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In this note, we will briefly summarize our results on two-dimensional F -nilpotent

rings. See [7] for the details. All rings are excellent in this note.

Let R be a ring of prime characteristic p and F : R → R the Frobenius map

which sends x ∈ R to xp ∈ R. If (R, m) is local, then the Frobenius map F induces

a p-linear map H i
m(R) → H i

m(R) for each i, which we denote by the same letter F .

The e-th iteration of F is denoted by F e. Also, we denote by R◦ the set of elements

of R which are not in any minimal prime ideal.

Definition 1. Let (R, m) be a d-dimensional reduced local ring of characteristic

p > 0.

(i) We say that R is F -injective if F : H i
m(R) → H i

m(R) is injective for all i.

(ii) We say that R is F -rational if R is Cohen-Macaulay and if for any c ∈ R◦,

there exists e ∈ N such that cF e : Hd
m(R) → Hd

m(R) is injective.

Remark 2. F -rationality implies F -injectivity.

The tight closure 0∗
Hd

m (R)
of the zero submodule in Hd

m(R) is the submodule of

Hd
m(R) consisting of all elements z ∈ Hd

m(R) for which there exists c ∈ R◦ such that

cF e(z) = 0 for all large e ∈ N. When R is analytically irreducible, 0∗
Hd

m (R)
is the

unique maximal proper R-submodule of Hd
m(R) stable under the Frobenius action

F (see [6]). It follows from the definition of F -rational rings that R is F -rational if

and only if R is Cohen-Macaulay and 0∗
Hd

m (R)
= 0.

Definition 3. Let (R, m) be a d-dimensional reduced local ring of characteris-

tic p > 0. We say that R is F -nilpotent1 if the natural Frobenius actions F on

H0
m(R), . . . , Hd−1

m (R), 0∗
Hd

m (R)
are all nilpotent, that is, there exists e ∈ N such that

F e(H0
m(R)) = · · · = F e(Hd−1

m (R)) = F e(0∗
Hd

m (R)
) = 0.

Remark 4. (i) When a (not necessarily finitely generated) R-module M has a

Frobenius action F , we denote Mnil := {z ∈ M | F e(z) = 0 for some e ∈ N}.
By Hartshorne–Speiser–Lyubeznik Theorem, the definition of F -nilpotency is

equivalent to saying that H i
m(R)nil = H i

m(R) for all i ≤ d− 1 and (0∗
Hd

m (R)
)nil =

0∗
Hd

m (R)
.

(ii) R is F -rational if and only if R is F -injective and F -nilpotent.

This paper is an announcement of our result and the detailed version will be submitted to
somewhere.

1Blickle and Bondu [2] called such rings “rings close to F -rational”.
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Example 5. Let k be a perfect field of characteristic p > 0.

(1) k[[x, y, z]]/(x2 + y3 + z7) is F -nilpotent but not F -injective.

(2) k[[x, y, z]]/(x2 + y3 + z7 + xyz) is not F -nilpotent but F -injective.

(3) ([1, Example 5.28]) k[[x, y, z]]/(x4 + y4 + z4) is F -nilpotent if and only if

p ≡ 3 mod 4.

Using reduction from characteristic zero to positive characteristic, we can define

the notion of F -singularities in characteristic zero.

Definition 6. Let R = k[X1, . . . , Xn]/(f1, . . . , fr) be a ring of finite type over a field

k of characteristic zero. Let A be a Z-subalgebra of k generated by the coefficients

of the fi, and put RA = A[X1, . . . , Xn]/(f1, . . . , fr). Then RA ⊗A k ∼= R. By the

generic freeness, after possibly localizing A at a single element, we may assume that

RA is flat over A. We refer to RA as a model of R.

We say that R is of F -rational type (resp. F -nilpotent type) if there exists a

model RA of R over a finitely generated Z-subalgebra A ⊆ k and a dense open

subset S ⊆ Spec A such that Rµ := RA ⊗A A/µ is F -rational (resp. F -nilpotent)

for all closed points µ ∈ S.

Example 7. By Example 5, C[x, y, z]/(x2 + y3 + z7) is of F -nilpotent type, but

C[x, y, z]/(x4 + y4 + z4) is not.

As the name suggests, F -rational rings correspond to rational singularities.

Theorem 8 ([3], [5], [6]). Let (R, m) be a normal local ring essentially of finite type

over an a field of characteristic zero. R is of F -rational type if and only if Spec R

has only rational singularities, that is, for every (some) resolution of singularities

π : Y → X = Spec R, Riπ∗OY = 0 for all i ≥ 1.

We obtain a characterization of two-dimensional rings of F -nilpotent type in terms

of dual graphs of resolutions of singularities.

Theorem 9. Let (R, m) be a two-dimensional normal local ring essentially of finite

type over an algebraically closed field of characteristic zero. Let π : Y → X = Spec R

be a resolution of singularities such that the exceptional locus E of π is a simple

normal crossing divisor and π|Y \E : Y \ E → X \ {m} is an isomorphism. Then R

is of F -nilpotent type if and only if E is a tree of smooth rational curves.

A combination of a result of Lipman [4] with Theorem 8 gives a characterization

of two-dimensional local rings of F -rational type in terms of divisor class groups.

Theorem 10 (cf. [4, Theorem 17.4]). Let (R, m) be a two-dimensional normal local

ring essentially of finite type over an algebraically closed field of characteristic zero.

Let R̂ be the m-adic completion of R. Then R is of F -rational type if and only if

the divisor class group Cl(R̂) is finite.
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As a corollary of Theorem 9, we give a similar characterization of two-dimensional

local rings of F -nilpotent type.

Theorem 11. Let (R, m) be a two-dimensional normal local ring essentially of finite

type over an algebraically closed field of characteristic zero. Let R̂ be the m-adic

completion of R. Then R is of F -nilpotent type if and only if the divisor class group

Cl(R̂) does not contain the torsion group Q/Z.

For example, the divisor class group of C[[x, y, z]]/(x2 + y3 + z7) does not contain

Q/Z, whereas that of C[[x, y, z]]/(x2 + y3 + z7 + xyz) contain Q/Z.
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