On G-local G-schemes

Masahiro Ohtani

Graduate School of Mathematics, Nagoya University Chikusa-ku, Nagoya 464-8602 JAPAN m05011w@math.nagoya-u.ac.jp

This is a joint work with Mitsuyasu Hashimoto.

1 Diagrams of schemes and modules over them

Let I be a small category, <u>Sch</u> denote the category of schemes. We think a contravariant functor $X_{\bullet} : I \to \underline{Sch}$. It can be thought as a diagram of schemes and morphisms. For each $i \in I$, denote the scheme $X_{\bullet}(i)$ by X_i . And for a morphism ϕ in I, denote the morphism $X_{\bullet}(\phi)$ by X_{ϕ} . We can define a category $Zar(X_{\bullet})$ as follows :

 $ob(Zar(X_{\bullet})) := \{(i, U) \mid i \in ob(I), U \in Zar(X_i)\},$ Hom $((i, U), (j, V)) := \{(\phi, h) \mid \phi : i \leftarrow j \text{ is a morphism in } I, h : U \to V$ is a morphism such that it is the restriction of $X_{\phi} : X_i \to X_j\}$

In the definiton, for a scheme S, Zar(S) denote the category consisting of open subschemes of S and inclusion morphisms.

And we can define a Grothendieck topology on $\operatorname{Zar}(X_{\bullet})$. A class of morphisms $\{(h_{\lambda}, \phi_{\lambda}) : (i_{\lambda}, U_{\lambda}) \to (i, U)\}$ is a covering of (i, U) if the following hold :

(1) $i_{\lambda} = i$ and $\phi_{\lambda} = id$ for any λ , (2) $U = \bigcup h_{\lambda} U_{\lambda}$.

So we can think sheaves over $\operatorname{Zar}(X_{\bullet})$.

Moreover, we define the sheaf of commutative rings $\mathcal{O}_{X_{\bullet}}$ on $\operatorname{Zar}(X_{\bullet})$ by

$$\Gamma((i,U),\mathcal{O}_{X_{\bullet}}) := \Gamma(U,\mathcal{O}_{X_i}),$$

where \mathcal{O}_{X_i} is the structure sheaf of X_i . So $\operatorname{Zar}(X_{\bullet})$ is a ringed site, and we can think $\mathcal{O}_{X_{\bullet}}$ -module sheaves. Denote the category of $\mathcal{O}_{X_{\bullet}}$ -modules $\operatorname{Mod}(\operatorname{Zar}(X_{\bullet}))$ by $\operatorname{Mod}(X_{\bullet})$, simply.

For $i \in I$, we can define a functor $[-]_i : \operatorname{Mod}(X_{\bullet}) \to \operatorname{Mod}(X_i)$ by

$$\Gamma(U, \mathcal{M}_i) := \Gamma((i, U), \mathcal{M}).$$

This functor $[-]_i$ is called the restriction functor. The restriction functor $[-]_i$ has both a left adjoint and a right adjoint, so $[-]_i$ preserves limits and colimits, and it is exact (Hashimoto [3], (4.4)).

Let $\phi : i \to j$ be a morphism in I. For $(i, U) \in \operatorname{Zar}(X_{\bullet})$ and an $\mathcal{O}_{X_{\bullet}}$ -module \mathcal{M} , a morphism $\beta_{\phi}(\mathcal{M}) : \mathcal{M}_i \to (X_{\phi})_* \mathcal{M}_j$ is defined by the following diagram of the sets of sections over U:

where f is the restriction with respect to the morphism $\left(\phi, X_{\phi}|_{X_{\phi}^{-1}U}\right)$.

And we can define a morphism $\alpha_{\phi}: X_{\phi}^*[-]_i \to [-]_j$ to be the composite

$$X_{\phi}^{*}[-]_{i} \xrightarrow{\beta_{\phi}} X_{\phi}^{*}(X_{\phi})_{*}[-]_{j} \xrightarrow{\epsilon} [-]_{j}$$

where ϵ is the counit of the adjoint pair $(X_{\phi}^*, (X_{\phi})_*)$.

Definition 1. Let \mathcal{M} be an $\mathcal{O}_{X_{\bullet}}$ -module.

(1) \mathcal{M} is equivariant if α_{ϕ} is an isomorphism for each morphism ϕ in I. (2) \mathcal{M} is locally coherent (resp. locally quasi-coherent) if each \mathcal{M}_i is a coherent (resp. quasi-coherent) \mathcal{O}_{X_i} -module for any $i \in I$.

(3) \mathcal{M} is **coherent** (resp. **quasi-coherent**) if \mathcal{M} is locally coherent (resp. locally quasi-coherent) and equivariant.

2 The diagram $B_G^M(X)$ and *G*-local *G*-scheme

Denote the set of natural numbers $\{0, 1, \dots, n\}$ by [n]. Let Δ be the category defined as follows :

 $ob(\Delta) = \{[0], [1], [2]\},\$ Hom([i], [j]) = the set of order-preserving injective maps $[i] \rightarrow [j].$ Δ is represented by the following diagram (without identity maps) :

$$\Delta = \begin{pmatrix} \underbrace{i_0} & \underbrace{i_0} & \\ \begin{bmatrix} 2 \end{bmatrix} & \underbrace{i_1} & \begin{bmatrix} 1 \end{bmatrix} & \underbrace{i_0} & \\ & \underbrace{i_2} & & \end{bmatrix} \end{pmatrix}$$

where i_s is the order-preserving injection whose image does not contain s.

From now on, let S be a Noetherian scheme, G be an S-group scheme flat of finite type and X be a Noetherian G-scheme. G-scheme is an S-scheme with G-action. We define a diagram of schemes $B_G^M(X) \in$ Func $(\Delta^{\text{op}}, \underline{Sch})$ by

$$B_G^M(X) := \begin{pmatrix} G \times_S G \times_S X & \xrightarrow{\operatorname{id} \times a} & G \times_S X & \xrightarrow{a} \\ & \xrightarrow{p_{23}} & & & \xrightarrow{p_2} & X \end{pmatrix}$$

where $a: G \times X \to X$ is the action, $\mu: G \times G \to G$ is the product, and p_{23} and p_2 are projections.

We call a module over this diagram $B_G^M(X)$ **a** (G, \mathcal{O}_X) -module, and denote the category of (G, \mathcal{O}_X) -modules $Mod(B_G^M(X))$ by Mod(G, X). And denote the full subcategory of locally quasi-coherent (G, \mathcal{O}_X) -modules, of quasi-coherent (G, \mathcal{O}_X) -modules and of coherent (G, \mathcal{O}_X) -modules by Lqc(G, X), Qch(G, X) and Coh(G, X), respectively.

Let Z be a closed subscheme of X. Denote the scheme theoritic image of the action $a: G \times Z \to X$ by Z^* . This subscheme Z^* has the following properties :

- 1. Z^* is the smallest G-stable (i.e. the action $a: G \times Z^* \to X$ factors through the inclusion $Z^* \to X$) closed subscheme which contains Z. So if Z is G-stable, then $Z^* = Z$.
- 2. Assume that G is an S-smooth group scheme with connected geometric fibers. If Z is irreducible (resp. reduced), then so is Z^* . So if Z is integral, then Z^* is integral, too.

Definition 2. A quasi-compact G-scheme X is G-local if X is has a unique minimal non-empty G-stable closed subscheme Y of X. In this case, we say that (X, Y) is G-local.

There are some examples of G-local G-schemes.

Example 3. (1) If G is trivial, a G-local G-scheme X is of the form $\operatorname{Spec} A$ where A is a local ring.

(2) Let $S = \operatorname{Spec} \mathbb{Z}$, $G = \mathbb{G}_m$ (multiplicative group) and A be a G-algebra. Let ω be the coaction $A \to A \otimes \mathbb{Z}[G]$ and X(G) the character group of G. Now it holds $X(G) \simeq \mathbb{Z}$ as groups. For a character $\lambda \in X(G)$, set $A_{\lambda} = \{a \in A \mid \omega(a) = a \otimes \lambda\}$. Then $A = \bigoplus_{\lambda \in X(G)} A_{\lambda}$ hold. And for $\lambda, \mu \in X(G), A_{\mu}A_{\lambda} = \{a_{\lambda}a_{\mu} \mid a_{\lambda} \in A_{\lambda}, a_{\mu} \in A_{\mu}\} \subset A_{\lambda+\mu}$. So the equation $A = \bigoplus A_{\lambda}$ means that \mathbb{G}_m -algebras are \mathbb{Z} -graded algebras and that an ideal I of \mathbb{G}_m -algebra A is \mathbb{G}_m -stable if and only if it is homogeneous.

So affine \mathbb{G}_m -scheme $X = \operatorname{Spec} A$ is \mathbb{G}_m -local if and only if A is an H-local \mathbb{Z} -graded ring in the sense of Goto and Watanabe [1]. (3) If $S = \operatorname{Spec} k$ with k an algebraically closed field, G is an linear algebraic group and B is a Borel subgroup of G, then (G/B, G/B) is G-local and (G/B, B/B) is B-local. But it is not affine unless G = B So a G-local G-scheme is not neccessarily affine even if S and G are affine. (4) Let k be a field, G a reductive group, C a k-algebra of finite type with G-action, $A := C^G$ and $P \in \operatorname{Spec} A$. Then $X = \operatorname{Spec} C_P$ is a G-local G-scheme.

Until the end of this article, let G be an S-smooth group scheme with connected geometric fibers. For example, a connected algebraic group over an algebraically closed field k has this property. And let (X, Y) be a Noetherian G-local G-scheme.

Under the assumption, the unique minimal non-empty G-stable closed subscheme Y of X is integral. In fact, each irreducible component of Yand the reduction Y_{red} of Y is G-stable, so Y is irreducible and reduced because of minimality of Y. So Y has the generic point. Let η be the generic point of Y, \mathcal{I} the defining ideal of Y and $f: Y \to X$ the inclusion.

The localization at η is very important and useful.

Lemma 4. The localization functor $[-]_{\eta}$: $\operatorname{Qch}(G, X) \to \operatorname{Mod} \mathcal{O}_{X,\eta}$ is faithful and exact.

Proof. A localization functor is exact in general, so it is enough to prove that $[-]_{\eta}$ is faithful, i.e. $\mathcal{M}_{\eta} \neq 0$ for any quasi-coherent (G, \mathcal{O}_X) -module $\mathcal{M} \neq 0$. A quasi-coherent (G, \mathcal{O}_X) -module is represented as an inductive limit of coherent (G, \mathcal{O}_X) -modules, so we may assume that $\mathcal{M} \neq 0$ is coherent. Then $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{M}, \mathcal{M})$ is coherent, and $\operatorname{Ann} \mathcal{M} := \operatorname{ker}(\mathcal{O}_X \to$ $\underline{\operatorname{Hom}}_{\mathcal{O}_X}(\mathcal{M},\mathcal{M})) \text{ is a coherent } G\text{-ideal, so } \operatorname{Supp} \mathcal{M} \text{ is a non-empty } G\text{-}$ stable closed subscheme. Since Y is minimal, $\eta \in Y \subset \operatorname{Supp} \mathcal{M}$. Then $\mathcal{M}_{\eta} \neq 0$.

By the lemma, we can prove a G-analogue of Nakayama's Lemma.

Theorem 5 (G-Nakayama's lemma). For a coherent (G, \mathcal{O}_X) -module \mathcal{M} , if $f^*\mathcal{M} = 0$ then M = 0.

Proof. $\kappa(\eta) \otimes_{\mathcal{O}_{X,\eta}} \mathcal{M}_{\eta} = (f^* \mathcal{M})_{\eta} = 0$, so $M_{\eta} = 0$ by the usual Nakayama's lemma for the local ring $\mathcal{O}_{X,\eta}$. And $[-]_{\eta}$ is faithful, so M = 0.

By localization at η , we also have criteria for coherentness and lengthfiniteness of quasi-coherent (G, \mathcal{O}_X) -modules.

Proposition 6. (1) For $\mathcal{M} \in \text{Qch}(G, X)$, the following are equivalent : (a) \mathcal{M} is a Noetherian object of Qch(G, X).

- (b) $\mathcal{M}_{[0]}$ is a coherent \mathcal{O}_X -module.
- (c) \mathcal{M} is a coherent (G, \mathcal{O}_X) -module.
- (d) \mathcal{M}_{η} is a Noetherian $\mathcal{O}_{X,\eta}$ -module.
- (2) For $\mathcal{M} \in \operatorname{Qch}(G, X)$, the following are equivalent :
 - (a) \mathcal{M} is of finite length in $\operatorname{Qch}(G, X)$.
 - (b) \mathcal{M} is a coherent (G, \mathcal{O}_X) -module, and $\mathcal{I}^n \mathcal{M} = 0$ for some n.
 - (c) \mathcal{M}_{η} is $\mathcal{O}_{X,\eta}$ -module of finite length.

Proof. (1) (a) \Leftrightarrow (b). Hashimoto [3], Lemma 12.8. (b) \Rightarrow (c) \Rightarrow (d) are trivial. (d) \Rightarrow (a). Since $[-]_{\eta}$ is faithful and exact, then an ascending chain $\mathcal{N}_0 \subset \mathcal{N}_1 \subset \mathcal{N}_2 \subset \cdots$ of (G, \mathcal{O}_X) -submodules of \mathcal{M} is stable if and only if an ascending chain $[\mathcal{N}_0]_{\eta} \subset [\mathcal{N}_1]_{\eta} \subset [\mathcal{N}_2]_{\eta} \cdots$ of $\mathcal{O}_{X,\eta}$ -submodules of \mathcal{M}_{η} is stable.

(2) (a) \Rightarrow (b). \mathcal{M} is a coherent by (1). A descending chain $\mathcal{M} \supset \mathcal{I}^1 \mathcal{M} \supset \mathcal{I}^2 \mathcal{M} \supset \cdots$ is stable by (a). If $\mathcal{I}^n \mathcal{M} = \mathcal{I}^{n+1} \mathcal{M}$, then $\mathcal{I}^n_\eta \mathcal{M}_\eta = \mathcal{I}^{n+1}_\eta \mathcal{M}_\eta$. So $\mathcal{I}^n_\eta \mathcal{M}_\eta = 0$ by usual Nakayama's lemma, and then $\mathcal{I}^n \mathcal{M} = 0$ by faithfulness of $[-]_\eta$. (b) \Rightarrow (c) is trivial. (c) \Rightarrow (a) is similar to (1) (d) \Rightarrow (a) for a descending chain of (G, \mathcal{O}_X) -submodules of \mathcal{M} .

3 *G*-dualizing complex

For a Noetherian G-scheme Z, a complex $\mathbb{F} \in D(Mod(G, Z))$ is Gdualizing if \mathbb{F} has equivariant cohomology sheaves and if $\mathbb{F}_{[0]} \in D(Mod Z)$ is a dualizing complex of Z. Since Δ is a finite ordered category, \mathbb{F} is Gdualizing if and only if \mathbb{F} has finite injective dimension, has coherent cohomology sheaves, and the natural map $\mathcal{O}_{B^M_G(Z)} \to R \operatorname{\underline{Hom}}^{\bullet}(\mathbb{F}, \mathbb{F})$ is a quasi-isomorphism, see [3] Lemma 31.6.

For example, if Z is Gorenstein of finite Krull dimension, then \mathcal{O}_Z itself is a G-dualizing complex of Z.

From now on, assume that X has a fixed G-dualizing complex \mathbb{I} .

4 The local cohomology

Let $g: X \setminus Y \hookrightarrow X$ be the open immersion. $u: \mathrm{Id} \to g_*g^*$ denote the unit of the adjoint pair (g_*, g^*) . Then we think a functor $\underline{\Gamma}_Y = \ker u : \mathrm{Mod}(G, X) \to \mathrm{Mod}(G, X)$.

The functor $\underline{\Gamma}_Y$ is a left exact functor preserving Lqc(G, X) and Qch(G, X), see [4] Lemma 3.2. For $\mathcal{M} \in Lqc(G, X)$, $\underline{\Gamma}_Y(\mathcal{M})$ is computed as follows :

$$\underline{\Gamma}_Y(\mathcal{M}) = \varinjlim_n \underline{\operatorname{Hom}}_{\mathcal{O}_X}(\mathcal{O}_X/\mathcal{I}^n, \mathcal{M}),$$

see [4] Lemma 3.21.

And the derived functor $R \underline{\Gamma}_Y : D(Mod(G, X)) \to D(Mod(G, X))$ preserves $D_{Qch}(Mod(G, X))$, see [4] Lemma 4.11. For $\mathbb{M} \in D(Mod(G, X))$, $R^i \underline{\Gamma}_Y(\mathbb{M})$ is denoted by $\underline{H}^i_Y(\mathbb{M})$.

Lemma 7. For a G-dualizing complex \mathbb{F} of X, the local cohomology sheaves $\underline{\mathrm{H}}^{i}_{Y}(\mathbb{F})$ vanish except for only one *i*.

Proof. Over a Noetherian scheme $S, A \in \operatorname{Qch} S$ is an injective object of Mod S if and only if it is an injective object of Qch S. So we can assume that each term of a dualizing complex \mathbb{F}_S of S is quasi-coherent and injective. As this, we can assume that \mathbb{F} is a K-injective complex whose terms are locally quasi-coherent.

Then the following diagram commutes :

$$\begin{array}{cccc} X \setminus Z & \stackrel{g}{\longrightarrow} & X \\ f' & & f \\ & & f \\ \end{array}$$
Spec $\mathcal{O}_{X,\eta} \setminus \{\eta\} \xrightarrow{g'} & \operatorname{Spec} \mathcal{O}_{X,\eta} \end{array}$

We calculate the functor $f^* \underline{\Gamma}_Y = f^* \ker(Id \xrightarrow{u} g_*g^*)$ by the commutative diagram :

$$\begin{aligned} f^* \underline{\Gamma}_Z &= f^* \ker(\mathrm{Id} \xrightarrow{u} g_* g^*) \simeq \ker(f^* \longrightarrow f^* g_* g^*) \\ \underline{\phi} & \ker(f^* \longrightarrow g'_* g'^* f^*) \simeq \ker(\mathrm{Id} \longrightarrow g'_* g'^*) f^* = \Gamma_{\mathcal{I}_\eta} f^*. \end{aligned}$$

Each term of \mathbb{F} is locally quasi-coherent, so ϕ is isomorphic. So it holds $[\underline{\Gamma}_Z(\mathbb{F})]_\eta \simeq \Gamma_{\mathcal{I}_\eta}(\mathbb{F}_\eta)$. By definition, \mathbb{F}_η is a dualizing complex of $\mathcal{O}_{X,\eta}$.

In general, for a local ring (A, \mathfrak{m}) , local cohomology groups $\mathrm{H}^{i}_{\mathfrak{m}}(\mathbb{F})$ of a dualizing complex \mathbb{F} of A with support $\{\mathfrak{m}\}$ vanish except for only one i, see Hartshorne [2] V.6. The functor $[-]_{\eta}$ is faithful and exact, so cohomology $\underline{\mathrm{H}}^{i}_{Y}(\mathbb{F})$ vanish except for only one i.

Let \mathbb{F} be a *G*-dualizing complex of *X*. If it holds $\underline{\mathrm{H}}_{Y}^{0}(\mathbb{F}) \neq 0$, a *G*-dualizing complex \mathbb{F} is called *G*-normalized. Assume that our *G*-dualizing complex \mathbb{I} is *G*-normalized.

Definition 8. For a *G*-normalized *G*-dualizing complex \mathbb{I} , the non-vanishing local cohomology $\underline{\mathrm{H}}_{Y}^{0}(\mathbb{I})$ with support *Y* is denoted by \mathcal{E}_{X} , and we call it a *G*-sheaf of Matlis.

For a local ring (A, \mathfrak{m}) , the non-vanishing local cohomology group $\mathrm{H}^{i}_{\mathfrak{m}}(\mathbb{F})$ of a dualizing complex \mathbb{F} of A with support $\{\mathfrak{m}\}$ is the injective envelope $E_{A}(A/\mathfrak{m})$ of the residue field A/\mathfrak{m} . So we get an isomprphism $[\mathcal{E}_{X}]_{\eta} \simeq E_{\mathcal{O}_{X,\eta}}(\kappa(\eta))$ where $\kappa(\eta)$ is the residue field of the local ring $\mathcal{O}_{X,\eta}$.

A *G*-sheaf of Matlis \mathcal{E}_X corresponds to the injective envelope $E_A(A/\mathfrak{m})$ of the residue field A/\mathfrak{m} for a local ring (A, \mathfrak{m}) . But it is not necessarily an injective (G, \mathcal{O}_X) -module.

Example 9. Let k be a field of characteristic 2, $V = k^2$ and $G = \mathbb{GL}(V)$. Let $X = \operatorname{Spec} A$ where $A = \operatorname{Sym} V^*$. Then \mathcal{E}_X is a (G, \mathcal{O}_X) -module which is defined by A^{\dagger} (A^{\dagger} denote the graded dual module of A). It is not injective as a G-module, so \mathcal{E}_X is not injective in $\operatorname{Qch}(G, X)$.

Moreover, G-sheaf of Matlis $\mathcal{E}_X = \underline{\mathrm{H}}_Y^0(\mathbb{I})$ depends on G-normalized G-dualizing complex \mathbb{I} , so it is not necessarily unique.

5 Main theorems

Theorem 10 (G-Matlis duality). Let T be the functor $\underline{\operatorname{Hom}}_{\mathcal{O}_X}(-, \mathcal{E}_X)$: Mod $(G, X) \to \operatorname{Mod}(G, X)$, \mathcal{F} denote the category of (G, \mathcal{O}_X) -modules of finite length. Then the followings hold :

(1) T is an exact functor on Coh(G, X).

(2) If $\mathcal{M} \in \mathcal{F}$, then $T\mathcal{M} \in \mathcal{F}$ and the canonical map $\mathcal{M} \to TT\mathcal{M}$ is an isomorphism.

So the functor $T : \mathcal{F} \to \mathcal{F}$ is an anti-equivalence.

Proof. (1) If $\mathcal{N} \in \operatorname{Coh}(G, X)$ then \mathcal{N}_{η} is a finitely generated $\mathcal{O}_{X,\eta}$ -module, see Lemma 6. So it holds

$$\left[\underline{\operatorname{Hom}}_{\mathcal{O}_X}(\mathcal{N}, \mathcal{E}_X)\right]_{\eta} \simeq \operatorname{Hom}_{\mathcal{O}_{X,\eta}}(\mathcal{N}_{\eta}, [\mathcal{E}_X]_{\eta}). \tag{\sharp}$$

 $[\mathcal{E}_X]_\eta$ is an injective $\mathcal{O}_{X,\eta}$ -module, so the functor $\operatorname{Hom}_{\mathcal{O}_{X,\eta}}([-]_\eta, [\mathcal{E}_{X,\eta}])$ is exact. Then $T = \operatorname{Hom}_{\mathcal{O}_X}(-, \mathcal{E}_X)$ is exact because $[-]_\eta$ is faithful and exact.

(2) By Lemma 6, \mathcal{M}_{η} is an $\mathcal{O}_{X,\eta}$ -module of finite length for $\mathcal{M} \in \mathcal{F}$. Because of the isomorphism (\sharp) and usual Matlis duality for the local ring $\mathcal{O}_{X,\eta}$, $[T\mathcal{M}]_{\eta}$ is an $\mathcal{O}_{X,\eta}$ -module of finite length. By Lemma 6 again, $T\mathcal{M}$ is of finite length.

 \mathcal{M} and $T\mathcal{M}$ are both coherent, then

$$[TT\mathcal{M}]_{\eta} \simeq \operatorname{Hom}_{\mathcal{O}_{X,\eta}}(\operatorname{Hom}_{\mathcal{O}_{X,\eta}}(\mathcal{M}_{\eta}, [\mathcal{E}_X]_{\eta}), [\mathcal{E}_X]_{\eta}).$$

By usual Matlis duality, it is isomorphic to \mathcal{M}_{η} . So it holds $TT\mathcal{M} \simeq \mathcal{M}$ because of faithfulness of $[-]_{\eta}$.

Finally, we state a G-analogue of local duality theorem.

Theorem 11 (G-local duality). Let \mathbb{E} be a bounded below complex in Mod(G, X) with coherent cohomology. Then there is an isomorphism in Qch(G, X):

$$\underline{\mathrm{H}}_{Y}^{i}(\mathbb{E}) \simeq \underline{\mathrm{Hom}}_{\mathcal{O}_{X}}(\underline{\mathrm{Ext}}_{\mathcal{O}_{X}}^{-i}(\mathbb{E},\mathbb{I}),\mathcal{E}_{X}).$$

参考文献

- S.Goto, K.-i.Watanabe, On graded rings, I. J.Math.Soc.Japan, **30** (1978), 179-213.
- [2] R.Hartshorne, *Residues and Duality*, Lect.Notes Math. 20, Springer, 1966.
- [3] M.Hashimoto, Equivariant twisted inverses, preprint.
- [4] M.Hashimoto, M.Ohtani, *Local cohomology on diagrams of schemes*, preprint.