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Introduction

• G : simply connected compact Lie group

• H2k+1(Le(G),R) = {0}, where

Le(G) = C([0, 1] → G | γ(0) = γ(1) = e).

• The exterior differential operator d and Hodge-Kodaira

type Laplacian � can be defined on Sobolev spaces of

differential forms on Le(G) based on the pinned Brownian

motion measure and Malliavin calculus.

Question Can one prove dim ker �|p = 0? Here p is

odd and �|p stands for the Hodge-Kodaira Laplacian acting

p-forms.
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We can prove the following.

Theorem 1 (1) Let α be a 1-form on Le(G) satisfying

dα = 0. Then there exists a function f such that df = α.

(2) Ker�|1 = {0}.

This theorem is proved by using a Poincaré type vanishing

lemma on a certain domain in a Wiener space.

The related general results were studied by Kusuoka based

on his capacity and Sobolev spaces.
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Poincaré type vanishing lemma : convex case

Let (B,H, µ) be an abstract Wiener space. Let

F ∈ D∞(B,R). Assume

(1) |DF (w)|−1
H ∈ ∩p≥1L

p(B,µ)

(2) D2F (w) ≥ 0 µ-almost sure w.

Let U = {w ∈ B | F (w) < 1}. We assume µ(U) > 0.

Let d be the exterior differential operator acting on smooth

forms D∞(B,∧pH∗) on B. Let d∗ be the adjoint opertaor

of d. We define

� = dd∗ + d∗d.
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We restrict this operator on U by specifying a boundary

condition. Let

D(�|p) = {α ∈ D∞(B,∧pH∗) | ι(n)α|S(w) = 0,

ι(n)dα|S(w) = 0 ν − a.s.w ∈ S}.

Here

dν = |DF (w)|δ1(F )dµ, S = {F = 1},
n(w) : unit outer normal vector at w ∈ S

This is called the absolute boundary condition.
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More precisely, we define � in the following way. Let

E(α, β) =

∫
U

(dα, dβ)dµ+

∫
U

(d∗α, d∗β)dµ,

α, β ∈ {θ ∈ D∞(B,∧pH∗) |
ι(n)θ(w) = 0 a.s.w ∈ S}.

We define � as the self-adjoint operator corresponding to

the closed form which is obtained by the closure of E .

Shigekawa proved the following theorem.

Theorem 2 (Shigekawa) inf σ(�|p) ≥ p.
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L2-Poincaré lemma:

Suppose that dα = 0, α ∈ D(E|p). Let β = d∗�|−1
p α.

Then

dβ = dd∗�−1α = (dd∗ + d∗d) �−1α

= α,

where we have used d�−1 = �−1d and dα = 0. This

implies that closed form is exact on U . However, it seems

that this argument require the essentially self-adjointness of

� on some suitable domain (domain issue).
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Proposition 3 Assume

(1) ∀w ∈ B, F (w + ·) : H → R is convex and

esssup|DF (w)|H < ∞.

(2) There exist projection operators PN on H such that

PN → IH , PN ∈ L(B,B∗), ‖F (P⊥
N ·)‖D1,4(R) → 0.

(3) µ(Ur) > 0, where Ur = {w | F (w) < r}.

We fix p > 1. Assume α ∈ L2(B,H∗) ∩ D∞,p(B,H∗)

satisfies dα = 0 on Ur.

Then there exists fr′ ∈ D1,2(B,R) such that

dfr′ = α on Ur′ for any r′ < r.
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Proof of Proposition 3

We write PNw = ξ, w − PNw = η and define

RN = {η | F (η) < r/2}, U(η) = {ξ | F (ξ + η) < r}
UN = {ξ + η | ξ ∈ U(η), η ∈ RN} ⊂ U.

Then U(η) is a convex set and 0 ∈ U(η). We can write

α(w) =
∑
i

αi(w)dξi +
∑
j

αj(w)dηj

:= αN(ξ, η) + α⊥
N(ξ, η).

dNαN(·, η) = 0 on U(η) for a.s.η, where dN = PNd.
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Define

fN(ξ, η) =

∫ 1

0

∑
i

αi(tξ + η)ξidt

gN(ξ, η) = fN(ξ, η) −
∫
U(η) fN(ξ, η)dµN(ξ)

µN(U(η))

Then

dNgN(ξ, η) = αN(w)

‖gN(·, η)‖2
L2(U(η),µN) ≤ C‖αN(·, η)‖2

L2(U(η),µN). (∗)

(∗) follows from the Poincaré inequality on the convex

domain U(η). Let ĝN(w) = gN(w)1UN
(w) w ∈ B.
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(∗) implies supN ‖ĝN‖L2(B,µ) < ∞.

Hence a subsequence ĝN(k) converges weakly to some g∞ in

L2(B,µ).

g∞ϕ(F ) is the desired function, where ϕ is a smooth

cut-off function such that

ϕ(x) = 1 (x ≤ r1), ϕ(x) = 0 (x ≥ r2),

where r′ < r1 < r2 < r.
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Let us consider the case:

B = W d = C([0, 1] → Rd | w(0) = 0),

H = H1([0, 1] → Rd | h(0) = 0).

There exists the Wiener measure µ on W d. Using solutions

of SDE on G, we can change the problem on Le(G) in

Theorem 1 to a problem on some domains in Wiener spaces.

However, the above Poincaré lemma on convex domains

cannot be applied to the problem.

We need Poincaré’s lemmas on non-convex domains defined

by Brownian rough path.
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Brownian rough path

Let x = xt = (x1
t , . . . , x

d
t ),

y = yt = (y1
t , . . . , y

d
t ) (0 ≤ t ≤ 1) be continuous paths.

Suppose that x or y is a bounded variation. Then we can

define for 0 ≤ s ≤ t ≤ 1

C(x, y)s,t =

∫ t

s

(xu − xs) ⊗ dyu

=
∑

1≤i,j≤d

(∫ t

s

(xiu − xis)dy
j
u

)
ei ⊗ ej

∈ Rd ⊗ Rd
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as a Stieltjes integral. Here ei = t(0, . . . ,
i
1, . . . , 0). Let

∆ = {(s, t) ∈ R2 | 0 ≤ s ≤ t ≤ 1}. For a continuous

mapping φ : ∆ → V with values in a normed linear space

V , define

‖φ‖m,θ =

{∫ 1

0

∫ t

0

|φ(s, t)|mV
(t− s)2+mθ

dsdt

}1/m

,

where, m is an even number such that m(1 − θ) > 2 and

2/3 < θ < 1.

Wm,θ(∆ → V ) := C(∆ → V | ‖φ‖m,θ < ∞).
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Also we define for a continuous path x starting at 0 on Rd

‖x‖m,θ =

{∫ 1

0

∫ t

0

|xt − xs|m

|t− s|2+mθ
dsdt

}1/m

and

Wm,θ(Rd) =
{
x : [0, 1] → Rd | x0 = 0, ‖x‖m,θ < ∞,

x is continuous.
}
.

• Wm,θ/2(Rd) is a subset of the θ/2-Hölder continuous

function space

• µ(Wm,θ/2(Rd)) = 1.
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From now on, we fix the indexes

m(1 − θ′) > 4, 2/3 < θ < θ′ < 1.

For w ∈ Wm,θ′/2, define

w(N) = dyadic polygonal approximation of w such that

w(N)k/2N = wk/2N for all 0 ≤ k ≤ 2N and

w(N)i = (w(N), ei)

w(N)⊥ = w − w(N)

w(N)⊥,i = wi − w(N)i
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Theorem 4 Let Ω be the set of w ∈ Wm,θ′/2(Rd)
satisfying the following (i)-(iii).

(i) limN→∞w(N) = w in Wm,θ′/2(Rd).

(ii) limN→∞C(w(N), w(N)) converges in

Wm,θ(∆ → Rd ⊗ Rd).

(iii) limN→∞C(w(N)⊥, w(N)) and

limN→∞C(w(N), w(N)⊥) converge to 0 in

Wm,θ(∆ → Rd ⊗ Rd).

Then Ωc is a slim set, H ⊂ Ω and Ω +H ⊂ Ω.
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For w = (w1, . . . , wd) ∈ Ω, we define

C(w,w)s,t = lim
N→∞

C(w(N), w(N))s,t

C(wi, wj)s,t = lim
N→∞

C(w(N)i, w(N)j)s,t

For w, z ∈ Ω, let

dΩ(w, z)

= max
{

‖w − z‖m,θ′/2, ‖C(w,w) − C(z, z)‖m,θ
}
.

Let ϕ ∈ (W d)∗, where (W d)∗(⊂ H∗ ' H) is the set of

functions whose first derivatives are bounded variation.
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We define a ball like set in rough path analysis.

Ur,ϕ =
{
w ∈ Ω

∣∣∣ max
1≤i≤d

‖wi‖m,θ′/2 < r,

max
1≤j<k≤d

‖C(wj, wk)‖m,θ < r,

max
1≤i≤j≤d

‖C(ϕi, wj)‖m,θ < r,

sup
1≤i≤j≤d

‖C(wi, ϕj)‖m,θ < r
}
.

Let

Ur(ϕ) = {w + ϕ | w ∈ Ur,ϕ} .
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Poincaré type vanishing theorem

Theorem 5 Let β ∈ L2(W d,H∗) and assume

β ∈ D∞,p(W d,H∗) for some p > 1. Let ϕ ∈ (W d)∗.

Suppose that dβ = 0 on Ur(ϕ). Then for any r′ < r,

there exists f ∈ D∞,p(W d,R) ∩ D1,2(W d,R) such that

df = β on Ur′(ϕ).

Remark 6 The sets Ur(ϕ), Ur,ϕ are not H-convex.
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Sketch of Proof in the case where d = 2, ϕ = 0

Ur,0 =
{
w = (w1, w2) ∈ Ω | max

i=1,2
‖wi‖m,θ′/2 < r,

‖C(w1, w2)‖m,θ < r
}
.

We use the notation

ΩN = {w(N) | w ∈ Ω}
Ω⊥
N = {w(N)⊥ | w ∈ Ω}

and we write

w(N) = ξ, w(N)⊥ = η
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RN =
{
η ∈ Ω⊥

N

∣∣∣ max
i=1,2

‖ηi‖m,θ′/2 < r/4,

‖C(η1, η2)‖m,θ < r/4
}
.

Ur,0(η) =
{
ξ ∈ ΩN

∣∣∣ w = ξ + η ∈ Ur,0,

‖C(ξ1, η2)‖m,θ < r/4,

‖C(η1, ξ2)‖m,θ < r/4
}

Ur,0,N =
{
w = ξ + η ∈ Ω | ξ ∈ Ur,0(η),

η ∈ RN

}
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• Poincaré’s inequality on Ur,0(η) ⊂ ΩN :

For f ∈ C∞
b (ΩN) with

∫
Ur,0(η)

fdµN = 0,

‖f‖2
L2(Ur,0(η),µN) ≤ C

∫
Ur,0(η)

|Df(ξ)|2HdµN(ξ),

where C is a positive constant independent of N, η. µN is

the Wiener measure on ΩN .

• Poincaré lemma on Ur,0(η):

Let θ be a smooth closed 1-form on Ur,0(η). Then there

exists a smooth function g on Ur,0(η) such that dg = θ on

Ur,0(η).
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• (General results) Let us consider a bounded open subset

U(⊂ Rn+m) 3 z = (x, y), x ∈ Rn, y ∈ Rm. Let

A = {x | (x, y) ∈ U}, B = {y | (x, y) ∈ U},

Ux = {y ∈ Rm | (x, y) ∈ U},

Uy = {x ∈ Rn | (x, y) ∈ U}. Let µ be the standard

normal distribution on Rn+m,Rn,Rm. Assume

(1) Ux, U
y are convex sets ∀x ∈ A, ∀y ∈ B.

0 ∈ Ux ∀x ∈ A. A is convex.

(2) δ = infx,x′∈A µ(Ux ∩ Ux′) > 0

Poincaré’s inequality and Poincaré’s lemma holds on U and

the Poincaré constant depends only on µ(U) and δ.
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Let βN = PNβ.

dβ = 0 implies dNβN = 0 on Ur,0(η) for a.s. η ∈ RN .

As already explained, ∃fN(w) = fN(ξ, η) on Ur,0,N such

that
∫
Ur,0(η)

fN(ξ, η)dµN(ξ) = 0 and dNfN = βN .

Let f̂N = fN1Ur,0,N
.

By the Poincaré inequality

‖f̂N‖L2(Ur,0) = ‖fN‖L2(Ur,0,N) ≤ C‖βN‖L2(Ur,0,N)

≤ C‖βN‖L2(Ur,0)

≤ C‖β‖L2(Ur,0).
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Therefore there exists a subsequence f̂N(k) which converges

weakly to some f̂∞ in L2(W d, dµ).

We can show that df̂∞ = β on Ur′(ϕ).

27



Stochastic differential equations

Let G be a compact Lie group (dimG = d). Let us

consider the SDE on G:

dX(t, a, w) = (LX(t,a,w))∗ ◦ dwt, (1)

X(0, a, w) = a ∈ G.

Here Lga = ga is the left-multiplication and wt is the

d-dimensional standard Brownian motion on

Rd ' g ' Te(G) whose starting point is 0.
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Theorem 7 There exists a measurable map

X : [0,∞) ×G× Ω → G which satisfies the following.

(1) X(t, a, w) is a version of the solution to the SDE (1).

(2) For any t, a, the map w → X(t, a, w) is continuous

in the sense that for any w, z ∈ Ω with

max (dΩ(0, w), dΩ(0, z)) ≤ R, there exists C(R) > 0

such that

sup
0≤t≤1

d(X(t, a, w), X(t, a, z)) ≤ C(R)dΩ(w, z).
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Precise statements of Theorem 1

Below we assume that

G is a simply connected compact Lie group.

Let ε be a sufficiently small positive number and set

Dε = {w ∈ Ω | d(e,X(1, e, w)) < ε}.

Let νe be the pinned Brownian motion measure on Le(G).

First theorem is a vanishing theorem on Dε.
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Theorem A Let us fix p > 1. Assume

(1) β ∈ D∞,p(W d,H∗) and β ∈ L2(Ur(ϕ), dµ) for any

r > 0 and ϕ ∈ (W d)∗

(2) dβ = 0 on Dε.

Then there exist {ϕi}∞
i=1 ⊂ (W d)∗, ri > 0,

fi ∈ D∞,p(W d,R) ∩ D1,2(W d,R) (i ≥ 1) and a

measurable function F on Dε such that

Dε = ∪∞
i=1Uri

(ϕi)

dfi = β a.s. on Uri
(ϕi)

F (w) = fi(w) a.s. on Uri
(ϕi)
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Theorem B Let

α ∈ D1,2(∧1T ∗Le(G), dνe) ∩ D∞,p(∧1T ∗Le(G), dνe)

and assume that dα = 0 νe − a.s. on Le(G). Let

H0 = {h ∈ H1([0, 1] → Te(G)) | h(0) = h(1) = 0}.

There exists a measurable function f on Le(G) such that

for any h ∈ H0, ε > 0,

f(eεh·) − f(·) ∈ Lq(Le(G), dνe)

and for any 1 ≤ q < p,

lim
ε→0

∥∥∥f(eεh·) − f(·)
ε

− (α, h)
∥∥∥
Lq(νe)

= 0.
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Let

E(α,α) = (dα, dα)L2(νe) + (d∗α, d∗α)L2(νe)

α ∈ FC∞
b (∧1T ∗Le(G))

The Hodge-Kodaira operator � is the generator

corresponding to the closed form which is the closure of E .

Theorem C Let G be a simply connected compact Lie
group. Then ker � = {0}.
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Proof of Theorem A

(1) By the H-connectedness of Dε, there exist

{Uri
(ϕi)}∞

i=1 such that Dε = ∪∞
i=1Uri

(ϕi) and

µ
(
(∪k

i=1Uri
(ϕi)) ∩ Urk+1

(ϕk+1)
)
> 0 (for any k).

(2) By Poincaré’s vanishing theorem, there exist

fi ∈ D∞,p(W d,R) ∩ D1,2(W d,R) (1 < p < 2) such

that dfi = β on Uri
(ϕi).

(3) Using the H-connectedness and H-simply

connectedness of Dε and the Stokes theorem in

H-direction, we see that there exists a measurable

34



function F on Dε and ci ∈ R such that for any i ∈ N,

F (w) = fi(w) + ci µ-a.s.w ∈ Uri
(ϕi).

These F and fi + ci are desired functions.

We explain (3). We denote Dk = ∪k
i=1Uri

(ϕi). We

assume that there exists a measurable function Fk on Dk

and constants ci (1 ≤ i ≤ k) such that Fk = fi + ci on

Uri
(ϕi) for all 1 ≤ i ≤ k.

It suffices to prove that there exists ck+1 such that

Fk = fk+1 + ck+1 on Dk ∩ Urk+1
(ϕk+1).
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Take a h ∈ (W d)∗ and r > 0 such that

Ur(h) ⊂ Dk ∩ Urk+1
(ϕk+1). Since

d(Fk − fk+1) = β − β = 0 on Ur(h),

(by the irreducibility of the Dirichlet form on Ur(h)) there

exists a constant ck+1 such that

Fk = fk+1 + ck+1 on Ur(h).

We prove that

Fk = fk+1 + ck+1 on Dk ∩ Urk+1
(ϕk+1).
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Suppose that there exists B ⊂ Dk ∩ Urk+1
(ϕk+1) and

δ > 0 such that

|Fk − (fk+1 + ck+1)| > δ on B.

Then by the H-connectedness of Dk and Urk+1
(ϕk+1),

there exists A ⊂ Ur(h) and

h0(·), h1(·) ∈ H1([0, 1] → H | h(0) = 0) such that

h0(1) = h1(1) = v, A+ v ⊂ B and

A+ h0(τ ) ⊂ Dk, A+ h1(τ ) ⊂ Urk+1
(ϕk+1)

for all 0 ≤ τ ≤ 1.
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By the H-simply connectedness of Dε, there exists

H(σ, τ ) ∈ H (0 ≤ σ, τ ≤ 1) such that for all τ, σ

H(0, τ ) = h0(τ ), H(1, τ ) = h1(τ ),

H(σ, 0) = 0, H(σ, 1) = v(= h0(1) = h1(1))

A+ H(σ, τ ) ⊂ Dε.

It holds that for almost all w ∈ A

Fk(w + v) − Fk(w) =

∫ 1

0
(β(w + h0(τ )), dh0(τ ))

fk+1(w + v) − fk+1(w) =

∫ 1

0
(β(w + h1(τ )), dh1(τ ))
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Also we have (Stokes theorem),∫ 1

0
(β(w + h1(τ )), dτh1(τ ))

−
∫ 1

0
(β(w + h0(τ )), dτh0(τ ))

=

∫∫
(σ,τ)∈[0,1]2

(dβ)(w+H(σ, τ )) (dσH(σ, τ ), dτH(σ, τ ))

= 0.

This shows

Fk(w+v)−fk+1(w+v) = ck+1 for almost all w ∈ A.

This is a contradiction.
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Proof of Theorem B

Let D′
2ε = {γ ∈ Le(G) | d(γ(1), e) < 2ε}. Define a

map Ψ : D′
2ε → Le(G) by

Ψ(γ)(t) = exp(−t log γ(1))γ(t).

Let β = ϕε(X(1, e, w))(Ψ ◦X)∗α ∈ D∞
p (W d,H∗),

ϕε(x) = 1 (d(x, e) ≤ 3ε/2), ϕε(x) = 0 (d(x, e) ≥ 2ε).

Then dβ = 0 on Dε.

By Theorem A, ∃g such that dg = β.

f(γ) = g
(
X−1(γ)

)
(γ ∈ Le(G)) is the desired function.
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Proof of Theorem C

Suppose �α = 0.

(1) Weitzenböck type formula:

� = ∇∗∇ + I + Tb(1) + T2 + T3,

where b(t) =
∫ t
0 ◦dγ(s)γ(s)−1.

(2) Using the Weitzenböck formula and the hypoellipticity of

∇∗∇, α ∈ ∩1<p<2D∞,p(∧1T ∗Le(G)). Since �α = 0

implies dα = 0, there exists f such that df = α by

Theorem B. For any C1
b -function ψ, ψ(f) ∈ D1,2(Le(G))

and d (ψ(f)) = ψ′(f)α.

41



Let ψ be a C1
b -function such that ψ(x) = x (|x| ≤ 1).

Let ψK(x) = Kψ(x/K). Using d∗α = 0,∫
Le(G)

|α(γ)|2TγLe(G)dνe(γ)

= lim
K→∞

∫
Le(G)

(
α(γ), ψ′

K(f)α(γ)
)
TγLe(G) dνe(γ)

= lim
K→∞

∫
Le(G)

(α(γ), d (ψK(f)))TγLe(G) dνe(γ)

= lim
K→∞

∫
Le(G)

(d∗α)(γ)ψK(f)dνe(γ) = 0

which implies α = 0.
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Final Remarks

• inf{σ(�) \ {0}} > 0?

• Higher dimensional case: Let β be a closed p-form on

Ur(ϕ). Then ∃ (p− 1)-form γ such tha dγ = β?

• Other kind of non-convex domain? Non-smooth boundary?

Local-Sobolev spaces?

• Probably similar kind of theorem holds in the case of

Lx(M) when H1(Lx(M),R) = {0}.

• The case H1(Lx(M),R) 6= {0}?
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Appendix: Kusuoka’s result

• Submanifolds in Wiener spaces

M : compact Riemannian manifold

M ⊂ Rd : isometry

Let P (x) : Rd → TxM be the projection operator and

dX(t, x, w) = P (X(t, x, w)) ◦ dwt,
X(0, x, w) = x ∈ M.

There exists a probability measure

dµx = p(1, x, x)−1δx(X(1, x, w))dµ on the
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submanifold:

S = {w ∈ W d | X(1, x, w) = x} ⊂ W d.

The exterior differential operator on S as the submanifold is

well-defined and some Sobolev calculus were developped by

many people.

Shigeo Kusuoka defined a local Sobolev spaces

D∞,q
loc (U, dµ)

where U is a subset of W d and q is the index of the

integrability. Based on this Sobolev spaces, he proved the
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following (ICM proceedings 1990, Kyoto):

Theorem 8

Hp(D∞,q
loc (∧pT ∗S)) ' Hp(Mx,R)

where

Mx =
{
h ∈ H | ξ(1, x, h) = x,where

ξ(t, x, h) is the solution to

ξ̇(t, x, h) = P (ξ(t, x, h))ḣ(t), ξ(0, x, h) = x t ≥ 0
}

Note that H1 loop space H1Lx(M) and Mx is

C∞-homotopy equivalent.
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Let � = d∗
SdS + dSd

∗
S and �|p be the restriction on

p-forms. They are defined as the Friedrichs extension of

them on some cores.

Theorem 9 (S.Kusuoka) There exists a map

jp : ker �|p → Hp(Mx,R) such that

(1) jp is surjective for p = 0, 1, 2, . . ..

(2) jp is injective for p = 0, 1.
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