Riesz transforms on a path space with Gibbs measures

Hiroshi KAWABI

(Department of Mathematics, Faculty of Science Okayama University)

The 1st MSJ-SI

Probabilistic Approach to Geometry

August 1, 2008

Main Object: Riesz transforms

$$R_{\alpha}(\mathcal{L}) := D_{H} \sqrt{\alpha - \mathcal{L}}^{-1}, \quad \alpha > 0$$
 ($(D_{H}F, D_{H}G)_{L^{2}(\mu; H)} = (-\mathcal{L}F, G)_{L^{2}(\mu)}$)

 \clubsuit L^p -boundedness of the Riesz transforms ? (Meyer's equivalence of Sobolev norms)

$$egin{align} \sqrt{lpha} \| F \|_{L^p(\mu)} + \| D_H F \|_{L^p(\mu;H)} \ &\sim \| \sqrt{lpha - \mathcal{L}} F \|_{L^p(\mu)}, \ \ 1$$

• We are concerned with this problem on general metric spaces (especially ∞ -dim state spaces).

History: (i) Analytic Approach: Stein, Coulhon, etc...

$$R_{lpha}(\Delta_{M}) = \int_{0}^{\infty} e^{-lpha t} t^{-1/2}
abla e^{t\Delta_{M}} dt$$

⇒ Analysis of gradient bounds of the heat kernel!

- (ii) Stochastic Approach: Meyer, Bakry, Shigekawa, etc...
 - Meyer: Wiener space (Malliavin Calculus)
 - ullet Bakry: Complete Riemannian mfd with $\mathrm{Ric}_{M} \geq -R$

(Bakry-Emery's Γ_2 -calculus

- ⇒ Shigekawa–Yoshida (LPS on a general metric space))
- ullet Yoshida: $oldsymbol{M}^{\mathbb{Z}^d}$ with Gibbs measures
- ullet This Talk: Path space $C(\mathbb{R},\mathbb{R}^d)$ with Gibbs measures

\clubsuit Our Framework ($P(\phi)_1$ -QFT):

- o state space: infinite volume path space $C(\mathbb{R},\mathbb{R}^d)$
- \circ tangent space: $H\!:=\!L^2(\mathbb{R},\mathbb{R}^d)$
- \circ underlying measure: Gibbs measure μ

associated with the (formal) Hamiltonian

$$\mathcal{H}(w) := rac{1}{2} \int_{\mathbb{R}} |\dot{w}(x)|_{\mathbb{R}^d}^2 dx + \int_{\mathbb{R}} U(w(x)) dx,$$

where $U:\mathbb{R}^d o \mathbb{R}$ is a self-interaction potential.

Heuristically, μ is given by

$$\mu(dw) = Z^{-1}e^{-\mathcal{H}(w)}\prod_{x\in\mathbb{R}}dw(x).$$

• This measure is constructed in terms of the ground state Ω of the Schrödinger operator

$$H_U := -rac{1}{2}\Delta_z + U \quad ext{on} \quad L^2(\mathbb{R}^d,\mathbb{R};dz).$$

Strictly speaking, it is the probability measure on $C(\mathbb{R},\mathbb{R}^d)$ induced by

$$d\omega_t = deta_t - rac{
abla\Omega}{\Omega}(\omega_t)dt, \quad t \in \mathbb{R}, \; (eta_t)_{t \in \mathbb{R}}: \mathsf{BM}$$

 \clubsuit Conditions on the Potential Function U

(U1):
$$U \in C^2(\mathbb{R}^d,\mathbb{R})$$
 & $\exists K_1 \in \mathbb{R} \text{ s.t. } \nabla^2 U \geq -K_1$.

$$egin{align} ext{(U2): } &\exists K_2>0, \exists p>0 ext{ s.t.} \ &|
abla U(z)|_{\mathbb{R}^d}+|
abla^2 U(z)|_{\mathbb{R}^d\otimes\mathbb{R}^d} \ &\leq K_2(1+|z|_{\mathbb{R}^d}^p), \ \ z\in\mathbb{R}^d. \end{split}$$

(U3):
$$\lim_{|z|_{\mathbb{R}^d} \to \infty} U(z) = \infty$$
.

Example:
$$U(z) = \sum_{j=0}^{2m} a_j |z|_{\mathbb{R}^d}^j, a_{2m} > 0, a_1 = 0.$$

(Double-well potential functions

$$U(z)$$
 $=$ $a(|z|_{\mathbb{R}^d}^4 - |z|_{\mathbb{R}^d}^2), a > 0$ are included !)

• \mathcal{FC}_b^{∞} : smooth cylinder functions.

$$egin{aligned} F(w) = & f(\langle w, arphi_1
angle, \cdots, \langle w, arphi_n
angle) (=: & f((\langle w, arphi_\cdot
angle)), \ & ext{where } f \in C_b^\infty(\mathbb{R}^n, \mathbb{R}), \{arphi_i\}_{i=1}^n \subset C_0^\infty(\mathbb{R}, \mathbb{R}^d), \ & \langle w, arphi_i
angle := & \int_{\mathbb{R}} (w(x), arphi_i(x))_{\mathbb{R}^d} dx. \end{aligned}$$

ullet $\mathcal{FC}_b^\infty(H)$: smooth H-valued cylinder functions.

$$heta(w) = \sum_{k=1}^m F_k(w) e_k, \; F_k \in \mathcal{FC}_b^\infty, e_k \in C_0^\infty(\mathbb{R},\mathbb{R}^d).$$

$$(\ \mathcal{F}\mathcal{C}_b^\infty \hookrightarrow L^2(\mu), \mathcal{F}\mathcal{C}_b^\infty(H) \hookrightarrow L^2(\mu;H)\)$$

ullet $H ext{-}$ Fréchet derivative $D_HF\in \mathcal{FC}_b^\infty(H)$ is defined by

$$D_H F(w) \! := \! \sum_{i=1}^n \partial_i f((\langle w, arphi_\cdot
angle)) arphi_i.$$

 \Rightarrow We consider a (pre-)Dirichlet form on \mathcal{FC}_b^{∞} by

$$\mathcal{E}(F,G) := \int (D_H F(w), D_H G(w))_H \mu(dw).$$

Integration-by-Parts Formula [Iwata, Funaki]

$$\mathcal{E}(F,G) = -(\mathcal{L}_0 F,G)_{L^2(\mu)}, \ F,G \in \mathcal{FC}_b^{\infty},$$

where

$$egin{aligned} \mathcal{L}_0 F(w) &= \operatorname{Tr}(D_H^2 F(w)) + \left\{ \langle w, \Delta_x D_H F(w(\cdot))
angle \ &- \langle
abla U(w(\cdot)), D_H F(w)
angle
ight\} \ &= \sum_{i,j=1}^n \partial_i \partial_j f((\langle w, arphi_\cdot
angle)) \cdot \langle arphi_i, arphi_j
angle \ &+ \sum_{i=1}^n \partial_i f((\langle w, arphi_\cdot
angle)) \cdot \left\{ \langle w, \Delta_x arphi_i
angle \ &- \langle
abla U(w(\cdot)), arphi_i
angle
ight\} \end{aligned}$$

Theorem 1 [K-Röckner ('07. JFA)]

(i) The pre-Dirichlet operator $(\mathcal{L}_0, \mathcal{FC}_b^{\infty})$ is essentially self-adjoint in $L^2(\mu)$, i.e., $(\overline{\mathcal{L}}_0, \mathrm{Dom}(\overline{\mathcal{L}}_0))$: closure of $(\mathcal{L}_0, \mathcal{FC}_b^{\infty})$ in $L^2(\mu)$ is self-adjoint.

(ii)
$$e^{t\overline{\mathcal{L}}_0}F = P_tF, \quad F \in L^2(\mu),$$

where $\{P_t\}_{t\geq 0}$ is the transition semigroup corresponding to the parabolic SPDE

$$egin{aligned} dX_t(x) &= ig\{\Delta_x X_t(x) -
abla U(X_t(x))ig\}dt \ &+ \sqrt{2} dB_t(x), \ \ x \in \mathbb{R}, \ t > 0, \end{aligned}$$

where $\{B_t\}_{t>0}$ is a H-cylindrical Brownian motion.

- By the Riesz-Thorin interpolation, $\{P_t\}_{t\geq 0}$ can be regarded as a strongly continuous contraction semigroup in $L^p(\mu), 1\leq p<\infty$.
- ullet We denote by its generator $\mathcal{L}=\mathcal{L}_p$ in $L^p(\mu)$. (Note that $\overline{\mathcal{L}}_0=\mathcal{L}_2$.)

Theorem 2 (Boundedness of the Riesz transforms) Under (U1), (U2) and (U3), $R_{\alpha}(\mathcal{L})$ is bounded in $L^p(\mu)$ for all p>1 and $\alpha>K_1\vee 0$, i.e., $\|R_{\alpha}(\mathcal{L})F\|_{L^p(\mu)}\leq C_p\|F\|_{L^p(\mu)}, \quad F\in\mathcal{FC}_b^{\infty}.$

A Outline of the Proof:

(1): Littlewood-Paley-Stein Inequality under a gradient bound condition:

$$\Gamma(P_t F, P_t F) \leq K e^{2Rt} P_t(\Gamma(F, F)) \cdots (\dagger)$$

[K-Miyokawa, '07, J.Math.Sci.Univ.Tokyo]

- $ullet |D_H P_t F|_H \le e^{K_1 t} P_t (|D_H F|_H) \text{ [K, '05, POTA]}$
- \clubsuit Gaveau's diffusion $(B_t^{(1)}, B_t^{(2)}, A_t)$ on the Heisenberg group (sub-Riemannian mfd): Quite recently, Driver–Melcher, H.Q. Li, etc, proved that, surprisingly, (\dagger) also holds, i.e.,

$$|
abla P_t f|^p \leq K_p P_t(|
abla f|^p), \quad p \geq 1.$$

(2): Intertwining Property for Diffusion Semigroups

$$D_H P_t F = ec{P}_t D_H F, \quad F \in \mathcal{D}(\mathcal{E}) \; \cdots (\star)$$

How to show this identity?

Step 1:Generator version of (*) (rather easier part)

$$D_H \mathcal{L} F = ec{\mathcal{L}} D_H F, \quad F \in \mathcal{FC}_b^\infty \ \cdots (\star)'$$

where $(\vec{\mathcal{L}}, \mathcal{FC}_b^\infty(H))$ is given by

$$ec{\mathcal{L}} heta(w)(x) = \sum_{i,j=1}^{m} \sum_{k=1}^{m} \partial_i \partial_j f_k ig((\langle w, arphi.
angle) ig) \langle arphi_i, arphi_j
angle e_k(x)$$

$$+\sum_{i=1}^{m}\sum_{k=1}^{m}\!\partial_{i}f_{k}ig((\langle w,arphi.
angle)ig)\!\cdot\!ig\{\langle w,\Delta_{oldsymbol{x}}arphi_{i}ig
angle$$

$$-\langle \nabla U(w(\cdot)), \varphi_i \rangle \} e_k(x)$$

$$+\sum_{k=1}^m \! f_kig((\langle w,arphi.
angle)ig)ig\{\Delta_x e_k(x) \! - \!
abla^2 U(w(x))[e_k(x)]_{\mathbb{R}^d}ig\}$$

for
$$heta(w) = \sum_{k=1}^m f_kig((\langle w, arphi.
angle)ig) e_k \in \mathcal{FC}_b^\infty(H).$$

Step 2: Construction of \vec{P}_t Define a bi-linear form by

$$ullet ec{\mathcal{E}}(heta,\eta) := (-ec{\mathcal{L}} heta,\eta)_{L^2(\mu;H)}, \quad heta,\eta \in \mathcal{FC}_b^\infty(H)$$

$$\overrightarrow{\mathcal{E}}(heta, heta) \geq -K_1 \| heta\|_{L^2(\mu;H)}^2$$

 $\exists (\vec{\mathcal{L}}, \mathcal{D}(\vec{\mathcal{L}}))$: Friedrichs extension of $(\vec{\mathcal{L}}, \mathcal{FC}_b^{\infty}(H))$ $(\leftrightarrow (\vec{\mathcal{E}}, \mathcal{D}(\vec{\mathcal{E}}))$: minimal extension) • $\vec{P}_t := e^{t\vec{\mathcal{L}}}$: symmetric strongly continuous semigroup on $L^2(\mu; H)$ Step 3: $(\star)' \Longrightarrow (\star)$ [Shigekawa's machinary]

Theorem 1

Further Problems:

- Can we relax the condition (U1)? (X.D. Li recently discusses under some gaugiability conditions on a complete Riemannian mfd.)
- Another ∞-dim framework (Wasserstein diffusion given by Sturm-von Renesse ?)