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1. INTRODUCTION

This is a joint work with Y. Kinoshita, Kensuke Sakata and Ryuta Shinya.

Let @, I and J be ideals of a commutative ring A such that Q C I C J. As is noted
in [1, 2.6], if J/I is cyclic as an A-module and J? = Q.J, then we have I? = QI*. The
purpose of this report is to generalize this fact. We will show that if .J/I is generated by
v elements as an A-module and J? = QJ, then "2 = QI"™. We get this result as a
corollary of the following theorem, which generalizes Rossi’s assertion stated in the proof
of [7, 1.3].

Theorem 1.1. Let A be a commutative ring and {F,},>o a family of ideals in A such
that Fy = A, IF,, C F, for anyn > 0, and I**' C QF}, + aF},, for some k > 0 and an
ideal a in A. Suppose that F,/(QF, 1 + I") is generated by v, elements for any n > 0
and v, =0 forn>0. We putv=">_ _,v,. Then we have

[’u+k+1 — QIU+/€ + a1v+k+1 )

If a family {F}, },,>o of ideals in A satisfies all of the conditions required in 1.1 in the case
where a = (0), we have F,, = QF,_; for n > 0. As a typical example of such {F,},>o,
we find {INn}nZO when I contains a non-zerodivisor, where I" denotes the Ratliff-Rush
closure of I" (cf. [9]). If A is an analytically unramified local ring, then {I"},> is also an
important example, where I™ denotes the integral closure of I™. It is obvious that {J"},>¢
always satisfies the required condition on {F}},> for any ideal J with I C J C 1.

We prove 1.1 following Rossi’s argument in the proof of [7, 1.3]. However we do not
assume that A/I has finite length. And furthermore we can deduce the following corollary
which gives an upper bound on the reduction number rg(I) of I with respect to () using
numbers of gerators of certain A-modules.

Corollary 1.2. Let (A, m) be a Noetherian local ring and { F}, }n>o0 a family of ideals in A
such that Fy = A, IF, C F,,1 for anyn >0, and I**' C QF}, + mF,,, for some k > 0.
Then we have

B+ Y pa(Fa/ Qo + 1)

< 1A+ pa(FL/T) + Z pa(Fo/QF, ).

n>2

rq(1)

IN



2. PROOF OF THEOREM 1.1
In order to prove 1.1 we need the following lemma, which generalizes [4, 2.3].

Lemma 2.1. Let I, 1,, ..., Iy be finite number of ideals of A. For any 1 <n < N, we
assume that I, is generated by v, elements and

N
I-1,C Jrtl + Z Qn+lflje .
=1
Letv:=vi+wvy+---+wvy > 0. Then, for any v elements a1, as, ... ,a, in I, there exists
o€ QI"! such that

N
A1y -+ Qy — O € ﬂ (1" 2 1] .
n=1

Proof of Theorem 1.1. If v = 0, then we have F,, = I™ for any n > 0, and so
I C QF, + aFjy = QI 4+ al**! C I**!, which means I**! = QI* + al**'. Hence we
may assume v > 0. For any n > 0, let us take an ideal I,, generated by v, elements so
that F,, = QF,,_1 + I" 4+ I,,. We can easily show that

(#) F,=1"+> Q"I
o

for any n > 0 by induction on n. Now we choose an integer N so that N > k and I, =0
for any n > N. Then by (#) it follows that

N
I- [n g Fn+1 — In+1 + ZQTH-I—ZIZ
£=0
for any 0 < n < N. Let ay,as,...,a, be any elements of I. Then, by 2.1 there exists
o € QI""! such that

N
a1ay -y — 0 € ﬂ [I"Y L]
n=0
We put £ = ayas---a, — 0. Then by (#) we get
an — §[n+ZQn—Z 5[[ C I? _[n+ZQn—Z _[Z-i-v C otn
=0 =0

for any 0 < n < N. Now the assumption that I**! C QF}, + aF}; implies
EIFY C Q- €EFy+a-EFpyy C Q- " 4. [0HF+1
Therefore we get
A1y - -y - Tt — (5 + 0)]k+1 C le+k + vkt

Then, as the elements a;, as, . . ., a, are chosen arbitrarily from I, it follows that I?-I**! C
Q[’U+k + a[v+k+1 g [v+k+1‘ Thus we get Iu+k+1 — Q[’U+k + a]v+k+1‘



Proof of Corollary 1.2.  We put v = Y o, pa(F,/(QF,—1 + I")). We may assume
v < 00. Then, setting a = m in 1.1, it follows that I"**+1 = QI***¥ 4+ mI**5*! Hence we
get [VTFH1 = QI"** by Nakayama’s lemma, and so ro(I) < v + k. In order to prove the
second inequality, we choose k as small as possible. If £ < 1, we have
ro(I) <k +v <1+ pa(F /1) + > pa(Fu/QF, ).
n>2
So, we assume k > 2 in the rest of this proof. In this case we have
k

(1) D) <k+pa(F /1) + Y pa(Fa/ (QFucy + ) + Y pa(Fu/QF, 1)

n=2 n>k+1
If 2<n <k, then I" € QF, 1 + mF),, and so the canonical surjection

F./(QF,—1 + mF,) — F,/(QF,_1 + I" + mF,)
is not injective, which means

/LA(FH/Qanl + In) < ,U/A(Fn/Qanl) —-1.

Thus we get
k k

ZNA(Fn/QFn—I +1") < {Z pa(Fn/QF,-1)} — (k= 1).

n=2 n=2

Therefore the required inequality follows from (7).

3. COROLLARIES
In this section we collect some results deduced from 1.1 and 1.2.

Corollary 3.1. Let J be an ideal of A such that J D I and J* = QJ. If J/I is finitely
generated as an A-module, then ro(I) < pa(J/I) + 1.

Proof. We apply 1.1 setting F;,, = J" for any n > 0 and a = (0). Because I> C J? = QJ,
we may put £ = 1, and hence we get I""? = QI"", where v = pa(J/I). Then ro(I) <
v+ 1.

Corollary 3.2. Let (A,m) be a two-dimensional regular local ring (or, more generally, a
two-dimensional pseudo-rational local ring) such that A/m is infinite. If I is an m-primary
ideal with a minimal reduction Q, then rg(I) < pa(I/I)+ 1.

Proof. This follows from 3.1 since (1)? = QT by [5, 5.1] (or [6, 5.4]).

Corollary 3.3. Let p be a prime ideal of A with htp =g > 2. Let Q = (a1, as,...,a,)
be an ideal generated by a regular sequence contained in the k-th symbolic power p*) of
p for some k > 2. Then we have 1o(I) < pua((Q : p*)/Q) + 1 for any ideal I with
QCICQ:p®, if one of the following three conditions holds ; (i) A, is not a regular
local ring, (i) A, is a regular local ring and g > 3, (iii) A, is a regular local ring, g = 2,
and a; € p*Y for any 1 <i < g.



Proof. This follows from 3.1 since (Q : p*)? = Q(Q : p®) by [10, 3.1].

Corollary 3.4. Let (A,m) be a Buchsbaum local ring. Assume that the multiplicity of A
with respect to m is 2 and depth A > 0. Then, for any parameter ideal () in A and an
ideal I with Q C 1 C Q :m, we have ro(I) < pa((Q :m)/Q) + 1.

Proof. This follows from 3.1 since (@ : m)? = Q(Q : m) by [3, 1.1].

In order to state the last corollary, let us recall the definition of Hilbert coefficients. Let
(A,m) be a d-dimensional Noetherian local ring and I an m-primary ideal. Then there
exists a family { e;(I) }o<;<q of integers such that

d :
nily i n+d—1
e =3 e (M)
for n > 0. We call ¢;(I) the i-th Hilbert coefficient of I. On the other hand, if A is an
analytically unramified local ring, then { 1" },>¢ is a Hilbert filtration (cf. [2]), and so
there exists a family {€;(/) }o<i<q of integers such that

Ca(AJTHT) = Ed: (—1) 5,(I) (n;i_ Z)

i=0
for n > 0. As is proved in [7, 1.5], if A is a two-dimensional Cohen-Macaulay local ring,
then we have

ro(f) <ey(I) —eo(I)+la(A/T)+1
for any minimal reduction @) of I. We can generalize this result as follows.

Corollary 3.5. Let (A,m) be a two-dimensional Cohen-Macaulay local ring with infinite
residue field and I an m-primary ideal with a minimal reduction Q. Then we have the
following inequalities.

(1) ro(I) < e (J) —eo(J) + Ls( A/T) + 1 for any ideal J such that I C J C 1.

(2) ro(I) <& (L) —€(I) +La(A/T) + 1, if A is analytically unramified.

Proof. (1) Setting F,, = J" for any n > 0 in 1.2, we get
to(T) < T pa(d/I)+ Y ualJ"/QI"Y)

< 1+€A(j/f)+Z€A(3v”/Qﬁ/l)
= > (I QIMY) — (a(1/Q) +1.

Because e1(J) = 3,5, a(J7/QJ"=1) by [2, 1.10] and
Ca(1/Q) =La(A/Q) — La(A/T) = eo(J) — La(A/T),

the required inequality follows.



(2) Similarly as the proof of (1), setting F,, = I" for any n > 0 in 1.2, we get
(1) <Y a(T/QIT) — £4(1/Q) +1.
n>1
Because the depth of the associated graded ring of the filtration {f_"}nzo is positive, we
have & (I) = -, CA(T"/QI™1) by [2, 1.9]. Hence we get the required inequality as
CA(T/Q) =¢8y(I) —la(A/T).

4. EXAMPLE

In this section we give an example which shows that the maximum value stated in 3.1
can be reached. It provides an example in the case where dim A/I > 0.

Example 4.1. Let n > 3 be an integer and S = k[Xy, X1, ..., X,] be the polynomial ring
with n + 1 variables over a field k. Let A = S/a, where a is the ideal of S generated by
the mazimal minors of the matrizc

( Xo Xp -0 Xn )

X, X, - X, :

We denote the image of X; in A by x; for 0 < ¢ < n. It is well known that A

15 a two-dimensional Cohen-Macaulay graded ring with the graded mazimal ideal m =

(o, T1y vy Tp)-

(1) Let I = (wg,21,7,) and Q = (vg,xy,). Then we have m* = Qm, pa(m/I) =n — 2,
andro(l) =n—1.

(2) Let I = (xp, 21,20 1), J = (X0, T1,...,2n 1), and Q = (29, T, 1). Then we have
dimA/T =1, J* =QJ, pua(J/I) =n—3, and ro(I) =n — 2.

Proof. (1) Let 0<i<j<mn. Ifi=0orj=n,then z;z; € Qm. On the other hand, if
t > 0 and j < n, then the determinant of the matrix

Xi—l Xj

Xi X
is contained in a, and so z;x; = x; 12;41. Hence we can show that z;z; € Qm for
any 0 < ¢ < j < n by descending induction on j — 4. Thus we get m?> = Qm. It
is obvious that ps(m/I) = n — 2. Therefore I" = QI"™' by 3.1 (In fact, we have

n—2,,.2 n—2 3 n—3 n—4

n 1" = T Lol = .'L'Ol'ln_ *T1T2 = Tply T3 — 1‘02]}1 X1 X3 =+ =

Ty
To" 2 Ty = X" 2 Loy, = 1™ty € Q" C QI™Y). In order to prove ro(f) =n—1,

we show 2,"~! & QI"2. For that purpose we use the isomorphism
g A— E[{ 5"t ocicn]

of k-algebras such that p(z;) = s"~ for 0 < i < n, where s and t are indeterminates.
We have to show o(z1)" ™" & ©(Q)p(I)" . Because p(I) = (s",s" 't,1"), we get

gO(I)é C ({San—ﬁt(f—a)n"‘ﬂ | 0<a</, Oéﬁéa})



for any ¢ > 1 by induction on ¢, and so
P(Q)p(I)" 2 C ({ s Filn=2mntd [gean=fyn=l=antf | g <o <n—2,0<f<a}).

Therefore, if o(z,)""" = (s"1t)"~1 = s(=D’¢=1 ¢ u(Q)p(I)"?, one of the following two
cases

i) (a+1)n—0B<(n—1)%and (n—2—a)n+HB<n-—1,or

i) an—p<(n—1)?and (n—1—-—an+3<n-1
must occur for some a and § with 0 < a <n—2 and 0 < # < a. Suppose that the case
(i) occured. Then we have

(a+1)n—p<(n—1)n—(n—1)and (n—2—a)n<n-—1- 4.
As the first inequality implies
n—1-pg<(n—-1)n—(a+1)n=(n—-2—a)n,
it follows that
n—1—-08=mn-1n—(a+1)n,
and so
an—fB=n>—3n+1.
Then, as an > n? —3n = (n — 3)n, we have n — 3 < a < n — 2, which implies a = n — 2.
Thus we get
(n—2n—B=n*-3n+1,

and so # = n — 1, which contradicts to f < a. Therefore the case (ii) must occur. Then
we have

an—fF<(n—=1)n—(n—-1)and (n—1—-ajn<n-1-7.
As the first inequality implies
n—1-g<(n—-1n—an=Mn-1-a)n,
it follows that
n—1-03=(Mn-1)n—an,
and so
an—fB=n>—2n+1.

Then, as an > n?> — 2n = (n — 2)n, we get a > n — 2, which contradicts to a < n — 2.
Thus we have seen that z;"~' ¢ QI"2.

(2) Let b = (X, X1,...,X,-1)S. Then a C b, and so b is the kernel of the canonical
surjection S — A/J. Hence A/J = k[ X,, |, which implies dim A/J = 1. Let 0 < i <
j<n-—1.Ifi=0o0rj=mn-—1,then z;2; € @J. On the other hand, if i« > 0 and j < n,
then z;x; = x;_1x;41. Hence we can show that z;2; € QJ for any 0 <7 < j <n—1by
descending induction on j —4. Thus we get J? = Q.J. It is obvious that p(J/I) = n—3.



Therefore 1"~ = QI" 2 by 3.1. This means dim A/I = dim A/Q = dimA/J = 1. In
order to prove ro(I) = n — 2, we show 21" 2 ¢ QI" 3. For that purpose we use again
the isomorphism ¢ stated in the proof of (1). Although we have to prove p(z;)""> ¢
o(Q)p(I)**, it is enough to show

(") & (57, st (s7, st st T3
where B = kls, t|. Because
(s" )2 = gn 2. (gn2g)n?
in B and
(5", st 1) (s7, 5", st B = sn2 L (snL g (snL gn 2 eyl g

we would like to show

(s 2)"2 ¢ (snL, ¢n Yy (sn L, sn 2, )R
However, it can be done by the same argument as the proof of

(")l & (5™, ) (s7, sn N, YL

and hence we have proved (2).
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