Koji Nishida (Chiba University)

1. Introduction

This is a joint work with Y. Kinoshita, Kensuke Sakata and Ryuta Shinya.

Let Q, I and J be ideals of a commutative ring A such that $Q \subseteq I \subseteq J$. As is noted in [1, 2.6], if J/I is cyclic as an A-module and $J^2 = QJ$, then we have $I^3 = QI^2$. The purpose of this report is to generalize this fact. We will show that if J/I is generated by v elements as an A-module and $J^2 = QJ$, then $I^{v+2} = QI^{v+1}$. We get this result as a corollary of the following theorem, which generalizes Rossi's assertion stated in the proof of [7, 1.3].

Theorem 1.1. Let A be a commutative ring and $\{F_n\}_{n\geq 0}$ a family of ideals in A such that $F_0=A$, $IF_n\subseteq F_{n+1}$ for any $n\geq 0$, and $I^{k+1}\subseteq QF_k+\mathfrak{a}F_{k+1}$ for some $k\geq 0$ and an ideal \mathfrak{a} in A. Suppose that $F_n/(QF_{n-1}+I^n)$ is generated by v_n elements for any $n\geq 0$ and $v_n=0$ for $n\gg 0$. We put $v=\sum_{n\geq 0}v_n$. Then we have

$$I^{v+k+1} = QI^{v+k} + \mathfrak{a}I^{v+k+1}$$
.

If a family $\{F_n\}_{n\geq 0}$ of ideals in A satisfies all of the conditions required in 1.1 in the case where $\mathfrak{a}=(0)$, we have $F_n=QF_{n-1}$ for $n\gg 0$. As a typical example of such $\{F_n\}_{n\geq 0}$, we find $\{\widetilde{I}^n\}_{n\geq 0}$ when I contains a non-zerodivisor, where \widetilde{I}^n denotes the Ratliff-Rush closure of I^n (cf. [9]). If A is an analytically unramified local ring, then $\{\overline{I}^n\}_{n\geq 0}$ is also an important example, where \overline{I}^n denotes the integral closure of I^n . It is obvious that $\{J^n\}_{n\geq 0}$ always satisfies the required condition on $\{F_n\}_{n>0}$ for any ideal J with $I\subseteq J\subseteq \overline{I}$.

We prove 1.1 following Rossi's argument in the proof of [7, 1.3]. However we do not assume that A/I has finite length. And furthermore we can deduce the following corollary which gives an upper bound on the reduction number $r_Q(I)$ of I with respect to Q using numbers of gerators of certain A-modules.

Corollary 1.2. Let (A, \mathfrak{m}) be a Noetherian local ring and $\{F_n\}_{n\geq 0}$ a family of ideals in A such that $F_0 = A$, $IF_n \subseteq F_{n+1}$ for any $n \geq 0$, and $I^{k+1} \subseteq QF_k + \mathfrak{m}F_{k+1}$ for some $k \geq 0$. Then we have

$$r_Q(I) \le k + \sum_{n \ge 1} \mu_A(F_n/(QF_{n-1} + I^n))$$

 $\le 1 + \mu_A(F_1/I) + \sum_{n \ge 2} \mu_A(F_n/QF_{n-1}).$

2. Proof of Theorem 1.1

In order to prove 1.1 we need the following lemma, which generalizes [4, 2.3].

Lemma 2.1. Let I_1, I_2, \ldots, I_N be finite number of ideals of A. For any $1 \le n \le N$, we assume that I_n is generated by v_n elements and

$$I \cdot I_n \subseteq I^{n+1} + \sum_{\ell=1}^N Q^{n+1-\ell} I_\ell.$$

Let $v := v_1 + v_2 + \cdots + v_N > 0$. Then, for any v elements a_1, a_2, \ldots, a_v in I, there exists $\sigma \in QI^{v-1}$ such that

$$a_1 a_2 \cdots a_v - \sigma \in \bigcap_{n=1}^N [I^{n+v} : I_n].$$

Proof of Theorem 1.1. If v=0, then we have $F_n=I^n$ for any $n\geq 0$, and so $I^{k+1}\subseteq QF_k+\mathfrak{a}F_{k+1}=QI^k+\mathfrak{a}I^{k+1}\subseteq I^{k+1}$, which means $I^{k+1}=QI^k+\mathfrak{a}I^{k+1}$. Hence we may assume v>0. For any $n\geq 0$, let us take an ideal I_n generated by v_n elements so that $F_n=QF_{n-1}+I^n+I_n$. We can easily show that

$$(\#) F_n = I^n + \sum_{\ell=0}^n Q^{n-\ell} I_\ell$$

for any $n \ge 0$ by induction on n. Now we choose an integer N so that N > k and $I_n = 0$ for any n > N. Then by (#) it follows that

$$I \cdot I_n \subseteq F_{n+1} = I^{n+1} + \sum_{\ell=0}^{N} Q^{n+1-\ell} I_{\ell}$$

for any $0 \le n \le N$. Let a_1, a_2, \ldots, a_v be any elements of I. Then, by 2.1 there exists $\sigma \in QI^{v-1}$ such that

$$a_1 a_2 \cdots a_v - \sigma \in \bigcap_{n=0}^N [I^{n+v} : I_n].$$

We put $\xi = a_1 a_2 \cdots a_v - \sigma$. Then by (#) we get

$$\xi F_n = \xi I^n + \sum_{\ell=0}^n Q^{n-\ell} \cdot \xi I_\ell \subseteq I^v \cdot I^n + \sum_{\ell=0}^n Q^{n-\ell} \cdot I^{\ell+v} \subseteq I^{v+n}$$

for any $0 \le n \le N$. Now the assumption that $I^{k+1} \subseteq QF_k + \mathfrak{a}F_{k+1}$ implies

$$\xi I^{k+1} \subseteq Q \cdot \xi F_k + \mathfrak{a} \cdot \xi F_{k+1} \subseteq Q \cdot I^{v+k} + \mathfrak{a} \cdot I^{v+k+1}$$
.

Therefore we get

$$a_1 a_2 \cdots a_v \cdot I^{k+1} = (\xi + \sigma) I^{k+1} \subseteq Q I^{v+k} + \mathfrak{a} I^{v+k+1}.$$

Then, as the elements a_1, a_2, \ldots, a_v are chosen arbitrarily from I, it follows that $I^v \cdot I^{k+1} \subseteq QI^{v+k} + \mathfrak{a}I^{v+k+1} \subseteq I^{v+k+1}$. Thus we get $I^{v+k+1} = QI^{v+k} + \mathfrak{a}I^{v+k+1}$.

Proof of Corollary 1.2. We put $v = \sum_{n \geq 1} \mu_A(F_n/(QF_{n-1} + I^n))$. We may assume $v < \infty$. Then, setting $\mathfrak{a} = \mathfrak{m}$ in 1.1, it follows that $I^{v+k+1} = QI^{v+k} + \mathfrak{m}I^{v+k+1}$. Hence we get $I^{v+k+1} = QI^{v+k}$ by Nakayama's lemma, and so $r_Q(I) \leq v + k$. In order to prove the second inequality, we choose k as small as possible. If $k \leq 1$, we have

$$r_Q(I) \le k + v \le 1 + \mu_A(F_1/I) + \sum_{n>2} \mu_A(F_n/QF_{n-1}).$$

So, we assume $k \geq 2$ in the rest of this proof. In this case we have

$$(\natural) \qquad r_Q(I) \le k + \mu_A(F_1/I) + \sum_{n=2}^k \mu_A(F_n/(QF_{n-1} + I^n)) + \sum_{n>k+1} \mu_A(F_n/QF_{n-1}).$$

If $2 \leq n \leq k$, then $I^n \not\subseteq QF_{n-1} + \mathfrak{m}F_n$, and so the canonical surjection

$$F_n/(QF_{n-1}+\mathfrak{m}F_n)\longrightarrow F_n/(QF_{n-1}+I^n+\mathfrak{m}F_n)$$

is not injective, which means

$$\mu_A(F_n/QF_{n-1}+I^n) \le \mu_A(F_n/QF_{n-1})-1$$
.

Thus we get

$$\sum_{n=2}^{k} \mu_A(F_n/QF_{n-1} + I^n) \le \{\sum_{n=2}^{k} \mu_A(F_n/QF_{n-1})\} - (k-1).$$

Therefore the required inequality follows from (\sharp) .

3. Corollaries

In this section we collect some results deduced from 1.1 and 1.2.

Corollary 3.1. Let J be an ideal of A such that $J \supseteq I$ and $J^2 = QJ$. If J/I is finitely generated as an A-module, then $r_Q(I) \le \mu_A(J/I) + 1$.

Proof. We apply 1.1 setting $F_n = J^n$ for any $n \ge 0$ and $\mathfrak{a} = (0)$. Because $I^2 \subseteq J^2 = QJ$, we may put k = 1, and hence we get $I^{v+2} = QI^{v+1}$, where $v = \mu_A(J/I)$. Then $r_Q(I) \le v + 1$.

Corollary 3.2. Let (A, \mathfrak{m}) be a two-dimensional regular local ring (or, more generally, a two-dimensional pseudo-rational local ring) such that A/\mathfrak{m} is infinite. If I is an \mathfrak{m} -primary ideal with a minimal reduction Q, then $r_Q(I) \leq \mu_A(\overline{I}/I) + 1$.

Proof. This follows from 3.1 since $(\overline{I})^2 = Q\overline{I}$ by [5, 5.1] (or [6, 5.4]).

Corollary 3.3. Let \mathfrak{p} be a prime ideal of A with $\operatorname{ht} \mathfrak{p} = g \geq 2$. Let $Q = (a_1, a_2, \ldots, a_g)$ be an ideal generated by a regular sequence contained in the k-th symbolic power $\mathfrak{p}^{(k)}$ of \mathfrak{p} for some $k \geq 2$. Then we have $\operatorname{r}_Q(I) \leq \mu_A((Q : \mathfrak{p}^{(k)})/Q) + 1$ for any ideal I with $Q \subseteq I \subseteq Q : \mathfrak{p}^{(k)}$, if one of the following three conditions holds; (i) $A_{\mathfrak{p}}$ is not a regular local ring, (ii) $A_{\mathfrak{p}}$ is a regular local ring and $g \geq 3$, (iii) $A_{\mathfrak{p}}$ is a regular local ring, g = 2, and $a_i \in \mathfrak{p}^{(k+1)}$ for any $1 \leq i \leq g$.

Proof. This follows from 3.1 since $(Q:\mathfrak{p}^{(k)})^2 = Q(Q:\mathfrak{p}^{(k)})$ by [10, 3.1].

Corollary 3.4. Let (A, \mathfrak{m}) be a Buchsbaum local ring. Assume that the multiplicity of A with respect to \mathfrak{m} is 2 and depth A > 0. Then, for any parameter ideal Q in A and an ideal I with $Q \subseteq I \subseteq Q : \mathfrak{m}$, we have $r_Q(I) \leq \mu_A((Q : \mathfrak{m})/Q) + 1$.

Proof. This follows from 3.1 since $(Q : \mathfrak{m})^2 = Q(Q : \mathfrak{m})$ by [3, 1.1].

In order to state the last corollary, let us recall the definition of Hilbert coefficients. Let (A, \mathfrak{m}) be a d-dimensional Noetherian local ring and I an \mathfrak{m} -primary ideal. Then there exists a family $\{e_i(I)\}_{0 \le i \le d}$ of integers such that

$$\ell_A(A/I^{n+1}) = \sum_{i=0}^d (-1)^i e_i(I) \binom{n+d-i}{d-i}$$

for $n \gg 0$. We call $e_i(I)$ the *i*-th Hilbert coefficient of I. On the other hand, if A is an analytically unramified local ring, then $\{\overline{I^n}\}_{n\geq 0}$ is a Hilbert filtration (cf. [2]), and so there exists a family $\{\overline{e}_i(I)\}_{0\leq i\leq d}$ of integers such that

$$\ell_A(A/\overline{I^{n+1}}) = \sum_{i=0}^d (-1)^i \,\overline{e}_i(I) \, \binom{n+d-i}{d-i}$$

for $n \gg 0$. As is proved in [7, 1.5], if A is a two-dimensional Cohen-Macaulay local ring, then we have

$$r_Q(I) \le e_1(I) - e_0(I) + \ell_A(A/I) + 1$$

for any minimal reduction Q of I. We can generalize this result as follows.

Corollary 3.5. Let (A, \mathfrak{m}) be a two-dimensional Cohen-Macaulay local ring with infinite residue field and I an \mathfrak{m} -primary ideal with a minimal reduction Q. Then we have the following inequalities.

- (1) $r_Q(I) \le e_1(J) e_0(J) + \ell_A(A/I) + 1$ for any ideal J such that $I \subseteq J \subseteq \overline{I}$.
- (2) $r_Q(I) \leq \overline{e}_1(I) \overline{e}_0(I) + \ell_A(A/I) + 1$, if A is analytically unramified.

Proof. (1) Setting $F_n = \widetilde{J}^n$ for any $n \ge 0$ in 1.2, we get

$$\begin{aligned} \mathbf{r}_Q(I) &\leq & 1 + \mu_A(\widetilde{J}/I) + \sum_{n \geq 2} \mu_A(\widetilde{J}^n/Q\widetilde{J}^{n-1}) \\ &\leq & 1 + \ell_A(\widetilde{J}/I) + \sum_{n \geq 2} \ell_A(\widetilde{J}^n/Q\widetilde{J}^{n-1}) \\ &= & \sum_{n \geq 1} \ell_A(\widetilde{J}^n/Q\widetilde{J}^{n-1}) - \ell_A(I/Q) + 1. \end{aligned}$$

Because $e_1(J) = \sum_{n \geq 1} \ell_A(\widetilde{J^n}/Q\widetilde{J^{n-1}})$ by [2, 1.10] and $\ell_A(I/Q) = \ell_A(A/Q) - \ell_A(A/I) = e_0(J) - \ell_A(A/I).$

the required inequality follows.

(2) Similarly as the proof of (1), setting $F_n = \overline{I^n}$ for any $n \ge 0$ in 1.2, we get

$$r_Q(I) \le \sum_{n>1} \ell_A(\overline{I^n}/Q\overline{I^{n-1}}) - \ell_A(I/Q) + 1.$$

Because the depth of the associated graded ring of the filtration $\{\overline{I^n}\}_{n\geq 0}$ is positive, we have $\overline{e}_1(I) = \sum_{n\geq 1} \ell_A(\overline{I^n}/Q\overline{I^{n-1}})$ by [2, 1.9]. Hence we get the required inequality as $\ell_A(I/Q) = \overline{e}_0(I) - \ell_A(A/I)$.

4. Example

In this section we give an example which shows that the maximum value stated in 3.1 can be reached. It provides an example in the case where $\dim A/I > 0$.

Example 4.1. Let $n \geq 3$ be an integer and $S = k[X_0, X_1, \ldots, X_n]$ be the polynomial ring with n + 1 variables over a field k. Let $A = S/\mathfrak{a}$, where \mathfrak{a} is the ideal of S generated by the maximal minors of the matrix

$$\left(\begin{array}{ccc} X_0 & X_1 & \cdots & X_{n-1} \\ X_1 & X_2 & \cdots & X_n \end{array}\right).$$

We denote the image of X_i in A by x_i for $0 \le i \le n$. It is well known that A is a two-dimensional Cohen-Macaulay graded ring with the graded maximal ideal $\mathfrak{m} = (x_0, x_1, \ldots, x_n)$.

- (1) Let $I = (x_0, x_1, x_n)$ and $Q = (x_0, x_n)$. Then we have $\mathfrak{m}^2 = Q\mathfrak{m}$, $\mu_A(\mathfrak{m}/I) = n 2$, and $r_Q(I) = n 1$.
- (2) Let $I = (x_0, x_1, x_{n-1})$, $J = (x_0, x_1, \dots, x_{n-1})$, and $Q = (x_0, x_{n-1})$. Then we have $\dim A/I = 1$, $J^2 = QJ$, $\mu_A(J/I) = n 3$, and $\mathbf{r}_Q(I) = n 2$.

Proof. (1) Let $0 \le i \le j \le n$. If i = 0 or j = n, then $x_i x_j \in Q\mathfrak{m}$. On the other hand, if i > 0 and j < n, then the determinant of the matrix

$$\left(\begin{array}{cc} X_{i-1} & X_j \\ X_i & X_{j+1} \end{array}\right)$$

is contained in \mathfrak{a} , and so $x_ix_j=x_{i-1}x_{j+1}$. Hence we can show that $x_ix_j\in Q\mathfrak{m}$ for any $0\leq i\leq j\leq n$ by descending induction on j-i. Thus we get $\mathfrak{m}^2=Q\mathfrak{m}$. It is obvious that $\mu_A(\mathfrak{m}/I)=n-2$. Therefore $I^n=QI^{n-1}$ by 3.1 (In fact, we have $x_1^n=x_1^{n-2}\cdot x_1^2=x_1^{n-2}\cdot x_0x_2=x_0x_1^{n-3}\cdot x_1x_2=x_0x_1^{n-3}\cdot x_0x_3=x_0^2x_1^{n-4}\cdot x_1x_3=\cdots=x_0^{n-2}\cdot x_1x_{n-1}=x_0^{n-2}\cdot x_0x_n=x_0^{n-1}x_n\in Q^n\subseteq QI^{n-1}$). In order to prove $\mathbf{r}_Q(I)=n-1$, we show $x_1^{n-1}\not\in QI^{n-2}$. For that purpose we use the isomorphism

$$\varphi: A \longrightarrow k[\{s^{n-i}t^i\}_{0 \le i \le n}]$$

of k-algebras such that $\varphi(x_i) = s^{n-i}t^i$ for $0 \le i \le n$, where s and t are indeterminates. We have to show $\varphi(x_1)^{n-1} \notin \varphi(Q)\varphi(I)^{n-2}$. Because $\varphi(I) = (s^n, s^{n-1}t, t^n)$, we get

$$\varphi(I)^{\ell} \subseteq (\{s^{\alpha n - \beta}t^{(\ell - \alpha)n + \beta} \mid 0 \le \alpha \le \ell, 0 \le \beta \le \alpha\})$$

for any $\ell \geq 1$ by induction on ℓ , and so

$$\varphi(Q)\varphi(I)^{n-2} \subseteq \left(\left\{s^{(\alpha+1)n-\beta}t^{(n-2-\alpha)n+\beta}, s^{\alpha n-\beta}t^{(n-1-\alpha)n+\beta} \mid 0 \le \alpha \le n-2, 0 \le \beta \le \alpha\right\}\right).$$

Therefore, if $\varphi(x_1)^{n-1} = (s^{n-1}t)^{n-1} = s^{(n-1)^2}t^{n-1} \in \varphi(Q)\varphi(I)^{n-2}$, one of the following two cases

(i)
$$(\alpha + 1)n - \beta \le (n - 1)^2$$
 and $(n - 2 - \alpha)n + \beta \le n - 1$, or

(ii)
$$\alpha n - \beta \le (n-1)^2$$
 and $(n-1-\alpha)n + \beta \le n-1$

must occur for some α and β with $0 \le \alpha \le n-2$ and $0 \le \beta \le \alpha$. Suppose that the case (i) occured. Then we have

$$(\alpha + 1)n - \beta \le (n - 1)n - (n - 1)$$
 and $(n - 2 - \alpha)n \le n - 1 - \beta$.

As the first inequality implies

$$n-1-\beta \le (n-1)n - (\alpha+1)n = (n-2-\alpha)n$$
,

it follows that

$$n-1-\beta = (n-1)n - (\alpha + 1)n$$
,

and so

$$\alpha n - \beta = n^2 - 3n + 1.$$

Then, as $\alpha n > n^2 - 3n = (n-3)n$, we have $n-3 < \alpha \le n-2$, which implies $\alpha = n-2$. Thus we get

$$(n-2)n - \beta = n^2 - 3n + 1,$$

and so $\beta = n - 1$, which contradicts to $\beta \leq \alpha$. Therefore the case (ii) must occur. Then we have

$$\alpha n - \beta \le (n-1)n - (n-1)$$
 and $(n-1-\alpha)n \le n-1-\beta$.

As the first inequality implies

$$n-1-\beta \le (n-1)n - \alpha n = (n-1-\alpha)n,$$

it follows that

$$n-1-\beta=(n-1)n-\alpha n\,,$$

and so

$$\alpha n - \beta = n^2 - 2n + 1.$$

Then, as $\alpha n > n^2 - 2n = (n-2)n$, we get $\alpha > n-2$, which contradicts to $\alpha \le n-2$. Thus we have seen that $x_1^{n-1} \notin QI^{n-2}$.

(2) Let $\mathfrak{b} = (X_0, X_1, \ldots, X_{n-1})S$. Then $\mathfrak{a} \subseteq \mathfrak{b}$, and so \mathfrak{b} is the kernel of the canonical surjection $S \longrightarrow A/J$. Hence $A/J \cong k[X_n]$, which implies dim A/J = 1. Let $0 \le i \le j \le n-1$. If i=0 or j=n-1, then $x_ix_j \in QJ$. On the other hand, if i>0 and j< n, then $x_ix_j = x_{i-1}x_{j+1}$. Hence we can show that $x_ix_j \in QJ$ for any $0 \le i \le j \le n-1$ by descending induction on j-i. Thus we get $J^2 = QJ$. It is obvious that $\mu_A(J/I) = n-3$.

Therefore $I^{n-1}=QI^{n-2}$ by 3.1. This means $\dim A/I=\dim A/Q=\dim A/J=1$. In order to prove $\mathbf{r}_Q(I)=n-2$, we show $x_1^{n-2}\not\in QI^{n-3}$. For that purpose we use again the isomorphism φ stated in the proof of (1). Although we have to prove $\varphi(x_1)^{n-2}\not\in \varphi(Q)\varphi(I)^{n-3}$, it is enough to show

$$(s^{n-1}t)^{n-2} \not\in (s^n, st^{n-1})(s^n, s^{n-1}t, st^{n-1})^{n-3}B$$

where B = k[s, t]. Because

$$(s^{n-1}t)^{n-2} = s^{n-2} \cdot (s^{n-2}t)^{n-2}$$

in B and

$$(s^{n}, st^{n-1})(s^{n}, s^{n-1}t, st^{n-1})^{n-3}B = s^{n-2} \cdot (s^{n-1}, t^{n-1})(s^{n-1}, s^{n-2}t, t^{n-1})^{n-3}B,$$

we would like to show

$$(s^{n-2}t)^{n-2} \not\in (s^{n-1}, t^{n-1})(s^{n-1}, s^{n-2}t, t^{n-1})^{n-3}B$$
.

However, it can be done by the same argument as the proof of

$$(s^{n-1}t)^{n-1} \notin (s^n, t^n)(s^n, s^{n-1}t, t^n)^{n-1}$$

and hence we have proved (2).

References

- [1] S. Goto, K. Nishida and K. Ozeki, The structure of Sally modules of rank one, Preprint (2007), arXiv: math.AC/0710.1178.
- [2] A. Guerrieri and M. E. Rossi, Hilbert coefficients of Hilbert filtrations, J. Algebra, 199 (1998), 40-61.
- [3] S. Goto and H. Sakurai, The reduction exponent of socle ideals associated to parameter ideals in a Buchsbaum local ring of multiplicity two, J. Math. Soc. Japan, **56** (2004), 1157–1168.
- [4] S. Huckaba, On associated graded rings having almost maximal depth, Comm. Algebra, 26 (1998), 967–976.
- [5] C. Huneke, Complete ideals in two-dimensional regular local rings, Commutative algebra, Math. Sci. Res. Inst. Publ., 15, Springer, New York, 1989, 325–338.
- [6] J. Lipman and B. Teissier, Pseudo-rational local rings and a theorem of Briançon-Skoda about integral closure of ideals, Michigan Math. J., 28 (1981), 97–116.
- [7] M. E. Rossi, A bound on the reduction number of a primary ideal, Proc. Amer. Math. Soc., 128 (1999), 1325–1332.
- [8] J. D. Sally, On the associated graded ring of a local Cohen-Macaulay ring, J. Math. Kyoto Univ., 17 (1977), 19–21.
- [9] R. J. Ratliff and D. E. Rush, Two notes on reductions of ideals, Indiana Univ. Math. J., 27 (1978), 929–934.
- [10] H. Wang, Links of symbolic powers of prime ideals, Math. Z., 256 (2007), 749-756.