Hörmander theorem for Gaussian rough differential equations

Samy Tindel

University of Nancy

Rough Paths Analysis and Related Topics - Nagoya 2012

Ongoing joint work with: Tom Cass, Martin Hairer, Christian Litterer

- Introduction
 - SDEs driven by Gaussian processes
 - Malliavin derivatives

- 2 Hörmander theorem
- Elements of proof

- Introduction
 - SDEs driven by Gaussian processes
 - Malliavin derivatives

- 2 Hörmander theorem
- Elements of proof

- Introduction
 - SDEs driven by Gaussian processes
 - Malliavin derivatives

- 4 Hörmander theorem
- Elements of proof

Equation under consideration

Equation:

Standard differential equation driven by Gaussian process, \mathbb{R}^n -valued

$$dy_t = V_0(y_t) dt + V_j(y_t) dB_t^j, (1)$$

with

- $t \in [0, 1]$.
- Vector fields V_0, \ldots, V_j in C_b^{∞} .
- A *d*-dimensional Gaussian process *B*.
- Typical example: d-dimensional fBm B with 1/4 < H < 1/2.

Brief summary of rough paths theory

Hypothesis: Consider a path x such that

- $x \in \mathcal{C}^{\gamma}(\mathbb{R}^d)$ with $\gamma > 1/4$
- x allows to define:
 - A Levy area $\mathbf{x}^2 \in \mathcal{C}^{2\gamma}(\mathbb{R}^{d \times d}) \equiv \int dx \int dx$
 - Some volumes $\mathbf{x}^3 \in \mathcal{C}^{3\gamma}(\mathbb{R}^{d\times d\times d}) \equiv \int dx \int dx \int dx$
- Vector fields V_0, \ldots, V_j in C_b^{∞} .

Main rough paths theorem:

One can solve the equation $dy_t = V_0(y_t) dt + V_j(y_t) dx_t^j$, $y_0 = a$. Furthemore (Lyons-Qian, Friz-Victoir, Gubinelli)

$$F: \mathbb{R}^{n} \times \mathcal{C}^{\gamma}(\mathbb{R}^{d}) \times \mathcal{C}^{2\gamma}(\mathbb{R}^{d \times d}) \times \mathcal{C}^{3\gamma}(\mathbb{R}^{d \times d}) \longrightarrow \mathcal{C}^{\gamma}(\mathbb{R}^{n})$$

$$(a, x, \mathbf{x}^{2}, \mathbf{x}^{3}) \longmapsto y$$

is a continuous map.

Canonical example: fractional Brownian motion

- $B = (B^1, ..., B^d)$
- B^j centered Gaussian process, independence of coordinates
- Variance of the increments:

$$\mathbf{E}[|B_t^j - B_s^j|^2] = |t - s|^{2H}$$

- $H^- \equiv \text{H\"older-continuity}$ exponent of B
- If H = 1/2, B = Brownian motion
- If $H \neq 1/2$, most natural generalization of BM

Motivations: Engineering, Finance, Biophysics

Iterated integrals and fBm

Nice situation: H > 1/4

 \hookrightarrow 2 possible constructions for geometric iterated integrals of B.

- Malliavin calculus tools (Ferreiro-Utzet)
- Regularization or linearization of the fBm path (Coutin-Qian)

Conclusion: for H > 1/4, one can solve equation

$$dy_t = V_0(y_t) dt + V_j(y_t) dB_t^j,$$

in the rough paths sense.

Remark: Recent extensions to $H \le 1/4$ (Unterberger, Nualart-T).

Iterated integrals and Gaussian processes

General setting:
$$B = (B^1, \dots, B^d)$$
 with

- B^i s independent copies of B^1
- $\mathbf{E}[B_s^1B_t^1] \equiv R(s,t)$ covariance function

2-d variations: for $\rho \geq 1$ and $f:[0,1]^2 \to \mathbb{R}$, set

$$V_
ho(f;[0,1]^2) \equiv \sup_{\pi, ilde{\pi}} \left(\sum_{t_i\in\pi, ilde{t}_j\in ilde{\pi}} \left|\Delta_{[t_i,t_{i+1}] imes [ilde{t}_j, ilde{t}_{j+1}]}f
ight|^
ho
ight)^{1/
ho}.$$

Basic assumption: $V_{\rho}(R; [0,1]^2) < \infty$ for $\rho < 2$.

Result: Under the basic assumption for B

- Iterated integrals of order 2 and 3 exist.
- One can solve equation (1).

- Introduction
 - SDEs driven by Gaussian processes
 - Malliavin derivatives

- 2 Hörmander theorem
- Elements of proof

Malliavin derivative

Result 1, fBm case:

One can differentiate equation (1) in the Malliavin calculus sense.

- By means of pathwise methods (rough paths)
- The derivative takes values in $\mathcal{H} = I_{0+}^{1/2-H}(L^2)$

Notation:
$$\eta^r = \{D_r y_t; t \geq r\}$$
, with

- $\eta_t^r \in \mathbb{R}^{n \times d}$
- $\bullet \ \eta_t^{r;ij} = D_r^j y_t^i$

Result 2: η^r is solution of the linear equation

$$\eta_{t}^{r;ij} = V_{j}^{i}(y_{r}) + \int_{t}^{t} \partial_{k} V_{0}^{i}(y_{u}) \, \eta_{u}^{r;kj} \, du + \int_{t}^{t} \partial_{k} V_{l}^{i}(y_{u}) \, \eta_{u}^{r;kj} \, dB_{u}^{l}. \quad (2)$$

Malliavin derivatives and densities

Notation: Set
$$\gamma_t^{ij} = \langle Dy_t^i, Dy_t^j \rangle$$
.

Criterions: It is well known (see e.g. Nualart's book)

- $\|Dy_t\|_{\mathcal{H}} > 0$ almost surely $\Longrightarrow \mathcal{L}(y_t)$ admits a density.
- $\|\gamma_t^{-1}\| \in L^p \Longrightarrow$ smooth density.

Application of the criterion: In the elliptic case, one can show that γ_t^{-1} is governed by an equation of type (2)

 \hookrightarrow estimate $\|\gamma_t^{-1}\| \equiv$ estimate $\|\eta^r\|$.

(Lack of) moments for Malliavin derivative

Moment estimates for (2): on [0, T] and for any $\gamma < H < 1/2$

$$\|\eta^r\|_{\gamma} \leq \left(1+|a|\right) \, \exp\left(c \left(\|\mathbf{B^1}\|_{\gamma}^{1/\gamma} + \|\mathbf{B^2}\|_{2\gamma}^{1/(2\gamma)}\right)\right)$$

See Friz-Victoir, Besalú-Nualart.

Problem: non integrable bound!

Other occurences of equation (2):

- Derivatives of flows
- Convergence of numerical schemes
- Ergodic properties

Density results for RDEs

Existing results:

- Case H > 1/2:
 - Smooth density in the elliptic case: Hu-Nualart
 - Smooth density in the Hörmander case: Baudoin-Hairer.
 - ▶ Further estimates by Baudoin-Ouyang for H > 1/2.
- Case H < 1/2:
 - Existence of the density in elliptic and Hörmander cases:
 Cass-Friz, Hairer-Pillai.
 - Smoothness of density, nilpotent case: Hu-T.
 - ► Smoothness of density, skew-sym. case: Baudoin-Ouyang-T.
- Case d = n = 1:
 - Smooth density: Nourdin-Simon.

Recent results

Cass-Lyons-Litterer's breakthrough:

Moments for the Jacobian of RDEs driven by Gaussian processes

Another ingredient for Hörmander's theorem:

Norris type lemma (Hairer-Pillai; Hu-Tindel).

Aim of the talk:

Obtain smoothness of density under Hörmander's conditions for:

- Fractional Brownian motion with 1/4 < H < 1/2.
- Gaussian process with $V_{\rho}(R;[0,1]^2)<\infty$ for $\rho<2$.

- Introduction
 - SDEs driven by Gaussian processes
 - Malliavin derivatives

- 2 Hörmander theorem
- Elements of proof

Hörmander's condition

Family of vector fields: set $V_0(x) = \{V_i(x); i > 0\}$ and

$$\mathcal{V}_{k+1}(x) = \mathcal{V}_k(x) \bigcup \{[U, V_j](x); \ U \in \mathcal{V}_k, j \geq 0\}.$$

Ellipticity (weak form): for all $x \in \mathbb{R}^n$, we have $\mathrm{Span}(\mathcal{V}_0(x)) = \mathbb{R}^n$.

Hörmander's hypoellipticity: for all $x \in \mathbb{R}^n$

 \hookrightarrow there exists $p_0 \ge 0$ such that $\mathrm{Span}(\mathcal{V}_{p_0}(x)) = \mathbb{R}^n$.

Additional assumptions

Hypothesis: We assume that

- (i) Regularity of vector fields: V_0, \ldots, V_d are C_b^{∞} .
- (ii) Hörmander's condition: see previous slide.
- (iii) Regularity of *B*: $V_{\rho}(R; [0, 1]^2) < \infty$ for $\rho < 2$.
- (iv) Non degeneracy of B: R satisfies
 - Monotonicity for derivatives: $\partial_a R(a,b) > 0$ and $\partial^2_{ab} R(a,b) < 0$ for $0 \le a < b \le 1$.
 - Strong ϕ -local nondeterminism: $Var(\delta B_{st}|\mathcal{F}_{0s} \vee \mathcal{F}_{t1}) \geq \phi(t-s)$ for suitable ϕ .

Remark: Assumptions satisfied when $B \equiv \text{fBm}$ with 1/4 < H < 1/2.

Main result

Theorem

Consider the equation

$$dy_t = V_0(y_t) dt + V_j(y_t) dB_t^j.$$

Under the previous assumptions: for all $t \in (0,1]$ \hookrightarrow The random variable y_t admits a C^{∞} density.

- Introduction
 - SDEs driven by Gaussian processes
 - Malliavin derivatives

- 4 Hörmander theorem
- Elements of proof

Global strategy

Stochastic analysis criterion: G admits a \mathcal{C}^{∞} density whenever

- **1** $G \in \bigcap_{k \geq 1} \bigcap_{p \geq 1} \mathbb{D}^{k,p}(\mathbb{R}^n)$ in the Malliavin calculus sense.
- $ext{ det}(\gamma_t^{-1}) \in L^p ext{ for all } p \geq 1, ext{ where } \gamma_t^{ij} = \langle DG^i, DG^j \rangle.$

Application: we can divide the proof in several steps

- Integrability of the Malliavin derivatives.
- ② Introduction of a process Z^F indexed by vector fields.
- **3** Lower bounds for $\|\cdot\|_{\mathcal{H}}$.
- Norris type lemma.

Integrability of the Malliavin derivative

Jacobian of the equation: derivative w.r.t initial condition \hookrightarrow Denoted J_{st} , and $J_{st} = J_{0t}J_{0s}^{-1}$.

Relationship with Malliavin derivative: one can prove that

- $\mathcal{D}_s^j y_t = J_{st} V_j(y_s)$ for $0 \le s \le t$.
- Same kind of relation for higher order derivatives.

Consequence: We have

$$\mathsf{E}[\|J\|_{\infty}^{p}] < \infty \quad \Longrightarrow \quad X_{t} \in \cap_{k \geq 1} \cap_{p \geq 1} \mathbb{D}^{k,p}(\mathbb{R}^{n})$$

Process Z^F

Definition: We consider

- **1** A vector field F on \mathbb{R}^n .
- ② A deterministic vector $\eta \in \mathbb{R}^n$ with $|\eta| = 1$.

Reduction of the non-degeneracy property: we have

$$\det(\gamma_t^{-1}) \in \cap_{\rho \ge 1} L^{\rho} \quad \longleftarrow \quad \mathbf{P}\left(\|Z^{V_k}\|_{\mathcal{H}} < \varepsilon\right) \le c_{\rho} \varepsilon^{\rho}$$

for at least one $k \in \{1, ..., m\}$ and for all $p \ge 1$.

Lower bound for $\|\cdot\|_{\mathcal{H}}$

Recall our aim: exhibit $k \in \{1, ..., m\}$ such that \hookrightarrow For all $p \ge 1$, $\mathbf{P}\left(\|Z^{V_k}\|_{\mathcal{H}} < \varepsilon\right) \le c_p \varepsilon^p$.

Reduction 2: It is easier to prove

$$\mathbf{P}\left(\|Z^{V_k}\|_{\infty}<\varepsilon\right)\leq c_p\varepsilon^p.$$

Important ingredient: show, for all $f \in \mathcal{H} \cap L^{\infty}$:

$$||f||_{\mathcal{H}} \ge ||f||_{\infty} \tag{3}$$

This is obtained by means of

- Non degeneracy conditions on R.
- Resolution of a quadratic programming problem.

- 4ロト 4個ト 4 差ト 4 差ト 差 り90°

Lie brackets showing up

Relation: Z^F is solution of the equation

$$Z_t^F = \langle \eta, F(x) \rangle_{\mathbb{R}^n} + \int_0^t Z_s^{[F,V_0]} ds + \sum_{i=1}^m \int_0^t Z_s^{[F,V_i]} dB_s^i.$$

In order to take advantage of Lie brackets: Norris type lemma \hookrightarrow For suitable (controlled) processes A and K, set

$$Z_t = z_0 + \int_0^t A_s \, ds + \int_0^t K_s^* dB_s.$$

Then there exists $r \in (0,1)$ such that

$$\{\|Z\|_{\infty} \le \varepsilon\} \quad \Rightarrow_{\varepsilon} \quad \{\|A\|_{\infty} \le \varepsilon^{r}\} \cap \{\|K\|_{\infty} \le \varepsilon^{r}\}.$$