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Main Object: Parabolic Harnack inequality (PHI)

e A comparison theorem for (non-negative) solutions of
parabolic equations —>
Heat kernel lower bound, Regularity, etc... (E.B. Davies’ book)

& P. Li—S.T. Yau's PHI ('86)

o M: m-dim complete Riemannian manifold

o Ricyr > — K, P, := oM

—> For f > 0, u(t,x) := P.f(x) satisfies

%“(ta xr) = Apu(t,z), € M, t>0,
’U,(O, ZB) — f(CU)

Moreover, the following type PHI holds for all o > 1:



(05)ult,z) < ult+s,y): (Sjt>%

2
Xexp(adM(az,y) ~ aKms )

4s 4(ax — 1)

ea—=1+4 (s/dr(x,y))VvVmK is optimal.

<> How is an oco-dim version PHI ?
(Of course, if we take M — oo on the above PHI, we cannot
get any meaningful inequality !)

& Feng-Yu Wang's PHI ('97): For all o > 1,

P f(x)|™ < Pf|™(y)

X exp (adM(m,y)2 : 2K >
4 —1) 1 —e 2Kt )"




<> Since Wang's inequality does not involve dimension m,

we can generalize it to oco-dim frameworks!
e Kusuoka ('92): Ornstein-Uhlenbeck semigroup on Wiener spaces
e Aida-K. ('01): Symmetric diffusion semigroups on Wiener spaces
by using Malliavin calculus and I'>-calculus
e Rockner-Wang ('03): Generalized Mehler semigroups

e This Talk: K. ('05, POTA, '04, Bull.Sci.Math.)
Diffusion semigroups on path space C (R, Rd) with

Gibbs measures (Coupling method for stochastic PDEs)



& Our Framework (P(¢)1-QFT):
o state space: infinite volume path space C (R, Rd)

o tangent space: H:=L?*(R,R%)

o underlying measure: Gibbs measure u

associated with the (formal) Hamiltonian

1 . 5
H(w) := > /R|w(:n)|Rddm —|—/RU(w(:B))dm,

where U : R¢ — R is a self-interaction potential.

Heuristically, p is given by

p(dw) = Z7te W T - dw(x).

xcER



e This measure is constructed in terms of the ground
state €2 of the Schrodinger operator

Hy := —%Az +U on L*(R%R;dz).
& Conditions on the Potential Function U
(U1): U € C*(R%,R) and 3K € R s.t.
(VU(z1) — VU(22), 21 — z2)

2 d
> —K1|z1 — Z2|Rd for Z1, 22 € R™.

(U2): K> > 0,3p > 0O s.t.
VU (2)|ga < K2(1 4 |2],) for z € R,

RrRd

(U3): lim;| ;oo U(2) = oo.



Example: U (z) = Z?Z’O aﬂz\éd, azm > 0,a1 = 0.

(Double-well potential functions

U(z)=a(|z|34 — |z|24), a > 0 are included !)

e Under (U1l) and (U3), Hy has purely discrete
spectrum and a complete set of eigenfunctions.
= - Ao(> min U): the lowest eigenvalue of Hys,
- {2 : ground state of Hy with ||Q||z2¢,) =1
and €2 > 0.
i.e., HyQ = XoQ. (e U Q = e t0Q)
e (Hy,L?(dz)) ~ (Hy, L*(Q(2)3dz)), where
Hyf :=Q 'Hy(Qf) = —3A. — (54, V)



——> Our Gibbs measure 1t is the probability measure on
C (R, R?) induced by
VQ
dwt :dﬁt I O (wt)dt, t - R, (,Bt)tER : BM

(v(dz) := Q(z)2dz: reversible measure)

& Quasi-invariance: For every k € C§5° (R, R%),
p~ p(k+-)and p(k + dw) = A(k, w)u(dw),
where

A(k,w) = exp {/ (w(z)) — U(w(x) + k(x))

— S K (@) + (w(®), Agk())za ) de

and A, := d?/dz?.



e 7C;° : smooth cylinder functions.
F(w)=f({w,p1),:++ , (W, on))(=:F(((w, ¥.))),

where f € Cgo(RnaR)a{S"i}?:1CC(c)>o(Ra Rd)’
(w, p;):= Jp (w(x), pi(x))gad.

e H-Fréchet derivative Dy F' € FCp°(H) is defined

by n

DuF(w):=) 8:f(((w,¢.)))p:.
=1

—> We consider a (pre-)Dirichlet form on FC.° by

E(F, G)::/ (DuF(w), DuG(w)),,p(dw).



& Integration-by-Parts Formula [lwata, Funakil

8(F7 G):_(E’OFa G)L2(p,)9 F,G € Fclc:oa
where

LoF(w) = Tr(D} F(w)) + { (w, A; DuF(w(-)))

~(VU (w(-),Du F(w)) ]

— Z 8,,,83f(((w, 90>)) y <90'i,9 90j>

1,J=1

+ Z 8z.f((<w9 90>)) {(wa Azpi)

—(VU(w(-)) i) |



Theorem 1 [K.-Rockner ('07. JFA)]

(i) The pre-Dirichlet operator (Lo, FCp") is essentially
self-adjoint in L? (), i.e., (Lo, Dom(Lo)) : closure
of (Lo, FCs®) in L*(w) is self-adjoint.

(i} e!COF = PR, F € L2(p),
where { P; }+> is the transition semigroup correspond-

ing to the parabolic SPDE

+v2dBi(x), © €R, t > 0,---(GL)
where { B¢ }+>0 is a H-cylindrical Brownian motion.




e By the Riesz-Thorin interpolation, { P; }+>¢ can be

regarded as a strongly continuous contraction semigroup
in LP(pn),1 < p < oo.

following PHI holds:
P F(w)|” < P|F

Theorem 2 [K. '05, POTA] Let FF € L ().
Then for any h € C§° (R, R%), o > 1 and t > 0, the

“(w + h)

( alh
X exp

4(a —1) 1— e—2K1t

2
2K
H ! ) , M-a.e. w.

2K+

& In the case K1 = 0, we set —

1 — e— 2Kt t



& Outline of the Proof of Thm 2:
(1): A gradient bound for the diffusion semigroup:

D P.F|lg < e***P,(|DuF|u),F € DE) ---(})

To show (), we use the coupling method for SPDE (GL).
o | X¥ — X¥|, < eE1F+2r)t ||y — w!||,, P-as.

where ||w||2 := ||we"!®!||2,, w,w’ € C C C(R,R%).
Sketch: Yi(x) := X (x) — X;‘“'(m) satisfies
0,

a7 Yt(#) = AxYi(z)
—{VU(X¥(x)) — VU(X¥ (2))}, = €ER, t > 0.

Multiply both sides by 2Y7 («)e—27I%!, use the condition (U1),
integrate over (0,t) X R, and apply integration by parts !!



(2): Introduce a "nice” interpolation function G
—> Differential inequality
For FF € FC°(> 0) and h € C8° (R, R?), we set by
0 G(s8) := Ps(Pi_sF)*(- +v(s)), 0< s<t,
where
(Jg e~ 2F17dT)

ey he (0(0) = 0,0(t) = h)
——> By differentiating on both sides and using the gradient

v(s) :=

bound (), we obtain a certain differential inequality.

& To expand %PS (Pi_sF)*(- + v(s)), we must remark
that (P_sF)® ¢ Dom(L2) generally. Here we adopt a

stochastic approach (It6’s formula) to overcome this difficulty.



o H(ri,r2,7r3) := P, (Pt_rzF)a(- + v(r3))
(0 < r1,7r2,73 < t)
0 My, := (Pt TzF)(X"“l)_(Pt TzF)(XO)

— Ez(Pt ro F)(X+)dT
0
By using It6’s formula, we have

(Pt—rz F)a(X'r‘l) — (Pt—rz F)®(Xo)

T /Tl (Pt—rzF)a_l(X‘l') » Lo(Pr—ry F) (X7 )dT
0)

to /rl (Pt—"“2F)a_1(XT)dM‘F
o

| a(a o 1) n oa—2
P2 [ Py PR (X))



Here, we recall
t

o (M) =2 [ |D(Piyy F)(Xr)[3ydr.
O

Then we obtain

H(ri,7r2,7r3) = E[(Pt—rzF)a(X';“_ll_v(rs))]
= (Pt—rp F)% (- + v(r3))

+ /OrlP.,-{(Pt_,,,.2 F)a_lﬁz(Pt_rzF)}(- + v(rs))dr

a(az_ : ,/Orl Pr{ (P, F)* 2

(21D (Pe—ry F)|3) }(- + v(rs))dr.




Hence we can proceed as

L P.(Pi—yF)* (- + v(5))

5. 8
Z 87' }T1:T2:T3:3H(r19r27r3)
1=1 ¢

oo — 1)P3{(Pt_r2F)a_2
1D (Py—ry F) |31 } (- + 0(r3))
—|—(DPS(Pt_SF)°‘(- 1 v(s)), rb(s))H.

& Application and Further Topics:

(1) Varadhan type short time asymptotics



As an application of Thm 2, we can obtain a certain lower
bound of

pi(A, B) := /A Pilp(w)p(dw), w(A),u(B) > .

(Since this bound is very complicated, we omit in this talk.)
By combining this bound with Lyons-Zheng's martingale
decomposition thm (=- upper bound), we have

lim 4tlog p¢(A, B) = —dn (A, B)®
under A or B is H-open.
(2) @ Non-symmetric case (K. '04, Bull.Sci.Math)
e Log-Sobolev inequality (K. '06, IDAQP)

e Littlewood-Paley inequality, Riesz transforms, etc.



