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1. Introduction

Let S be a noetherian scheme, G a flat S-group scheme of finite type, and X
a G-scheme, that is, an S-scheme with a (left) G-action. Roughly speaking,
a G-equivariant OX-module is an OX-module with a G-action. It is nothing
but a G-linearized OX-module, and this was treated by Mumford [13]. In
affine settings, it is nothing but a (G,A)-module discussed in [14]. The
category of (quasi-coherent) G-equivariant OX-modules can be embedded in
the category of modules over the truncated simplicial scheme arising from
the G-action on X.

The purpose of these notes is to give a survey on the study ofG-equivariant
sheaves utilizing general diagrams of schemes in [5]. In particular, we dis-
cuss the construction of equivariant twisted inverses, equivariant dualizing
complexes, and their application to invariant theory.

We also introduce some recent applications of equivariant sheaves, based
on [7], [8], and [9]. In short, they are equivariant versions of some theories
in commutative algebra, plus their applications. In particular, we discuss G-
local G-schemes, which is an equivariant version of local schemes (local rings),
and G-local cohomology (an equivariant version of the local cohomology).
Equivariant versions of Matlis and the local dualities are given.

Section 2 is a short survey on equivariant modules and their realization
as sheaves over a diagram of schemes. Section 3 treats equivariant twisted
inverses, equivariant dualizing complexes, and their application to invariant
theory (a generalization of Watanabe’s theorem on Gorenstein property of



invariant subrings). Section 4 treats some recent applications of equivariant
sheaves.

2. The category of (G,OX)-modules

Let k be an algebraically closed field and G an affine algebraic group over k.

Definition 2.1. Let A be a commutative G-algebra. We say that M is a
(G,A)-module if

• M is a G-module;

• M is an A-module;

• the k-space structures of M coming from the above two items agree;

• The action A⊗M →M (a⊗m 7→ am) is G-linear.

(G,A)-modules play important role in invariant theory. They are treated
in [14] for example. The following theorem was proved using homological
algebra of (G,A)-modules.

Let k be an algebraically closed field of characteristic p > 0. Let G be a
reductive group over k. Let U be the unipotent radical of a Borel subgroup
of G. Let V be a finite dimensional G-module. Let C := SymV be the
symmetric algebra.

Theorem 2.2 ([3], [6]). Assume that C has a good filtration as a G-module
(see [11] for the definition of good filtrations). Then

1. CG is strongly F -regular. In particular, CG is Cohen–Macaulay.

2. CU is (finitely generated and) F -pure. In particular, ProjCU is Frobe-
nius split.

The notion of (G,A)-modules is generalized to that of G-linearized OX-
modules. It is convenient to introduce them as equivariant sheaves over
diagrams of schemes.

Let S be the base scheme, and let Sch/S be the category of S-schemes.
Let I be a small category. Let X• be an Iop-diagram of S-schemes. That is,
let X• ∈ Func(Iop, Sch/S) be a contravariant functor form I to Sch/S.



Definition 2.3. We define a category Zar(X•) by:

ob(Zar(X•)) := {(i, U) | i ∈ ob I, U ∈ ob(ZarXi)};

Zar(X•)((j, V ), (i, U)) := {(φ, h) | φ ∈ I(i, j),

h : V → U, V
h //

� _

��

U� _

��
Xj

Xφ // Xi

is commutative}.

The composition is given by (φ, h) ◦ (φ′, h′) = (φ′φ, hh′).

(2.4) We introduce a Grothendieck topology into Zar(X•). A class of mor-

phisms ((iλ, Uλ)
(φλ,hλ)−−−−→ (i, U))λ∈Λ is said to be a covering if ∀λ iλ = i, φλ =

idi, and U =
⋃
λ hλ(Uλ).

Moreover, defining Γ((i, U),OX•) := Γ(U,OXi), OX• is a sheaf of commu-
tative rings on Zar(X•). Thus Zar(X•) is a ringed site.

We denote the category Mod(Zar(X•)) simply by Mod(X•).

(2.5) Next we introduce the restriction functor.
For i ∈ ob(I), we define (?)i : Mod(X•) → Mod(Xi) by Γ(U,Mi) :=

Γ((i, U),M) for M ∈ Mod(X•). (?)i is called the restriction functor. Note
that (?)i has both a left adjoint and a right adjoint. In particular, (?)i
preserves arbitrary limits and colimits. In particular, (?)i is exact.

(2.6) Next we introduce the β map.
For φ ∈ I(i, j), we define βφ : (?)i → (Xφ)∗(?)j by

Γ(U,Mi) = Γ((i, U),M)

res(φ,Xφ|X−1
φ

(U)
)

−−−−−−−−−→
Γ((j,X−1

φ (U)),M) = Γ(X−1
φ (U),Mj)

= Γ(U, (Xφ)∗Mj).

(2.7) For φ ∈ I(i, j), we define αφ : X∗φ(?)i → (?)j to be the composite

X∗φ(?)i
βφ−→ X∗φ(Xφ)∗(?)j

ε−→ (?)j,

where ε is the counit of adjunction of the adjoint pair (X∗φ, (Xφ)∗).



Definition 2.8. M ∈ Mod(X•) is said to be equivariant if αφ : X∗φMi →
Mj is an isomorphism for φ ∈ Mor(I). The full subcategory of Mod(X•)
consisting of equivariant OX•-modules is denoted by EM(X•).

Now we can define quasi-coherent and coherent sheaves.

Definition 2.9. M∈ Mod(X•) is said to be:

1 locally quasi-coherent (resp. locally coherent) ifMi is quasi-coherent (resp.
coherent) for any i ∈ ob(I).

2 quasi-coherent (resp. coherent) if it is locally quasi-coherent (resp. locally
coherent) and equivariant.

The full subcategory of locally quasi-coherent (resp. quasi-coherent, co-
herent) modules in Mod(X•) is denoted by Lqc(X•) (resp. Qch(X•), Coh(X•)).

(2.10) We define direct and inverse image functors.
Let f• : X• → Y• be a morphism in Func(Iop, Sch). Then a ringed

continuous functor f−1
• : Zar(Y•) → Zar(X•) is defined by f−1

• ((i, U)) =
(i, f−1

i (U)). Thus (f•)∗ : Mod(X•)→ Mod(Y•) is defined by

Γ((i, U), (f•)∗M) = Γ(f−1
• (i, U),M).

(f•)∗ has a left adjoint f ∗• .
Note that f ∗• preserves equivariance, local quasi-coherence, and quasi-

coherence. Note also that (f•)∗ preserves local quasi-coherence if fi is quasi-
compact quasi-separated for each i ∈ ob(I). If, moreover, Yφfj = fiXφ is
a cartesian square for each φ ∈ Mor(I) (f• is cartesian), then (f•)∗ also
preserves quasi-coherence.

(2.11) Now we can define equivariant sheaves for a group action using
sheaves over a diagram of schemes.

Let [n] denote the totally ordered set {0, 1, . . . , n} for n ≥ −1. Define
(∆+) by ob(∆+) = {[n] | n ≥ −1} and (∆+)([m], [n]) = {ϕ ∈ Map([m], [n]) |
ϕ is a monotone map}. Define the subcategory ∆M of (∆+) by ob(∆M) =
{[0], [1], [2]}, and

∆M([m], [n]) = {ϕ ∈ (∆+)([m], [n]) | ϕ is injective}.



Pictorially, ∆M looks like

[2] [1]

δ0(2)oo
δ1(2)oo
δ2(2)oo

[0]
δ0(1)oo
δ1(1)oo ,

where δi(j) : [j − 1] → [j] is the unique injective monotone map such that
i /∈ Im δi(j).

(2.12) Let S be a scheme, G an S-group scheme, and X a G-scheme. We
define BM

G (X) ∈ Func(∆op
M , Sch/S) by

BM
G (X) = G×G×X

1×a //
µ×1 //
p23 //

G×X
a //
p2 // X ,

where a : G×X → X is the action, µ : G×G→ G is the product, and p23

and p2 are projections.
We denote Mod(BM

G (X)) by Mod(G,X) and call its object a (G,OX)-
module. Lqc(BM

G (X)), Qch(BM
G (X)), and Coh(BM

G (X)) are denoted by
Lqc(G,X), Qch(G,X), and Coh(G,X), respectively.

(2.13) For a G-morphism f : X → Y , BM
G (f) : BM

G (X) → BM
G (Y )

is a cartesian morphism, and the direct image BM
G (f)∗ : Mod(G,X) →

Mod(G, Y ) and the inverse image BM
G (f)∗ : Mod(G, Y ) → Mod(G,X) are

induced.

Lemma 2.14. EM(BM
G (X)) is equivalent to the category of G-linearized OX-

modules by Mumford [13]. The equivalence induces the equivalence between
Qch(G,X) and the category of quasi-coherent G-linearized OX-modules.

(2.15) So we can identify an object of EM(BM
G (X)) by a G-linearized OX-

module. What is the merit of considering diagrams of schemes?

• We can use induction on the number of objects of I.

• Mod(G,X) = Mod(BM
G (X)) is a module category of a ringed site. So

Mod(G,X) has Hom, ⊗, etc. and is flexible enough. The embedding
Qch(G,X) ↪→ Mod(G,X) is a natural generalization of the embedding
Qch(X) ↪→ Mod(X).

• The use of Lqc(G,X) is sometimes effective.

We will see that Lqc(G,X) plays an important role in constructing the
twisted inverse functor.



(2.16) In the rest of these notes, let S be a noetherian scheme, G a flat
S-group scheme of finite type, and X a noetherian G-scheme.

The following is proved using the basics on simplicial schemes, see [5,
Lemma 12.8].

Lemma 2.17. The category Qch(G,X) is a locally noetherian abelian cate-
gory, and M ∈ Qch(G,X) is a noetherian object of Qch(G,X) if and only
if M ∈ Coh(G,X) if and only if M[0] is coherent as an OX-module. The
forgetful functor

(?)[0] : Qch(G,X)→ Qch((BM
G (X)[0]) = Qch(X)

given by M 7→M[0] is faithful exact, and admits a right adjoint.

(2.18) If k is a field, S = Spec k and G is affine, and X = S, then
Qch(G,X) (resp. Coh(G,X)) is equivalent to the category Mod(G) of G-
modules (resp. finite dimensional G-modules). The functor

(?)[0] : Qch(G,S)→ Qch(S) ∼= Mod(k)

is identified with the forgetful functor, forgetting the G-action.
Usually, a G-module and its underlying vector space are expressed by the

same symbol, say V . We use this abuse of notation, and express a (G,OX)-
module M and its underlying OX-module M[0] by the same symbol. For
example, OBMG (X) is simply denoted by OX because (OBMG (X))[0] is OX . For

a G-morphism f : X → Y , the associated direct image BM
G (f)∗ is simply

denoted by f∗. Similarly for BM
G (f)∗.

(2.19) LetM be a quasi-coherent (G,OX)-module, andN a quasi-coherent
OX-submodule of M0. Then there is at most one (G,OX)-submodule Ñ of
M such that Ñ0 = N . In this case, we say that N is a (G,OX)-submodule
of M0. If, moreover, M = OX , then we say that N is a G-ideal of OX .

(2.20) Let M, N , L be in Qch(G,X), I be a G-ideal, and M1, M2,
M3, and Mλ be quasi-coherent (G,OX)-submodules of M. Let L and M3

be coherent. Then the following modules have structures of quasi-coherent
(G,OX)-modules.

• TorOXi (M,N ), ExtiOX (L,M),

• H i
I(M) ∼= lim−→ExtiOX (OX/In,M),



• The Fitting ideal Fittj(L),

• M1 ∩M2,
∑

λMλ, IM1,

• M1 :M3, M1 : I,. . .

3. G-dualizing complex and equivariant twisted inverse

As in the last section, until the end of these notes, let S be a noetherian
scheme, G a flat S-group scheme of finite type, and X a noetherian G-scheme.

A G-dualizing complex is an equivariant analogue of a dualizing complex.

Definition 3.1. Let F ∈ D(G,X) (= D(Mod(G,X))). We say that F is
G-dualizing if F has coherent cohomology groups, and the restriction F[0] ∈
D(X) is a dualizing complex of X.

(3.2) If X is Gorenstein of finite Krull dimension, then OX is a G-dualizing
complex of X.

We say that a (non-empty noetherian) G-scheme X is G-connected if U
and V are G-stable open subschemes of X, U ∩ V = ∅, and U ∪ V = X,
then either U = X or V = X holds. It is equivalent to say that BM

G (X) is
d-connected in the sense of [5].

In general, X is a disjoint union of finitely many G-stable closed open
G-connected subschemes. Each of them is called a G-connected component
of X.

Let X be G-connected with a fixed G-dualizing complex I. The lowest
nonzero cohomology sheaf ωX of I is called the G-canonical sheaf of X. Note
that ωX ∈ Coh(G,X). In general, we define ωX G-connected componentwise.

The following is the main theorem of [5].

Theorem 1 ([5]). Let f : Y → X be a G-morphism separated of finite
type. Then there is a functor f ! : DLqc(G,X) → DLqc(G, Y ), called the
(equivariant) twisted inverse, which satisfies:

• f ! is triangulated, id!
X
∼= Id, and g!f ! ∼= (fg)!.

• f !(DQch(G,X)) ⊂ DQch(G, Y ), and f !(DCoh(G,X)) ⊂ DCoh(G, Y ).

• If IX is G-dualizing, then f !(IX) is also G-dualizing.



• If f is proper, then f ! is a right adjoint of Rf∗ : DLqc(G, Y ) →
DLqc(G,X).

• If f is an open immersion, then f ! agrees with the restriction f ∗.

• If f is of finite flat dimension, then f !(F) ∼= f !(OX)⊗L Lf ∗F.

• Let f : Y → X be a finite G-morphism, and let Z denote the ringed site
(Zar(BM

G (X)), f∗OY ). Let g : Z → Zar(BM
G (Y )) be the obvious ringed

continuous functor. Then g#RHom•OX (OZ , ?) is isomorphic to f ! (g# :
Mod(Z)→ Mod(G, Y ) is the canonical functor, which is exact).

• If f : Y → X is a regular embedding of a well-defined codimension, say
d, then f !OX ∼=

∧d(f ∗I)∨[−d], where I is the defining ideal sheaf of Y
in X (it belongs to Qch(G,X)).

• If f : Y → X is smooth of a well-defined relative dimension, say d, then
ΩY/X has a canonical coherent (G,OY )-module structure, and f !OX ∼=∧dΩY/X [d].

In the construction of f ! : DLqc(G,X)→ DLqc(G, Y ), we use the existence

of a factorization BM
G (Y )

ϕ−→ Z
ψ−→ BM

G (X), where Z ∈ Func(∆op
M , Sch/S), ψ

is (componentwise) proper, and ϕ is a (componentwise) image-dense open
immersion. However, Z is not necessarily of the form BM

G (W ) for some G-
scheme W (we avoid the problem of equivariant compactification).

The following is proved using the usual duality of proper morphisms.

Theorem 2 (Duality of proper morphisms, [5, Theorem 22.5]). Let
f : X → Y be a proper G-morphism of noetherian G-schemes. Then the
canonical map

Rf∗RHomMod(G,X)(F, f !G)→ RHomMod(G,Y )(Rf∗F,G)

is an isomorphism for F ∈ DQch(G,X) and G ∈ D+
Lqc(G, Y ).

Corollary 3.3. Let S = Spec k, and G a reductive group over k. Let T be
a maximal torus of G, and fix a base of the root system of G. Let B be the
negative Borel subgroup. For any finite dimensional B-module M and any
i ∈ Z, there is an isomorphism of G-modules

Rn−i indGB(M∗ ⊗ (−2ρ)) ∼= (Ri indGBM)∗,

where ρ is the half sum of positive roots, and n = dimG/B.



This corollary is well-known as the Serre duality for representations of
reductive groups. In fact, this isomorphism is nothing but the Serre duality
on G/B. See [11, (II.4.2)] for more. Usually, the Serre duality is an iso-
morphism of vector spaces, not an isomorphism of representations, but the
theorem guarantees that it is in fact an isomorphism of representations.

We show an application of equivariant dualizing complexes and canonical
sheaves to invariant theory.

Theorem 3 ([5, Proposition 32.4]). Let k be a field, G a linearly reductive
finite k-group scheme. Let A be a finitely generated k-algebra with a G-
action. If A is Gorenstein and ωA ∼= A as a (G,A)-module, then B := AG is
Gorenstein and ωB ∼= B.

As a corollary, we have

Corollary 3.4. Let k and G be as above, and V a finite dimensional G-
module. If the representation G → GL(V ) factors through SL(V ), then
B := (SymV )G is Gorenstein and ωB ∼= B.

The corollary for the case that G is a finite group is well known as a
theorem of K.-i. Watanabe [15]. We give an outline of a proof of the theorem.

Proof. Cohen–Macaulay property is trivial, since B → A is finite, and B is
a direct summand of A. As dimA = dimB and ExtiB(A,ωB) = 0 for i > 0,

ωA ∼= π!ωB ∼= HomB(A,ωB)

as (G,B)-modules by the equivariant duality of finite morphisms, where π :
SpecA→ SpecB is the canonical map.

Hence

ωB ∼= HomB(B,ωB) ∼= HomB(A,ωB)G ∼= ωGA
∼= AG ∼= B.

4. Matijevic–Roberts type theorem and G-local G-schemes

In this section, we give various results on G-actions on schemes, based on
equivariant sheaves. As in the last section, until the end of these notes, let
S be a noetherian scheme, G a flat S-group scheme of finite type, and X a
noetherian G-scheme.



Definition 4.1. Let Z be a closed subscheme of X. Then we denote the
scheme theoretic image of the action a : G× Z → X by Z∗.

The following hold:

• Z∗ is the smallest G-stable closed subscheme of X containing Z.

• If Z is irreducible and G has connected fibers, then Z∗ is irreducible.

• If Z is reduced and G is S-smooth, then Z∗ is reduced.

Lemma 4.2 ([7, Corollary 6.22]). Let Z be a G-stable closed subscheme of
X. If p2 : G×X → X has regular fibers, then Zred is G-stable. In particular,
if G is S-smooth, then Zred is G-stable.

Lemma 4.3 (H—). Let I be a coherent G-ideal of OX . If G is S-smooth,
then the integral closure I of I is again a G-ideal.

The following is a generalized version of Matijevic–Roberts theorem. For
the history of Matijevic–Roberts type theorem, see [7].

Theorem 4 ([7, Theorem 7.2]). Assume either

• G is S-smooth; or

• S = Spec k, where k is a perfect field.

Let C and D be class of noetherian local rings, and assume that

• If A ∈ C and A → B is a local homomorphism which is regular and
essentially of finite type, then B ∈ D; and

• If B ∈ D and A→ B is a regular essentially of finite type local homo-
morphism, then A ∈ D.

Let y be a point of X, Y the closure of {y}, and let η be the generic point of
an irreducible component of Y ∗. If OX,η ∈ C, then OX,y ∈ D.

The following corollary is the original Matijevic–Roberts type theorem
on graded rings.

Corollary 4.4. Let A be a Zn-graded noetherian ring. Let P be a prime ideal
of A, and let P ∗ be the prime ideal generated by the homogeneous elements
of P .



• If AP ∗ is regular, then AP is regular.

• (Matijevic–Roberts [12], Hochster–Ratliff [10], Goto–Watanabe [2]) If
AP ∗ is Cohen–Macaulay (resp. Gorenstein), then AP is Cohen–Macaulay
(resp. Gorenstein).

• ([7]) If AP ∗ is of characteristic p, F -regular (resp. F -rational) and
excellent, then AP is F -regular (resp. F -rational).

• ([6]) If AP ∗ is of characteristic p and F -pure (resp. Cohen–Macaulay
F -injective), then AP is F -pure (resp. Cohen–Macaulay F -injective).

Generalizing notions in algebraic geometry or commutative ring theory
to notions in equivariant settings is an important problem. It is natural to
ask, what is an equivariant version of a local ring.

Definition 4.5. A G-scheme Z is said to be G-local if there is a unique
minimal non-empty G-stable closed subscheme P of Z. In this case, we say
that (Z, P ) is G-local.

If G is trivial, then a scheme Z is G-local if and only if Z ∼= SpecA for
some local ring A. For a general G, a G-local G-scheme need not be affine
(see below).

Here are some examples of G-local G-schemes.

Example 4.6. Let S = SpecZ, and G = Gn
m. Let A be a G-algebra (so A

is a Zn-graded ring). Then X = SpecA is G-local if and only if A is H-local
(i.e., there is a unique maximal graded ideal) as a Zn-graded ring.

Example 4.7. Let k be a field, and G a reductive group over k. Let A be
a finitely generated G-algebra. For p ∈ SpecAG, the G-scheme X = SpecA′

with A′ := AGp ⊗AG A is G-local.

Example 4.8. Let k be a field, G an affine algebraic k-group scheme, H a
closed subgroup scheme of G, and X = G/H. Then (X,X) is G-local. So a
G-local G-scheme need not be affine, even if G is so.

Example 4.9. Let k be an algebraically closed field, G a reductive group
over k, and B a Borel subgroup. Then (G/B,B/B) is B-local, since B/B is
the smallest Schubert variety.



The following was proved using Fogarty’s idea [1]. For the definition of
geometric quotients, see [13].

Theorem 5 ([4]). Let the G-scheme X be of finite type over S. If ϕ : X → Y
is a universally submersive geometric quotient, then Y is of finite type over S.
If M is a coherent (G,OX)-module, then (ϕ∗M)G is a coherent OY -module.

Here is an application of G-local G-schemes to invariant theory.

Theorem 6 ([9]). Let k be a field, and G a linearly reductive algebraic
group over k. Let Z be a noetherian, Cohen-Macaulay G-scheme with an
affine geometric quotient p : Z → W . Then W is (noetherian and) Cohen-
Macaulay.

In the proof, we may assume that Z is G-local. The case that G is a finite
group is due to Hochster–Eagon.

(4.10) Equivariant versions of some theorems in local ring theory are ob-
tained. Until the end of this talk, let (X,Y ) be G-local, and let η be the
generic point of an irreducible component of Y . Let i : Y ↪→ X be the
inclusion.

Lemma 4.11. The stalk functor (?)η : Qch(G,X) → Mod(OX,η) is faithful
and exact.

As a corollary, we have an equivariant version of Nakayama’s lemma,
which is well-known for affine case.

Lemma 4.12 (G-Nakayama’s lemma). ForM∈ Coh(G,X), if i∗M = 0,
then M = 0.

(4.13) Next we define an equivariant version of local cohomology.
The functor ΓY = Ker(Id→ g∗g∗) is a functor from Mod(G,X) to itself,

and preserves Lqc(G,X) and Qch(G,X), where g : X \ Y ↪→ X is the inclu-
sion. The derived functor RΓY : D(G,X)→ D(G,X) preserves D+

Qch(G,X).
From now on, assume that X has a (fixed) G-dualizing complex I.

Lemma 4.14. The cohomology group of RΓY (I) is concentrated in one place.

If H0
Y (I) := R0ΓY (I) 6= 0, then we say that I is G-normalized. From now

on, we assume that I is G-normalized.



Definition 4.15 ([9]). We set EX := H0
Y (I), and call it the G-sheaf of

Matlis.

Lemma 4.16. The stalk EX,η is the injective hull of the residue field of the
local ring OX,η.

Thus EX is the equivariant version of the injective hull of the residue field
of a local ring.

The next lemma gives a characterization of quasi-coherent (G,OX)-modules
of finite length on a G-local G-scheme X.

Lemma 4.17. For M∈ Qch(G,X), the following are equivalent.

• M is of finite length in Qch(G,X).

• M is coherent in Qch(X), and there exists some n ≥ 0 such that
InM = 0, where I is the defining ideal of Y .

• Mη is an OX,η-module of finite length.

Let F denote the full subcategory of Qch(G,X) consisting of objects of
finite length. The following is an equivariant version of the Matlis duality.

Theorem 7 ([9]). Let D denote the functor HomOX (?, EX) : Mod(G,X)→
Mod(G,X).

• D is an exact functor on Coh(G,X).

• D(F) ⊂ F .

• The canonical map M→ DDM is an isomorphism for M∈ F .

• D : F → F is an anti-equivalence.

Finally, we state the equivariant version of the local duality.

Theorem 8 (Equivariant local duality, [9]). Let F be a bounded below
complex in Mod(G,X) with coherent cohomology groups. Then there is an
isomorphism in Qch(G,X)

H i
Y (F) ∼= HomOX (Ext−iOX (F, I), EX).
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