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1. Introduction

In a 2-dimensional rational singularity, Lipman showed in [Li] that that every
integrally closed ideal is “stable” in the sense that I2 = IQ holds for every minimal
reduction Q of I. This fact plays very important role to study ideal theory on a
2-dimensional rational singularity.
On the other hand, as far as we know, almost nothing was done concerning ideal

theory of non-rational singularities. Here we study “good ideals” of 2-dimensional
normal singularities and discuss existence and characterization of such ideals.

Definition 1.1. Let (A,m) be a Cohen-Macaulay local ring and I be an m primary
ideal of A.

(1) We say I is stable if I2 = IQ for every minimal reduction Q of I.
(2) (Goto-Iai, [GIW]) We say I is a good ideal if it satisfies the following condi-

tions.
(a) I is stable and
(b) Q : I = I.

Note that if I is stable, then I ⊂ Q : I and by the characterization of core of
ideals, under the condition (1), the condition (2)(b) is equivalent to the following
conditions. Recall that core(I) is the intersection of all minimal reductions of I.
(2′) [[CPU], Example 3.1 ] core(I) = I2.
If A is Gorenstein, then I is good if and only if I is stable and
(2′′) 2`A(A/I) = e(I),
where e(I) = `A(A/Q) denotes the multiplicity of I (note that this equivalence

does not hold id A is not Gorenstein).
We will discuss about the existence of good ideals for any 2-dimensional nor-

mal singularities. Also, we will discuss about the non-existence of Ulrich ideals
([GOTWY]) for certain 2-dimensional Gorenstein rings which are not complete in-
tersections.
Our argument is rather “geometric” and we discuss properties of cycles on a res-

olution of singularities of Spec (A). We always assume the existence of a resolution
of singularities of Spec (A) and that the residue field of A is algebraically closed.

This paper is an announcement of our results and the detailed version [OWY] will be submitted
to somewhere else.
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2. pg-cycles

In the following, we always assume that A is a two-dimensional normal local ring
and f : X → Spec A is a resolution of singularities with E := f−1(m) the exceptional
divisor on X. Let E = ∪r

i=1Ei be the decomposition into irreducible components of
E. We say that Ei is a (−1) curve if Ei

∼= P1 and E2
i = −1. We say X is a minimal

resolution of Spec (A) if X contains no (−1) curve.
An m-primary ideal I is said to be represented on X if the sheaf IOX is invertible

and I = H0(X, IOX). If an ideal I is represented on some resolution X → Spec A,
then it is integrally closed. Conversely, any integrally closed ideal can be represented
on some (may not be minimal) resolution X of the singularity.
A cycle on X is a formal sum (or a divisor on X supported on E) Z =

∑
niEi.

For cycles Z =
∑

niEi and Z ′ =
∑

n′
iEi, we denote Z ≥ Z ′ if ni ≥ n′

i for every i.
In particular, we say that Z is effective if Z ≥ 0. If I is am m primary ideal of A
and if I is represented on X, then IOX = OX(−Z) for some effective cycle Z. In
this case, we denote I = IZ .

Definition 2.1. Let X be a resolution of Spec (A) as above.

(1) pg(A) = `A(H
1(X,OX)) is called the geometric genus of A. A is a ratio-

nal singularity if and only if pg(A) = 0. Also, we denote h1(OX(−Z)) =
`A(H

1(X,OX(−Z)).
(2) An effective cycle Z =

∑
niEi is called an anti-nef cycle if Z.Ei ≤ 0 for

every irreducible component Ei of E. Note that if I is represented on X and
I = IZ , then Z is an anti-nef cycle.

We know the following upper bound of h1(X,OX(−Z)) for anti-nef cycles on X.

Proposition 2.2 ([Mo],[OWY]). If Z is an anti-nef cycle on some resolution X of
Spec (A), then h1(OX(−Z)) ≤ pg(A). Moreover, if equality holds, then OX(−Z) is
generated by global sections.

An anti-nef cycle Z with the property h1(X,OX(−Z)) has many nice properties.

Definition 2.3. Let Z be an anti-nef cycle onX. We call Z a pg cycle if h
1(OX(−Z)) =

pg(A) = h1(OX). in this case, we call IZ a pg ideal. If A is a rational singularity, an
m primary ideal I is a pg ideal if and only if I is integrally closed.

Theorem 2.4. (1) If Z is a pg cycle and if I = IZ = H0(X,OX(−Z)), then I2 = QI

for any minimal reduction Q of I, where I2 means the integral closure of I2.
(2) If Z,Z ′ are both pg cycles, so is Z + Z ′. That is, if I, I ′ are pg ideals, then

II ′ is also a pg ideal.
(3) Conversely, if Z,Z ′ are anti-nef cycles on X, Z and Z + Z ′ are pg cycles,

then so is Z ′.

We can also show the existence of pg ideals.

Theorem 2.5. For any 2-dimensional normal ring A, we can construct a resolution
X and a pg cycle Z on X. Moreover, if A is Gorenstein, then we can construct X,Z
so that KXZ = 0, where KX is the canonical divisor on X.
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3. Existence of Good ideals

When A is Gorenstein, the existence of good ideals follows from the Riemann-
Roch theorem.
For invertible sheaf L on X, we define χ(L) by

χ(L) = `A
(
H0(X \ E,L)/H0(X,L)

)
+ h1(L).

Note that χ(OX) = pg(A) since A is normal.

Theorem 3.1 (Kato’s Riemann-Roch formula). ([K], [WY]) For a cycle Z on
X, we have

χ(OX(Z))− χ(OX) = −(Z2 − ZKX)/2.

In particular, if I = IZ, then we have

`A(A/IZ) = −(Z2 + ZKX)/2 + (pg(A)− h1(OX(−Z))).

In general, we have the following equality for good ideals.

Lemma 3.2. Let I be an m primary ideal and assume that IZ is the integral closure
of I. We assume I is a good ideal.

(1) If IZ is stable, then I = IZ.
(2) If A is Gorenstein, then KXZ = 2(`A(IZ/I) + (pg(A)− h1(OX(−Z))).
(3) In particular, if A is Gorenstein and IZ is a pg ideal, then I is a good ideal

if and only if I = IZ and KXZ = 0.

Proof. (1) Let Q be a minimal reduction of I, which is also a minimal reduction of
IZ . Since IZ ⊂ Q : IZ , we have

IZ ⊂ Q : IZ ⊂ Q : I = I.

(2) The statement follows from Theorem 3.1 and the fact that e(I) = −Z2 =
2`A(A/I) and (3) follows from (1) and (2). �

As a corollary of Theorem 2.5 we get the existence theorem for good ideals.

Theorem 3.3. Let (A,m) be a 2-dimensional Gorenstein normal local ring. then A
has a good pg ideal.

Example 3.4. Let A be a 2-dimensional normal local ring.

(1) ([GIW]) If A is a regular local ring, then A has no good ideals. If A is a
rational Gorenstein singularity which is not regular, then I is a good ideal if
and only if I is integrally closed and represented on the minimal resolution.
As we will show later, this part is also true for non- Gorenstein case.

(2) It is easy to see that m is a good ideal if and only if it is stable. Hence if
A is Gorenstein, then m is a good ideal if and only e(A) = 2. Note that if
e(A) ≥ 3, then m is not a pg ideal, too.

(3) If A is Gorenstein with pg(A) = 1, e(A) = 4, then there is a good ideal with
Ī = m and `A(A/I) = 2 by Lemma 3.2 (2).
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4. Non-Gorenstein case.

When A is not Gorestein, we do not have numerical criterion for good ideals like
Lemma 3.2 (2). So we are not successful yet to get criterion for good ideals. But we
have some necessary conditions with respect to (−1) curves on X.
Recall that if X contains a (−1) curves C (i.e. C ∼= P1 and C2 = −1), then

f : X → Spec A is decomposed as f = π ◦ g such that π : X → X ′ is a contraction
of C and g : X ′ → Spec A is a morphism of schemes with X ′ regular. In particular,
every resolution factors through the minimal resolution.

Lemma 4.1. Let C be a (−1) curve on X and Z be a pg cycle on X. Put Z ′ = Z−C
and Q be a minimal reduction of IZ. If ZC < 0 and IZ ( IZ′, then IZ′ ⊂ Q : IZ
and hence IZ is not a good ideal.

If A is a rational singularity, this gives a satisfactory necessary condition for a
good ideal.

Theorem 4.2. Let (A,m) be a two-dimensional rational singularity and let I be an
m-primary ideal in A. Then I is good if and only if I is represented by some cycle
on a minimal resolution.

Proof. Here we show the “only if” part. Let I = IZ be a good ideal represented on
X. We assume that I is not represented on the minimal resolution and show that
I is not a good ideal. Then we may assume that X contains a (−1) curve E with
ZE < 0. Then Z ′ = Z − E is anti-nef. Since there is one to one correspondence
between anti-nef cycles onX and the integrally closed ideals represented onX ([Gi]),
we get IZ ( IZ′ . Hence I is not a good ideal by Lemma 4.1. �
Now we investigate what happens if I = IZ is not a good ideal for a pg cycle Z.

Assume that Q is a minimal reduction of I and take h ∈ Q : I, h 6∈ I. Now, let
Zh =

∑
vEi

(h)Ei be the cycle defined by h. Here the condition h ∈ IZ is equivalent
to Z ≤ Zh. Since I is stable, I ⊂ I : Q and if this is not the case, adding a general
element of IZ to h, we may assume Zh = Z −D for some positive cycle D.

Lemma 4.3. Let D > 0 defined as above. Then h1(OX(D)) = pg(A) and we have
D2 = KXD.

Proof. Look at the map h : OX → OX(−Zh) induced by the multiplication of h.
Here, by the definition of Zh, if we put C = Coker(h : OX → OX(−Zh)), then
Supp(C) is finite over Spec (A) and hence is affine.
Next, we put Q = (f, g) and consider the short exact sequence

(4.3.1) 0 → OX(Z) → O⊕2
X → OX(−Z) → 0,

whereO⊕2
X → OX(−Z) is induced by multiplication of (f, g). Taking the cohomology

ling exact sequence we get a short exact sequence

0 → I/Q → H1(OX(Z)) → M → 0,

where we put M = Ker (H1(O⊕2
X ) → H1(OX(−Z)). Since Z is a pg cycle, we have

`A(M) = pg(A).
Tensoring OX(−Zh) to (4.3.1), we get a short exact sequence
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(4.3.2) 0 → OX(D) → OX(−Zh)
⊕2 → OX(−Z − Zh) → 0.

Now from the exact sequence 0 → OX(Z)
h−→ OX(D) → C⊗OX(Z) → 0, we get

that h : H1(OX(Z)) → H1(OX(D)) is surjective and since IZ/Q ⊂ H1(OX(Z)) is
annihilated by h, h1(OX(D)) ≤ `A(M) = pg.
The converse inequality h1(OX(D)) ≥ pg is deduced from 0 → OX → OX(D) →

OD(D) → 0 and the vanishing H0(OD(D)) = 0 (cf. [Wah]). Then from Theorem
3.1 for χ(OX(D)), we get D(D −KX) = 0. �
Now we finish the “if” part of Theorem 4.2. It suffices to show that there does

not exist a positive cycle D on the minimal resolution, which satisfies the condition
of Lemma 4.3. Actually, since KXEi ≥ 0 for every irreducible compoment on X and
hence KXD ≥ 0. But since D2 < 0, we cannot have D2 = KXD.
We are now trying to find the condition for an integrally closed ideal I = IZ to

be a good ideal, where Z is a pg. We hope to be able to prove the existence of good
ideals for any 2-dimensional normal local ring in a near future.

Example 4.4. Let A = k[[Xr, Xr−1Y, . . . , Y r]] be the so called “r-th Veronese sub-
ring”. Then the exceptional set of the minimal resolution of Spec (A) consists of a
single rational curve E with E2 = −r. Hence a good ideal on A is mn for some n.
In general, by Theorem 4.2, the set of good ideals on A is countable.

5. Ulrich ideals on Gorenstein singularities with pg(A) = 1.

In a d-dimensional Cohen-Macaulay local ring, and m primary ideal I is an Ulrich
ideal if I is stable and I/I2 is a free A/I module.
See [GOTWY] for general property of Ulrich ideals and [GOTWY2] for classifi-

cation of Ulrich ideals on rational singularities.
Here, we show that two dimensional normal Gorenstein singularity with high

multiplicity has no Ulrich ideals.

Theorem 5.1. Let A be a two-dimensional normal local ring with pg(A) ≥ 5. Then
A has no Ulrich ideals.

Proof. It is known that a good ideal I is an Ulrich ideal if and only if µ(I) = 3,
where µ(I) denotes the number of minimal generating system of I (cf. [GOTWY]).
The proof splits into several Lemmas. �
Lemma 5.2. Let A be a normal Gorenstein ring with pg(A) = 1 and e(A) ≥ 3.

(1) If I is an integrally closed m primary ideal, then µ(I) ≥ e(A) = µ(m).
(2) If I is an Ulrich ideal, then `A(Ī/I) ≤ 1, where Ī is the integral closure of I.

References

[CPU] A. Corso, C. Polini and B. Ulrich, Core and resicual intersection of ideals, Trans.
AMS, 354, (2002), 2579-2594.

[Gi] J. Giraud, Improvement of Grauert-Riemenschneider’s Theorem for a normal surface,
Ann. Inst. Fourier, Grebnoble 32 (1982), 13–23.

[GIW] S. Goto, S. Iai, and K. Watanabe, Good ideals in Gorenstein local rings, Trans. Amer.
Math. Soc., 353 2000, 2309–2346.

5



[GOTWY] S. Goto, K. Ozeki, R. Takahashi, K.-i. Watanabe and K. Yoshida, Ulrich ideals and
modules, To appear in Mathematical Proceedings of the Cambridge Philosophical
Society, 2013

[GOTWY2] S. Goto, K. Ozeki, R. Takahashi, K.-i. Watanabe and K. Yoshida, Ulrich ideals and
modules over two-dimensional rational singularities, submitted, arXiv 1307.2093.

[K] M. Kato, Riemann-Roch theorem for strongly pseudoconvex manifolds of dimension
2, Math. Ann. 222, (1976), 243–250.

[Li] J. Lipman, Rational singularities with applications to algebraic surfaces and unique

factorization, Inst. Hautes Études Sci. Publ. Math. 36, (1969), 195–279.
[Mo] M. Morales, Calcul des quelques invariants des singularités de surface normale, En-

seign. Math. 31, (1983), 191–203.
[OWY] T. Okuma, K.-i. Watanabe and K.-I. Yoshida, Good ideals and pg ideals in two-

dimensional normal singularities, in preparation.
[Wah] J. Wahl, Vanishing Theorems for Resolution of Surface Singularities, Invent. Math.

31, (1975), 17–41.
[WY] K.-i.Watanabe and K.Yoshida, Hilbert-Kunz multiplicity, McKay correspondence and

good ideals in two-dimensional rational singularities, manuscripta math. 104 (2001),
275–294.

6


