The parabolic Harnack inequality and related topics on a path space with Gibbs measures

Hiroshi KAWABI

(Department of Mathematics, Faculty of Science Okayama University)

Seminar at TU-Darmstadt November 4, 2008

Main Object: Parabolic Harnack inequality (PHI)

A comparison theorem for (non-negative) solutions of parabolic equations =>
 Heat kernel lower bound, Regularity, etc... (E.B. Davies' book)

♣ P. Li – S.T. Yau's PHI ('86)

 \circ M: m-dim complete Riemannian manifold

o
$$\mathrm{Ric}_M \geq -K$$
, $P_t := e^{t\Delta_M}$

 \implies For $f \geq 0$, $u(t,x) := P_t f(x)$ satisfies

$$\left\{egin{array}{l} rac{\partial}{\partial t}u(t,x)=\Delta_M u(t,x), & x\in M,\ t>0,\ u(0,x)=f(x). \end{array}
ight.$$

Moreover, the following type PHI holds for all $\alpha > 1$:

$$egin{aligned} (0 \leq) \ u(t, oldsymbol{x}) & \leq \ u(t+s, oldsymbol{y}) \cdot \left(rac{s+t}{t}
ight)^{rac{mlpha}{2}} \ & imes \exp\left(rac{lpha d_M(oldsymbol{x}, oldsymbol{y})^2}{4s} + rac{lpha Kms}{4(lpha-1)}
ight). \end{aligned}$$

- $ullet \ lpha = 1 + (s/d_M(x,y))\sqrt{mK}$ is optimal.
- ♦ How is an ∞-dim version PHI ?
- (Of course, if we take $m \to \infty$ on the above PHI, we cannot get any meaningful inequality!)
- \clubsuit Feng-Yu Wang's PHI ('97): For all lpha > 1,

$$egin{align} ig|P_t f(oldsymbol{x})ig|^lpha & \leq P_t ig|fig|^lpha(oldsymbol{y}) \ & imes \exp\left(rac{lpha d_M(oldsymbol{x},oldsymbol{y})^2}{4(lpha-1)} \cdot rac{2K}{1-e^{-2Kt}}
ight). \end{gathered}$$

- \diamondsuit Since Wang's inequality does not involve <u>dimension</u> m, we can generalize it to ∞ -dim frameworks!
- Kusuoka ('92): Ornstein-Uhlenbeck semigroup on Wiener spaces
- ullet Aida-K. ('01): Symmetric diffusion semigroups on Wiener spaces by using Malliavin calculus and Γ_2 -calculus
- Röckner-Wang ('03): Generalized Mehler semigroups
- This Talk: K. ('05, POTA, '04, Bull.Sci.Math.)

 Diffusion semigroups on path space $C(\mathbb{R}, \mathbb{R}^d)$ with

 Gibbs measures (Coupling method for stochastic PDEs)

\clubsuit Our Framework ($P(\phi)_1$ -QFT):

- o state space: infinite volume path space $C(\mathbb{R},\mathbb{R}^d)$
- \circ tangent space: $H\!:=\!L^2(\mathbb{R},\mathbb{R}^d)$
- \circ underlying measure: Gibbs measure μ

associated with the (formal) Hamiltonian

$$\mathcal{H}(w) := rac{1}{2} \int_{\mathbb{R}} |\dot{w}(x)|_{\mathbb{R}^d}^2 dx + \int_{\mathbb{R}} U(w(x)) dx,$$

where $U:\mathbb{R}^d o \mathbb{R}$ is a self-interaction potential.

Heuristically, μ is given by

$$\mu(dw) = Z^{-1}e^{-\mathcal{H}(w)}\prod_{x\in\mathbb{R}}dw(x).$$

• This measure is constructed in terms of the ground state Ω of the Schrödinger operator

$$H_U := -rac{1}{2}\Delta_z + U \quad ext{on} \quad L^2(\mathbb{R}^d,\mathbb{R};dz).$$

 \clubsuit Conditions on the Potential Function U

(U1):
$$U\in C^1(\mathbb{R}^d,\mathbb{R})$$
 and $\exists K_1\in\mathbb{R}$ s.t. $\left(
abla U(z_1)-
abla U(z_2),z_1-z_2
ight)_{\mathbb{R}^d}$ $\geq -K_1|z_1-z_2|_{\mathbb{R}^d}^2$ for $z_1,z_2\in\mathbb{R}^d$.

(U2):
$$\exists K_2>0, \exists p>0$$
 s.t. $|
abla U(z)|_{\mathbb{R}^d}\leq K_2(1+|z|_{\mathbb{R}^d}^p)$ for $z\in\mathbb{R}^d$.

(U3):
$$\lim_{|z|_{\mathbb{D}^d} \to \infty} U(z) = \infty$$
.

Example: $U(z)=\sum_{j=0}^{2m}a_j|z|_{\mathbb{R}^d}^j, a_{2m}>0, a_1=0.$ (Double-well potential functions

$$U(z){=}a(|z|^4_{\mathbb{R}^d}-|z|^2_{\mathbb{R}^d}), a>0$$
 are included !)

- Under (U1) and (U3), H_U has purely discrete spectrum and a complete set of eigenfunctions.
- $\Rightarrow \lambda_0 (> \min U)$: the lowest eigenvalue of H_U ,
 - \cdot Ω : ground state of H_U with $\|\Omega\|_{L^2(\mu)}=1$ and $\Omega>0$.

i.e.,
$$H_U\Omega=\lambda_0\Omega$$
. $(e^{-tH_U}\Omega=e^{-t\lambda_0}\Omega)$

 $ullet (H_U,L^2(dz))\simeq (\hat H_U,L^2(\Omega(z)^2dz)),$ where $\hat H_U f:=\Omega^{-1}H_U(\Omega f)=-rac{1}{2}\Delta_z-(rac{
abla\Omega}{\Omega},
abla)$

 \Longrightarrow Our Gibbs measure μ is the probability measure on $C(\mathbb{R},\mathbb{R}^d)$ induced by

$$egin{aligned} d\omega_t &= deta_t + rac{
abla\Omega}{\Omega}(\omega_t)dt, & t \in \mathbb{R}, \ (eta_t)_{t \in \mathbb{R}}: ext{BM} \ ig(
u(dz) &:= \Omega(z)^2 dz ext{: reversible measure}ig) \end{aligned}$$

Quasi-invariance: For every $k \in C_0^{\infty}(\mathbb{R}, \mathbb{R}^d)$, $\mu \sim \mu(k+\cdot)$ and $\mu(k+dw) = \Lambda(k,w)\mu(dw)$, where $\Lambda(k,w) = \exp\left\{\int \left(U(w(x)) - U(w(x) + k(x))\right)\right\}$

$$egin{aligned} oldsymbol{\Lambda}(oldsymbol{k},oldsymbol{w}) &= \exp \Big\{ \int_{\mathbb{R}} \Big(oldsymbol{U}ig(oldsymbol{w}(x) \Big) - oldsymbol{U}ig(oldsymbol{w}(x) + oldsymbol{k}(x) \Big) \\ &- rac{1}{2} |k'(x)|^2 + (oldsymbol{w}(x), oldsymbol{\Delta_x} oldsymbol{k}(x))_{\mathbb{R}^d} \Big) dx \Big\} \end{aligned}$$

and $\Delta_x := d^2/dx^2$.

• \mathcal{FC}_b^{∞} : smooth cylinder functions.

$$F(w)=f(\langle w,\varphi_1\rangle,\cdots,\langle w,\varphi_n\rangle)(=:f((\langle w,\varphi_\cdot\rangle)),$$

where
$$f\in C_b^\infty(\mathbb{R}^n,\mathbb{R}),\{arphi_i\}_{i=1}^n\subset C_0^\infty(\mathbb{R},\mathbb{R}^d),\ \langle w,arphi_i
angle :=\int_{\mathbb{R}}(w(x),arphi_i(x))_{\mathbb{R}^d}dx.$$

ullet $H ext{-}$ Fréchet derivative $D_HF\in \mathcal{FC}_b^\infty(H)$ is defined by

$$D_H F(w) := \sum_{i=1}^n \partial_i f((\langle w, \varphi_\cdot \rangle)) \varphi_i.$$

 \Longrightarrow We consider a (pre-)Dirichlet form on \mathcal{FC}_b^∞ by

$$\mathcal{E}(F,G) := \int \left(D_H F(w), D_H G(w)\right)_H \mu(dw).$$

Integration-by-Parts Formula [Iwata, Funaki]

$$\mathcal{E}(F,G){=}{-}(\mathcal{L}_0F,G)_{L^2(\mu)},\;F,G\in\mathcal{FC}_b^\infty,$$
 where

$$egin{aligned} \mathcal{L}_0 F(w) &= \operatorname{Tr}(D_H^2 F(w)) + \left\{ \langle w, \Delta_x D_H F(w(\cdot))
angle \ &- \langle
abla U(w(\cdot)), D_H F(w)
angle
ight\} \ &= \sum_{i,j=1}^n \partial_i \partial_j f((\langle w, arphi_\cdot
angle)) \cdot \langle arphi_i, arphi_j
angle \ &+ \sum_{i=1}^n \partial_i f((\langle w, arphi_\cdot
angle)) \cdot \left\{ \langle w, \Delta_x arphi_i
angle \ &- \langle
abla U(w(\cdot)), arphi_i
angle
ight\} \end{aligned}$$

Theorem 1 [K.–Röckner ('07. JFA)]

(i) The pre-Dirichlet operator $(\mathcal{L}_0, \mathcal{FC}_b^{\infty})$ is essentially self-adjoint in $L^2(\mu)$, i.e., $(\overline{\mathcal{L}}_0, \mathrm{Dom}(\overline{\mathcal{L}}_0))$: closure of $(\mathcal{L}_0, \mathcal{FC}_b^{\infty})$ in $L^2(\mu)$ is self-adjoint.

(ii)
$$e^{t\overline{\mathcal{L}}_0}F = P_tF, \quad F \in L^2(\mu),$$

where $\{P_t\}_{t\geq 0}$ is the transition semigroup corresponding to the parabolic SPDE

$$egin{aligned} dX_t(x) &= ig\{\Delta_x X_t(x) - (
abla U)(X_t(x))ig\}dt \ &+ \sqrt{2}dB_t(x), \ \ x \in \mathbb{R}, \ t > 0, \cdots ext{(GL)} \end{aligned}$$

where $\{B_t\}_{t>0}$ is a H-cylindrical Brownian motion.

• By the Riesz-Thorin interpolation, $\{P_t\}_{t\geq 0}$ can be regarded as a strongly continuous contraction semigroup in $L^p(\mu), 1\leq p<\infty$.

Theorem 2 [K. '05, POTA] Let $F \in L^{\infty}(\mu)$.

Then for any $h \in C_0^\infty(\mathbb{R}, \mathbb{R}^d)$, $\alpha > 1$ and t > 0, the following PHI holds:

$$egin{align} ig|P_t F(w)ig|^lpha & \leq P_tig|Fig|^lpha(w+h) \ & imes \exp\left(rac{lpha|h|_H^2}{4(lpha-1)}\cdotrac{2K_1}{1-e^{-2K_1t}}
ight), \quad \mu ext{-a.e. } w. \end{align}$$

 \clubsuit In the case $K_1=0$, we set $\dfrac{2K_1}{1-e^{-2K_1t}}:=\dfrac{1}{t}.$

A Outline of the Proof of Thm 2:

(1): A gradient bound for the diffusion semigroup:

$$|D_H P_t F|_H \leq e^{K_1 t} P_t(|D_H F|_H), F \in \mathcal{D}(\mathcal{E}) \cdot \cdots (\dagger)$$

To show (†), we use the coupling method for SPDE (GL).

$$\|X_t^w-X_t^{w'}\|_r \leq e^{(K_1+2r^2)t}\|w-w'\|_r, \quad P$$
-a.s. where $\|w\|_r^2:=\|we^{r|x|}\|_H^2, \quad w,w'\in \mathcal{C}\subset C(\mathbb{R},\mathbb{R}^d).$

<u>Sketch:</u> $Y_t(x) := X_t^w(x) - X_t^{w'}(x)$ satisfies

$$rac{\partial}{\partial t}Y_t(x) = \Delta_x Y_t(x)$$

$$-\{
abla U(X^w_t(x)) -
abla U(X^{w'}_t(x))\}, \ \ x \in \mathbb{R}, \ t > 0.$$

Multiply both sides by $2Y_t(x)e^{-2r|x|}$, use the condition (U1),

integrate over $(0,t) imes \mathbb{R}$, and apply integration by parts !!

(2): Introduce a "nice" interpolation function G \Longrightarrow Differential inequality

For $F\in \mathcal{FC}_b^\infty(>0)$ and $h\in C_0^\infty(\mathbb{R},\mathbb{R}^d)$, we set by

$$\circ G(s) := P_s(P_{t-s}F)^{\alpha}(\cdot + v(s)), \quad 0 \le s \le t,$$

where

$$v(s) := \frac{(\int_0^s e^{-2K_1 \tau} d\tau)}{(\int_0^t e^{-2K_1 \tau} d\tau)} \cdot h. \quad (v(0) = 0, v(t) = h)$$

⇒ By differentiating on both sides and using the gradient bound (†), we obtain a certain differential inequality.

 \clubsuit To expand $\frac{d}{ds}P_s(P_{t-s}F)^{\alpha}(\cdot + v(s))$, we must remark that $(P_{t-s}F)^{\alpha} \notin \mathrm{Dom}(\mathcal{L}_2)$ generally. Here we adopt a stochastic approach (Itô's formula) to overcome this difficulty.

$$\circ H(r_1, r_2, r_3) := P_{r_1}(P_{t-r_2}F)^{lpha}(\cdot + v(r_3)) \ (0 < r_1, r_2, r_3 < t)$$

$$\circ M_{r_1} := (P_{t-r_2}F)(X_{r_1}) - (P_{t-r_2}F)(X_0)$$

$$- \int_0^{r_1} \mathcal{L}_2(P_{t-r_2}F)(X_\tau) d\tau$$

By using Itô's formula, we have

$$\begin{split} (P_{t-r_{2}}F)^{\alpha}(X_{r_{1}}) &= (P_{t-r_{2}}F)^{\alpha}(X_{0}) \\ &+ \alpha \int_{0}^{r_{1}} (P_{t-r_{2}}F)^{\alpha-1}(X_{\tau}) \cdot \mathcal{L}_{2}(P_{t-r_{2}}F)(X_{\tau}) d\tau \\ &+ \alpha \int_{0}^{r_{1}} (P_{t-r_{2}}F)^{\alpha-1}(X_{\tau}) dM_{\tau} \\ &+ \frac{\alpha(\alpha-1)}{2} \int_{0}^{r_{1}} (P_{t-r_{2}}F)^{\alpha-2}(X_{\tau}) d\langle M \rangle_{\tau}. \end{split}$$

Here, we recall

$$ullet \langle M
angle_t = 2 \int_0^t |D(P_{t-r_2}F)(X_{ au})|_H^2 d au.$$

Then we obtain

Hence we can proceed as

$$\begin{split} \frac{d}{ds} P_{s}(P_{t-s}F)^{\alpha}(\cdot + v(s)) \\ &= \sum_{i=1}^{3} \frac{\partial}{\partial r_{i}} \big|_{r_{1} = r_{2} = r_{3} = s} H(r_{1}, r_{2}, r_{3}) \\ &= \alpha(\alpha - 1) P_{s} \Big\{ (P_{t-r_{2}}F)^{\alpha - 2} \\ & \cdot |D(P_{t-r_{2}}F)|_{H}^{2} \Big\} (\cdot + v(r_{3})) \\ &+ \Big(DP_{s}(P_{t-s}F)^{\alpha}(\cdot + v(s)), \dot{v}(s) \Big)_{H}. \end{split}$$

- **Application and Further Topics:**
- (1) Varadhan type short time asymptotics

As an application of Thm 2, we can obtain a certain lower bound of

$$p_t(A,B) := \int_A P_t 1_B(w) \mu(dw), \quad \mu(A), \mu(B) > 0.$$

(Since this bound is very complicated, we omit in this talk.) By combining this bound with Lyons-Zheng's martingale decomposition thm (\Rightarrow upper bound), we have

$$\lim_{t \searrow 0} 4t \log p_t(A, B) = -d_H(A, B)^2$$

under A or B is H-open.

- (2) Non-symmetric case (K. '04, Bull.Sci.Math)
 - Log-Sobolev inequality (K. '06, IDAQP)
 - Littlewood-Paley inequality, Riesz transforms, etc.