l vrh1 l vrh1rh2 l · · ·l vrh1 · · · rhr = w is a saturated chain

in W J .
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Application to d-complete posets
In what follows, let P be a connected d-complete poset with top
tree Γ together with d-complete coloring c : P → I.
αP the simple root, λP the fundamental weight corresponding to
the color iP of the maximum element of P.

We apply the above argument to the Kashiwara thick partial
flag variety XP− = G/P−, where P− is the maximal parabolic
subgroup corresponding to J = I \ {iP}. In this case, the
parabolic subgroup WJ coincides with the stabilizer of λP in W ,
and the minimum length coset representatives W J is denoted
by W λP .

For p ∈ P, we put

α(p) = αc(p), α∨(p) = α∨c(p), s(p) = sc(p).
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Take a linear extension and label the elements of P as
p1, · · · ,pN (N = #P) so that pi < pj in P implies i < j . Then we
constructs an element w = wP ∈W by putting

wP = s(p1)s(p2) · · · s(pN).

For an order filter F = {pi1 , · · · ,pir } (i1 < · · · < ir ), we define

wF = s(pi1) · · · s(pir ).

F ⊂ F ′ ⇐⇒ wF ≤ wF ′ in Bruhat order

If p = pk ∈ P, then we define

β(pk ) = s(p1) · · · s(pk−1)α(pk ),

Proposition
(Proctor 2014)

z[HP(p)] = [eβ(p)]eαi =zi .
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Given a subset D = {pi1 , · · · ,pir } (i1 < · · · < ir ) of P, we define
elements wD ∈W and w∗D ∈W by putting

wD = s(pi1)s(pi2) · · · s(pir ) and w∗D = s(pi1) ∗ s(pi2) ∗ · · · ∗ s(pir ),

where ∗ is the Demazure product.

Proposition
Let F be an order filter of P and D ⊂ P.
(1) D ∈ EP(F ) ⇐⇒ wD = wF and |E | = |F |
(2) D ∈ E∗P(F ) ⇐⇒ w∗D = wF
For the case (2) D is uniquely expressed as
D = D′ t S s.t. D′ ∈ EP(F ),S ⊂ B(D′).
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Billey type formula
Proposition
We have

ξwF |wP =
∑

E∈E∗P (F )

(−1)#E−#F
∏
p∈E

(1− z[HP(p)]) , (6)

under the identification zi = eαi (i ∈ I). We can rewrite the
above expression as

ξwF |wP =
∑

D∈EP(F )

∏
p∈D

(1− z[HP(p)])
∏

p∈B(D)

z[HP(p)].

ξwF |wP

ξwP |wP

=
∑

D∈EP(F )

∏
v∈B(D) z[HP(v)]∏

v∈P\D(1− z[HP(v)])
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Chevalley formula for d-complete poset

Proposition
Let P be a connected d-complete poset and s = siP . For two
order filters F and F ′ of P, we have

cwF ′
s,wF

=


1− z[F ] if F ′ = F,
(−1)#(F ′\F )−1z[F ] if F ′ % F and F ′ \ F is an antichain,
0 otherwise,

(7)
under the identification zi = eαi (i ∈ I).
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Lemma
Let F be an order filter of P and h = (γ∨, k) ∈ HλP .

If wF rh ∈W λP and wF l wF rh ≤ wP , then there exists p ∈ P
such that F t {p} is an order filter of P, wF rh = wF ′ and
γ∨ = γ∨(p).
In this case k = 0, because 〈γ∨, λP〉 = 1, and r̃hλP = λP .
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To deduce recurrence relation on ZP\F :=
ξwF |wP
ξwP |wP

, recall

ξu|w =
1

cw
s,w − cu

s,u

∑
u<x≤w

cx
s,uξ

x |w . (8)

Change variables u = wF ,w = wP , x = wF ′ . Then we have

ξwF |wP =
z[F ]

z[F ]− z[P]

∑
F ′�F

(−1)|F
′\F |−1ξwF ′ |wP . (9)

Note that cwF
s,wF

= 1− z[F ].

ZP\F =
1

1− z[P\F ]

∑
F ′�F

(−1)|F
′\F |−1ZP\F ′
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Remark

Stembridge (2001) classified dominant λ-minuscule element of
Weyl groups and found another two families other than
15-classes of Proctor’s. , which are the cases of non-simply
laced Dynkin diagrams. All our arguments can be applied to
these cases.
Replace colored d-complete posets by a heap H(w) of a
dominant λ-minuscule element w .
Definitions of EP(F ) and B(D) should be slightly modified.
Then the same ED-hook type formula of the theorem holds.
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Smallest Bird

1

2 3 4

5

6

7 8

9 10

Figure: e6[1; 2,2]
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Example
1

2 3 4

5

6

7 8

9 10

1

2 3 4

5

6

2 3

5 1

z[1] = z1z2
2 z2

3 z4z2
5 z6,

z[2] = z1z2z3z4z5z6,
z[3] = z1z2z3z4z5,
z[4] = z3z4,
z[5] = z1z2z3z5z6,
z[6] = z5z6,
z[7] = z1z2z3z5,
z[8] = z3,
z[9] = z5,

z[10] = z1.

∆[P] =
10∏

i=1

(1− z[i])

There are 29 order filters.
F7 = {1, 2, 3, 5}
EP (F7) = {{1, 2, 3, 5}, {1, 2, 5, 8}, {1, 2, 3, 9}, {1, 2, 8, 9}, {1, 7, 8, 9}},

GP/F7
=

(1−z[1])(1−z[2])(1−z[3])(1−z[5])
∆(P)

+
(1−z[1])(1−z[2])(1−z[5])(1−z[8])z[3]

∆(P)
+

(1−z[1])(1−z[2])(1−z[3])(1−z[9])z[5]
∆(P)

+
(1−z[1])(1−z[2])(1−z[8])(1−z[9])z[3]z[5]

∆(P)
+

(1−z[1])(1−z[7])(1−z[8])(1−z[9])z[2]
∆(P)

=
(1−z[1])F (z)

∆(P)

where F (z) = 1− z1z2z2
3 z4z5 − z1z2z2

3 z4z5z6 − z1z2z3z2
5 z6 − z1z2z3z4z2

5 z6 + z1z2z2
3 z4z2

5 z6 −
z2

1 z2
2 z2

3 z4z2
5 z6 + z2

1 z2
2 z3

3 z4z2
5 z6 + z2

1 z2
2 z3

3 z2
4 z2

5 z6 + z2
1 z2

2 z2
3 z4z3

5 z6 + z2
1 z2

2 z2
3 z4z3

5 z2
6 − z3

1 z3
2 z4

3 z2
4 z4

5 z2
6 .
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B3 example

B3 Dynkin diagram s0 = s1 − s2
w = s0(s1s0)(s2s1s0) λ0-minuscule
s0 s1 s2

s0 s1

s0

β1 β2 β3

β4 β5

β6

γ∨1 γ∨2 γ∨3
γ∨4 γ∨5

γ∨6

β1 = α0 + α1 + α2 , β2 = 2α0 + 2α1 + α2 , β3 = 2α0 + α1 + α2
β4 = α0 + α1, β5 = 2α0 + α1, β6 = α0,

γ∨1 = α∨0 , γ∨2 = α∨0 + α∨1 , γ∨3 = α∨0 + α∨1 + α∨2 ,
γ∨4 = α∨0 + 2α∨1 , γ∨5 = α∨0 + 2α∨1 + α∨2 , γ∨6 = α∨0 + 2α∨1 + 2α∨2
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λ = 321, µ = 21
��

�
W1 =

1

(1− z0)(1− z2
0 z1)(1− z2

0 z1z2)

��
◦
�

W2 =
z0z1

(1− z0z1)(1− z2
0 z1)(1− z2

0 z1z2)

� ◦
�
�

W3 =
z2

0 z2
1 z2

(1− z0z1)(1− z2
0 z1z2)(1− z2

0 z2
1 z2)

◦
��

�

W4 =
z0z1z2

(1− z0z1z2)(1− z2
0 z1z2)(1− z2

0 z2
1 z2)

ED-sum

W1 + W2 + W3 + W4 =
1

(1− z0)(1− z0z1)(1− z0z1z2)
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Thank you!
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