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1. INTRODUCTION

Let S be a polynomial ring over a field K and I a squarefree monomial ideal
of S. The arithmetical rank of I, denoted by ara I, is defined as the minimum
number u of elements q1, . .., ¢, € S such that /(q1, ..., q.) = VI(=I). When
this is the case, we say that qi,...,q, generate I up to radical. By the result
of Lyubeznik [13], we have the following inequalities:

height I < pd S/I < aral,

where pd S/I is the projective dimension of S/I (over S). If ara I = height I
holds, then I is said to be a set-theoretic complete intersection. By the in-
equalities, it is natural to ask which ideal I satisfies aral = pd S/I or which
(Cohen—Macaulay) ideal I is a set-theoretic complete intersection. Many au-
thors have studied this problem and proved aral = pdS/I for some ideals
I, see eg., [2,3,4,6,7, 8,9, 10, 11, 12, 14]. However, counterexamples for
the equality were also found; see [15, 11], though the projective dimensions of
those are depend on the characteristic of the base field K.

Among the above references, we note [7] and [15]. In [7], the first author
proved that aral = pd S/I holds (and thus, I is a set-theoretic complete in-
tersection) for a Cohen—Macaulay squarefree monomial ideal I of height 2. On
the other hand, in [15], Yan found a counterexample for the equality among
Cohen—Macaulay squarefree monomial ideals of height 3: let A be the trian-
gulation of the real projective plane with 6 vertices. Then the Stanley—Reisner
ideal I, is of height 3, pd S/I, is 3 if char K # 2; 4 if char K = 2. Yan [15]
proved that ara In = 4 for any characteristic K.

Then it is natural to ask whether the equality holds for a Gorenstein square-
free monomial ideal of height 3. The following theorem is the main result of
this article.

IThis paper is an announcement of our result and the detailed version will be submitted
to somewhere.
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Theorem 1.1. Let I C S be a Gorenstein squarefree monomial ideal of height
3. Then I is a set-theoretic complete intersection. That is, aral = pd S/I =
height I = 3.

Remark 1.2. Tt follows that any Gorenstein monomial ideal is a set-theoretic
complete intersection since the radical of a Gorenstein monomial ideal is Goren-
stein.

In order to prove Theorem 1.1, we must construct 3 elements which generate
the ideal up to radical. We will explain the construction by an example instead
of complete construction.

2. GORENSTEIN SQUAREFREE MONOMIAL IDEALS OF HEIGHT THREE

Bruns and Herzog [5] proved that a Gorenstein squarefree monomial ideal
of height 3 is essentially , (see below). In this section, we recall their result.

Let 7 > 1 be an integer and I, the ideal of K[z1,...,xo,.11] generated by
2r + 1 monomials wuq, ..., Ugmy1:

U; = Tilijy1 " Ligr—1, i:1,2,...,27”+1,
where we consider x; as x;_(gr41) if 7 > 2r + 1.

Remark 2.1. I, is the Stanley—Reisner ideal of the boundary complex of cyclic
polytope C'(2r + 1, 2r — 2).

Before stating the result by Bruns and Herzog [5], we define a terminology.
Let I be a squarefree monomial ideal of S = K|xy,...,z,]. Let x;1, z;3 be new
variables. Set S’ = K{[z1,...,%;_1, %1, Tio, Tiv1, - - -, Tn). Then by substitution
x; — ;124 for each monomial generator of I, we obtain the new ideal J C S".
We call this transformation a 1-vertex inflation.

Theorem 2.2 (Bruns and Herzog [5]). Let I, be the ideal defined above.

(1) I. is a Gorenstein squarefree monomial ideal of height 3.
(2) Any Gorenstein squarefree monomial ideal of height 3 is obtained from
1. for some r by a series of 1-vertex inflations.

By Theorem 2.2, if we prove that I, is a set-theoretic complete intersection,
then Theorem 1.1 follows.

Next we modify I, by renumbering variables. Let r, be the largest odd
integer with r, < r and r, the largest even integer with r. < r. Let us consider
the following 2r + 1 variables:

(2.1)
T1,X3y .y Trpy Tepoy T(pe—2)y -+ y L—2y L0y L2y vy Tpe—2,Lpey Loppyeoy -3, T_1.

Let S, be the polynomial ring over K in the above variables. Recall that I,
is generated by the 2r + 1 products of continuous r variables. Thus we may
assume that the order of variables are as in (2.1). Then I, C S, is generated
by the following 2r + 1 monomials:

nsg)w n(—()727 nSf?)«, n(—sr)’7 S = 1,3,...,7”0—2,
m 0wl mG =02, -2,
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where

0) ._ 0 ._
Ny, = TrT_(r—1)" " Tx3Tx2T+1, N_. =T _pTpr_1" T33T+2T7F1,

and where for an odd integer s,
(. (s) .
My = TrT_(r—1) " TF(s4+3)Vx(s42) " TEsTh(s—2) " L1,
() ._
m_, ‘=T _yTpr_1" " Th(s4+3)TF(s+2) " TFslx(s—2) """ Tx1,

S) .
m() = Tsls—2 " T1L 1" " T—(5—2)T—s,

| o) i o, 0 i\,

and where for an even integer ¢,

) ._
mi, ‘=TT _(r—1) """ TL(t43) T (t42) " LtLt—2 ** * LXoL -2 * * = T (t—2) T —t,

@ .
m_y ‘=T _pTpr_1 " Tx+3)T£(t+2) " LtLt—2 " L2XoL -2 " " T—(t—2)T ¢,

m(t) = T2 XXX+ * - .%'_(t_Q)l',t.

Example 2.3. I, is generated by the following 9 monomials:
Tyl _3T2X 1, T_4T3T 27, Ty4X _3T2X0, T_4T3T_2X0,
Tyl 3 - X131, LT_4T3 T1X_1, Ty T2XOX -2, T4 TaXoT_2,
X301 _1T_3.

Example 2.4. [5 is generated by the following 11 monomials:

T5L_4T3L _2T1, LT_5L4T_3L2X 1, LT 4T3 2%, T_5T4X _3T2X0,
T5L 4T3 L1X -1, LT-5T4T_3 "  T1L-1, T5T 4 * LaXoL -2, LT-_5T4* T2ToL -2,
Ty - T3T1X1T-3, T_5°T3L1X_1T_3, TyZoX0T 2L 4.

3. KEY LEMMAS AND 3 ELEMENTS WHICH GENERATE [, UP TO RADICAL

In this section, we explain the idea of the proof of Theorem 1.1.
The cases r = 1,2 are easy.

Example 3.1. Since I; = (xg,z_1, 1), there is nothing to prove for the case
r=1.
Let us consider the case r = 2. I, is generated by the following 5 monomials:

ToX_1, T_2X1, T1T_1, 2Ty, T_2Ty-

Actually, I, is the Stanley—Reisner ideal of 5-cycle. This ideal is known to be
a set-theoretic complete intersection; see e.g., [2, 4]. For example, following 3
elements generate I, up to radical:

T1T_1, ToT_1 + T_2Xg, T_2T1 + T2Xg.

In what follows, we assume r > 3. We divide the minimal monomial gener-
ators of I, by the divisibility by xy. We denote by J,., the ideal of S, generated
by the minimal monomial generators of I, which are not divisible by xy. Let
J! be the ideal of S,,; obtained from J,. by substitutions z; +— xy.; and
Top = Ty (K=1,2,...,7).
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Lemma 3.2. Let r > 3 be an integer. Then I, = J, + xoJ]_;.

We first construct 2 elements which generate xy.J, up to radical. Set

1 ._

To—2)\r To—2)\r To—4)\r To—4)\r
gl = xo((m( )) +3 (m( )) +3)((m( )) +3 (m( )) +3)

+r -r +r —r

(M) = ) ) () — (nC)y),

b T

(1) .

go, ‘= 1T -1,
and for s = 3,5,...,7,,
s S—2)\r To—2)\r To—2)\1r To—4)\r ro—4)\r
gt = 2o(gs ) (mr ) — (D)) (m )R — (e ))
$=2)\r S—2)\r
e (P — (D)),
o) = o Pt ol
Put gy, == 98:0)7 gor ‘= ggf)'

Proposition 3.3. x(J,. is generated by xogy,, Togar up to radical. Moreover,
9ir, 9or — m(To) S :CO(JT)T+3-

Remark 3.4. If we remove xy on the construction g%f,), we obtain two elements

which generate J,. up to radical. (We may also omit the power r + 3 in each

ggi), géf,).) Combining this with Lemma 3.2, we have ara [, < 4.

On the proof of Proposition 3.3, the following result, which is essentially due
to Schmitt and Vogel [14, Lemma p. 249, is useful.

Lemma 3.5. Let R be a commutative ring with unitary and I an ideal of R.

Suppose that a,b € R satisfy ab € \/I. Then a,b € \/T + (a+0b).

Proof. Put J =1 + (a +b). Since a®> = a(a + b) — ab and ab € VI C V/J, we
have a2 € v/J. Hence a € v/J. O

Instead of proving Proposition 3.3, we see the case where r = 4.

Example 3.6. When r = 4, the construction is done by 2 steps:

(1)

{ 9 = zo((@a_32 1) — (2_aw320) ) (2423727 _1)T — (24230 271)"),
g5y = Tx_q,

(1)

{ g1 = 917 = 20(g50) (x4 sz _1)7 — (2_az371)"),
(3) 1
G24 = oy = T3T1T_1T-3 + G14 -

It is easily to see that the product of two summands of goy is in /(g14). Then
we have ZB3.T1.CE_1.CE_3,QSR € v/ (914, 924) by Lemma 3.5. Since the product of 2

terms in each bracket of g4, g&) are divisible by z3z1x_12x_3, we conclude that

Xog14, Togos generate xgJy up to radical by repeated use of Lemma 3.5.
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Now we return to the ideal I, and explain the construction of 3 elements
Gor, G1r, Q2 Which generate I, up to radical.
Set

(0) (0)

n$2 — n(_oz, if r is odd,
qor ‘= . .
n_, —ny,, ifriseven.

The construction of gy, ga, is done inductively. Let hy,, ha, be elements ob-
tained from zggq,_1, Zlfoggr_l respectively, by substitutions xp — zp1; v ) —

r_my) (B =1,2,. — 1), which is the same ones we used to obtain J/_;
from J,, 1.

Starting with qo,, h1,, ha,, We construct q o D fort = 0,2,4,...,r,—1, where
14 is 1 if ¢ is a multiple of 4; otherwise 2. For t=2,4,...,r 1, we set

(ro—t) (To t)

(ro—t) (7” —t) . .
Tpo—tp2My,  — T_(ro—42ym_, ~, if 7is odd,

M’I"o—t = . .
Tpo—tp2M_y = T_(ry—t42)My, ~, if 7is even.

Put Q.,—+ :== (qor, o t+2),qffﬁ t)) (t=0,2,...,79 — 1), where q(T"+2 = ho,.

Qis_or

We will construct qi(t

Lemma 3.7. Fort=20,2,...,r, — 1,
q‘(r07t) - Mrof2Mr074 e Mroftm(%7t)

@

€ (m(’""), M,,O_Qm(”’_z), MTO_4m(”°_4), e M,no_t+4m(r°_t+4))m(“’_t)
+ xo((];_ﬁr_(tm-

Lemma 3.8. z0J!_, C \/Q,, and m(™) n+r, _,, €\Q,,.
Lemma 3.9. Fort=24,.. —1, Qrp—t+2 C \/Qpr,—t and n(ro 2 n(ro_t)

\/Qr,—t. In particular,
(1) 2o}y + (mT),n).n) € \/Qr .
(2) ng:? 2)7 n(jﬁ_z)7 nir_ll)a n(jv? 4)7 s 7n(+r7?_t)7 n(ro_t \/ Qro—t
By Lemma 3.9, we can conclude that gq,, qz(i)fw, qi(rljflr,
of @)1, generate I, up to radical.

. ~ 50 that qZTT‘,’ " and Qr,—¢ satisty the following lemmas:

which are generators

The key idea of the construction is the following lemma which based on
Barile’s idea [1] (see also [3, 4, 7]).

Lemma 3.10. Let R be a commutative ring with unitary and I an ideal of R.
Take elements q1,qo € I and py,ps € R. Suppose qi1,q2 € (p1,p2) :

42 b2
where A is 2 x 2 matriz whose entries are in R. Then (det A)py, (det A)py € 1.

Proof. Multiply each side of (3.1) by the cofactor matrix of A from left. [

We show the construction when r» = 5.
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Example 3.11. In order to construct 3 elements qos, ¢15, @25 which generate
I5 up to radical, we need 3 steps. The starting 3 elements are

qos = 5L 4X3T_2X1 — T 504X _3T2X 1,
his € 2o(J}),
hos = x4T2T0T_2w_4 + 1),
where n € 23(J;)".
(Step 1) We first construct qi‘?. Since qos, hos € (T_42_9, x4x9), We can write

qos \ _ 4(5) [ T—4T—2
() =47 ("0),

TrT3T1 *
AP = ( (51) (51)> 7

Tonl =~ ToT—_2X—g4 + Tol)y

where

and n(,m),nfl) € xo(J})%. Therefore

det A§5> — T5T37) - ToT_oT_4 € 20(J})°.

Then since qgs, det A§5) € (x_4x_9,1479), We can write

4os A5 [ T_gx g
(det Af’)) =4 ( T4 ) ’

A(5) _ * —T_50_3T_1
2 ToT523%1 + 35077(_52) UUOUSEQ) ’

where

and 7% " € 2o(J])°. We set

det A
qg) = 2+ has.
Zo

Note that q%’) = 252321017 _37_5 + n®, where n® € 4(J;)®. Therefore
qg) satisfies Lemma 3.7 with ¢ = 0. We show that Q5 = (qos, hos, q%‘?) satisfies
Lemma 3.8.

By Lemma 3.10, we have

det A§5)$4l’2, det A§5)$_4$_2 S ((Io5, h25)

Therefore the product of two terms of qg) is in /(qos, hos). Thus each term of
qu’ is in /@5 by Lemma 3.5. In particular, his, hos € v/Q5. Since hys and hos
generate xoJ; up to radical, we have xoJ; C v/Q5. Then zsr3r10_10_30_5 €
V@5 also follows. Moreover, by qo5 € ()5 and Lemma 3.5, we have

T5T_4T3T o1, T_5T4T_3ToT_1 € \/(Qs.
(Step 2) Next we construct qg?
write

. Since q05,q¥5’) € (x_4x_9,x_5), we can

dos (3) [ T_4T_2
= A ,
Q@) +(<I5)
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where

A(3) . ($59€3$1 * )
— 1 2 )
* Uf ) X5 - T3X1T_1T_3 +77(3 )

and 7 31),775r 2 e zo(J3)*. Similarly, since qos, q§5) € (249, x5), We can write

qos (3) [ 42
= A" ,
<q§?> ( L5 >

A(g) - (—x 5L 3T 1 * )
= 31 32) |
Y T 5 st T T g+

where

and " n® € 24(J})". Then
det A(f) 1+ det A®) = (2iwsm) — 2257 37 1) T3T17 173 + n®,
where 73 € z(J;)*. We set
@) = det AY + det A®) 4 (hys).

It is easy to see that q( ) satisfies Lemma 3.7 with ¢ = 2. We show that

Q3 = (qos, q§5), q£5)) satisfies Lemma 3.9 with ¢t = 2.
By construction and Lemmas 3.10 and 3.5, we have

det AP + det A®) | hys € /Qs.
Then Q5 C +/Q3 follows. In particular, zoJ; C /Qs. It then follows that
(z2x37) — 2% 50 30 _1) 23717173 € \/@
Since T5x3117_17_37_5 € /@5 C /Q3, we also have

T5 T3TIT_1T_3, T 5 T3T1T 173 € \/(Q3

by Lemma 3.5, as desired.
(Step 3) Finally we construct q15 Since qos, qé5) (x_9,x_3), we can write

dos (1) [ T2
= A ,
<Q§?> * (“f—3>

where
4B — T5L—4T3T1 *
* 77531) (23w301 — 22 T30 1) T3, T4 +77(12) ’
and n ( ),7]532) € xo(J;)3. Similarly, since g3, q§5) € (x9,13), we can write
qos (1) (5152)
=A
3 — 9
(C]§5)> x3
where
A(l) _ —T 54X 3T 1 *
- 77(,11) (v2x301 — 22 50 37 1)T 3717 1+17(12)
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and 77(,11)777(,12) € o(J;)*. Then
det AY +det AY = (e2wszi—2? w57 1) (w50 armi—2szar gz )mr a9,
where 77(1) € xo(J})%. We set

q%) — det A<+1> +det AV + (qg))?

It is easy to see that q%) satisfies Lemma 3.7 with ¢ = 4. We show that

Q1 = (qos, qé?, q%)) satisfies Lemma 3.9 with ¢ = 4.
By construction and Lemmas 3.10 and 3.5, we have

det A + det AV, ¢9 € /.
Then Q3 C /@ follows. In particular, xoJ; C v/Q;. It then follows that

(z2x371 — 2250 30 1) (75047501 — T_5747° 57 1)T17_1 € / Q1.

Note that we also have xsrsrix_1x_3°0_5 € /1. Then by repeated use of
Lemma 3.5, we have

T5T_4%3 - T1T_1, T_5T40_3 - T10_1 € \/Q1,

as desired.
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