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1 Introduction

Let R be a Noetherian ring. For an R-module N, we denote by S(N) the symmetric
algebra of N. Let m and n be positive integers such that 1 < m < n. We denote by
Mat(m, n; R) the set of m x n matrices with entries in R. Let A = (a;;) € Mat(m,n; R).
We set t

M = Coker (R™ A, R"™).

Let S =S(R") and 1, x9, ..., z, be the standard free basis of R". Then we have
S = Rlxy1,x9,...,Ty,),
which is a polynomial ring. For any ¢ =1,...,m, we set
fi =anx1 +aprs+ -+ apr, €95

As is well known, we have S(M) = S/(f1, fay.--, fm)S. In [1], after proving that
grade (f1, fa, ..., fm)S = m if and only if gradel;(A) > m —i+ 1 forany i = 1,...,m,
Avramov gave a condition for I,,(A) to be an ideal of linear type in the case where
n =m+1 (See [3] for elementary proofs for those facts). Let us notice that if n = m+1,
the cokernel of the homomorphism R™ — R" defined by ‘A is isomorphic to I,,,(A) by the
theorem of Hilbert-Burch. The purpose of this report is to generalize Avramov’s result.
Without assuming n = m + 1, we will give a condition for the R-torsion part of S(M),
which is denoted by Tg(S(M)), to be vanished. The main theorem can be stated as
follows.

Theorem 1.1 The following conditions are equivalent.
(1) gradel;(A) >m —i+2 foranyi=1,...,m.
(2) M has rankn —m, Tr(S(M)) = 0 and grade (f1, fa, ..., fm)S =m.
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In order to explain the meaning of the condition (2) of the theorem above, let us recall
the definitions of the rank and the Rees algebra of a module. Let r be a non-negative
integer and () be the total quotient ring of R. We say that an R-module N has rank
rif @Q®g N = @7, which is equivalent to saying that N, = R, for any p € Ass R
(cf. [2, 1.4.3]). If an R-module N has rank r and torsion free, there exist a finitely
generated free R-module F' and an embedding o : N < F' (cf. [2, 1.4.18]). Then we see
that the kernel of S(o) : S(N) — S(F) coincides with Tr(S(N)) (cf. [7, p.613]), and
so ImS(0) = S(N)/Tr(S(N)) as R-algebras. This means that, up to isomorphisms of
R-algebras, ImS(0) is independent of the choice of F' and . So, the Rees algebra of
N is defined to be S(IV)/Tr(S(N)), which is denoted by R(N). We say that N is a
module of linear type if Tp(S(N)) = 0, that is S(N) = R(N) as R-algebras. Therefore,
if the condition (2) of 1.1 is satisfied, we have R(M) = S/(f1, f2, - ., fm)S and the Koszul
complex of f1, fa, ..., fm gives a S-free resolution of R(M).

2 Preliminaries

In this section, we summarize preliminary results we need to prove Theorem 1.1.

Lemma 2.1 Let N be a finitely generated torsion-free R-module having a rank. Then
Tr,(Ny) = Tr(NV), for any p € Spec R.

Theorem 1.1 will be proved by induction on m . The next result plays a key role in
the argument of induction.

Lemma 2.2 Let m > 2 and p € Spec R. We assume 1,(A) € p. Then there exists
B = (bj;) € Mat(m — 1,n — 1; R,) satisfying the following conditions.

(a) L(B) =141(A), for anyi € Z.

(b) Setting S" = Ry|x1,...,2n-1] and g =bpz1+ -+ b1 €S fori=1,....,m—1,
we have
grade (f1,..., fim—1, fm)Sp = 1 + grade (g1, ., gm-1)5".

(c) Setting N = Coker(Ry*~* N R}, we have My = N as Ry-modules.

Let us denote the Koszul complex of fi, fa,..., f,, with respect to S by
0—>Cmd—m>0m_1—>—>01i)00—>0

Let uy,ug, ..., u, be the R-free basis of C; such that di(u;) = f; fori =1,...,m. Then

T
dp (i, Nty A== Ay ) = (=17 g, A Ay A Ay,
p=1

ifl<r<mand1l<1 <iy<---<i. <m. Weregard S as a graded ring by setting
degz; = 1forall j =1,...,n. Moreover, we regard C, as a graded complex by setting
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degu; = 1foralli =1,...,m. Then, taking the homogeneous component of C, of degree
m, we get a complex

of finitely generated free R-modules, where [d,],, denotes the restriction of d, to [C,],, for
r=1,...,m. Let us notice that [C},],, is rank 1 and is generated by w3 Aug A -+ A tp, .
Furthermore, as an R-free basis of [C},_1],, , we can take

{zji;|1<i<m,1<j<n},

where @; = uy A--- Aty A ANu,y, for i = 1,...m. Because

m

Om(ur ANug Ao Aug) = > (=17 fuly

m n

we get the following result.
Lemma 2.3 I1([d,,]m) = 1L(A).
The following fact can be regarded as the core of Theorem 1.1.
Lemma 2.4 (cf. [6, Proposition]) The following conditions are equivalent.
(1) gradel,,(A4) > 2.
(2) M is torsion-free and has rank n —m .

When this is the case, pdr M <1 and M can be embedded into a finitely generated free
R-module.

3 Proof of the main theorem
In this section we prove Theorem 1.1.

Proof of (1) = (2).

As gradel,,(A) > 2 by (1), it follows that M is torsion-free and has rank n — m by
2.3. Moreover, we get grade (fi, fa,..., fm)S = m by [1, Proposition 1]. Let us prove
Tr(S(M)) = 0 by induction on m.

First, we consider the case where m = 1. Then S(M) = S/fS, where f; = ajjz +
a12%9 + -+ + 1,2, . Suppose Tr(S(M)) # 0. Then there exists P € Assg Tr(S(M)).
Because Tr(S(M)) is an S-submodule of S/fS and grade f1.5 = 1, we have depth Sp =
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1. Weset p=PNR. Then gradep < 1, and so I;(A) Z p as gradel;(A) > 2. Hence,
replacing the columns of A if necessary, we may assume a;; € p. Then we have
Ryplz1, o, ..., 2y

S(Mp> - S(M)p - (ZL‘l + ((le/all)LEQ + -+ (aln/an)xn) = Rp [x% o ’xn] ’

which means Tg,(S(M,)) = 0, and so Tr(S(M)), = 0 by 2.1. Therefore it follows that
Tr(S(M))p = 0, which contradicts to P € Assg Tr(S(M)). Thus we see Tr(S(M)) =0
in the case where m = 1.

Next, we assume m > 2 and the required implication is true for matrices having
m — 1 rows. Suppose Tr(S(M)) # 0. Then there exists P € Assg Tr(S(M)). Because
Tr(S(M)) is an S-submodule of S/(f1, fa, ..., fm)S and grade (f1, fa, ..., fm)S =m, we
have depth Sp = m. We set p = PN R. Then gradep < m, and so I, () C p as
grade 1A > m + 1. Hence, there exists B = (b;;) € Mat(m — 1,n — 1; R,) satisfying the
conditions (a), (b) and (c) of 2.2. By (a), for any i = 1,...,m — 1, we have

gradel;(B) = gradel;11(A), > gradel; ;1 (A) >m —(i+1)+2=(m—1)—i+2.
Therefore, setting
N = Coker (RI"™ 25 R,

we get Tr, (S(V)) = 0 by the hypothesis of induction. Because S(M,) = S(N) by (c), we
have Tg, (S(M,)) = 0, and so Tg(M), = 0 by 2.1. This means Tr(S(M))p = 0, which
contradicts to P € Assg Tr(S(M)). Thus we see Tr(S(M)) =0.

Proof of (2) = (1).
Let us consider the Koszul complex

00— Chp 2 Coy — - — O 25 Cy — 0

described in Section 2. This is graded and acyclic as grade (f1, fa, ..., fm)S = m. More-
over, we have

Cokerd; = S/(f1, fay -y fm)S =S(M).

The condition Tg(S(M)) = 0 implies that M is torsion-free over R, and so by [2, 1.4.18]
there exist a finitely generated free R-module F' and an embedding o : M < F'. Then the
induced homomorphism S(o) : S(M) — S(F') is injective since Ker S(o) = Tg(S(M)) =
0. Thus we get a graded acyclic complex

O—>C’md—m>C’m_1—>---—>Cli>(]0—>8(F)—>().
Taking its homogeneous component of degree m , we get an acyclic complex
0 — [Conl 08 [Cop ] — - = [Chlm 8 [Coln — [S(FJ) — 0,

of finitely generated free R-modules. Let us notice that rankg [C),], = 1 and I; ([dn]m) =
I;(A) by 2.3. Hence we get gradeI;(A) > m + 1 by [2, 1.4.13].



In the rest of this proof, we show that the condition (1) holds by induction on m. If
m = 1, it is certainly true by the observation stated above. So, let us consider the case
where m > 2. We suppose that gradeI;(A) < m—j+1 for some j with 2 < j <m. Then
there exists p € Spec R such that [;(A) C p and depth R, <m —j+1. As gradel;(A) >
m+1, we have I; (A) Z p, and so there exists B = (b;;) € Mat(m—1,n—1; R,) satisfying
the conditions (a), (b) and (c) of 2.2. We set

N = Coker (R 2 Rr1).

Then by (c) we have N = M, as R,-modules, so N has rank n —m and S(NN) = S(M,) as
R,-algebras. Because Tg,(S(M,)) = Tr(S(M)), = 0 by 2.1, it follows that Tg, (S(V)) =
0. Moreover, setting 5" = Rp[z1,...,2,-1] and ¢; = byz1 + -+ + bip_12,1 € S’ for
i1=1,...,m—1, we get

grade (g1, ..., 9m-1)S" = grade (f1,..., fin—1, fm)Sp —1=m —1
by (b). Therefore the hypothesis of induction implies
gradel, 1(A)>(m—-1)—(—-1)+2=m—j+2.

Then, as I;_1(B) = L;(A), by (a), we get gradel;(A), > m — j + 2, which contradicts to
depth Ry, < m — j+ 1. Thus we see gradel;(4) > m —i+2 for any i = 1,2,...,m and
the proof is complete.

4 Example
In this section, we give examples of matrices satisfying the condition (1) of Theorem 1.1.

Example 4.1 Let m and d be positive integers such that m < d. Let (R,m) be a d-
dimensional Cohen-Macaulay local ring and x1, x,, ..., x, be elements of R generating an
m-primary ideal. We take a family {cu;}1<i<m, 1<j<n Of positive integers, and set
iy ifi+j<n+1
CLij =

Qg

Tiinoy Yit+j>n+l
and A = (a;;) € Mat(m,n; R). Then we have gradel;(A) > m —i+2 for 1 <Vi<m.

If a;; =1 for any ¢ and j, the matrix A stated above looks like

:L‘l x’z ) l‘m ) xn

T2 Tm T, T
Lm Tn X1 Lm—2

Ty - Tpn T1 - Tm—2 Tm-1

However, we can take any power at each entries.

5



References

[1] L. Avramov, Complete intersections and symmetric algebras, J. Algebra, 73 (1981),
248-263.

[2] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Stud. Adv. Math. 39,
Cambridge University Press, 1997.

[3] K. Fukumuro, On the symmetric and Rees algebras of certain determinantal ideals,
to appear in Tokyo J. Math., arXiv:1306.0993.

[4] K. Fukumuro, T. Inagawa and K. Nishida, On a transform of an acyclic complez of
length 3, J. Algebra, 384 (2013), 84-1009.

[5] T. Inagawa, x-transforms of acyclic complezxes, Preprint (2013), arXiv:1307.1500.

6] D. Katz, Torsion-free modules and syzygies, Mathematica Pannonica, 5/1 (1994),
7-13.

[7] A. Simis, B. Ulrich and W. Vasconcelos, Rees algebras of modules, Proc. London
Math. Soc. (3), 87 (2003), 610-646



