Almost principal fiber bundles

Mitsuyasu Hashimoto

Nagoya University

December 15, 2011

3

4 E b

___ ▶

The purpose of the talk

Let G be an algebraic group acting on $X = \operatorname{Spec} B$. A principal G-bundle is a very good quotient, but the map $X = \operatorname{Spec} B \to \operatorname{Spec} B^G = Y$ is rarely a principal fiber bundle. However, if we remove closed subsets of codimension two or more from both X and Y, the remaining part is often a principal G-bundle. Thus we can compare the reflexive sheaves, class gropus, and the canonical modules of X and Y in this case.

Modules over Krull rings

Let *R* be a Krull domain. An *R* module *M* is said to be torsionless if there exist some $n \ge 0$ and some injection $M \hookrightarrow R^n$. *M* is torsionless if and only if $\dim_{Q(R)} M \otimes_R Q(R) < \infty$ and *M* is a lattice in $M \otimes_R Q(R)$, where Q(R) is the field of fractions of Q(R). If *M* is torsionless and the canonical map $M \to M^{**}$ is an isomorphism, then we say that *M* is reflexive (or divisorial).

A D A D A D A

Locally Krull schemes

A scheme is said to be locally Krull if it has an open covering consisting of the prime spectra of Krull domains. Note that a locally Krull scheme is a (possibly infinite) disjoint union of integral locally Krull closed open subschemes.

Let Z be a locally Krull scheme, and \mathcal{M} a quasi-coherent sheaf over Z. We say that \mathcal{M} is torsionless (resp. reflexive) if for any $z \in Z$, there exists some affine open neighborhood $U = \operatorname{Spec} R$ of z such that R is a Krull domain and $\Gamma(U, \mathcal{M})$ is torsionless (resp. reflexive).

くほと くほと くほと

Fundamental settings

Throughout the talk, let S be a scheme, and G a flat, quasi-compact, quasi-separated S-group scheme.

Equivariant structure of the dual of a sheaf (1)

Let Z be a locally Krull G-scheme, and $\mathcal{M} \in Qch(G, \mathcal{O}_Z)$. Assume that $\mathcal{M}/\mathcal{M}_{tor}$ is torsionless as an \mathcal{O}_Z -module. Then $\mathcal{M}^* = \underline{Hom}_{\mathcal{O}_Z}(\mathcal{M}, \mathcal{O}_Z)$ has a canonical structure of quasi-coherent (G, \mathcal{O}_Z) -module.

Equivariant structure of the dual of a sheaf (2)

Lemma 1

- Let Z be as above, and $\mathcal{M} \in Qch(G, \mathcal{O}_Z)$.
 - If $\mathcal{M}/\mathcal{M}_{tor}$ is torsionless, then the canonical map $\mathcal{M} \to \mathcal{M}^{**}$ is $(\mathcal{G}, \mathcal{O}_Z)$ -linear.
 - If *M* is rank one reflexive, then the canonical map (*M*^{*} ⊗ *M*)^{**} → *O*_Z is an isomorphism of (*G*, *O*_Z)-modules.

・ 同 ト ・ ヨ ト ・ ヨ ト

Equivariant class group (1)

Let Z be a locally Krull G-scheme. Then we define Cl(G, Z) (resp. Pic(G, Z)) to be the set of isomorphism classes of (G, \mathcal{O}_Z) -modules which are rank-one reflexive (invertible sheaves) as \mathcal{O}_Z -modules. Cl(G, Z) and Pic(G, Z) are called the equivariant class group (resp. Picard group) of Z.

Equivariant class group (2)

Pic(G, Z) is an additive group by the sum

 $[\mathcal{L}] + [\mathcal{L}'] = [\mathcal{L} \otimes \mathcal{L}'].$

Cl(G, Z) is an additive group by the sum

 $[\mathcal{M}] + [\mathcal{N}] = [(\mathcal{M} \otimes \mathcal{N})^{**}].$

- 31

くほと くほと くほと

Forgetful map

There is an obvious map

```
\alpha: \mathsf{Cl}(G,Z) \to \mathsf{Cl}(Z),
```

forgetting the action of G.

Lemma 2 If $\Gamma(G \times Z, \mathcal{O}_{G \times Z})^{\times} \cong \operatorname{pr}_{1}^{*} \Gamma(G, \mathcal{O}_{G})^{\times}$, then Ker $\alpha \cong X(G) := \operatorname{Hom}_{\operatorname{grpsch}/S}(G, \mathbb{G}_{m})$.

A corollary

Corollary 3 Let $S = \operatorname{Spec} R$, $G = \operatorname{Spec} H$, and $Z = \operatorname{Spec} B$ be all affine, and assume that $B = R[x_1, \ldots, x_n]$ is a polynomial ring. Then $\operatorname{Ker} \alpha \cong X(G).$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The case of finite group

Lemma 1

If G is a finite group, then $\operatorname{Ker} \alpha \cong H^1(G, \Gamma(Z, \mathcal{O}_Z)^{\times})$.

Mitsuyasu Hashimoto (Nagoya University) Almost principal fiber bundles Dece

3

< 🗇 🕨

The group Cl'(G, B)

Let $S = \operatorname{Spec} R$, G, and $Z = \operatorname{Spec} B$ be all affine. Let $\operatorname{Cl}'(G, Z)$ denote the subgroup of $\operatorname{Cl}(G, Z)$ generated by divisorial fractional ideals I of B such that I is a (G, B)-submodule of aB for some $a \in Q(B^G) \setminus \{0\}$ and $I^G \neq 0$.

Lemma 4

Let k be a field, $S = \operatorname{Spec} k$, G an affine connected algebraic group over k, and $Z = \operatorname{Spec} B$ be affine. If k is integrally closed in B, then $\operatorname{Cl}'(G, Z) \cap \operatorname{Ker} \alpha$ is a subquotient of X(G).

- 本間 と えき と くき とうき

Finite generation (1)

Lemma 5

Let $S = \operatorname{Spec} k$, and G an affine k-group scheme of finite type. Assume one of the following:

- $\Gamma(G \times Z, \mathcal{O}_{G \times Z})^{\times} = \operatorname{pr}_{1}^{*} \Gamma(G, \mathcal{O}_{G})^{\times};$
- G is connected smooth, $Z = \operatorname{Spec} B$ is affine, and k is integrally closed in B.

If Cl(Z) is a finitely generated abelian group, then Cl'(G, Z) is so.

Finite generation (2)

Proof.

This is because $0 \to Cl'(G, Z) \cap Ker \alpha \to Cl'(G, Z) \xrightarrow{\alpha} Cl(Z)$ is exact, $Cl'(G, Z) \cap Ker \alpha$ is a subquotient of X(G), and both X(G) and Cl(Z) are finitely generated.

A B M A B M

15 / 47

Waterhouse type theorem (1)

Lemma 6 (Waterhouse)

Let *B* be a *G*-algebra which is a Krull domain. Then $Cl(B^G)$ is a subquotient of Cl'(G, B).

16 / 47

Waterhouse type theorem (2)

Theorem 7

Let $S = \operatorname{Spec} k$, G an affine algebraic k-group scheme, and B a G-algebra which is a Krull domain. Assume that $\operatorname{Cl}(B)$ is finitely generated. Assume one of the following.

- $(k[G] \otimes_k B)^{\times} = k[G]^{\times}$ (e.g., $B = k[x_1, \ldots, x_n]$);
- (Waterhouse) G is a connected and smooth, and k is integrally closed in B.

Then $Cl(B^G)$ is a finitely generated abelian group.

- 本間 と えき と くき とうき

Principal fiber bundle

Let N be an S-flat closed normal subgroup scheme of G.

Definition 8

We say that $\pi: X \to Y$ is a *G*-equivariant principal *N*-bundle if

- π is a *G*-morphism. That is, *G* acts on *X* and *Y*, and $\pi(gx) = g\pi(x)$.
- **2** N acts trivially on Y.
- **③** π is faithfully flat and quasi-compact.
- $\Phi: N \times X \to X \times_Y X$ ($\Phi(g, x) = (gx, x)$) is an isomorphism.

A B M A B M

A remark

Remark 9

A principal N-bundle is locally trivial in the fpqc topology, and the converse is also true.

We set H = G/N

Let $q: G \rightarrow H$ be a homomorphism of *S*-group scheme, and assume that q is a *G*-equivariant principal *N*-bundle.

Remark 10

- We have N = Ker q.
- Roughly speaking, H = G/N.

A B M A B M

20 / 47

Important properties of principal bundles

Lemma 11

Let $\pi: X \to Y$ be a *G*-equivariant principal *N*-bundle. Then

- **1** π is quasi-separated.
- **2** If G is of finite presentation (resp. separated, affine, finite), then so is π .
- π^* : Qch(*H*, *Y*) → Qch(*G*, *X*) is an equivalence, and $(\pi_*?)^N$ is its quasi-inverse.

Affine quotients are rarely prinicipal fiber bundles

So principal fiber bundles are very good quotients. However, If $X = \operatorname{Spec} B$ is a spectrum of a *G*-algebra and $Y = \operatorname{Spec} B^N$, the canonical map $\pi : X \to Y$ is rarely a principal *N*-bundle.

Rational almost principal fiber bundles Definition 12

We say that a diagram of S-schemes

$$X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$$

is a G-equivariant rational almost principal N-bundle if

- G acts on X and Y, and N acts tryially on Y.
- **2** *V* is a *G*-stable open subset of *X*, and $\operatorname{codim}_X(X \setminus V) \ge 2$.
- U is an H-stable open subset of Y, and $\operatorname{codim}_Y(Y \setminus U) \ge 2$.
- $\rho: V \to U$ is a *G*-equivariant principal *N*-bundle.

Almost principal fiber bundles

Definition 13

We say that $\pi : X \to Y$ is a *G*-equivariant almost principal *N*-bundle if

- $\pi: X \to Y$ is a *G*-morphism.
- There exist some open subsets V of X and U of Y such that

$$X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$$

is a G-equivariant rational almost principal N-bundle.

Notation

From now on, we assume that G is of finite presentation.

Let Z be a locally Krull G-scheme. We denote the category of quasi-coherent (G, \mathcal{O}_Z) -modules which are reflexive as \mathcal{O}_Z -modules by Ref(G, Z).

A B M A B M

25 / 47

Main theorem (1)

Theorem 14

Let

 $X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$

be a G-equivariant rational almost principal N-bundle such that X and Y are locally Krull. Then

- $\mathcal{N} \mapsto i_* \rho^* j^* \mathcal{N} : \operatorname{Ref}(H, Y) \to \operatorname{Ref}(G, X)$ is an equivalence, and $\mathcal{M} \mapsto (j_* \rho_* i^* \mathcal{M})^N$ is its quasi-inverse.
- The equivalence above induces an isomorphism $Cl(H, Y) \cong Cl(G, X)$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Settings for discussing canonical modules

When we discuss canonical modules, we assume the following.

Assumption (#)

S is Noetherian, and has a fixed dualizing complex \mathbb{I}_S . *X* and *Y* are connected normal *S*-schemes separated of finite type over *S*.

Main theorem (2)

Theorem 15

Assume that Assumption (#) is satisfied.

 Let G be smooth of relative dimension d. Set Θ = Λ^d Lie G. Then there are a (G, O_X)-isomorphism ω_X ≅ i_{*}ρ^{*}j^{*}ω_Y ⊗_{O_X} (f^{*}Θ)^{*} and an (H, O_Y)-isomorphism ω_Y ≅ (j_{*}ρ_{*}i^{*}(ω_X ⊗_{O_X} f^{*}(Θ)))^N, where f : X → S is the structure map.

2 Let $S = \operatorname{Spec} k$, and N be a finite linearly reductive group scheme. Then there are a (G, \mathcal{O}_X) -isomorphism $\omega_X \cong i_* \rho^* j^* \omega_Y$ and an (H, \mathcal{O}_Y) -isomorphism $\omega_Y \cong (j_* \rho_* i^* \omega_X)^N$.

イロト 不得下 イヨト イヨト 二日

A remark

Remark 16

If S = Spec k with k a field of characteristic zero, then Theorem 15 is due to Knop.

The idea of the theorem is based on his result.

A corollary

Corollary 17

If Assumption (#) is satisfied and $\Theta \cong \mathcal{O}_S$, then the following are equivalent.

- $\omega_Y \cong \mathcal{O}_Y$ in Ref(H, Y);
- **2** $\omega_X \cong \mathcal{O}_X$ in Ref(G, X).

14 M → Ξ →

When is Θ trivial?

Remark 18

If $S = \operatorname{Spec} k$ and G an affine algebraic group over k, then the following hold.

- If G is connected, then $\Theta \cong k$.
- **2** If **G** is finite, then $\Theta \cong k$.
- **(Knop)** In general, Θ may not be trivial.

The case of almost principal fiber bundles (1)

Corollary 19

Let $\pi : X \to Y$ be a *G*-equivariant almost principal *N*-bundle such that *X* and *Y* are locally Krull.

• $\mathcal{N} \mapsto (\pi^* \mathcal{N})^{**} : \operatorname{Ref}(H, Y) \to \operatorname{Ref}(G, X)$ is an equivalence, and $\mathcal{M} \mapsto (\pi_* \mathcal{M})^N$ is its quasi-inverse.

32 / 47

2 The equivalence induces $Cl(H, Y) \cong Cl(G, X)$.

The case of almost principal fiber bundles (2)

Corollary 20

Let $\pi : X \to Y$ be a *G*-equivariant almost principal *N*-bundle. Assume that (#) is satisfied. Then

- if G is smooth of relative dimension d, there are a (G, \mathcal{O}_X) -isomorphism $\omega_X \cong (\pi^* \omega_Y)^{**} \otimes_{\mathcal{O}_X} (f^* \Theta)^*$ and an (H, \mathcal{O}_Y) -isomorphism $\omega_Y \cong (\pi_*(\omega_X \otimes_{\mathcal{O}_X} f^*(\Theta)))^N$.
- If S = Spec k and N is finite linearly reductive, then there are a (G, O_X)-isomorphism $\omega_X \cong (\pi^* \omega_Y)^{**}$ and an (H, O_Y)-isomorphism $\omega_Y \cong (\pi_* \omega_X)^N$.

Example of finite groups (1)

Let k be an algebraically closed field, $B = k[x_1, ..., x_n]$, $V = \bigoplus_i kx_i$, and $G \subset GL(V)$ a finite subgroup. Set N = G and $H = \{e\}$. Let $A = B^G$, and $\pi : X = \text{Spec } B \to \text{Spec } A = Y$ be the canonical map.

Definition 21

We say that $g \in GL(V)$ is a pseudo-reflection if $\operatorname{codim}_V \{ v \in V \mid gv = v \} = 1.$

Lemma 22

 $\pi: X \to Y$ is an almost principal *G*-bundle if and only if *G* does not have a pseudo-reflection.

Example of finite groups (2)

Lemma 23 Assume that G does not have a pseudo-reflection. Then a $Cl(Y) \cong Cl(G, X) \cong X(G).$ a $\omega_B \cong (B \otimes_A \omega_A)^{**}$ and $\omega_A \cong \omega_B^G.$ a $(?)^G : Ref(G, B) \to Ref(A)$ is an equivalence.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example of finite groups (3)

Corollary 24

The following are equivalent (by Watanabe if $\#G \neq 0$ in k).

- $\omega_B \cong B;$
- $G \subset \mathsf{SL}(V);$
- A is quasi-Gorenstein (i.e., ω_A is projective).

If this is the case, the Cohen–Macaulay locus of A agrees with the Gorenstein locus (Braun).

→ Ξ →

Example of finite groups (4)

If $n = \dim B = 2$, then the equivalence $(?)^G : \operatorname{Ref}(G, B) \to \operatorname{Ref}(A)$ has the following interpretation.

 $\mathsf{Ref}(G,B) = \mathsf{Proj}(G,B) = \{ M \in \mathsf{Mod}(G,B) \mid M \text{ is a finite} \\ \mathsf{projective } B \text{-module} \}$

and $\operatorname{Ref}(A) = \operatorname{MCM}(A)$. If, moreover, $\#G \neq 0$ in k, then indecomposable objects of $\operatorname{Proj}(G, B)$ and irreducible representations of G are in one-to-one correspondence, and hence A is of finite representation type (well-known).

イロト 不得下 イヨト イヨト 二日

Example of Veronese subring (1)

Set $S = \operatorname{Spec} k$, $G = \mathbb{G}_m = \operatorname{Spec} k[t, t^{-1}]$, $N = \mu_m = \operatorname{Spec} k[t]/(t^m - 1) \hookrightarrow G \ (m > 1)$. $H = \operatorname{Spec} k[t^m, t^{-m}]$. A *G*-algebra is a \mathbb{Z} -graded *k*-alebra. For a *G*-algebra *B*, a (*G*, *B*)-module is nothing but a graded *B*-module. For a (*G*, *B*)-module *M*, M^N is nothing but the Veronese submodule $M^{(m\mathbb{Z})} = \bigoplus_{i \in m\mathbb{Z}} M_i$.

Let *B* be a Noetherian normal \mathbb{Z} -graded algebra such that $B_0 = k$ and $B = k[B_1]$. Assume that $B \neq k$ and $B \neq k[x]$. Or equivalently, dim $B \ge 2$. B^N is the Veronese subring $B^{(m\mathbb{Z})} = \bigoplus_{i \in m\mathbb{Z}} B_i$.

Example of Veronese subring (2)

Lemma 25

Under the assumptions above,

- $\pi: X = \operatorname{Spec} B \to \operatorname{Spec} B^N = Y$ is a *G*-equivariant almost principal *N*-bundle.

- $\operatorname{Cl}(Y) \cong \operatorname{Cl}(N, X)$. If $B = k[x_1, \dots, x_n]$, then $\operatorname{Cl}(Y) \cong X(N) \cong \mathbb{Z}/m\mathbb{Z}$.

イロト 不得下 イヨト イヨト 二日

Example of Veronese subring (3)

Consider the case that $G = N = \mu_m$, $H = \{e\}$, and B = k[[x, y]]. Then

$$MCM(B^N) = Ref(B^N) \cong Ref(N, B).$$

The only indecomposables of $\operatorname{Ref}(N, B)$ are $B, B(-1), \ldots, B(-m+1)$. Hence B^N is of finite representation type.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

40 / 47

Example of multi-section ring (1)

Let Y be a separated connected Noetherian normal scheme, and $D_1, \ldots, D_r \in \text{Div}(Y)$. Assume that $\sum_{i=1}^r \mathbb{Z}D_i$ contains an ample Cartier divisor. Set $U = Y_{\text{reg}}$. Let

$$V := \operatorname{\underline{Spec}}_{\lambda \in \mathbb{Z}^r} \mathcal{O}_U(\lambda_1 D'_1 + \dots + \lambda_r D'_r) \xrightarrow{
ho} U$$

be the canonical map, where $D'_i := D_i|_U$. Let

$$R := \bigoplus_{\lambda \in \mathbb{Z}^r} \Gamma(Y, \mathcal{O}_Y(\lambda_1 D_1 + \cdots + \lambda_r D_r))$$

and set $X = \operatorname{Spec} R$. Set $N = G = \mathbb{G}_m^r$.

(人間) トイヨト イヨト ニヨ

Example of multi-section ring (2)

Lemma 26

Under the notation above,

- **1** *R* is a Krull domain.
- O The diagram

$$X \stackrel{i}{\longleftrightarrow} V \stackrel{\rho}{\longrightarrow} U \stackrel{j}{\longleftrightarrow} Y$$

is a rational almost principal G-bundle.

• The functor $\beta : \operatorname{Ref}(Y) \to \operatorname{Ref}(G, R)$ given by $\mathcal{M} \mapsto \bigoplus_{\lambda \in \mathbb{Z}^r} \Gamma(Y, (\mathcal{M} \otimes_{\mathcal{O}_Y} \mathcal{O}_Y(\lambda_1 D_1 + \dots + \lambda_r D_r))^{**})$ is an equivalence, and give an isomorphism $\beta' : \operatorname{Cl}(Y) \cong \operatorname{Cl}(G, R)$.

Example of multi-section ring (3) Theorem 27 (Elizondo-Kurano-Watanabe) The sequence

$$\mathbb{Z}^{r} \xrightarrow{\gamma} \operatorname{Cl}(Y) \xrightarrow{\alpha \beta'} \operatorname{Cl}(R) \to 0$$

is exact, where $\gamma(\lambda) = \sum_{i=1}^{r} \lambda_i D_i$ and $\alpha \beta'(D) = [\bigoplus_{\lambda} \Gamma(Y, \mathcal{O}_Y(D + \sum_{i=1}^{r} \lambda_i D_i))].$ (Kurano–H) Assume (#). Then

$$\omega_{R} = \bigoplus_{\lambda \in \mathbb{Z}^{r}} \Gamma(Y, \mathcal{O}_{Y}(K_{Y} + \sum_{i=1}^{r} \lambda_{i}D_{i})).$$

Mitsuyasu Hashimoto (Nagoya University)

・ 同 ト ・ ヨ ト ・ ヨ ト

Example of multi-section ring (4)

Example 28 (well-known)

Consider the case that $Y = \mathbb{P}^1$, r = 1, and $D_1 = \{0\}$. Then

 $\mathsf{vb}(\mathbb{P}^1) = \mathsf{Ref}(\mathbb{P}^1) \to \mathsf{Ref}(\mathbb{G}_m, k[x, y])$

is an equivalence. Any finitely generated graded free k[x, y]-module is a direct sum of rank-one free modules k[x, y](m) $(m \in \mathbb{Z})$. Thus any vector bundle of \mathbb{P}^1 is a direct sum of $\mathcal{O}_{\mathbb{P}^1}(m)$ $(m \in \mathbb{Z})$.

イロト 不得下 イヨト イヨト 二日

Example of determinantal ring (1)

Let $S = \operatorname{Spec} k$, $m, n, t \in \mathbb{Z}$, and $m, n \ge t \ge 1$. Set $V = k^n$, $W = k^m$, and $E = k^{t-1}$. Define $X = \operatorname{Hom}(E, W) \times \operatorname{Hom}(V, E)$ and $Y = \{\varphi \in \operatorname{Hom}(V, W) \mid \operatorname{rank} \varphi < t\}$. Then $\pi : X \to Y$ is defined by $\pi(f, g) = f \circ g$.

Lemma 29

 $\pi: X \to Y$ is a $GL(V) \times GL(E) \times GL(W)$ -equivariant almost principal GL(E)-bundle.

Example of determinantal ring (2)

Corollary 30

- (well-known) $\operatorname{Cl}(Y) \cong X(\operatorname{GL}(E)) \cong \mathbb{Z}$.
- (Svanes) The following are equivalent.
 - **1** m = n.
 - $\omega_X \cong \mathcal{O}_X$ as $(GL(E), \mathcal{O}_X)$ -modules.

 - Y is Gorenstein.

< 🗇 🕨

Thank you

This slide will soon be available at http://www.math.nagoya-u.ac.jp/~hasimoto/

3

・ 同 ト ・ ヨ ト ・ ヨ ト