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1 Introduction

Grassmannians and their Schubert subvarieties are fascinating objects
and attract many mathematicians. The homogeneous coordinate ring
of the Grassmann variety consisting of m-dimensional subspaces in an
n-dimensional vector space over K is the subring of the polynomial ring
over K generated by maximal minors of the m x n matrix of indetermi-
nates. And the homogeneous coordinate ring of a Schubert subvariety
is generated by the universal m x n matrix with the following property
for some integers b1, b, ..., b,, with 1 < by <by < ---<b,,, < n.

(1) All the i-minors of first b; — 1 columns are zero.

If a matrix M satisfies the property (1), then Mg also satisfies (1) for
any upper triangular matrix g, so the Borel subgroup consisting of the
upper triangular matrices of the general linear group and its subgroups
act on the homogeneous coordinate ring of a Schubert subvariety of a
Grassmannian and the algebra generated by the entries of the universal
matrix with (). We study the ring of invariants of the unipotent radical
of this Borel subgroup in §3.

It is also known that there is an m X n universal matrix with condi-
tions on minors related both to rows and columns. The direct product
of Borel subgroups, consisting of lower triangular matrices and upper
triangular matrices respectively, of the direct product of general linear
groups, and its subgroups act on the algebra generated by the entries of
the matrix with universal property. We also study the ring of invariants
of the unipotent radical of this Borel subgroup.



2 Preliminaries

All rings and algebras in this note are commutative with identity ele-
ment.

Let K be an infinite field of arbitrary characteristic. For an s x ¢
matrix M = (m,;;) with entries in a K-algebra S, we denote by K[M]
the K-subalgebra of S generated by the entries of M, by I.(M) the ideal
of S generated by all r-minors of M, by M<; the s X j matrix consisting
of the first j columns of M, by M<! the ¢ x ¢t matrix consisting of the
first ¢ rows of M and by I'(M) the set of all maximal minors of M.

Let [ be a positive integer. We set

H() :={lar,a9,...,a.] |1 <a1<ay <---<a, <l,a; € Z}.
For a = [ay,a9,..., a,] € H(l), we set sizea = r. We define the order
on H(l) by

[al,...,ar] < [bl,...,bs] gTES,CLZ’SbZ‘ forz':l, 2, T

It is easy to verify that H([) is a distributive lattice.
For positive integers m and n, we set

A(m xn) :={[a|8] |« € H(m), 3 € H(n), sizea = size3}

and define the order on A(m x n) by

[alf] <[] <L o < o in H(m) and 3 < 8 in H(n).
For 0 = [ay,...,a.|b1,...,b.] € A(m x n) and an m X n matrix M =
(my;), we set Oy := det(maq,p,)i;- We also set A(m x n;d) = {y €
A(m xn)|~v>0d}.

Now we fix integers m and n with 1 < m <n. Let X be an m xn
matrix of indeterminates, that is, X = (X;;) and {X;; h<i<mi<j<n are
independent indeterminates. Then

Fact 2.1 ([DEP1]) K[X] is an algebra with straightening law (ASL
for short) over K generated by A(m X n) with structure map § — dx.

Next we fix § = [aq, ao, ..., a.|by, ba, ..., b.] € A(m X n). Since
A(m xn)\ A(m x n;d) is a poset ideal of A(m x n), we see by [DEP2,
Proposition 1.2],



Corollary 2.2
R(X;0) := K[X]/(A(m xn)\ A(m x n;0))K[X]
is an ASL over K generated by A(m X n;0).

The image X of X in R(X;J) is the universal matrix which satisfies
the condition
LX™" Y= L(Xap_1) = (0) fori=1,2....,7r+1,
where we set a,,1 =m+ 1 and b.,1 =n+ 1. That is, if M isan m xn
matrix with entries in a K-algebra S and

(%) L(M=""1 = [;(Mcy,_1) = (0) fori=1,2,...,7+1,

then there is a unique K-algebra homomorphism R(X;§) — S mapping
X to M.

3 Invariants of the unipotent radical of a
Borel subgroup of GL(n, K)

Now let G = GL(m, K)xGL(n, K), B~ the Borel subgroup of GL(m, K)
consisting of lower triangular matrices, BT the Borel subgroup of
GL(n, K) consisting of upper triangular matrices and U~ (resp. U™T)
the set of all unipotent matrices in B~ (resp. BT). If ¢y € U~ and
g2 € U*, then g;'Xg, satisfies (x). So there is an automorphism of
R(X;6) sending X to g;'Xgs. Therefore, U~ x U* acts on R(X;4).
We may also consider the action of Ut on R(X;0).

We set _ _
0 0 0
Y,1 0 0
v : : :
d Ya21 1/6122 O
Yarl Y;1r2 e Yarr
| le YmQ Ymr |



and

0 ... 0 Ty - Ty o T, o Zin ]
7 0 -+ 0 0 - Zy, -- Z?br Z?n |
0 - 0 0 - 0 e Zu, e Ziy |

where Y;; and Z;; are independent indeterminates.

Lemma 3.1

L;((YsZ5)=%"") = (0)
1i((YsZs)<p,—1) = (0)

Therefore there is_a unique K-algebra homomorphism R(X;9) —
K|Ys, Zs) mapping X to YsZs.

foro=1,...,r, r+ 1.

We introduce the lexicographic monomial order on K[Yj, Zs| induced
by Yo 1 > Yo 110> > Y > Yoo > > Y0 > Y>> Y >
iy > L1 > > Ly > Loy > - > Log > Lgpy > 00 > Lpp.

Lemma 3.2 If vy =cy,...,¢s|dy, ..., ds] is an element of A(m X n;§),
then
1m(7Y5Z(;) — chlli/VCQQ e }/CSSZIdl Z2d2 e ZSds'

proof Since

Vyszs = Z [c1, ... csler, ... eslvslens -y esldr, ..., ds)z

and

Im([c, ..., csler, ... eslvslers .- esldr, ... ds)z,)
= }/;161 to }/;seSZeldl T Zesdsa

the result follows form the definition of monomial order. 1
If n = H;;l[cﬂ, <o Cis(i) |d7;1, cey dzs(z)] is a standard monomial on
A(m x n;9) in the sense of ASL, then

u s()

m(fiy;z;) H H Yei,i45ds;- (3.1)

=1 j=1

In particular, we can reconstruct p form Im(py,z,). So



Lemma 3.3 If p and i/ are different standard monomials on A(m X
n;0), thenIm(py;z;) # Im(py, 5 ). In particular, {py;zs | p is a standard
monomial on A(m x n;6)} is linearly independent over K.

Therefore

Proposition 3.4 The K-algebra homomorphism in Lemma 3.1 s in-
jective. In particular, R(X; ) ~ K[Y;Zs].

For g € U™, we can define a K-algebra automorphism of K [Z;] which
maps Zs to Zsg. Therefore U acts on K[Zs]. As for this action we have

Lemma 3.5 K[Zs5|V" = K[Zy,, Zov,, . .., Zup,].

proof First we define the row degree on K[Zs| by deg Z;; :=e; € N".

Since the action of U™ fixes row degree, we may assume, by extending
Zs, that [by,be,...,b.] = [1,2,...,n], that is, Zs is the n X n upper
triangular matrix of indeterminates.

Let f be an arbitrary element of K[Zs]V". Since the action of U+
fixes the row degree, in order to prove that f € K[Z11, Zoa, ..., Znnl,
we may assume that f is homogeneous of row degree (di, da, ..., d,).
Write f as

di dn
e f .. (Z 7 VA 7 )Zd1—i1zd2—i2 L. Zdn—in
1192t \ 12y + + -y Hlny L4235 - - - “n—1,n)%11 29 nn

11=0 in=0

where f; ,..;, 18 a homogeneous polynomial of Zi5, Z13, ..., Z1pn, Zos,
224, cee Zgn, 234, ceey Zn—l,n of row degree (’il, ’ig, PPN Zn>

Let g = (¢i;;) be an element of U'. Since the image of Z;; by the
action of ¢ is

J
Z Zilglj (32)
=1

for 1 < j, we see that the image of f is of the following form.

di do dn

Z Z ... Z fi1i2...@'n(912, ey J1n, 923, - - - agn—l,n)Z{illZgQQ ... ZZZ

11=012=0 1, =0

+ (terms of lower degree in Z11, Zog, ..., Zun)

Since g(f) = f for any g € UT and K is an infinite field, we see that
fil,ig,...,in — O 1f (ila Z.27 o 7Zn) 7é (dla d27 cee 7dn)7



that is, f € K|[Z11, Zao, .-y Znnl-

On the contrary, it is clear form (3.2) that Z; € K[Z5]V" for i = 1,
2, ..., n. Therefore K[Z(;]U+ = K[Z11,Z59, ..., Znp). B

By symmetry, we see that U~ acts on K[Y;] and K[Y;]V =
K[Yay1,Yay2, - - Yaur).

Proposition 3.6 {[c1, ..., ¢|b1, ..., bilvsz | [c1, - ., ] € H(m;[ayg,
.., a.])} 1s a sagbi basis of

KYs, Zup,, Zoby, - - -, Zw, | N K[Y5Z5].

In particular,

r

K[Y;% Zlb17 Z2b2; SR ZTbr] N K[Y;SZCS] - K[U F(()f(;Z(;)bth ----- bi)]’

=1

where My, p,...»;, denotes the matriz consisting of by, ba, ...b;—1 and b;-th
columns of M.

proof It is clear that

[Cl, e ,Ci‘bl, .. .,bi]yézé
= [Cl,... ,Ci‘1,2,...,’i]yg[1,2,. . .,Z.|b1,...,bi]Z§
€ KlYs5, Zw,, Zovys - -5 Zep,) N K[Y5Z5].

Now suppose that f € K[Ys, Z1p,, Zobys - - - » Zrp, | N K[Y5Z5] and let
f=2 run
n

be the standard representation of f in the ASL K[Y;Zs5] ~ R(X;J).
Then by Lemma 3.3, we see that there is a unique standard monomial
i such that

I (f) = Im(gey;z)-
Since Im(uy,z,) = Im(f) € K[Ys, Zib,, Zovys - - -y Zrb), We see, by (3.1),
that M is of the form H;;l[cﬂ, ceey Cis(i)lbila ceey bls(z)] The result fol-
lows. 1
The action of U on K|[Z;] induces an action of UT on K|[Y;Z;s].

Since
K[Y;Zs)"" = K[Zs)""[Ys] N K[Y3Zs),

we see the following



Theorem 3.7

K[Y;;Z5]U+ - K[U F((Y;SZ5)51,52 ----- bz)]

And therefore,
R(X7 5)U+ - K[U F(ybl,bQ ----- bz)]

Note 3.8 If [a1, as, ..., a.] = [1, 2, ..., m], then K[['(YsZs)] is the
homogeneous coordinate ring of the Schubert subvariety.

4 Invariants of the unipotent radical of a
Borel subgroup of GL(m, K) x GL(n, K)

First we state the following
Proposition 4.1
K[}%Z(g] N KD%) Z1b17 Z2()27 I ZTbT] N K[Z57 }/11117 }/:1227 s 7}/1174’]
= K[Yall}/LLQQ e YaiiZ1b122b2 e Zzbl | Z - 17 A 7T]'

proof [t is clear that Y, 1Ya,o - Ya,iZ16, Zoby - - Ziv, = a1, - .., a;]by,

SR bi]Y525 € K[}%Z(;] N KD%; Zlbl7 Z2b27 SR ZTbT] N K[Z57 }/all) Ya227
Y fori=1,2, ... 7.

Suppose that f € K[YsZs|NK|[Ys, Z1b,, Zovys - - -, Zeb,) VK[ Zs, Ya1,

Yar2, - -+, Yo and let
f=2
n

be the standard representation of f in the ASL K[Y;Zs] ~ R(X;J).
Then there is unique standard monomial y such that Im(f) = lm(uy,z, ).

Since lm(uy,z,) = Im(f) € K[Y5Z5] 0 K[Ys, Zibys Zovyy -+ Zrb,| N
K|Zs, Ya,1, Yaso, -+, Ya.r], we wee by (3.1) that u is of the following
form. .

n = [a'17a27"'7a'i(t)‘b17b27"'7bi(t)]
t=1

So we see that

{}/vallYVaQQ o Yaiizlblzﬂ)g e Zibi | 1= 17 ce . ,T}

= {[al,...,ai\bl,...,bi]yﬂé |i=1,...,7"}



is a sagbi basis of K|[YsZs| N K|Ys, Zw,, Zovyy -+, Zep,) N K[ Zs, Ya,1,
Ya,2, - -+ Ya.r]. The result follows. B
Since

K[Y;SZ(S]U*XUJF
= K[Y5Z5|V NK[Y;Z5)Y
= K[Y5, Z1v,, Zovy, - - -+ Zys, ) 0 K[Y5Z5]
NK[Zs,Yai1, Yasa, - - -, Ya,r] N K[Y52Z;5],

J’_

We see the following
Theorem 4.2

K'[YESZ(S]U*XUJr
= K[Ya1Yao - YaiZin, Zopy - Zin, |1 =1,...,7]
= KHCL17...,CLZ"b1,...,bi]y6Z5|i:1,...,r].

And therefore,
R(X, 5)U_XU+ = K[[al,az, ce ,ai|bl,b2, . 7bl]y | 1= 1,27 Ce ,T].

In particular, it is isomorphic to the polynomial ring over K with r
variables.
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