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1 Introduction

Let A be an integral domain containing Q, and § a nonzero locally nilpotent derivation
of A, i.e., a derivation of A such that, for each a € A, there exists [ > 1 satisfying
8'(a) = 0. We denote by Aut(A/A°) the automorphism group of the A%-algebra A, and
by LND(A/A%) the set of locally nilpotent A°-derivations of A. For each D € LND(A/A?),
the exponential automorphism exp D € Aut(A/A?) is defined by

(exp D)(a) = Y- 21

=0

for a € A. Then, Ny := {expD | D € LND(A/A%)} forms a normal subgroup of
Aut(A/A?) (cf. Proposition 2.1 (ii)). In this report, we discuss the structure of the quo-
tient group

Aut(A/A%) /N5. (1.1)
We call z € A a slice of the extension A/A° if A = A%[z]. If this is the case, A is the
polynomial ring in z over A°. Hence, we have A* = (A%)* and

Aut(A/A%) = {,p | a € A b€ A%}, LND(A/A%) = {b(d/dz) | b€ A%}, (1.2)

where 1, € Aut(A/A°%) is such that ¥,4(2) = az + b. Since expb(d/dz) = 1y, for each
b€ A% we see that (1.1) is isomorphic to A* in this case. The aim of this research is to
study the quotient group (1.1) when A/A° has no slice.

2 Key results

First, we recall some basics on locally nilpotent derivations. For each a € A\ {0}, we
define the 0-degree of a by

degs(a) := max{l € Zsq | 6'(a) # 0}.
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We call z € A\ {0} a local slice of § if degg(z) = 1, that is, 6(z) belongs to A°\ {0}. If
2z is a slice of A/A°, then we have § = §(z)(d/dz), and so z is a local slice of § by (1.2).
The ideal pl(§) := A° N §(A) of A? is called the plinth ideal of §. Since § is nonzero and
locally nilpotent, we have pl(d) # {0}. Hence, there always exists a local slice. We define

Ds = {a € Q(A%) | apl(8) = pl(5)}.

Then, I's is a subgroup of Q(A%)*. Since A* = (A%)* (cf. [4, Corollary 1.3.36]), we see
that A* is contained in I';.
In the notation above, the following proposition holds.

Proposition 2.1. (i) For each ¢ € Aut(A/A°) and a local slice = € A of §, there emist
uy € T's and b € A° such that ¢(z) = ugz +b. Moreover, uy is defined only from ¢, and
does not depend on the choice of the local slice z.

(ii) 6 : Aut(A/A%) > ¢+ uy € s is a homomorphism of groups with ker 0 = Ns.

(iii) For each ¢ € Aut(A/A%)\ N, we have ord(¢) = ord(8(¢)).

(iv) If LND(A/A%) = {ady | a € A’} for some & € LND(A/A®), then Im# is contained
n A*.

By Proposition 2.1 (ii), we know that Aut(A/A°)/Nj is isomorphic to Im #, and hence
is an abelian group. We note that every element of N \ {id4} has infinite order.
As for I's, we have the following result.

Proposition 2.2. We have I's = A* if one of the following conditions holds.

(a) pl(0) is a principal ideal.

(b) A is normal and pl(d) is finitely generated.

(c) A satisfies the Ascending Chain Condition for principal ideals, and there exist a finite
number of prime elements py,...,p of A such that U's is contained in Agl_,pl.
(d) A satisfies the Ascending Chain Condition for principal ideals, and there ezists a local
slice z € A of § such that §(z) is a product of prime elements of A.

(e) Ais a UFD.
Now, we define

5 [ min{degsa|a € A\ A%[2]} if pl(d) is a principal ideal
ord(A/4%) := { 1 otherwise,

where z € A is such that pl(6) = 6(z)A°. Since 6(2)A° = §(w)A? implies z = aw + 3 for
some a € (A°)* and 8 € A%, we see that the definition of ord(A/A®) does not depend on
the choice of z. By definition, A/A° has a slice if ord(A/A%) = oco. Conversely, if A/A°
has a slice z, then A = A%[z], and pl(8) = §(2) A%, since 0(A%[z]) C §(2)A and 6(2) € A°.
Hence, we have ord(A/A°) = oo.

Proposition 2.3. Assume that A/A° has no slice. If pl(§) contains the product of a finite
number of prime elements of A, then (Im @), is a finite cyclic group of order at most

ord(A/A%).



Here, we define M., :== {a € M | ord(a) < oo} for each group M.

In the case of UFD, Im# is a subgroup of A* by Proposition 2.2 (e). Since pl()
contains the product of a finite number of prime elements of A, (i) of the following
theorem is a consequence of Proposition 2.3.

Theorem 2.4. Assume that A is a UFD. Then, the following assertions hold.

(i) If A/A° has no slice, then (Im 0), is a finite cyclic group of order at most ord(A/A?).
(ii) If A/A° has no slice, and if (' — 1 belongs to A* for anyi > 1 and ( € A\ (A)ier,
then we have Im 0 = (Im 0),,.

(iii) If ¢ is an element of Tm 6O \ (Im 0)4q, then AS/AE has a slice, where ¢ is the unique

extension of § to A¢ == A[{1/(¢" = 1) | i > 1}].
Thanks to (i) and (ii) of Theorem 2.4, we obtain the following theorem.

Theorem 2.5. Assume that A is a UFD such that A* U {0} is a field. If AJA° has no
slice, then Aut(A/A%) /N is isomorphic to a finite cyclic subgroup of A* of order at most
ord(A/A°).

In the situation of Theorem 2.5, each element of Aut(A/A°) \ N has finite order by
Proposition 2.1 (iii).

3 Polynomial ring

We are especially interested in the case where A is the polynomial ring k[x] := k[z1, ..., z,)
over a field k of characteristic zero. Even in the case of n = 3, the structure of the
automorphism group Auty, k[x] of this k-algebra remains mysterious. Since k[x] is a UFD
with k[x]* U {0} = k, the assumption of Theorem 2.5 is satisfied. Hence, if k[x]/k[x]° has
no slice, then Aut(k[x]/k[x]°)/Nj is isomorphic to a finite cyclic subgroup of k*.

For each f =), u.x® € k[x], we define supp(f) := {a | u, # 0}, where u, € k and
x* = z{* - -z for each a = (ay,...,a,). We define M; to be the Z-submodule of Z"
generated by

J supp(s).

fek[x]?

We mention that, for any given §, the generators of Ms can be computed by means
of a standard technique for locally nilpotent derivations. In fact, we can construct
fiy-o i farg € K[x]°\ {0} satisfying k[x]° C k[fi,..., fn,g7]. Then, M; is generated
by supp(fi) U -~ - Usupp(fn) Usupp(g).

(ii) of the following theorem is a consequence of Theorem 2.5.

Theorem 3.1. (i) If rank Ms < n, then we have 6 = f0/0x; for some 1 < i < n and
fE€klry, ..., v 1,Tiq1,..., 7). Hence, k[x]/k[x]° has a slice, and Z"/M; ~ 7Z.

(ii) Assume that d := #(Z"/Ms) is finite. Then, Z"/Ms is a cyclic group. If k contains
a primitive d-th root of unity, then Aut(k[x]/k[x]°) \ N contains an element of order d.



For example, let & be the locally nilpotent derivation of k[x]| for n = 3 defined by
§(x1) = 0, 6(z2) = 1 and 6(z3) = —2w5. Then, we have k[x]° = k[ry, 2123 + 22]. In this
case, My is generated by

Supp<xl) U SUPp($1$3 + I%) = {<17 07 0)7 (17 07 1)7 (07 27 0)}

Hence, we have Z3/M; ~ Z/2Z. The automorphism of k[x| defined by zo + —zy and
z; — x; for i = 1,3 belongs to Aut(k[x]/k[x]°) \ N;.

The rank rank(d) of § is by definition the minimal number 0 < r < n for which there
exist ¢ € Auty k[x] and f1,..., f, € k[x] such that

1 0 0
608067 = fiz ot frg,
Due to Rentschler [15], the extension k[x]/k[x]° always has a slice if n = 2. In the case
of n = 3, there always exist fi, fo € A° such that A% = k[f1, fo] by Miyanishi [12]. This
means that rank(§) = 1 if A/A° has a slice. Thus, rank(d) > 2 implies that k[x]/k[x]° has
no slice when n = 3. Using Asanuma [2] (see also [6]), we can prove that k[x]/k[x]° has no
slice if n > 3 and rank(d) = 2. Therefore, we have the following corollary to Theorem 2.5.

Corollary 3.2. Assume that n = 3 and rank(d) > 2, or n > 3 and rank(d) = 2.
Then, Aut(k[x]/k[x]°) /N5 is isomorphic to a finite cyclic subgroup of k* of order at most
ord(k[x]/k[x]°).

We mention that pl(d) is a principal ideal if n = 3 by Daigle-Kaliman [3, Theorem 1].
The following theorem is a consequence of Theorem 5.3 stated later.

Theorem 3.3. Assume that n = 3 and let § be a locally nilpotent derivation of k[x| with
rank(d) = 3. Then, we have Ms = Z3.

A k-derivation D of k[x] is said to be triangular if D(x;) belongs to k[zi,...,x; 1]
for v = 1,...,n. It is easy to see that D is locally nilpotent if D is triangular. We
say that D is triangularizable if ¢ o D o ¢~! is triangular for some ¢ € Auty k[x]. Since
every triangular k-derivation of k[x]| has rank at most n — 1, the same holds for every
triangularizable k-derivation of k[x].

The following theorem is proved by using Theorem 4.4 stated later.

Theorem 3.4. Assume that n > 3 and rank(§) = 2. If Aut(k[x]/k[x]°) # N, then § is

triangularizable.

Now, let R be a UFD, and R[x] = R[z1, 22| the polynomial ring in two variables over R.
We discuss a triangular R-derivation of R[x] of a special form. Let p(z) = Y, b;iz" € R[]
be a polynomial in one variable over R, and a € R\ (R* U{0}) such that a and p(z) — by
have no non-unit common factor. We define a triangular R-derivation D of R[z1,xs] by

0
D=a—— /(xl)a_;)j'27 (31)

where p/(2) is the derivative of p(z). Then, the R-algebra R[x|P is generated by f :=
azy + p(r1), and the extension R[x]/R[x]” has a slice if and only if
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(1) the image of b; in R/aR is a unit if ¢ = 1, and nilpotent if i > 2.
We note that the image of b € R in R/aR is nilpotent if and only if b is divisible by +/a,

where y/a € R is such that \/aR is the radical of aR.
In the notation and assumption above, the following theorem holds.

Theorem 3.5. Let A := R[x1, 3] and § := D be as above. When R contains a primitive
d-th root ¢ € R* of unity with d > 2, the following conditions are equivalent:
(1) Aut(A/A%)/N;s contains an element of order d.
(2) p(2) belongs to R[(z + q(p(2)))?] + aR[z] for some q(z) € \/aR|[z]z + R.
If this is the case, we can define ¢ € Aut(A/A%) with 0(¢) = ¢ by

p(r1) — ¢(p(l‘1))'

a

¢(r1) = Cz1 + (¢ = D)g(f), é(x2) =22 + (3.2)

4 Linearization Problem

The following problem is a difficult problem with very little progress.

Problem 4.1 (Linearization Problem). Let ¢ € Autc C[x] be such that ¢? = idgp for
some d > 2. Does it follow that ¢ is linearizable.

Note that ¢ is linearizable if and only if there exist 1) € Autc Clx] and oy, . .., o, € C*
such that (v "togo)(x;) = auw; fori=1,... n.

Due to Kambayashi [7], the answer is affirmative if n = 2. The problem remains open
for n > 3. Quite recently, the author proved the following.

Theorem 4.2. Let R be a PID, and ¢ € Autg R|x1,x5] such that ord(¢) = d for some
d > 1. If R contains a primitive d-th root of unity, then ¢ is linearizable.

This theorem immediately implies the following.

Corollary 4.3. Let ¢ € Autg|zy,xo, 3] be such that ¢(x3) = x3 and ord(¢) = d for
some d > 1. If k contains a primitive d-th root ( of unity, then ¢ is linearizable as an
automorphism over k|xs].

Assume that n > 3, and let ¢ € Auty, kx| be such that ¢(z;) = x; for i = 3,...,n and
ord(¢) = d for some d > 2. Then, ¢ is regarded as an element of Autyx K[z, xs], where
K :=k(xs,...,x,). Hence, if k contains a primitive d-th root ¢ of unity, then there exist
Y € Autg K[y, x5] and dy,dy € Z such that (¢~ o ¢ o) (x;) = (%ix; for i = 1,2. In this
situation, we have the following theorem.

Theorem 4.4. If ged(d,dy) > 1 or ged(d, ds) > 1, then ¢ is linearizable as an automor-
phism over k|xs, ..., z,)].

Finally, we mention a relation between Problem 4.1 and the Cancellation Problem.

Problem 4.5 (Cancellation Problem). Let R be a C-algebra, and R|z]| the polynomial
ring in one variable over R. Assume R|z] is C-isomorphic to C[zy, ..., x,]. Does it follow
that R is C-isomorphic to Clzy,...,x,1]7



This is a famous problem in Affine Algebraic Geometry. The answer is affirmative if
n = 2 by Abhyankar-Heinzer-Eakin [1], and if n = 3 by Fujita [5] and Miyanishi-Sugie [13].
The problem remains open for n > 4.

It is well known that Problem 4.1 implies Problem 4.5. More precisely, the following
remark holds.

Remark 4.6. Fiz n € N. If there exists d > 2 such that Problem 4.1 has an affirmative
answer for each ¢ € Autc C[x| with ord(¢) = d, then Problem 4.5 has an affirmative
answer.

As this remark suggests, the statement of Problem 4.1 is quite strong.

5 Wang’s type theorem

Wang [16] proved the following theorem.

Theorem 5.1 (Wang). Let § be a locally nilpotent derivation of k[, xq,x3] such that
62(z;) = 0 fori=1,2,3. Then, we have rank(d) < 1.

We proved the following theorem similar to Wang’s by using the Shestakov-Umirbaev
inequality [14] (cf. [8]) and some deep results on locally nilpotent derivations.

Theorem 5.2. Let § be a locally nilpotent derivation of k[, xa, x3] such that §*(z;) = 0.
Then, we have rank(§) < 2.

As an application of Theorem 5.2, we obtain the following result.

Theorem 5.3. Assume that n = 3 and let § be a locally nilpotent derivation of k[x| with
rank(8) = 3. Then, no element of Aut(k[x]|/k[x]°) \ {1} is linearizable.

By Proposition 2.1 (iii) and Corollary 3.2, every element of Aut(Cl[x]/C[x]°)\ Ns has
finite order if n = rank(d) = 3. Therefore, if Aut(C[x]/C[x]°) # N for some §, then
Problem 4.1 has a negative answer by Theorem 5.3.

6 Examples

To end this report, we give some examples.

First, we construct an example in which Im @ is an infinite group when A is a UFD. Let
R = Q[t*'] be the Laurent polynomial ring in one variable over Q and A = Rz, zo]. Take
any p(z1) € R[z] such that ged(a,p’(z1)) = 1, and define D as in (3.1) with a :=¢ — 1.
Then, we have AP = R[f], where f = axs + p(z1). We can define ¢ € Aut(A/AP) by

p(x1) —p(ml)‘

Bler) =t and G(z) =z + B L

Since z; is a local slice of D, we have 0(¢) = t. Therefore, Im 6 is an infinite group.
Next, we give an example in which Im# is not contained in A*. Consider the Q-

subalgebras R := Q + Q[z7", 25]zy and A := R + Q[a7", 25)xs of the polynomial ring
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Q[z7][x2, 73] in 25 and 23 over the Laurent polynomial ring Q[z7]. It is easy to see that
A* = R* = Q*, and the Q-algebra A is not finitely generated. For the locally nilpotent
derivation 6 = z90/0x3 of A, we have

A° = AN Q! ay, 23] = AN Qzf! zo] = R, pl(0) = Qo o) xs.

Actually, pl(§) = A% N 6(A) is contained in RN zyA = Q[a, z5]xy. Conversely, for each
| € Z, the element zlzy = §(ziz3) of R = A° belongs to §(A), and hence belongs to
pl(d). Define ¢ € Aut(A4/A%) = Aut(A/R) by ¢(x;) = x; for i = 1,2 and ¢(z3) = 2123
Then, we have 0(¢) = x1, since x3 is a local slice of §. Therefore, Im 6 is not contained in

QX :AX.
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