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Equation under consideration

Equation:
Standard differential equation driven by Gaussian process, R"-valued

dy: = Vo(ye) dt + V;(y:) dBL, (1)

with
e te0,1].
@ Vector fields Vg, ..., Vjin C°.
@ A d-dimensional Gaussian process B.
e Typical example: d-dimensional fBm B with 1/4 < H < 1/2.
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Brief summary of rough paths theory

Hypothesis: Consider a path x such that
e x € C'(RY) with v > 1/4
e x allows to define:
o A Levy area x? € C?/(R9*9) = [ dx [ dx
e Some volumes x3 € C3/(R¥*4x9) = [ dx [ dx [ dx
e Vector fields Vp,..., V;in C}°.

Main rough paths theorem: '
One can solve the equation dy; = Vo(y:) dt + V;(y:) dxi, yo = a.
Furthemore (Lyons-Qian, Friz-Victoir, Gubinelli)

F:R" x C"(RY) x CV(R7*?) x C*'(RY) — CV(R")
(a, %, %% x%) — y

is a continuous map.
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Canonical example: fractional Brownian motion

B=(B,...,BY)
B’/ centered Gaussian process, independence of coordinates

Variance of the increments:
E[|B] — Bl]"] = [t — s|*"

@ H~ = Holder-continuity exponent of B
e If H=1/2, B = Brownian motion
e If H# 1/2, most natural generalization of BM

Motivations: Engineering, Finance, Biophysics
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lterated integrals and fBm

Nice situation: H > 1/4
— 2 possible constructions for geometric iterated integrals of B.

e Malliavin calculus tools (Ferreiro-Utzet)

@ Regularization or linearization of the fBm path (Coutin-Qian)

Conclusion: for H > 1/4, one can solve equation
dy: = Vo(ye) dt + Vj(v:) dB,

in the rough paths sense.

Remark: Recent extensions to H < 1/4 (Unterberger, Nualart-T).
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lterated integrals and Gaussian processes
General setting: B = (B!, ..., BY) with
@ B's independent copies of B!

e E[B!B!] = R(s, t) covariance function

2-d variations: for p > 1 and f: [0,1]> — R, set

1/p

p

Vp(f; [07 1]2) = sup ( Z ‘A[ti-,fiﬂ]x[%jfjﬂ]f‘ ) :
™ t,’€7T,’fj€7~r

Basic assumption: V,(R;[0,1]?) < oo for p < 2.

Result: Under the basic assumption for B
e lterated integrals of order 2 and 3 exist.
e One can solve equation (1).
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Malliavin derivative

Result 1, fBm case:
One can differentiate equation (1) in the Malliavin calculus sense.

@ By means of pathwise methods (rough paths)

@ The derivative takes values in H = &f—H(LZ)

Notation: n" = {D,y;; t > r}, with
° n{ Rnxd
o 1l = Diyi

Result 2: n" is solution of the linear equation

e’ = Vi( yr+/8k (yu)n ’”dU+/3kV/ (vu) 0¥ dB,. (2)
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Malliavin derivatives and densities

Notation: Set v/ = (Dy/, Dy}).

Criterions: It is well known (see e.g. Nualart's book)
o ||Dy|l3 > 0 almost surely = L(y;) admits a density.
o ||| € LP = smooth density.

Application of the criterion: In the elliptic case, one can show that

77! is governed by an equation of type (2)
< estimate |7, }|| = estimate ||n"|.
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(Lack of) moments for Malliavin derivative

Moment estimates for (2): on [0, T] and for any v < H < 1/2
[l < (1 +a]) exp (c (IIBY[Y" + 1B2[2,*"))

See Friz-Victoir, Besalt-Nualart.

Problem: non integrable bound!

Other occurences of equation (2):
@ Derivatives of flows
@ Convergence of numerical schemes

e Ergodic properties
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Density results for RDEs

Existing results:
e Case H>1/2:

» Smooth density in the elliptic case: Hu-Nualart

» Smooth density in the Hérmander case: Baudoin-Hairer.

» Further estimates by Baudoin-Ouyang for H > 1/2.
e Case H < 1/2:

» Existence of the density in elliptic and Hérmander cases:

Cass-Friz, Hairer-Pillai.

» Smoothness of density, nilpotent case: Hu-T.

» Smoothness of density, skew-sym. case: Baudoin-Ouyang-T.
@ Cased=n=1:

» Smooth density: Nourdin-Simon.
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Recent results

Cass-Lyons-Litterer's breakthrough:
Moments for the Jacobian of RDEs driven by Gaussian processes

Another ingredient for Hormander's theorem:
Norris type lemma (Hairer-Pillai; Hu-Tindel).

Aim of the talk:
Obtain smoothness of density under Hérmander's conditions for:

e Fractional Brownian motion with 1/4 < H < 1/2.
e Gaussian process with V,(R; [0,1]?) < oo for p < 2.
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Hormander's condition

Family of vector fields: set Vo(x) = {V;(x); i > 0} and

Vir1(x) x) U AU, Vil(x); U eV, j>0}.

Ellipticity (weak form): for all x € R”, we have Span(Vy(x)) = R".

Hormander's hypoellipticity: for all x € R”
— there exists pp > 0 such that Span(V,,(x)) = R".
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Additional assumptions
Hypothesis: We assume that

i) Regularity of vector fields: Vb, ..., Vy are C°.
i) Hérmander's condition: see previous slide.

(
(
(iii) Regularity of B: V,(R;[0,1]?) < oo for p < 2.
(

iv) Non degeneracy of B: R satisfies
@ Monotonicity for derivatives:
d,R(a,b) > 0 and 92 R(a,b) <0for0<a< b< 1
@ Strong ¢-local nondeterminism:
Var(d Byt | Fos V Fr1) > ¢(t — s) for suitable ¢.

Remark: Assumptions satisfied when B = fBm with 1/4 < H < 1/2.
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Main result

Theorem
Consider the equation

dy: = Vo(ye) dt + V;(y:) dBL.

Under the previous assumptions: for all t € (0, 1]
< The random variable y, admits a C*> density.
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Global strategy

Stochastic analysis criterion: G admits a C* density whenever
@ G € Ng>1Np>1 DFP(R™) in the Malliavin calculus sense.
Q det(y; 1) € LP for all p > 1, where 4{ = (DG', DGY).

Application: we can divide the proof in several steps
@ Integrability of the Malliavin derivatives.
@ Introduction of a process ZF indexed by vector fields.
© Lower bounds for || - ||%.
@ Norris type lemma.
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Integrability of the Malliavin derivative

Jacobian of the equation: derivative w.r.t initial condition
< Denoted Js;, and Jo: = JorJog-

Relationship with Malliavin derivative: one can prove that
o Diy, = Jg Vi(ys) for 0 < s < t.

@ Same kind of relation for higher order derivatives.

Consequence: We have

E[[JI5] <00 = X: € Nio1 Npzy DP(R”)
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Process ZF

Definition: We consider
@ A vector field F on R".
@ A deterministic vector n € R" with |n| = 1.

© Zf = (n, Joi'F(v)),,,.
Reduction of the non-degeneracy property: we have
det(3 ) € Npal? <= P (2%l <) < Ge?

for at least one k € {1,...,m} and for all p > 1.
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Lower bound for || - ||%

Recall our aim: exhibit k € {1,..., m} such that
— Forallp>1,P (HZVkHH < 5) < cpeP.

Reduction 2: It is easier to prove

P(IZ%]| <€) < cpe.

Important ingredient: show, for all f € H N L>:

1113 = [1Flloo (3)

This is obtained by means of
@ Non degeneracy conditions on R.

@ Resolution of a quadratic programming problem.
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Lie brackets showing up
Relation: ZF is solution of the equation
t m. ]
ZE = F(X)) + [ 2PV ds+ Y- [ 2171 dB,
0 = Jo

In order to take advantage of Lie brackets: Norris type lemma
— For suitable (controlled) processes A and K, set

t t
Zt:zo—i—/ Asds+/ K:dB..
0 0

Then there exists r € (0,1) such that

{12l <t =< {lAle <3 N{[IKllo <}
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