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PREFACE

The 4-th Symposium on Commutative Algebra in Japan was held at
the Karuizawa Training Institute of Nihon University during the peried
3-6 November 1982, with the financial support from Professor M. Nagata
of Kyoto University by thé Grant-in-Aid for Cooperative Research.

There wvere 51 participants including two from foreign countries.

This volume consists of the proceedinds of almost all of the talks
at the Symposium. The papers are arranged in alphabetical order of
authors' names. The academic program itself was built with the princi-
ple that participants should be and can be speakers and as a logical
result, the schedule vas so hard that it might be painful to attend all
the lecturess However in spite of possible disadvantages, we would
like to keep this principle in future too, because it is extremely
favorable to younger participants.

In the Problem Sessioh, participants at'the symposium were invited
to submit open problems on Commutative Algebra or in their own fields
of researches, and this volume includes the problems posed in the
Session. I am profoundly grateful to the contributors for their co-

operation.

It is é great pleasure to record my gratitude and that of my co-
organizers Y. Aoyama, S. Itoh and K. Yoshida, to N. Suzuki of
Shizuoka College of Pharmacy and T. Kambe of Nihon University who
contributed so much to the smooth-running arragements and friendly
atmosphere of the symposium. I am also grateful to Mrs. T. Oshitani
and Miss S. Rachi for their kind assistance during the preparation for

the symposium.

Finally, I would like toexpress my hearty gratitude to the late
Professor M. Fukawa of T6kai University for his contribution of a lec-
ture at the symposium. He was gone on 14. January, 1983 and his
article appearing in this volume is his final paper, though it ended

vith "to be continued".

March, 1983
S. Goto
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On the Endomorphism Ring of a Canonical Module

Ehime Univ. Yoichi Aoyama
By i
Nihon Univ. Shiro Goto

A ring will always mean a commutative noetherian ring with unit.
Let R be a ring, M a finitely generated R-module and N a
submodule of M . We denote by MinR(M) the set of\minimal elements
in SuppR(M) énd put UM(N) = N\ Q where Q runs through all the
primary components of N in M such that dim M/Q = dim M/N . Let
T be an R-module and a an ideal of R . ER(T) denotes an
injective envelope of T and Hi(T) is the 1i-th lceal cohomology
module of T with respect to gf. We denote by ~ tﬁe Jacobson

radical adic completion over a semi-local ring. For a ring R, Q(R)

denotes the total .quotient ring of R

Definition ([4, Definition 5.6])." Let R be a local ring of dimension
n and with maximal ideal p . An R-module Xp is called a
R A~ n
canonical module of R 1if KRQ%{R = HomR(HR(R),ER(R/E))
(For elementary properties of canonical modules, we refer the reader

to [4, 5 Vortrag und 6 Vortrag] and [2, §1].)
i

Throughout this note A denotes a dl-dimensional local ring
with maximal ideal m gnd canonical module K . We note that KE is
a canonical module of Ap for every p in SuppA(K) by [2, Corolilary
4.3]. We put H = HomA(E,K) and h is the natural map from A to

H . At the 3rd conference on commutative algebra held at Rokko,

November 4 -7, 1981, we showed the following properties of H
-1 =



(1.1) H 1is a finite (82) over-ring of A/UA(O) contained in
Q(A/UA(O)) . ([2, Theorem 3.2])

(1.2) dim, Coker(h) < d-2 . ([2, Proof of Theorem 4.2])

A
(We define dim 0 to be -« .)

In this note we show that H is characterized by the above

properties, that s,

Theorem 2. Let R be a ring which satisfies the following conditions:
(1) R is a finite (82) over-ring of A/UA(O) ,
(11) For every maximal ideal n of R, dim R = d , and
(#) dim, Coker(A+R) < d-2 . -

_Then R 2 H as A-algebras. If PQQ:Q(A/UA(O)) , the condition (ii)

holds (cf. [2, Proof of Theorem 3.2]).
Before proving Theorem é; we note the following

Propositioﬁ 3. The following are equivalent:

-

(a) The map h 1s an isomorphism.

(&) R 1s (s,).

(c) A 1s (8,). |

(Proof) (a) <« (b) is due to [1l, Proposition 2] and (b) = (c) is well
known. (c)=> (a) was proved by Ogoma [6, Proposition 4.2]. In [3]

the writers give a proof, using [2, Corollary 4.3]. (q.e.d.)

Corollary 4. -Assume that dim A/p = d for every p in Min(A)

Then the»(Sz)—locus { p €Spec(4) | AE is (82)} is open in Spec(A)

(Proof of Theorem 2) We may assume UA(O) = 0 because K 1is a
canonical module of A/UA(O) ([2,(1.8)])and H = HomA/UA(O)(K,K)

L = HomA(R,K) is a canonical module of R , that is, Ln is a

canonical module of Rn for every maximal ideal n of R by [4, Satz

5.12]. Since aim, R/A<d-2, HomA(R/A,K) = 0 and Exti(R/A,K) =0
- 2=



by [2,(1.10)]. Hence we have an isomorphism L = HQmA(R,K)-4¥ HomA(A,
K) 2 K from the exact sequence 0 — A — R— R/A— 0 . From this
isomorphism, we obtaiﬁ an A - algebra isomorphism from H to HomA(L,
L) . Because H 1is commutative, so 1is HomA(L,L) and HomA(L,L) =

HomR(L,L) . Since R is (Sz), R 2 HomR(L,L) . (q.e.d.)

The following proposition is an essential part of the proof of

[2, Theorem 4.27.

Proposition 5. Let B be a local ring of dimension n and assume

that there is a ring R . satisfying the following conditions:
(i) R 1is a finite (52) over-ring of B,
(ii) For every maximal ideal p of R, dim RR =n ,
(#i1) R has a canonical module L , i.e., LB is a canonical
modulé of RR for every maximal ideal p of R , and
(iv) dimg R/B £ n-2

Then L , as a B-module, is a canonical module of B , UB(O) =0

and R = HomB(L,L) as B-algebras.

The following proposition is rather obvious, but it is wcivn

stating.

Proposition 6. Let n,,-.

A

N . . r ~
£ has a decomposition K = inKi by indecomposable . A -modules Kl"

SR ¢ be the maximal ideals of H . Then

|11

P
., K. such that H
r n,

Kj) =0 for i #3J

Homﬁ(Ki,Ki) for i=1,...,r and HomK(Ki,

Proposition 7. H 1is a Cohen-Macaulay ring if and only if X 1s a

Cohen-Macaulay module.

e

(Proof) Since H = HomA(K,K) and K HomA(H,K) s the'assertion

follows from the following Lemma 8. (q.e.d.)

For a finitely generated A -module M of dimension~ d , we put

-3 -



M™A
same argumen: as in [1, Lemma 1], we have the following

K., = Bemy (LX) . (Wote that Ky®, A = Hom, (#3(M),E,(A/m)) .) By the

Leﬁﬁa 8. Let M be a finitely generated A -module of dimension d

and depth t
(1) If M 1is a Cohen-Macaulay module, then Ky 1s also a Cohen-
Macaulay module.
(2) Assume that M is not a Cohen-Macaulay module and put s = max
{1]1<d and H;(M) # 0}
i )
(i) 1Ir depthﬁ HomA(HE(M),EA(A/m)) = 0 , then
d-s+1 if s >0,
depth KM =

(11) If s =t and’ depthy Hom,(H'(M),E,(A/m)) = u , then

ol if s =0

depth K,, =

d-t+u+l if u <t ,
M

-d if u=t

Corollarx (Schenzel). A is a Cohen-Macaulay ring if and only if

A 1is (S ) and. K 1s a Cohen-Macaulay module.

Next we consider a relation between H and ideal transforms.
In the following we assume that d 2 2 and U,(0) =0 . Let ¢ =

A:AI{ . Since KE 1s a canonical module of AR for every prime ideal

p of A, AE is (S2) if and only if El;é ¢ by Proposition 3. Let

T be the ¢ -transform of A , i.e., T = { x €Q(a) | gtx <A for

some t } . Then T possesses the following properties:

(10.1) T is finitely generated as an A - module. (ef. [5,(2.7.2)])
(10.2) dimA T/A £ d-2
(10.3) T is (8,).

Hence, from Theorem 2, w= obtain the following

Proposition 11. T £ H as A -algebras.

-4 -



We denote by A%  the global transform of A, i.e., A= {xe€
aa) | mPx A for some t } . By [5,(2.3.2)], A® is finitely

generated as an A - module.

Corollary 12. A8 = H as .A-algebras if and only if depth - min
{2, dim Ap_} for every .p in Spec(A)~~{m} . In particular, if

H;(A) is of finite length for 1 < d , then A8 = H as A-algebras.

Remark 13. The following are equivalent:

(a) HIJI‘I(A) is of finite length (resp. A is a Buchsbaum ring) and
Hi(g) =0 for 1#1,d

(b) _There is a Cohen-Macaulay intermediate ring B between A and
Q(A) such fhat B is finitely generated as an A - module and
B/A is of finite length (resp. mBCA ).

Tn this case, B 1is uniquely determined, i.é., B = AB , and Hi(A) =

B/A . (cf. the second writer’s paper : On the Cohen-Macaulayfica-t—ion

of certain Buchsbaum rings, Nagoya Math. J. 80 (1980) 107-116,

Theorem(1.1).)
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GALOIS THEORIES
FOR PURELY INSEPARABLE MODULAR EXTENSIONS

Kiyoshi Baba (Oita Univ.)

This report gives a summary of Galois theories for purely
inseparable modular extensions by using higher derivations,
which have been developed mainly by Davis, Heerema, Deveney,
and Mordeson from the late 1960°’s to the early 1980°’s. We
restrict our topics to the case of finite purely inseparable
modular extensions and modify their results in part.
Let L be a field of Eharacteristic p> 0 and K
a subfield of L with [L:K] < oo. A higher derivation d
= {dj; 0< j.<m} on L of rank m is a collection of m additive
homomorphisms satisfying the following property:
(i) 'db(a) = a for all a in L.
o n
(ii) d (ab) = 27,;_, d;(a)d__;(b)
for all a, b€ L and 0< n< m. This is equivalent to saying
that the mapping d: A——>A[t:m] = A[T]/Tm+1 defined by
m .
d(a) =‘2:j=0 dj(a)tJ is a ring homomorphism and 'do = id.
The set Hm(L) of all higher derivations on L of rank m is
a group with respect to the composition dee = f = (fj) where
£o= 2.0
j = =0 94%5-4
d =1{d.; 0L j t
{ 3 j&<m} to d j
and set LG4= {a € L; dj(a) =0 for 1%£j<L<m and (dj) € G}.

for d

(dj) and e = (ej). (We abbreviate

(d:).) Let G be a subset of Hm(L)

Let H™(L/K) denote the subgroup of HM™(L) consisting of those

d whose fields of constants Ld contain K.



§ 1. R. L. Davis ([1]', [z

His approach is to examine the upper central series.

Definition 1.1. Let G be a subgroup of Hpn(L). Then we seét
G1 = G,

6, ={a

for 2< ig p" + 1. Then G D G,> --- 2Cpn,, and each G;

(4;)°€ 6 dy = =+7 =dyg = 0}

is a normal subgroup of G. Hence we set

D(G3) = 63/C341
for 1< i < p". We define a mapping of D(G;) -into Der(L) by
dGi+1r———> di where 4 = (dj). This mapping is injective, '

therefore we identify D(Gi) with its image in Der(L).
n .
We shall define ad eHP (L) to be (ade) for a €L and

n
d = (dj) e P (L).

n
Proposition 1.2. Let G be a subgroup of HP (L) and F

a subfield of L with the property that the restriction of G

to F is a subgroup of Hpn(F). Assume that the restriction of
D(Gl) to F is non-zero. Furthermore suppose the following:

(1) G is closed under scélar multiplication by elements
of F.

(2) The restriction mapping of each D(Gi) into Der (F)
is injective for 1 <X i < p™. ,

(3) 4, (B) T E for 1< h<p?! and d-= (4;) € 6,
where E is the kernel of D(Gpn). 1

Then the mapping of G into HP (E) given by d = (dj)
»-—-—)(dob, ddE’ dsz; ...) is an injective group homomorphism
where djh is the restriction of dj. to E. Its homomorphic

image of G is denoted by CG.



Definition 1.3. Let G satisfy the hypothesis of Proposition

1.2. We say that G 1is structured relative to F if the following

conditions are satisfied:

(1) Each D(Gi) is closed under Lie products and the taking

of p-th powers for 1<£ i X pn.
(2) D(Gpitl) = D(Gpi+1) for 0<i<n-—-1.

n
Definition 1.4. Let G be a subgroup of HP (L). Then we
n-1 '

denote by S the subgroup of HP (L) obtained by the deletion

of the last p" — pn_1

‘ n
?n+1 = {G; G is a subgroup of HP (L) such that:

. . i
(i) c'c (= C(Cl'lG)) is structured relative to LP  for

0<ifn,

(ii) D(Gpn) is fin'iFe dimensional over L,

(iii) S € gn’ i.e., S satisfies the exponent n Galois
theory_} ,

-3

and

K

nel ={K; K is a subfield of L such that:

(i) Lis a purely inseparable modular extension of - K,
(ii) the exponent of L over K is n + 1} .
Theorem 1.5. (1) If G 1is in gn+1’ then there exists
n
. = p
K in K n+l such that G HY (L/X).

. n .
(2) If H=HP (L/K) with D(Hy) # {0}, then H €& 9.1

We define mappings ?n+1: 3n+1’-’—>]<:n+1 and ')bn+1‘

n
Komoi—> Gne1 By Prar(® = L8 and (0 = B (1/K).

Theorem 1.6. '7Ln+19>n+1 = id and ?n+17bn+1 = id.

Remark 1.7. (1) Set E(i) = the kernel of D(CiGpn-i),

- 8 -

mappings from all elements of G. We set



i+l
then E(i) = K(LP ) for 0% i<n and E(0) = E.

n n-1 n-2
HP (L), W (1), P (L),..
v v
n-1
WP (E(0)), |
v n-
cG HP (E(1)),...
U .
cZe

.

(2) The Galois theory between 9’1 and J; is Jacobson’s.

§ 2. N. Heerema and J. K. Deveney ([3], [81)
"A standard set of generators' consisting of a finite set of
higher derivations on L of rank m plays a central role in this

Galois theory.

Definition 2.1. A subset {x;, ..., x } of Lis called
a subbase for L/K if the following conditions are satisfied:
(D '{xl, ...,xr]C.L——K.

(2) L=K(x,)@---®K(x).
10 % R T

Definition 2.2. Let N = Nlu <+« UN be a subbase for

n+l
L/K such that- each element of Ni has exponent i over K for

1<i<n+ 1. Set Ny = {x;, sy xyg ) Let Fo={alh; 1<

<n+1 and 1< h<j,} be a subset of H™(L/K) defined by
the following way:
$ (imy(r,s) f % - m/pl] + 1,
athex ) =
0 if & # [m/pl] + 1

for 1<i, r<n+ 1, 1<h<j; and 1< s < j_  where



) (b)) (r,s) =1 if (i, h) = (r,s); S(i,h)(r’s) =0 if (i, h)
£ (r, s). .Then & is called a standard set of generators for

Hm(L/K), and N is called a dual base for 3 .

Definition 2.3. Let d be a higher derivation on L of
rank m defined by d(a) = do(a) + dF(a)t“ for ael. T_henl we
define a higher derivation v(d) on L of fank m. by v(d)(a)
= do(a) + d,,.(a)t’“'1 for a€ L, and cd by «cd(a) = dO(a) +
cdl*(a)t’“ for a€ L and c € L. ’

Definition 2.4. | Let F be a standard set of generators
for HM™(L/K). We shall set v(F) = {vi(d); de F , i= 0} where
v0 = id and Vi(d) =~v(vi'1(d)). We denote by <V(F)> the
subgroup of Hm(L) generated by {ce; cel and e & \7(5‘)}.

Definition 2.5. Let .n be a non-negative integer such that

n+l - we define:

pns m<Lp .
g - {G; G is a subgroup of H™(L) and G ={v(F)) where

} is a stz;;ldard set of generators for Hm(L/LG)} ,

and '

LK, = {K; K is a subfield of L, L is a purely insep;arable

. n+l
modular extension of K and LP < K].

4De.fihition 2.6. Let G be a subgroup of H™(L). Then G
is called a Galois subgroup of Hm(L) if G = Hm(L/LG).

Theorem 2.7. G 1is Galois if and only if G is in 9 .

We define mappings @ : 3‘%]( and ’)L  K——> 3 by
P =18 and #(K) = HNL/K).

Theorem 2.8. 7P = id and PP = id.
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Remark 2.9. Cl) In.t8], a finite abelian normal independent
jterative subset of Hm(L) is used instead of a standard set of
generators for Hth/LG). )

(2) If m-= pn, then the following holds by Theorem 1.5 and
2.7: -
(‘?) gn’rlcg'

() I1f G is in & with D(G;) # {0}, then G € 2.1

3 3. .N. Heerema, J. K. Deveney and J. N. Mordeson ([4]1,[51,[71)

In this section we exhibit a Galois theory‘ﬂsing pencils of
higher derivationms. Let H(L/K) be a set of all higher derivations
d on L such that the field of d-const;nts Ld contains K and

the rank of d is some power of p.

Definition 3.1. Let d = (dj) be an element of H(L/K) and
let V(d) = e = (ej) be a higher derivation on L whose rank
equals p times the rank of d defined by 'ej = dj/p if p
divides j; ey = 0 if p does not divide j. Let d and d' be
elements of H(L/K). We say that d' is equivalent to d if
there exists a non-negative integer i such that d' = Vi(d) or
d = Vi(d'). The equivalence class of d is denoted by d and
is called the pencil of d. Set H(L/K) ={~a; d € H(L/K) } We
give H(L/K) a group structure by defining de to be the pencil

of d'e' where d' is in d, e' is in e and the rank of d'

= the rank of e'.

Definition 3.2. A subgroup G of H(L/K) is Galois if
¢ = HL/LY).

In our case a characterization of Galois subgroups is

essentially the same as in §2. We define:
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9 ={G; G is a Galois subgroup of I-T(L/K)},
and
i X ={_F; LD FD>K and L is a purely inseparable modular
extension of F}.

Then in the similar way as the preceding sections a_Ganis

theory is established.

Addendum. In [6], M. Gerstenhaber and A. Zaromp has developed

a Galois theory by using Artin-Hasse exponentials.
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Problems on canonical rings of algebraic varieties

University of Tokyo , Takao Fujita

In this repo;t we make a review of problems concerning the
_following

Guess: The canonical ring of any algebralc manifold is a finitely
generated algebra.

Hefe, manifold means a non-singular irreducible complete scheme
defined over an algebraically closed field k.

Definition and Notation. Given a line bundle L on an algebraic
variety (= 1irreducible reduced complete k-scheme) V, let G(V, L) be

®t). For the canonical bundle

the graded k-algebra - &)tZ_OHO(V’ L
K of a manifold M, G(M, K) is called‘the canonical ring of M.
when |tL’] = @ for any t 2> 0, we define the L-dimension
X(L, V) to be -00. Otherwise we define )((L, V) to be the
maximum of the dimension of the image of V by the rational mapping
defined by the linear system [tLl, t running through éll the positive
integers. W (K, M) is called the Kodaira dimension of the manifold
M and is denoted by MW (M). This is a birational invariant of M.
Now we present positive and negative partial reéults.
Theorem‘(cf. [z] & [F2]). G(V, L) 4is finitely generated if V
is normal and if X(L, V) = 1.
Theorem (cf. [Z]). G(M, K) is finitely generated if dim M = 2.
Fact (Zariski). G(V, L) is not always finitely generated even
if V 1is a smooth surface.

Fact (Wilson). There exists a locally Gorenstein threefold V

whose canonical ring G(V, O)V) is not finitely generated.
' - 14 -



Question. Is G(Vv, GJV) finitely generated when vV is a
locally Gorenstein surface ?

Thus the problem is of subtle nature and is related to the
geometry of singularities. For example, among Gorenstein singularities,
we suspect, there are good ones and bad ones.

Let. us recall the proof of the Guéss in case dim M = 2. We may
assume X (M) = 2. Then we have a birational morphism f: M—> M'
onto a manifold M' which contains no exceptional curve (= a smooth
rational curve E with E2 = -1). M' turns out to be determined
uniquely by M and is -called the minimal model of’ M. The canonical
bundle X' of M' turns out to be numer;cally semipositive, 1. €.,
K'c 2 0 for any curve ¢ in M'. Moreover, if K'C = 0, we can
show that C é’Pl and 02 = -2. Using algébraic index theorem we
infer that each connected component of the union of such (-2)-curves
has a configuration corresponding to one of the Dynkin diagrams An’

Dn’ E6, E So they can be contracted to rational double points.

72 E
Let g: M'—> M" Dbe the contraction morphism. Then K' 1is the
pull-back of the duallzlng sheaf " of M". By Nakai's criterion
we infer that (" 1s ample. Therefore a positive multiple of it
is spanned by global‘sections and hence so is K'. It follows that
a(M, K) = G(M', K') 1is finitely generated. M" = Proj(G(M, K)) 1is
called the canonical model of M.

We used two main tools in the above proof ; the theory of
minimal models and the theory of rational double points. We will
try to generalize both theories in higher dimension.

One might say a manifold M to be relatively minimal if M 1is
not a blowing-up of another manifold with non-singular center. Then,
obviously, for any manlfold M, we have a birational morphlsm f: M
—>M' onto a relatively minimal manifold M'. However, such a
model is not unique and does nop have good propefties in general.

- 15 -



For example, K' is not always numerically semipositive. Among experts
it is now realized that minimal models should be allowed to have mild
siﬁéularities in order to play the role of M' in the preceding proof.
We would be happy if we can find a locally Gorenstein variety (hope-
fully with only rational singularities) which is birationally équiva-
lent to the given.manifold M and whose canonical sheaf is numerically
semipositive. As a matter of fact, this hope is still too optimistic.
At least we should consider certain quotient singularities too.

We propose here a different approach. Our "minimal model" is not
a variety itself, but a pair of a variety and a Q-divisor on it (modulo
certain birational equivalence among such pairs).

Definition. A @Q-divisor on a manifold M is a linear combina-
tion of prime divisors on M with coefficients being rational numbers. .
It 1s sald to be effective if.the coefficients are non-negative.

A @-line bundle is an element of Pic(M)® Q. A @-line bundle
H 1is said~to be(@Umericallj)semipositive if HC 2 0 for any curve C
in M (The inégrsection number HC € § 1is defined in the obvious way).

A Q-line bundle L is said to be pseudo-effective if. X (tL + A, M)
- 2 0 for aﬁy t 2 0 and any ample line bundle A. M) (L, M) is
defined to be X (mL, M) for a positive integer m such that mL is
a usual line bundle.

Conjecture (Generalized Zariski decomposition)._ For any pseudo-
effective @-line bundle L on a manifold M, there are a birational
morphism f: M*-—9 M and an effective @-divisor N on M* having
the following properties:

1) H=fL-N is (numerically) semipositive.

2) For any surjective morphism g: w-—~>M* and any effective Q-divisor
E on W such that g*f*L — E 1s semipositive, E — g*N is an effec-
tive @Q-divisor on W.

Remark. Roughly speaking, N is universally the smallest effective
- 16 -



*
Q-divisor with the property 1). So such a pair (M , N) is unique
up to a birational equivalence in the following sense: Let (M#, N#)

: *
be another such pair. Then, on any manifold dominating M ><M M#

birationally, the pull-backs of N and N# are the same Q-divisor.
Hence we call N (resp. H) the negatiwe (resp. semipositive) part of
L. We have HO(M, tL) & HO(M*, tH) for any t 2 0 as long as both
tL and tH are usual line bundles.

Remark. When dim M = 2, the classical Zariski decomposition
(cf. [Z] & [F1]) has the above desired property. In particular, we
can take M* to be M "itself. If L is the canonical bundle of M,
H is just the'pull-back of the canonical bundle of the minimal model
of M (unless M is ruled, in which case K 1is not pseudo-effective).

Suppose fhat we have a manifold M whose canonical bundle KX
admits a Zariski decomposition as above. Since G(M, L) is not always
finitely generated even if L admits a Zariskil decomposition, the
Zariski decomposition of K Should enjoy better properties than
general line bundles. So we would like to ask:

Question. Does there exist a birational morphism h: M{——a\f
onto a locally Macaulay variety V such that < = Cuvm (= the torsion
free part of Q)é?m)‘ is an invertible sheaf on V with h*gj =mH ?

Conjecturally V 1is expected to have only certain mild singular-
ities ( called términal singularities by M. Reid). When dim M = 3,
terminal singularities are suspected to be isolated quotient singular-
ities. Any way, if such a variety V exists, it may be called 2
minimal model of M.

Canonical Conjecture. Let M be a manifold whose canonical
bundle K is pseudo-effective. Then K admits a generalized Zariski
decomposition and its semipositive part ~H 1is semiample, that means,
lmHl has no base points for some m > 0.

Our Guess would follow from this conjecture. In fact, this con-
- 17 -



jecture is true when M 1is a surface. As for threefolds we obtained
recently the.following results. We assume char(k) = 0 in both.

Theoremv(Fujita). The canonical conjecture is true if W (M) =1
or 2.

Theorem (Kawamata). The canonical conjecture is true if K is
numericaliy semipq;itive and if YX(M) = 3.

The methods used in the proofs are different from the classical
one for surfaces. We do not use the existence of a minimal model
(generalized Zariski decomposition is enough). We do not construct
(a candidate of) the canonical model of M before we show the finitely
generatédness of G(M, K). Thus, the following problem remains still
wide open.

Problem. Assume G(M, K) is finitely generated. Then, what
kind of singulariﬁy can the canonical model have ?

When K 1is semiample and )((M) = 3, the canonical model has
only ratiohal Gorenstein singularities. Moreoyer, except at finitely
many points, it has only compoundADu Val singularities (this means,
one gets a rational double point by cutting a general hyperplane
passing the éingular point). 1In general, one should expect to encount-
er quotient singularities of them.too. V

When M((M) = 2, the canonical model (a surface in this case)
seems to héve only rational singularities, but they are not necessarily
rational double points. ‘

Problem.‘ Study locally :Macaulay singularities such that the tor-
sion free part (or the reflexive hull) of ajm is invertible for some
positive integer m. Are these singularities quotient of Gorenstein
singularities ?

The case of rational singularities are especially important. Note
that all the rational surface singularities are quotient singularities.

Thus, I think, there is an interesting class of local rings between
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Gorenstein ones and Cohen Macaulay ones. Besides this problem, it will
be important to study the property of positive multiples of canonical

modules.
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Theory of generalized valuations 1

Masami Fukawa Dep. of Math., Tokai Univ,

Here is an attempt to see what are the common features to Krull

valuations and absolute valuations.
1. Value systems

1.1 Definitions.

™ is a value system (abbreviated by vs.)

rr‘ is a linearly ordered set.

r is a commutative monoid wrt addition. (unity=0)

[T is a commutative monoid wrt multiplication. (unity=1)
0=Min [ . »
Every.non-o-element is multiplicatively invertible.
L(p+ V=sp+al.

LSP = L3V P+, -LYsrd”,

\ [ has at least three elements.
Let [ be a value system,

*=the multiplicative group consisting of all non-O-elementsof [ .
is Archimedean & Y¥e[ 2neN Ys< n. (n means l+.ee+l, n times.)
is strict & ((; £0 = -L+P>u()
is of; type A & 1 2 => 1<2<3<4<...

T 71 7T 1)

is of type B & 1=2 = 1=2=3=4=,.,.
The above J/'s are proper implications, shown by the following
examples 3 and 4.
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1.2 Examples of value systems.
1. Let K be a subfield of R. Then K ={3<K|3Z0} is a vs.
(Archimedean.) |
2, Let A Dbe a linearly ordered Abelian group multiplicatively
represented. Define o +? =Max(« , ¢ ). Then " =0YVYA 1is a vs. (of
type B.) Every vs of type B is of this form.
3., Let F“l,t‘z be vs's. Then
e
order being lexicographic
addition and multiplication componentwise
defines a vs [ . (denoted by f‘lx‘\z)
T‘lxr‘2 is Archimedean iff f‘l is Archimedean. rklﬁf‘z is strict iff
I, or [, is strict. fhlirlz is of type A iff [ or (", is of type
A, (We get éxamples of Archimedean vs of rank > 2, and non-Archimedean
strict vs.)
4, Let r‘l be a vs of type B and r‘z be any vs. Then
C i,
order being lexicographic
multiplication beiné componentwise
'(dl,dzw if &I)Fl
(d, dy)+ (g,,(’t)z (B1sf5) if i<y
. (dysdptfp) If dy=py
defines a vs . " is necessarily non-strict. " is of type A iff f\z
is of type A. (We get examples of non-strict vs of type A.)
5. Let f‘l be a vs and X be a variable. We have a vs ["=T7(X), the
order being induced by
oo - .
;2‘;0( iXQ‘<§,Fin if oL5=p; for all i>n and o <B. |
M ,(X) is striet iff [, is strict. [1(X) is of type A iff {‘1 is

of type A.
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1.3 A subgroup I of r* is called an isolated subgroup if it is an
interval. Subststems, factor systems modulo isolated subgroups and
homomorphisms of vs's are defined. Noether's isomorphism theorem
holds.
Isolated subgroups form a linearly ordered family. An isolated
subgroup is called principal if it is of the form —
<Y> = \jér |3mez, *nez, YM<3 QXn}.
Prop. A principal isolated subgroup I not equal to {1} has a
maximal properly contained isolated subgroup. (We.shall denote it
by )
Def. rank|[ =ordinal type of the family of all principal isolated'
subgroups.
Structuré theorem. Let [ be of type A. Then there exists unique
isolated subgroup I, such that F/Il is of type B and P':‘O}Ullv

is Archimedean. I1 is actuaily equal to <2>.

1.4 Defir;itions.
A is a half linee=y ¢ A< A Vu(eA,.V er‘,l (.(s(aa(eA).
H(I" )=the set of al}jf half lines. '
HO\.(,(‘“)= 1A€H(F ) | A has Min. or A® does not have Max,}-? Ly, —)). )
v 1 identify
r , > X
ASB& A2B.-
A+B= {3 | e n, IpeB, .L+f$§} .
AB= |3eT™ |3en, se B, ¢rs§ﬁ
= lger‘ ‘31(5 A,alle B, .L(s = ﬂ .
Prop. If [ '=<®>,0<1, and A is a half line0, % [, then
(1) o A<A, (2) We a, od<asd,



1.5 Let [ be a vs. Put
‘U;:{(o(, f)erxr‘\.ts(zﬂ:, (’5"*"35 (¢>0)
(Uv:‘ £>0} gives a uniform structure on | . Addition, multiplication,
and inverse forming are continuous.

Prop. (condition of separatedness)

Toe% Tle-% Tze% Distinct foints have distinct ne'}pourhood systems
-~ (L<(J=>32>0, wre<f),

Prop. Any vs [ has a universal homomorphism ¢ :T—° toa
separated vs. ¢ 1is actually a canonical homomorphism [~ —> T,“/I0
where ‘ '
| {1} if [ is of type B

0={(2)|7 ={'§e\"| (reQ,, seQ,, r<l<s) = r<i< s} if T is of'type A

Prop. Let T~ be a separabed vs. Then
(1) 1im d~%=;(, lim g5 =f» LN S ENE
(2) ¥a LSSk limd =lin¥,= = 1imf,=f .

(the indexing set /\ being a diregted set.)
Theorem. There exists a Vs F‘ which is a separated completion of- .
Examples. .
1. The completion of 'K+ is R,.
5, The vs of type B is separated and complete.
3, If Pl is of type B and rz is separated, then l"lx\"z is
geparated and complete. ‘
4. If \\lﬁ I"2 is separated, then both Pl and Fz are separated,

and l"l is non-strict.
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2. | -valued rings, normed modules
2.1 Let [ be a separated, complete vs.
A ring R is I -valued if a function | lIR—>T" 1is given such
that
lof=0, " [1140, [x+ylsIxi+(y|,  Ixyl=[x11y]
holds. A [" -valued ring is a topological ring in the usual manner.
Prop. (condition of separatedness of a [T -valued ring)
Ty T &=>T,¢=>( |x] =0 = x=0) <> {0} is closed.
A [T -valued field is necessarily a separated topological field.
We have separated completions of M -valued rings and P—valﬁed

fields.

2.2TLet R be a " -valued .r'ing. An R-module M is normed if a
functipn‘l I:M—)HO(P) is given such that
HOH=0,  Ux+yASIXN+UT (s ﬁaxﬂ:{’al uxy  (xeM, y=<M; aeR)
holds. A normed R-module is a topological R-module in the usual
manner.,
Prop. (condition of separatedness of anrnormed R-module)
Tyt 16 T, (x{=0 => x=0) &= [0} is closed.

We have a separated completion of a normed R-module.

2.3 Examples of normed R-modules.
n n
1. M=R". nx||1=1§lx..|er, where x=(x1,...’xn)
n
2. M=R", x| =Max |x;|e [".
i lll-topology=ll I, -topology=product topology on R™.
3, M= ‘x:(x{)eRI l X x_. is absolutely convergent in R}.
Ix)y=T |x,/€R.

R(I) is dense in M.

M is complete if R is complete.
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4. M={x=(x;)eRT |3vel Viel px|<7] .
ixi,= /) ix|eHy(T ).
R(I) lic::[not dens‘e in M.

M is complete if R is complete.

\ \\l-topology =\ ‘L-topologyg— product topology on R(I).

2.4 Let u:M—>M' be a linear map of normed R-modules. Ye[~ is a
bound of u if VxeM fu(x)i<¥lx| holds. u is bounded if it has
bounds. The set of all bounds of u is denoted by llull.
Prop. If u is bounded, 1uﬂeHo(\"). ‘
Prop. If u is bounded, u is continuous. Converse is true if
r* is prinéipal and the function |} is surjective.
Def. Hombd(M, M! )=the R-module consisting of all bounded linesr
maps:M—-)M'. N
6124 (M)={ueGL(M) | both u end u”* are bounded|.
Theorem. GLbd(M) is a topological group in case
(a) VxeM yxyel” or (b) F* is pringipal.

We have no counterexamples when conditions (a) and (b) fail..
3. The theorem of Hahn-Banach

3,1 Let M Dbe a normed R-module.

Def. M is strongly complete ¢=p If families (tl)lel’ (Ai)iﬁl where
teM, AjeHy([) satisfy ¥ier VjeI It -t 0 A +Ay, then there exists
aeM such that VYieI 0t;-al<A; holds.

Strongly complete modules are necessarily complete.

Theorem (generalized.Hahn-Banach theorem). Let K be a [T =-valued
field, M and M' Dbe normed ¥-modules, and N be a K-submodule
of M. If M' is strongly complete, any bounded linear map
v:N—>M' has a linear exténsion u:M—>M' with fuli=tvil.
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Cor. If K 1is strongly complete, then the canonical pairing:
MxHombd(M, 'K)-—>K is non-degenerate.

3.2 Examples of strongly complete modules.

1. R is strongly complete wrt usual absolute value.

2. € is not strongly complete wrt usual absolute value, whereas the
generalized Ha.hn-Banach theorem holds for K=M'=C.

'3, If K 1is a discretely valuated field and M 1is a complete normed
K-module, M 1is strongly complete.

4. If R is strongly complete, then the module M in the example 4

in 2.3 is strongly complete.

continued
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A note on quasi-Buchsbaum rings

shiro Goto (Nihon University)

1. Introduction.
The purpose of my lecture is to establish the ubiquity of quasi-
Buchsbaum rings that are not Buchsbaum and my result is contained in the

following

Theorem (1.1). Let d >3 and hy» Noy eee s hd 12 o be ‘integers.
Suppose that at least two of h 's are positive. Then there exists a
quasi-Buchsbaum local domain A which satisfies the following conditions:

(1) A is not a Buchsbaum ring;
(2) dim A = d ;
(3) lA(H;(A)) h, forall 1g¢igd-1
Moreover if h1 = 0 , the ring A can be taken to be normal.

— — — —

Now let me briefly recall the definition of Buchsbaum (resp. quasi-
Buchsbaum) rings, or more generally that of Buchsbaum (resp quasi-Buchs-
baum) modules. Let A be a Noetherian local ring with maximal ideal m .
Then a finitely generated A-module M of dimension d is said to be
Buchsbaum if the difference

(M) = 1,(M/qM) - e u(@)
is an invariant of M not dependlng on the partlcular choice of a para-
meter ideal q of M , where A(M/qM) and (q) denote respectively
the length of the A-module M/gM and the multiplicity of M relative
to q .*) In this case the local cohomology modules H;(M) (i#£d) of
M relative to the maximal ideal m are vector spaceé, that is m.Hi(M)

(0) and one has the equaéity1 a )
s - i
T =g g )T
(171), where 1A(H;(M)) denotes the length of H;(M) for each i # 4 .
After this fact I would like to say a given finitely generated A-module

M to be quasi-Buchsbaum if

m.H (M) (0)
for all i # dlmAM .**) A Noetherian local ring is called a Buchsbauiu
(resp. qua51—Buchsbaum) ring if it is a Buchsbaum (resp. qua51—Buchsbaum)
module over itself. The theory of Buchsbaum or quasi-Buchsbaum rings and
modules is now developing. Note that there is given in |4| and |5| a very

*) See i3l6fnd |5| as general references on Buchsbaum modules.
**)Cf
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powerful criterion of Buchsbaum modules in terms of local cohomology
which plays a certain role in my lecture (c.f. Lemma (2.3)).

Buchsbaum rings are of course quasi-Buchsbaum rings and provided
HI(A) = (0) for all 14 t, d where t = depth A and d = dim A , a
quasi-Buchsbaum ring A 1is always Blchsbaum (|5]|). Nevertheless without
this extra assumption, quasi-Buchsbaum rings are not necessarily Buchs-
baum: the first counterexample is of dimension 2 and was given by J.
Stuckrad (|8]). Expanding his example, one can easily guarantee that for
a given integer d > 2 , there exists a non-Buchsbaum but quasi-Buchsbaum
local ring A of dimension d with Hé(A) = (0) for all i # 0,1, d
(13]). However even in the latter examples, the rings A are still of
depth 0 and almost all the local cohomology modules H;(A) vanish.

On the contrast according to Theorem (1.1), one can handle numerous non-
Buchsbaun but quasi-Buchsbaum normal rings with arbitrary local cohomo-
logy. In this sense my theorem (1.1) may have some interest. '

The method of consfruction of examples is essentially the same as
in |2]|, which established the ubiquity of Buchsbaum.rings. However for
the present purpose one needs a few preliminaries on quasi-Buchsbaum
modules which I will summarizé 'in the next section. The proof of Theorem
(1.1) itself is simple and shall be given in Section 3.

2. The ubiquitx of quasi-Buchsbaum. modiles.

In this sgction let S = k[xl, Xz, ey Xn] (n >3 ) be a poly-
nom;al ring with n variables over a field k and n =.S+ , the irrele-
vant maximal ideal of S . .

Let M be a graded S-module and p an integer. We regard the p th
local cohomology module HS(M) of M relative to n as a graded S-
module, whose homogeneous component of degree q shall be denoted by

Il-lg(M)lq ( @€ Z ). We denote by M(p) the graded S-module which coin-

cides with M as underlying S-modules and whose graduation is defined by
lM(p)Iq = Mp+q~ for all qe€Z .

A finitely generated graded S-module M is simply called Buchsbaum
(resp. quasi-Buchsbaum) if the Sn—module Mn is Buchsbaum (resp. quasi-

Buchsbaum) .
f f f

Let
(F)) o —F By B L F —Lr -5 — k-=5/n —o0
be a graded minimal free resolution of the graded S-module k = S/n .
Recall that the complex (F) can be identified with the Koszul complex

of S generated by Xl’ X X . For O0<i<n=~-1 1let

o0 s 0 X

M, =k (i=0),
1



=E (1=1)’

Ker (F1 ;. Fi;2) (n-1>1i>2 )

and we clearly have the following

Lemma (2.1). Let 1 <1 <n - 1 be an integer. Then

(1) dimSMi =n .

(2) Hg(Mi) = (0) (p#1i, n),
=1£ (p:i). ,
n -1
(3) 1g(M;/nM;) = (3) and rankgM; = (3 _ 1)
Let e €5y v s en be an S-free basis of F1 such that

each e, is homogeneous of degree 1 . Let 2. ¢ t § n - 1 be an integer.

<
For each subset J of {dq 2, oo- ,11} with #J = t , we put
J't
in Ft = /\F where J ={31, 3'2, cee Jt} with Jp < Jp < - < Jy -
Consider the exact sequenc%

t+1 g o
Fin > Fp — Mg — O

of graded S-modules and put

L, = nM, 2:: Sg(e ,

where J runs through the subsets J of {-1, 2, oo rl} with #J =
t such that J # {1, 2, ..., t}.

Lemma (2.2). (1). dimgL, =n .

(2) HP(L,) = (0) (p#1, t, n),
- =k (p=1t)
- k(- ©) (p=1).

(3) Lt is not a Buchsbaum S-module.

Proof. Assertions (1) and (2) followg from (2.1) and the exact

sequence

0o — L_t —~"Mt —> k(- t) — O

of graded S-modules. Consider assertion (3) and assume that L, 1is a
Buchsbaum S-module. Then we have the equality

I(L,) = 1g(L/nLy) -‘eLt(n)

Hence
Ly = [P T H e BT e G ID
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n
=(t)+n—1,

because e; (n) = (2 " 1) by (2.1) (3) and

t
=m0 )
P I G

by assertion (2) (c.f. |7|). Therefore Lt is minimally generated by (2)
+n -1 elements. On the other hand it is clear that the graded S-module

]

I(Lt)

Lt is generated bj the (2) - 1 elements
{g(eJ) | J{1, 2, ... , nYy such that J # I and #J:t}
together with the n elements
{xeten)y ) (i cn o
where I = { 1, 2, ... , t:}. Accordinély Ehese elements must form a mini-

mal system of generators for Lt —— this is of course not true, since

Xipp8lep) € : X gle;)

lcict,

JCf{l, 2, .. ,Il}
such that J # I and
#J = t

Thus Lt is not a Buchsbaum S-module. -

.

Let me recall one lemma.

Lemma (2.3) (|4| and |5|). Let A be a Noetherian local ring with

maximal ideal m and M a finitely generated A-module. If the canonical

maps
- i i
ExtA(A/m,M) — Hm(M)

are surjective for all i # dimAM , then M 1is Buchsbaum. In case A 1is

a regular local ring, the converse is also true.

Let 1 ¢ s < t<n-1 be integers. We put LS £t = Lt for s =1
In case s > 1 , we put Ls,t = Ker (GS_2 — Gs—s) where
GS_2 —_ ... — G1 — Go e Lt—s+l —> 0
is a part of a graded minimal free resolution of Lt—s+1 . Notice that

there exists an exact sequence

(#) 0o — Ls,t —> Gs—2 — Ls—l,t—l — 0

of . graded S-modules.
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Lemma (2.4). (1) dlmSLs,t =n

p _

(2) HE(LS’t) = (0) (p#s, t,n),
= k(s =t - 1) (p=s),
=k (p=t).

(3) Lo ¢ is not a Buchsbaum S-module.

Proof. The proof of assertions (1) and (2) is routine. Consider
assertion: (3). First of all apply functors Exté(s/g,*) and H;(*) to
the exact sequence (#) and we get a commutative square -

e

i-1 i
Ext S (S/Q,Ls_l’t_l) EXtS(S/E’Ls,t)

5
s-1,t-1 s,t
v
HiTl(L ) z i (L )
n s-1,t-1 n - s,t
for each i < n -1 , where hl—1 and hl are the canonical
= L L
s-1,t-1 s,t
maps. Hence as Hn;ll(Ls_1 t—l) - (0) by (2), the required assertion (3)
e ’

follows, by induction on s , from (2.2) (?) and (2.3).

Now let 1 < s < t¢n - 1 be integers. Let hO’hl""’h
be integers such that hs and ht are positive. We put
h = min { hg, hg }
u= s if hS >
=t if hS <

and

0O¢i<n-1
such that
i 4 s, t

where Mr denotes, for a given S-module M and an integer r > 0 , the

direct sum of r copies of M . Then we get by (2.4) the following

Theorem (2.5). (1) dimSE =n

(2) Let O¢ p<n be an integer. Then -

——_ h
kP . (p#s),

hg-h n
=k @ k(s - t - 1) (p=s)

HE(E)

(3) E is a quasi-Buchsbaum S-module but not Buchsbaum.
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3. Proof of Theorem (1.1).

Let d >3 and hl, h2, ey hd-l >0 be integers. Assume that
hs -and ht are positive for some s and t , 1 < s« t <d-1. We
put n =d + 2 and

h'i =0 (i=0,1,d+ 1),
=h; 4 (d >i>z2 ). )
Let S = k[Xl, Xz, cee Xn be a polynomial ring with n variables

over an infinite fifeld k and consider the graded S-module E obtained
by (2.5) for the above integers h', (0<ig¢n-1),.s+1 and t + 1.
Then as E is a free S _-module for any prime ideal p of S such that
P#n and as depthSE > 2 , we have by virtue of |1} a short exact
‘sequence

) O — F — E — P(r) — O
of graded S-modules, where P is a graded prime ideal of S with" htSP
=2, F -is a graded free S-module and r an integer. We put A = Sn/PSn'
Then the local ring A satisfies all the requirements in Theorem (1.1). ~
This is my proof of Theorem (1.1). 4
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On ASL domains with #Ind(A)g2
 Takayuki Hibi  (Hiroshima Univ.)

Introduction. The concept of ASL (algebras with straigh-
tening laws) is an axiomatization of the "straightening formula"
appearing in the invariant theory. This axiomatization, which
is lucid and charming, associates commutative algebra with
combinatorics through partially ordered sets (abbreviated
ﬁoset), and moreover with topology through simplicial complexes.

On the other hand, ASL afe flat deformations of the Stanley-
Reisner rings REXl,...,Xn]/I, where I is an ideal génerated by
square-free monomials, In [2]1 the concept of Hodge algebras is
introduced, which is obtained by paying attention to the fact
that flat deformations preserve Cohen-Macaulayness and Gorenstein-
ness etc.

The purpose of this note is to determine the structure of

certain ASL domains which have relatively simple relationse
g1, Definitions,

All rings and algebras to be considered here will be
commutative and have unit elements.
Suppose R is a ring, A is a R-algebra, and H, a subset of

A, is partially ordered set called a poset. A monomial is a
,!:_h'-:“ .
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product of the formol;0«..d, where oli € Ho A monomial 0(10(2. o o0}

is called standard if dlsdas.. <

Then A is called an algebra with straightening law on H
over R‘ if the fodlowing conditions are satisfied:

(ASL-1) The algebra A is a free R-module whose basis is

the set of standard monomials. |
(ASI;-Z) If oland @ are incomparable (writtend;ﬁe), and

(*) o€ *Zrinlria“'riki’
where:0 # r; €R, and ¥ ;1 SY o8 eee
is the unique expression forol? in A as a linear

combination of standard monomials, “then Ti‘l <d,B

for every i,

Note that tbe right-hand side 6f the relation in (ASL-2)
is allowed tq be empty sum ( = O )fa%e require k; >0 in each
term that appears. The relations (f) are éalled‘%traightening
relations for A. We denote by In&(A) the subset of H Which
consists of all thé elements'rij that occur on the right-
hand side ofﬂétraightening relafions.

Let H be a finite poset. If we put the right-hand sides
of all the straightening relations to be O, then we can construct
the "simplest" ASL on H called the discrete ASL, wriften RCH],
nsmely

RIE] = RIXal< € HI/ (X, Xld+B).
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Example.
RLXY, ZW, X222, Y2W2, XYZWICRIX,Y,Z,W3

is an ASL on the poset

XY 2w
XIBI@YZWI

XXaW
More generally, we can show that every subring of a poly-

nomial ring which is generated by 2 finite number of monbmiais
is a Hodge algebra defined in (2] in some Wwaye.

In general, if A is an ASL on a poset H over R, then
Ind(A) = g if and only if A is discrete, and Ind(A) ié a measure

of the difference between A and the discrete ASL R[H].
§£2. ASL domains with #Ind(A) = 1.

As is remarked in the preceding section, the indiscrete
part Ind(A) is a measure of the difference between A and the
discrete ASL RLHI1. Therefore we may well believe that A has a
rather simple strucf,ure when #Ind(A) = 1 or 2. And our purpose
of this section is to describe the ASL domains with #Ind(A) = 1.

Throughout thisvsection,the base ring R is a domain and
A is an ASL domain on a.poset H over R which satisfies
#Ind(A) = 1. We put Ind(A) = {x}. Fustly it is easy to see that
X is comparable with any other element of H, andﬁi\che set

{d€H|+8x} is a totally ordered subset in H.
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Secondly, suppose that for any element o € H there exist
@,7T€H which are incomparable withol, and that ol = f(x),
d¥ = g(x) are the straightening relations of (ASL-2), where
f(x), g(x) € R[{X]) are non-zero polynomials without constant
terms, Then we have ¥f(x) - @Bg(x) = O which contradicts the
linear independence among the standard monomials in (ASL-1),
From this, for any element o€ H, there exists at most one
element which is incomparable withdl.

Acaﬁdmgw,rfthe pairs of incomparable elements of H are
zil),zél)iiéa),zéa);...;zim),zém), then these elements are
bigger than x, and if the remaining elements are-yisYoseee¥y»
then they are comparable wiyh any other element of H.

For example, if n = 1, m = 2, then the posets are

A AN W0 W N e
Ly ¥ Y L Pase 7 L
£ "8, Y # oW H
131 b x ¥
Now if the straightening relations in (ASL-2) are
(1), (1) _ ~
2,725 = fi(x) (ligm),
then we have the natural surjection of R-algebras from
1 1
RIX, Yy, 0ee,Y,,280),280), ..zzém),zém)l

(1),(1) (m),(m

(Zl Zz - fl(X),...,Zl Z2 - fm(X))

to A, If we'show that
R[n,m]=

gtn,ml _

R[x,yl,...,yn,zil),zél),...,zim),zém)J

is an ASL domain on the same poset H as that of A, then the

above surjection turns out to be an isomorphism, and we can
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conclude that every ASL domain with #Ind(A) = 1 is of the
type R[n,m].

{n,m]

In the following we prove that R is an ASL domain,

We must check the ASL axioms for RI®*®3, It is obvious that

(nyml

R satisfies (ASL=-2). Concerning (ASL-1), we must note

first that
R _ im0 o150 g ()

Now by induction on m, we can show that R[n,mj is a

8y,
domain and satisfies (ASL-l?’hsing the following Lemma 1.

Lemmajl. Let A be a domain, and
B = Alx,y]l = ALX,Y1/(XY - a),
where O # a€ A, Then
1) B is a free A-module whose basis is l,x,xa,...,y,ya,....
2) B is a domain,

fn,ml

It is easy to see that R is a Cohen-Macaulay (resp.

Gorenstein) ring if R is so. And moreover if R is a noetherian

{n,m)

normal domain, then so is R « It is an immediate

consequence of the following Lemma 2.
Lemma 2, Let A be a noetherian normal domain, and

B = Alx,yl = ALX,Y1l/(XY - a),

where O # a € A, Then B is normal.
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“Proof. Since B = A[X]X, By: A[Yly are normal, a prime
ideal 9 of B contains x and y if B9_ is not normal. We note
that x, y is a regular sequence on B since

B/(x) = (ALX,YIZ(XY - a))7((X, XY - a)/(XY - a))
=A%, ¥3/(X,a) = (4/(a))(Y1. |

Consequently, depth B3_32 if B is not normal. Now it
is well-known that

B = me?'

depth Bg =1
in the quotient field of B. Therefore B is normal, Q.E.D,

§3. ASL domains with #Ind(A) = 2.

In this section A is an ASL domain with #Ind(A) = 2 on
a poset H over a domain R. We put Ind(A) = {'x,y}. Since A is
a domain, X and Yy are comparable, say x<y.
Now it is obvious that any element of H is comparable
with x, aﬁd moreover the following facts can be easily shown:
1) There exists at most one element (say z, if exists)
which is incomparable with y.
2) Any element o ( # x,y,2z) of H is comparable with X,¥,
and moreover ™ is comparable with z. |
3) ForA any. element & ( £ x,y,z) of H, there exists at

most one élement which is incomparable withol.
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For'example, we show 1) in the following way. Suppose
there exist o # @€l which are incomparable with y, and
that 4 4

(*) oy = yE(x,y) + 8(x), By = yp(x,¥) * a(x)

are the straightening relations in (ASL-2). From (*) we have

@ (yf(x,y) + g(x)) =cl(yp(x,¥) + a(x)).
And by using (*) again, we have

(yp(x,y) + a(x))f(x,y) +@s(x)
= (yE(x,¥) + g(x))p(x,y) +otq(x).

In this relation,@ (resp.ol ) appears only in the left-hand
(resp. right-hand) side. From this we have g(x) = 0 ( resp.
q(x) = 0) by (ASL-1). And in this case, the relation of (*)
turns out to be

oy = yE(x,¥) (respe By = yp(%,¥))
but this is a contradiction.

As a result of these facts, itdis easy to see that the

posets on which there exist ASL domaims with #Ind(A) = 2
are the same as those on which there exist ASL domainswith
#Ind(4) = 1.

Now we determine the structure of ASL domains which
satisfy #Ind(A) = 2. We put Ind(4) ={x,¥}, X<Y¥. And if
there exists an element which is incomparable with y, we
denote such an element by z. As in the case of #Ind(A) = 1,
the pairs of incomparable elements of H are denoted by
a{l),aél);...;a§m),aém), and the remaining elements bl,...,

bn are comparable with any other element of H,
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Let
Yz = f(x,y) and
a{i)aéi) = 8;(x,y) (1sism)
be the straightePing relations in (ASL-2). Here f(X,Y),
8(X,Y) €R[X,Y) are non-zero polynomials without constant terms,
and X divides f(X,Y) while Y does not divide f(X,Y), and’
moreover X must divide 85 (X,Y) if a(l) (1)<y.
Then we show that
R[x;y,z,ail),aél), (m) ém),bl,...,bn]
_RIX,Y,5,A{0,a0), L, (m),A(m),Bl,...,Bn]

(Y2 - £(XY),A ( N > K1), eee,al™alm g (x 7))

-gl

is an ASL domain on the poset H. Since it is obvious that this
ring satisfies (ASL-2), seeing Lemma 1, we have only to show
that .
R[x,¥,2] = RIX,Y,21/(YZ - £(X,Y))
["; p
\("]

If we consider f(X,Y) as a polynomial in Y over R[X], £(X,1)

is an ASL domain on the poset

haéehon-zero constant term since Y does not divide £(X,Y).
Now we can prove that R[x,y,2z] is an ASL domain n.using the
by .

following Lemma 3,
Lemma 3, Let A be a domain, and

B = A[y,z] = A[Y,Z]/(YZ - f(Y)),

a
where f(Y) € A(Y] has“hon-zero constant term., Then
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1) B is a free A- module whose basis is l,y,yz,...,z,za,....
2) B is a domain.

3) B is normal if A is a noetherian normal domain.

Proof, 1) is easy to prove. Concerning 2) and %), if
f(Y) = Yg(Y) + a, O # a€A, and we put W = 2 - g(Y), then
Y and W are indeterminates over A, and
AlY,2)/(¥(Z - g(Y) - a)
ALY, W)/ (IW - a).

ACY,23/(Y2Z - £(Y))

‘Therefore we can apply Lemma 1 and Lemma 2 directly. Q.E.D.

Consequently, as in the case of #Ind(A) = 1, an ASL
domain with #Ind(A) = 2 is a normal (resp. Cohen—Macaulay,
Gorenstein) ring if R is a noetherian normal (resp.
Cohen-Macaulay, Gorenstein) ring. In particular, if A is an
ASL domain which satisfies #Ind(A) 82 over a field k, then

A is a normal Gorenstein ring.

Supplement: Generalizing the method by which we can
determine the poséts on which there exist | ASL domains
which satisfy #Ind(A) = 2, 1t may be possible to determine
the posets on which there exist ASL domains whose

indiscrete partsInd(A) are totally ordered sets.
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In the case of #Ind(A) = 3, we have different posets from

those in the case“#Ind(A)é 2
For example,
A = RIX,Y,YZ]ICRIX,Y,2]
is an ASL domain on the poset ¥ x
XYz
which satisfies #Ind(A) = 3.
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On the Gorensteinness of Rees algebras over local rings

Shin Ikeda  (Nagoya University)

Let (A,m,k) be a Noetherian local ring and I an jdeal of A, - We define

R,(I) = O "
nz0
and call this graded A-algebra the Rees algebra of I. The purpose of this

note is to give a summary of the theory of the canonical modules of graded rings

and apply this theory to a characterization of the Gorensteinness of RA(I).

1. Canonical modules of graded rings.

Throughout this section R = (-] R, denotes a Noetherian graded ring.
. n20

Let M= @ M and N= ©& N be graded R-modules. Let H(R) be the
n n
nx0 - nz0

category of graded R-modules whose morphisms are grade preserving R-homomorphisms .
Let ne Z . We denote by’ M(n) the graded R-module whose grading is given by

M(n) =M forall me Z. For n e Z we define
m n+m :

HOEF ™, N)n = {f € _Hme(M , N) f(Mm) C Nmm for all m e Z}

and

Hc>mF M, N = © Hog{ W™, N)n .
neZ

One can easily show that the category H(R) is an abelian category with enough

injectives and projectives. We define the functor Extlg( , ) to be the i-th
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derived functor of Homg( , ) for 1i2Z0. Let I be a homogeneous ideal of

R. We define

i . n
HZ() = 1lim ExtF(R/I , )
' n’

and call this functor the i-th local cohomology functor with support in I

In the rest of this section we assume that R, is a local ring with maximal

0
. o . ) ~
ideal m and we denote by R the ring R ER R0 , where R0 is the comp-

0
letion of R0 . For an ,Ro-module E we define E to be the graded RO-
module with grading given by E, =E and E_ =0 for n # 0. Let E_, be the

. =0 -n RO
injective envelope of Ro/m0 as an RO-module. Regarding R as a graded RO-
we define.
ER = HomR R, ER )

Proposition (1.1) 1) ER is an injective envelope of R/M in the category
H(R), where M_is the unique maximal homogeneous ideal of R.

A
2) HomF(ER , ER) = R,

Using this result we can prove a result corresponding to the Matlis duality by the

same proof as in [M]. Let d = dim R.

Definition (1) If R, is complete we define

0

Ky = Homy ( HS(R) , Ep)

and we call ER the canonical module of R .

(2) 1f R0 is not complete a graded R-module ER is a canonical module of R

if
R B .
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As in the local ring case, if a canonical module ER exists then it is a finitely
generated R-module and unique up to isomorphism.

Now we will give several properties of canonical modules.

Proposition (1.2) If RO is complete for any finitely generated graded

R-module - N we have
Hom,, ( Eﬁ(N) E) = HomF(N KF)
" k] R E) .

ProEosition (1.3) 1If RO is complete and R is Coheh-Macaulay then for all

0« i<d and for any finitely generated graded R-module N we have

Exth(N, k) = Hom (BT B ).

Proposition (1.4) Let R be Cohen-Macaulay. Then, R is Gorenstein if
and only if R has a canonical module ER and ER = R(n) for some ne Z.

Proposition (1.5) Let R be Cohen-Macaulay and let R —» S be a finite
homomorphism of graded rings. Suppose that R has a canonical module ER'
Then

- T
ES EXtF(S,ER))

where T = dim R - dim S.
Propositions (1.2) — (1.5) can be proved by the same. arguments as in [GW].

2. The Gorensteinness of Rees algebras.
Throughout this section (A,m,k) denotes a Noetherian local ring of dim A = d.
Let I be an ideal of A and we set
. .n,. n+l
GA(I) = @ I/I .
n=>0
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Let
j(I) = dim G, (I)/mG, (1) .

I(I) is called the analytic spread of I and [(I) is equal to the minimal
number of generators of a minimal reduction of I. if the residue field k is
infinite.

The main result of this section is the following.

Theorem (2.1) Let I be an ideal of A such that I(I) = ht(I) and
grade (I) 2= 2. Suppose that RA(I) is Cohen-Macaulay. Then RA(I) is

Gorenstein if and only if G,(I) has a canonical module K and
A —-GA(I)

GA(I) (-2). In this case A has a canonical module KA and

K
%, (D

As an immediate consequece of Theorem (2.1) we have a result of S. Goto and Y.

Shimoda [GS]. -~

Corollary (2.2) ( Goto-Shimoda ) Let A be Cohen-Macaulay with. dim A > 2.

Then RA(m) is Gorenstein if and only if GA(m) is Gorenstein and
a(GA(m)) = -2 , where a(GA(m)) is the a-invariant of GA(m) (cf. [GW]).

In this case A is Gorenstein.
For the proof of Theorem (2.1) we need the following result in [HI].
Proposition (2.3) Let I be an ideal of A such that f(I) = ht(I)> O,

Then RA(I) is Cohen-Macaulay if and only if

(1) for i< d



H;(A) for n = -1

L6, (), =
‘ 0) for n # -1

@ M), = @ for n20,

where M is the maximal homogeneous ideal of. RA(I). In this case

depth A > dim A/T + I.

By Proposition'(Z.S) we can prove that if RA(I) is Cohen-Macaulay and grade (I)
>n then A and GA(I) satisfy (Sn). Note that GA(I) satisfies (52) if

and only if

GV(I)‘= Hom ( K , K ).
A ———GA(I) —GA(I) —GA(I)

Sketch of the pioof of Theorem (2.1)

We may assume that k is infinite and A 1is complete. Let (al,..,ah) be a
minimal reduction of I ( h = ht(I) ). We set R = RA(I) , G ; GA(I) and
R = R/(al,aIX), where RA(I) is identified with the subalgebra A[IX] of the
polynomial ring in one variable A[X]. Since R is Cohen-Macaulay we have the

exact sequences

05 BI® > Hw - Hr/a R > H® > 0 e

® > KO > Bran > {® >0 @

Assume that R is Gorenstein. By Prop.(1.3) and (1;4) we have

ExtFZ( R, R) = Homp( g‘f,'l(ﬁ) » Ep)-

On the other hand one can prove that

Extgz( R,R)=(apR : R)/Cays a0 = (0)
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by the assumption grade (I)> 2 . Hence tlsl-l(ﬁ) = (0) . Then, the exact

sequence (2) gives HomF( k, Eﬁ(G) ) k(2). Since G satisfies (Sz) we

have EG = G(-2).

Conversely assume that EG = G(-2) . By a purely formal argument one can show

that
_Ho_mR( k, ﬂ;(R/aIXR) )n = (0) for n#£0,
H(®) = (0) for n=0
and
H® = © .

Then, Theorem (2.1) follows from the following lemma.

Lemma ‘(2.4) If EG = G(-2) then KA =A .

It is natural to ask whether the Gorensteinness of _RA(I) implies that of A.

In general this is not true . However we have the following results.

Proposition (2.5) Assume that lA(H;(A))<oo for i< d and
2ht(I) < dim R, If f(I) = ht(I)> grade(I) > 2 and RA(I) is Gorenstein

then A is Gorenstein.
Proposition (2.6) Let A be a Buchsbaum ring with dim A > 2 .and let q

be a parameter ideal of A contained in m2 . If RA(qn) is Gorenstein for some

n >» 0 then A is Gorenstein.
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Examples (1) Let k be a field of characteristic 2 and Xl, Xz, XS’ Yl’

Y

2 Y3, Y4 indeterminates over k . We put

A= KIIX, Xy, Xy, Yy, Yy, Yo, Y 1172,

where a is the ideal generatgd by XlY1 + X2Y2 + X3Y3 > Yy

Yo, 5 Yg¥, o VoY, - XY, Yo Yo - XoY, , Y Yo - XY,

Then A is not Cohen-Macaulay ( dim A = 3 , depth A = 2 ) but RA(m) is
Gorenstein.

(2) Let A be the same as in Example (1) and T Tn indeterminates

ETEED
over A . We set B = A[[Tl”"Tn]] and I = mB. = Then

RB(I) = RA(m) NA B 1is Gorenstein since RB(I) is faithfully flat over RA(m).

If n>3 then 2ht(I) £ dim B. Clearly B 1is not Gorenstein. So, this
example shows that without any restriction on the local cohomology of the local

ring Proposition (2.5) does not hold.
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Remarks on a Conjecture of Nakai

Yasunori Ishibashi (Hiroshima University)

Let k, R be commutative rings with 1 and let R be a k-algebra.
A differential operator D of R/k of order < n is defined inductive-
ly as a k-linear map of R into itself such that for any a € R
[D, a] = Da - aD is a differential operator of order < n -1, where
a differential operator of order 0 is a homothety by an element of
R (cf. [2],[3]). An n-th order derivation of R/k in the sense of
Nakai is the same notion as‘e differential operator of R/k of order
< n which -vanishes on 1 (cf. [7]). The set of differential
operatofs of R/k of order < n is'deneted by Diffn(R/k) and the R-
algebra of differential operators of R/k is denoted by Diff (R/k)
and thus we - have Diff (R/k) = %ﬁ;lef (R/k). Let Der(R/k) be the
R-module of derivations of R/k and let diff (R/k) denote the sub-
algebra of Diff(R/k) which is generated by Der(R/k). We have
piffl (R/k) = R ® Der (R/K).

Let R be an affine domain over a field of characteristic 0 and
let P be a prime ideal of R. It is known that if RP is regular then
we have Diff(RP/k) = diff(RP/k) ([2]). Y. Nakai asked the converse,
that is, does the condition Diff(RP/k) = diff(RP/k) imply the
regularity of RP ? To our knowledge the only affirmative answer is
given for thevcase of dim R = 1 ([6]) and we also have no counter
examples. On the other hand the Nakai conjecture is closely related

to the Zariski-Lipman conjecture which asserts that RP—freeness of
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Der(RP/k) implies the regularity of RP' In fact Rego proved that the
Nakai conjecture implies the Zariski-Lipman conjecture ([81).

Our objective here is to investigate the Nakai conjecture in the
case R = i§0Ri is graded by the non-negative integers N, R0 = k, and
P = m, where m = i§lRi is -the irrelevant maximal ideal. We représent
R as T/A, where T = k[xl, eee ,xs] is a polynomial .ring in which each
Xy has weight di, and A is a graded prime ideal. We assume the
following condition for a graded domain R.

(#) There exists an integer d0 such that for every d ;.dO’:R(d)
= i§0Rdi is generated by Rd = [R(d)]1 over R0 = k. '

‘We call a differential operator D of R/k homogeneous of weight %
(2 € 2) if D(3i)(: Ri+£ for all i. In particular, the Euler
derivation

9

S
I = )57 9% L2

(which is a derivation of R since A is graded) is homoéeneous of
weight 0. We denote by Diffz(ﬁ/k) the space of homogeneous differen-
tial operators of R/k of weight & and set Diff‘;(R/k) = piff" (R/k) M\
Diffl(R/k)a It is easylto verify that Diffl(R/k)Diffm(R/k) C
Diffl+m(R/k). Moreover we have the following:

(1) piff"(R/k) = , 8 Diffy (R/k), (2) Diff(R/k) = (8 Diffy (R/K)
(1. - |

The condition Diff(Rm/k) = diff(Rm/k) is equivalent to Diff (R/k)
= diff (R/k) and hence the conjecture is as follows: if Diff (R/k) =
diff (R/k) then R is a polynomial ring over k. We may assume dim R >

2, because the case of dim R =1 is affirmative ([6]). Then we have

Theorem. Let R = i§0Ri be a finitely generafed graded domain

over a field k of characteristic 0, where R0 =k, m= i§1Ri’ and R

satisfies the condition (#). Assume that R has an isolated singular-
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ity at m and depth R, 2 2. If the only homogeneous derivation of R/k
of weight < 0 is the Euler derivation I, then we have Diff (R/k) %2

diff (R/k).

The idea of proof is essentially due to that of [1]. -The follow-

ing lemma is a key to proof.

Lemma. Let R be a graded domain satisfying the conditions in
Theorem. Then we have
s el s el ceel
D1ff2(R/k) ;2 ID1ffz(R/k) + lefl(R/k)

for all sufficiently large %.

Remark. Under the same notation as in Theorém, assume that R is
generated by R1 and R has ar ‘isolated singularity at m. By [9] any
derivation of R/k maps m into itself. Hence R has no homogeneous

lerivations of negative weight.
As corollaries we have

Corollary 1. Let f be a hombgeneous polynomial in k[xl, e ,xS]
and let R = k[xl, e ,xs]/(f), where each Xy has weight 1. Assume
that Spec(R) - {m} is regular. If we have Diff (R/k). = diff(R/k), then

R is a polynomial ring, that is, f is linear.

Corollary 2. Let R be a two dimensional Cohen-Macaulay graded
domain over the field § of complex numbers such that R0 = ¢ and R
satisfies the condition (#). If Diff(R/k) = diff (R/k), then R is a

polynomial rihg.



Corollary 2 is an immediate cggequence of the following
n

Theorem ([10]). Let R be a normal surface singularity with good

¢*-action which is not a tyclic quotient singularity. Then the only

derivation of R of weight £ 0 is the Euler ‘derivation.

[1}

(2]

(31

[4]
[5]

(6]

[71

[8]

{91l

[10]

For details we refer to [4].
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On the terminal toric singularities of dimension 3
Masanori Ishida (Tohoku University)

Let A be the local ring of a point of a normal algebraic variety

of dimensior n defined over T .

Definition (M. Reid) A 1is said to be canonical if there exist
a resolution f : Y —) Spec A of singularity and a positive integer

r such that the direct image f*wir is invertible.

For a canonical local ring, the minimal positive integer r with
this property is independent from the choice of the resolution, and it

is called the index of the canonical singularity.

It was proved by Elkik that canonical singularities are rational
and Cohen-Macaulay. In particular, a local ring A is rational and

Gorenstein if and only if A 1is canonical of index one.

Let A De a canonical local ring of index r . Then for a reso-
. . % O _ @r .
lusion f : Y —> Spec A , we have T f*wY = wy (-Z) for an effective
divisor zZC Y .

Definition (M. Reid) In above notation, a canonical loeal ring A
is said to be terminal if every prime divisor D of Y with dim £(D)

<n -1 is contained in the support of 7 .

The case of 3-dimensional toric rings.

Here "toric ring" means the coordinate ring of an affine torus embed-

ding. Let N be a free Z-module of rank 3 , and let M be its dual.
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Every toric ring is given as the semigroup ring GC[M {\11\/] for a rational

polyhedral cone T CI\IIR= N®R of dimension 3 , where ™ is the dual
cone {xéMIR 5 <x, a)z_ 0 , for every a € m} . Let {Yl’ Cees Ys} be

the set of one-dimensional faces of m and let a; be the primitive
element of N with ]Roai =v; for i=1, ..., s where IRO = {c€R ;
¢ >0} . Thering A= E[M{'\nv] is known to be Cohen-Macaulay, and the
dualizing module KA is identified with the ideal T[MN(int nv)] =

. . . v 4 .
Plr\ ...{\PS where Pi is the prime ideal c{MN (7 \Yi )] for i =

l, «cv5 S .

If A 1is canonical of index r , then the divisor div (KA) is of

order r in the divisor class group ci(a) . From the exact sequence

S
o—>M— @ Zaiv(P,) — ci(a) —o ,
v i=1
S
mF—> Z@, ai) diV(Pi)
i=1

we know there exists m &M with (m, aj} =r for every 1i . It means

there exists a coordinate of N such that ai is equal to ai = (ui, vi, r)

for i=1, ..., s .

Theorem (Reid, Danilov) The toric ring A is canonical of index r
if and only if there exists a primitive element m € M such that <n1, ai>
=y for i=1, ..., s and (m, a) > r for every non-zero a E€NAT .
Furthermore, it is terminal if and only if <m, a> > r for every a &€ NAmw

other than al, cees as and O .
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The terminal toric rings are determined as follows. (Frumkin, Morrison)

l). s = ll-', {&1, 3-29 33, ah} = {(050,1)’ (130,1)3 (03191)) (l’lsl)},
2). s=3, {2 a, a3} = {(1,0,0), (0,0,1), (e,n,1)} for non-
negative integers 0 < e<n with (e, n) =1,

for a coordinate of N .

This result is also stated in the following form. (see [R])

Let = e2ﬂ1/n and let u : E3 4 E3 be the automorphism given
by u(x, y,‘z) = (e%x, eby, ez) for integers a, b, c-. Assume u is
of order n . Then, the quotient m3/(u) is terminal if and only if .

(a, n) =1 and b+ c =0 (mod n) or its permutation in a, b, c .

i am going to give my own proof of-fhis result.

It is easy to see that 1) is the unique tﬁree—dimensional non-simplicial
cone which defines terminal toric riﬁg. Hence the problem is to determine
the tetrahedrons which are spanned by four integral points in IR3 and
contain no 6ther integral points. -

I gave in [I], a formula of the number of lattice points in the interior
of a tetrahedron by counting the geometric genus of the algebraic surface
defined by the sum of four monomials corresponding to the four vertices of
the tetrahedron. I will use this formula for the proof.

From now on, we usé M]R for the Euclidean space in which we consider

the tetrahedron, since M is the space of monomials.
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For a finite set F = {vo, cees vs} of elements of M with v:L - VO N
e Vs - v0 linearly independent, we denote by index(F) the index

[R(v,-v,) + ... +R(v v N\ 2 B(v-v) + ...+ (v =v)]

3

Let S = {mo, cees m3} be a set of elements of MV 7Z contained in

no plane in MIRE B3 . We set

0 : convex hull of S , n = index(8S) ,
Si : convex hull of S\{mi}, bi = index(S\{mi}) for i=0,1, 2, 3,

Ei,j : convex hull of S\{mi, mj}, li,j = 1ndex(S\{mi, mj}) , 0<1i, J<3.

For each i =10, ..., 3 , there exists a unique primitive element n:.L
of N = HomZZ(M, Z) such that vy is constant on the triangle Si and
(mi, vi) > <Si’ vi) . We see easily that any three of {\)0, e \>3} are
linearly independent. For linearly independent primitive elements wu, Vv
€ N , we denote by n(u, v) the index [(Ru +Rv)\N : Zu + Zv] and we
denote by gq(u, v) the minimal non-negative integer q with (v + qu)/n €N .

Then we have n(u, v) = n(v, u) and q(u, v)a(v, u) = 1 (mod n) . We set

= X LT ., v.) f <i<j<3.
n; (v, vJ) and q; , alvy> vJ) or 0<i<Jj=<3

Theorem ([1]) The number of elements of M contained in the interior
of the tetrahedron [0 is given by the formula:
3 3,
* - - _ -
)  (en 3§ibi + (_z;bi) /n - 12 ‘[_{ 2, .(Mn, ., qi’j) 3+ 2/ni,j)/l2 .
i=0 i=0 0<i<j<3
Where A(n, q) = ag + ... +ta - 3s + (q + g¥)/n for the integers 815 -ees

- ﬂs-l -d... - —‘:1 , and q¥* is the

1 (mod n) . We understand A(1l, 0) =0 .

as greater than one with n/q = as

integer with O < g* < n and qg¥



We call A(n, q) the deviation of the pair (n, q) . It holds that

A(n, @) = A(n, g¥) = - A(n, n - g) when n > 1.

Assume 30NM = {mo, m, m2,'m3} where 30 is the boundary of the

tetrahedron’[] . Then since bi =1 for 1i=0, ..., 3, li,j =1, ni,j

=n for 0<1i<j< 3, we have

*%) #(intUnM) =(2n - 6 + 4/n

A(n, qi’j))/l2

0<i<j<3
By the parallel translation, we assume m0 =0. Since the triangle
spanned by {0, m m2} contains no other points of M , we know {ml, m2}

is a part of a Z-basis of M , Hence we can take a Z-coordinate of M

(p, a4, n) with

such that m = (1, 0, 0) , m, = (0, 1, 0) and m,
0<p,qg<n. Since the triangle spanned by {0, m,, m3} contains no other
points of M , we know p and n are coprime. Similarly, @ and n are

also coprime. Since {m3 - m, mg - m2} is a part of a Z-basis of M ,

we know p+ q -1 and n are coprime. We can calculate the 9 j's as
b

follows:
= + - 1)% = + - 1)% = - + g - 1)%
%1 (p+aq Y¥p , %Y o (p+4q Y¥q , 4,3 (p+q %,
= p*¥(p+q-1 = - p* = p* = g¥(p+qg-1
G o =PHpra-1),q , P*a 5 4 3 FP¥, 4, g =a*(pta-1),
= - * = * = o - = =
G -9, 3=a%, 9 4% (p+a-1), 937 P> a3, 2 Q-

(all in modulo n)

It is easy to check that they satisfy the following relations:

(1) 4y 395 =1 (mod n) for all 0 < i < j < 3.
(2) j;ézi'qi’j =1 (mod n) for every i =10, ..., 3.

(3) 9y jq,j g =1 (mod n) for every triple (i, j, k) of distinct
E] 3 E]

elements of {0, 1, 2, 3} .
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Lemms 1. If one of q, . is equal to one, then {m., m , m,} 1is equal
- 1,J 1 2 3
to {(1, 0, 0), (0, 0, 1), (e, m, 1)} in some order for an integer

0<e<n with (e, n) =1 and for a Z-coordinate of M.

1 (mod n) . Then we have

Proof. Assume q = (p+gq-1)%

0,1
g =1 and hence m, = (p, 1, n) . Hence if we transpose the second and
the third coordinates, we have {ml, m,> m3} = {(1, 0, 0), (0, 1, 0), (P, m, 1)} .

Other cases are similarly checked.

q. e. d
Terminal Lemma (Frumkin, Morrison) . Let ml, m2, m3 be linearly
independent elements of M. If the tetrahedron [ spanned by {0, m o5,

m3} contains no other points of M , then the set {ml, m,» m3} is equal
to {(1, 0, 0), (0, 0, 1), (e, m, 1)} for an integer 0 < e < n with (e, n)

= 1 and for a Z-coordinate of M.

We are going to give a proof of this lemma by using the formula *¥).

By that formula, we know oMM = {0, m,, m

1> My m3} if and only if

#ax) 57 Am, g ;) = (20 - 6n +b)/n
0_<_i<,j_<_3 5dJ

By Lemma 1, it is enough to prove the following proposition.

Proposition 2. Let n be a positive integer greater than one, and

let O < a 3 <n,for 0<1 # j < 3 ,be integers prime to n satisfying
3

the three conditions (1), (2), (3) .  Then the equality *¥¥) holds if and

only if qij=l for some 0 <i<j<3.
2

- 59 -



Note that the conditions (1), (2), (3) are invariant by any permutation
of the indices 0, 1, 2, 3 .

Although the "if" part of the proposition follows from Lemma 1, we can

see it directly as follows. We may assume q =1. Let g be a .
0,1 0,2
Then we have 493 =n-a by (2). We can calculate easily by the con-
3
ditions that q,l’2 =n-a, q2’3 =1 and q,l’3 =a . We have A(n, q0,2)
+ A(n, a, 3) = A(n, a9 2) + A(n, a 3) =0 . Hence 2:: A(n, a; .) =
b b 3 0_<_i<'ji3 ’J

2x(n, 1) = (2n2 - 6n + 4)/n . (see the table of Mn, q) at the end of this
paper)

For a convenience, we set ¢(n) = (2n2 - 6n + L4)/n .

Lemma 3. Proposition 2 holds for n smaller than or equal to seven.
Proof. If n=2, then all 9 j's are 1 . If n =3, then
b

a j's are 1 or 2. Since A(3, 2) = -2/3 and ¢(3) = 4/3 , some of

a 3 must be 1 for the equality *¥#%) holds. If n =L , then 9 j's
. b

2

are 1 or 3 . Since A(4, 3) =-3/2 and ¢(4) = 3, not -all a4 j's

are 3 . Assume n = 5 and non of qi 3 is 1. Since A(5, 2) =
AM(5,3) =0 and A(5, 4) =-12/5 , we have 3% A(n, @, .) < 0 < 4(5) =
— 1,7 —
0<i<j<3
2h/5 . If n =6, then a4 j's are 1 or 5. Since A(6, 5) = - 10/3

and ¢(6) = 20/3 , we know some of a4 j's are 1 . Assume n =7 and
non of a; j' is equal to 1 . We have A(T, 2) = A(7,4) = 6/7 ., AMT7,3) =
M7, 5) = -6/T and A(T, 6) = - 30/7 . Hence we have J 7 An, q, .) <

0<i<3<3 17 =

36/7 < ¢(7) = 60/7 .
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We set 9§= {(al, v a'r),; T2l 8, e ariZ are integers}

For an element A = (al, v ar)e A with A # (2) , we denote by A’

the element (al, cees B - l)éqA if a > 3 and the element (al, cees ar-l)

ed if a . =2.

We introduce an order in ﬁ as follows. For two elements A = (a.l,
.,ar) and B=(bl, ...,bs) , we define A < B if and only if r <s ,
al = bl s eees a'r-l = br-l and a.r < br . The following facts are easily
checked.

i) For an element A€W with A # (2) , A" is the maximm element
of the set {BEN ; B< A ,B#A}.

ii) The ordered set 9§ satisfies the descending chain condition.

For an element A in Q& , we denote

RN a(a) = det 16
1 a.’ . ' ‘1 a _
It is well known and easily checked by induction on r that 0 < g(A) < n(A)
and q(A) and n(A) are relatively prime.  Furthermore, from integers
q(A) and n(A) , the element A is recovered as the continued fraction
n(A)/a(a) = a, - l'rar-l -1... - _]_.]—al . In this way, the set d is
naturally bijective to the set {(m, 4) 3 0 <g<mn, (q, n) =1} .

If A # (2) , then we know from the continued fraction that 0 < q(A)
< n(A)/2 if a, = 2 and n(A)/2 < q(A) < n(A) if a, > 3.

We define an integral valued and a rational valued maps ¢ and X from

SA as follows: For A = (al, cees ar)€°A >
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0(A)=al+ ...+ar—3r+1 , and

A(a) = o(a) + (a(a) + q*¥(4))/n(a) -1 ,
where q¥*(A) = q(A¥*) for A% = (ar, ey al) . Since q(A)g*(A) =1
(mod n) [I], we know )\(A) is equal to the deviation A(n(A), q(4))
We get the following easily from the definitioms.

iii) o(A") =o(A) -1 if 0 < q(A) < n(a)/2,

1}

g(a") = o(a) +1 if n(a)/2 < q(A) < n(Aa) »

A(A) < o(a) + 1, o(A) = o(A*) , A(A) = A(A%) .

For a positive integer d , we denote by (;Ad the subset {AGYA H

a(A) or q*(a) =4} .

Remark L. For most of-elements A of 9§ , the absolute value of the
deviation A(A) is small for n(A) . At the end of this paper, we give a

list of A's with relatively high X(A)- .

>

Lemma 5. If AGVA is not in ﬁl , then we have A(A) < n(A)/2-1.

Proof. Since A(A) € o(A) + 1 , it is sufficient to show tﬁat o(A) <
n(A)/2 - 2 for every A 1in q&\%l . Let A be a minimal element of
HWAA, with o(a) >n(a)/2-2. If 0<aq(a)<n(a)/2, then o(a") =
o(A) -1 >n(A")/2 -2 since n(A") = n(A) - q(A) and q(A) #1 . This
contradict the minimality of A . If n(A)/2 < q(A) < n(A) , then o(A")
=o(A) +1 >n(A")/2 -2 . Hence A’ €<Al and q(A’) =2q(A) - n(A) =1 .
Then we know A = (q, 2) for q = q(A) , and this is impossible since a(4)

= (n(A) - 5)/2 < n(A)/2 - 2 by the table.
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Lemma 6. If A € A is not in QAl nor Q\, , then we have AA) <

n(A)/3 -1 .

proof. Tt is sufficient to show the lemma for A€ A\ (4 ud,) with
AMA) > n(A)/3 - 2 . We take a minimal element B in A\ (ﬂl\)‘;\2) with
B<A and o(C) > n(C)/3 -2 for every B<C <A. Ir 0<q(B) <n(B)/2,
then o(B°) = o(B) - 1 > (n(B) - a(B))/3 - 2 =n(B")/3 - 2 since a(B) #
1, 2 . By the minimality of B , we know B~ is in \Al\)ﬁz . Since
q(B") = q(B) # 1, 2 , we have B° = (4, 2) for an integer d > 3 and B =
(a, 3) . Since A(B) <n(B)/3 -1 Dby the table, we may assume A#B.

Hence we have (d, 3, 2) <A or (4, L) <a. cC=(d, 3, 2) <A is im-

possible since o(C) < n(C)/3 -2 by the table. 1Incase C = (4, 4) <
A , we may assume A # C since A(¢) < n(C)/3 - 1 by the table. Then

we have D = (d, 4, 2) <A or D=(d, 5) <A . But D= (4, 4, 2) is

impossible since then (D) = (n(D) - 12)/7T <n(D)/3-2. If &2 4 , then
we have o(D) = (n(D) +1)/5 < n(D)/3 -2 for D= (d, 5) . Hence we have
D=(3,5) <A . Since A(D) <n(D)/3 -1 we may assume A # D . TFurther-

more, since A(E) < n(E)/3 - 1 for every E = (3, e) we may assume A #
(3, e) for every e >3 . This implies F = (3, e, 2) <A for an e .
This is impossible since o(F) = (n(F) - 13)/6 < n(F)/3 - 2 .

If n(B)/2 < q(B) < n(B) , then o(B") = o(B) + 1 > n(B")/3 - 2 .
Hence by the minimality of B , we have B =(a), (4, 2) or (2, d) for
an integer 4 >2 . B = (a) is impossible since then B = (a, 2)€ﬁ2 .
If B" = (2, d4) , then B = (2, d, 2) . This is not possible since then

o(B) = (n(B) - 12)/4 < n(B)/3 - 2 by the table. B =(d, 2) and B =
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(d, 2, 2) 1is also impossible since then o(B) = (n(B) - 10)/3 < n(B)/3 - 2

by the table.

»

Lemma T. If A€ sA is not in ‘Al’ 942 nor ¢ then we have

3
A(a) < (3n(a) - 7)/10 .
Proof. It is sufficient to show the lemma for AESA\ (ﬂlUﬂ2Uﬂ3)
with o(A) > (3n(A) - 17)/10 . Let B be the minimal element of
‘ﬂ\(AlUﬂ2Uﬂ3) with B <A and o(C) > (3n(C) - 17)/10 for every B <
C<A. 1If O0c< qu) < n(B)/2 , then o(B") = o(B) - 1> (3n(B") - 17)/10
= (3n(B) - 17)/10 ~ 3q(B)/10 since g(B) #1, 2, 3 . By the ﬁinimality of
B and the fact q(B') = q(B) # 1, 2, 3, we know B’ = (d,2), (d,3) or
(4, 2, 2) for an integer 4 >3 . B’ = (d, 2) is impossible since then
B = (4, _3_)€§A3 . Incase B = (4, 3) , then B = (d, 4) . Then, since
A(B) < (3n(B) - 7)/10 by the table, we may assume A # B . Hence we know
(d, 5) <A or (d, 4, 2) <A . Neither is possible since o(D) = (n(D) - 12)/7

(3n(D) - 17)/10 for D

|A

(a, 4, 2) , and, for d > k4 , o(D) = (n(D) + 1)/5

| A

(3n(D) - 17)/10 for D = (4, 5) by the table. B = (d, 2, 2) and
B = (4, 2, 3) is also impossible since then o(B) = (n(B) - 12)/5 <
(3n(B) - 17)/10 .

If. n(B)/2 < q(B) < n(B) , then o(B") = o(B) + 1 > (3n(B") - 17)/10 .
Hence we know B’ = (d), (4, 2), (2, d), (4, 3), (3, d), (&, 2, 2) or
(2, 2, ) for an integer 4 > 2 . B' = (d) and B’ = (4, 2) are im-

possible since then B = (4, 2)€9&2 or B = (4, 2, 2)€$3 , respectively.

If B = (2, d) , then B = (2, d, 2) and o(B) = (n(B) - 12)/h <
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(3n(B) - 17)/10 . If B = (4, 3) , then B = (d, 3, 2) and o(B) =
(n(B) - 13)/5 < (3n(B) - 17)/10 . If B’ =(d, 2, 2) , then B =

(n(B) - 17)/% . If B = (2,2, d) , then B =

(d, 2, 2, 2) and o(B)

(2, 2, 4, 2) and o(B) = (n(B) - 23)/6 .

Lemma 8. Let As -ees Ag be elements of @ such that n(Al) = ...

n(A6) =n > 7 and the equality A(Al) + ..+ x(A6) = ¢(n) holds. If
q(A6) =n -1, then at least one of A/, ..., A5 is in Al .

Proof. Since A(A6) = - A, 1) = (- n2 + 3n - 2)/n , we have A(Al)
o+ ag) = (3n° - 9n + 6)/n . Ifnonof A, ..., Ay is in q&l ,

then we have inequality (3n2 - 9n + 6)/n < 5n/2 - 5 by Lemma 5. This

inequality does not hold for n > T .

Lemma 9. Let Al’ ""vAh be elements of ﬂ\ﬂl such that n(Al) =
.= n(Ah) =n > 7 and the equality )\(Al) + ...+ )\(Ah) = ¢(n) holds.

Then one of Al, ""Ah is inﬂz .

Proof. If non of A, ..., A is in 9&2 , then we have ¢(n) =
(2n2 - 6n + 4)/n < bn/3 - L4 by Lemma 6 . This inequality does not hold for
n>T.

q. e. d.

The following lemma is crucial in the proof of Proposition 2.
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Lemma 10. If elements A:L’ ey A6Q9Q\qgl with n(Al) = ... = n(A6)
=n >7 satisfy )\(Al) + ...+ )\(A6) = ¢(n) , then either
i) at least two Ai and Aj ,i# 3, are in <A2 , or

ii) at least one ‘Ai is in AQ and at least one Aj is in ﬂ3 .

Proof. If non of Ai's is in § then, by Lemma 6, we have A(Al) +

2 3
.+ A(A6) <6(n/3-1) =2n -6 < ¢(n) and which contradicts the assumption.

Hence at least one of them is in Qﬁ2 . Let it be A6 . If non of Al,

. A5 is in 942 nor ﬁ?) , then, by Lemma 7, we have )\(Al) + ...+ )\(AB)

<5(3n - 7)/10 = (3n - 7)/2 . Since X(A6) < (n - 5)/2 by the table, we
have A(A)) + ... + A(Af) < (3n-T)/2+ (n-5)/2<2n-6. Thisisa
contradiction.

q. e. d.

Lemma 11. Let Al’ cees A6 be the elements of A\%l such that

DY

n(Al) = ... = n(A6) =n > T and the equality )\(Al) + ...+ )\(A6) = ¢(n)

b Ae’

nolds. If Ac€f, . A; €W, end a(A) =n - 6, then one of A

Ay isin 9, -

Proof. Since (2, n) =(3,n) =1, weknow n=1, 5 (mod 6) .

)

We have )\(A6) = (n2 - 6n + 5)/2n , AA (n2 - 1ln + 10)/3n a.nﬁ A(Ah) =

5
- A(n, 6) = (-n2 + 38n - 37)/6n in case m = 1 (mod 6) , and A(As) =
(n2 - Tn +10)/3n and A(Ah) = (—n2 - 2n - 37)/6n in case m = - 1 (mod 6) .

Hence we know A(Ah) + )\(As) + A(A6) < (2n2 -n=-1)/3n and A(Al) + A(Ae)

+ )\(A3) > (hn2 - 1Tn + l3)/3n . Ifnonof A, A, A  is in %2 , we have

1° T2 73
(l&n2 - 1Tn +13)/3n <n -3 by Lemma 6. This inequality does not hold for

n>T.
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Lemma 12. Let Ajs .- Ay De elements of ﬁ\\%]_ such that n(Al)

= ... = n(A6) =n > 7 and the equality X(Al) + ...+ X(A6) = ¢(n) holds.

5 and q(Ah) =n -4 , then at least one of Al’ A2, A3 is

2

Proof. Since X(A6) = A(AB) = (n 6n + 5)/2n and X(Ah) = - An, 4)

1 (mod 4) and (- n2 + 6n - 17)/kn

is equal to (- n2 + 18n - 17)/bn if n
if n =3 (mod k) muwe have A(&) + A(Ag) + MAg) < (3n° - 6n + 3)/bn and
A(Al) + X(Az) + X(A3) z_(5n2 - 18n + 13)/bn .  If non of A;, Ays A3 is
in 9&2 , then we have inequality (5n2 - 18n + 13)/bn < n - 3 which does

not hold for n > T .

Now we are going to prove Proposition 2.

By Lemma 3, we may assume n > T . Assume non of qi,j's is equal to 1 .
Then by Lemma 10, we know one of qi,j’s is equal to 2 and one other qi',j'
with {i',3'} # {i, J} is equal to 2 or 3. By renumbering the indices,

we may assume = 2 and one of the fbllowing holds:

9,1
1). =2, 2).

6).

q2,0=233)‘ q1’2=2,h)‘ q2’1=295)' 92,3'-'2,

3, 7). 4% o = 3, 8). G~ 3,09). 91T 3, 10). b3~ 0.

99,2

99,2

We are going to show that each of these ten cases does not occur. Since
(2, n) =1 , we know n is odd. We set n=2d -1 for an integer
da>5.

1). By the condition (1) of the proposition, we have q; , = d , and
H]
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by (3) we have -1 (mod n) . We know a4 ,=n-1,

9,077 %,0%,0 "

and this is impossible by Lemma 8.

2). We have - 4 . Hence by Lemma 12, one more

917" 9%,1%,0°7

is equal to two. If one of q0 3 is 2 , then we are
b

9,3 > 9 10 95 3

reduced to the case 1) by a permutation of indices, and if one of q3 0’
>

Q is 2 , then we are reduced to the case 4). If q = 2 , then we
3,1 1,2
know n =9 by gq q. =-8=1 (mod n) . This is impossible since
2,171,2
we have 9 3= 3 by (2) which is not coprime to n . Since Y o= 9,0
=4 # 2 , we know 9 3 or q3 5 is equal to 2 . The later case is equi-
it E]

valent to the former case by the cyclic permutation (0, 2, 3, 1) of indices.

If ql’3 = 2 , then we have - b Then we.have

99,3 7~ 4,3%,1 *

+ + = - 5" PR .
qO,l qo,2 qo,3 d 2 , and this is not equal to 1 modulo n

'3). This is reduced to the case 2) by the cyclic permutation (0, 2, 1)

L). . We have Y o= d and 4,0 = - qO,lql,Q = -1 . This is
impossible by Lemma 8.
5). By (3), we have q; ,a, 5 =24 , = - q; 5 (mdn) . On the

other hand, we have 2+ q,  , + 4 5 = 1 (mod n) by (3). These two
b 3
equations imply Q5 = 1.
b
6). %1 =2, 4,0 = 3 imply 3 = - 4 (mod n) by (2). Since

(mod n) by (3) , we have 2 . Thus we

2 5= 9,194 3% %3 4 3=

are reduced to the case 1) by the cyclic permutation (1, 0, 2, 3) of
indices.

7). We have a, q = = - 6 (mod n) . Hence we are reduced
b

= 9,1%,0
to one of the cases 1), ..., 5) by Lemma 11.

8). Since - q. -q = - 6 , this case is also reduced to one
0,171,2

49,20 =

- 68 -




of the cases 1), ..., 5).

9). Since (2, n) =(3,n) =1, weknow n=+1 (mod 6) . Let
n=6e -1 for a positive integer e . Then we get @ = 3e , q =
1,0 : 1,2
2e , and they imply qO’2 =2e -1, q2’o =3e -2 by (3). We know q2’3
=3¢ -1 by (2). Hence we have a3 5 = - 2 (mod n) by (1). Next assume

n =6e +1 for a positive integer e . Then we get Qo 3e +1, a4 5
> »

=le +1 , qo,2 = le , q2,0 =3e -1 and q2,3 = 3e . Hence we get also
= - . +
a3 5 2 (mod n) In the both cases, we have A(n, qo,l) A(n, q2’3)
= 0 . TWe are reduced to one of the cases 1), ..., 5) by Lemma 9.
. i = - = - + +
10).  Since q, 4 99,190 2a, o by (3) and q; g+ *3

= 1 (mod n) by (2), we have = 2 (mod n) . Hence this is the case 4).

9 1

Thus Proposition 2 and Terminal Lemma is proved.
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The list of A = (al, cees

as) with relatively high

deviation.

A a q [of A

(a) n 1 -2 (n2 3n + 2)/n

(2, 4) (n+1)/2 2 (n - 5)/2 (n® - 60 + 5)/2n

(3, @) (n +1)/3 3 (n - 5)/3 (n® - Tn + 10)/3n
(2, 2, 4) (n +2)/3 3 (n - 10)/3 | (2® - 11n +10)/3n
(4, ) (n+ 1)/b 4 (n - 3)/k (n® - éa + 17)/bn
(2, 2, 2, d) | (0 +3)/b 4 (m-17)/% | (n° - 18n +17)/kn
(2, 4, 2) (n+4)/4 | (a+2)/2 ]| (n-12)/b (n® - 120 + 8)/bn
(2, 3, @) (n+2)/5 5 (n-13)/5 | (n° - 150+ 26)/5n
(5, ) (n+1)/5 5 (n+1)/5 (n° - 3n + 26)/5n
(2, b, a) (n +2)/7 7 (n-12)/7 | (n° - 150 + 50)/Tn
(3, 2, 4) (n + 3)/5 5 (n-12)/5 | (n° - 150+ 26)/5n
(6, a) (n+1)/6 6 (n+7)/6 (n® + 20 + 37)/6n
(3, 4, 2) (n+5)/6 | (n+3)/2 | (n-13)/6 (n2 1hn + 13)/6n
(2, 2,d,2) |(a+7)/6 | (a+3)/2 | (n-23)/6 | (n°-22n+13)/6n
(4, a, 2) (n+6)/8 | (n+L4)/2 | (n-10)/8 (n 12n + 20)/8n
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A Remark on Flatness over a Graded Ring

Nagoya Univ. Hideyuki MATSUMURA

The following results came out of a discussion of Manfred Herrmann and myself.
Although they may be already known to some people, they do not seem to be well
known.

Let G be an abelian group, R = ® R_ be a graded ring of type G
g€ G

and M= (® M be a graded R-module.
gEG

Proposition 1. .The following are equivalent:

(1) Mis R-flét; '

(2) if S: ... >N->N > N'~> ... is an exact sequence of graded R-modules
and grade-preserving R-linear maps, then S% M 1is exact;

(3) TorI;(M, N) = 0 for all graded R-module N;

(4) Torli(M, R/oL) = 0 for all finitely generated homogeneous ideal (U of R.

Proof. (1) =(2) =(3) =>(4) : trivial. (&) =>(3) =(2) : same as in the non-
graded case. To prove (2) = (1) we have only to show that if Illilaixi =0, ay € R,
xie M, then there are bij € R (lsig<n, 1€j<r) and yj e M (1sj<r) such
that '

* = ] =

(%) L a,b,. 0 (all j), X, Z bijyj (all i).

We decompose a; and X into homogeneous components: 2, = dec aig’ aige Rg,

x, = L X € M.h Then I a;x, = 0 1is equivalent to

1 = “hec Fin’

G)) z
heG

Consider free R-modules F =1

= c < )
ai,g—h X 0 (ge G, lsisn).

n [ - '
i=1zgeG Reig , F deG Reg with bases (eig) ,
(e'g) respectively, where e‘i and e' are homogeneous of degree -g. The

R ' = (]
linear map y: F ~ F' defined by w(eih) deG ai,g-heg is homogeneous of

degree 0. Put K = Ker v, wM = ll}@lM, and Ei = Zh eih®xih‘ Then
= ' ) : =
RUM(Ei) Zg eg@(zh 8 gh xih) 0.
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Since 0 -~ K®RM -> F®RM - F'®RM is exact, there exist finitely many

c <i <§ =
elements Bij € K and yj EM (1<ign, 1<j<r) such that F’i Z‘j Bijyj

S . < . 3 3 . . .
(1<€ig<n) Then Bij must be a linear combination of (eih)hEG’ for each i

Let Bij = Zh bijh &in’ bijhe R. Then Zh ai,g-h bijh =0 (all g e G)‘ and
X = Zj bijh yj. Put bij = Zh bijh' Then Zi aibij =0 (all j) and X, =

Zj bijyj (all i), as wanted.

Proposition 2. (Local criterion of flatness) Let R be a graded riﬁg of type G,
and I be an ideal of R (not necessarily homogeneous). ILet M be a graded R-
module (not necessarily finitely generated). Suppose that

(1) for every homogeneous ideal O'L of R, the R-module OlmRM is I-adically

separated;

" (2) M ; M/IM is flat over R,
(3) Torl(M, Ro) = 0.
Then M 1is flat over R.

= R/I; and

Proof. Derive Torl;(M, R/m) = 0 for homogeneous ideals gL by the usual proof
(cf. Th.49 of my book Commutative Algebra), and apply Prop.1.

Application 1. .(Tangential Flatness) Let A, B be rings and I (resp. J) be an
ideal of A (resp. B). Let $: A>B be a ring homomorphism such that ¢(I) C J.
Put R:= R(I, A) = A[It, u], 8:= R(J, B) = B[Jt, u], where u = t-l,_ and let
R and S be graded as usual by deg(t) = 1. Then ¢ induces degree-preserving
ring-homomorphisms R(¢$): R+ S and gr(¢): ng(A) > ng(B). We have

A = R/(u-1)R, B = S/(u-1)s, ng(A) = R/uR, ng(B) = S/us,
and ¢ and gr(¢) are obtained from R(¢) by base-change.

Proposition 3. (B. Herzog) If J ¢ rad(B) and if A and B are noetherian, then
gr(¢9) is flat & R(¢) is flat —_—> ¢ is flat.

Proof. Flatness of R(¢) implies flatness of ¢ and gr(¢) by base change. Suppose
that gr(¢) is flat, i.e. that S/uS is flat over R/uR. We have Tori{(s, R/uR) = 0
because u is a non-zero-divisor in S. If oris a homogeneous ideal of R, then
O'(_®RS is a finitely generateé graded S-module, and as such it is u-adically )
separated. [For, if M is a finitely generated graded S-module and N = ﬂi‘:lulM,
then N is a graded submodule of M~and (1-ux)N = 0 for some x € Sl. Then ux €J
and so l-ux is a unit in B (hence also in S). Therefore N = 0.1 Thus S is

R-flat by Proposition 2.
- 94 ..



Remark. u-1 is also a non-zero-divisor in S, hence we have Torli(S, R/(u-1)R) = 0.
But 0‘(®RS is not necessarily separated in the (u-1)-adic topology. This is the
reason why flatness of ¢ does not imply that of R(¢). EXAMPLE: Let A = k[ xz]]
and B = k[[x]] . Then B is free over A. Let OL= (th, u)R and w = x2t ®1 -
u@(xt)zé ()'L®RS. Then w# 0 and uw = 0. Hence w € ﬂ;:l(u-l)i( 0® s).

Application 2. Let A = @ n%20 An and B = ®ﬁ>,0 Bn be graded noetherian

rings. Assume that A , B are local rings with maximal ideals m, n, and put

M=m+A4, N=n + B+. 0Let f: A+ B be a ring homomorphism of degree 0 such
that f(m) € n. Then the following are equivalent:

(1) B is A-flat;

(2) B is A-flat;

(3) B, is A.M—flat.

2

2

Proof. (1) @(2): trivial. (2)&»(3): immediate from the definition of flatness.
(2) =»(1): We apply Prop.2 to the case (R,I,M) = (A,M,B). If 0L is a homogeneous
ideal of A then: O'L®AB is a finitely generated graded B-module, and every finitely
generated graded B-module L is N-adically separated. Since A/M is a field, it
remains to check TorA(B,k) = 0, where k = A/M. But Torl;(B, k) is a graded
B-module and O = Torl(BN, k) = (Tor‘i(B, k))N. If L is a graded B-module, LN =0
implies L = 0.

Remark. In "The category of Graded Modules", Math. Scand. 35(1974), Fossum and
Foxby proved our Prop. 1 by Lazard's characterization of flat modules as direct

limits of free modules.

- 95 -



v OVI the Aﬂge.bmue Function Flelds of Qenus 0
which Fave ho ploace of Degree 1

Ryofiel Motegl . Departiment of Mothem-
a.t(cs, Faculty ‘of Science, Tokat Unversity .

17\ Aiﬁtmv&@*%tzg P\, — TR Bl
bizothh . REZ 9 PR CIRRL Tt o Cw te

e

NN\
sSan
T Ea

1. K=, 4 &é%ﬁa’iﬁ@ﬂb/&%ﬂi\ £ ) AR
TLThHOCOELTT . 2o 4 2dbY G4 sl
42 Fo . KeR(LYT). éfmﬁau@ﬁ// $1EN % .
ﬁquwa@}fw%r % () element F() 6 4 0 T Y)fmm
I3« aksnt. Kegmhnro —otkGibr CmEL T
FOo -08 LOERBTHSE0 1T dIF2Z10 KB E
GTeHe-erh ) 1T, V/\’chgl-’l‘ébfﬁo

L. loKizop 2. 29Placenb) P9 3 Hildeza~
2 L ERT, LR FRTARFTEAOMER)FT . G2
@ﬁ:ﬁ;";(:}q Z K o Gen us 4 138=0(degF-1)/21TC 5% 65 4 3
eS0T 2L 1 FGoussit %,

Fooy =+the place of W) defined by an trreductbﬂe edement
Pl) € I2] .

To =the pole of X of &

P =the place of K which lies ehove Ppy or Fo .
€p = the ramification index of P with respect to #2) .
fp =the relotlve degree of P with respect £ LU .

- 96 -



de. = the ﬂe&d(‘n% cvefficient
Vy = He vaduotlon defined by the place .
Places of Q) ? & | fp | QP
‘, Vppy (F)7 0 4 2 | 1 | dgP
/wa o =

[F) =sgugre (mod P) Poh| 1| 1 | P
lF £squere(md | 7 1 | 2 [2degP

degF is odd 2|11

degF 15 even and

T |
Q'Q‘ 0{ F (S S%UJ)J"Q %)?2 1 1 . 1
0.¢. of Fis ot square | P | ya 2
3 . Gems 0 O MEGHKMEG . RIEHEMETLEL 2 2R
A THD e rres T VT LT Degree 1 ) Place 682 9%
Ertielfr e €T OBE T RBEMEC L TRD
ey g T o 2T 2. CENEREE, TR
5 RBIBONG SR TT o
298, K Degree 1 9 Hae 645 £ 15 0 Genus 0 0 AOBB
M, Bt %9 BRUE LT HV LT D KIgRTE
SR (I
@ K=k, Tt f,Y) = Y=a0=b, (@, p)=-1.
R LR [ {40 2REMA DY EE =014
ARG BEEE 7. '

(0,p)=
1. 22 CnH 0.

- 97 -



o, BEILCEMEIDRB AL L. BT EL bk 3
KIiTRE2RIECL L ~Geus O D Degreel 2 Ploce & & =15
WK BBML D 2.

#17-. Gerus ODDedree 1 9 lae § ¥ W2 70 @ U2 K
ML DB GBS OLD EHMOE CRBCH I 00 T %
BRNEA . “hSDEERC A LEPRAGH ) 2T & 7 )4k
CHBOVHB I 1T Ko 2327,  4l=yqibie
v @ eErs Kottt @REAK) 1T Lo

Kb T LR RS,

B(Vi,v) =0 (o4, L J012)
VofF=~bIVAI, 1|Vl = -allVal|

Xo Y,
- Ve ,

)) X ()G)’Y (&)) B, Y)= Yot bXo XY .
J;L gﬁ‘cé)ﬁf/ﬁrtﬂ‘ Aafﬁ,CK)f,_,ot\Zt}\ zbz’r')’h
Ay LE: % RTUGonFEAD RTERD ¢Cample 0 =01
-7 Wﬁ/ 146 L7 T €
K=€(%, %), #=02+b , (@, b)=-L,
Kj.f—ﬁﬁll,ﬁ;) ‘jf:o‘iﬁ'f'b'l,)(a.ljbl,):"l neg.

nwwﬁ<@wulafww@bwc%@wﬁkb
KMITREDD TP :

tramfled—1 ., f=F OID oA K17 BI28%44k 1= PR
3. 44 Lo ‘it&&ﬁn% '

LaampPled -2, 4 =R 9 1h&, KW@%@&@#?L
RUGY), 124 1=0C 616 R34 ER EQ® U5 3 , 2
Bﬂmbm@}ﬁbi)ﬁlﬂl\5¢

F,.2-1,2200 5K BEMCBERLELCE Fo,
tamfle 3 -3 . B=QpoB4s., hE9Pilzonz, KIF

B
L%H’ff(/tﬁﬁ IEL5 B YA, TI\Y-QJ: 2Uh3. iE
817 C ) ) FHUpert’s Symbol T 3 o 2 \ BB D KT

Autp(K) = /)\tlxeﬁ‘? & = ((Vo)V. )‘Mj%'%)eeuﬁw }7

.. ag -



o i G20 T Lp Hilbert’s Symboll 0 3t BAD), 1) E A
W3 o .

Lo  HILIT MOABERITATTFOLIRELTRTL = h
CEITHEOMBR L)k REE T LB KT T

faamlle $1= (7 Theorem ,  MEL 9 L EAED L ) Genus 0 0
MW BHEAE T BTE G B PR D .

F LG DO GRITY LB S AT G0 BT ) R
4’74—1)‘/{‘0:/\-’0

o 99 =



Rotthaus ® R IZTD> LT

=K 12 T Re —
NisSHIMURA  Jun-ichi

§ 1. Introduction. EGA TV (1.4.8) 1=. mas >HED

o .
X 9-B A tz01F7w 1 200T,
a) A/LI B P- Yl\n% ™MD
b A B T-adie Sep. complefe
5. A 8 P—n‘ng »n 9

3. P = excellenT ~BFIFB/EPLI2EZS., WT. &2
CE® % @ MdasumuralM1) 1283, P ERY D 2,

a3k, 33 @ 19amF Matsumura [M 2, Nomura [NoT ,

Seydi 51X BHOOE(HIVIX. &3 RMEHE T EKO Dex
cellont Oedekind ring ) £ BREFBOT TPILIC F 3 REBILA oc
cllent -2 - ¢ & FANEOPIETUHRAERO, J-268
<2elzfy mot, -5 @ 1993% Marct [Mall 3. P =

universally japanese @ & £. ERORBEE EBITEE T, Z OMard
ODERL prIe?uEFBEECHLIRLT) ERL. B

1994 % Valabrega [V] 1. —MBHOE(R & RE OO exell
ent Dedekind ring )  BRREKIBe 4 T 7L IT & 3 R 1" oxcell-
ent B3 ERLE,(cf [M31). 85 @ 1974 % André
[AJ I%. quasi- excellent local ving A 2 5. local ring B A O form-
ally smooth TEER (L. reqular BRIV THIZLEMLE. O
Andre OREREMO. B 1918F. Rotthaus[R1] I&. A B gemi-

local T A B quasi- excellent & 5. RA B BT HICc &
FLE. DDE) B, %t AR EEROOKFREBL BOD. A
FIAAR 2. RFEBROBBICF 3§ TIC. SeydirBrezuleanu - Radu
L&, T. TIE? VHEZOERQKALLT "FTEMmTO
T, ®07A) BF. TORMThaus DR 1T 29 -F A

T-odic sep complele T A/T % G-ring #D. faithfully flat T quasi
excellent T A-algebra B A1 L AIA _5 BAB D" reqular %

BE 5. A T qu.asir-excdlonr CTHhI3I T rETLTOI3. B &
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)

@ 1999 &F = N ishimuro IND &, A A sewmi-local T P = norma\ (Rr&.
veduced ) DT € S ST THI A A A semi-local T hlTh
2 AT A B-ving 05, AlFXFLE. Posing 2 B 5 "mOZY
ER LK, £ 237, @ 1950 Rotthaus [R2] 1F. Brodmann -
Rotthaus [ BA-RI & &b €. RO EFLESEML
Theorem. ( Rofthaus) %7 ~ BAELE ZOTTTITWIKDD

<

Q) dimA < o (Kull REVER)

b) A F. universally catenavy, ,

O A S>Q (mEOOEERT),

d) A 1&. T-odic Sep. complete ,

e) A/T 1F. excellent.
N5 A B excelent TH 3.

Theorem. ( Brodmann - Retthaus ) %3~ B A &. z0T TP
wIlk>»0T.
a) A & universally cafenary ,
L) A D ®,
) A 1F. G-ring Cie. B = regulor ),
O AT & I, m I rd(A)
5y, A6 J-203Bh5 excellent ) T& 3.

Bic. (DIZHT3. key Pop. 2% P = pormal 12T 33 S & RS
@) 1980 G 1981%) Breguleanu- Rotthaus [B-R)Tx. ROGR
€8TV 3. |
Theorem Bresudeo.nu- Rotthaus ) #R - IBA v ZOA

3y L 1T 20O T ‘

a) dim A < oo,

b A & universally cofenary,

¢) A & T-adic cep. cowplete,

d) AT X . universally japanese,

e) AT 13 Z-rog (e P= normal ).
o, AB. 7T-ving BB,

5 & @ 1931 . Mardt [Ma 23 1. TR O DEEBL  local P-
ring CA,m) & foithfully Flat A-algebra B[22V T. A 0) closed .
o fibre Bmg B MBEPE HETIK, A ASBA 0 BERT B
P-EZRRTHI L ERC. (4g@) A W (FBELO O £ € BT )
cem - local ring T. AL A7 universally japanese R-ving To5. B A
Letwceha -t ETLECHO)

—0 & DT LzﬁmFE)\:ﬁa%.:mo&@m%ﬁeﬁ\z D R3 .
FORE FFRHRED DCEERBICENELE S RIBbhRB.
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> 2 Key Fopsition. ~ WF (85-B A ¢ 2o T
v L EBREL. A B T-adic sep. complele & T3,

Notalion ~ & Max(A) = { M e Spec Al m moaximal § (e,
ADIRK Mol DEB), [ =S kK € Maxcdr| |k|<oo } (Le
ANBRRIE N &% K Heals DEADAR) £33, e 3 ro=
3\ 5@‘5}%5@@‘(‘\ fltered d\‘rec‘tﬂg‘jstem 3. R, kel
'%lejkmw (el ) AL = SJA (komEBEAT T 1L (26 3) semi local

n‘ng . Bk = Ak* ( = AKCD IAk“ad&\C COmpleT[‘on) EF 3., 20

cF. K,k e, K2k, B3 Ra&d HEKELER Y, |
e, PBEID. AL R, A |

Gy

Bk4 e SR B,

Fo T3 Be, Rty E projetie system 23, ¥ T

Definition. 2.1 (keel” & fix L ) FANTO ke (k)
(22 0T, Be ® ideal Ty A5 25hTO3E 33, v {1}
(kellie)) 7" RO2AMEXETE S ZOEAE (A0 ) ol
sequence & 11 ) B
C2.1.1) 23 6 Kk elNlk) , K
(2.1.2) 180 K kel(k), k'

2k o0 T T = GnB
2 kK l:’D”t_. 7Tk=/(>k/‘8k.

Notalion O FE %fk }Kel’(ko) & deal- sequence T A Pe A" prime

B0 (20 €% prime-Maal-seq. & FFIEE L3, £T  Ag
EFT T(zo)z®L .
Ak = { QiCt) € Spec B | Qi + p_+ tB. o A% I\ prime |

AG) = { §g) € Spec A | 95 = Q) NA | Qiex ®EAm}
EMC, 2o FE.

Definition 2.2, A O prime- ideal -seq. {?kgker’(ko) A WR
OCLARMEHRERTC . simple LD,
(2.2.1) TEOAQIETT K(#0) & I AT D i (4) € A

50T W) = fT(g + 8D
(2.2.25 CBoOADIER +(20) 220T. Ad) = BREA.

TT. Rotthaus ODBE ¢y ey Rt £ B3 prop. (3
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Key Proposilion : A% 28 ~B T=xA (xz0) &. principd
ideal T ROKRTEXIET LFI
&) A [&. universally catenary demain,
Y) A 3. universally japanese,
<) A & xA-odic sep. cemplete,
d) AXA TF. G —h‘ng (RI%. Z—h‘n% ).
) R dperyy T Simple prime -ideal -seq .

£33, cacx. (03 >0 B3 J0A* (o).

Oufline _of Proof. a0 A=( tBREG FBEXRSWC,

33 Ck = (Be/3) (= BdR O integral closure Je3 3. K2k
LooT. ROUBREETRI. B, %, B

\ , ¥
B/ —— B
) l
M

Cor —HEES G
#9 T . i Ck, /uk'k }k{ker(ku) t. PYD;QCT\\VE S‘sds‘l'em \Z T&% .

zZ 27T :
D = mCg tEHTI. 20 & T AT A simple

g."@ kel (k) .

odeal - SQCL j(.“&g e (3:\41 o @), b)), d)) &v . D I<vull }%
A5 °DAD . AL fote (mdule) T&H 3T e s mI I (T
LE. 2h3 ERIOIC. SHh1ONH. 2 h ZECHBTERD VO sublemma
£ E %3, HEAMT Rolthaus [R2] 2. Marst (Ma3) &% 82 oy 2
) E.T. O &9, DEBE. ALfinte £l BHR ideal xD,

xA O &\ prime O r steBRxg3 L. RRkWa) &V 3B.

§3. Key Prop. Oj)EFH Rotthaus ORBETICHKEZ L. &
3. noethertan induction FEUWBHGIB)EL. A & domain
T&prime (WTF. T&E Pt <) &L A ® regular locus 7v.
non- emply open sel’ 3Lt E?T?Q’\I'ﬁ&n ~ (23, FT3". Ap
4 excellent E 015, 2O EHIT. Ay O singuar locus & B& 33
B(iprime O — 2 % £& 0 (fxE3), Be £ O intersection $0Bk €
3. £R<E BRI KEMELED0T  ZO4FKkerne) 2> simple-
prime- Mdea| seq. THI Tt FRERFL0. 33) o LrEO
reduction (CP0 2. dimA <o OREE Y . A o ki) REICH 3
iducton €. VR 3L 23 TR, |
RIC B melT=>0T A, 1t excellenl (83Tath 5. G-ping ) O
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(to &, oBA

~ > 1) /;w naulor locus & B & T 3%
prime @~ 2 Ju 3 At P

d > O sin
3 (fix 33). fie ABIC. F_= Fn 0B ( kelm)
LBt B3 KENZI20DT. ZhOidkbrery 27 FEL. simple
prime -ideal seq. TRI T ELERCEIF S, 3F) 2o (Lcim
A OBBRM) §RJI=1F. Ap B excellnt LT Hironaka
recoluion 7 BAIT T3, #) - T BHROINE. LAL. O
step TIE. dm A <vo L ODMREBIF@ OGO, WLEFH. AW
G-ving THIZ e ITRIMI, |
Z 2 T. Brodmann-Rotthaus O BFRER O, Rotfhaus O EF 0 5EBR
RAFET3. &) Brodmann - Rofthaus ODEBICHROTE. Ao reg. locus
O openness £ RF OIS FE . noetherian induction (2 & V. ad(A)=Q
Eprime £ 2 TF0OTEET L. Ag IT Hionaka resolution & A
30T PIE Y RBEO T XB),

-3 Z‘n‘ng cBloT&. 3T @ & . universally Jopanese WO
T normalization (& 1O D% YFCOHLC, KRS T BE-RTt. F
EEfHct ERERLTI. FE) LAGC. T Ap B T-nng
ER T, Key Pop, EF OB O T, excellent o BE ¢ Rl . A\y_
® non-normal locus ER & T 3 M pime § A3 & A3 Bbrerzn 20
clmple prime-ldea)-s8g. T&H 3 T £ E b nFR 5 F 7 2 T 0N ndudtion

EROIBBORAIC. dmAcon EXPEF 3,

fe]
d
€

-
—

L\\
Y
r
3

§4 _Zoir 1) Rotthaus o BB HIT35ERRE. O,
OE3ic. BEJI2E050TIHEL. 20K 2F. G-nng 12753
SEETL. ZOTE Hirnnaka resolution E4 A G . reg. locus @ open-

‘ness LB, FELT T2E& t>3CLBARBCERS 0TI
LWEOE3INH? e O, @(asv@ozh)ey . vae
P LHEBROD T ORMME Y, %Hf’éi@t“éﬁ% EH THFBDLNI.,
LR, 20 &> HRART. AL 3 % (F3 01T excellent Dedekind
B) r BREKIRT. A A I-adic sep. complete O & % . A 1. quas
axcelent 121730 2 <2065 MOoTAIETRT hIkdms ),
2) T ®&~@ TOEZEREIC. -BoPr 20 T. Rt
haus O %-@(T’ Bregu\comu— Rotthaus oR®) & BN gz B
LBEI3IN? 2 Y. BBt &3 hir D

] *3-BAx z01T7?v T 220T,
&) AT A universally japanese , B-ring,  #D.
b) A 3v. T-adic sep. complele
T}\".) A 6 E-Hng »m ?

._t@m Keg Prop_ &, TO %:mﬁﬁl:ﬁa—% ﬁ@@%—@t“%?k
VI H D h B,
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#) B.rE [P =regular NBAE . AL T HIT 3 reg. locus 0 opennes
(te. F)OREMRBO T. BRMOTTZ. FEDOA T,

3) &\, Breguleanu » 5. 3T local Z-ving < J-2ExT1
47 G-ring TER VBB TES h1=( 1a= 8AER) ¢ &2 TIE,
(opsad. $5%). Wk,
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Subrings of finitely generated rings
Osaka Univ. Nobuharu Onoda

Let D € A be integral domains such that D is noetherian and
that A is finitely generated over D. 1In this note we are mainly
interested in a D-subalgebra R of A and we shall consider a
problem asking when R 1is again finitely generated over D. This
problem is closely related to the fourteenth problem of Hilbert and
many mathematicians gave various conditions for R to be finitely
generated over D. The purpose of this note is to give some new
conditions when D is a pseudo-geometric ring satisfying the
following condition (C).

(C) Every normal locality over D is analytically irreducible.

Throughout this note we fix the above notations and assumptions.

1. The ideal AD(R)
We define a subset AD(R) of R as follows :
Aj(R) = {a€R | R[l/a] is finitely generated over D}U{0}.

Then we have
Lemma 1.1. AD(R) is a non-zero radical ideal of R.
We omit the proof. The following lemma plays an imﬁortant role.
Lemma 1.2. Let P e Spec(R). Then we have AD(R) ¢ P if and only if
R, is a locality over D.

Proof. The "only if" part is obvious and we prove the "if" part.
Assume that Ry is a locality over D. Then there exist a subring

B of R and a prime ideal g of B such that B is finitely
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generated over D and Bq = R Let S = B\g. Then we have S-lB

p
= S—lR. Let 0 # a¢ AD(R) and take an element b of B so that
R[1/a] € B[1/b]l. Let F = {Q & Spec(B) | depth BQ =1 and BQ;; R}.
Then, as is easily seen, we have F & AssB(B/bB)' and hence F is
a finite set. Let F = {Ql,~--,Qm}. Obviously we have Q ;N *-* F\Qm
¢ P. Let se (QN--- NQ )\P and let A = {Q € Spec(B) | depth By
=1 and s¢0Q}. Then, by the choice of s, we have BQ 2 R for
every Q € A. Hence we have B[l/s] = /N By 2 R which implies that
B[1/s] = R[1/s]. Thus s € A (R)\P aggAwe proved Ap(R) ¢ pa

By virtue of this lémma, we have the following theorem.
Theorem 1.3. The following conditions are equivalent to each other.
(1) R is finitely generated over D.
(2) Ry is a locality over D for every prime ideal P of R.
(3) Rp is finitely generated over Dp for every prime ideal p
of D.

Proof. (1)=& (3)® (2) is obvious. (2)(1) is an immediate

consequence of Lemma 1.2 g

2., A non-nullity'criterion of AD/P(R/P)

Let P be a prime ideal of R and let p = PND. In general
AD/p(R/P) may be a zero ideal even when D is a field. For the
later use, we give a condition for AD/P(R/P) to be non-zero in this
section. For this purpose we recall the following definition.
Definition 2.1. Let P € Spec(R) and let p = PND. If

ht(P) + tr.degD/PR/P = ht(p) + tr.degDR,
then we say that P satisfies the dimension formula relative to D.
Now we have the following .

Lemma 2.2. Let P be a prime ideal of R with ht(P) = 1. If P
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satisfies the dimension formula relative to D, then AL (R) & P.

_ Proof. Take a subring B of R such that (1) B is finitely
generated over D (2) R is birational over B and (3) ht(Q) = 1,
where Q = PNB. Let B' and R' be the derived normal rings of

B and R, respectively. Then, by virtue of Krull-aAkizuki's

theorem, B'Q and R'Q are one-dimensional noetherian rings. Let
P'R'Q be a maximal ideal of R'Q and let Q' = P'NB'. Since B'Q,
is a discrete valuation ring we have B'Q, = R'P.. Therefore, by
Theorem 1.3, we see that R' is finitely generated over B'..

Q Q
Note that B' 1is a finite B-module. Thus we have AD(R')f\S £ ¢,

where S = B\Q, by Lemma 1.2, which implies that AD(R)f\S # 6.
Hence we have AD(R) $“P 2

By making use of this lemma, we have the following theorem.
Theorem 2.3. If a prime ideal P of R satisfies the dimension
formula relative to D, then we have AD/p(R/P) # (0), where p =
PND.

Proof. The assertion is easily verified by induction on ht(P)a

3. Main theorems

First of all we prove the following
Lemma 3.1. Let D' and R' be the respective derived normal rings
of D and R. If a prime ideal P' of R' satisfies the dimension

formula relative to D' and if R is noetherian, then R'P.

P'NR
is a locality over D'.
Proof. Let P = P'NR. Take a subring B of R such that (1)
B is finitely generated over D (2) R is birational over B (3)
-— p— — 1
tr.degB/QR/P =0 and (4) QRP = PRP' where Q = PNB. Let B be

the derived normal ring of B and let R = R[B']. Then R is a
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finite R-module. Let P = P'N\R. Since RP is noetherian, we know

that ﬁﬁ is also noetherian. Let Q' = P'NB' and p' =P'ND'.

Consider the ring extensions D'p._c_ B'Q.g REQR'P.. Since P!

satisfies the dimension formula relative to D' and since B' and

o'
§§ are noetherian, we can easily verify that both P and Q' satisfy
the dimension formula relative to D'. Thus we have

ht(B) = ht(p') + tr.degy,R - tr.degp, . R/P,

ht(Q') = ht(p') + tr.degD,B' - tr.degD./p.B'/Q'.
Therefore, by the choice of B, we see that ht(P) = ht(Q"), i.e.,
dim i§ = dim B'Q,. Let K and I be the quotient fields of IB'/Q'
and R/P, respectively. We claim that 1engthK§§/Q'§§ is finite.
In fact, since Q'§§ ) Q§§ = P§§ and P§§ is a ﬁﬁi—primary ideal,
there exists a positive integer n such that §n§§ c Q'ﬁﬁ. Then we
have

= s
lengthKRP/Q RP

(2

- -n—
1engthB.QlRP/P RP

(lehgthKL)(1ength§§/§n§§).

Since P satisfies the dimension formula relative to D', by
Theorem 2.3, there exists a ring E such that E is finitely
generated over D'/p'' and R/P € E. Let S = (B'/p')\{0}. Then
the ring extensions B'/Q'<C R/PC E implies K = s"l'/0") ¢
S—l(ﬁ/ﬁ) c s"lE. Note that we have S_l(ﬁ/ﬁ)'= ﬁQ./ﬁﬁQ, and
tr.degKﬁo./ﬁﬁQ. = 0 by the choice of B. Since K is a field, we
know that ﬁQ./ﬁﬁ . is also a field, which implies that ﬁQ./§§ , =
L. Thus we have KC L C ST'E and tr.deg,L = 0. Note that s™1g
is finitely generated over K. Hence L 1is a finite algebraic
extension field of K. Therefore tr.degKL is finite. On the other

hand, since §§ is noetherian, it follows that 1engthK§§/§n§§ is
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finite. Moreover, since B'Q, is a normal locality over D, B'Q,
is analytically irreducible by the assumption on D, and obviously,

B'QI and §§ are birational to each other. Therefore we have B'Q|

= §§ by Zariski's main theorem. This implies that §§ is

integrally closed, hence we have §§ = R'ﬁ. Thus R'g is a local
ring, and hence wé& have R'ﬁ = R'P.. From these consideration, we
have R'P. = B'Q, and R'P, is a locality over D'

Now we have the following theorem which is an immediate consequence
of this lemma and Theorem 1.3.
Theorem 3.2. The following conditions are equivalent to each other.
(1) R 1is finitely generated over D.
(2) R is locally noetherian and the dimension formula holds between
D' and R', where D' and R' are respective derived normal rings
of D and R.

This theorem can be generalized as follows.
Theorem 3.3. ..If R is locally noetherian and if, for every maximal
ideal M' of R', there exists a locality S over R' such that

S dominates R' and that the maximal ideal M of S satisfies

M’
the dimension formula relative to D', then R is finitely generated
over D.

This theoerm follows from Theorem 3.2 and the following two lemmas.
Lemma 3.4. AD(R[X1,°°-,Xn]) = AD(R)[Xl,---,Xn] for every positive
integer n, ' where xl,---,xn are indeterminates.

Lemma 3.5. Let R be a prime ideal of A and let P =fNR. If

R satisfies the dimension formula relative to D, then there exists
a positive integer n such that the prime ideal P[X1,°-',Xn] of

R[Xl,°'-,xn] satisfies the dimension formula relative to D.

The proofs of these lemmas are omitted.
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Corollary 3.6. If R is locally noetherian and if the natural map
Spec(A') —— Spec(R') is surjective, then R is finitely
generated over D.

Furthermore we can prove the following theorem.
Theorem 3.7. Assume that we have dim D[1/a] = dim D for every
non-zero element a of D. If R is locally noetherian and if its
integral ciosure R' in the quotient field is equi-dimensional,
then R is finitely generated over D.
This is one of the natural generalizations of that given in [1].

We omit the proof.
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Castelnuovo’s regularity of graded rings and generic

Cohen-Macaulay algebras

Akira Ooishi (Hiroshima University)
We denote by A = EDII)O An a noetherian graded algebra over

a field k = A For a graded A-module M = @ negz M

0 ° T
‘(notation: M, = [M]n), the i-th local cohomology module H;(M) of
M with support in P = A+ is also a graded A-module. Fix an

. . . i

integer m. We say M is m-regular if [HP(M)]j = 0 whenever

i + j>m, and we define reg(M) = inf{ m€g; M is m-regular }
(the regularity of M) and a(M) = reg(M) - dim(M). Our aim is

to study the relationship between this invariant reg(A) and the
structure of a graded ring A. For this purpose, the following

theorem is fundgmental:

Castelnuovo’s lemma. Assume that A is homogeneous‘(i.e,,

A= k[Al]) and M= P M_ is finitely generated. (In this case,

) ny0 "n
reg(M) » 0.) 1If [H;(M)]_i = [Hg(M)]i =0 for all i > 0, then

M 1is O~regular and M is generated by My -

(A variant of this theorem: Generalized Castelnuovo’s lemma

(Mumford). Let X be a projective variety, D an ample Cartier

divisor on X such that Bs({D|= @ and F a coherent ek=module.
If H'(X, F(-iD)) = 0 for all i >0, then H (X, F(jD)) = O

whenever i +ii§%§o’ and Ale = Mj+1 for all —>0, where Ai =
(0] .

B (X, (iD)) and M; = 8%(x, F(jD)).)
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We give some examples.
(1) If A is homogeneous, then reg(A) = O if and only if
A is a polynomial ring.
(2) If a€ P is a homogéneous M-regular element, then reg(M/aM)
= reg(M) + deg(a) - 1. Hehce, if A is a éomplete intersection
of type .(el,...,er), then reg(A) = :i§=l e, = r.
(3) If A 1is Gorenstein, then KA = A(a(4a)), where KA is the
canonical module of A.
(L) If A is Cohen—Maqaulay, then KA is also Cohen-Macaulay
and reg(KA) = dim(A).
(5) If X 4is a smooth non-hyperelliptic projective curve, then
its canonical ring A = A(X, K) = 691120 Ho(x, o{(nK)) 4is a normal
Gorenstein homogeneous algebra with reg(A) = 3.
(6) If X 1is a Fano variety (char k = 0), then its anti-
canonical ring A = A(X, =-K) is a Gorenstein algebra with reg(a)
= dim(A) - 1.
(7) If X is an algebraic surface (char k = 0) whose canonical
divisor K is ample, then we have reg A(X, K) = 4 and A is
Cohen-Macaulay if and . only if the4irregularity q(X) of X 1is
zero (and in this case A(X, K) is Gorenstein).
(8) Let X be an abelian variety and D a very ample divisor
on X. Thea A = A(X, D) = {B a0 HO(X, ¢(nD)) 4is a Buchsbaum
algebra with reg(A) = dim(a), and A is Cohen-Macaulay if and
only if X 1is an elliptic curve (and in this case A is

Gorenstein).

For Cohen-Macaulay homogeneous algebras, there is an important
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relation between regularity and the “postulation formula” for
their Hilbert functions, and using this relation we can often
calculate the regularity: Let M be a Cohen=Macaulay graded
module over a hon}o%eneous k-algebra A. Then, for an integer m,
we have a(M)< m if and only if H(M, n) = h(M, n) for all
nym (resp. H(M, m) = h(M, m)) if and only if deg F(M, T)< m,

I

h(M, n) and F(M, T) = 2, H(M, n)T

x Mn? ne Z
are the Hilbert function, the Hilbert polynomial and the Hilbert

where H(M, n) = dim

series of M respectively. Therefore, if we write F(M, T) =
fM(T)/(l - T)d, d = dim(M), fM(T)€ zZ[ T, T-l], then we have
reg(M) = deg £,(T) . '

We can generalize this theorem in various ways:
(1) Let H be a function from Z to Z. Then H is
a polynomial function (i.e., there exists a polynomial h € Q[T]
such that H(i{) = h(n) for all sufficiently large n) and H(n)
= 0 for all sufficiently small n if and only if ©PF(T) asf
Zné‘z H(n).'I'n
f(r) € z[T, T-l]. Moreover, in this case, we have d = deg h + 1

£(r)/(1 - T)d for some d €%, d )0 and

(we put deg O = -~ 1), and for an integer m, we have H(n) =
h(n) for all n »m if and only if deg F(T) (= deg f£(T) - 4d)
< m. Therefore, if M is a finitely generated graded module
over a homoge-neous k-algebra A, then for an integer m, we
have H(M, n) = h(M, n) for all n > m if and only if

deg F(M, T) < m.

(2) Suppose that M is Cohen-Macaulay (A . is not necessarily

homogeneous). Then we have a(M) = deg F(M, T).
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(3) For a graded riﬁg A, an integer s > O is called a period
for A if the s-ple Veronesean subring A(8) = 6}1170 A, is
homogeneous. For a polarized variety (X, D), an integer s
is called a period for D if s 1is a period for A(X, D), i.e.,
sD is normally generated in the terminology of Mumford.
Problem. Find (good) periods for a given graded ring A or
a given polarized variety (X, D).
Examples. (1) Every graded ring has a period. For example,
if A = k[xl,...,xv], where x; are homogeneous, then s =
(v - L)l.com.{ deg(x;); 1< i<v )} is a period for A.
(2) (Mumford) If (X, D) 1is a polarized variety with Bs|D| = &,
then every n » reg A(X, D) 1is a period for D.
(3) (Mumford-Fujita) If (X, D) 1is a polarized curve, then
every n Zz(Zpa(X) + 1)/deg D is a period for D. |
(4) (Bombieri) Let X be an algebraic surface over € such
that K 1is ample. If (K?) 7 5 and pg‘> %, then every n 2> 6
is a period for A(X, K).

Let M be a finitely generated graded A-module and let s
be a period for A. Then there exist h; € Q[t], 0<Xi<s
such that H(M, n) = hi(n) for any sufficiently large n such
that n = i mod s. Moreover, we have dim(M) = mex{ deg h,
0< i<s } + 1 (Shah, Shukla). If M is Cohen-Macaulay, then
for an integer m, we have a(M)< ms if and only if H(M, ns + i)
= hi(n) for every nym and 0 <i <s. When A 1is almost
A(S) is homogeneous for any sufficiently

homogeneous, i.e.,
large s, then all polynomials hi (0<£ i< s) are equal to
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sofe polynomial h € @[T] (we call this polynomial the Hilbert
polynomial of M), and we have a(M) < ms if end only if H(M, n)
= h(n) for every n ) ms.
Now we evaluate the regularity of homogeneous algebras. We
_5ivé upper bounds and lower bounds for regularity, and in the
cases for which the given bounds are attained,we get the ‘otions
of stretched Cohen-Macaulay algebras and extremal Cohen-Macaulay
algebraé etc. TFirst we consider upper bounds. Let A Dbe
a homogeneous k-algebra.
(1) If A is Buchsbaum (resp. Cohen-Macaulay), then
reg(a) € e(A) + dim(A) - emb(A) + I(A)
(resp. reg(A)~S e(A) + dim(A) - emb(4)).

If the equality holds, then we say A 1is a stretched Buchsbaum

algebra (resp.’ a stretched Cohen-Macaulay algebra). For example,

if A is a Buchsbaum algebra with emb(A) = e(A) + dim(a) + I(A)
- 1 and is not regular or with emb(A) = e(4) + dim(A) + T(4) - 2,
then A 1is a stretched Buchsbaum algebra. We can determine
the structure of the artinian stretched Cohen-Macaulay algebras,
but we don’t write down the equations defining them here.
(2) Suppose that A is Gorenstein. Then ‘
reg(A) =1 if end only if A 1is a quadric hypersurface,
reg(A) = 2 1if and only if emb(A) = e(A) + dim(a) - 2,
3 if and only if emb(A) = e(A)/2 + dim(a) - 1,

reg(A)
and if reg(A)» 3 and A is not a hypersurface, then we have
reg(A) < e(A)/2 + dim(A) - emb(a) + 2.

(This bound is not the best possible one. It seems difficult
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to give the precise upper bound for Gorenstein algebras.)
(3) (castelnuovo’s bound) If A is a normal Cohen-Macaulay
homogeneous algebra over an algebraically closed field, then

reg(a) € min{ k; k ) (e(A) - 1)/(emb(A) = dim(A)) }

Next we consider lower bounds for regularity in terms of the
deyree of defining equations of homogeneous algebras. For
a homogeneous algebra A = S/I, where § = k[Xl,...,Xv], v =

emb(A), we put i(A) = min{ t; I # 0 } (the initial degree of

A),i.e., i(A) 4is the minimal degree of defining equations of A.
Then we have reg(A) » i(A) - 1 and the case for which the
equality holds is characterized by the structure of minimal free
resolution of A, i.e., A has a linear resolution in the sense
of Goto. If A is Gorenstein and is not a hypersurface, then

we have reg(A) ;»Z(i(A) - 1), and a similar structure theorem
for minimal free resolutions is known when the equality reg(A)

= 2(i(A) = 1) holds. According to Schenzel, we call a Cohen-
Macaulay algebra with reg(a) = i(4) -1 (resp. a Gorenstein

algebra with reg(A) = 2(i(A) - 1)) an extremal Cohen-Macaulay

algebra (resp. an extremal Gorenstein algebra). The Betti
numbers in minimal free resolutions of extremal algebras can be

completely determined.

Now we introduce the notion of generic Cohen-Macaulay algebras.
Let k be an algebraically closed field and let Pl,...,PS be
a finite set of points in mr(k). For an integer n > O,

consider the n-ple Veronesesn embedding vV : pPr — PV, § =
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i i
n< r _ o,,.r : s
< r ) » v((xo. ces .xr)) = (xo X, ), ig+ o0 # i, =n,

and denote by A g the Nxs-matrix obtained by arranging the
9
coordinate vectors of Vn(Pl)""’Vn(Ps)’ Then we say Pl""’

P, are in generic position in " if rank Ay g = min{ N, s }
i ?

for all n > O (Orecchia, 1981).

Examples. (1) The following sets of points are in generic
position: Any two points in .. Any finite set of points in lPl.
Any four points in PZ which are not collinear.

(2) r + 1 points in P¥ (r » 2) are in generic position if

and only if they are not on a hyperplane.

(3) 6 points in \PZ are in generic position if and only if.

they are not on a conic. 10, points in E3 are in generic
position if and only if they are not on a quadric.

(Caution: There is another important notion of a finite set of

points which éﬁe in general position in P*. We don’t discuss

this notion here.)

Let Pl,.;.,Ps be a finite set of points in P° and let 4
be the homogeneous coordinate ring of the set {Pl,...,Ps].
(A is a one-dimensional reduced homogeneous k-algebra.) Then
Pl,...,Ps are in generic position in P° if and only if
H(A, n) = min{ s, (n ;‘1 )} for all n »o. Generélizing this
condition, we‘get the notion of generic Cohen-Macaulay algebras:

Theorem. For a Cohen-Macaulay homogeneous algebra A, the

following conditions are equivalent:
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i(a) = 1 or i(4).

(1) reg(a) =
(2) rew(a) =min{nez; e <(V° d+1)y and
i(a) =min{negz; e <737y,

(3) = (v - 2 + m) or <? - i t T - {) <e < (V- i + m) .
(Here e = e(A), VvV = emb(a), d = dim(a) and m = reg(a).)

(4) If A is artinian,
_ k[xl,....xv] k[xl,...,xv]
= or ’

m+1l m+1
((Xysee X )™, V)

A

(Xg0eees%,)
where V is a subspace such that 0& V& K[XyseeenX ] o

(5) If dim(A) = 1,
H(A, n) = min{ e, (ﬁ + 2 - %) } for ell n & Z.

If these conditions are satisfied, we say A 1is a generic

Cohen-Macaulay algebra. Moreover, if reg(A) = i(A) - 1 (resp.

i(A)), then we say A is a generic Cohen-Macaulay algebra of
type I (resp. type II). As the condition (5) shows, this
notion generalizes the notion of a finite set of points which
are in generic position.

If A 1is a generic Cohen-Macaulay algebra of type I, i.e.,

an extremal Cohen-Macaulay algebra, then we have

t-1 r-1l+n
n)Tn,

F(A’ T) = n=0
1-m
_ t-1+r t+i=2 .
bi(A) = <t-1+i) ic1 , 1< 14 <r (the Betti numbers

in the minimal free resolution of A4),

e(p) = (r+§-1)’ and
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r(A) = (rzfia) (the Cohen-Macaulay type of 4),
where t = i(A), r = v - d. 7

If A is a generic Cohen=Macaulay algebra of type II, then

t-1 r+n-1) n - <f+t—l t
F(A, T) ='4n=0 n )T + (e r )t , and

(1-m?
r(4) =6 - <r+;-l) » where e = e(4).

Note that if A is artinian, we have r(A) = H(A, m) in
both cases, and this fact is useful to construct Gorenstein
homogeneous algebras from these algebras. Namely, let A be
an artinian homogeneoué k-algebra with reg(A) = m, and put
E = gA(k)(m+l). Then B = A x E is an artinian Gorenstein.
graded k-algebra and B is homogeneous if and only if r(A) =
H(A, m) (Stanley).

Exaﬁgles. Every hypersurface is a géneric Cohen-Macaulay
algebra of type I. If A is a Cohen~Macaulay algebra with
emb(A) = e(A) + dim(A) - 2, then A 1is a generic Cohen-
Macaulay algebra of type 1II. Conversely, if A 1is QGorenstein,
A is a generic Cohen-Macaulay algebra if and only if A is

& hypersurface or emb(A) = e(A) + dim(a) - 2.
For more details and references, see Ooishi [3].
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CANONICAL DUALITY FOR BUCHSBAUM MODULES
-An application of Goto’s Lemma on Buchsbaum modules

Naoyoshi SUZUKI
(Shizuoka College of Pharmacy)

Let (A,%£,k) be a local ring and M a finitely generated A-

module of dimension d.

DEFINITION. A finitely generated A-module K 1is called the canonical
module of M (denoted by KM ) if the completion R is isomorphic to
Hom, ( H(M), E, (k) ).

In his talk at the first of this series of symposium on
Commutative Algebra in 1978, the author mentioned the following
problem:If M _jis a Buchsbaum module, fhen is KM also a Buchsbaum
module?

For lower dimensional cases, it is easy to see the validity:
indeed, if d4d%2 KM is always a Cohen-Macaulay;if d=3, since
depthAKM Z 2, it suffices to show that %H;%( KM) = 0 and this follows
from the following general lemma.

LEMMA. [Proposition (5.1),2] Let M be a finitely generated A-module
with finite local cohomology, i.e., H;g M) is of finite length for all
i # d = dim M. Then we have:

(i) there exists an exact sequence

0 — %% m) —» 1 — 0% (M) — 0% (M)—s o;

(i1) p*p%(m) 2 pOpd~1*+1(y) | for i-2,....q;

(1i1) p'p(m) = p%pd(m) = o,
where DI(*):= HomA(Hi(*),EA(k)).

As to the general cases, P. Schenzel gave the affirmative
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answer using the characterization of Buchsbaum modules in terms of

dualizing complex.

In the talk, the author gave quite an elementary proof,
making best use of a lemma on Buchsbaum rings given by S. Goto.

LEMMA. (|Goto|). Let M be a Buchsbaum module of dimension d and a,,
ceesdn be a subsystem of parameters for M and n be an integer 2 2,
Then we have
n n n-1 Lo
Uy(ays...rap) -Zzlg{l,...,r} ar” Uylays 1€D),
where UM(GL) denotes the unmixed component of a primary decomposition

of OM inM,a -\Ta and a¢=1.
iel

We now give a brief sketch of the proof of the following:

THEOREM. The canonicat modute K 0f a Buchsbaum modute M 48 akso a Buchsbaum

modute .

Proof. We may assume that A=A. Induction on d=dim M. Let dz3
and we may still more assume that depth M>O0 since %(M) Hz(M/H,t(M))
Let a,,...,2 be any s.o.p. for K We have an exact sequence

1 d M* 7T a-1

0 — Ky/akKy ———+ﬁMmm——+D (M )— 0.
Consider the long exact sequence of Koszul homology modules with

respect to a' = { 2,...,ad},
Hl(i'_;KM,) — Hl(a_l_;V)—'% KM/(E )KM_> KMn/(ﬂ)Kml - VvV — 0
with M'=M/aM and v=D%"1(M). If we have that the mapping

H (257 ) ¢ H (aliKy ) — Hy(a';V)

is a zero map, then the equality
1, (Ky/ (2)K)=1(Ky, /(aD)Ky, ) + (d-1)(dim, V)

holds. On the other hand, we have
eo(g;KM)=eo(§L;KM/aKM)=eo(§L;KM.)

hence, by the induction assumption, we can conclude that the difference
1A(KM/(§)KM) - eo(g;KM)

does not depend on the choice of the s.o.p. a = {al,...,ad} for M;
which is the definition of the Buchsbaumness of KM.
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Consider the direct system {H (a? ,...,ad,M), ‘bn n+1§ with the limit

I-I;‘t(M), where
_H (a M):= H (HomA(K (a;A), M))-Hd l(a M).
Let a" —{a N "1 and a'™: '{32"“’32} There induced a commutative

diagram from the exact sequence

O—%M-—)M£>M/aM—>O.

— w91l - By —
I I
n H (an"yt) n n
H, (a ;M) 1'= H (a'";M') @ H, (a'™;M')
112 > o'& 148
n n
¢M ¢Ml
- -1
—— wt A > Hegg (M) —
Let (fz,---,g ié Z (az,...,aa KM,), namely, for j=2,...,d,
fJ.EKM, = Hom ( H (M/aM),EA.(lf)) and
;35885 =0 (#).
It suffices.to show that for any j=2,...,d, f. l =0. Let ze ch(im)
Then there exists (u,v)e Z, (a" sMIC Ky (a'™;M JeK, (a'™;M ) such that
cb (lu,v|) =z. Note at flrst that the cycle condltlon leads that
n .
a; u é(az,...,ad)M, hence
’ ' n n
u € UM(a2,...,ad) (##) .
We claim that f od>M,oH (a ;) (lu,v]) = 0. Here we use the

notation |c| for the homology class of a cycle c. Let |u,V]|
(lal,|v]) := Hl(gn;’lt Y(lu,v]) € Ho(a_'n;M')eHl(a_'n;M'). It is not so
hard to see that '

oL (15,7) = (I(ap...ay)8l,181) e Hy(a ™M )eH, (2™ iM) . 50

it suffices to show that f od)M,(luI,IVI) f °d>n+1(|a . duI,IO|)=O,

with IuIeH (anJrl ...ad +17 ;M/aM)=M/(a, an+1,... n 1)M

By Goto's lemma, from (##) we have the follow1ng expression:

u= u

Icgfe,...,d} I
with ur € Uy (a.;ié I). We must show that for any subset I of {a2, ...,ad}

°¢Mv (|(ag...ad)an -1 I)
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If I #{2,...,d}, there exists j£ 1, hence

n-1 n n+l . n+1l n+l
(a2...ad)aI uI=(TY1*ja1)aIaqué (ai ,161)M<:(a2 yeeesBy M
1£T

This means that

n-1~ . n+l n+l
l(a2...ad ar uII = 0 in M/(a,a2 P M.
For I={2,...,d} ,
n+1 n-1_ ~ n+1 n-~
fj°¢)M| (|(a2...ad) alull)—ij¢M| (|(a2....ad) ull)
n+l -~ n_n-1~
= ajfjoéM, (I(a2...aj...ad) aj uII),

by the cycle condition (#),
n_n-1-~

n+1 -~
= —Eai#jaifi°¢M' (Kaz...aj..ad) ay uII)

n+1 ~ o~ n n-1_n+l~
= "Zi;éjff sz, (|(a2...aiaj...ad) ay 8y ull).
Since
n+l~ _ . n+l N+l
ay uIl = 0 in M'/(a2 yeenady ',

we conclude in this case also that

n+l n-1_ =~
fj°¢M' (I(a2...ad) aIuII) =0

as required.
Q.E.D.
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When Is The Product Of Modules Flat Over The Product Ring?

Moss E. Sweedler Tsukuba/Cornell

This is an exposition of some of the ideas in my paper: Preser-
vation of Flatness for the Product of Modules over the Product of
'Rings, Journal of Algebra, 74 (1982) 159-205; which I will refer to
as [PF].

Suppose {Rx}x is a collection of rings and for each & e £
M is a right RA-modu]e. Then M =1 m? is a right R = H.RA-
module. In general if each MA is a flat Rk-modu]e then M is NOT
a flat g-modhle. We shall present necessary and sufficient condi-

tions on {R)‘}£ such that M s a flat R-module when each M js

a flat Rx-modu1e. Here is a sample result:

.THEOREM: a. Suppose there is a cofinite subset &£' c& (i.e.

A is commutative and satisfies

#(£~£') < ») and for each X e &' R
one of the next three conditions (which condition may vary with 2A):
i. R is a principal ideal domain (PID),
ii. RA is a polynomial ring in one variable over a PID,
ifi. Rx dis a local ring of global dimension two or less,
then M is a flat R-module when each M is a flat Rx-modu]e.
b. If for an infinite number of 2 RA is a polynomial ring
in 3 or more variables over an algebraically closed field then there
exists {Mx}x where each MA is a finite rank free Rl—module and

~M is NOT a flat R-module.

Suppose X% "jrj =0 is a length t relation in a right
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R-module N. An exposé of the relation is a pair of subsets
}j=1,...t c R

T
{bi}1 c N and {“ij izl T where
- vT -
nj = E_i=-l b.il-l.ij J ]9 t

t .
=V R =1,...
0 = Ij-1 His"j B

T is the size of the exposé.
It is.we11 known that a module is flat if and only if all rela-

tions in the module have exposés. The possible lengthening from ¢t

to T is the obstruction to flatness of M. This is true because a

length t relation in M is equivalent to having a length t rela-

tion in MA for each A. If each of these had an expose with a

common bound N on the size, the exposés could be put together to

be the components of a size N exposé of the original relation in M.
By mapping free modules onto flat modules it can be seen that

the lengthening from t to T is as bad as possible in free modules.

Support controls lengthening as shown by the next theorem. But first:

DEFINITION: A left R-module L 1is T supported if for each finite

subset 8 <« L there is a submodu]e Sg generated by T or fewer

elements with g < Sg'.

THEOREM: Suppose {rj}f R, F 1is a free left R-module with basis

{xj}$ and ¢:F - R is a module map with ¢(Xj) =T for j = 1,...t.
a. If Ker ¢ is T supported and Z? njrj =0 1is a relation

in a right R-module N which has an exposé then the relation has a
size T expose.
b. The following are equivalent:
i. Ker ¢ 1is T supported.
ii. A11 relations with coefficients {rj}$ in a free rank
T+1 right R-module have size T exposés.
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DEFINITION: If F dis a free rank t 1left R-module and Ker ¢
is‘ T supported for all R-module maps ¢:F = R then the left

support presentation of t elements of R is less than or equal to

T. This will be abbreviated to: Sup Pres, R < T.

t
The previous theorem gives:

THEOREM: Sup Presf R < T if and only if all Tength t vrelations

in flat right R-modules have size T exposes.

Example: (Thanks W.V. Vascancelos.)
. a. If R is a PID or polynomial ring in one variable over a
PID theh Sup Pr'est R =1t

b. If R 1is a commutative local ring of global dimension two
or less then Sup Prest R =t.

c. If R s a po]ynomiaj ring in three or more variables over

an algebraically closed field then Sup Prest R=wo for t >3

SUPPORT
Support behaves 1ike "number of generators" with respect to

. exact sequences. (The notion of Measure Function in [PF, §5, p. 188]

is the axiomatization of the similarity.) The idea of finite presen-

tation may be defomed in terms of finite support in the same way as

is usually done with finite number of generators. T generated
modules are T supported. Every T supported module is the direct
1imit of its -T generated submodules. The direct 1imit of T
supported modules is again T supported. If y:R +~ S is a map

of commutative rings then S is a 1 supported R-module if and only

if vy induces a surjective map from a localization of R onto 3.
These and other elementary results about support are in [PF, §2, p175].
One other elementary result is that support‘controls the length of

the summation needed to express elements in the tensor product.
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Using support we can give necessary and sufficient conditions
for the product of flat modules to remain flat over the product

ring.

THEOREM: Suppose {Rk}x is a collection of rings. The following
conditions are equivalent:

A

a. [ If M is a flat right R*-module for each A then M s

a flat R-module.

b. A1l products of finite rank free right Rl-modules are flat
R-modules.

c. There is a product of finite rank free right Rx-modules
which is a flat R-module.

d. For each t ¢ N there fs a bound Tt e N where

Sup Pres R i Tt for almost all A.

t
e. For each t e N there is TL e N and cofinite £, < £

where Sup Pr‘est (m RA) < T% .
L4 -

From parts (d) and (e) of the above theorem you might guess

that:

Sup Prest (Product) < T

%
Sup Pres, (Each Factor) < T

I do not know if this is true but it is true that Sup Prest (Product)
is finite if and only if the set {Sup Pres, (Each Factor)} s
bounded. I found it difficult to work with Sup Prest of a product.

To help study Sup Prest 6f a product two related notions are

useful.

DEFINITION: Sup Div, R < T if for all t-1 generated left ideals

I1 <R and all r e R, (I:r) dis T supported.
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((I:r) = {s e R | srel}.)

DEFINITION: For t,v e N, Sup.tIntv R <T if for all t generated
left ideals I € R and all v generated left ideals J < R the

ideal I N J 1is T supported.

Sup Pres, Sup Div and Sup Int are monotonically incréasing and

are related by the:

'COMPARISON THEOREM: a. The following conditions are equiva]ent:

i. Sup Prest R < o

ii. Sup D1'vt R <

iii. Sup Div] R < » and Sup t_1Int] R < =,
b. If the conditions in (a) hold then

t R < Sup Prest R

< I, Sup Div, R < t(Sup Div, R)

i. Sup Div

. s t
ii. Sup Pres; R < t(Sup Div, R) + Li-p Sup jopInty R

< t(Sup Divy R) + (t-1)(Sup __,Int, R)

iii. For 1 <s <t : Sup sIntt-s R < Sup Prest R

Sup Div behaves well with respect to product.
THEOREM: Sup D1'vt (m RA) i_T if and only if Sup Divt R < T for
each A

The ideas for Sup Pres, Sup Div and Sup Int are inspired
by S.U. Chase's paper: Direct Products of Modules, Transactions
American Mathematics Society, 97 (1960) 457-473; which I will refer
to as [DP]. In [DP] Chase considers the number of generators rather
than the support of the modules which occur in Sup Pres, Sup Div
and Sup Int. Thus although Chase never formally defined them he
was working with Gen Pres, Gen Div, and Gen Int. His techniques

for working with and comparing Gen Pres, Gen Div and Gen Int
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are valid when "Gen" is replaced by "Sup" or any other measure

function.

MEASURE FUNCTIONS

DEFINITION: A measure function is a function % from Ieft R-modules

to the set {0,1,2,...} U {«} where if {0} » L > M > N> {0} is
an exact quuence of left R-modules then

1. MN<TM

2. mM<mL+ MmN

It follows from the definition that 7 M =7 M' if M= M

Minimal number of generators gives the measure function m] where

o if M is not finitely generated, otherwise
m, M = 0 if M= {0} , otherwise

minimal number of generators of M

Minimal support gives the measure function My which is defined

similarly to m1 but with generation replaced by support. For any
measure function 7 one can define % Pres, =7 Div and 7 Int
similarly to how we defined Sup Pres, Sup Div and Sup Int.
For example = tIntv R<T if for all t generated left ideals
I cR and all v generated left ideals J c R the ideal I ny
satisfies n(I N'J) < T . '

The Comparison Theorem holds for general measure functions.
Hence for each measure function =M we get three closely related

types of mMm-dimension

m Pres, m Div, 7 Int

One aspect of [DP] is the study and application of these dimen-

sions for M = Gen , and one aspect of " [PF] s the study and

application of these dimensions for % = Sup . Chase's paper is a
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gold mine of ideas for further development as well as interesting and
important in itself.
~ One Tast comment about measure functions. The usual definition

of finite presentation is in terms of finite generation of certain

modules. One can define m finite presentation in terms of m

finiteness of the same modules. m finite presentation has the same
properties as ordihary finite presentation and the usual proof with

Schanuel's Lemma still applies.

IDEAS FOR FURTHER DEVELOPMENT

How does flatness behave with respect to the inverse limit of
modules over the inverse 1imit of rings? Perhaps the theory for |
inverse limits will be gimi]ar to the theory for products.

Another measure function besides Gen and Sup s givén in
[PF, p 190, (5.4)]. What are some other measure functions and their
applications? For example for each n ¢ N is there a measure func-
| wherg mn Pres, R s finifé if R is a polynomial ring

t

over a field in n or fewer variables but mn Prest R is infinite

. for large t. if R is a polynomial ring in more than n variables

tion mn

over an algebraically closed field?
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On a conjecture of Davis and Geramita

Sadao Tachibana (Nihon University)

Abstract

I would like to talk about the following
Conjecture (Davis-Geramita [2, 31). Let M be a maximal ideal

in a polynomial ring A = R[Tl’Tz’ e ,Tn] {n > 0) over a regular ring

R. Then M can be generated by a regular sequence.

At the present time this conjecture remains open, though it is
solved affirmatively in several cases. An expansion of Hilbert's Null-
stellensatz is achieved if this is true. In my lecture I will give a
historical note on the above conjecture together with remarks about some

common reduction techniques among affirmative cases.

o A
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On F-modules and balanced big Cohen-Macaulay modules

Yasuji TAKEUCHI' and Katsuhisa HIROMORI
» (College of Liberal Arts, Kobe Univ.)

TR SE B AR A GePK AR

We shall study certain modules (over a local ring) whose localizations by some
pre-assigned prime ideals are Cohen-Macaulay. Our results will be applied to

balanced big Cohen-Macaulay modules studied by R. Y. Sharp [8].

Preliminaries. (A, m) will always be a (Noetherian) local ring. For elements

ar, az,..., ak of A, we write Ek = (al, a , ak) which means the sequence of

20
these elements or also the ideal generated by them. If k = 0 , we put 2 = (0), the
zero ideal.‘Let M, be an A-module. A sequencé a3 = (al,..., ak) is a poor M-
sequence if a; is regular on M/gi_lM for i=1,..., k, and is an M-sequence
.if, in addition,. ng #M . Hi(a > M) denotes the i-th homology ﬁoduleiof the
Koszul complex generated by 2 = (al,..., ak) over M. If M is finitely
generated and P € Spec(A) , '

htM P = the M-height of P = dimAPMP .

We use the following abbreviations :

f.g. = finitely generated,

C.M. = Cohen-Macaulay,

$.0.p. = system of paramaters,

and S.s.0.p. subsystem of parameters.

Lemma (0.1) Let M be a f.g. A-module, Ek = (al,..., ak) an s.s.o.p. for M

(0< k< dim M) and P € Supp(M) such that € P and dim M = ht P + dim A/P .
2 k< 2 M
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Then k £ htM P and the canonical images al/l,..., ak/I of agseees a, in AP

form an s.s.o.p. for MP .

1. F-rings and ¥ -modules.

Definition (1.1) Let M be a £f.g. A-module and F any subset of Spec(A) .
We call M an % -module if
Fn Supp(H, (3, M) =P
for each s.s.o.p. (al,..., ak) for M . The local ring A is called an qt-ring

if A itself is an 7 -module.

Remarks (1.2) (1) M 1is an ?‘—module if and only if M 1is an FR*-module,
where F* = { P € Spec(A) ; pc3qQe ¥l .

2) If meF, M isan F -module if and only if M is C.M..

(3) 1f F= Sﬁpp(M) —{m1l}, an T -module is an f-module in the sense of [6]

and conversely.

Definition (1.3) Let M be an A-module and R a subset of Spec(A) . A

sequence 3, = (al,. . ak) of elements of m is an M-sequence with respect to G

if each ideal (a._lM : M: ai)) is contained in no member of ? for i=1,
A .

M
.., k. This means that (al/l,..., ak/l_) is a poor M-sequence for all P in 4.

—i (g‘-i -1

Remarks (1.4) (1) In the case m€ ? , an M-sequence with respect to '«T-'( is
nothing but a poor M-sequence in m .
(2) 1f % = SuppM) —{ E} , an M-sequence with respect to R is just a

filter-M-regular sequence in the sense of [6] or [9].

Theorem (1.5) Let M be a f.g. A-module and H a subset of Supp(M) . Then
the following conditions are equivalent :
(i) M is an % -module.
(ii) Each s.s.o.p. for M is an M-sequence with respect to h.
(iii) For each P in +, MP is a C.M. Ap—module and

dimM=htMP + dim A/P .
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(iv) For any s.s.o.p. 2 = (al,..., a

F with gkg P, it holds

dim M = htM P + dim A/P

k) for M (ngédimM) and any P in

and dim AP/QAP = htM P—k

where Q is any element of AssA(M/ng) with Q<€ P .

Proof. (i) <& (ii). , Use the following exact sequence for k >2:

0 —H (a1, M/ H (@ 1, M) —H @ M) > @ M oa)/a M0
(e.g. [7], Chap. 1, Prop. 1).

(ii) 2 (iii). The assumption implies

depthA MP 2k >dim, M where k = dim M — dim A/P .

p Ap P

(iii) 2 (iv) » (ii). Use (0.1).

Corollary (1.6) Assume that A is a homomorphic image of a Gorenstein ring and
let M be a f.g. A-module and T .a subset of Supp(M) . Equivalent conditions :
(i) M is an % -module.

(i1) FES supp(r?w) — U supp ot on)
1<

-

where d =dimM and T (M) = Hom(H;(M), E(A/m))
Proof. Use the so-called local duality ([5], Satz 1).

Corollary (1.7) Assume that a f.g. A-module M is an F -module for a subset
F% of Supp(M) . If an element a of m forms an s.s.o.p. for M, then the

A/aA -module M/aM is an 'ﬁa—module, where ?;a ={ P/aA ; PEF and ae P} .

Corollary (1.8‘) Assume the local ring A is an R -ring for a subset F of
Spec(A) . Let P be any element of F and Q a prime ideal of A such that
Q&S P . Then it holds

ht(P/Q) = ht P —ht Q = dim A/Q — dim A/P .
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2. Balanced big Cohen-Macaulay modules.

We first recall some definitions in Sharp [8]1.
A (not necessarily f.g.) A-module M is a big C.M. module if some s.o.p. for A

is an M-sequence and is a balanced big C.M. module if each s.o.p. for A is an M-

sequence. The supersupport of a balanced big C.M. A-module M is defined to be the
set Supersupp(M) = { P € Spec(A) ; P € Ass (M/a, M) for some M-sequence a, 1.
Sharp's results in [8] together with the well-known theory of injective modules show
that, if M is a balanced big C.M. A-module and if

0 —?M—)EO -—)El - ...
is a minimal injective resolution of M, then each associated prime ideal P with
Ei (is a member of Supersupp (M) and) satisfies

ht P = dimA—dimA/P <1 (1=0, 1,..., dim A) .

Here we shall consider the converse.

Theorem (2.1) Let '$0 and F be subsets of Spec(A) such that qo_c_ F and
q:o consists of only prime ideals P with dim A = dim A/P . Assume that A is an
F-ring and let M be an A-module and n an integer 2 0 . If a minimal injective
resolution

0 ——)M—)EO —)El — ...
of M satisfies AssA(EO) < 51-"0 and AssA(Ei) C % (i=1,..., n) and an element
a of A forms an s.s.o.p. for A, then a is M-regular and the finite sequence
0 —> Hom, (A/aA, D) —> Hom, (A/aA, ) — ... — Hom, (A/aA, ™2y

is a part of a minimal injective resolution of the A/aA -module HomA(A/aA, D) ~

M/aM , where D = Im(E® —>E) .

Proof. For each i=0,1,..., n, our assumption and (1.5) imply that the

multiplication a’ by a induces a surjective endomorphism of et , that is, aE' =
E1 . For i =0 , in particular, since Ass(EO) < ‘}?0 , a is regular on Eo as

well as on M and hence a’ : EO':EO . Putting D = Coker(M —->E0) = Im(}S0 —)El),

we have HomA(A/aA, D)~ M ‘0 a)/M ~ M/aM .
= E =
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The exact sequence

0—>D—>E1—>Ez—-)...

induces
0 — Hom, (A/aA, D) —> Hom, (A/aA, E') —> ... —> Hom, (A/aA, E™?)

which is clearly exact at Hom(A/aA, D) and Hom(A/aA, El) . As to the exactness at
the other vertices it suffices to see the exactness of the sequence

K3 2
where l(i = Ker(a® : Ei — Ei) and the arrows are induced by Ei —>E_i+l. Then the

exactness at K- (2<£1ign+2) follows from chasing a diagram, using the
i-2

m

surjectivity of a° on

In the following we put d = dim A and, for each integer k 20,
k
u A
and 'v-k(A)

{ Pe Spec(A) ; d — dim A/P <k}

{ Pe Spec(A) ; ht P =d —dim A/P <k } .

Proposition (2.2) Let M be an A-module. If, for each s.s.o.p. (al,..., ak)

for A (0 <k < 4), M#M and Ass,(M/a,M) C k(A) » then M is a balanced big
Sk ay AV < y

C.M. module. —a

Theorem (2.3) Assume that A is a ’y‘d_z(A)-ring and let M be a big C.M. A-
module. Then the following conditions are equivalent :
(1) M is a balanced big C.M. module.
(ii) 1If
0 1
0 —>M—>E —E —...

is a minimal injective resolution of M , it holds AssA(El) < ’U‘I(A) for

i=0,1,...,d.

Proof. We show (ii) 3 (i). Let (al,..., ad) be any s.o.p. for A . Clearly
. . i
ng # M . It suffices to see a, 1is regular on M/gi_lM or AssA(M/giM) C Ass(E7)
for i =1,..., d. These assertions are verified by applying (1.7) and (2.1)

inductively to a minimal injective resolution of M .
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In [8] Sharp conjectured that, if M is a balanced big C.M. A-module, the
localization MP by any prime ideal P in Supersupp (M) is again a balanced big
C.M. AP-module. We give a weak answer to this. (Note that the conjecture is clearly

true in the case A is C.M..)

Proposition (2.4) Assume that A is a 1rd’2(A)-ring and that, for any P in

‘U’d—l(A) and any Q in ‘v’d-z(A) with Q&P , ht(P/Q) = ht P —ht Q . Then, if

M is a balanced big C.M. A-module, MP is a balanced big C.M. AP-module for every

P in Supersupp(M) .

Proof. We see MP is a big C.M. AP-module by Sharp's results (2.2), (3:2) and

(3.3) in [8]. Then the assertion follows from (2.3) and (1.8).
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Some Characterizations of Smoothness

Hiroshi Tanimoto (Nagoya Univ.)

Let A be a (not necessarily noetherian) commutative ring, B an A-
algebra, and I an ideal of B . We say that B is I-smooth (resp. I-

unramified) over A if for any commutative diagram

=

f v

/N

Qe—

—u
£

Qe—»

where C is an A-algebra, N is an ideal of C such that N2= Oy and v
is a ring homomorphism such that. v(In)==0 for some n , there exists at
least one (resp. at most one) homomorphism %3B'——> C such that f=®eu
and v==g.‘p.. If B is I-smooth and 'I-unramifiéd over A , we say that
B is I-etale.;ver A . In particular, if I=0 y we say shortly that B is
smooth (resp. unramified, resp, etale) over 4 .,

Now in ferms of differential modules, we can restate smoothness and

unramifiedness as follows:

Proposition 1, (i)(cf.[3, 825]1) B is unramified over A iff
Q =0,

B/A
(ii) When A and B are noetherian, B is smooth over A iff

XIB/A is a projective B-module and the ring homomorphism A ——> B is

regular.,

Now let k be a ring and A be a quotient ring of a noetherian smooth
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k-algebra (e.g. k 1is noetherian and A is of essentially finite type over

k ). Then for P€Spec(h) , Ap is smooth over k iff A, is PAj-smooth

over k . More generally, we have the following proposition under the above

situations

Proposition 2. Let I be an jdeal of A o Then A is I-smooth

over k iff V(I) é{melllax(A)l A, is WAy -smooth over k} .

But in general, since k-algebra is not a quotient ring of a noetherian
smooth k-algebra, it is difficult to show the difference between I-smoothness
and smoothness., For example, for a ring A and an ideal I of A,

n
AlIX, yeee,X 31 is )T XAMX ,0ee0X 1) -smooth over A and I-adic..
1 n i1 i 1 n

completion (A,I)A '§g I-smooth over A . But since these rings are not
quotient rings of smooth A-algebras.in general, it is hard to show whether
these are smooth over A or not.

Now in (3] , H. Matsumura asks

(1) what is the difference between smoothness and I-smoothness ?

(II) when is a ring A[[xl,...;an]/ol smooth over A ?

We will study his problems when A is a noetherian ring. For Problem (1) ,
Proposition 1 1is an answer. Concerning with Problem (II) , we list up
three problems 3

(o) When is A[[Xl,...,xn]] smooth over A ?
(B) When is A[[Xl,..;,xn]]/61 smooth over A in the case 0l¥ 0 ?

In particular
(c) when is (A,Ifﬂ smooth over A 7

We will give answers to these problems under some assumptions.
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§1l. Problem (A).

. Theorem 3. Let A be a noetherian ring containing a field k . Then
the following are equivalent

(i) A[[xl,...,xn]} is smooth over A for every n21 ;

(i1) A[X.yeee9X_ 1] is smooth over A for some n2>1 j
1°°°°""n

(iii) ch(k)=p>0 and A is a finite AP-algebra.

Sketch of the proof. We have only to prove (ii)=>(iii) . First, we

show it when A is a field. We consider the following exact sequence :

£

where X={X ,...,X }. Now since .Q.A[[x]]/A®mxn(A[tx]]/(x))

acxa/aPapgAlx] "Lf"ﬂmxn /AT A xn aty >0 .

n
= ® (A[[X]]/(X))dxi and since Q‘A[[X]]/A is a free A-module by our
i=]1

n L
assumption, QA[LX]]/A’E 1@“[ X]]dxi e« So ¥ is an isomorphism and
=1

Q‘A[[X]]/A[X]fo + Therefore ‘Q‘A((x))/A(x)=°° Since tr.degA(x)A((X))

>

=00 , we have ch(A)=p>0 and AP((XP))[A(X)]=A((X)) . Then it is easy
‘to see that [A 1 AP]< oo .
In general case, using noetherian induction and Marot's theorem on Nagata

rings, we can prove the theorem,

82, Problem (B),

Let A be a noetherian ring and Pé&Spec(A) . We say that P satisfies
SC if x(P) satisfies one of the following two conditions :

(1)  cn(x(P))=0 ;

(1i) ch(k(P))=p>0 and [k(P) s k(P)PJ=00.

Moreover we define the natural map L A[[xl,...,xn]] —> A such that,
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for feA[[Xl,...,xn]] , T(f) is the constant term of f . Then we have 3

Proposition 4. Let A be a noetherian ring and x={x1,...,xn} be

variables over A o Let 0L be an ideal of AlLX]] , and assume that every
m € Max(A) containing n(oL) satisfies SC . (It is possible that eh(x(P))
% ch(k(Q)) for P,qeMax(A) .) Then if R=A[[XJ1/60 is smooth over A ,

A\
R =(4a, (o)) .
So we can reduce Problem (B) to Problem (¢) under SC condition.

§3. Problem (C).

Let A be a noetherian ring and I De an jdeal of A . Put /ﬁ=(A,I)A
and Ah=(.ﬂ.,1)h . When A contains a field k , we can find criteria for

i\ to be smooth over A .

Theorem 5., Assume that ch(k)=0 . Then the following conditions are
equivalent 3

(1) X+ is smooth over A 3

(i1)

(iii)

=>

is etale over A 3

=>

is unramified over A , and A —>7% is normal 3

(iv) AP=?% .

Theorem 6. Assume that ch(k)=p>0 eand that A/P is N-1 (i.e. the
derived normal ring of A/P is a finite A/P -module) for all PeMin(a) .
Then the following conditions are equivalent :

(1)

A is smooth over A 3
(ii) B is etale over A3
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(iii) A is unramified over A , and A —>7 is normal 3
. (iv) /RP[I] =7-\\ where A is the homomorphic image of A in /A\ s and
A ——> 7% is reduced ]

(v) /Rp[Ah] =%, and A —> 7 is reduced.

Corollary 7. " Assume that A is a noetherian normal 2-ring (i.e.

A

all formal fibres are geometrically normal) and ch(k)=p>0 . Then 2 is

smooth over A iff Q(ﬁp[A])=Q(T) .
Moreover, from Th.6, we can give another proof of Kunz's theorem 3

Corollary 8. (cf.[1] or [2, (42.B) ™.108]) Let A be a noetherian
ring containing a field of characteristic p>0 ., Then if A is a finite

AP-module, A is a G-ring.

Finally wé’will construct non-trivial examples such that 1 is smooth
over A . Let 'k be a field, : Ne distinguish three cases.

Case (I)s ch(k)=0. In [4, (11,3) Ex.3], it is shown that there exists
a DVR A which we want. ~'We will sketch the construction.

Let X ©be a variable over k and B a transcendence base of k((X))
over k(X) . Put A=kI[[XIINk(X)(B) . Then (4,(X)) is a DVR and A& =
k[[x1] :-EAh « In particular, 2 is smooth over A . .

Case (II):t ch(k)=p>0 and [k : k1< . Let X be aAvariable over
k , and put A=k[x](x) « Then 'A}:k[[x]] and A is a finite Ap-algebra.

It is easy to show that 2 is smooth over A .

Case (III): ch(k)=p>0 and [k s kP]l=oo ., Imitating the construction

in Case (I), we will construct a desirable example such that A is not

finite over Ap .
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Let X be a variable over k . Then k((X)) is separable over k(X) .
Let B be a p-basis of k((X)) over k(X) . Then k((X)) is separable
over k(X)(B) by (2,(38.E)]. Put A=k[[ XTI Nk(X)(B) . Then it follows
easily that (A,(X),k) is an excellent DVR such that 2 =(a,(x)Y =xI[x1]
and A%X . Moreover, since Lk kPl=00 , A is not a finite AP-module.
since Q(AP[A7) = KP((XP))[x(X)(B)]=k((X)) =Q(R) , % 1is smooth over A by

Cor.’ 7. Therefore A is the example which we want.
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Standard systems of parameters

of generalized Cohen-Macaulay modules

NGO VIET TRUNG

Institute of Mathematics, Hanoi, Vietnam

INTRODUCTION

in 1965, Buchsbaum posed a conjecture which, roughly speaking,
states that given a finitely generated module M over a local ring A,
then the difference

I(g;M) := 1(M/gM) - e (g;M)
between length and multiplicity takes a constant value for all para-
meter.ideals g of M. This is not true [V]. However, in [SV1] and
[sv2], Stuéirad and Vogel found out that modules satisfying this
conjecture enjoy many interesting properties which are similar to
the ones~of Cohen-Macaulay (abbr. C-M) modules, and gave them the
name Buchsbaum modules. That led in [CST] to the study of modules M
for which the difference I(g;M) is bounded above by an invariant of
M, It turned out that M satisfies this condition iff
l(HIE(M)) < oo

for i =.0;...,dim M - 1, where H;(M) denotes the ith local cohomo-
logy module of M relative to the_ﬁaximal ideal m of A. Since M is a
C-M module iff H;(M) =0 for i =0,...,dim M - 1, one call such

medules generalized C-M modules.

The class of generalized C-M modules is rather large. It is
known that if A is a factor ring of a C-M ring, then M is a genera-
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lized C-M module iff ME is a C-M module with

| dim ME = dim M - dim A/p
for all p € Supp(M)-{m} [CST]. Hence it is easy to verify that most
geometric local rings, e.g. of isolated singularities or of the
vertex of the affine cone over projective curves, are generalized

C-M rings.

Although the theory of Buchsbaum modules has been rapidly
developed by works of Goto, Schenzel, Stuckrad, Vogel, little has

been done in the theory of generalized C-M modules.

If one is acquainted enough with the few references on genera-
lized C-M modules [CST], [s1l, [G3], one would notice that almost all
properties of systems of parameters (abbr, s.o.p) of Buchsbaum
modules also hold for s.o.p of generalized C-M modules which are
contained in a sufficiently large power of m. For instance, if M is
a generalized C-M moduie and if g s EP for n sufficiently large,
then I(Q;M) attains a maximal constant value L(M). So, with regard
to the origin of generalized C-M modules and the above notice, it
is of interest to study s.o.p of M with I(Q;M) = I(M), where q is
the corresponding parameter ideal. such s.o.p will be.qalled

standard s.o0.p.

The aim of this report is to show that standard s.o.p play an
important role in the theory of generalized C-M modules and that by
their help, one can derive the theory of Buchsbaum modules as part

of the theory of generalized C-M modules.

Now we will describe the main results in accordance with the

organization of this report.
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In Section 1 we shall see that standard s.o.p may be characteri-

zed by ‘different ways. First, using the notation of filter-regular

- sequences of [CST] we can define standard s.o.p of M without the

explicit assumption that M is a generalized C-M module. As a conse-
quence, we get an interesting criterion saying that M is a genérali-
zed C-M module iff M ﬁas a standard s.o.p. Further, we can also
characterize standard s.o.p by means of local cohomology. It follows
that standard s.o.p are just s.o.p which are standard sequences in
thé sense of [B], hence the name. In particular, we can show that
standard s.b.p are absolutely superficial, i.e. they are d-sequences
which have been proved lately as very useful for different topics of
the theory of modules [H1], [H2], [T3], [HSV].

In Section 2 we shall see that standard s.o.p may be used well
to study Hilbert-Samuel (abbr. H-S) functions. First, inspired of
the characterization of absolutely superficial s.o.p by means of H-S
functions in [T3], we give a polynomial bounding above the H-S
function of an arbitrary s.o.p of a generalized C-M module and show
that they coincide iff this s.o.p is standard. Similarly,.we can
also estimate the H-S functions of a generalized C-M module M with
respect to an arbitrary ideal é of A with l(M/éM) < co , In particu-
lar, M will behave very well if l(M/gFM) attains some extreme yalue
for some n. As a consequence, we can extend results of Sally [S] and
[G1] on C-M or Buchsbaum rings with maximal embedding dimension for
the case of modules.

In Section 4 and Section 5 we shall show that the associated
graded module and the Rees module (arithmetical blowing-up) of a
generalized C-M module relative to a standard s.o.p or to an ideal
whose H-S function behave extremely are generalized C-M modules and

that their local cohomology modules may be computed explicitly. As
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a consequence, we can give conditions for these graded modules to be
Cc-M modules. For Buchsbaum fings, most results of these Sections

have been already known by Goto and Shimoda [G1], [G2], [GS].

The author would like to thank Brodmann, Goto, and Schenzel for
making their works available. He is also indebted to Goto and Suzuki
for inviting him to this symposium.

N

1. CHARACTERIZATIONS

From now on, al,...,ad will be a s.o.p of M and g the ideal
(al,...,ad). In order to simplify the notations, we further put g; =

(al)...,ai), i=1,...,4-1, and g, = 0 (the zeroideal).

DEFINITION 1l.1. al,...,ad is called a standard system of parameters

of M if the following conditions are satisfied:
(i) By every permutation, al,...,ad is a filter-regular sequence,
i.e. a; ¢ p forallpe Ass(M/gi_lM)*~{m§ for all i = 1,...,d.

(ii) I(a2,...,a%;M) = I(gM).

This definition of standard s.o.p is different from the one
given in the introduction of this report. It does not explicitly
contain the assumption that M is a generalized C-M module but leads

to the same notation by the following result.

THEOREM 1.2. al,...,ad is a standard s.o.p of M iff one of the
following equivalent conditions is satisfied:
n n :
. 1 : —_ .
(i) I(al ,...,add;M) = I(g;M) for all positive integers n;,...,Ng4-
(ii) M is a generalized C-M module and I(g;M) = I(M).

(iii) qH;(M/ng) = 0 for all non-negétive integers i, j with i+j <d.
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To check whether a given s.o.p of M is standard one can use
Definition 1.1, Theorem 1.2 (i) or (ii). It should be mentioned that
if ayreeeray is a filter-regular M-sequence, which is always
satisfied if M is a generalized C-M module [CST], then

I(g;M) = 1(gy M : ad/gd_lM).
Hence to check Definition 1.1 and Theorem 1.2 (i) is rather easy. If
one knows the local cohomology modules of M, Theorem 1.2 (ii) is.

more convenient because
) da-1 .
tw = = (Thiwi).
‘ m
i=0 i
Theorem 1.2 (ii) further yields the following simple characteri-

zation of generalized C-M modules by means of only one s.o.p:

COROLLARY 1.3. M is a generalized C-M module iff M has a'standard

$.0.p.

Theorem 1.2 (iii) justify the name standard s.o.p. Namely, in
[BT Brodmann call a sequence bl"“'br of elements of m a m-standard
M-sequence if

i —
(Byseeesby ) Hy (M/ By eenyD M) = 0

for all non-negative .integers i, j with
i+3j< max{n; l(H;(M))<'°° for all t < n},

So standard s.o.p are just m-standard s.o.p in this sense.

From Theorem 1.2 one can easily deduce the following consequen-

ces:

COROLLARY 1.4. Suppose that a,,...,a, is a standard s.o.p. Then
1 d

0o .
(1) a;,...,a, is a standard s.o.p of M/( (U0 mb) .

1 d M
(ii) ay,...,a4 is a standard s.o.p of M/a;M if d > 1.
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COROLLARY 1.5. Suppose that al,...,ad is a standard s.o.p of M. Then

o0
(1) g;_qM : a; = Uag, M : m” for all i = 1,...,d.
n=0
(ii) SRARRTLY ] is a d-sequence of M, i.e.
q;-1M ¢ aiaj = gi_lM :oay
for all j 2 i, i = 1;...,4.

(iii) ays--.r34 is absolutely superficial, i.e.
n+l _ n
[(g ,_qi_l)M : ai]ng(M = (g ,gi_l)M.
for alln20, i =1,...,d.
>

(vi) (g;_1M : a;)n g(ai,...,ad)nM =_gi_1(ai,...,ad)nM for all n= 0,

i=1,...,4.

It should be mentioned that all the above statements of Corolla-

ry 1.5 are equivalent to each other. See [T3] for more informations.

In the course of this report we shall see that many numerical
invariants of a s.o.p attain their maximal values if it is a

standard s.o.p. Here is only an example:

PROPOSITION 1.6. Suppose that M is a_generalized C-M module, Then

Lt oygan) £ 3 A 1aRon)
1(H, ¢ 2 S P.n=iA n m M)
for all non-negative integers i, J with i+j < d. Equalities held-

above for all such i, j iff al,...,ad is a standard s.o.p of M.

Now we will establish the ubiquity of standaxd s.o.p for
generalized C-M modules. First, inspired of Schenzel's results on

cohomological annihilators [S2], [83], we get the following result:

PROPOSITION 1.7. Suppose that M is a generalized C-M module. Let a,

denote the annihilator of H;(M), i=20,.,..,4-1. Then every s.o.p of

M contained in the product ideal
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da-1
n

(

d-1
3y = T3y
i=0

)

is a standard s.o.p of M.

Of course, ay is a m-primary ideal. So we can say that every
standard s.o.p of a generalized C-M module contained in a sufficien-
tly large power of m is standard.

In particular, we can characterize m-primary ideals which

contain only standard s.o.p.

THEOREM 1.8. Let a be a m-primary ideal. Then the following condi-
tions are equivalent:

(i) Every s.o.p of M contained in a is standard.

(ii) There exists a generating set S for‘é such that every 4 element
subset of S forms a standard s.o.p of M. .

(iii) The natural ﬁdmomorphism Hi(g;M)-—+ Hi(M) is surjective for
i=20,...,d-1, where Hi(g;M) denotes the it; Koszul cohomology

module of M with respect to a.

See [T1] for the existence of such a generating set S for a as

in Theorem 1.8 (ii). Theorem 1.8 (iii) is due to an idea of Goto.

COROLLARY 1.9. Supposé that L RARERLY is a standard s.o.p of M.

Then every s.o.p of M contained in g is standard too.

COROLLARY 1{10. M is a Buchsbaum module iff one of the following
equivalent conditions is satisfied:

(i) There exists a generating set § for m such that every d element
subset of S forms a standard s.o.p of M.

(ii) The natural homomorphism Hi(g;M) —9'H;(M) is éurjective for

i=20,...,4-1.
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It is interesting to notice the difference between Corollary 1.3
and Corollary.l.lo (i) . Corollary 1.10 (ii) is known under the name
"Surjectivity criterion" and plays an important role in the theory

of Buchsbaum modulés.

2. HILBERT-SAMUEL FUNCTIONS

In [T3] we have shown that the H-S function 1(M/g?+lm) of an

arbitrary s.o.p al,...,ad of M is bounded above by a polynomial of

the form

z (e, (@i,
i=0

where ei(g}M) are well-determined invariants of al,...,ad, and that
they coincide iff al,...,ad is absolutely superficial. In that case,
if M is a generalized C-M module, one can express ei(g;M) explici-
tely in terms of local cohomology. Inspired of this fact, we get a
similar result on H-S functions of s.o.p of generalized C-M modules
as follows.

From now on, M will always be a generalized C-M module.

THEOREM 2.1. For all n Zz 9,

1t/g )

A

™t e(gim + > Z(““d’ d oy )1(HJ(M))
i=1l j=0

Equality holds for some fixed n iff the following conditions are

satisfied:

(ii) ajre.-r8g is a standard s,o.p for M/ ( \)0 'mL),
. L’l
Equality holds for all n £ 0 iff al,...,ad is a standard s.o.p of M.

Theorem 2.1 may be used to estimate other H-S functions of M,
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following some ideas of [T2] and [T3].

PROPOSITION 2.2. Let a be an ideal of A with 1(M/aM) < co. Let r z 0,

s 1 be arbitrary integers. Then, for all n =1,

(3) 1(M/ ns+ry, = (“*d YHsde(a;m +

Z_ Z(n+d'l -1 (d'lll)l(n o)+ (PRITh1vaTh U° n).
5 5 i=1 M

If A/m is an infinite field, (%) is an equality for some fixed n iff
for all elements 8yr.-.r8y € gs\ gS+l whose initial forms in GaLA)
form a homogeneous s.o.p of the associated graded module Ga(M) 1=

ﬁB g%M/gl+1M, the following conditions are satisfied:

(i) qPa’M = ns+rM.

(ﬁ)ggMnHJ%@5=Oq
i=1

(1ii) a;,...,aq is a standard s,o.p for M := M/( U (N
1=1

(iv) gd-lﬁ : ag S a"M by every permutation of ayseenag

-It should be mentionedAfhat the hypothesis A/m being an infinite
field does not cause us any problem,

The condition that (x#) is an equality fof some n is very strong.
In that case, one gets a lot of informations about the structure of

M relative to a. For example:

COROLLARY 2.3. Suppose that (x) is an equality for some n, Then
(1) a"BIM) = 0 for i = 1,...,d-1.

(ii) Evgky s.o.p of M or of é?ﬁ contained in a® is standard.

(iii) Every form of ﬁ[xl,..,,xd] vanishing at a;,...,a4 has

all its coefficients in EFﬁ.

From Corollary 2.3 one can deduce that r s s if (®#) is an

equality. Hence (x) is not the best possible upper bound for
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1(M/a"5*t ) if r > s.

Note that Corollary 2.3 (iii) just means that ayre-erdg are
gfﬁ—independent. This notation is originally due to Valla , cf.
[T3] and [T4].

In particular, from Proposition.Z.Z we get the following

interesting application in Algebraic Geometry:

COROLLARY 2.4. Let C < P3 be a projective curve. Let A denote the

local ring of the vertex of the affine cone over C. Let H(n) denote

the H-S polynomial of A with respect to its maximal ideal m. Then

nw

H(n) + 1(H113(M_)) 0

for all integers n.

It should be mentioned that if A is a Buchsbaum ring, i.e, C is
arithmetically Buchsbaum, one can replace 1(Hi(M)) of the above
inequality by e, * 1, where e, denotes the multipiicity of A (the

degree of C), cf. [G2].

If r=s =n = 1, Proposition 2,2 becomes more interesting. In

this case, we have
1(M752M) < e(a;M) + I(M) + dl(M/aM +f) OM:r_n_i) .
From this it follows, e.g. for M = A and é = E,liiat
1(m/m?) e, + T(a) +d -1

which gives an upper bound for the embedding dimension of a
generalized C-M ring, cf. [A]l, [Gl1], [s], [T2]. If equality happens
in the last inequality, we say that A is of maximal embedding
dimension. Sally [S] and Goto [G1] have found that C-M and Buchsbaum

rings with maximal embedding dimension behave very well. Now we will

consider the analog case in the theory of generalized C-M modules.
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PROPOSITION 2.5. Let A/m be an infinite field. Let a be an ideal of

A with 1(M/aM) < oo . Then

1(M/a’M) = e(a;M) + T(M) + dl(M/aw)
iff G OM:mic. aM and for all elements ayr...,84 € g_\gz whose
init;;i forms in G,(A) form a homogeneous s.o.p of Ga(M), the

foliowing conditions are satisfied:
(1) gaM= a’m.
(ii) al,...,ad is a standard s.o.p of M,

(iii) 9d—1M P ay = aM.

COROLLARY 2.6. Suppose that

1(/a%M) = e(a;M) + I(M) + Al(M/aM).

Then
(1) 1ma™h = (e +
d d-i
T b iaon + R hieyvam
i=1 j=0 - -1

-for all n = 0.

(ii) aHl(M) = 0 for i = 0,...,d-1.

(iii) Every s.o.p of M or of aM contained in a is standard.

In particular, . from Corollary 2.6 (iii) one can deduce that
there do not exist generalized C-M non-Buchsbaum rings with

maximal embedding dimension. This follows from the following

"COROLLARY 2.7. Suppose that

1(M/m’M) = e(m;M) + I(M) + dl(M/my).

Then M is a Buchsbaum module.

Note that e(a;M) + I(M) + dl(M/aM + L}O m ) is the best
i=1
possible upper bound for 1(M/a M) but l(M/a M) = this bound would

only imply that the factor module M/ ( L)O
i=1
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3. ASSOCIATED GRADED MODULES

Let P denote the maximal graded ideal of Gg(A)' Then our main

result in this Section may be formulated as follows.

THEOREM 3.1. ayre--rdy is a standard s.o.p of M iff the initial forms
of ajr...sa4q in GS(A) form a standard s.o.p of [Gg(M)]P‘ In this

case, [Gq(M)]P is a generalized C-M module with

0 if n # -i,

i
[HP(.Gg

M)l =
n H:["('M,) if n = -i,

. _ d _ . _
i=20,...,d-1, and [HP(GQ(M))]D_‘O if n > -d.

The case M = A being a Buchsbaum ring was already known in [G2],
where one also showed that [GS(A)]P is again a Ruchsbaum ring. Using
the same method of [G2], we can generalize this result as follows

(due to a suggestion of Goto) .

COROLLARY 3.2. [G (M), is a Buchsbaum module iff mﬂ;(M/ng) = 0 for
all non-negative integers i, J with i+j < d.
Note that M is called a quasi-Buchsbaum module if mH;(M) = 0 for

i=20,...,4-1 or if every s.o.p al,...,ad of M contained in EZ is a
weak M-sequence, i.e. gi—lM :a; = gi-lM : m for i=1,...,4. Then
from Corollary 3.2 we immediately get the following interesting

characterization. of quasi-Buchsbaum modules:

COROLLARY 3.3. M is a quasi-Buchsbaum module iff there exists some

parameter ideal g such that [Gg(M)]P is a Buchsbaum module.

Of course, M is a C-M or Buchsbaum module iff [GQ(M)]P is a C-M

or Buchsbaum module for some or every parameter ideal g of M,
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respectively.

From Theorem 3.1 we also get the following generalization of
results of Sally [S] and [Gl] on C-M and Buchsbaum rings with

maximal embedding dimension:

PROPOS{TION'3.4. Let é be an ideal of A with 1(M/aM) <ee and
1(/a%M) = e(a;M) + I(M) + dl(M/aM).

Then [G,(M)], is a generalized C-M module with'

B 0 if n# 1-i,

e )1 =
Pa " ELM) if n = 1-i,

i=0,...,d4-1, and [Hg(Gé(M))]n = 0 if n > 1-d, where P denotes the

maximal graded ideal of G, ().

' COROLLARY 3.5. Suppose that M is a C-M module. Let a be an ideal of

A with 1(M/aM) < s and
1(M/a’M) = e(a;M) + dl(M/aM).

Then GA(M) is a C-M module.

" COROLLARY 3.6. Suppose that

101/m2M) = e(m;M) + I(M) + A1QM/mM).

Then Gm(M) is a graded Buchsbaum module.

4. REES MODULES

o0 =
In the following we denote by Rd (M) the Rees module @EIM of M
» _ a i=0
relative to an ideal a of A, which is also known under the name
"arithmetical blowing-up". In [B], standard sequences were just

introduced in order to study Rees modules.

Rees modules are closely connected with symmetric modules. Let
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s, denote the symmetric module of M relative to a. Then it is
known that there is a natural homomorphism from Sa(M) onto Ra(M)
which turns to be an isomorphism if a is generated by a d-sequence

of M [H1], [T3]. Hence from Corollar 1.5 we get the following

PROPOSITION 4.1. Suppose that a;s.--:3 is a standard s.o.p of M.
P 1 a

Then R_(M) & M) .
en g( ) Sg( )

Let O denote the maximal graded ideal of Rﬁ(A). Then our main

result in this Section may be formulated as follows.

THEOREM 4.2. Suppose that al,...,ad.is a standard s.o.p of M. Then
[Rg(M.)lQ is a generalized C-M module with

0 . .
Hm(M) if n = o,

1) (R, ()1 =
q 0 ifn #0,

H;(M) if -1 2 n % 2-i,

R )1
Qg n 0 else,

i=1,...,d4, and [Hg“(xg(mm -0 if n Z 0,

By the statement of Theoxem 4.2 we always have H (Rng)) = 0 and

if d = 2 HQ(RE(M)) = 0. Thus, from Theorem 4.2 we can easily derive
the following generalization of the main result of [GS] which déalt

only with ‘the case that M = A is a Buchsbaum ring:

COROLLARY 4.3. Rg(M) is a C-M module iff the following conditions

are satisfied:
(i) H (M) = 0 for i #1,4.

(ii) al,...,ad is a standard s.0.p of M.

For the module-version of generalized C-M rings with maximal

embedding dimension we have the following results:
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PROPOSITION 4.4. Suppose that d > 1. Let @ be an ideal of A with

1(M/aM) < e and
1ov/a%M) = e(a;m) + 100 + al(M/am) .
Then [Ra(M)]Q is a generalized C-M module with

0 .
HE(M) ifn=0,1,

0g
[Hg (R, ()1,

0 if n # 0,1,
alon B
1 m(M) ifn=o0,
[Hy(R ()] = B
= 0 if n # 0,
; M) if -1 2 n 2 3-3,

L (R (M)) ]
Qa n 0 else,

da+1

for 2 =i =4d, and [H (Ra(M))]n =0 if n 2 0, where Q denotes the

maximal graded ideal of RA(A).

By the statement of Proposition 4.4 we always have H (R M) =0

.and, if 4 > 2, H (R (M)) = 0. Note that for the case d = 1 we have

the same formula for HQ(Ra(M)) and HQ(Ra(M)) = 0. Then from Proposi-

tion 4.4 we immediately get the following

'COROLLARY 4.5. Let a be an ideal as in Proposition 4.4. Then Ra(M)

is a C-M module iff H;(M) =0 for i # 2,d.

In particular, using some recent result of Goto in [G3] we can
show that the Rees ring of a Buchsbaum ring with maximal embedding
dimension is again a graded Buchsbaum ring. That may be formulated

in a more general statement as follows.

COROLLARY 4.6. Suppose that

L04/m°M) = e(mim) + T0) + dlu/my) .

Then Rm(M) is a graded Buchsbaum module.
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A note on standard systems of parameters
for generalized C-M modules

Shiro Goto (Nihon University)

The purpose of this short note is just to mention that in equi-
characteristic case the theory of Buchsbaum rings possibly includes the
one of so-called standard systems of parameters for generalized Cohen-
Macaulay modules.

More explicitly, let A be a Noetherian local ring with maximal
ideal m and assume that A contains a field as a subring. Let M be
a finitely generated A-module of dimension d . We denote by A (resp.

a be

fi ) the m-adic completion of A (resp. M ). Let a a

10 8p rt o

a system of parameters for M and put
R = kEhl, By, e a&ﬂ

in A , where k denotes a coefficient field of A . Then as is well-
known, . the ring R is isomorphic to a formal power series ring with -
d variables over k and the R-module fi is finitely generated. More-

over we have

Theorem. The following condltlons are equlvalent to each other.

(1) The local cohomology modules H (M) are finitely generated for

all i # d and the equality

d-14 -1 i
Laawan - ey(@ = X4 T 000)

holds, where q = (al, ags +ev ad)
(2) M is a Buchsbaum R-module.
(3) The 1deallzatlon Rx M is a Buchsbaum ring.

Proof. (1) =(2) First of all we like to show that

qH(M/(al, s e ,a)M) (0)
if i+j<a4a.If 4= 1, we get from the exact sequence
0o —> Hm(M) — M —> M/H (M) —> 0

an exact sequence
o — H (M)/alH (M) — M/a.lM —> M/(a.lM + H (M)) —> O

of A-modules. Consequently 1 (M/a M) = ey (a A) + 1 (H (M)/a (M)) ,

and hence alﬂﬁ(M) = (0) as 1 (HO(M)/a HO(M)) 1A(H8(M)) by assumption
(1). Now assume that d 2> 2 and let 1< k < d bea fixed integer. We
put M' = M/aM and q' = (a7, -+ > ak, e ad)A . Then
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d -1 .
d -1 i
> (¢ 1 Himion)

i=20

1A(M/qM) - eM(q)

1,(M"/q'M') - e (a')

S - 2)1, (aiuny)

[["aN 1]

A

d_=-,1.d4 -1 i
= T hmian)

and therefpre we get
i
. akJﬁéM) = (0)
for all i # 4 (hence q.Hp(M) = (0) for all i#d) and that
‘ d-24_> i
lA(M'/q'M’) - eM,(q') = E - O( i )lA(Hm(M')) - Thus the induction on
d tells us that q.H;(M/(al, 80 +++ s @M) = (0) if i+ jgd
4 Now let n = (al, 8oy wee ad)R - Then if i + j <« d,
n.Hg(ﬂ/(bl, byy vt , DIM) = (0) for any permutation.of 81, 85, ..,
J (b1, b2, .. 1By ,
ad and therefore the induction on 4 yields that M. is a Buchsbaum
**)
R-module .
(2)&(3) This is well-known.
(2) = (1) As H_(M) = HL () , the A-module Ho(M) is finitely
generatéd for any i £ d . on the other hand as k = R/n = A/m , we see

that

15 (M1/qf) - e (ah)
éREﬁ{qﬁ) - eﬁ(n).
> T Higmiam)
1l =

d-14_1 i
;).'( 1 1A H () .

1 =

1, (M/qM) - ey (a)

This completes the proof of Theorem.

*) c.f. (2.6) (2) in : Blowing-up of Buchsbaum rings, Commutative Algebra:
Durham 1981, London Mathematical Society Lecture Note Series 72, 140-
162.

**) c.f. (2.12) in ‘ Noetherian local rings with Buchsbaum associated
graded rings, to appear in J. Alg.
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Quasi-Buchsbaum rings obtained by idealizations

Kikumichi Yamagishi
(Science Univ. of Tokyo)

Abstract and introduction.

This note is devoted to introducing the results given in paper [4]
which is preparated now together with S. Goto. The aim of our_research
is to determine the criterions for local rings obtained by idealizations
to be quasi-Buchsbaum and Buchsbaum and evaluate the distance between
quasi-Buchsbaum rings and Buchsbaum rings using such rings.

Let .A be a Noetherian local ring with maximal ideal m and M a
finitely generated A-module. We denote by AN M the idealization of -
M (over A ) which is the direct sum A @ M as an A-module and endowed
the multiplication defined by (a, x).(b, y) = (ab, ay + bx) , where a, b
€A and x, yeM ([7]). As is well-known, A XM is a Noetherian local
ring with maximal ideal m x M and dim AX M = dim A . If AXKM is
a Buchsbaum ring, then so are A and M and dim M

0 or dimA .
In case dim M = 0, it is already given by [2] that A X' M is Buchsbaum
if and only if so is A and M is a vector space over A/m , i.e., m.M
= (0) . So we will discuss in this note the remaining case dim M =
dim A . 4 )

In Section 1, we shall study the criterions for local rings obtained
by idealizations to be quasi-Buchsbaum (resp. Buchsbaum) . We get the

following
Theorem (1.2). Let A be a Buchsbaum ring of dimA =4 >» 0 and
M a Buchsbaum A-module of dim M = dim A . Then the following two con-

ditions are equivalent.

(1) AN M is a quasi-Buchsbaum (resp. Buchsbaum) ring.

(2) For some (resp. every) system {91, Agr et adk of parameters
for A , the equality '

[(al, eee g ad_l): ad].M = (al, e g ad_l).M
holds.
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As is given in [6],[8] and [9], the canonical module KA of a Buchsbaum

ring A , if there exists, is also a Buchsbaum A-module and dim K
dim A .

We shall discuss the idealizations of the canonical modules in
Section 2 and also we shall construct Buchsbaum rings which have the

canonical modules such that its idealizations are also Buchsbaum. The

typical examples of local rings obtained by idealizations are given in
Section 3.

»
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*F

Vﬁﬁ, U. 0. dayw; agy 15 A o S.O.f. L 2 T3¢
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[(Q«)\‘-, A.{.()“Aa‘d‘]' M = (q'} y Ad‘l)"vl' .

3 (13). %= @A
(1) A x Cohew _“"‘C”W\k&y 3{ .
)) dine M= din A =fR Tx2o Buchshbaaw A -seff N ’1#(’&}

AN M F frad- Buchs barw .

() dh M = dn A 2F3 F12 9 Buchshaum A ~% B 1 1PHQ

Ak M & Bq(hsbmm .

$h (L4). AR smrm, M eB¥E Bchibaun rhgo
AF7LeR-at s, P, CATER = dR=dNA,
A= R~ et o &Y, ATV e ARKM &% L REEY,

58 (.5).
(1) & ofvéal 2w, HI(A)=(9) #Enm HY (1)=(0)

triE, AxH @ fuas-bchshun IR &2 -

@ k& o0 SvSA e>wz, HLMA)=O (¥2r,VEd) TAS
HU (M) = () (2 €ra) mhi,  AKM 2 Buchsbun *& &
AN M 2 'k‘“”l“ Puchsbaum FE 2§ 2 -

- 185 -



i (/-‘). An camomecd o defe_ kA T €5 taF2

-t ‘Jeff—l‘ KA > '%" '&'J‘ﬁ-"', AkKA (% Bucl.sb««w“fz"*g,
(cf. $2).

$2.  Tdealizatiomn  of  camomecd eodelsr -

Raf g, A Buchsbann R Jin A ~ d >0 ,
M TAORBKIT T L EC, £ 5 A @ camomical mednd K,
Ao to ¥z, [6 8] [7] AT &5k , Ka 5 Bedhsbaam

A- e BF dch&:dc‘mA 2F3 , 31y v, K*q- T:'fl(,'(b&f—
13, |

EE (l.l), {4\., \“,‘\dll = A o S..O\F, e, F2 2
A 15¢¢aA Lz2 ext

J

Q N , A T 1 t 9 M A
[ (ql/“‘l Ad ) : (ql,\“t “t)] = \Z' [(‘\‘lll“'fq‘t';“' Ad) : q\']+{o (ql;\'qf,‘“/ad)}
=\ R

13

25 .2). % @EE.
(1) Ak KA ¢ QJ‘\’JI'—- Buchs bacn =E ( 2w, Puchs boam, ?f) .
(1) 31_%1‘5 g (‘5)3 wiF, TA29 ) Aa s 0-/’. {A.,w, o\ds lz#(l)

[(D): [(“9"‘/ M-()Q%]]('QLA) = L(o) \ (“"“"M")]H:,Lm) .

- 186 -



G) #¥H (F3urk, Tvia) Ao soop {a, ., agy 12 £E(R
[(A" A )Y qd]{/\ (Gl \ql'/ < A }C Z[(Qq,“‘, Ay, Gd) a\‘]

peo (3 Ko A ze A>o0o rx>u K33,
din A<3 actu/ie AM2 3T T2,

2% (28) dnA=3 x43. e PE.
@) Ak KA #  fuast Buchs baaw FE v #3.
(2) AK Kg & PBuachs baan F& = H2.
3) Ao S 0. p {a, b,y 2,

Uy (o, b) U (h,©) = (a,8) Yy(h,O) + ChO)TUlab)
EHt-F oD T 3. EFC ‘U;(-) ft‘-Fi aéé k&t 2 mamined
XEEEHT .

$88 2.¢). poo = X¥, h(A)=p 3. An
F-pare , o, F1A2A (Fla)=al) # pure vd3. H1%,
Ab(KA v Buchshaum %‘) A X KA 2 ‘8/‘*“«‘7" Puchs baumn .

v, camomecall aoddo. 9 AT 7 LAENFE Buclu\:a'qm 2 &Y

T3 r 3530 3“‘\:%\:\\“ $‘E6 sy (32) e £L2 A, LR $)h

- 187 -~




O L3RS 3.

2% (2.5). d22x h, ., hey 20 & B F3,
Yaxt, o350 $71 & AT Buchshanw Bl EH A 2
BEd 7,

() di A= d v s duy H®) R, (s0E4),
EE Lawe ¢ Ao A RAIFYIL =72,

@) A& camomped  modda K4 t %D

i) A K, w Buhsbauw B o #2.

thlE Y ¥C hyso mF, AW mermdll K eRnd,

JaRREAS =, NRAI Lo KB Ew B LT3, XF
R=8 Ro & RIEE Noacher %8 = dnR=d , Ros ()
e, HN=Ry zH (. kCRFMhTuIESs R, RIE Grad
ekl k= (HA®) 265 [5], mmc (% i graded

£ - Aol & Ep9.

#&B (2.6). F~1a Vtd rouz, H:(&)l*’él‘&é_"w

R\
%3 5y & H;' (Kg) = (HA:"(&))* (2 $\$d-),

)

- 188 -



XS, A= Kn ko E A 1 moms cal o ol
K, = (K)y &8> Kedlozr do Noether BHFETH 2.
w(R)= max {mel | [HARI () *oCs,

w8 7). to, -, T 4 e B E X BRI

)

%Oélt\go\-‘\ > udl,
\
) LHR R =) (mtty) .
£C, oR) < i {t I per s At mher, Ak &

Buchs baum £ &2

A L v
(l) t\ - t\\_‘_“'l )

drp 2.F5) @& (26) € (7)) x [3 afs] AL RS,

$3. 'E)(ampoQu.

G.1. Au'm; % Buchs \mmsz > g3,
G2). R = Cov‘lu«— M«cawhy & v dwR Do Rt Canomtall
nodods. FEP>E0eF3, R, P& Buchs bauw, R- 52 B¥ 2
dn M= dinR xF2 . 5, |

A= RXM
< kit l#, A & Buhs basw BHER 2« camomieel wmededs (4 E

189 -



#¥s, £re AKK, 1 Buchmum%z“ﬂ.;s.

C 03 R o= RIXG >, XD (k) a= (% %)N
(X2, X3, %) 0 (X X, X6 ) 0 (Ke, Xo, Xe ) 0 e, Xe, X0) 0 (K, %, X0
Ch<., 4§ | A = R/n R, A
3380 9 Buhbuan BH ZB v camomical mudde K, 264,
trr AX K, 1+ Buchs baum =g = g 2.

Gt). ke, RIx.Y,2] , BIv. W) & %Bdm
«%3 . 5 ’

R = "(&tx. Y. Z%xﬂﬁz’))# klv.w]

J i 4 @ Segn® 2 ET

- s Ry | »
Y 1;{ tiE, A =R n * 3 :/Si B uchs baar HPTFE 20 Comomicll
redile Ky 84 £ 56 A KK & Puchibaam SE k7. A
& (52) T r64 4%, B = AKKy & guant Gorenstem[1] ie
KeS B, ¥z, BXK, wtuh Buchs bans E =1t % 1,
(35)., . R= RO X, v, Xa, Y, v, Yal (RED) 13,
5, A= R

(Xq, v, Xd4)N (Y‘/‘“/ Yd)
Cid, 502

M= A e e, x4)
CARUE, A, M & Bachs baan 2 div M= die A 4 2

- 190 -



iy A, 2arvs AKM @ guestt Buchcbaum FE 2 EF2 A
Buchs baow F& 281k & un .

References

[i) Y. Aoyama, Some basic results on canonical modules, in preprint.
[2) s. Goto, On Buchsbaum rings, J. of Alg., 67 (1980), 272-279.

[3] ’ Thelassociated graded rings of Buchsbaum local rings, in
preprintf

[4] S. Goto apd K. Yamagishi, Quasi-Buchsbaum rings obtained by ideaii—
zations, in preparation.

[5] 8. Goto and K. Watanabe, On graded rings, I, J. Math. Soc. Japan,
30 (1978), 179-213.

[6] R. Kiehl, Beispiele voﬁ Buchsbaum-Ringen und -Hoduln:mireprint.

[73 M. Naggta,i Local rings, Wiley, New York/London, 1962. |

[8] P. Schenzel, Applications of dualizing coﬁplexea to Buchsbaum
rings, Ad. in Math., 44 (1982), 61-7T."

[9] N. Suzuki, Canonical duality of Buchsbaum modules, in prepara-

tion.

- 191 -



Locally Simple Extensions of Rings

Osaka Univ. Ken-ichl Yoshilda
In this talk, we study the following obstraction 1deal of

flatness with respect to ring extension A/R.
Definition. FR(A):é{aeRla#O,A[l/a]/R[l/a] is flat} U {0}.

Let R be a noetherian domain and let A be finitely

generated over R. Then we have

(1) FR(A) is a non-zero radical ldeal,and
(11) for peSpec R, p Z>FR(A) if and only if Ap/Rp is

flat.

If A/R 1is a birational extension, then the prime divisor of
FR(A) is a prime i1deal of depth one.
Even if A 1s integral over R, the same result does not

hold.

Example. There exlsts a non-Cohen Macaulay complete local
doméin A of dimension 3. Hence there exists a subring R of
A such that R 1s regular and A 1s a flnlte 'R-module. If
we can show that the prime divisor of FR(A) is a prime ideal of
depth one, then A/R 1s flat since R 1s normal, so A 1s

Cohen Macaulay. This 1s a contradiction.
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Therefore we look for a condition that our assertion holds.

Lemma. Let R be a noetherian domain and let A be a
finite extension of R. If A 1s locally simple extenslon over

R, then the prime dlvisor of FR(A) 1s a prime ideal of depth one.

W.Vasconcelos had the following result in the paper

[ Simple flat extensions, J. Algebra, 16, 105-1071;

Let S be a simple extension of R and let

0 — I ~ R[X] — S — 0 (exact).

Then, S 1s a flat extension of R if and only if I is a
projective 1ldeal of R[X], and the ideal of R generated by

the coefficlents of the polynomiéls in I [ the so-called content
of ‘I, notation: c(I)] 1s generated by an idempotent element

‘of R..

Hence if R 1s an integral domaln and S 1s a flat extension
of R, then ¢(I) = (0) or R. And the radical ideal Vv c(I)
does not depend on the cholce of the generator 1in S/R. Indeed,
it 1s easlly seen that, for peSpec R, p 2 c(I) 1if and'.only if
Spec Ap/Rp 1s a finite set (may be empty). Hence we have that

a simple extension A/R 1s quasi-finite if and only if c(I)=R.

Lemma. Assume that R 1s a local domain and the residue
field .1s an infinite fleld. Let A be a simple extension of R.

If the extension A/R 1s quasi-finite, then there exists
an element a of A such that o i1s integral over R and

A =R[ a J[1/a].
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Applying this lemma, we have the following;

Proposition. Let R be a noetherian domain and let A be

finitely generated over R. Assume that the extension A/R 1is

locally simple extension and quasi-finite. Define

A:={PeSpec A| Ap/R 1s not flat}. Then A 1s a closed

PNR
set of Spec A. If P 1s the generlc point of an irreducible

component in A, then we have depth R = 1.

PnR

Theorem. Under the above conditions, the prime divisor

of FR(R) 1s a prime i1deal of depth one.
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On the Gorensteinness of the variety of complexes

Yuji Yoshino ( Nagoya University )

Let R be a Noetherian ring and let {no,nl,..,nm 1 {kl’kz""km } be two

sequences of integers satisfying m> 0 , k.

>0 and =, >k +k, with k, =
i= i="1i i+l 0

km+1 = 0 . We consider the m-ple of matrices ( X(l), X(?),.., X(m) ), where

X(s) = ( xgj) ) 1is an n ., xmng matrix of indeterminates over R (s=1,2,..,m).

We now define an R-algebra B (no’nl""nm) as a factor ring of R[ xg§) | a11
R kl,..,km 1]

s, i and j ] by an ideal generated by all the elements of matrices X(S-I)X(s)

and the determinants of the minors of X(S) of size (ks+1) (s=1,2,..,m).

inl"'inm) is the homogeneous coordinate ring of the variety parameteriz-
1°°"°"™m

ing all the complexes of the form;

n
BR( 0

n n n n
o - rR™, r™M L L > rY > RO s o0
fm fm-l f1
where rank(fi) = ki . It is hence called the ( Buchsbaum-Eisenbud ) algebra of

variety of complexes. We should notice here that if m = 1 , then the variety of
complexes are nothing but. determinantal varieties.
The purpose of the present note is to provide a necessary and sufficient condi-

tion for BR(HOinl"'inm) to be Gorenstein. To this end we need some elementary
3

17K .
properties of the varieties of complexes. Particularly its Hodge algebra structure
is one of the most important among them.

Definition of Hodge algebra. Let H be a finite poset (= partially ordered set).

A monomial on H is an element of NH. A subset I C NH is called an ideal of
monomials if M ¢ & and N eINH implies MN e . A monomial M is called

standard with respect to 1 if M # I . A generator of an ideal I 1is an element
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of y which is not divisibie by any other element of I

Now let A be an R-algebra and suppose that there is an injection ¢ : H - A.
We call A a'Hodge algebra generated by ¢ (H) and governed by I if the folloWing
axioms are satisfied;
(H-1) A 1is a free R-module admitting the set of standard monomials ( with
respect to 3y ) as basis.
(H-2) If Ngr is a generator and
™) Ny, (0fry; e R)
is the unique expression for N‘e A as a linear combination of standard monomials,

then for each x ¢ H which divides N and for each MN i there is e H

N,i
which divides MN i and satisfies YN < x in H .
> k]

The relations (*) are called the straightening relations for A .

Now let us return to the question of the variety of complexes. The symbol

ﬂ’jt]s will denote the element of B ( 0’n1’ 'i m) which

1,
(S) whose rows are those

[i]s1ps-esip]dgsdps
is given by the determinant of the minor of the matrix X

of indices il’iZ""it and whose columns are those of indices jl’jz""jt .

Let H be a set consisting of all the determinants { [11,12,..fltljl;]z,..,Jt]s |

p <1 1z ip < - <

We partially order H by the following: When x = [11,12,..,1t|J1,J2,..,Jt]s and

1 <.. <i_ <n

2 t

A

s<m, 1<t

A

k ,1 < i

<
s sng 3.

s-1 "~

= [ii,ié,. ’1"|31’32’5"j£']s' , x and x' are incomparable if s # s' , while

if s=3s', then x < x' if t >t' and iu < i& s ju < jﬁ for u=1,2,..,t'

The product xx' (s <s' ) 1is said to be standard if one of the following holds;

@9) s' > s +1,

(2) s' = s , and x and x' are comparable in the partial order on H ,
(3) s'=s+1, n, - t >t and writing Up <uy < L..o<up for the comple-
ment pf { jl’jz""jt } in { 1,2,..,ns} , Wwe have uns—t-v+1 > 1%'-v+l for

v=1l,2,..,t'.

We define an arbitrary product X Xpe e X of minors to be standard if each xixj is

standard in suitable order. Finally we set » as a set of all non-standard monomials.
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n

n

Then the theorem of DeConcini and Strickland says that BR(HOi 1”'i m) 1is a
1°°"°™m
Hodge algebra over R generated by H and governed by I .
Examples. @Y) 1f we consider BR(lizil) = R[ (x,¥y) , ( 3 ) 1/ (xz+yw),
the poset H is described in the following:
y=1[12] w=1[2]11,
l |
x=[1|1]1 z=[I|1]2
Although yw is a non-standard monomial, we have the equality yw = - Xz where
xz is standard and x <y , Z <W . In this manner one -can:easily see that
BR(lizil) is in fact a Hodge algebra over R .
b
1,3,3, .. .
(2) The poset of BR( 1,2 ) is ;
/[3|3]2\
- 213, 13121,
s, / \ / \
[113»]X [2l2]2\ /[311]2
) (121, [23)231, [2\1]2
[”2]1 >< \
[12]23], [1|\1]2 '[:2@2
(L, [12]2&\ 7|% /[23]12]2
[12{13], [13\12]2
[12\12]2

A non-standard monomial [1|3]1[3|3]2 can be written as a linear combination of
standard monomials in the following way ; [1|3]1[3|3]2 = - [1[1]1[1|3]2 - [1|2]1[2‘|3]2
and we have also the equality [1|2]1[23|23]2 = - [1|1]1[13|23]2 where the left

hand side is non-standard but the right is standard, and so on.

- 197 -



SN, .. ,T .
k.ok ™S
Cohen-Macaulay ( resp. normal ) if and.only if R is Cohen-Macaulay ( resp. normal).

Using the Hodge algebra structure one can prove that Bk("o

This result was proved by DeConcini — Strickland, and independently by Huneke.

So it seems to be natural to ask when BR(HOﬂnl"'inm) is Gorenstein. Our main
1°°"°"m

result about this question is the following

Theorem 1. Assume that ki >0 ( i=1,2,..,m ). If we denote ti =n, - ki
- k. ( i=0,1,..,m ), then B (no’nl""nm) is Gorenstein if and only if R is
i+l R kl""km } »

Gorenstein and one of the following conditions holds;

(1) t0 = t1 = ... = tm
2) t0='0,t1=t2=...=tm
3 tm=0,t0=t1=...=tm_1
4 t0=tm=0,tl=t2=...=tm_1.
Examples. (1) B (1’2’1) is Gorenstein whenever R is Gorenstein, for t
=Xamp-es. R 1,1 0
=t1=_t2=0
1,3,3 . . . . _
(2) BR( 1,2 ) is not Gorenstein, since tO = tl = 0 and 'tz'- 1.
3 Applying our theorem to the determinantal case, we will see that BR(HOinl)
1

is Gorenstein if and only if R is Gorenstein and (n0 -0 - kj)(n; - k;) = 0.

To prove Theorem 1 I needed to compute the divisor class group of BR(HOinl"in
1°°°"m
explicitly in normal case. The consequence I got is ;
Theorem 2. Let R be a normal domain. Then there is a group isomorphism ;
n,,n.,..,Nn . h _ . .
C1( By( Okl}"’kmm)) = CI(R) @ Zz , where h=+#{i | 0« k, <m;, t; ;> 0}
+ #{i ] 0 < ki <m, ti = ti-l = 0}
1,2,1 :
Examples. (1) C1( BR( 11 )) = Ci1(R) ®& Z.
s
1,3,3 N
(2) C1( By( 157) = am e z
(3 If m=1, then c1(B("0;"1)) = CI(R) o ", where h=1 (if
1

0 < k1 < min( ng,ny ) ), 0 ( otherwise ).

- 198 -




We shall close this note with showing the outline of the proof of Theorem 1.

For the detail we refer the reader to our paper [3].

Outline of the proof of Theorem 1.

15t step. We may assume that R is a field. ( This reduction is quite easy

and elementary.)

an step. Proving the following
Proposition. Assume that k. > 2 for some i.. Then B (n0’n1’ ’ni—l’ni"’nm)
i= R kl’ ...... ’ki"’km

is Gorenstein if and only if B Moz oMot ) s,
RO S 1k

( For the proof of this proposition we use ( the proof of ) Theorem 2.) Continueing

this process, we may assume that k1 = k2 = .... = km = 1.
rd . . . N n,,n,,..,Nn ..
3"~ step. Computing the Poincaré series of BR( 01 1 1 m) explicitly
seees

and apply the following theorem of Stanley :

Theorem. Let B be anIN-graded algebra over a field k = B0 and suppose that 
B is a Cohen—Maéaulay integral domain of dimension d. If P(A) is the Poicaré
series defined by P(A) = ;, dim,k(Bn.).)\n e Z[[A]] , then B is Gorenstein if

n=0
and only if for some a e Z, P(1/}) = (-l)d kaP(A)

We - should notice that the Poicaré series will be obtained by counting the number
of standard monomials. For instance if we consider BR(nOinlinZ) in case m= 2 ,
M 3
then it has standard monomials as an R-base, and all the elements of the R-base of

BR(nOinliHZ) of degree n are described in the following diagram ;
3

! |4
Bl by | |2 |4
3 bu 1L Sy dv 2
where 1< a; g3, g fa,smg, 1¢ b1 < b2 < < bu 0y 1< 1 ic <
sc, 2 n, 1¢ d1 < d2 < .S dv 0, and c, <ny wheneyer bu =n;, and
n=u-+v . Thus the number of standard monomials of degree n is given by
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;(n) - DR u;n 1 un, 2 ) vy 1l )« (U 2 v+n, -2 v#n,-1

)( @ )
" 2 2 1

u+v=n 0
After some computations, we shall have the following equality as a result.

(1-2 )n0+2nl+n2 3P(A) = {1 ( nOTl 3 ( nltz ) xj}.{ 5 (;nltl I nztl ) Aj}

H

) ; _ _ .
ARSI G s Wb TP TS BN S N G WL Y I WP T
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where both sides of the equality are polynomials with the coefficients in Z . Then
one can easily verify that P()A) satisfies the equality in the theorem of Staley.
if and only if one of the following holds ; (1) n, + 1= n, =mn, + 1, (2 n, = 1

‘and n, =mn, + 1, (3) n, = 1 and n, + 1= n o, 4 n, =n, = 1.

This implies Theorem 1 in case m = 2 .

REFERENCES

[1] C.DeConcini-E.Stricklénd : On the variety of complexes. Adv.in Math. 41 (1981)
57-77.
[2] C.DeConcini-D.Eisenbud-C.Procesi : Hodge algebras. ( preprint ).

[3] Y.Yoshino : Some results on the variety of complexes. ( to appear ).

- 200 -



Problem Session

Problem Sescion 3 [ A S B s RPN EL <. §BrER 3 2 Bf
Pt A3 B GHBART RN, bAaFe 3HNtT |3 o MR

rIfR TN E L =,

1. 34538 BHB( 3 LK) Prodlem |, 2.

2. B RE(MER) Publen 3,4

3. FaFt %z (% K) Profdem &, 6.

4. NV Trung ( Hanoi X /7 K) Roblem 7, 8,9, 10,
5. t@ &— (TR ) Pudlm 11, 12.

L. M.E. Sweadler (Corneld K [ 58 K)  Droblem 13 .

Sweedler & 3 7RENIBR KA IChTEEE LTI, GHRLN
2 ( 1%@3;:.2 AT GOAS, THEARTELET Ao o &—
s ARE Ty vl £S5, v nh AT TE -3 GREMECAT
Y Session 1FF ¥ GEEBEAFTENLINE L%, B2
REBFAaZ ) TRRNET T3 ens5 v dRRETFLEATL
e REBERG Sessim £ 31 7 L, AT R T h ZFRR
NREBREL F 9,

- 201 -



Problems posed in the Problem Session

Teruo Asanuma

Let RI[X,Y] be a polynomial ring over a commutative ring R. Let
I be an ideal of R and put R = R/I .

Problem 1. Let £, g be elements of RI[X,Y] such that R[X,Y] =
ﬁ[f,g]. Then can we find elements F, G in RI[X,Y] so that f = F mod
IR[X,Y], g =G mod IR[X,Y] and R[X,Y] = R[F,G] ?

Problem 2. When is the canonical homomorphism Slz(R) - Slz(ﬁ)
onto? : '

In general this map is not surjective. For example, let R =
It[x,Yj and I = (xz + Y2 - 1)R. Then Slz(R) contains no element
corresponding to ( X ¥ y in Slz(ﬁ) .

-Y

L]

Takeshi Ishikawa

For an ideal I of an Artinian local ring (R,m), let T(I) =
[lR(R) - lR(O : I)]/lR(;). (here lR(.) stands for length). We put

T(R) = sup T(I),
I

where I runs over ideals of R .. Then we can show the following

Propdbstion. (1) Let r = 1R(0 :m) . Then 1/r { T(I) { r for any
ideal I of R and hence 1 {T(R) {r.

(2) The following conditions are equivalent to each other: (a) T(R)
=r . (b) T(I) = r for some ideal I of R . (c) R is a Gorenstein
ring.

Notice that R is not a Gorenstein ring even if T(R) = 1 . For
example, let R = k[X), Xy or o X 1/(X,%y, oo, X2 (k a field).
Then T(R) =1 , since T(I) = l/lR(I) for any ideal I of R . On the
other hand r = n , as is well-known.

Problem 3. Let S = k[Xl,XZ, ces Xn] be a polynomial ring over
a field k and M = (xl,xz, cee g Xn)S . Then is it true that T(S/I) =
1 for any M-primary ideal I of S ?

I like to mention that for any integer r 2 2 and for any real
number t » 0 , there exists an Artinian local ring R such that

r-t<{TR)r.
Examples are easily constructed.

Problem 4. Let R be a Noetherian local ring which is not neces-

sarily Artinian. Let T(R) = sup T(R/q) , where g runs over parameter

- 202 -~




ideals in R . Explore this invariant T(R) of R . For example, is
T(R) finite? Compare the numbers T(R) and T(R[X]/(Xz)) .

Hideyuki Matsumura

Let (A,m) be a Noetherian local ring.

Let D be a derivation on A . Then we say that D is integrable -
if there exists a homomorphism E : A —> AL t1 such that

E(a) = a + tD(a) mod t2 . |

Assume that A contains no field and put p = ch(A/m) . Then any deriva-
tion D on A induces a derivation D on A = A/pA if D(p) = 0 and
it is easy to show that D is non-integrable if so is D .

Problem 5. Find any example of derivation D on A such that D
is not integrable but D is integrable.

Let A =]c[Xl,X2, cee 4 Xn] bg a formal power series ring over a
field k . Let P be a prime ideal of A and assume that P is a
complete intersection, say P = (xl,xz, cee 4 xr) (r = dim AP ).

Problem 6. Does there exist an integer N = N(P) > 0 with the
followihg property?

If gy 9yr eee 1 9, 2IE elements in A such that g, = f; mod

N . . :
(X1 Xyr e s Xr) for any 1< i r and if htA(gl' Gor wve gr) =
r , then (gl, Iyr e s gr) is a prime ideal in A .

Ngo V. Trung
A system a;, a,, ... s ag of elements in a Noetherian local ring

(A,m) is called a weak sequence if

(@gr eee s ai-l) :a; = (@yr eee s a;_q) :m
for any 1 g i § s . A weak sequence ayr 8ys +ee 4 Ag is said to be
maximal if all the ai"s are in m and ayr @y eee s ags a cannot be

a weak sequence for any element a in m .

Problem 7 (W. Vogel, 1973). Do the length of two maximal weak
sequences coincide with each other?

If lA(O : mz) > 2.1A(0 : m) , the maximal ideal m contains no
weakly regular element. '

Problem 8. Is the converse also true?

Problem 9. Let A be a generalized Cohen-Macaulay local ring. Then
does there always exist a generalized Cohen-Macaulay local ring B such
that A = B/bB for some element b of B with dim B/bB = dim B - 1 ?
(c.f. Note by S. Goto below.)

Problem 10. Let I be an .ideal in a Cohen-Maéaulay UFD. Then is
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the ring Gi(R) Cohen-Macaulay, if it is an integral domain?
Ken-ichi Yoshida

Let A denote an affine ring over a field k of characteristic
0 and Szk(A) the module of k-differentials of A .

Problem 11 (S. Suzuki). Characterize the associated prime ideals

P of Slk(A) in terms of AP .
Pxoblem 12. Is Sak(A) torsionfree if A is normal?

In his letter of November 24, 1982, Yoshida informed to the editor

that the deformation theory might be applicable to Problem 11 in case
is local.

Problem 13. yhat Makes Symmetric Powers Vanish?

Moss E. Sweedler Tsukuba/Cornell

We all know that having n-1 generators causes the nth exterior

th

power of a module to be zero. What causes the n symmetric power to

th symmetric

be zero? I know no exémp]es of a module M where the n
power of M s zero but the nth tensor power and n-1 symmetric
power of M are not zero. I would be interested to see such
examples or better yet a characterization of modules with this

property. It may be true that ®"M # {0} # sn-1

M implies
s" M # {0}. Proving this would also be a satisfactory answer.
For tensor powers the examples I know where ®" M= {0} but

®n-1 M # {0} are for n'= 2 . What happens for higher n?
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A note on Trung's problem

Shiro Goto (Nihon University)

The purpoée of this note is to give a negative answer to the follow-

ing question posed by Trung at the Problem Session:

Let A be a generalized Cohen-Macaulay local ring. Then does there
always exist a generalized Cohen-Macaulay local ring B such that A =
B/bB for some element b of B with dim B/bB = dim B - 1 ?

My answer is

Proposition. Let A Dbe a Buchsbaum local ring of e(A) =2 and
assume that A 1is not a Cohen-Macaulay ring. Then if depth A >0,
. A £ B/bB
for any generalized Cohen-Macaulay local ring B and for any element D
of B such that dim B/bB = dim B - 1.

Proof. Assume that A Z B/bB for some generalized Cohen—Macéﬁlay
local ring B and for some parameter b of B. We put d = dim A. Then
a > 2, because depth A >0 and A is not a Cohen-Macaulay ring by ‘our

standard assumption. If d > 2, then we get an exact sequence

0 — [(0) :bly — H (B) >H (B) —> HS(B/’DB)
— Hi(B) L)H;Ll(B) —> H;(B/bB)
N Hril(B) b, H;(B) S Hril(B/oB)—»

of local cohomology modules relative to the maximal ideal n of B (c.f.
|2, (2.6)|}.'Therefore Hi(B) - (0) for all i # d + 1, as the B-

modules H;(B) (i#d+1) areof finite length and as H;(B/bB)
(0) for any i # 1, d (c.f. |1, (1.1)]). Thus d = 2, i.e., dim B
3. Notice that by the above argument, the element b 1is a non-zero-

divisor of B also in this case.
After enlarging, we may assume that the field B/n 1is infinite.
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Similarly we may assume that B is complete. Now choose elements b2,

by of n so that artl (b,, bs)ﬁr for some r >0, where n = n/bB.

Then as A = B/bB is a Buchsbaum ring of e(A) = 2 and depth A > O,

we get by |1, (1.2)]| that 52 = (b b3)ﬁ and that v(B/bB) = 4. There-

2’

fore v(B) = 5, and b1 = b, b2, b3 is a part of a minimal system of
2 2 .
generators for n. Hence n° = (bl’ b2, b3)n as n"( »(bl’ b2, b3),
and consequently e(B)
. i i-1 i-1
Clalh 1. (bl’ bz)(\ n- = (bl’ b2)n and b B(ﬂ\n = bln for

any integer 1i.
Proof. Let x € (bl’ bz)r\rf'. We like to show that xe(bl,bz)nl_1
We may assume that i> 3 and that our assertion holds for i - 1. Since

(bl’ 51 b )(\1n (b b,, by )ntT, we write x = DX, + byx, + ?st
with x;€ n1 . Then x4 € [(b : bs-_[ m (bl’ b,, b3) as n'7l s
contained in (b1 2, b3) Moreover since [(bl’b2) : b3]/’\(b1,b2,b3)
(b ) (c.f. |2, (2 4)|, recall that B/bB is Buchsbaum), we get
that x € (bl’b )(\ n . Thus the induction works. Similarly we can

prove the second assertion by the first one.
Let G = G (B) and M = G,, the irrelevant maximal ideal of G
We put f. = b, modm® (i=1,2,3). Then as b,, b, is a B-

regular sequence, by Claim 1 we see that fl, f2 is a G-regular sequence

and ‘that G/f,G el n/bB(B/bB) Therefore [H&(G)]p = (0) if p>1 -1
since [H (G/f G)] (0) for p>1 -1i (c.f. |1, (2.9)]).
Clalm 2. dlmka = p2 +3p+1 (p2>0).

Proof. We put R = k[fl, f2, f3] in G. Then we may express G 7%
R @ E- with some graded R-submodulea G. Notice that 4rankRE =1 as
rankRG = 2 and that E is genegatgg by two linear forms since
dimk[G/(fl, £, f3)G]l =2 and [G/(fl, £, fa)G]i = (0) for all i>1.
Moreover we see that [H;(E)]p = (0) for p >1 - i, because [H;(G)]p

(0) for p >1 - i as is remarked above (here P = R+ ). Therefore
the graded R-module E has a resolution of the following form
0 —> R(-2) — R(-1)@R(-1) — E —s0
(c.f. [3, (5.6)|). Hence dimkEp = (p2 + 3p)/2 for p >0 and our claim
is now obvious.

Let S = k[Xl, e x5] -be a polynomial ring with 5 variables
over the field k = B/n and let us express G = S/J for some graded
ideal J of S. Then we have the following

Claim 3. The graded S-module G has a resolution of the form

0 — s(-4) —s*-3 — s%-2) —- s — & — o.

Proof. As depth G = 2 and [HM(G)]p = (0) for p>1 - i, we
know by |3, (5.7)| that the graded minimal free resolution of G over

S has the following form: - 206 -
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0 —> S(- 4) — s(- 3) — S(- 2) —> S — G —> 0.

The fact that rl = r2 = 4 and PS = 1 follows from Claim 2.

We afe now ready to finish the proof. Choose a complete regular
local ring R of dimension 5 so that B = R/I for some ideal I of
R. Then by |4, (2.6)] and Claim 3 we see that B . has a minimal free
resolution of the following form: )

O — R — R4 — R4 — R — B — 0.
Take the R-dual HomR(*,R) of this resolution and we get an exact
sequence
¥ L R — Ext(B,R) — o.
As ExtS(B,R) Z Homg (H2(B) ,E5(B/n)), the length 1p(R/Im f) must be
finite which claims that dim R < 4

dim R = 5 by our choice.

this is a contradiction since

In |1| we can find several examples of Buchsbaum rings which
satisfy the requirements in the above proposition. Therefore Trung's
guess is not true in general and it is hoped to characterize the class
of generalized Cohen-Macaulay local rings that satisfy his requirement.
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