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Introduction

e G : simply connected compact Lie group

o H?*+1(L.(G),R) = {0}, where
L(G) = C([0,1] — G | 4(0) = (1) = e).

e [ he exterior differential operator d and Hodge-Kodaira

type Laplacian [J can be defined on Sobolev spaces of
differential forms on L.(G) based on the pinned Brownian

motion measure and Malliavin calculus.

Question Can one prove dim ker [, = 07 Here p is

odd and |, stands for the Hodge-Kodaira Laplacian acting

p-forms.



We can prove the following.

Theorem 1 (1) Let « be a 1-form on L.(G) satisfying
dao = 0. Then there exists a function f such that df = «.

(2) KerO|; = {0}.

This theorem Is proved by using a Poincaré type vanishing

lemma on a certain domain in a Wiener space.

The related general results were studied by Kusuoka based

on his capacity and Sobolev spaces.
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Poincaré type vanishing lemma : convex case

Let (B, H, ;1) be an abstract Wiener space. Let

F € D>*°(B,R). Assume

(1) |DF(w)|g € Np>1LP(B, p)

(2) D?F(w) > 0 p-almost sure w.

let U = {w € B | F(w) < 1}. We assume u(U) > 0.

Let d be the exterior differential operator acting on smooth
forms D*°(B, APH*) on B. Let d* be the adjoint opertaor

of d. We define

= dd” + d*d.

5




We restrict this operator on U by specifying a boundary
condition. Let

DOlp,) = 1o € D*(B,APH”) | t(n)a|s(w) = 0,
t(n)da|s(w) =0v —a.s.w € S}.
Here
dv = |DF(w)|8,(F)dp, S ={F =1},
n(w) : unit outer normal vector at w € S

This is called the absolute boundary condition.



More precisely, we define [ in the following way. Let

£ = [ (dasdB)dp+ [ (da.d'B)dp
a,8 € {0 € D™(B,A\"H") |
t(n)f(w) =0 a.s.w € S}.

We define [ as the self-adjoint operator corresponding to

the closed form which is obtained by the closure of £.

Shigekawa proved the following theorem.

Theorem 2 (Shigekawa) inf o(J|,) > p.



L?-Poincaré lemma:

Suppose that dae = 0, o € D(E|,). Let 8 = d*0| .

Then

d3 = dd*

p— a,

where we have used d

la = (dd* + d*d) 0 '«

—1

—1d and dao = 0. This

implies that closed form is exact on U. However, it seems

that this argument require the essentially self-adjointness of

on some suitable domain (domain issue).



Proposition 3 Assume

(1) Vw € B, F(w+ ) : H — R is convex and
esssup| DF(w)|g < oo.

(2) There exist projection operators Pn on H such that
PN — IH, PN & L(B, B*), ”F(P]{[“)“DlA(R) — 0.

(3) w(U,) >0, whereU, = {w | F(w) < r}.
We fix p > 1. Assume a« € L*(B, H*) N D>>?(B, H*)

satisfies doo = 0 on U,..

Then there exists f,» € DY?(B,R) such that
df,, = o on U, for any v’ < r.
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Proof of Proposition 3

We write Pyw = &, w — Pnyw = 1 and define

Ry = {n|F(n) <r/2}, Un)={&£| F(+n) <r}
Uv = {{+n|§€U(m),ne€ Ry} CU.

Then U(n) is a convex set and 0 € U (7n). We can write
a(w) = Z ai(w)dfi + Z O (w)dnj
2 J

= an(&,n) + ay(€,n).

dnan(+,m) = 0 on U(n) for a.s.n, where dy = Pnd.
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Define
1 .
InEm) = [ 3 aulte+meiat

Joa N (& m)dun(§)
pn(U(n))

gN(£9 77) — fN(€9 77)
Then

an(w)

dngn (€, 1)
”gN('a 77) ”%2(U(n),m\,) < CHO‘N('v 77) Hiz(U(n),uNy (*)
() follows from the Poincaré inequality on the convex

domain U(n). Let gn(w) = gy (w)ly, (w) w € B.
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(*) implies supy ||gn || L2(B,p) < 0.

Hence a subsequence gy k) converges weakly to some g In
L?(B, u).

goo@p(F') is the desired function, where ¢ is a smooth

cut-off function such that
) =1 (< r), @=x)=0 (x>r),

where 7’ < r;{ < ry < 7.
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Let us consider the case:

B=w¢% = c([0,1] — R? | w(0) = 0),
H = H'([0,1] — R? | h(0) = 0).

There exists the Wiener measure ;. on W <. Using solutions
of SDE on G, we can change the problem on L.(G) in

Theorem 1 to a problem on some domains in Wiener spaces.

However, the above Poincaré lemma on convex domains

cannot be applied to the problem.

We need Poincaré's lemmas on non-convex domains defined

by Brownian rough path.
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Brownian rough path

Let ¢ = @ = (x},...,x2),

y =1y = (y5...,y?) (0 <t < 1) be continuous paths.
Suppose that @ or y is a bounded variation. Then we can
definefor0 < s <t <1

C(wa y)s,t

t

=S ([ i) o

1<2,73<d
€ R ®@ R
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as a Stieltjes integral. Here e; = (0, ..., i, ...,0). Let

A= {(s,t) e R | 0 < s <t <1} Fora continuous
mapping @ : A — V with values in a normed linear space
V', define

1 t ,t m 1/m
6o = { [ [ 2 bgasde|

where, m is an even number such that m(1 — ) > 2 and
2/3 <0 <1

Wino(A = V) :=C(A =V ||@|me < 0).
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Also we define for a continuous path x starting at 0 on R?
T = d dt
folmo={ [ [ g dsdt

Wone(RY) = {‘” : [0,1] = R | &g = 0, ||| m,0 < oo,

and

€T IS continuous.}.

o W,.0/2(R?) is a subset of the 8/2-Hdlder continuous

function space

o (Wi o/2(RY)) = 1.
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From now on, we fix the indexes
m(l—0") >4, 2/3<0<6 <1.
For w € Wiy, ¢//2, define
w(IN') = dyadic polygonal approximation of w such that
W(IN)g/2v = wy /o~ for all 0 < k < 2N and

w(N)" = (w(N),e;)
w(N)T = w — w(N)
w(N)" w' — w(N)"

17



Theorem 4 Let () be the set of w € Wy, ¢/2 (Rd)
satisfying the following (i)-(iii).

(i) Impy oo W(IN) = w in W, g//2(R?).

(ii)) impy_ 00 C(w(IN),w(IN)) converges in
Wm,g(A — R ® Rd).

(iii) imy_ oo C(w(N)*+, w(N)) and
limy_o C(w(IN), w(IN)L) converge to 0 in
Wino(A — R ® Rd).

Then S2€ is a slim set, H C €2 and €2 + H C ().
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For w = (w!,...,w?) € Q, we define
C(w,w)s; = Alfi_r)rlooC’(w(N),w(N))s,t
Cw',w’)ey = lim C(w(N)',w(N)")s,
For w, z € (2, let
do(w, z)
= max{[|w = z|lmo2: [|C(w, w) = C(2,2)llm,o }-
Let o € (WD)*, where (W)*(C H* ~ H) is the set of

functions whose first derivatives are bounded variation.
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We define a ball like set in rough path analysis.

Urr’go p—

= € {2 112%}2 |w*|| im0 /2 < T,

_/\\

I apk
1§r§1<akX§d”C(w ) 1Y )”m,H <r,

t apd
1£1§§d |C (" w?)||me < T,

sup ||C(w', 90j)||m,9 < 'r}.
1<:1<y<d

Let

Ur(SO) — {’w—|—90 ‘ w E Ur,go}-

20



Poincaré type vanishing theorem

Theorem 5 Let 3 € L?(W 2, H*) and assume
B € D>°P(W4, H*) forsomep > 1. Let p € (W9)*

Suppose that d3 = 0 on U,.(yp). Then for any v’ < r,
there exists f € D°P(W4,R) N DL2(W4, R) such that
df = 3 onU, ().

Remark 6 The sets U,(y), U, are not H-convex.
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Sketch of Proof in the case where d = 2, ¢ = 0

Uro = {w = (w', w*) € Q| max | || m,0r /2 < T

|C (w2 [lmo < 7}
We use the notation

Oy = {w(N) |w € Q}
Oy = {w(N)" | we Q}

and we write
w(N) =&, w(N)J_ — M
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Ry = {n € Q]J\_f max ||77i||m,9’/2 < r/4,

i=1,2

C('s 1) lmo < 7/4}-

Uro(m) = (€ € QN | w=§+n € U,
C(glv 772) m,0 < r/4,
C(n",€%)llmo < /4]

Unon = {w=€+m€Q|E&EUp(n),

WERN}
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e Poincaré's inequality on U, o(n) C Qn:
For f € C°(Q2n) with fUr,O(TI) fdun = 0,

1113 mimy < € [ DI ydnn (©)
r,0(7]

where C' is a positive constant independent of N, 1. N is

the Wiener measure on 2.
e Poincaré lemma on U, 4(7):

Let @ be a smooth closed 1-form on U, o(7). Then there
exists a smooth function g on U, ¢(n) such that dg = 6 on
U0(n)-
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® (General results) Let us consider a bounded open subset
U(CR"™) 3 z=(x,y),x € R",y € R™. Let
A=1z|(z,y) €U}, B=1y| (z,y) €U},
U,={y e R™| (x,y) € U},

UY ={x € R"| (x,y) € U}. Let pu be the standard

normal distribution on R?*t™, R”, R™. Assume

(1) U,,UY are convex sets Ve € A,Vy € B.
Oc U,V e A. A isconvex.

(2) 6 = infyppea p(Us N UL) > 0

Poincaré’s inequality and Poincaré’'s lemma holds on U and
the Poincaré constant depends only on u(U) and 4.
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Let By = Pn{G.
dB = 0 implies dnyBn = 0 on U,.¢(n) for a.s. n € Ry.

As already explained, 3fn(w) = fn(&,n) on U, o N such
that [y oy N (& m)dun(§) = 0 and dvfv = B

et fnv = fN]'Ur,O,N'

By the Poincaré inequality

Q

| fnlle@,o) = | INllL2@,on) BN L2(U,.0 n)

B2,

IAIAIA
Q

Q

/B”Lz(Ur,O) *
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Therefore there exists a subsequence fN(k) which converges
weakly to some foo in L2(W4, du).
We can show that df.c = B on U, (¢).
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Stochastic differential equations
Let G be a compact Lie group (dim G = d). Let us
consider the SDE on G-

dX(t7 a, ’LU) — (LX(t,a,w))* O dwt7
X(0,a,w) = a € G.

Here L,a = ga is the left-multiplication and w; is the
d-dimensional standard Brownian motion on

R¢ ~ g ~ T.(G) whose starting point is 0.
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Theorem 7 There exists a measurable map
X :[0,00) X G X €2 — G which satisfies the following.

(1) X (t, a,w) is a version of the solution to the SDE (1).

(2) For any t,a, the map w — X (t, a,w) is continuous
In the sense that for any w, z € Q) with

max (dqo(0,w),dn(0,2)) < R, there exists C(R) > 0
such that

sup d(X (t,a,w), X(t,a,z)) < C(R)do(w,z).
0<t<1

29



Precise statements of Theorem 1

Below we assume that
G is a simply connected compact Lie group.

Let € be a sufficiently small positive number and set

D.={w e Q|d(e, X(1,e,w)) < €}.

Let v, be the pinned Brownian motion measure on L.(G).

First theorem Is a vanishing theorem on D..
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Theorem A Let us fix p > 1. Assume
(1) B € D*P(W?, H*) and B8 € L*(U,(p),dp) for any
r > 0and p € (W9)*

(2) dB = 0on D..
Then there exist {p;}2, C (W*)*, r; > 0,
f; € D>®P(W4,R) NDY2(WER) (¢ > 1) and a
measurable function F' on D, such that

D, = Uz?ilUTz'((Pi)

dfi = (B as. onU,/ (p;)

F(w) = fi(w) as. onU, (¢;)

31



Theorem B Let
a € DY(A'T*L.(G), dv,) N D>°P(A'T*L.(G), dv,)
and assume that daa = 0 v, — a.s. on L.(G). Let

Hy = {h € H'([0,1] — T.(G)) | h(0) = h(1) = 0}.

There exists a measurable function f on L.(G) such that
for any h € Hy, € > 0,

f(e™) — f(-) € LULA(G), dv,)

and forany 1 < g < p,
’f(ee”) f()

()]

€—>0| La (I/e)

32



Let

E(a,a) = (da,da)rz,) + (da, d*a) r2(,)
a € FCX(AN'T*L.(G))

The Hodge-Kodaira operator L1 is the generator

corresponding to the closed form which is the closure of £.

Theorem C Let G be a simply connected compact Lie
group. Then ker (1 = {0}.
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Proof of Theorem A

(1) By the H-connectedness of D,, there exist
{Ur, (@i) }52, such that D, = U2 U, (;) and
(Ui U (9i)) N U, (9111)) > 0 (for any k).

(2) By Poincaré’s vanishing theorem, there exist
f; € D®P(We R) NDY2(WR) (1 < p < 2) such
that dfz — /6 on Um(goz)

(3) Using the H-connectedness and H-simply
connectedness of D, and the Stokes theorem in

H -direction, we see that there exists a measurable
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function F' on D, and ¢; € R such that for any 72 € N,
F(w) = fi(w) +¢; p-asw € U, (p;).
These F' and f; + c; are desired functions.

We explain (3). We denote Dy, = U¥__U,..(¢;). We
assume that there exists a measurable function Fj on Dy

and constants ¢; (1 < ¢ < k) such that F, = f; 4+ ¢; on
U, (p;) forall 1 <1 < k.

It suffices to prove that there exists cx1 such that

Fk — fk:—l—l + Cr+41 ON -Dk M U’l“k_|-1 (cpk—l—l)-
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Take a h € (W%)* and » > 0 such that
U,.(h) C DyNU,,,,(®rt1). Since

d(Fy — fr+1) =B — B8 =0 onU,.(h),

(by the irreducibility of the Dirichlet form on U,.(h)) there

exists a constant cg1 such that

Fi, = fry1+ ck+1 on U,.(h).

We prove that

Fk — fk—l—l + Cr+1 OnN -Dk M U’l“k_|_1 (on—|—1)°
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Suppose that there exists B C Dy N U, ., (¢r+1) and
0 > 0 such that

| Fr — (fr+1 + crt1)| > 6 on B.

Then by the H-connectedness of Dy, and U, ., (¢¥r+1),
there exists A C U,.(h) and

ho(-),hi(-) € H'([0,1] — H | h(0) = 0) such that
ho(1) = h1(1) = v, A+ v C B and

A+ ho(7) C Dgy, A+ hi(7) CUpp, (Prt1)
forall 0 < 7 < 1.
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By the H-simply connectedness of D,, there exists
H(o,7) € H (0 < o,7 < 1) such that for all 7,0

H(OaT) — hO(T)a H(lvT) — hl(T)a
H(o,0) =0, H(o,1) = v(= ho(1l) = h1(1))
A+ H(o,7) C D..

It holds that for almost all w € A

Fi(w + v) — Fy(w) = / (B(w + ho(7)), dho(7))

Frin(w + ) — for (w) / (B(w + ha (7)), dha (1))
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Also we have (Stokes theorem),
1
| 8w+ hi(),doha(r)

_/O (B(w + ho(T)), d+ho(T))

— // (dB)(w+H(o, 7)) (deH (o, T),dH(o,T))
(o,7)€(0,1]?

= 0.

This shows

Fr(w+v) — fra1(w+v) = cgyq  for almost all w € A.

This 1s a contradiction.
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Proof of Theorem B

Let D, = {7 € L.(G) | d(v(1),e) < 2¢}. Define a
map ¥ : D, — L.(G) by

W(y)(t) = exp(—tlog~y(1))v(2).
Let B = p(X(1,€,w))(¥ o X)'a € ]D);O(Wda H~),
pe() =1 (d(z,€) < 3¢/2), pe(x) = 0 (d(z, ) > 2).
Then dB@ = 0 on D..

By Theorem A, dg such that dg = 3.
F(v) =9 (X71(7)) (v € Le(G)) is the desired function.
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Proof of Theorem C

Suppose Llax = 0.

(1) Weitzenbock type formula:

= V*V + I + Tyqy + T3 + T3,

where b(t) = f(f odvy(s)vy(s)™ 1.

(2) Using the Weitzenbock formula and the hypoellipticity of
V*V, o & ml<p<2]D>OO,p(/\1T*Le(G)). Since o = 0
implies dox = 0, there exists f such that df = a by
Theorem B. For any C}-function 1, ¥ (f) € DV?(L.(G))

and d (4(f)) = ¥'(f)a.
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Let ¢ be a Cj-function such that ¥ (x) = = (|z| < 1).
Let Y (x) = KY(x/K). Using d*a = 0,

[ 1B edve)
L.(G)

— Kl_1_1>1;1>O (G (CX('Y)v ¢}{(f)a(‘7))T7Le(G) dve ()

Jim [ (), d () ) e ()
¢ JLe(G)

= Jim (d* ) (V)Y (f)dre(v) =0
7 JL(G)

which implies o« = 0.
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Final Remarks
o inf{o(J) \ {0}} > 07

e Higher dimensional case: Let 3 be a closed p-form on
U,(p). Then 3 (p — 1)-form ~ such tha dv = 37

e Other kind of non-convex domain? Non-smooth boundary?

Local-Sobolev spaces?

e Probably similar kind of theorem holds in the case of
L,(M) when H'(L,(M),R) = {0}.

® The case H'(L,(M),R) # {0}?
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Appendix: Kusuoka’'s result

e Submanifolds in Wiener spaces
M : compact Riemannian manifold
M C R?: isometry
Let P(x) : R — T, M be the projection operator and
dX(t,z,w) = P(X(t,x,w)) o dwy,
X0, z,w) = x € M.
There exists a probability measure

dp, = p(1l,x, ) 16,(X (1, z,w))du on the
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submanifold:

S={wew*| X(1,z,w) =x} C W

The exterior differential operator on S as the submanifold is
well-defined and some Sobolev calculus were developped by

many people.

Shigeo Kusuoka defined a local Sobolev spaces

Dy’ (U, dp)

loc

where U is a subset of W< and q is the index of the
integrability. Based on this Sobolev spaces, he proved the
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following (ICM proceedings 1990, Kyoto):

Theorem 8

HP (DY (APT*S)) ~ HP(M,, R)

loc
where

M, = {h e H|&1,z,h) = x,where

&(t, x, h) is the solution to

é(tamvh) — P(f(tawah))h(t)v £0,z,h) =zt > O}

Note that H' loop space H'L (M) and M, is

C°°-homotopy equivalent.
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Let U = d%ds + dsdg and O], be the restriction on

p-forms. They are defined as the Friedrichs extension of

them on some cores.

Theorem 9 (S.Kusuoka) There exists a map
Jp : ker |, — HP(M, R) such that

(1) jp Is surjective forp = 0,1,2,....
(2) 3, is injective for p = 0, 1.
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