Errata for "Auslander-Buchweitz Approximations of Equivariant Modules"

Mitsuyasu Hashimoto

September 18, 2008

An up-to-date version of this errata is available at author's web page http://www.math.nagoya-u.ac.jp/~hasimoto. It would be highly appreciated if you could write to the author to the e-mail address hasimoto@math.nagoya-u.ac.jp to point out errors or giving comments that would be useful for other readers. Thank you in advance for your help.

 (resp. _{-}) denotes the line number counted from the top (resp. bottom) of the page. For example, 123_2 means the line before the last of page 123. Parentheses (?) surround necessary insertion, while brackets [?] surround deletion. The rightarrow \Rightarrow is used for replacement.

- 7¹² has an image \Rightarrow has a kernel.
- 12_{16--15} Written proofs are available now, see [1] and [2].
- 28⁶ any direct summands \Rightarrow any nonzero direct summands.
- 28^7 if $M_0 \in \mathcal{A}$, \Rightarrow if $M_0 \in \mathcal{A}$ is nonzero,.
- 40¹ We only prove a ⇒ We only prove the assertion for the case where a is assumed.
- 46_{11--9} For a finitely generated *R*-module *M*, we have... \Rightarrow this assertion is true if dim $M < \infty$ but not in general.
- 57^{{12--13}} This definition is unusual. The usual definition of a Gorenstein module over a local ring is, a (finitely generated) maximal

Cohen–Macaulay module of finite injective dimension (see [4, (3.6)]). A Gorenstein module over a non-local ring is a finitely generated module which is Gorenstein locally.

- 90_{14--12} However, if R is a... \Rightarrow Omit this sentence.
- 93^{10--11} The author knows the answer only for the case that M is R-projective. The question is also true for the case that R is Noetherian and V is R-finite.
- 98^{14--15} the dual Hopf algebra \Rightarrow the dual bialgebra (if H is a Hopf algebra, then $U = H^{\circ}$ is a Hopf algebra, and is called the dual Hopf algebra of H).
- pp.120--121 In Theorem I.4.10.22, the correspondence $\mathbf{d} \Rightarrow \mathbf{a}$ should have been explained. To $(\mathcal{X}, \mathcal{Y}, \omega)$, we associate ω . This gives the correspondence.
- 124^5 Moreover, $_{G,A}\mathbb{M}$ has... \Rightarrow Omit this sentence. The corresponding part in the proof is wrong. Indeed, $\operatorname{Hom}_R(A, R)$ is not A-injective in general.
- 139¹⁷ U should have been assumed to be non-empty here.
- 141_4 The proof of Remark 2.1.12 is false, and is valid only for affine G. Nevertheless, the assertion of the remark is true [3, (31.14)].
- 153_11 so is $M \Rightarrow$ so is M_P .
- 226_3 $V^{(1)} \Rightarrow \bar{V}^{(1)}$.
- 252³ local version \Rightarrow graded version.
- 254^10 The *i* in $\bigwedge^i V$ should be replaced by something else, because it is not the same *i* in F_i .
- 257³ $\mathbf{Z} := \mathcal{R} \otimes W^* \Rightarrow \mathbf{Z} := \mathcal{Q}^* \otimes W^*.$
- 257⁵ The exact sequence should be:

$$0 \to \mathbf{Z} \xrightarrow{\imath} \mathbf{X} \times \mathbf{G} \to \mathcal{R}^* \otimes W^* \to 0.$$

References

- L. Alonso Tarrío, A. Jeremías López, and M. J. Souto Salorio, Localization in categories of complexes and unbounded resolutions, *Canad. J. Math.* 52 (2000), 225–247.
- [2] J. Franke, On the Brown representability theorem for triangulated categories, *Topology* **40** (2001), 667–680.
- [3] M. Hashimoto, Equivariant Twisted Inverses, "Foundations of Grothendieck Duality for Diagrams of Schemes" (J. Lipman, M. Hashimoto), Lecture Notes in Math., Springer, to appear.
- [4] R. Y. Sharp, Gorenstein modules, Math. Z. 115 (1970), 117–139.