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1. Introduction

This paper aims to give a structure theorem of Sally modules of rank one.

Let A be a Cohen-Macaulay local ring with the maximal ideal m and d = dim A > 0.

We assume the residue class field k = A/m of A is infinite. Let I be an m-primary ideal

in A and choose a minimal reduction Q = (a1, a2, · · · , ad) of I. Then we have integers

{ei = ei(I)}0≤i≤d such that the equality

�A(A/In+1) = e0

(
n + d

d

)
− e1

(
n + d − 1

d − 1

)
+ · · · + (−1)ded

holds true for all n � 0. Let

R = R(I) := A[It] and T = R(Q) := A[Qt] ⊆ A[t]

denote, respectively, the Rees algebras of I and Q, where t stands for an indeterminate

over A. We put

R′ = R′(I) := A[It, t−1] and G = G(I) := R′/t−1R′ ∼=
⊕
n≥0

In/In+1.

Let B = T/mT , which is the polynomial ring with d indeterminates over the field k.

Following W. V. Vasconcelos [11], we then define

SQ(I) = IR/IT

and call it the Sally module of I with respect to Q. We notice that the Sally module

S = SQ(I) is a finitely generated graded T -module, since R is a module-finite extension

of the graded ring T .

The Sally module S was introduced by W. V. Vasconcelos [11], where he gave an

elegant review, in terms of his Sally module, of the works [8, 9, 10] of J. Sally about

the structure of m-primary ideals I with interaction to the structure of the graded ring

G and the Hilbert coefficients ei’s of I.

As is well-known, we have the inequality ([6])

e1 ≥ e0 − �A(A/I)



and C. Huneke [3] showed that e1 = e0 − �A(A/I) if and only if I2 = QI (cf. Corollary

2.3). When this is the case, both the graded rings G and F(I) =
⊕

n≥0 In/mIn are

Cohen-Macaulay, and the Rees algebra R of I is also a Cohen-Macaulay ring, provided

d ≥ 2. Thus, the ideals I with e1 = e0 − �A(A/I) enjoy very nice properties.

J. Sally firstly investigated the second border, that is the ideals I satisfying the

equality e1 = e0 − �A(A/I) + 1 but e2 �= 0 (cf. [10, 11]). The present research is a

continuation of [10, 11] and aims to give a complete structure theorem of the Sally

module of an m-primary ideal I satisfying the equality e1 = e0 − �A(A/I) + 1.

The main result of this paper is the following Theorem 1.1. Our contribution in

Theorem 1.1 is the implication (1) ⇒ (3), the proof of which is based on the new result

that the equality I3 = QI2 holds true if e1 = e0 − �A(A/I) + 1 (cf. Theorem 3.1).

Theorem 1.1. The following three conditions are equivalent to each other.

(1) e1 = e0 − �A(A/I) + 1.

(2) mS = (0) and rankB S = 1.

(3) S ∼= (X1, X2, · · · , Xc)B as graded T -modules for some 0 < c ≤ d, where

{Xi}1≤i≤c are linearly independent linear forms of the polynomial ring B.

When this is the case, c = �A(I2/QI) and I3 = QI2, and the following assertions hold

true.

(i) depth G ≥ d − c and depthT S = d − c + 1.

(ii) depth G = d − c, if c ≥ 2.

(iii) Suppose c < d. Then

�A(A/In+1) = e0

(
n + d

d

)
− e1

(
n + d − 1

d − 1

)
+

(
n + d − c − 1

d − c − 1

)

for all n ≥ 0. Hence

ei =

{
0 if i �= c + 1,

(−1)c+1 if i = c + 1

for 2 ≤ i ≤ d.

(iv) Suppose c = d. Then

�A(A/In+1) = e0

(
n + d

d

)
− e1

(
n + d − 1

d − 1

)

for all n ≥ 1. Hence ei = 0 for 2 ≤ i ≤ d.

Thus Theorem 1.1 settles a long standing problem, although the structure of ideals

I with e1 = e0 − �A(A/I) + 2 or the structure of Sally modules S with mS = (0) and

rankB S = 2 remains unknown.



Let us now briefly explain how this paper is organized. We shall prove Theorem 1.1

in Section 3. In Section 2 we will pick up from the paper [1] some auxiliary results on

Sally modules, all of which are known, but let us note them for the sake of the reader’s

convenience. In Section 4 we will construct one example in order to see the ubiquity of

ideals I which satisfy condition (3) in Theorem 1.1.

In what follows, unless otherwise specified, let (A, m) be a Cohen-Macaulay local

ring with d = dim A > 0. We assume that the field k = A/m is infinite. Let I be an

m-primary ideal in A and let S be the Sally module of I with respect to a minimal

reduction Q = (a1, a2, · · · , ad) of I. We put R = A[It], T = A[Qt], R′ = A[It, t−1], and

G = R′/t−1R′. Let

Ĩ =
⋃
n≥1

[In+1 :A In] =
⋃
n≥1

[In+1 :A (an
1 , a

n
2 , · · · , an

d)]

denote the Ratliff-Rush closure of I, which is the largest m-primary ideal in A such

that I ⊆ Ĩ and ei(Ĩ) = ei for all 0 ≤ i ≤ d (cf. [7]). We denote by µA(∗) the number of

generators.

2. Auxiliary results

In this section let us firstly summarize some known results on Sally modules, which

we need throughout this paper. See [1] and [11] for the detailed proofs.

The first two results are basic facts on Sally modules developed by Vasconcelos [11].

Lemma 2.1. The following assertions hold true.

(1) m�S = (0) for integers � � 0.

(2) The homogeneous components {Sn}n∈Z of the graded T -module S are given by

Sn
∼=

{
(0) if n ≤ 0,

In+1/IQn if n ≥ 1.

(3) S = (0) if and only if I2 = QI.

(4) Suppose that S �= (0) and put V = S/MS, where M = mT + T+ is the graded

maximal ideal in T . Let Vn (n ∈ Z) denote the homogeneous component of the

finite-dimensional graded T/M-space V with degree n and put Λ = {n ∈ Z |
Vn �= (0)}. Let q = max Λ. Then we have Λ = {1, 2, · · · , q} and rQ(I) = q + 1,

where rQ(I) stands for the reduction number of I with respect to Q.

(5) S = TS1 if and only if I3 = QI2.

Proof. See [1, Lemma 2.1]. �

Proposition 2.2. Let p = mT . Then the following assertions hold true.



(1) AssT S ⊆ {p}. Hence dimT S = d, if S �= (0).

(2) �A(A/In+1) = e0

(
n+d

d

) − (e0 − �A(A/I))·(n+d−1
d−1

) − �A(Sn) for all n ≥ 0.

(3) We have e1 = e0 − �A(A/I) + �Tp(Sp). Hence e1 = e0 − �A(A/I) + 1 if and only

if mS = (0) and rankB S = 1.

(4) Suppose that S �= (0). Let s = depthT S. Then depth G = s − 1 if s < d. S is

a Cohen-Macaulay T -module if and only if depth G ≥ d − 1.

Proof. See [1, Proposition 2.2]. �

Combining Lemma 2.1 (3) and Proposition 2.2, we readily get the following results

of Northcott [6] and Huneke [3].

Corollary 2.3 ([3, 6]). We have e1 ≥ e0 − �A(A/I). The equality e1 = e0 − �A(A/I)

holds true if and only if I2 = QI. When this is the case, ei = 0 for all 2 ≤ i ≤ d.

The following result is one of the keys for our proof of Theorem 1.1.

Theorem 2.4. The following conditions are equivalent.

(1) mS = (0) and rankBS = 1.

(2) S ∼= a as graded T -modules for some graded ideal a ( �= B) of B.

Proof. We have only to show (1) ⇒ (2). Because S1 �= (0) and S =
∑

n≥1 Sn by Lemma

2.1, we have S ∼= B(−1) as graded B-modules once S is B-free.

Suppose that S is not B-free. The B-module S is torsionfree, since AssT S = {mT}
by Proposition 2.2 (1). Therefore, since rankB S = 1, we see d ≥ 2 and S ∼= a(m) as

graded B-modules for some integer m and some graded ideal a ( �= B) in B, so that we

get the exact sequence

0 → S(−m) → B → B/a → 0

of graded B-modules. We may assume that htB a ≥ 2, since B = k[X1, X2, · · · , Xd]

is the polynomial ring over the field k = A/m. We then have m ≥ 0, since am+1 =

[a(m)]1 ∼= S1 �= (0) and a0 = (0). We want to show m = 0.

Because dim B/a ≤ d − 2, the Hilbert polynomial of B/a has degree at most d − 3.

Hence

�A(Sn) = �A(Bm+n) − �A([B/a]m+n)

=

(
m + n + d − 1

d − 1

)
− �A([B/a]m+n)

=

(
n + d − 1

d − 1

)
+ m

(
n + d − 2

d − 2

)
+ (lower terms)

for n � 0. Consequently



�A(A/In+1) = e0

(
n + d

d

)
− (e0 − �A(A/I))·

(
n + d − 1

d − 1

)
− �A(Sn)

= e0

(
n + d

d

)
− (e0 − �A(A/I) + 1)·

(
n + d − 1

d − 1

)
− m

(
n + d − 2

d − 2

)

+(lower terms)

by Proposition 2.2 (2), so that we get e2 = −m. Thus m = 0, because e2 ≥ 0 by

Narita’s theorem ([5]). �

The following result will enable us to reduce the proof of Theorem 1.1 to the proof

of the fact that I3 = QI2 if e1 = e0 − �A(A/I) + 1.

Proposition 2.5. Suppose e1 = e0 − �A(A/I) + 1 and I3 = QI2. Let c = �A(I2/QI).

Then the following assertions hold true.

(1) 0 < c ≤ d and µB(S) = c.

(2) depth G ≥ d − c and depthB S = d − c + 1.

(3) depth G = d − c, if c ≥ 2.

(4) Suppose c < d. Then �A(A/In+1) = e0

(
n+d

d

) − e1

(
n+d−1

d−1

)
+

(
n+d−c−1

d−c−1

)
for all

n ≥ 0. Hence

ei =

{
0 if i �= c + 1

(−1)c+1 if i = c + 1

for 2 ≤ i ≤ d.

(5) Suppose c = d. Then �A(A/In+1) = e0

(
n+d

d

) − e1

(
n+d−1

d−1

)
for all n ≥ 1. Hence

ei = 0 for 2 ≤ i ≤ d.

Proof. We have mS = (0) and rankB S = 1 by Proposition 2.2 (3), while S = TS1 since

I3 = QI2 (cf. Lemma 2.1 (5)). Therefore by Theorem 2.4 we have S ∼= a as graded

B-modules where a = (X1, X2, · · · , Xc) is an ideal in B generated by linear forms

{Xi}1≤i≤c. Hence 0 < c ≤ d, µB(S) = c, and depthB S = d − c + 1, so that assertions

(1), (2), and (3) follow (cf. Proposition 2.2 (4)). Considering the exact sequence

0 → S → B → B/a → 0

of graded B-modules, we get

�A(Sn) = �A(Bn) − �A([B/a]n)

=

(
n + d − 1

d − 1

)
−

(
n + d − c − 1

d − c − 1

)



for all n ≥ 0 (resp. n ≥ 1), if c < d (resp. c = d). Thus assertions (4) and (5) follow

(cf. Proposition 2.2 (2)). �

3. Proof of Theorem 1.1

The purpose of this section is to prove Theorem 1.1. See Proposition 2.2 (3) for the

equivalence of conditions (1) and (2) in Theorem 1.1. The implication (3) ⇒ (2) is

clear. So, we must show the implication (1) ⇒ (3) together with the last assertions in

Theorem 1.1. Suppose that e1 = e0 − �A(A/I) + 1. Then, thanks to Theorem 2.4, we

get an isomorphism

ϕ : S → a

of graded B-modules, where a � B is a graded ideal of B. Notice that once we are able

to show I3 = QI2, the last assertions of Theorem 1.1 readily follow from Proposition

2.5. On the other hand, since a ∼= S = BS1 (cf. Lemma 2.1 (5)), the ideal a of B

is generated by linearly independent linear forms {Xi}1≤i≤c (0 < c ≤ d) of B and so,

the implication (1) ⇒ (3) in Theorem 1.1 follows. We have c = �A(I2/QI), because

a1
∼= S1 = I2/QI (cf. Lemma 2.1 (2)). Thus our Theorem 1.1 has been proven modulo

the following theorem.

Theorem 3.1. Suppose that e1 = e0 − �A(A/I) + 1. Then I3 = QI2.

Proof. We proceed by induction on d. Suppose that d = 1. Then S is B-free of rank

one (recall that the B-module S is torsionfree; cf. Proposition 2.2 (1)) and so, since

S1 �= (0) (cf. Lemma 2.1 (3)), S ∼= B(−1) as graded B-modules. Thus I3 = QI2 by

Lemma 2.1 (5).

Let us assume that d ≥ 2 and that our assertion holds true for d − 1. Since the field

k = A/m is infinite, without loss of generality we may assume that a1 is a superficial

element of I. Let

A = A/(a1), I = I/(a1), and Q = Q/(a1).

We then have ei(I) = ei for all 0 ≤ i ≤ d − 1, whence

e1(I) = e0(I) − �A(A/I) + 1.

Therefore the hypothesis of induction on d yields I
3

= Q I
2
. Hence, because the element

a1t is a nonzerodivisor on G if depth G > 0, we have I3 = QI2 in that case.

Assume that depth G = 0. Then, thanks to Sally’s technique ([10]), we also have

depth G(I) = 0. Hence �A(I
2
/Q I) = d − 1 by Proposition 2.5 (2), because e1(I) =



e0(I) − �A(A/I) + 1. Consequently, �A(S1) = �A(I2/QI) ≥ d − 1, because I
2
/Q I is a

homomorphic image of I2/QI. Let us take an isomorphism

ϕ : S → a

of graded B-modules, where a � B is a graded ideal of B. Then, since

�A(a1) = �A(S1) ≥ d − 1,

the ideal a contains d−1 linearly independent linear forms, say X1, X2, · · · , Xd−1 of B,

which we enlarge to a basis X1, · · · , Xd−1, Xd of B1. Hence

B = k[X1, X2, · · · , Xd],

so that the ideal a/(X1, X2, · · · , Xd−1)B in the polynomial ring

B/(X1, X2, · · · , Xd−1)B = k[Xd]

is principal. If a = (X1, X2, · · · , Xd−1)B, then I3 = QI2 by Lemma 2.1 (5), since

S = BS1. However, because �A(I2/QI) = �A(a1) = d − 1, we have depth G ≥ 1 by

Proposition 2.5 (2), which is impossible. Therefore a/(X1, X2, · · · , Xd−1)B �= (0), so

that we have

a = (X1, X2, · · · , Xd−1, X
α
d )B

for some α ≥ 1. Notice that α = 1 or α = 2 by Lemma 2.1 (4). We must show that

α = 1.

Assume that α = 2. Let us write, for each 1 ≤ i ≤ d, Xi = bit with bi ∈ Q, where

bit denotes the image of bit ∈ T in B = T/mT . Then a = (b1t, b2t, · · · , bd−1t, (bdt)2).

Notice that

Q = (b1, b2, · · · , bd),

because {Xi}1≤i≤d is a k-basis of B1. We now choose elements fi ∈ S1 for 1 ≤ i ≤ d−1

and fd ∈ S2 so that ϕ(fi) = Xi for 1 ≤ i ≤ d − 1 and ϕ(fd) = X2
d . Let zi ∈ I2 for

1 ≤ i ≤ d − 1 and zd ∈ I3 such that {fi}1≤i≤d−1 and fd are, respectively, the images

of {zit}1≤i≤d−1 and zdt
2 in S. We now consider the relations Xif1 = X1fi in S for

1 ≤ i ≤ d − 1 and X2
df1 = X1fd, that is

biz1 − b1zi ∈ Q2I

for 1 ≤ i ≤ d − 1 and

b2
dz1 − b1zd ∈ Q3I.

Notice that

Q3 = b1Q
2 + (b2, b3, · · · , bd−1)

2·(b2, b3, · · · , bd) + b2
dQ



and write

b2
dz1 − b1zd = b1τ1 + τ2 + b2

dτ3

with τ1 ∈ Q2I, τ2 ∈ (b2, b3, · · · , bd−1)
2·(b2, b3, · · · , bd)I, and τ3 ∈ QI. Then

b2
d(z1 − τ3) = b1(τ1 + zd) + τ2 ∈ (b1) + (b2, b3, · · · , bd−1)

2.

Hence z1−τ3 ∈ (b1)+(b2, b3, · · · , bd−1)
2, because the sequence b1, b2, · · · , bd is A-regular.

Let z1 − τ3 = b1h + h′ with h ∈ A and h′ ∈ (b2, b3, · · · , bd−1)
2. Then since

b1[b
2
dh − (τ1 + zd)] = τ2 − b2

dh
′ ∈ (b2, b3, · · · , bd)

3,

we have b2
dh − (τ1 + zd) ∈ (b2, b3, · · · , bd)

3, whence b2
dh ∈ I3.

We need the following.

Claim. h �∈ I but h ∈ Ĩ. Hence Ĩ �= I.

Proof. If h ∈ I, then b1h ∈ QI, so that z1 = b1h + h′ + τ3 ∈ QI, whence f1 = 0 in S

(cf. Lemma 2.1 (2)), which is impossible. Let 1 ≤ i ≤ d − 1. Then

biz1 − b1zi = bi(b1h + h′ + τ3) − b1zi = b1(bih − zi) + bi(h
′ + τ3) ∈ Q2I.

Therefore, because bi(h
′ + τ3) ∈ Q2I, we get

b1(bih − zi) ∈ (b1) ∩ Q2I.

Notice that

(b1) ∩ Q2I = (b1) ∩ [b1QI + (b2, b3, · · · , bd)
2I]

= b1QI + [(b1) ∩ (b2, b3, · · · , bd)
2I]

= b1QI + b1(b2, b3, · · · , bd)
2

= b1QI

and we have bih − zi ∈ QI, whence bih ∈ I2 for 1 ≤ i ≤ d − 1. Consequently b2
i h ∈ I3

for all 1 ≤ i ≤ d, so that h ∈ Ĩ, whence Ĩ �= I. �

Because �A(Ĩ/I) ≥ 1, we have

e1 = e0 − �A(A/I) + 1

= e0(Ĩ) − �A(A/Ĩ) + [1 − �A(Ĩ/I)]

≤ e0(Ĩ) − �A(A/Ĩ)

≤ e1(Ĩ)

= e1,



where e0(Ĩ)−�A(A/Ĩ) ≤ e1(Ĩ) is the inequality of Northcott for the ideal Ĩ (cf. Corollary

2.3). Hence �A(Ĩ/I) = 1 and e1(Ĩ) = e0(Ĩ) − �A(A/Ĩ), so that

Ĩ = I + (h) and Ĩ2 = QĨ

by Corollary 2.3 (recall that Q is a reduction of Ĩ also). We then have, thanks to [4,

Corollary 3.1], that I3 = QI2, which is a required contradiction. This completes the

proof of Theorem 1.1 and that of Theorem 3.1 as well. �

4. An example

Lastly we construct one example which satisfies condition (3) in Theorem 1.1. Our

goal is the following. See [2, Section 5] for the detailed proofs.

Theorem 4.1. Let 0 < c ≤ d be integers. Then there exists an m-primary ideal I in a

Cohen-Macaulay local ring (A, m) such that

d = dim A, e1(I) = e0(I) − �A(A/I) + 1, and c = �A(I2/QI)

for some reduction Q = (a1, a2, · · · , ad) of I.

To construct necessary examples we may assume that c = d.

Let m, d > 0 be integers. Let

U = k[{Xj}1≤j≤m, Y, {Vi}1≤i≤d, {Zi}1≤i≤d]

be the polynomial ring with m + 2d + 1 indeterminates over an infinite field k and let

a = [(Xj | 1 ≤ j ≤ m) + (Y )]·[(Xj | 1 ≤ j ≤ m) + (Y ) + (Vi | 1 ≤ i ≤ d)]

+(ViVj | 1 ≤ i, j ≤ d, i �= j) + (V 2
i − ZiY | 1 ≤ i ≤ d).

We put C = U/a and denote the images of Xj, Y , Vi, and Zi in C by xj , y, vi, and ai,

respectively. Then dim C = d, since
√

a = (Xj | 1 ≤ j ≤ m) + (Y ) + (Vi | 1 ≤ i ≤ d).

Let M = C+ := (xj | 1 ≤ j ≤ m) + (y) + (vi | 1 ≤ i ≤ d) + (ai | 1 ≤ i ≤ d) be the

graded maximal ideal in C. Let Λ be a subset of {1, 2, · · · , m}. We put

J = (ai | 1 ≤ i ≤ d) + (xα | α ∈ Λ) + (vi | 1 ≤ i ≤ d) and q = (ai | 1 ≤ i ≤ d).

Then M2 = qM , J2 = qJ + qy, and J3 = qJ2, whence q is a reduction of both M and

J , and a1, a2, · · · , ad is a homogeneous system of parameters for the graded ring C.

Let A = CM , I = JA, and Q = qA. We are now interested in the Hilbert coefficients

e′is of the ideal I as well as the structure of the associated graded ring and the Sally

module of I. We then have the following, which shows that the ideal I is a required

example.



Theorem 4.2. The following assertions hold true.

(1) A is a Cohen-Macaulay local ring with dim A = d.

(2) S ∼= B+ as graded T -modules, whence �A(I2/QI) = d.

(3) e0(I) = m + d + 2 and e1(I) = �Λ + d + 1.

(4) ei(I) = 0 for all 2 ≤ i ≤ d.

(5) G is a Buchsbaum ring with depth G = 0 and I(G) = d.

Proof. See [2, Theorem 5.2] �
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