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Abstract. This paper is an announcement of our result in [Kan13]. We introduce systematic methods
to construct Grothendieck categories from colored quivers and develop a theory of the specialization
orders on the atom spectra of Grothendieck categories. We showed that any partially ordered set is
realized as the atom spectrum of some Grothendieck category, which is an analog of Hochster’s result
in commutative ring theory. In this paper, we explain techniques in the proof by using examples.

1. Introduction

The aim of this paper is to provide systematic methods to construct Grothendieck categories with
certain structures and to establish a theory of the specialization orders on the spectra of Grothendieck
categories. There are important Grothendieck categories appearing in representation theory of rings and
algebraic geometry: the category Mod Λ of (right) modules over a ring Λ, the category QCoh X of quasi-
coherent sheaves on a scheme X ([Con20, Lem 2.1.7]), and the category of quasi-coherent sheaves on a
noncommutative projective scheme introduced by Verevkin [Ver92] and Artin and Zhang [AZ94]. Further-
more, by using the Gabriel-Popescu embedding ([PG64, Proposition]), it is shown that any Grothendieck
category can be obtained as the quotient category of the category of modules over some ring by some
localizing subcategory. In this sense, the notion of Grothendieck category is ubiquitous.

In commutative ring theory, Hochster characterized the topological spaces appearing as the prime
spectra of commutative rings with Zariski topologies ([Hoc69, Theorem 6 and Proposition 10]). Speed
[Spe72] pointed out that Hochster’s result gives the following characterization of the partially ordered
sets appearing as the prime spectra of commutative rings.

Theorem 1.1 (Hochster [Hoc69, Proposition 10] and Speed [Spe72, Corollary 1]). Let P be a partially
ordered set. Then P is isomorphic to the prime spectrum of some commutative ring with the inclusion
relation if and only if P is an inverse limit of finite partially ordered sets in the category of partially
ordered sets.

We showed a theorem of the same type for Grothendieck categories. In [Kan12a] and [Kan12b], we
investigated Grothendieck categories by using the atom spectrum ASpecA of a Grothendieck category
A. It is the set of equivalence classes of monoform objects, which generalizes the prime spectrum of a
commutative ring.

In fact, our main result claims that any partially ordered set is realized as the atom spectrum of some
Grothendieck categories.

Theorem 1.2. Any partially ordered set is isomorphic to the atom spectrum of some Grothendieck
category.

In this paper, we explain key ideas to show this theorem by using examples. For more details, we refer
the reader to [Kan13].

2. Atom spectrum

In this section, we recall the definition of atom spectrum and fundamental properties. Throughout
this paper, let A be a Grothendieck category.
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Definition 2.1. A nonzero object H in A is called monoform if for any nonzero subobject L of H, there
does not exist a nonzero subobject of H which is isomorphic to a subobject of H/L.

Monoform objects have the following properties.

Proposition 2.2. Let H be a monoform object in A. Then the following assertions hold.
(1) Any nonzero subobject of H is also monoform.
(2) H is uniform, that is, for any nonzero subobjects L1 and L2 of H, we have L1 ∩ L2 6= 0.

Definition 2.3. For monoform objects H and H ′ in A, we say that H is atom-equivalent to H ′ if there
exists a nonzero subobject of H which is isomorphic to a subobject of H ′.

Remark 2.4. The atom equivalence is an equivalence relation between monoform objects in A since any
monoform object is uniform.

Now we define the notion of atoms, which was originally introduced by Storrer [Sto72] in the case of
module categories.

Definition 2.5. Denote by ASpecA the quotient set of the set of monoform objects in A by the atom
equivalence. We call it the atom spectrum of A. Elements of ASpecA are called atoms in A. The
equivalence class of a monoform object H in A is denoted by H.

The following proposition shows that the atom spectrum of a Grothendieck category is a generalization
of the prime spectrum of a commutative ring.

Proposition 2.6. Let R be a commutative ring. Then the map Spec R → ASpec(Mod R) given by
p 7→ (R/p) is a bijection.

The notions of associated primes and support are also generalized as follows.

Definition 2.7. Let M be an object in A.
(1) Define the atom support of M by

ASuppM = {H ∈ ASpecA | H is a subquotient of M}.
(2) Define the set of associated atoms of M by

AAss M = {H ∈ ASpecA | H is a subobject of M}.

The following proposition is a generalization of a proposition which is well known in the commutative
ring theory.

Proposition 2.8. Let 0 → L → M → N → 0 be an exact sequence in A. Then the following assertions
hold.

(1) ASupp M = ASupp L ∪ ASuppN .
(2) AAss L ⊂ AAss M ⊂ AAss L ∪ AAss N .

A partial order on the atom spectrum is defined by using atom support.

Definition 2.9. Let α and β be atoms in A. We write α ≤ β if for any object M in A satisfying
α ∈ ASuppM also satisfies β ∈ ASuppM .

Proposition 2.10. The relation ≤ on ASpecA is a partial order.

In the case where A is the category of modules over a commutative ring R, the notion of associated
atoms, atom support, and the partial order on the atom spectrum coincide with associated primes,
support, and the inclusion relation between prime ideals, respectively, through the bijection in Proposition
2.6.

3. Construction of Grothendieck categories

In order to construct Grothendieck categories, we use colored quivers.

Definition 3.1. A colored quiver is a sextuple Γ = (Q0, Q1, C, s, t, u) satisfying the following conditions.
(1) Q0, Q1, and C are sets, and s : Q1 → Q0, t : Q1 → Q0, and u : Q1 → C are maps.
(2) For each v ∈ Q0 and c ∈ C, the number of arrows r satisfying s(r) = v and u(r) = c is finite.
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We regard the colored quiver Γ as the quiver (Q0, Q1, s, t) with the color u(r) on each arrow r ∈ Q1.

From now on, we fix a field K. From a colored quiver, we construct a Grothendieck category as follows.

Definition 3.2. Let Γ = (Q0, Q1, C, s, t, u) be a colored quiver. Denote a free K-algebra on C by
SC = K 〈sc | c ∈ C〉. Define a K-vector space MΓ by MΓ =

⊕
v∈Q0

Fv, where Fv = xvK is a one-
dimensional K-vector space generated by an element xv. Regard MΓ as a right SC-module by defining
the action of sc ∈ SC as follows: for each vertex v in Q,

xv · sc =
∑

r

xt(r),

where r runs over all the arrows r ∈ Q1 with s(r) = v and u(r) = c. Denote by AΓ the smallest full
subcategory of Mod SC which contains MΓ and is closed under submodules, quotient modules, and direct
sums.

The category AΓ defined above is a Grothendieck category. The following proposition is useful to
describe the atom spectrum of AΓ.

Proposition 3.3. Let Γ = (Q0, Q1, C, s, t, u) be a colored quiver. Then ASpecAΓ is isomorphic to the
subset ASuppMΓ of ASpec(Mod SC) as a partially ordered set.

Example 3.4. Define a colored quiver Γ = (Q0, Q1, C, s, t, u) by Q0 = {v, w}, Q1 = {r}, C = {c},
s(r) = v, t(r) = w, and u(r) = c. This is illustrated as

v

c

��
w

.

Then we have SC = K 〈sc〉 = K[sc], MΓ = xvK ⊕ xwK as a K-vector space, and xvsc = xw, xwsc = 0.
The subspace L = xwK of MΓ is a simple SC-submodule, and L is isomorphic to MΓ/L as an SC-module.
Hence we have

ASpecAΓ = ASupp MΓ = ASupp L ∪ ASupp
MΓ

L
= {L}.

The next example explains the way to distinguish simple modules corresponding different vertices.

Example 3.5. Let Γ = (Q0, Q1, C, s, t, u) be the colored quiver

v cv

zz

c

��
w cw

yy

and let N = xvK and L = xwK. Then we have an exact sequence

0 → L → MΓ → N → 0

of K-vector spaces and this can be regarded as an exact sequence in Mod SC . Hence we have

ASpecAΓ = ASupp MΓ = ASupp L ∪ ASuppN = {L, N},

where L 6= N .

In order to realize a partially ordered set with nontrivial partial order, we use an infinite colored quiver.

Example 3.6. Let Γ = (Q0, Q1, C, s, t, u) be the colored quiver

v0
c0 // v1

c1 // · · · .

Let L be the simple SC-module defined by L = K as a K-vector space and Lsci = 0 for each i ∈ Z≥0.
Then we have ASpecAΓ = {MΓ, L}, where MΓ < L.

Definition 3.7. For a colored quiver Γ = (Q0, Q1, C, s, t, u), define the colored quiver Γ̃ = (Q̃0, Q̃1, C̃, s̃, t̃, ũ)
as follows.

(1) Q̃0 = Z≥0 × Q0.
(2) Q̃1 = (Z≥0 × Q1) q {ri

v,v′ | i ∈ Z≥0, v, v′ ∈ Q0}.
3



(3) C̃ = C q {ci
v,v′ | i ∈ Z≥0, v, v′ ∈ Q0}.

(4) (a) For each r̃ = (i, r) ∈ Z≥0 × Q1 ⊂ Q̃1, let s̃(r̃) = (i, s(r)), t̃(r̃) = (i, t(r)), and ũ(r̃) = u(r).
(b) For each r̃ = ri

v,v′ ∈ Q̃1, let s̃(r̃) = (i, v), t̃(r̃) = (i + 1, v′), and ũ(r̃) = ci
v,v′ .

The colored quiver Γ̃ is represented by the diagram

Γ _*4 Γ _*4 · · · .

Lemma 3.8. Let Γ be a colored quiver. Let Γ̃ = (Q̃0, Q̃1, C̃, s̃, t̃, ũ) be the colored quiver

Γ _*4 Γ _*4 · · · .

Then we have

ASpecA
eΓ = {M

eΓ} q ASpecAΓ

as a subset of ASpec(Mod S
eC), where M

eΓ is the smallest element of ASpecA
eΓ.

Example 3.9. Define a sequence {Γi}∞i=0 of colored quivers as follows.
(1) Γ0 is the colored quiver

v c
zz

.

(2) For each i ∈ Z≥0, let Γi+1 be the colored quiver

Γi
_*4 Γi

_*4 · · · .

Let Γ be the disjoint union of {Γi}∞i=0, that is, Γ is the colored quiver defined by the diagram

Γ0 Γ1 · · · .

Then we have

ASpecAΓ = {MΓ0 > MΓ1 > · · · }.
Since the partially ordered set ASpecAΓ has no minimal element, it does not appear as the prime
spectrum of a commutative ring.

We refer the reader to [Kan13] for further techniques to show Theorem 1.2.
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