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Introduction



Hook formulas for Young diagrams
Let A be a partition of n.

e Frame—Robinson—Thrall
n!

#standard tableaux of shape \ = .
[Loepy) Pa(v)

e Stanley (univariate q)

S 4 = :

7 : reverse plane partition I_IUGD()\)<1 o qh)\@)).
of shape A
e Gansner (multivariate z = (-++ , 21,20, %1, ") )
)3 2" = : |
7 . reverse plane partition HUED()‘><1 N Z[HD()\)(?])D

of shape A



Hook Formulas for d-Complete Posets

Theorem (Peterson) Let P be a d-complete poset. Then the number
of linear extensions of P is given by

n!

HUEP hp(?}) |

where n = #P.

Theorem (Peterson—Proctor) Let P be a d-complete poset. Then the
multivariate generating function of P-partitions is given by
1

Z 2 T oop (= 2lHp0))

e A(P




Hook formulas for skew Young diagrams
Let A D u be a partitions such that |A| — |u| = n.

e Naruse
1

#standard tableaux of skew shape \/u = n! Z ,
HUGD AM\D h)x(”)

where D runs over all excited diagrams of D(,u) in D(\).

e Morales—Pak—Panova (univariate q)

h
I HUEB(D) q ()
Z T = Z T (1-— h)\(v))’
7 . reverse plane partition D veED(A\D q
of skew shape \/u

where D runs over all excited diagrams of D(u) in D(\).

Goal : Generalize these skew hook formulas to d-complete posets.



Plan

1. Survey of d-complete posets

2. Skew hook formula for d-complete poset

(joint work with H. Naruse)

Proof will be given in Naruse's talk (tomorrow morning) based on the
equivariant K -theory of Kac—Moody partial flag varieties.



Survey of d-Complete Posets



Double-tailed Diamond

e The double-tailed diamond poset d;.(1) (k > 3) is the poset depicted

below:
fItOp
k—2]
side <> side
k—2 i
- @ hottom

e A d;-interval is an interval isomorphic to dj.(1).

e A d, -convex set is a convex subset isomorphic to dj(1) — {top}.



d-Complete Posets

Definition A finite poset P is d-complete if it satisfies the following
three conditions for every £ > 3:

(D1) If I'is a d, -convex set, then there exists an element v such that
v covers the maximal elements of I and [ U {u} is a dj-interval.

(D2) If I = [v,u| is a dj-interval and u covers w in P, then w € I.

(D3) There are no d, -convex sets which differ only in the minimal

elements.

1
SN

<> <> o
A



Example : Shape
For a partition A = (A, Ao,...) (A > A9 > ...), let D()\) be the
Young diagram of A given by
D) ={(i,j) € Z*:1 < j < \}.
The Young diagram is usually represented by replacing the lattice points
with unit squares. We endow D(\) with a partial ordering defined by
(1,5) > (i',5)) <=1 <d and j < .

The resulting poset is called a shape.
If A\ = (4,3,1), then the Young diagram D(4, 3, 1) and the correspond-

ing Hasse diagram are given as follows:




Example : Shifted Shape

For a strict partition p = (g, o, ... ) (g > po > ...), let S(u) be
the shifted Young diagram given by

S(p) ={(i,j) €27 i < j < py+i—1}.
We endow S() with a partial ordering defined by
(i,5) = (i',j") =i <i'and j < j'

The resulting poset is called a shifted shape.
If u = (4,3,1), then the shifted Young diagram S5(4,3,1) and the
corresponding Hasse diagram are given as follows:




Example : Swivel



Classification

A poset is called connected if its Hasse daigram is connected. Each
connected component of a d-complete poset is d-complete.

Fact

(a) If P is a connected d-complete poset, then P has a unique maximal
element.

(b) Any connected d-complete poset is uniquely decomposed into a
slant sum of one-element posets and slant-irreducible d-complete posets.

(c) Slant-irreducible d-complete posets are classified into 15 families

shapes, shifted shapes, birds, insets, tailed insets, banners, nooks,
swivels, tailed swivels, tagged swivels, swivel shifts, pumps, tailed
pumps, near bats, bat.



Top Tree
For a connected d-complete poset P, we define its top tree by putting

['={x € P: every y > x is covered by at most one other element }

Example



d-Complete Coloring

Fact Let P be a connected d-complete poset with top tree I'. Let [ be
a set of colors such that #1 = #I1". Then a bijective labeling ¢ : I' — I
can be uniquely extended to a map ¢ : P — [ satisfying the following
three conditions:

e If x and y are incomparable, then c(x) # c(y).

e If an interval [v.u] is a chain, then the colors ¢(z) (x € |v,u|) are
distinct.

o If [v,u| is a dj-interval then c(v) = c(u).

Such amap c: P — [ is called a d-complete coloring.
A d-complete coloring ¢ : P — I satisfies

o If c(x) = c(y) or the nodes labeled by ¢(x) and ¢(y) are adjacent in
I, then x and y are comparable.



Example : d-Complete Coloring of a Shape
Let \ be a partition. Then the “content” function
C D()\) — ]:{—)\’1+1,...',—1.,O,1,...,>\1—1}
(¢,7) — j—i
is a d-complete coloring, where )\ is the conjugate partition of ).
If A =(4,3,1), then this d-complete coloring is given by

O 1213
—110 |1




Example : d-Complete Coloring of a Shifted Shape

Let 11 be a strict partition. Then the “content” function

c:S(u) — I={0,0,1,2,...,u1—1}

73— if1 <y,
(2,7) — <0 if =7 and 7 is odd,
0f if i = j and 7 is even.

Is a d-complete coloring.

If = (4,3,1), then this d-complete coloring is given by
011123
0'[1]2
0




Example : d-Complete Coloring of a Swivel



Hook Lengths and Hook Monomials
Let P be a connected d-complete poset with top tree I' and d-complete
coloring ¢ : P — I. Let z; (i € I) be indeterminate. For each u € P,

we define the hook length hp(u) and the hook monomial z|H p(u)

inductively as follows:
(a) If w is not the top of any dj-interval, then we define

hp(u)=#{we P w<u}, z[Hpw)=]] 2w I
(b) If u is the top of a dj-interval |v, u], then v;e define |
hp(u) = hP(??{) + ?P)%?J) E hzﬂ((’lﬁ,

-z Hp(x)| - z|Hp(y :
AP =) :

where z and y are the sides of v, u].

Z Y




Example : Hooks in a Shape
For a partition A, the hook at (¢, 7) in D(\) is defined by

Hpoye.g) =1,7) U{{, 1) € DIA) : 1> j}
U{(k,j) € D) : k> 1}.
Then we have
hpo(iJ) = #Hp (i, 7). 2[Hp (i, 7)) = 11 Ze(i,5)-
(k.D)eHpy)(5.7)
If A= (7,5,3,3,1), then the hook at (2,2) in D(7,5,3,3,1) is




Example : Hooks in a Shifted Shape
For a strict partition p, the shifted hook at (i, ) in S(u) is defined by
Ha(i.7) =1{07)y UL(e,1) € S(p) - 1> j}
U{(k,j) € S(p) - k> i}
U{U+1,0) € S(p) 1> 7}
Then we have
hs(i,7) = #Hg((0,7),  z[Hg,)(4 5)] = ||
(k,l)€Hg(,,)(0.])
If = (7,6,4,3,1), then the shifted hook at (¢, j) = (2,3) in S(7,6,4,3,1)

IS




Example : Hook Monomials in Swivel

2
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Linear Extensions and P-partitions

Let P be a poset. A linear extension of P is a bijection o : P —
{1,2,...,n} (n = #P) satsifying

r<yinP = ox)<oy)inZ.
A P-partition is a map 7 : P — N satisfying
r<yinP = 7(x)>mn(y)inN.
Let A(P) be the set of P-partitions:
A(P)={o: P — N: P-partition}.

Let P be a connected d-complete poset with d-complete coloring c :
P — I and z = (z;);cs indeterminates. For a P-partition m, we define

Sl | T

veP



Example : Reverse Plane Partitions
If P = D()\) is a shape, then

D(\)-partition = reverse plane partition of shape A,

and

For example,

~
|

(NN Nl N
—_
o

is a reverse plane partition of shape (4,3,1) and

T ARY ARPTARE P74



Example : Shifted Reverse Plane Partitions
If P = S(u) is a shifted shape, then

S(p)-partition = shifted reverse plane partition of shifted shape p,

ST H Zg(z,z) H Zér/(z,’t) H Zj—iﬂ(i7j>-
(,0)eS (1) (i,)€S5 (1) (i,7)€S (1)

1:0dd 1.even 1<

and

For example,

Ol1]1]3
= 112]3
3

is a shifted reverse plane partition of shited shape (4,3,1) and

27 = 035 112,488




Hook Formulas for d-Complete Posets

Theorem (Peterson) Let P be a d-complete poset. Then the number
of linear extensions of P is given by

n!

HUEP hP(U) |

where n = #P.

Theorem (Peterson—Proctor) Let P be a d-complete poset. Then the
multivariate generating function of P-partitions is given by

1

Z 2 T oop (= 2lHp0))

e A(P

Different proofs are given by Peterson—Proctor, Ishikawa—Tagawa and
Nakada. Our skew hook formula provides an alternate proof.



d-Complete Posets and Weyl Groups, Root Systems

Let PP be a d-complete poset with top tree I' and d-complete coloring
c: P — I. By regarding I' as a simply-laced Dynkin diagram with node
set labeled by I, we obtain

o Weyl group W = (s; : 1 € 1),
e root system ® and simple roots {a; : 7 € I},
e coroot system @V and simple coroots {a) : i € I},

e fundamental weight A p corresponding to the color ¢ p of the maximum
element of P,

e Weyl group element
WP = Sc(p1)®clpa) " Pclpn)

where we label the elements of PP with py,po, ..., py so that p; < p;
implies 7 < 7.



d-Complete Posets and Weyl Groups, Root Systems (cont.)

(1) wp is Ap-minuscule, i.e.,

v S())\p>:1 (1</~c<n).

<&C(p/<;)’ Sclppy1) " Felpn >Rk

(2) There is a poset isomorphism
{order filters of P} > F +—— wp € [e, wp],

where [e, wp] is the interval in WAP = W/W) ., the set of minimum
length coset representatives w.r.t. the stabilizer W) .
(3) There exists a bijection P 5> v — [(v) € P(wp) = P4 Nwpd_
such that
2[Hp(v))| =" (veP)

z;=e%

(4) P is ismorphic to the order dual of &V (w} b = ®Y N wplcb\i as
posets.



Skew Hook Formula for d-Compete Posets



Hook formulas for skew Young diagrams
Let A D u be a partitions such that |A| — |u| = n.

e Naruse
1

N ha(v)

#standard tableaux of skew shape \/u = n! Z b
veD(\

where D runs over all excited diagrams of D(,u) in D(\).

e Morales—Pak—Panova (univariate ¢)

hy(v
3 g =3 Hvenp)a A<h> :

— )y’
7 : reverse plane partition D HUGDO\)\D(l q )
of skew shape \/u

where D runs over all excited diagrams of D(u) in D(\), and B(D)

iIs the set of excited peaks.




Excited Diagrams for Young Diagrams
Let D be a subset of the Young diagram D(\).

e We say that u = (¢, 7) € D is D-active if
(4,7 +1), (t+1,7), i +1,7+1)€ DA\ D.
o If u=(z,7) is D-active, then we define
au(D) = D\A{(G,5)} U{(e+ 1,7+ 1)}

e We say that D is an excited diagram of D(u) C D(A) if D is obtained
from D(u) after a sequence of elementary excitations D — ay, (D).

\
/4

(Cells of excited diagrams are shaded.)



Excited Peaks for Young Diagrams

To an exicted diagram D of D(u) in D()), we associate a subset
B(D) C D(A)\ D, called the set of excited peaks of D as follows:

(a) If D = D(u), then we define B(D(u)) = 0.
(b) If D" = ay(D) is obtained from D by an elementary excitation at
u=(i,7) € D, then

Blau(D)) = B(D)\ (i, +1), (i +1,7)} U{(z,7)}.

% X

\
/4

>k

(Excitec peaks are marked with x, and the symbol * stands for x or
empty. )



Example If A = (5,4,2,1) and p = (3,1), then there are 6 excited
diagrams of D(3,1) in D(5,4,2, )




Excited Diagrams for Shifted Young Diagrams
Let D be a subset of the shifted Young diagram S(u).

e We say that u = (¢, 7) € D is D-active if
i<jand (2,5 +1), (i+1,7),(i+1,74+1)€ S\ D, or
i=gand (4,i+1), 1+ 1,0+2), (e +2,i+2) € S(u) \D.
o If u=(z,7) is D-active, then we define

oD = 4 PMEDI UG+ 17+ D} ifi <
u D\{(i,)} U{(i+2,i+2)} ifi=3j

|




Excited Peaks for Shifted Young Diagrams

To an exicted diagram D of S(v) in S(u), we associate a subset
B(D) cC S(u) \ D, called the subset of excited peaks of D as follows:

(a) If D = S(v), then we define B(S(v)) = 0.

(b) If D" = ay(D) is obtained from D by an elementary excitation at
u=(i,7) € D, then

B(Oé (D)) _ B(D) \ {(iaj—"_ 1>7<i—|— 17])} U {(%])} if 1 < 7,
’ BD)\{(i,i +1), (i + 1,0 + 2} U{(i,0)} ifi=j.
* - ’ & x — : * :




Example |If yp = (5,4,2,1) and u = (3,1), then there are 5 excited
diagrams of S(3,1) in S(5,4,2,1).

X




Excited Diagrams for d-Complete Posets
Let P be a connected d-complete poset.

e We say that u € D is D-active if there
is a dj-interval [v, u] with v € D such

that
2 is covered by u

z € [v,ul and ¢ or
Z cCovers v Q D ig (D)
— z & D. §Z D

o |If u € D is D-active, then we define
ay(D) =D\ {u} U{v}.
Let F' be an order filter of P.

e We say that D is an excited diagram of F'in P if D is obtained from
F' after a sequence of elementary excitations D — (D).

el) Iézdg>



Excited Peaks for d-Complete Posets

Let P be a d-complete poset and F' an order filter of P. To an exicted
diagram D of F'in P, we associate a subset B(D) C P\ D, called the
subset of excited peaks of D as follows:

(a) If D = F, then we define B(F') = ().

(b) If D" = ay(D) is obtained from D by an elementary excitation at
uw € D, then

Blay(D)) = D \ {Z & Tu,u] 2 is covered by u } U o,

or 2 COVErs v

where |v, u] is the dj-interval with top w.



Example If P is the Swivel and an order filter F' has two elements,
then there are 4 exited diagrams of F' in P.

X




Main Theorem

Theorem  (Naruse-Okada) Let P be a connected d-complete poset
and F' an order filter of P. Then the multivariate generating function of
(P \ F)-partitions is given by

[LveB(p) zlHp(v)]
2, =2 ~ [lver\ Dl 1 — z[Hp(v)])’

WEA(P\F)

where D runs over all excited diagrams of F' in P.

Corollary Let P be a connected d-complete poset and F' an order
filter of P. Then the number of linear extensions of P \ I is given by

1
| ,
' ED: [lvep\pp(v)

where n = #(P \ F') and D runs over all excited diagrams of F'in P.



Example If P=5(3,2,1) and F' = S(1), then we have

2. 7
e A(S(3,2,1)\S5(1))
1
N (1 — 2020/,2’122)<1 — 202122)(1 — Z()ZO/Zl>(1 — Z()Zl>(1 — Z())
ZOZOIZ%ZQ

_|_

<1 — 2’020/2%2’2>(1 — 2020/,2’122>(1 — 202122)<1 — 2020/21)(1 — Z()Zl>
1 — ZSZO/Z%ZQ

(1 — 20202%22)(1 — 20202122)(1 — 202122)(1 — 202¢21) (1 — 2021)(1 — 2)

X




Idea of Proof
Given a connected d-complete poset P with top tree I', we can as-
sociate the Weyl group W, the fundamental weight Ap, ..., and the
Kac—Moody partial flag variety X'. By using the equivariant K -theory
K7 (X) of X, we obtain
'l € 2N =Pzt (v,w e WP),
AEA
where A is the weight lattice. Main Theorem follows from
S er EVF wp [lvenp) zlHp(W)
z p— p—
w L )
e AP\F) §Plwp 5 [lvep\p(1 = 2[Hp(v)])

where z; = €% (¢ € I) and D runs over all excited diagrams of F'in P.




Excited Diagrams, Excited Peaks and Weyl Groups

Fix a labeling of elements of P with py,...,pp such that p; < p;
implies ¢ < j. For a subset D = {iy,...,%} (i1 < --- < 1), we define

_ *
WD = Se(p;))5epiy) "~ Felpi,) WD T Se(pi) * Felpiy) * 777 F Selpg,)

where x is the Demazure product given by

siw if l(s;w) = l(w) + 1,

S; kW = _

w it l(s;w) = [(w) — 1.
Proposition Let F' be an order filter of P. For a subset E of P, we
have

wrp =wg and #E = #IF' < FE is an excited diagram of F'in P,
(E=DUS

for some excited diagrams D of F'in P
_and a subset S C B(D)

/"

W = wWp <=




