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Introduction



Hook formulas for Young diagrams

Let λ be a partition of n.

• Frame–Robinson–Thrall

#standard tableaux of shape λ =
n!∏

v∈D(λ) hλ(v)
.

• Stanley (univariate q)∑
π : reverse plane partition

of shape λ

q|π| =
1∏

v∈D(λ)(1− qhλ(v))
.

• Gansner (multivariate z = (· · · , z−1, z0, z1, · · · ) )∑
π : reverse plane partition

of shape λ

zπ =
1∏

v∈D(λ)(1− z[HD(λ)(v)])
.



Hook Formulas for d-Complete Posets

Theorem (Peterson) Let P be a d-complete poset. Then the number
of linear extensions of P is given by

n!∏
v∈P hP (v)

,

where n = #P .

Theorem (Peterson–Proctor) Let P be a d-complete poset. Then the
multivariate generating function of P -partitions is given by∑

π∈A(P )

zπ =
1∏

v∈P (1− z[HP (v)])
.



Hook formulas for skew Young diagrams

Let λ ⊃ µ be a partitions such that |λ| − |µ| = n.

• Naruse

#standard tableaux of skew shape λ/µ = n!
∑
D

1∏
v∈D(λ)\D hλ(v)

,

where D runs over all excited diagrams of D(µ) in D(λ).

•Morales–Pak–Panova (univariate q)∑
π : reverse plane partition

of skew shape λ/µ

q|π| =
∑
D

∏
v∈B(D) q

hλ(v)∏
v∈D(λ)\D(1− qhλ(v))

,

where D runs over all excited diagrams of D(µ) in D(λ).

Goal : Generalize these skew hook formulas to d-complete posets.



Plan

1. Survey of d-complete posets

2. Skew hook formula for d-complete poset

(joint work with H. Naruse)

Proof will be given in Naruse’s talk (tomorrow morning) based on the
equivariant K-theory of Kac–Moody partial flag varieties.



Survey of d-Complete Posets



Double-tailed Diamond

• The double-tailed diamond poset dk(1) (k ≥ 3) is the poset depicted
below:

k − 2

k − 2

top

side side

bottom

• A dk-interval is an interval isomorphic to dk(1).

• A d−k -convex set is a convex subset isomorphic to dk(1)− {top}.



d-Complete Posets

Definition A finite poset P is d-complete if it satisfies the following
three conditions for every k ≥ 3:
(D1) If I is a d−k -convex set, then there exists an element v such that

v covers the maximal elements of I and I ∪ {u} is a dk-interval.
(D2) If I = [v, u] is a dk-interval and u covers w in P , then w ∈ I .
(D3) There are no d−k -convex sets which differ only in the minimal

elements.
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∃
∄
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Example : Shape

For a partition λ = (λ1, λ2, . . . ) (λ1 ≥ λ2 ≥ . . . ), let D(λ) be the
Young diagram of λ given by

D(λ) = {(i, j) ∈ Z2 : 1 ≤ j ≤ λi}.
The Young diagram is usually represented by replacing the lattice points
with unit squares. We endow D(λ) with a partial ordering defined by

(i, j) ≥ (i′, j′) ⇐⇒ i ≤ i′ and j ≤ j′.

The resulting poset is called a shape.
If λ = (4, 3, 1), then the Young diagram D(4, 3, 1) and the correspond-

ing Hasse diagram are given as follows:



Example : Shifted Shape

For a strict partition µ = (µ1, µ2, . . . ) (µ1 > µ2 > . . . ), let S(µ) be
the shifted Young diagram given by

S(µ) = {(i, j) ∈ Z2 : i ≤ j ≤ µi + i− 1}.
We endow S(µ) with a partial ordering defined by

(i, j) ≥ (i′, j′) ⇐⇒ i ≤ i′ and j ≤ j′.

The resulting poset is called a shifted shape.
If µ = (4, 3, 1), then the shifted Young diagram S(4, 3, 1) and the

corresponding Hasse diagram are given as follows:



Example : Swivel



Classification

A poset is called connected if its Hasse daigram is connected. Each
connected component of a d-complete poset is d-complete.

Fact
(a) If P is a connected d-complete poset, then P has a unique maximal

element.
(b) Any connected d-complete poset is uniquely decomposed into a

slant sum of one-element posets and slant-irreducible d-complete posets.
(c) Slant-irreducible d-complete posets are classified into 15 families :

shapes, shifted shapes, birds, insets, tailed insets, banners, nooks,
swivels, tailed swivels, tagged swivels, swivel shifts, pumps, tailed
pumps, near bats, bat.



Top Tree
For a connected d-complete poset P , we define its top tree by putting

Γ = {x ∈ P : every y ≥ x is covered by at most one other element }
Example



d-Complete Coloring

Fact Let P be a connected d-complete poset with top tree Γ. Let I be
a set of colors such that #I = #Γ. Then a bijective labeling c : Γ → I
can be uniquely extended to a map c : P → I satisfying the following
three conditions:

• If x and y are incomparable, then c(x) ̸= c(y).

• If an interval [v.u] is a chain, then the colors c(x) (x ∈ [v, u]) are
distinct.

• If [v, u] is a dk-interval then c(v) = c(u).

Such a map c : P → I is called a d-complete coloring.
A d-complete coloring c : P → I satisfies

• If c(x) = c(y) or the nodes labeled by c(x) and c(y) are adjacent in
Γ, then x and y are comparable.



Example : d-Complete Coloring of a Shape

Let λ be a partition. Then the “content” function

c : D(λ) −→ I = {−λ′1 + 1, . . . ,−1, 0, 1, . . . , λ1 − 1}
(i, j) 7−→ j − i

is a d-complete coloring, where λ′ is the conjugate partition of λ.
If λ = (4, 3, 1), then this d-complete coloring is given by

0 1 2 3

−1 0 1

−2



Example : d-Complete Coloring of a Shifted Shape

Let µ be a strict partition. Then the “content” function

c : S(µ) −→ I = {0, 0′, 1, 2, . . . , µ1 − 1}

(i, j) 7−→


j − i if i < j,

0 if i = j and i is odd,

0′ if i = j and i is even.

is a d-complete coloring.

If µ = (4, 3, 1), then this d-complete coloring is given by

0 1 2 3

0′ 1 2
0



Example : d-Complete Coloring of a Swivel



Hook Lengths and Hook Monomials
Let P be a connected d-complete poset with top tree Γ and d-complete

coloring c : P → I . Let zi (i ∈ I) be indeterminate. For each u ∈ P ,
we define the hook length hP (u) and the hook monomial z[HP (u)]
inductively as follows:

u

x y

v

(a) If u is not the top of any dk-interval, then we define

hP (u) = #{w ∈ P : w ≤ u}, z[HP (u)] =
∏
w≤u

zc(w).

(b) If u is the top of a dk-interval [v, u], then we define

hP (u) = hP (x) + hP (y)− hP (v),

z[HP (u)] =
z[HP (x)] · z[HP (y)]

z[HP (v)]
,

where x and y are the sides of [v, u].



Example : Hooks in a Shape

For a partition λ, the hook at (i, j) in D(λ) is defined by

HD(λ)(i, j) = {(i, j)} ∪ {(i, l) ∈ D(λ) : l > j}
∪ {(k, j) ∈ D(λ) : k > i}.

Then we have

hD(λ)(i, j) = #HD(λ)(i, j), z[HD(λ)(i, j)] =
∏

(k,l)∈HD(λ)(i,j)

zc(i,j).

If λ = (7, 5, 3, 3, 1), then the hook at (2, 2) in D(7, 5, 3, 3, 1) is



Example : Hooks in a Shifted Shape

For a strict partition µ, the shifted hook at (i, j) in S(µ) is defined by

HS(µ)(i, j) = {(i, j)} ∪ {(i, l) ∈ S(µ) : l > j}
∪ {(k, j) ∈ S(µ) : k > i}
∪ {(j + 1, l) ∈ S(µ) : l > j}.

Then we have

hS(µ)(i, j) = #HS(µ)(i, j), z[HS(µ)(i, j)] =
∏

(k,l)∈HS(µ)(i,j)

zc(i,j).

If µ = (7, 6, 4, 3, 1), then the shifted hook at (i, j) = (2, 3) in S(7, 6, 4, 3, 1)
is



Example : Hook Monomials in Swivel
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Linear Extensions and P -partitions

Let P be a poset. A linear extension of P is a bijection σ : P →
{1, 2, . . . , n} (n = #P ) satsifying

x ≤ y in P =⇒ σ(x) ≤ σ(y) in Z.
A P -partition is a map π : P → N satisfying

x ≤ y in P =⇒ π(x) ≥ π(y) in N.
Let A(P ) be the set of P -partitions:

A(P ) = {σ : P → N : P -partition}.
Let P be a connected d-complete poset with d-complete coloring c :

P → I and z = (zi)i∈I indeterminates. For a P -partition π, we define

zπ =
∏
v∈P

zc(v)
π(v).



Example : Reverse Plane Partitions

If P = D(λ) is a shape, then

D(λ)-partition = reverse plane partition of shape λ,

and
zπ =

∏
(i,j)∈D(λ)

zj−i
π(i,j).

For example,

π =
0 1 3 3
1 1 3
2

is a reverse plane partition of shape (4, 3, 1) and

zπ = z2−2z
1
−1z

0+1
0 z1+31 z32z

3
3.



Example : Shifted Reverse Plane Partitions

If P = S(µ) is a shifted shape, then

S(µ)-partition = shifted reverse plane partition of shifted shape µ,

and

zπ =
∏

(i,i)∈S(µ)
i:odd

z
π(i,i)
0

∏
(i,i)∈S(µ)
i:even

z
π(i,i)
0′

∏
(i,j)∈S(µ)

i<j

zj−i
π(i,j).

For example,

π =
0 1 1 3

1 2 3
3

is a shifted reverse plane partition of shited shape (4, 3, 1) and

zπ = z0+30 z10′z
1+2
1 z1+32 z33.



Hook Formulas for d-Complete Posets

Theorem (Peterson) Let P be a d-complete poset. Then the number
of linear extensions of P is given by

n!∏
v∈P hP (v)

,

where n = #P .

Theorem (Peterson–Proctor) Let P be a d-complete poset. Then the
multivariate generating function of P -partitions is given by∑

π∈A(P )

zπ =
1∏

v∈P (1− z[HP (v)])
.

Different proofs are given by Peterson–Proctor, Ishikawa–Tagawa and
Nakada. Our skew hook formula provides an alternate proof.



d-Complete Posets and Weyl Groups, Root Systems

Let P be a d-complete poset with top tree Γ and d-complete coloring
c : P → I . By regarding Γ as a simply-laced Dynkin diagram with node
set labeled by I , we obtain

•Weyl group W = ⟨si : i ∈ I⟩,
• root system Φ and simple roots {αi : i ∈ I},
• coroot system Φ∨ and simple coroots {α∨i : i ∈ I},
• fundamental weight λP corresponding to the color iP of the maximum
element of P ,

•Weyl group element

wP = sc(p1)sc(p2) · · · sc(pn),
where we label the elements of P with p1, p2, . . . , pn so that pi < pj
implies i < j.



d-Complete Posets and Weyl Groups, Root Systems (cont.)

(1) wP is λP -minuscule, i.e.,

⟨α∨c(pk), sc(pk+1) · · · sc(pn)λP ⟩ = 1 (1 ≤ k ≤ n).

(2) There is a poset isomorphism

{order filters of P} ∋ F
∼7−→ wF ∈ [e, wP ],

where [e, wP ] is the interval in WλP = W/WλP
, the set of minimum

length coset representatives w.r.t. the stabilizer WλP
.

(3) There exists a bijection P ∋ v 7→ β(v) ∈ Φ(wP ) = Φ+ ∩ wPΦ−
such that

z[HP (v)]
∣∣∣
zi=e

αi
= eβ(v) (v ∈ P ).

(4) P is ismorphic to the order dual of Φ∨(w−1
P ) = Φ∨

+ ∩ w−1
P Φ∨

− as
posets.



Skew Hook Formula for d-Compete Posets



Hook formulas for skew Young diagrams

Let λ ⊃ µ be a partitions such that |λ| − |µ| = n.

• Naruse

#standard tableaux of skew shape λ/µ = n!
∑
D

1∏
v∈D(λ)\D hλ(v)

,

where D runs over all excited diagrams of D(µ) in D(λ).

•Morales–Pak–Panova (univariate q)∑
π : reverse plane partition

of skew shape λ/µ

q|π| =
∑
D

∏
v∈B(D) q

hλ(v)∏
v∈D(λ)\D(1− qhλ(v))

,

where D runs over all excited diagrams of D(µ) in D(λ), and B(D)
is the set of excited peaks.



Excited Diagrams for Young Diagrams

Let D be a subset of the Young diagram D(λ).

•We say that u = (i, j) ∈ D is D-active if

(i, j + 1), (i + 1, j), (i + 1, j + 1) ∈ D(λ) \D.

• If u = (i, j) is D-active, then we define

αu(D) = D \ {(i, j)} ∪ {(i + 1, j + 1)}.

•We say thatD is an excited diagram ofD(µ) ⊂ D(λ) ifD is obtained
from D(µ) after a sequence of elementary excitations D → αu(D).

−→

(Cells of excited diagrams are shaded.)



Excited Peaks for Young Diagrams

To an exicted diagram D of D(µ) in D(λ), we associate a subset
B(D) ⊂ D(λ) \D, called the set of excited peaks of D as follows:

(a) If D = D(µ), then we define B(D(µ)) = ∅.
(b) If D′ = αu(D) is obtained from D by an elementary excitation at

u = (i, j) ∈ D, then

B(αu(D)) = B(D) \ {(i, j + 1), (i + 1, j)} ∪ {(i, j)}.

∗
∗ −→ ×

(Excitec peaks are marked with ×, and the symbol ∗ stands for × or
empty.)



Example If λ = (5, 4, 2, 1) and µ = (3, 1), then there are 6 excited
diagrams of D(3, 1) in D(5, 4, 2, 1).

-

×

? ?

× - ×
×

- ×
×

-

×



Excited Diagrams for Shifted Young Diagrams

Let D be a subset of the shifted Young diagram S(µ).

•We say that u = (i, j) ∈ D is D-active if

i < j and (i, j + 1), (i + 1, j), (i + 1, j + 1) ∈ S(µ) \D, or

i = j and (i, i + 1), (i + 1, i + 2), (i + 2, i + 2) ∈ S(µ) \D.

• If u = (i, j) is D-active, then we define

αu(D) =

{
D \ {(i, j)} ∪ {(i + 1, j + 1)} if i < j,

D \ {(i, i)} ∪ {(i + 2, i + 2)} if i = j.

−→ −→



Excited Peaks for Shifted Young Diagrams

To an exicted diagram D of S(ν) in S(µ), we associate a subset
B(D) ⊂ S(µ) \D, called the subset of excited peaks of D as follows:

(a) If D = S(ν), then we define B(S(ν)) = ∅.
(b) If D′ = αu(D) is obtained from D by an elementary excitation at

u = (i, j) ∈ D, then

B(αu(D)) =

{
B(D) \ {(i, j + 1), (i + 1, j)} ∪ {(i, j)} if i < j,

B(D) \ {(i, i + 1), (i + 1, i + 2)} ∪ {(i, i)} if i = j.

∗
∗ −→ × ∗ ∗

∗ ∗ −→ ∗
∗×



Example If µ = (5, 4, 2, 1) and µ = (3, 1), then there are 5 excited
diagrams of S(3, 1) in S(5, 4, 2, 1).

-

×

? ?

× -

×
× -

×



Excited Diagrams for d-Complete Posets

u ∈ D
̸∈ D

̸∈ D
v ̸∈ D

−→

̸∈ αu(D)
̸∈ αu(D)

̸∈ αu(D)
∈ αu(D)

Let P be a connected d-complete poset.

•We say that u ∈ D is D-active if there
is a dk-interval [v, u] with v ̸∈ D such
that

z ∈ [v, u] and

 z is covered by u
or
z covers v

=⇒ z ̸∈ D.

• If u ∈ D is D-active, then we define

αu(D) = D \ {u} ∪ {v}.
Let F be an order filter of P .

•We say that D is an excited diagram of F in P if D is obtained from
F after a sequence of elementary excitations D → αu(D).



Excited Peaks for d-Complete Posets

Let P be a d-complete poset and F an order filter of P . To an exicted
diagram D of F in P , we associate a subset B(D) ⊂ P \D, called the
subset of excited peaks of D as follows:

(a) If D = F , then we define B(F ) = ∅.
(b) If D′ = αu(D) is obtained from D by an elementary excitation at

u ∈ D, then

B(αu(D)) = D \
{
z ∈ [v, u] :

z is covered by u
or z covers v

}
∪ {v},

where [v, u] is the dk-interval with top u.



Example If P is the Swivel and an order filter F has two elements,
then there are 4 exited diagrams of F in P .

-

×

?

×

×
-

×



Main Theorem

Theorem (Naruse–Okada) Let P be a connected d-complete poset
and F an order filter of P . Then the multivariate generating function of
(P \ F )-partitions is given by∑

π∈A(P\F )

zπ =
∑
D

∏
v∈B(D) z[HP (v)]∏

v∈P\D(1− z[HP (v)])
,

where D runs over all excited diagrams of F in P .

Corollary Let P be a connected d-complete poset and F an order
filter of P . Then the number of linear extensions of P \ F is given by

n!
∑
D

1∏
v∈P\D hP (v)

,

where n = #(P \ F ) and D runs over all excited diagrams of F in P .



Example If P = S(3, 2, 1) and F = S(1), then we have∑
π∈A(S(3,2,1)\S(1))

zπ

=
1

(1− z0z0′z1z2)(1− z0z1z2)(1− z0z0′z1)(1− z0z1)(1− z0)

+
z0z0′z

2
1z2

(1− z0z0′z
2
1z2)(1− z0z0′z1z2)(1− z0z1z2)(1− z0z0′z1)(1− z0z1)

=
1− z20z0′z

2
1z2

(1− z0z0′z
2
1z2)(1− z0z0′z1z2)(1− z0z1z2)(1− z0z0′z1)(1− z0z1)(1− z0)

×



Idea of Proof

Given a connected d-complete poset P with top tree Γ, we can as-
sociate the Weyl group W , the fundamental weight λP , . . . , and the
Kac–Moody partial flag variety X . By using the equivariant K-theory
KT (X ) of X , we obtain

ξv|w ∈ Z[Λ] =
⊕
λ∈Λ

Zeλ (v, w ∈ WλP ),

where Λ is the weight lattice. Main Theorem follows from∑
π∈A(P\F )

zπ =
ξwF |wP

ξwP |wP

=
∑
D

∏
v∈B(D) z[HP (v)]∏

v∈P\D(1− z[HP (v)])
,

where zi = eαi (i ∈ I) and D runs over all excited diagrams of F in P .



Excited Diagrams, Excited Peaks and Weyl Groups

Fix a labeling of elements of P with p1, . . . , pn such that pi < pj
implies i < j. For a subset D = {i1, . . . , ir} (i1 < · · · < ir), we define

wD = sc(pi1)
sc(pi2)

· · · sc(pir), w∗
D = sc(pi1)

∗ sc(pi2) ∗ · · · ∗ sc(pir),
where ∗ is the Demazure product given by

si ∗ w =

{
siw if l(siw) = l(w) + 1,

w if l(siw) = l(w)− 1.

Proposition Let F be an order filter of P . For a subset E of P , we
have

wE = wF and #E = #F ⇐⇒ E is an excited diagram of F in P ,

w∗
E = wF ⇐⇒

E = D ⊔ S
for some excited diagrams D of F in P
and a subset S ⊂ B(D)


