Large deviation for heat kernel measures on loop spaces via rough paths

(joint work with Yuzuru INAHAMA)

Hiroshi KAWABI
Osaka University, JAPAN

The 2005 Abel Symposium in Oslo

$\S 1$ Introduction

Main Object of This Talk

- LDP for Banach space valued Brownian rough path (=RP) under the "exactness" condition.
 - Ledoux-Qian-Zhang (2002) · · · finite-dim case
- Heat kernel measures & heat processes on loop spaces are concrete example to which RP theory can be applied.
- LDP for heat processes & heat kernel measures on loop spaces.
 - Fang-Zhang (2001) · · · loop group case

⇒ Thanks to the continuity of the Itô map in rough path sense, we can show LDP for any measures of this kind!

Framework

- $\cdot \, \mathcal{L}_0^d := \{x \in C([0,1],\mathbb{R}^d) \mid x(0) = x(1) = 0\}$
- \cdot $H_0^d \subset \mathcal{L}_0^d$: Cameron-Martin space
- $\cdot \, \mu_0^d$: pinned Wiener measure on \mathcal{L}_0^d
- $\Rightarrow (\mathcal{L}_0^d, H_0^d, \mu_0^d)$ is an abstract Wiener space.

 $(w_t)_{t\geq 0}$: \mathcal{L}_0^d -valued BM with $w_0=0$ on a probability space $(\Omega,\mathcal{F},\mathbb{P})$.

$$\Rightarrow (w_t)_{t \ge 0} = \{w_t(\tau) : 0 \le \tau \le 1\}_{t \ge 0}$$
$$= \{w_t^j(\tau) : 0 \le \tau \le 1, \ j = 1, \dots, d\}_{t \ge 0}$$

: d-dim BMs with

$$\langle w^j_\cdot(au),w^k_\cdot(au')
angle_t=t(au\wedge au'- au au')\delta_{jk},\ t\geq 0$$
 for $0\leq au, au'\leq 1,\ 1\leq j,k\leq d.$

Let $\varepsilon > 0$. For each $\tau \in [0, 1]$, we consider the following τ -wise \mathbb{R}^r -valued SDEs (\star) :

$$egin{aligned} dX_t^arepsilon(au) &= \sigma(X_t^arepsilon(au)) \circ arepsilon dw_t(au) \ &+ b(X_t^arepsilon(au)) arepsilon^2 dt + eta(X_t^arepsilon(au)) dt, \ X_0^arepsilon(au) &= 0, \end{aligned}$$

where
$$\sigma=(\sigma_{ij})_{1\leq i\leq r, 1\leq j\leq d}, b=(b_i)_{1\leq i\leq r}, \beta=(\beta_i)_{1\leq i\leq r}$$
 and $\sigma_{ij}, b_i, \beta_i\in C_b^\infty(\mathbb{R}^r,\mathbb{R}).$

- Malliavin (1990), Driver (1997), Fang-Zhang (2001)
- Brzeźniak-Elworthy (2000)

(Remark) $\cdot b \equiv 0 \Longrightarrow$ Wentzell-Freidlin type! $\cdot \beta \equiv 0 \Longrightarrow (X_t^{\varepsilon})_{t>0} \sim (X_{\varepsilon^2 t}^1)_{t>0}$

- Definition $\varepsilon > 0$, σ, b, β : as above. (1) We denote by $\mathcal{V}_{\varepsilon}$ the law of heat process $(X_t^{\varepsilon})_{t \geq 0}$. (probability measure on $P(\mathcal{L}_0^r)$)
- (2) Assume $\beta \equiv 0, \varepsilon = 1$. We denote by μ_t the law of X_t^1 . (probability measure on \mathcal{L}_0^r)

Main Theorem

- (1) $\mathcal{V}_{\varepsilon}$ satisfies LDP as $\varepsilon \searrow 0$ with the good rate function I_1 .
- (2) μ_t satisfies LDP as $t \searrow 0$ with the good rate function I_2 .

(We give the precise representations of I_1, I_2 later!)

§2 LDP for Banach Space Valued Brownian Rough Path

Framework

- $\cdot \ (B,H,\mu)$: an abstract Wiener space
- $(w_t)_{t>0}$: B-valued BM with $w_0=0$
- \cdot 2 < p < 3 : roughness (fixed)
- \cdot $B\otimes B$: closure of $B\otimes_a B$ w.r.t a tensor norm $|\cdot|$, i.e.,

$$|x \otimes y| \leq |x|_B \cdot |y|_B$$

 \cdot $G\Omega_p(B)$: the set of geometric RPs on B

Assumption (Exactness of $B \otimes B$ w.r.t μ)

 $\exists C>0, \ 0 \leq \exists \alpha < 1 \text{ s.t., } \forall N\in\mathbb{N}, \ \forall \{G_l\}_{l=1}^{2N}$ of independent B-valued random variables with common distribution μ , it holds that

$$\mathbb{E}\Big[\Big|\sum_{l=1}^N G_{2l-1}\otimes G_{2l}\Big|\Big] \leq CN^{lpha}$$

(Remark) $\dim(B) < \infty \Longrightarrow \alpha = 1/2$

- $\cdot \ \underline{w(n)}: n$ -th dyadic polygonal approximation of w
- $\overline{w(n)}:=(1,\overline{w(n)}_1,\overline{w(n)}_2)$ is the smooth RP associated with w(n):

$$egin{aligned} \overline{w(n)}_1(s,t) &:= & w(n)_t - w(n)_s, \ \hline \overline{w(n)}_2(s,t) &:= & \int_s^t (w(n)_u \!\!-\! w(n)_s) \otimes dw(n)_u \end{aligned}$$

Fact [Ledoux-Lyons-Qian (2002)]

Under "exactness", Brownian RP exists, i.e.,

$$\exists \ \overline{w} = \lim_{n o \infty} \overline{w(n)} \quad ext{in } G\Omega_p(B), \ \mathbb{P}$$
-a.s.,

- $\cdot \ \varepsilon \overline{w} := (1, \varepsilon \overline{w}_1, \varepsilon^2 \overline{w}_2), \ \varepsilon > 0$
- $\cdot \mathcal{H} := L_0^{2,1}(H) \subset P(B)$: Cameron-Martin space

Theorem 1 Under "exactness", the law of $\varepsilon\overline{w}$ satisfies LDP on $G\Omega_p(B)$ with the good rate function

$$I(\overline{x}) = egin{cases} rac{1}{2} \|h\|_{\mathcal{H}}^2, & ext{if } \exists \ h \in \mathcal{H} ext{ s.t. } \overline{x} = \overline{h}, \ \infty, & ext{otherwise.} \end{cases}$$

§3 Sketch of the Proof for the Main Theorem

 \clubsuit We show that any tensor product $\mathcal{L}_0^d \otimes \mathcal{L}_0^d$ is exact w.r.t. μ_0^d .

We can use the RP theory for our model! i.e., SDE (\star) for $X_t(\tau)$ can be treated in Banach space valued RP theory.

- The Itô map is continuous in the RP theory.
- \clubsuit Combine Theorem 1 & the contraction principle for LDP.

Characterization of the Itô map

Step 1. We define the Nemytski map

$$\hat{\sigma}\colon\; \mathcal{L}^r_0 o L(\mathcal{L}^d_0 \oplus \mathbb{R}^2, \mathcal{L}^r_0)$$
 by

$$egin{aligned} \hat{\sigma}(y)[(\gamma,u)](au) &:= \sigma(y(au))\gamma(au) \ + b(y(au))u_1 + eta(y(au))u_2 \end{aligned}$$

for
$$y\in\mathcal{L}_0^r, \gamma\in\mathcal{L}_0^d, u=(u_1,u_2)\in\mathbb{R}^2, au\in[0,1].$$

 $\Rightarrow \hat{\sigma}$: bdd, smooth with bdd derivatives in Fréchet sense!

Step 2. We consider the ODE (in RP-sense)

$$dy_t = \hat{\sigma}(y_t)dx_t, \ y_0 = 0 \qquad (\star')$$

Fact (By Lyons' continuity theorem...)

For any $\bar x\in G\Omega_p(\mathcal L_0^d\oplus\mathbb R^2)$, the ODE (\star') has the unique solution $\bar y\in G\Omega_p(\mathcal L_0^r)$. Moreover the map

$$\Phi : G\Omega_p(\mathcal{L}_0^d \oplus \mathbb{R}^2)
i \bar{x} \longmapsto \bar{y} \in G\Omega_p(\mathcal{L}_0^r)$$

is (locally Lipschitz) continuous.

Step 3. We define a map

$$egin{aligned} \overline{\iota:G\Omega}_p(\mathcal{L}_0^d) imes \mathrm{BV}(\mathbb{R}^2) &
ightarrow G\Omega_p(\mathcal{L}_0^d \oplus \mathbb{R}^2) \ \mathrm{by} \ \iota(\overline{\gamma},\lambda)_1(s,t) := & \left(\overline{\gamma}_1(s,t),\lambda_t - \lambda_s
ight), \ \iota(\overline{\gamma},\lambda)_2(s,t) := & \left(\overline{\gamma}_2(s,t),\int_s^t \overline{\gamma}_1(s,u) \otimes d\lambda_u,
ight. \ \int_s^t (\lambda_u - \lambda_s) \otimes d\overline{\gamma}_1(0,u), \ \int_s^t (\lambda_u - \lambda_s) \otimes d\lambda_u
ight). \end{aligned}$$

(Remark) We used the isometry

$$(A_1 \oplus A_2) \otimes (B_1 \oplus B_2) \simeq \oplus_{i,j=1}^2 (A_i \oplus B_j).$$

Step 4. For $\varepsilon \geq 0$, we define $\lambda^{(\varepsilon)} \in \mathbf{BV}(\mathbb{R}^2)$ by $\lambda^{(arepsilon)}(t):=(arepsilon^2t,t),\quad t\geq 0.$

The Itô map $\Psi_{arepsilon}:G\Omega_p(\mathcal{L}_0^d) o G\Omega_p(\mathcal{L}_0^r)$ is given by $\Psi_{arepsilon}(\overline{x}):=\Phi\bigl(\iota(\overline{x},\!\lambda^{(arepsilon)})\bigr),\quad \overline{x}\in G\Omega_p(\mathcal{L}_0^d).$

$$\Psi_{oldsymbol{arepsilon}}(\overline{x}):=\!\!\Phiigl(\iota(\overline{x},\!\!\lambda^{(oldsymbol{arepsilon}})igr),\quad \overline{x}\in G\Omega_p(\mathcal{L}_0^d).$$

(Remark) $(t,\tau)\mapsto \Psi_{\varepsilon}(\varepsilon\overline{w})_1(0,t)(\tau)$ is a bi-continuous modification of $(t,\tau)\mapsto X_t^{\varepsilon}(\tau)$.

Theorem 2 Rate functions I_1 and I_2 are given by

$$egin{aligned} I_1(oldsymbol{\xi}) = egin{cases} rac{1}{2}\inf\left\{\|oldsymbol{\gamma}\|_{\mathcal{H}}^2 \mid oldsymbol{\xi} = \Psi_0(\overline{\gamma})_1(0,\cdot)
ight\} \ & ext{if } \exists \; oldsymbol{\gamma} \in \mathcal{H} \; ext{s.t.} \; oldsymbol{\xi} = \Psi_0(\overline{\gamma})_1(0,\cdot), \ \infty, & ext{otherwise.} \end{aligned}$$

$$egin{aligned} I_2(oldsymbol{y}) = egin{cases} rac{1}{2}\inf\left\{\|oldsymbol{\gamma}\|_{\mathcal{H}}^2\mid oldsymbol{y} = \Psi_0(\overline{\gamma})_1(0,1)
ight\} \ & ext{if }\exists\; \gamma \in \mathcal{H} ext{ s.t. } oldsymbol{y} = \Psi_0(\overline{\gamma})_1(0,1), \ \infty, & ext{otherwise.} \end{cases}$$

$$(\xi \in P(\mathcal{L}_0^r), \ y \in \mathcal{L}_0^r)$$

Example
$$M = S^m \subset \mathbb{R}^{m+1}$$
 (Nash's embedding)

 $\clubsuit M$ is not Lie group if $m \neq 1, 3$.

$$M := \{x = (x_1, \cdots x_{m+1}) \mid$$
 $x_1^2 + \cdots + x_m^2 + (x_{m+1} - 1)^2 = 1\}$

 \Rightarrow Consider the case of d = r = m + 1.

Set
$$b = \beta \equiv 0$$
 and

$$\sigma_{ij}(x) = \delta_{i,j} - u_i u_j \text{ for } x \in M,$$

$$1 \leq i, j \leq m+1$$
, where $u_i := x_i - \delta_{i,m+1}$.

 $\Rightarrow (X_t^{\varepsilon})_{t>0}$ is a continuous process on $\mathcal{L}_0(M)$.