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Cubature formulas on Euclidean space

Ω ⊂ Rn, µ : a probability meas. on Ω,

X ⊂ Ω : a finite subset, i.e., |X| <∞, w : X → R>0.

Then, a pair (X, w) forms a cubature formula of degree t, iff

∫
Ω

f(x)dµ(x) =
∑
x∈X

w(x)f(x), ∀f ∈ Pt(Rn).

• Vertices of icosahedron form a cf for the integral on the sphere.

1



Ω = S2 = {x ∈ R3 | ‖x‖ = 1}, σ：the surface meas. on S2,

1

|S2|

∫
S2

f(x)dσ(x) =
1

N

N∑
i=1

f(xi), ∀f ∈ Pt(R3).

t = 2

N = 4

t = 3

N = 8

N = 6

t = 5

N = 20

N = 12

2



Problem. Do these solids form cubature formulas?
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Note. Cubature problem is expressed in terms of

a moment generating fun.

Y：a random variable, mi：the ith moment

E[eλY ] = 1 + λm1 +
λ2m2

2!
+

λ3m3

3!
+ · · ·+

λtmt

t!
+

λt+1mt+1

(t + 1)!
+ · · ·

We want to find a discrete random variable Z satisfying

E[eλZ] = 1 + λm1 +
λ2m2

2!
+

λ3m3

3!
+ · · ·+

λtmt

t!
+?λt+1+?λt+2+· · · .
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Why we find cubature formulas?

Observatory

Cubature formulas on the sphere are needed in statistics. For

example, to estimate parameters of a regression model on the sphere,

cubature formula are an important tool.
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Sn−1 = {x ∈ Rn : ‖x‖ = 1} : the (n− 1)-unit sphere,

f1(x), . . . , fN(x) : a basis of Pe(Sn−1),
(
N <

(n+e
e

)
= dim(Pe(Rn))

)
θ1, . . . , θN : unknown parameters.

Y (x) : a observation on a point x ∈ Sn−1, i.e., Y (x) is of the form

Y (x) = θfT (x) + ε(x)

where f = (f1, . . . , fN), θ = (θ1, . . . , θN) and ε(x) is a noise;

E[ε(x)] = 0, E[ε(x)ε(y)] =

{
σ2 x = y,
0 x 6= y.

We want to find a “good” estimation θ by using

m observation on points x1, . . . , xm ∈ Sn−1.
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In the latter of this talk, we mainly focus on cubature formulas for

the Gaussian integral on Rn：

1

πn/2

∫
Rn

f(x)e−‖x‖
2
dx =

∑
x∈X

w(x)f(x), ∀f ∈ Pt(Rn).

• N. Victoir, Asymmetric cubature formulae with few points in high

dimension for symmetric measures. SIAM J. Numer. Analysis, 2004.
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Cubature formulas for the Gaussian integral are needed in stochas-
tic analysis, mathematical finance and physics.

For example, Lyons-Victoir (’04) proposed the concept of cubature
formula on Wiener space: To compute the expectation of a solution
of SDE by using bdd variation paths which is constructed by cf for
the Gaussian integral.

dY x
t =

n∑
j=1

Vj(Y
x
t ) ◦ dB

j
t , Y x

0 = x ∈ Rn, E[f(Y x
1 )] = ??
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Cubature formula on Wiener space
Wn = {ω : [0,1]→ Rn, conti. & ω(0) = 0}, (Wn, P), Wiener sp.,
W̃n = {ω ∈Wn, ω has bounded variations,

i.e., sup∆
∑k

l=1 |ω(tl+1)− ω(tl)| <∞},

B = {(B1(t), . . . , Bn(t))}, n-dim. Brownian motion starting at 0.

Def. ω1, . . . , ωN ∈ W̃n, λ1, . . . , λN > 0

form a cf on Wiener sp. of degree t (at time 1) iff

E
[ ∫

0<t1<...<tk<1
◦dBi1(t1) ◦ · · · ◦ dBik(tk)

]
=

N∑
j=1

λj

∫
0<t1<...<tk<1

dω
i1
j (t1) · · · dω

ik
j (tk), ∀(i1, . . . , ik) ∈ At,

where At = {(i1, . . . , ik) ∈ {1, . . . , n}k, k ≤ t}.

• We construct a pair ({ωi}1≤i≤N , {λi}1≤i≤N) by using cf for the
Gaussian integral of Rn. ← +“Rough Path ideas”
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f(Y x
1 ) = f(x) +

n∑
j=1

∫ 1

0
Vjf(Y x

s ) ◦ dB
j
s f : bounded smooth

= f(x) +
n∑

j=1

∫ 1

0
Vj

(
f(x) +

n∑
i=1

∫ s

0
Vif(Y x

u ) ◦ dBi
u

)
◦ dB

j
s

= f(x) +
n∑

j=1

Vjf(x)

∫ 1

0
◦dB

j
s +

n∑
i,j=1

∫ 1

0

∫ s

0
VjVif(Y x

u ) ◦ dBi
u ◦ dB

j
s

= · · · · · ·

=
∑

(i1,··· ,ik)∈At

Vi1 · ·Vikf(x)

∫
0<t1<···<tk<1

◦dB
i1
t1
◦ · · ◦dB

ik
tk

+ · · · .

(Note: f(y) = f(a) · 1 + f ′(a)(y − a) + f
′′
(a)
2! (y − a)2 + · · · . )
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Cf on Wiener sp. of degree 3

Let x1 = (
√

2,0), x2 = (0,
√

2), x3 = (−
√

2,0), x4 = (0,−
√

2) ∈ R2.
These points form a cf of deg. 3 for the Gaussian integral;

1

2π

∫
Rn

f(x)e−‖x‖
2/2dx =

1

4

4∑
i=1

f(xi), ∀f ∈ P3(R2)

Then, ωi = xit, λi = 1
4 (i = 1, . . . ,4) form a cf on Wiener sp. of deg. 3;

E[

∫
0<t1<···<tk<1

◦dB
i1
t1
· · ·◦dB

ik
tk
] =

1

4

4∑
j=1

∫
0<t1<···<tk<1

dω
i1
j (t1) · · · dω

ik
j (tk),

∀(i1, . . . , ik) ∈ A3

= {(i1, . . . , ik) ∈ {1,2}k, k ≤ 3}.
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Cf on Wiener sp. of deg. 5

(X, λ)：a cf of deg. 5 for the Gaussian integral on Rn with |X| = N .

Lk,±1 = x1
kε1 + · · ·+ xn

kεn

+ 1
12

∑
i<j

(
xi

k(x
j
k)

2[[εi, εj], εj]±6xi
kx

j
kεi⊗εj+xi

k(x
j
k)

2[[εj, εi], εi]
)
.

Then we obtain
N∑

k=1

λk

2
π5

(
exp(Lk,1) + exp(Lk,−1)

)
= π5

(
exp

(1

2

n∑
j=1

εj ⊗ εj

))
.

For ω ∈ W̃n satisfies

π5(log(X0,1(ω))) = ε1 + . . . + εn

+ 1
12

∑
i<j

(
[[εi, εj], εj] + 6εi ⊗ εj + [[εj, εi], εi]

)
,

　• wi(t) = (x1
i ω1(t), . . . , xn

i ωn(t)) and wN+i(t) = (x1
i ωn(t), . . . , xn

i ω1(t))

　　　　　　　　　　　 form a cf of deg. 5 at time 1.
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Upper and lower bounds for cf on Rn

• We want to find cubature formulas for the Gaussian integral.

Thm. (Tchakaloff, ’57) We can find X with |X| ≤ dimPt(Rn) =(n+t
t

)
, and positive weight function w, such that

1

πn/2

∫
Rn

f(x)e−‖x‖
2
dx =

∑
x∈X

w(x)f(x), ∀f ∈ Pt(Rn).

Thm. (Möller, ’76) The smallest possible number |X| in a cf of
deg. t is bounded from below:

|X| ≥

 dimPe(Rn) t = 2e
2dimP∗e(Rn)− 1 t = 2e + 1, e : even & 0 ∈ X
2dimP∗e(Rn) otherwise

Here P∗e(Rn) is the subspace of Pe(Rn) consisting all even or odd
polynomials according to e being even or odd, respectively.

• t = 4: |X| ≥ 1
2(n + 1)(n + 2), t = 5: |X| ≥ n2 + n + 1.
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• t = 5, n = 3：
|X| ≥ 32 + 3 + 1

= 12 + 1

= (the vertices of icosahedron) + (the origin).
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Our goal and outline of this talk

Our goal:

• The existence problem of minimum cf for the Gaussian integral.

However, minimum cf are very rare to exist. Thus, we need to

find a cf with smaller number of points.

• Constructing and thinning methods of cf for the Gaussian integral.

Outline of this talk:

• Quadrature formula, Reproducing kernel, Euclidean design

• Our results (existence of min. cf & construction)

• Cubature on Wiener space (and its construction)

• Further problems
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Quadrature formula

I = (a, b) ⊂ R, µ : a probability measure on I,

{pl}l=0,1,... : orthonormal poly. w.r.t. 〈f, g〉 :=
∫
I fgdµ,

{λ1, . . . , λk+1} : the set of zeros of pk+1(x), ωj = (
∑k

i=0 pi(λj)
2)−1.

Then, ({λ1, . . . , λk+1}, {w1, . . . , wk+1}) forms a qf of degree 2k + 1;∫
I
f(x)dµ(x) =

k+1∑
j=1

wjf(λj), ∀f ∈ P2k+1(R).

∵) For any polynomial f(x) of deg. 2k+1, there exit two polynomials

g(x), r(x) of deg. ≤ k, such that f(x) = g(x)pk+1(x) + r(x). Then

r(λj) = f(λj) for each j and by orthogonality∫
I
fdµ =

∫
I
gpkdµ +

∫
I
rdµ =

∫
I
rdµ =

k+1∑
j=1

wjf(λj).
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Reproducing kernel and minimum cf

Πk(Rn) : the vector sp. of all polynomial of deg. k,
{Pk,i}1≤i≤rn

k
: orthonormal poly. of deg. k w.r.t. 〈f, g〉 =

∫
Ω fgdµ,

P ≡ (Pk,1, . . . , Pk,rn
k
), rn

k = dim(Πk(Rn)).

Then, the t-th rep. kernel is defined as follows:{
Kt(x, y) = K̃t(x, y) + K̃t−1(x, y),
K̃t(x, y) =

∑
0≤l≤t, l≡t (2) Pl(x)PT

l (y).

• For any f ∈ Pt(Rn), we have f(y) =
∫
Ω f(x)Kt(x, y)dµ(x).

Thm. (Mysovskikh (’81)) There exists a minimum cf (X, w) of
deg. 4k + 1 for a spherically sym. integral

∫
Ω fdµ, iff

(i) K̃2k(x, y) = 0, x, y ∈ X, x 6= y,
(ii) w(0) = K̃2k(0,0)−1, w(x) = K̃2k(x, x)−1/2, x ∈ X \ {0}.

Moreover, X is equal to the set of common zeros of {P2k+1,i}1≤i≤rn
2k+1

.
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Since the t-th modified rep. kernel is a polynomial of ‖x‖2, ‖y‖2 and

〈x, y〉, we can calculate, e.g., the 4-th modified rep. kernel:

By Mysovskikh’s thm, we can determine the radii and weights.

→ However, it is not easy to determine the position of points on

each spheres.

→We focus on algebraic structure associated with cubature points.
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Xu’s compact formula (’98):
∫
Bn f(x)wµ(1− ‖x‖2)µ−1/2dx

K̃t(x, y) = cµ

∫ 1

−1
C

(µ+n+1
2 )

t

(
〈x, y〉+

√
1− ‖x‖2

√
1− ‖y‖2t

)
(1−t2)µ−1dt,

where C
(λ)
t is the Gegenbauer polynomial of degree t.

• We want to find a compact formula for a spherically sym. integral!
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Euclidean design

• To consider cf for spherically symmetric integrals, we prepare the
concept of Euclidean design.

X ⊂ Rn, |X| <∞, w : X → R>0

{r1, . . . , rp} = {‖x‖ | x ∈ X}, r1 > . . . > rp,

Si = {x ∈ Rn | ‖x‖2 = Ri}, S = ∪p
i=1Si,

Xi = X ∩ Si, Wi =
∑

x∈Xi
w(x).

Euclidean 7-design of R2

Then, a pair (X, λ) is a Euclidean t-design (on S), iff
p∑

i=1

Wi

|Si|

∫
Si

f(x)dσi(x) =
∑
x∈X

w(x)f(x), ∀f ∈ Pt(Rn),

where σi is the surface measure on Si.

In particular, X is a spherical t-des., iff p = 1, r1 = 1 and w(x) = 1
|X|.
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Euclidean design and cubature formula

By the following, we know a cf of deg. t is a Euclidean t-des.

Thm. (Neumaier-Seidel, ’88). (X, w) is a Euclidean t-design, iff∑
x∈X

w(x)f(x) = 0,

{
∀f ∈ ‖x‖2jHarml(Rn),

1 ≤ l ≤ t, 0 ≤ j ≤ [t−l
2 ].

• Merit of considering Euclidean design.

1. Cf for spherically symmetric integral is a special class of Eu-

clidean design.

2. We have many papers on minimum Euclidean t-des., in partic-

ular of those on one or two spheres (i.e., p = 1,2).

For example, minimum Euclidean t-des. on 2 spheres were ob-

tained for t = 3,4,5,6,7 (association scheme, coherent config.).
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What is a coherent configuration?

Euclidean 9-design of R2
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Existence of minimum cf

H.-Sawa (’09)

• Structure of minimum cf of degree 4k + 1

Thm. Assume there exists a minimum cf (X, w) of degree 4k + 1

for a spherically symmetric integral. Then the following hold:

1. X are distributed over k spheres and 0.

2. w take a constant on each sphere.

3. Each layer of X \ {0} is similar to a

spherical (2k + 3)-des. degree 5

We showed nonexistence of minimum cf of degree 9 for Stroud’s

classical integrals. Recently, Bannai-Bannai completely showed nonex-

istence of minimum cf of degree 9 for a spherically sym. int.
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• Minimum cf of degree 5

The points of minimum cf of deg. 5 for a spherically symmetric

integral are supported by “the origin” and “a sphere”.

→ We construct explicitly for 1, 2, 3, 7, 23 dimensions．

Probem Let m be an integer with m ≥ 3. Is there exists a minimum

cf of deg. 5 for a spherically sym. int. in Rm?

(±α, ±α, 0, ±α, 0, 0, 0)
(0, ±α, ±α, 0, ±α, 0, 0)
(0, 0, ±α, ±α, 0, ±α, 0)
(0, 0, 0, ±α, ±α, 0, ±α)

(±α, 0, 0, 0, ±α, ±α, 0)
(0, ±α, 0, 0, 0, ±α, ±α)

(±α, 0, ±α, 0, 0, 0, ±α)
(0, 0, 0, 0, 0, 0, 0)
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H.-Nozaki-Sawa-Vatchev (arXiv:1103.1111)

By applying a generalization of the Larman-Rogers-Seidel theorem

(Nozaki, preprint), we obtain the following necessary condition:

Thm. Let k, n with k ≥ 2, n ≥ 4k2 − 2k + 1. Assume there exists a

minimum cf X of deg. 4k + 1 for a sherically symmetric integral.

Then there exists Xl such that

every α ∈
{
〈x,y〉
r2l
| x, y ∈ Xl, x 6= y

}
is a rational number.

By using this theorem, we show that nonexistence of minimal formula

of degrees 13,17 and 21 for a generalized Xu’s integral.
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Bannai-Bannai-H.-Sawa (’10)

By using the so-called Möller lower bound, we obtain Fisher types
of lower bounds of Euclidean designs. And thereby we define
minimum and almost minimum of the design.

By applying similar arguments by Verlinden-Cools (’92), we also
give classification of minimum Euclidean designs of R2.

Thm. (X, λ) is a min.Euclidean (4k + 3)-des. on (k + 1) spheres.

Then, letting Rj = r2j , it has the form

k+1∑
j=1

Wj

2k + 4

2k+3∑
l=0

f
(√

Rj cos
( j + 2l

2k + 4
π
)
,
√

Rj sin
( j + 2l

2k + 4
π
))

, and

Wi =
R

2k−p+3
1

R
2k−p+3
i

∏i−1
j=2(R1 −Rj)

∏p
j=i+1(R1 −Rj)∏i−1

j=2(Rj −Ri)
∏p

j=i+1(Ri −Rj)
W1, 2 ≤ i ≤ k + 1.
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H.-Sawa (’12?), Bannai-Bannai-H.-Sawa (’11)

By combing BBHS(’10) and orthogonal polynomial properties, we

obtain classification of minimum cf of the Gaussian int. of R2.

Thm. Assume X is a minimum cf of deg. 4k + 3 with {‖x‖2 | x ∈
X} = {R1, . . . , Rk+1}. Then the following holds:

1. {R1, · · · , Rk+1} is the set of zeros of Lk+1(t).

2. Lk+1(t) can be factored in the following two parts.



L2a+2
a (t)

(
L2a+2

a+1 (t) + γ1L2a+2
a (t) + γ2L2a+2

a−1 (t)
)

　　　　　　　　　　　　　　　　　　　　　 if k = 2a,(
L2a+3

a+1 (t) + γ1L2a+3
a (t)

)(
L2a+3

a+1 (t) + γ2L2a+3
a (t)

)
　　　　　　　　　　　　　　　　　　　　 if k = 2a + 1.

for some γ1, γ2 ∈ R.
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degree 3 (min)

degree 4 (min)

degree 4 (min)

degree 5 (min)

degree 6 (min+1)

degree 7 (min+1)

degree 8 (min+1)

degree 9 (min+2)
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Constructing cf

H.-Sawa-Zhou (’10)

By using some orbits of a finite group, we construct a minimum

Euclidean 5-design on 3 concentric spheres.

There seems to exist no minimum cf of higher degrees and dimen-

sions for spherically symmetric integrals. So, we need to find some

construction of cf with smaller number of points.

⇒ In H.-Jimbo-Sawa (preparation), we give a construction for cf

with some statistical optimality. → cf for the Gaussian integral.

• ε1, . . . , εn : the standard basis of Rn,

G : the gr. generated by sine changes & permutat. of coordinates

OrbG(x) : the orbit of x by G.
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• When the case n = 3m + 2, let

x1 = r1ε1,
x2 = r1√

m+2
(ε1 + . . . + εm+2),

y1 = r2ε1,
y2 = r2√

m+2
(ε1 + . . . + εm+2).

where r21, r22 forms a qf of degree 2 for
∫
·s(n−2)/2e−sds.

Then, the set

X = OrbG(x1) ∪OrbG(x2) ∪OrbG(y1) ∪OrbG(y2)

form a cf of degree 5 for the Gaussian integral.

• For n = 8 (m = 2),

|X| = 2 · 2 · 8 + 2 · 24 ·
(8
4

)
= 2272.
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By using 3-(8,4,1) design (block size = 14), we can replace
(±α, ±α, ±α, 0, ±α, 0, 0, 0),
(±α, 0, ±α, ±α, 0, ±α, 0, 0),
(±α, 0, 0, ±α, ±α, 0, ±α, 0),
(±α, 0, 0, 0, ±α, ±α, 0, ±α),
(±α, ±α, 0, 0, 0, ±α, ±α, 0),
(±α, 0, ±α, 0, 0, 0, ±α, ±α),
(±α, ±α, 0, ±α, 0, 0, 0, ±α),
(0, 0, 0, ±α, 0, ±α, ±α, ±α),
(0, ±α, 0, 0, ±α, 0, ±α, ±α),
(0, ±α, ±α, 0, 0, ±α, 0, ±α),
(0, ±α, ±α, ±α, 0, 0, ±α, 0),
(0, 0, ±α, ±α, ±α, 0, 0, ±α),
(0, ±α, 0, ±α, ±α, ±α, 0, 0),
(0, 0, ±α, 0, ±α, ±α, ±α, 0).

|X ′| = 2 · 2 · 8 + 2 · 24 · 14 = 480.

• This gives suggestion that we can reduce the points X by

combin. t-des. and OA. (e.g., Kono(’62), Victoir (’04))



Cubature on Wiener space

To compute the expectation of a solution of a SDE, Lyons-Victoir(’04)

introduced the concept of cubature formula on Wiener space.

dY x
t =

n∑
j=1

Vj(Y
x
t ) ◦ dB

j
t , Y x

0 = x ∈ Rn,

E[f(Y x
1 )] = ??← using cf on Wiener sp.

To construct cubature formulas on Wiener space, we need to use

cubature formulas for the Gaussian integral.

Before starting to introduce the def. of cubature on Wiener space,

we prepare some notations and results.
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Cubature formula on Wiener space

(Wn, P), Wiener space,

B = {(B1(t), . . . , Bn(t)), t ≥ 0}, n-dim. Brownian motion starting at 0

W̃n = {ω ∈Wn, ω has bounded variations,

i.e., sup∆
∑k

l=1 |ω(tl+1)− ω(tl)| <∞},

Def. ω1, . . . , ωN ∈ W̃n, λ1, . . . , λN > 0

form a cf on Wiener sp. of degree t (at time 1) iff

E
[ ∫

0<t1<...<tk<1
◦dBi1(t1) ◦ · · · ◦ dBik(tk)

]
=

N∑
j=1

λj

∫
0<t1<...<tk<1

dω
i1
j (t1) · · · dω

ik
j (tk), ∀(i1, . . . , ik) ∈ At,

where At = {(i1, . . . , ik) ∈ {1, . . . , n}k, k ≤ t}.
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Constructing cubature formula on Wiener space

Prob. Find ω1, . . . , ωN ∈ W̃n, λ1, . . . , λN > 0 form a cubature formula

on Wiener space of degree 3 at time 1, i.e.,

E
[ ∫

0<t1<...<tk<1
◦dBi1(t1) ◦ · · · ◦ dBik(tk)

]
=

N∑
j=1

λj

∫
0<t1<...<tk<1

dω
i1
j (t1) ◦ · · · dω

ik
j (tk), ∀(i1, . . . , ik) ∈ A3.

• We want to calculate

E[

∫
◦dBi], E[

∫
◦dBidBj], E[

∫
◦dBi ◦ dBj ◦ dBk].
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B = {B1(t)ε1+ · · ·+Bn(t)εn, t ≥ 0}: n-dim. BM starting at 0, where
　　　　　　　　　　　　　　　　ε1, . . . , εn are the standard basis of Rn,

X
(3)
s,t (◦B) =

3∑
l=0

∑
(i1,...,ik)
∈Al\Al−1

∫
0<t1<···<tk<1

◦dBi1(t1) · · ·◦dBik(tk)εi1⊗· · ·⊗εik

　　　　　∈ R⊕ Rn ⊕ (Rn ⊗ Rn)⊕ (Rn ⊗ Rn ⊗ Rn) = T (3)(Rn).

Prob. Find ω1, . . . , ωN ∈ W̃n, λ1, . . . , λN > 0, which satisfy

E[X(3)
0,1(◦B)] =

N∑
j=1

λjX
(3)
0,1(ωj).

Moreover, Fawcett (’04) and Lyons-Victoir (’04) show that

E[X(3)
0,1(◦B)] = 1 +

1

2

n∑
j=1

εj ⊗ εj.
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We would like to express the right hand side in terms of ε1, . . . , εn by
using Chen’s theorem:

For a, b ∈ T (Rn), [a, b] := a⊗ b− b⊗ a (Lie bracket),

U(3) = Rn ⊕ [Rn, Rn]⊕ [[Rn, Rn], Rn].

(The element U(3) is called a Lie polynomial of degree 3.)

Thm (Chen). ∀L ∈ U(3), ∃ω ∈ W̃n, s.t., L = π3(log(Xs,t(ω))).

　　 (For a = 1 + c, c = (0, c1, c2, ..) ∈ T (Rn), log(a) =
∑

k≥1(−1)k−1k−1c⊗k.)

So, Prob. can be expressed in terms of Lie polynomials.

Prob. Find L1, . . . ,LN ∈ U(3) and λ1, . . . , λN > 0, s.t.,

1 +
1

2

n∑
i=1

εi ⊗ εi =
N∑

j=1

λjπ3(exp(Lj)).

Hence our problem changes from finding bounded variation paths to

finding Lie polynomials.
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Cf on Wiener sp. of deg. 3

(X, λ): a cf of degree 3 for the Gaussian integral with |X| = N .

Lj = x1
j ε1 + · · ·+ xn

j εn, j = 1, . . . , N .

π3(exp(Lj)) =
3∑

k=0

(x1
j ε1 + · · ·+ xn

j εn)⊗k

k!

= 1 + x1
j ε1 + · · ·+ xn

j εn +
1

2
(x1

j )
2ε1 ⊗ ε1 + · · ·+

1

2
(xn

j )
2εn ⊗ εn

+
1

6
(x1

j )
3ε1 ⊗ ε1 ⊗ ε1 + · · ·+

1

6
(xn

j )
3εn ⊗ εn ⊗ εn.

Then we obtain

π3

(
exp

(1

2

n∑
i=1

εi ⊗ εi

))
= 1 +

1

2

n∑
i=1

εi ⊗ εi =
N∑

j=1

λjπ3

(
exp(Lj)

)
.

• wj : t 7→ t(x1
j , . . . , xn

j ), j = 1, . . . , N , form a cf of deg. 3 at time 1.
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Cf on Wiener sp. of deg. 5

(X, λ): a cf of degree 5 for the Gaussian integral with |X| = N .

Lk,±1 = x1
kε1 + · · ·+ xn

kεn

+ 1
12

∑
i<j

(
xi

k(x
j
k)

2[[εi, εj], εj]±6xi
kx

j
kεi⊗εj+xi

k(x
j
k)

2[[εj, εi], εi]
)
.

Then we obtain
N∑

k=1

λk

2
π5

(
exp(Lk,1) + exp(Lk,−1)

)
= π5

(
exp

(1

2

n∑
j=1

εj ⊗ εj

))
.

For ω ∈ W̃n satisfies

π5(log(X0,1(ω))) = ε1 + . . . + εn

+ 1
12

∑
i<j

(
[[εi, εj], εj] + 6εi ⊗ εj + [[εj, εi], εi]

)
,

　• wi(t) = (x1
i ω1(t), . . . , xn

i ωn(t)) and wN+i(t) = (x1
i ωn(t), . . . , xn

i ω1(t))

　　　　　　　　　　　 form a cf of degree 5 at time 1.
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Error Estimates

For a bdd smooth fun. f ,

f(Y x
T ) =

∑
(i1,...,ik)∈Am

Vi1 · · ·Vikf(x)

∫
0<t1<···<tk<T

◦dB
i1
t1
· · ·◦dB

ik
tk
+Rm(T, x, f).

Let

EQT
[

∫
0<t1<···<tk<1

◦dB
i1
t1
· · ·◦dB

ik
ik
] =

n∑
j=1

λj

∫
0<t1<···<tk<T

dw
i1
j (t1) · · · dw

ik
j (tk),

for all (i1, . . . , ik) ∈ Am.

Then,

sup
x

EQT
[|Rm(T, x, f)|] ≤ Cn,m,Q1

T (m+1)/2 sup
(i1,...,ik)∈Am+2\Am

‖Vi1 · · ·Vikf‖∞.
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Problems

• For each k and n, find some methods of construction of cf

of degree 2k + 1 for the n-dim.Gaussian integral.

• For higher degree case, it doe not seem easy to construct Lie

polynomials which form a cf on Wiener sp. I would like to find some

explicit construction of Lie polynomials.

• Find the lower bound for the number of paths in a cf on Wiener

sp. of deg. t!

• ... ...
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Thank you for your attention!
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