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Abstract

Let p be a prime number. We define the notion of F -finiteness
of homomorphisms of Fp-algebras, and discuss some basic properties.
In particular, we prove a sort of descent theorem on F -finiteness of
homomorphisms of Fp-algebras. As a corollary, we prove the following.
Let g : B → C be a homomorphism of Noetherian Fp-algebras. If g is
faithfully flat reduced and C is F -finite, then B is F -finite. This is a
generalization of Seydi’s result on excellent local rings of characteristic
p.

1. Introduction

Throughout this paper, p denotes a prime number, and Fp denotes the finite
field with p elements.

The notions of Nagata (pseudo-geometric, universally Japanese) and (quasi-
)excellent rings give good frameworks to avoid pathologies which appear in
the theory of Noetherian rings, see [Nag], [Gro], and [Mat].

In commutative algebra of characteristic p, F -finiteness of rings is com-
monly used for a general assumption which guarantees the “tameness” of
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the theory, as well as Nagata and (quasi-)excellent properties. A commu-
tative ring R of characteristic p is said to be F -finite if the Frobenius map
FR : R → R (FR(r) = rp) is finite (that is, R as the target of FR is a finite
module over R as the source of FR). As the definition suggests, F -finiteness is
important in studying ring theoretic properties defined via Frobenius maps,
such as strong F -regularity [HH]. Although F -finiteness for a Noetherian
Fp-algebra is stronger than excellence [Kun], F -finiteness is not so restric-
tive for practical use. A perfect field is F -finite. An algebra essentially of
finite type over an F -finite ring is F -finite. An ideal-adic completion of a
Noetherian F -finite ring is again F -finite. See Example 3 and Example 9.
It is known that an F -finite Noetherian ring is a homomorphic image of an
F -finite regular ring of finite Krull dimension, and hence it has a dualizing
complex [Gab, Remark 13.6].

In this paper, replacing the absolute Frobenius map by the relative one,
we define the F -finiteness of homomorphism between rings of characteristic
p. We say that an Fp-algebra map A → B is F -finite (or B is F -finite over
A) if the relative Frobenius map (Radu–André homomorphism) Φ1(A,B) :
B(1) ⊗A(1) A → B is finite (Definition 1, see section 2 for the notation). Thus
a ring B of characteristic p is F -finite if and only if it is F -finite over Fp.
Replacing absolute Frobenius by relative Frobenius, we get definitions and
results on homomorphisms instead of rings. This is a common idea in [Rad],
[And2], [And3], [Dum], [Dum2], [Ene], [Has], [DI], and [Has2].

In section 2, we discuss basic properties of F -finiteness of homomorphisms
and rings. Some of well-known properties of F -finiteness of rings are natu-
rally generalized to those for F -finiteness of homomorphisms. F -finiteness of
homomorphisms has connections with that for rings. For example, if A → B
is F -finite and A is F -finite, then B is F -finite (Lemma 2).

In section 3, we prove the main theorem (Theorem 21). This is a sort
of descent of F -finiteness. As a corollary, we prove that for a faithfully flat
reduced homomorphism of Noetherian rings g : B → C, if C is F -finite, then
B is F -finite. Considering the case that f is a completion of a Noetherian
local ring, we recover Seydi’s result on excellent local rings of characteristic
p [Sey].
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vice. He also thanks the referee for helpful comments.
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2. F -finiteness of homomorphisms

Let k be a perfect field of characteristic p, and r ∈ Z. For a k-space V , the
additive group V with the new k-space structure α · v = αp−r

v is denoted
by V (r). An element v of V , viewed as an element of V (r) is (sometimes)
denoted by v(r). If A is a k-algebra, then A(r) is a k-algebra with the product
a(r) · b(r) = (ab)(r). We denote the Frobenius map A → A (a 7→ ap) by F or
FA. Note that F e : A(r+e) → A(r) is a k-algebra map. Throughout the article,
we regard A(r) as an A(r+e)-algebra through F e (A is viewed as A(0)). For an
A-module M , the action a(r) ·m(r) = (am)(r) makes M (r) an A(r)-module. If I
is an ideal of A, then I(r) is an ideal of A(r). If e ≥ 0, then I(e)A = I [pe], where
I [pe] is the ideal of A generated by {ape | a ∈ I}. In commutative algebra,
A(r) is also denoted by −rA. We employ the notation more consistent with
that in representation theory — the eth Frobenius twist of V is denoted by
V (e), see [Jan]. We use this notation for k = Fp.

Let A → B be an Fp-algebra map, and e ≥ 0. Then the relative Frobenius
map (or Radu–André homomorphism) Φe(A,B) : B(e)⊗A(e) A → B is defined
by Φe(A,B)(b(e) ⊗ a) = bpe

a.

Definition 1. An Fp-algebra map A → B is said to be F -finite if Φ1(A,B) :
B(1) ⊗A(1) A → B is finite. That is, B is a finitely generated B(1) ⊗A(1) A-
module through Φ1(A,B). We also say that B is F -finite over A.

Lemma 2. Let f : A → B, g : B → C, and h : A → Ã be Fp-algebra maps,
and B̃ := Ã ⊗A B.

1 The following are equivalent.

a f is F -finite. That is, Φ1(A,B) is finite.

b For any e > 0, Φe(A,B) is finite.

c For some e > 0, Φe(A,B) is finite.

2 If f and g are F -finite, then so is gf .

3 If gf is F -finite, then so is g.

4 The ring A is F -finite (that is, the Frobenius map FA : A(1) → A is
finite) if and only if the unique homomorphism Fp → A is F -finite.

5 If f : A → B is F -finite, then the base change f̃ : Ã → B̃ is F -finite.
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6 If B is F -finite, then f is F -finite.

7 If A and f are F -finite, then B is F -finite.

Proof. 1 This is immediate, using [Has, Lemma 4.1, 2]. 2 and 3 follow from
[Has, Lemma 4.1, 1]. 4 follows from [Has, Lemma 4.1, 5]. 5 follows from
[Has, Lemma 4.1, 4]. 6 follows from 3 and 4. 7 follows from 2 and 4.

Example 3. Let e ≥ 1, and f : A → B be an Fp-algebra map.

1 If B = A[x] is a polynomial ring, then it is F -finite over A.

2 If B = AS is a localization of A by a multiplicatively closed subset S of
A, then Φe(A,B) is an isomorphism. In particular, B is F -finite over
A.

3 If B = A/I with I an ideal of A, then

B(e) ⊗A(e) A ∼= (A(e)/I(e)) ⊗A(e) A ∼= A/I(e)A = A/I [pe].

Under this identification, Φe(A,B) is identified with the projection
A/I [pe] → A/I. In particular, B is F -finite over A.

4 If B is essentially of finite type over A, then B is F -finite over A.

Proof. 1 The image of Φ1(A,B) is A[xp], and hence B is generated by
1, x, . . . , xp−1 over it. 2 Note that B(e) is identified with (A(e))S(e) , where
S(e) = {s(e) | s ∈ S}. So B(e) ⊗A(e) A is identified with (A(e))S(e) ⊗A(e) A ∼=
AS(e) , and Φe(A,B) is identified with the isomorphism AS(e)

∼= AS. 3 is
obvious. 4 This is a consequence of 1, 2, 3, and Lemma 2, 2.

Lemma 4. Let A
f−→ B

g−→ C be a sequence of Fp-algebra maps. Then for
e > 0, the diagram

B(e) ⊗A(e) A
Φe(A,B)//

g(e)⊗1
��

B

g

��
C(e) ⊗A(e) A

Φe(A,C)// C

is commutative.

Proof. This is straightforward.
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Lemma 5. Let A
f−→ B

g−→ C be a sequence of Fp-algebra maps, and assume
that C is F -finite over A. If g is finite and injective, and B(e) ⊗A(e) A is
Noetherian for some e > 0, then B is F -finite over A.

Proof. By assumption, C(e) ⊗A(e) A is finite over B(e) ⊗A(e) A, and C is finite
over C(e) ⊗A(e) A. So C is finite over B(e) ⊗A(e) A. As B is a B(e) ⊗A(e) A-
submodule of C and B(e)⊗A(e)A is Noetherian, B is finite over B(e)⊗A(e)A.

Lemma 6. Let A → B be a ring homomorphism, and I a finitely generated
nilpotent ideal of B. If B/I is A-finite, then B is A-finite.

Proof. As I i/I i+1 is B/I-finite for each i, it is also A-finite. So B/Ir is
A-finite for each r. Taking r large, B is A-finite.

Lemma 7. Let f : A → B be an Fp-algebra map, and I a finitely generated
nilpotent ideal of B. If B/I is F -finite over A, then B is F -finite over A.

Proof. As B/I is F -finite over A, B/I is (B(1)/I(1))⊗A(1) A-finite. So B/I is
also B(1) ⊗A(1) A-finite. By Lemma 6, B is B(1) ⊗A(1) A-finite.

For the absolute F -finiteness, we have a better result.

Lemma 8. Let B be an Fp-algebra, and I a finitely generated ideal of B. If
B is I-adically complete and B/I is F -finite, then B is F -finite.

Proof. B/I is B(1)/I(1)-finite. So B/I(1)B is B(1)-finite by Lemma 6. As∩
i I

i = 0, we have
∩

i(I
(1))iB = 0. Moreover, B(1) is I(1)-adically complete.

Hence B is B(1)-finite by [Mat2, Theorem 8.4].

Example 9. Let A be an Fp-algebra.

1 If A is F -finite, then the formal power series ring A[[x]] is so.

2 Let J be an ideal of A. If A is Noetherian and A/J is F -finite, then
the J-adic completion A∗ of A is F -finite.

3 If (A, m) is complete local and A/m is F -finite, then A is F -finite.

Proof. For each of 1–3, we use Lemma 8. 1 Set B = A[[x]] and I = Bx.
Then B/I ∼= A is F -finite. 2 Set B = A∗ and I = JB. Then B/I ∼= A/J is
F -finite. 3 is immediate.
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Remark 10. Let A be a Noetherian ring and I its ideal. If A is I-adically
complete and A/I is Nagata, then A is Nagata [Mar]. If A is semi-local,
I-adically complete, and A/I is quasi-excellent, then A is quasi-excellent
[Rot2]. See also [Nis].

Lemma 11. Let A be an Fp-algebra, and B and C be A-algebras. If B and
C are F -finite over A, then

1 B ⊗A C is F -finite over A.

2 B × C is F -finite over A.

Proof. 1 B is F -finite over A, and B ⊗A C is F -finite over B by Lemma 2,
5. By Lemma 2, 2, B ⊗A C is F -finite over A.

2 Both B and C are finite over (B × C)(1) ⊗A(1) A, and so is B × C.

Lemma 12. Let A → B be an Fp-algebra map, and assume that B and
B(e) ⊗A(e) A are Noetherian for some e > 0. Then B is F -finite over A if
and only if B/P is F -finite over A for every minimal prime P of B.

Proof. The ‘only if’ part is obvious by Example 3, 3. We prove the converse.
Let Min B be the set of minimal primes of B. Then

∏
P∈Min B B/P is F -

finite over A by Lemma 11. As Bred →
∏

P∈Min B B/P is finite injective, and

B
(e)
red ⊗A(e) A is Noetherian, Bred is F -finite over A by Lemma 5. As B is

Noetherian, B is F -finite over A by Lemma 7.

Remark 13. Fogarty asserted that an Fp-algebra map A → B with B Noethe-
rian is F -finite if and only if the module of Kähler differentials ΩB/A is a
finite B-module [Fog, Proposition 1]. The ‘only if’ part is true and easy. The
proof of ‘if’ part therein has a gap. Although R1 in step (iii) is assumed to be
Noetherian, it is not proved that R′ in step (iv) is Noetherian. The author
does not know if this direction is true or not.

If, moreover, both A and B are Noetherian, the assertion is true. This is
an immediate consequence of [And, Proposition 57].

3. Descent of F -finiteness

In this section, we prove a sort of descent theorem on F -finiteness of homo-
morphisms.
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Let R be a commutative ring, and f : M → N an R-linear map between
R-modules. We say that f is pure, if 1W ⊗ f : W ⊗R M → W ⊗R N is
injective for any R-module W . When we need to clarify the base ring R,
we also say that f is R-pure. A homomorphism of rings A → B is said to
be pure (without mentioning the base ring), if it is A-pure (i.e., pure as an
A-linear map).

Lemma 14. Let R be a commutative ring, ϕ : M → N and h : F → G be
R-linear maps. If ϕ is R-pure and 1N ⊗ h : N ⊗ F → N ⊗ G is surjective,
then 1M ⊗ h : M ⊗ F → M ⊗ G is surjective.

Proof. Let C := Coker h. Then by assumption, N⊗C = 0. By the injectivity
of ϕ ⊗ 1C : M ⊗ C → N ⊗ C, we have that M ⊗ C = 0.

Corollary 15. Let A → B be a pure ring homomorphism, and h : F → G
an A-linear map. If 1B ⊗ h : B ⊗A F → B ⊗A G is surjective, then h is
surjective.

Lemma 16. Let A → B be a pure ring homomorphism, and G an A-module.
If B ⊗A G is a finitely generated B-module, then G is finitely generated as
an A-module.

Proof. Let θ1, . . . , θr be generators of B ⊗A G. Then we can write θj =∑s
i=1 bij ⊗ gij for some s > 0, bij ∈ B, and gij ∈ G. Let F be the A-free

module with the basis {fij | 1 ≤ i ≤ s, 1 ≤ j ≤ r}, and h : F → G be the
A-linear map given by fij 7→ gij. Then by construction, 1B ⊗ h is surjective.
By Corollary 15, h is surjective, and hence G is finitely generated.

Definition 17 (cf. [Has2, (2.7)]). Let e > 0 be an integer. An Fp-algebra
map A → B is said to be e-Dumitrescu if Φe(A,B) is A-pure.

Lemma 18. Let e, e′ > 0. If A → B is both e-Dumitrescu and e′-Dumitrescu,
then it is (e + e′)-Dumitrescu. In particular, an e-Dumitrescu map is er-
Dumitrescu map for r > 0.

Proof. This follows from [Has, Lemma 4.1, 2].

So a 1-Dumitrescu map is Dumitrescu (that is, e-Dumitrescu for all e >
0), see [Has2, Lemma 2.9].

Lemma 19. Let e > 0.
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1 [Has2, Lemma 2.8],

2 [Has2, Lemma 2.12], and

3 [Has2, Corollary 2.13]

hold true when we replace all the ‘Dumitrescu’ therein by ‘e-Dumitrescu’.

The proof is straightforward, and is left to the reader.

Remark 20. The precise statement of Lemma 19 for 2 is as follows.
Let f : A → B be a ring homomorphism between rings of characteristic

p, and e > 0 an integer. Assume that A is Noetherian, and the image of the
associated map af : Spec B → Spec A contains Max(A), the set of maximal
ideals of A. If f is e-Dumitrescu, then f is pure.

Theorem 21. Let f : A → B and g : B → C be Fp-algebra maps, and
e > 0. Assume that g is e-Dumitrescu, and the image of the associated map
ag : Spec C → Spec B contains the set of maximal ideals Max B of B. If gf
is F -finite, and B and C(e) ⊗A(e) A are Noetherian, then f is F -finite.

Proof. Note that Φe(A, C) : C(e) ⊗A(e) A → C is a finite map. Note also that
C(e)⊗B(e)B is a C(e)⊗A(e)A-submodule of C through Φe(B, C), since Φe(B, C)
is B-pure and hence is injective. As C(e) ⊗A(e) A is Noetherian, C(e) ⊗B(e) B,
which is a submodule of the finite module C, is a finite C(e) ⊗A(e) A-module.
Since g(e) : B(e) → C(e) is pure by Lemma 19, 2 (see Remark 20), B(e) ⊗A(e)

A → C(e) ⊗A(e) A is also pure. Since

C(e) ⊗B(e) B ∼= (C(e) ⊗A(e) A) ⊗B(e)⊗
A(e)A

B

is a finite C(e)⊗A(e) A-module, B is a finite B(e)⊗A(e) A-module by Lemma 16.

A homomorphism f : A → B between Noetherian rings is said to be
reduced if f is flat with geometrically reduced fibers.

Corollary 22. Let g : B → C be a faithfully flat reduced homomorphism
between Noetherian Fp-algebras. If C is F -finite, then B is F -finite.

Proof. By [Dum2, Theorem 3], g is Dumitrescu. As g is faithfully flat, ag :
Spec C → Spec B is surjective. Letting A = Fp and f : A → B be the unique
map, the assumptions of Theorem 21 are satisfied, and hence f is F -finite.
That is, B is F -finite.
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Corollary 23 (Seydi [Sey]). Let (B, m) be a Nagata local ring with the F -
finite residue field k = B/m. Then B is F -finite. In particular, B is excel-
lent, and is a homomorphic image of an F -finite regular local ring. So B has
a dualizing complex.

Proof. Let g : B → C = B̂ be the completion of B. Then C is a complete
local ring with the residue field k. By Example 9, 3, C is F -finite. As g is
reduced by [Gro, (7.6.4), (7.7.2)], B is F -finite by Corollary 22.

Now B is excellent by [Kun, Theorem 2.5] and is a homomorphic image
of an F -finite regular local ring by [Gab, Remark 13.6]. The last assertion
follows from the fact that a homomorphic image of a Gorenstein ring has a
dualizing complex if it is of finite Krull dimension. For dualizing complexes,
see [Har].

Even if A → B is a faithfully flat reduced homomorphism and B is
excellent, A need not be quasi-excellent. There is a Nagata local ring A
which is not quasi-excellent [Rot], [Nis2], and its completion A → Â = B
is an example. On the other hand, if A → B is a faithfully flat regular
homomorphism and B is quasi-excellent, then A is quasi-excellent [Mat2,
Theorem 32.2].
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