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On a method for computing symbolic
powers of ideals

Koji Nishida (Chiba University)

1 Introduction

This is a joint work with K. Fukumuro and T. Inagawa. The purpose of this report is
to introduce a new method for computing symbolic powers. Let us assume one of the
following two cases:

Local case : R is a 3-dimensional regular local ring with the maximal ideal m = (z,y, 2)R
and p is a prime ideal of htgp = 2.

Graded case : R = K|z,y,z2] is a polynomial ring over a field K. Putting suitable
weights on each variables, we regard R as a graded ring. In this case p is a homogeneous
prime ideal of htgp = 2.

The typical example of such prime ideal is the defining ideal of a space monomial curve,
which is described as follows: Let R = K|z, y, z] and K|[t] be polynomial rings over a field
K. Let us consider the homomorphism R — K[t] of K-algebras such that z +— t*, y —
tf, z — t™, where k, £, m are positive integers with GCD{ k,¢,m} = 1. We denote by
P(k, £, m) the kernel of this homomorphism. Putting degz = k, degy = £ and degz = m,
we regard R as a graded ring. Then P(k, 4, m) is a homogeneous prime ideal generated
by the maximal minors of the matrix of the form

za y:@, Z’Y/
yﬂ 2 ¥ )
where a, 8,7, a’, 8,7 are positive integers.

Let us recall the definition of symbolic power of a prime ideal p .

p™ = p"R,NR
= {a€R| 3s€ R\psuchthat sac I"}.

We would like to find an effective method to compute p™ .

2 The usual method

Let us recall the usual (traditional) method used by Huneke, Schenzel, Morales, Shimoda,
Goto, --- . As Assg(R/p™) = {p}, R/p™ is a 1-dimensional Cohen-Macaulay R-module,



and for any w € R\ p, we have

eur(R/p™)
Lr,(Ry/p"R,) - ewr(R/p)

("jl)‘eR(R/wa).

Cr(R/wR+p™)

Theorem 2.1 Let 0 <n € Z. Let a be an ideal such that a C p™ and £r( R/wR+a) =
¢r(R/wR +p™) for somew € R\ p. Then a=p™.

Proof. The assumption means wR + a = wR + p(™, and so
p™ = (wR+a)Np™ = [wRNp™] +a=wp™ +a.
Hence we get p(™ = a by Nakayama’s lemma.

Let us apply Theorem 2.1 to a concrete example.

Example 2.2 Let R = K(z,y,z|, where K is a field. Let p = P(9,10,13), which is
generated by the mazimal minors of the matriz

2B B 2
(V7))

(1) 3dy € p@ such that dy = y"z mod zR and p® = p® + dyR.

Then the following assertions hold.

(2) If ch K # 2, then 3ds, 3dy, 3d} € p© such that dy = 2472 mod zR, d = y'* mod
zR, dj = y'°2 mod zR, and p©® = pp®@ + (ds, d}, d¥)R.

(3) Ifch K =2, then 3e € p® such that e = ¥ mod zR and p® = pp® + eR.

Proof of Example 2.2. We put a = 2% — z9%,b = z* — y2?,c := y* — 2%2. Then
p=(a,b,c)R and zR+p = zR + (y*,yz% 2*)R. Hence £g(R/zR+p) =9, and so

1
(r(R/zR+p™) =9 (";’ ) .
In particular, £r( R/zR + p@ ) = 27. On the other hand, as

we have {gr( R/zR + p?) = 28. Therefore p? C p® and we need a "new” element in p® .
We have the following two relations:

’a+yb+2%=0---(1) and ya+zb+zc=0---(2).



By (1) x b we get x3ab + y®? + z%bc = 0. On the other hand, by (2) x zc we get
yzac + 2%bc + zzc? = 0. Hence z3ab + y*b* = yzac + zzc?, and so y(y*b? — zac) =
z(2c? — z%ab) . This means

ydy = zc? — z%ab - -+ (3)
Jds € R such that { zdy = 178 — zac --- (4).

By (3), we have d; € p® and d; = y"z mod zR. Then
tR+p? + dyR = zR + (18,17 2,0° 22, y*2%, y?2* 42, 2F)R.
Therefore £g( R/zR + p? + dyR) = 27. Thus we get p@ = p? + d,R.

Let us compute p® in the case where ch K # 2. Notice that pp® C p® and

12 11 9,2 8,3 6.4
a:R+PP(2)=a:R+<y LY E Yz, Y ygz,).

5.5 48,6 52,7 8
Yz, vy, yz, Yy, =z

Hence we get £z( R/zR + pp® ) = 69. On the other hand, as
4
(r(R/zR+p®) =9 <2) =54,

we see zR + pp® C p® | and so we need "new” elements in p(® . By (2) x d; we get
yads + zbdy + zcdy = 0. Moreover, by (4) x ¢ we get zedy = y?b%c — zac?. Hence
yads + zbdy = zac* — y*b%c, and so y(ady + yb®c) = z(ac® — bdz) . This means that there
exists d3 € R such that yds = ac® — bdy , which implies d3 € p® and d3 = 2y"2° mod zR.
Similarly, from (2) x dz and (4) X a, we get dy € R such that zdy = cdy — za®b. Then
dy € p® and dj = y*! mod zR. Furthermore we can find dj € p® such that df = y'°z
mod zR. Put a:= pp® + (d3, dj,d5)R C p® . Then
11

10 9.2 7.3 6.4
vy, Yz, yz, yzrz, y=z,
zR+a=zR+ ( W5, B, 2Ty, 20 )Ra

and so fp(R/zR+a) = 54 = Lz( R/zR +p® ). Thus we get a = p®.

Finally we compute p® in the case where ch K = 2. Taking the square of (2), we have
v2a? + 222+ 2% =0 - (2).

By (2') x ¢, we get y2a’c + 22b%c + x2c® = 0. Moreover, by (1) x b, we get z3ab? + y3b% +

22b%c = 0. Hence z3ab? +1°b° = y?a’c+22¢®, and so y%(yb® — a’c) = z*(c® — zab?) . This

means that there exists e5 € R such that y2es = ¢® — zab®. Then ez € p©® and e3 = y*°
mod zR. Hence

10 9,2 8,3 6.4 5.5
Yz, yr, yz, Yz,
3,6 2,7 8 9 :
Yz, Yz, Yz, 2

sR+p®+e3R = 2R+ ( v

Therefore £g( R/zR + p> + esR) = 54 = Lr( R/zR +p® ), and we get p©®) = p3 + e3R.



Here, we summarize some weak points of the usual method.

e Finding "new” elements is difficult. It is not clear which relation should be used.
Furthermore we may miss very important relations. Some systematic way is desired.

e "New” elements may not be congruent to monomials modulo any variables. In such
case, computing the length is quite difficult.

e We can not see the exact value of £5(p™ /p™) directly.

So, let us look for another method !

3 x-transform of acyclic complex

In the rest of this report, we work in the local case. However please keep in mind that a
parallel theory holds in the graded case. This section is devoted to preparing a tool that
plays a key role in the new method for computing symbolic powers.

Let 1, 25, 3 be an sop for R. We put @ = (z1, z2, z3) R. Suppose that an acyclic complex
0—FR25R 2R 5 F=R

of finitely generated R-free modules are given. We assume Imp3 C QF; and put a =
Im ;. Transforming F, suitably, we are going to construct an acyclic complex

0— Fr By pr B pr LR
of finitely generated R-free modules such that Im ¢5 C mF; and Imp} =a:5 Q.
We transform F, using the Koszul complex
0— K3 BNy AN N - Ko=R
of z1,z2,z3. Let 1, eq,e3 be an R-free basis of K;. We set & = ey Aes, 8 = e; Aes and
€s = e1 Aeg. Then é1, €y, €5 is an R-free basis of K, . Furthermore e; A ey A es is an R-free

basis of K3. The boundary maps satisfy the following:

83(61 A €9 A 63) = l‘lél — CL‘zéQ + CL’3é3 y
62(6,'/\€j) = I;&; —T;€ 1f1$1<]§3,
Oi(e;) = z; forany i=1,2,3.

At first, let us notice that we immediately get the following fact from the given complex
F,.

Lemma 3.1 [a:g Q]/a = F3/QF;



Let {w) }rea be an R-free basis of F5. Let {vi | 1 <4 <3, X € A} be a family of
elements in F;, such that

3
<P3(w>\) = Zfﬂz : Ui
i=1

for any A € A. We set A = {1,2,3} x A. The next result is the essential part among
the construction of the desired complex Fy .

Lemma 3.2 There ezists a chain map o, : Ko @g F3 — F,

0 — K3Q®pkF3 83(—829 K, ®g F3 W_ﬂg K, ®RF3'81—i§1 Ky Q®pr F3
Lo Lo Lo Lo
0o — Fy R F 2 F Rl Fy

satisfying the following conditions.

(1) oo (Imy;) C Im (&1 ®idg,) -

(2) Imog+Imp; =a:z Q.

(3) 0a(&; @ wy) = (=1)%k, for any (i,\) € A.

(4) o3((e1 Aea Aes) @wy) = —wy for any A € A
In the rest, let o, : K, ® F3 — F, be the chain map stated in Lemma 3.2. Then, taking
the mapping cone of o,, we get the following acyclic complex

KeF | Ko Ky ® F;
0Kl o % o 2 o AFR-=R,
F3 F2 Fl

where

O3 ®id Oh®id 0 o®id 0 .
1/J4=( 3_®1 >,¢3=( 2 ®1 ),90/2=( 1! >,901=(00<P1)-

g3 02 ©3 —01  ¥2

Notice that Im ¢ = a :g . On the other hand, as o3 is an isomorphism, 14 splits. Hence
we get the next acyclic complex

4 ) wi
O—)Fé—)3 Fé—)z Ff—)l Fy=R,

where
K, ®F3 Ky ® F; .
%)
F=KeoFh F= & ,F= @ ,wé=( Qf’ld).
F, F 2

Although Im ¢} ¢ mF} may happen, but removing unnecessary free components from
F} and Fj, we can get suitable R-free submodules F3 and Fy, for which o3(Fy) C mFy
holds. In the rest of this section, we describe a concrete procedure to get F3 and Fy .
Here we need to define some notation.



¢ K, ®F;
o For any £ € K1 Q F3, [{] := (O) €F,= ® :
F,

In particular, for any (i, \) € A, we set [i, \] = [e; ® w] .

e For any n € Fy, (n) == (2) €F,.
o Let T be a subset of an R-module. We denote by R -T the R-submodule generated
by T'.
Let us choose a subset A’ of A as big as possible so that {v} | (i,A) € A’} form a part of

an R-free basis of F5. The following fact is convenient when we find A’.

Lemma 3.3 Let V' be an R-free basis of Fy. If a subset A’ of A and a subset V* of V
satisfy

o |[N|+|V* <rankF;,
e VCR-{v| (A EN}+R-V*+mE;,
then {v} | (1,\) € A’} UV* is an R-free basis of F; .

Let V* be a subset of F, such that {vi | (i,\) € A’} UV™* is an R-free basis of F;. Then
{62 € AYU{(w}) | (5,A) € N }U{(v) [veV*}

is an R-free basis of Fj. Weset Fy = R-{[i,\] | (5,\) €A} + R-{(v) | v € V*} which
is a free summand of F;, . Furthermore we set ¢; = (|r; . We need the next result at the
final step in the process of computing symbolic powers.

Theorem 3.4 If we can take A itself as N/, then
0— B Z =R
is acyclic. In particular, depth R/a:r @ > 0.

So, in the rest, we consider the case where A’ C A. We set A* = A \A'. If A is big
enough, then, for any (j, pu) € A*, v/{ can be expressed as follows:

o= D adl) i+ D W,
(i, €A veV*

where

. 3 . li )
e {E TN @ emtmer

For any (j, u) € A*, we set
Wi = (17 & ®@uw, + Y (1) "’8,’5)) & ®@wy € Fy.
(i,A)eA

Then we have the next result.



Lemma 3.5 The following assertions hold.
(1) {&@w|(i,A) € NYu{wj, | (4,u) € A"} is an R-free basis of Fy .
(2) ForV(j,u) € A*, we have

ehwh,) = (17 [(0:8) @]+ Y (1) a8 [(828) @ w)]

(&N €eA

VEV*

and so p5(w(; ) € mF; .

We set Fy = R-{w{;, | (j,u) € A*} which is a free summand of F3. Furthermore we
set ¢ = 3|r; . Then we get the next result.

Theorem 3.6 0 — F; —> i F; = L] Ff = ¥ Fy = R is an acyclic complez of finitely gen-
erated R-free modules such that Im 5 CmFy andImp; =a:r Q.

Let us call the procedure to construct F} from F, the *-transform on z;, s, 3.

4 Applications of *-transform

Let p be the prime ideal generated by the maximal minors of the matrix

TR
y z z '
We would like to compute p® using *-transform. Recall a = 2% — zy?, b = z* — y2?,

¢ = y* — 2%2. Here we take new variables A, B,C and put S = R[A, B,C]. For any
0<nez,

3

mipe = {A°B°C"|0<o,B,y€Zanda+f+y=n}
Sn = R-mjpcCS.

Furthermore, let €, : S, — p™ be the R-linear map such that
en(A*BPCY) = a®bP
for any A*BPC7 € mY g . Let f := 23A+y*B+2°C and g := yA+ 2B +zC . Because
a,b, c is a d-sequence, the following fact holds.
Lemma 4.1 As a free resolution of p3, we have

0—)51&526952&)531)]33—)0.

‘fg) and 93 = (f g).

where p3 1= (



So we put F3 =51, Fo = 5,8 Sy, F1 = S3, Fy = R, and consider the acyclic complex
0—FB 525K =R (g=¢).

As a free basis of F3, we take m} p o = { A, B,C'}. For any £ € S, we set

€] == (g) €F, and (£):= (g) €F,.

Then V := {[L],(L) | L € m% 5} is a free basis of F;. Moreover we have

p3(A) = [~yA® —2AB — zAC] + (z*A% + 43 AB + 2*AC)
—y-[A%’] —2-[AB] —z - [AC] + z* - (A%) +4° - (AB) + 2% - (AC)
= x-v}i—ky-vi-l-z-vfl,

where

v i=a? - (A% = [ACY, v} = ¢ - (AB) — [4%), v}, i= 2 - (AC) — [AB].
Similarly we get

¢3(B)=z-vp+y-vE+z vy and ¢3(C)=x vi+y-vi+2z 0%,
where

vp :=z?- (AB) — [BC|, vk :=y* - (B% —[AB], v}:=z-(BC)~- [BY,
v =z%- (AC) — [C¥], & :=y* (BC)-[AC], v} :=z-(C? —[BC].

We set A=1{1,2,3} x {A,B,C}. As p3(F;) C mF,. we get the next result.
Proposition 4.2 [p3 :p m]/p? = 5, /mS; = (R/m)®3.

Let us apply the x-transform on z,y,z to F,. Let K, be the Koszul complex of z,y, z.
At first, we get

/ (P’ *
0—F 25 /2 S pr=R,
where

0, ®id
Fy = K, ®p Fs5, F; = (K1 Qg F3) ® Fa, ¢y = ( 2 @1 )

02

and oy : K3 @ F3 — F, is the R-linear map such that
02(& ® M) = (=1)* - v,
for any (i, M) € A. We set
o N'={(1,4),(2,4),(34),(1,B),(3 B),1,0) },



e V' = {{I) | Lemd o}
Then we have
o |AN'|+|V*| =12 =rank F;,
e VCR-{vi,|(i,M)eN}+R-V*+mF, .
Hence {vi, | (i, M) € A’} can be a part of a free basis of F3, and so we set
A=A\ N ={(2,B),(2,0),(3,0)}.
We have

v = vi—z (AC)+y” - (BY),
v = vy—z' (A%) +y* (BO),
vy = vp—2? (AB)+z-(C?.

So, we define wf, gy, W, oy, W50y € F} = K, ®g 51 as follows.

whp = 2®B+&®A,
w(*Z,C’) = é2®0+é1®A,
wZ‘&C) = —é3®C+é1 ®B

These elements form a part of an R-free basis of F3. So we set
Fy=R- {wfz,B), w(*z,C’): w(*s,C) s
which is a direct summand of Fj.

We use the following Notation on elements in F = (K1 ®g F3) ® F;.

e For any £ € K; Qg F3, [§] := (g) € Fj.
In particular, for any (i, M) € A, [i, M] := [e; ® M].

e For any n € Fy, (n) := (2) € Fy.

Then we have the next result.

Lemma 4.3 The following equalities hold.
Pywhp) = z-[3,Bl—z-[L,Bl+z- (2,4 —y-[L, A~z {(AC)) +4*- ((B?)),

Py(whe) = -[3,C1—z-[L,Cl+y-[3,4] -z [2,A] - 2* ((A%) +¢* - ((BO)),
Ph(whe) = —2-[2,0)+y-[L,Cl+y-[8,B] —z-[2,B]—2* ((AB)) + 2 ((C*)).



In fact, as
@a(wlp) = [0262® B] + (02685 ® A] + (vp — v})
= [(zes — ze1) ® Bl + [(zes — ye1) ® A] + (—z - (AC) +y* - (B?)),

we get the first equality in Lemma 4.3. The other equalities follow similarly.

Now we define

F; =R-{[i, M]| (i, M) €A} +R-{((L)) | Lem}pc},
which is a free summand of F;,. By Lemma 4.3 we have ¢j(Fy) C mFy. So, we set
©3 = @s|p; and @5 = @h|py . Then 0 — F3 B4N Ey £, Fr BN F} = R is an acyclic
complex of finitely generated R-free modules such that Im ¢§ C mFy and Im ¢} = p3 :g m.
Because [p? :r m] :p m = p3 :r m?, we get the following assertion.

Proposition 4.4 [p? :p m?]/[p3 ;g m] & Fy /mFy & (R/m)®3 .

In the rest, we denote F; by F, (remove ”%”). And again we apply *-transform on z,y, z
to F,. By Lemma 4.3, we have

p3(wep) = T ”(12,3) +y- U(22,B) tz- U?Z,B) )
‘PB(“’(?,C)) = Z- U(lz,C) +y- U(22,C) +z- ”?2,0) )
p3(wee) = z- U(IB,C) +y- 0(23,0) tz- U?s,c') ,
where
U(lz,B) = [3,B] +[2,4], v(22,B) =—[1, Al +y- ((B?), U?z,B) = —[1, B] — ((AC)),

Yooy = B.Cl—z-((4%), v =B,A+y-((BC), vk =—[10]-[24],

Vs = —[2,Cl =z ((AB)), v} e :=[1,01+[3,B], U0y = —[2,B] +{(C?).
We set A :={(2,B),(2,C),(3,C)} and A := {1,2,3} x A. Let us recall that
V= {[Z)M] | (Z’M) € {112,3} X {A’B:C}}U{«L)) | Le mil,B,C}
is a free basis of Fy. Weset V*:= {((L)) | Lem? 5, }.

Lemma 4.5 We have |A'| + |V*| = rank F,. Moreover, if 2 is a unit in R, we have
VCR-{vi|(GAeA}+R-V*.

Therefore we can take A as A’. Hence by Theorem 3.4 we get the following.

Theorem 4.6 If 2 is a unit in R, then depth R/[p3 :p m?] > 0, which means

p® =p* g m?®,
and so we have Lg(p® /p®) =6.

If ch R = 2, then we can go one step more.
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SYMMETRIES ON ALMOST SYMMETRIC NUMERICAL
SEMIGROUPS

HIROKATSU NARI

ABSTRACT. The notion of almost symmetric numerical semigroup was given by
V. Barucci and R. Fréberg in [BF]. We characterize almost symmetric numerical
semigroups by symmetry of pseudo-Frobenius numbers. We give a criterion for
H* (the dual of M) to be almost symmetric numerical semigroup.

1. INTRODUCTION

Let N be the set of nonnegative integers. A numerical semigroup H is a subset of
N which is closed under addition, contains the zero element and whose complement
in N is finite.

Every numerical semigroup H admits a finite system of generators, that is, there
exist a1, ..., a, € H such that H = (ay, ...,an) = {Ma1+ -+ Anan | A1, ..., A\n € N}

Let H be a numerical semigroup and let {a; < az < - -+ < a,} be its minimal
generators. We call a; the multiplicity of H and denote it by m(H), and we call n the
embedding dimension of H and denote it by e(H). In general, e(H) < m(H). We say
that H has mazimal embedding dimension if e(H) = m(H). The set G(H) := N\ H
is called the set of gaps of H. Its cardinality is said to be the genus of H and we
denote it by g(H).

If H is a numerical semigroup, the largest integer in G(H) is called Frobenius
number of H and we denote it by F(H). It is known that 2g(H) > F(H) + 1. We
say that H is symmetric if for every z € Z, either z € H or F(H) —z € H, or
equivalently, 2g(H) = F(H) + 1. We say that H is pseudo-symmetric if for every
z € Z, z # F(H)/2, either 2 € H or F(H) — z € H, or equivalently, 2g(H) =
F(H) + 2.

We say that an integer z is a pseudo-Frobenius number of H if x ¢ H and z+h € H
for all h € H,h # 0. We denote by PF(H) the set of pseudo-Frobenius numbers
of H. The cardinality in PF(H) is called the type of H, denoted by t(H). Since
F(H) € PF(H), H is symmetric if and only if t(H) = 1.

This paper studies almost symmetric numerical semigroups. The concept of al-
most symmetric numerical semigroup was introduced by V. Barucci and R. Froberg
[BF]. They developed a theory of almost symmetric numerical semigroups and gave
many results (see [Ba], [BF]). This paper aims at an alternative characterization of
almost symmetric numerical semigroups. (see Theorem 2.4).

In [BF] the authors proved that H is almost symmetric and has maximal embed-
ding dimension if and only if H* = M — M (the dual of M) is symmetric, where

2000 Mathematics Subject Classification. Primary 20M14, Secondary 20M25, 13F99 .
Key words and phrases. numerical semigroup, almost symmetric numerical semigroup, dual of
maximal ideal, gluing of numerical semigroups.
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M denotes the maximal ideal of H. In Section 3 we will study the problem of when
H* is an almost symmetric numerical semigroup.

2. ALMOST SYMMETRIC NUMERICAL SEMIGROUPS

Let H be a numerical semigroup and let n be one of its nonzero elements. We

define
Ap(Hn)={he€ H|h—n¢H}.

This set is called the Apéry set of h in H. By definition, Ap(H,n) = {0 =
w(0),w(1),...,w(n — 1)}, where w(:) is the least element of H.congruent with i
modulo n, for all 7 € {0,...,n — 1}. We can get pseudo-Frobenius numbers of H
from the Apéry set by the following way: Over the set of integers we define the
relation <g, that is, a <y b implies that b —a € H. Then we have the following
result (see [RG] Proposition 2.20).

Proposition 2.1. Let H be a numerical semigroup and let n be a nonzero element
of H. Then

PF(H) = {w —n | w is mazimal with respect to <y in Ap(H,n)}.

It is easy to check that F(H) = max Ap(H,n)—n and g(H) = % 2 heAp(Hn) h—2:1
(see [RG] Proposition 2.12).

Let H be a numerical semigroup. A relative ideal I of H is a subset of Z such
that I+ H CITand h+I={h+i|i€ I} C H for some h € H. An ideal of H
is a relative ideal of H with I C H. It is straightforward to show that if I and J
are relative ideals of H, then I — J := {z € Z | z+ J C I} is a also relative ideal of
H. The ideal M := H \ {0} is called the mazimal ideal of H. We easily deduce that
M — M = HUPF(H). We define

K=Ky :={FH)—-z|z¢ H}.
It is clear that H C K and K is a relative ideal of H. This ideal is called the
canonical ideal of H. '

We define N(H) := {h € H | h < F(H)}. We already know that if h € N(H),
then F(H) —h ¢ H, and if f € PF(H), # F(H), then F(H) — f ¢ H. Then the
map

N(H)U[PF(H)\{F(H)}] —  G(H)
w w
h — F(H)—h
is injective, which proves the following.
Proposition 2.2. Let H be a numerical semigroup. Then
2g(H) > F(H) +t(H).

Clearly, if a numerical semigroup is symmetric or pseudo-symmetric, then the
equality of Proposition 2.2 holds. In general, a numerical semigroup is called almost
symmetric if the equality holds.

Proposition-Definition 2.3. [Bal], [BF| Let H be a numerical semigroup. Then
the following conditions are equivalent.
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(1) KncM—-M.
(2) z ¢ H implies that either F(H) — z € H or z € PF(H).
(3) 2g(H) =F(H) +t(H). :
(4) KM—M =M — m(H)
A numerical semigroup H satisfying either of these equivalent conditions is said
to be almost symmetric.

It is easy to show that if H is symmetric or pseudo-symmetric, then H is almost
symmetric. Conversely, an almost symmetric numerical semigroups with type two
is pseudo-symmetric (see Corollary 2.7).

We now give a characterization of almost symmetric numerical semigroups by
symmetry of pseudo Frobenius numbers.

Theorem 2.4. Let H be a numerical semigroup and let n be one of its nonzero
elements. Set Ap(H,n) = {0 < a1 <+ - < an}U{f < Ba <+ < Bym)-1} with
m =n—t(H) and PF(H) = {8 —n,am —n=FH) | 1 <i < t(H) -1} We
put fi = Bi —n and fym) = o —n = F(H). Then the following conditions are
equivalent.

(1) H is almost symmetric.

(2) @i+ Qi =, for alli € {1,2,...,m — 1} and B + Buym)—j = am +n for

all j € {1,2,... t(H) —1}.

(3) fi+ fon—s =F(H) for all i € {1,2,...,t(H) — 1}.
Proof. For simplicity, we put t = t(H).

(1) = (2). Since ;—n ¢ H,F(H) —(0;—n) = am—; € H and o — (0 —n) ¢
H, by 2.3 (2). Hence o, — @; € Ap(H,n). If oy — oz = B; for some j, then
F(H) = a;+f; € H. Hence we have that a;+am i = an, foralli € {1,2,...,m—1}.
Next, we see that 8; +5;—; = am+m(H) forall j € {1,2,...,t—1}. Since ayp—fB; =
F(H) - f; ¢ H, by 2.3 (2) we get oy, — B; € PF(H), that is, ap — B = Byan)—j — 1
for all j € {1,2,...,t —1}.

(2) = (3). By hypothesis, (8;—n)+(Bi—j—n) = om—n implies f;+f;—; = F(H).

(3) = (1). In view of Proposition-Definition 2.3, it suffices to prove that K C
M—M. Let z € K and x = F(H) — 2 for some Z ¢ H. If z € PF(H), then
= € PF(H) by condition (3). If z ¢ PF(H), then z + h € PF(H) for some h € M.
Then z = F(H) — (2 + h) + h € H, since F(H) — (z + h) € PF(H). Hence we have
that H is almost symmetric. O

Remark 2.5. When H is symmetric or pseudo-symmetric, the equivalence of (1) and
(2) is shown Proposition 4.10 and 4.15 of [RG]

Example 2.6. (1) Let H = (5,6,9,13). Then Ap(H,5) = {0,6,9,12,13} and
PF(H) = {4,7,8}, we see from Theorem 2.4 (3) that H is not almost symmetric.
(2) Let a be an odd integer greater than or equal to three and let H = (a,a +
2,a +4,...,3a — 2). H has maximal embedding dimension, so that PF(H) =
{2,4,...,2(a —1)}. Hence we get H is almost symmetric.

We obtain the following corollary from Theorem 2.4 (3).

Corollary 2.7. Let H be a numerical semigroup. Then H is almost symmetric with
t(H) = 2 if and only if H is pseudo-symmetric.

-13-



3. WHEN IS H* ALMOST SYMMETRIC ?

Let H be a numerical semigroup with maximal ideal M. If I is a relative ideal of
H, then relative ideal H — I is called the dual of I with respect to H. In particular,
the dual of M is denoted by H*.

For every relative ideal I of H, I — I is a numerical semigroup. Since H* =
H - M = M — M, H* is numerical semigroup. By definition, it is clear that
g(H*) = g(H) — t(H).

In [BF] the authors solved the problem of when the dual of M is a symmetric.

Theorem 3.1. [BF| Let H be a numerical semigroup. Then H is almost symmetric
and mazimal embedding dimension if and only if H* is symmetric.

Example 3.2. On the Example 2.6 (2), H = (a,a + 2,a + 4,...;3a — 2) has
maximal embedding dimension and almost symmetric. Hence we have that H* =
HuU{2,4,...,2(a—1)} = (2,a) is symmetric.

In this section we will ask when is H* almost symmetric in general case (see
Theorem 3.7). Surprisingly, using our criterion for H* to be almost symmetric
Theorem 3.1 can be easily seen.

Let H be a numerical semigroup. Then we set

LH)={a€H|a—m(H) & H}.

By definition we have that Card L(H) = m(H) — t(H) and Ap(H,m(H)) = {f +
m(H) | f € PF(H)} UL(H). We describe Ap(H*, m(H)) in terms of PF(H) and
L(H).

Lemma 3.3. Let H be a numerical semigroup. Then
Ap(H*,m(H)) = PF(H) UL(H).

Proof. Since H* = H UPF(H), clearly Ap(H*, m(H)) 2 PF(H) UL(H).
Conversely we take a € Ap(H*,m(H)) and a ¢ PF(H). Then a € H and a —
m(H) ¢ H*. Hence we have that a € PF(H) UL(H). |

By Lemma 3.3, the Frobenius number of H* is easy to compute.
Proposition 3.4. [BDF] Let H be a numerical semigroup. Then
F(H*) =F(H) — m(H).

Proof. Clearly F(H) —m(H) ¢ H*, by Lemma 3.3. Let z > F(H) —m(H) and h €
M. Then z+h > F(H)—m(H)+h > F(H), thus we get F(H*) = F(H)-m(H). O

Every numerical semigroup is dual of maximal ideal for some numerical semigroup.

Proposition 3.5. Let H be a numerical semigroup. Then there ezists a numerical
semigroup T C H such that T* = H.

Proof. Let Ap(H,h) = {0 < oy < -+ < a_1} for some h € H. We put T =
(h,h+ a1,...,h + ap_1). Since T has maximal embedding dimension, PF(T) =
{o1 <--- < ap_1}. Hence we get T* = TUPF(T) = H. O
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Remark 3.6. In Proposition 3.5, such numerical semigroup 7' is not determined
uniquely. Indeed, we put H; = (5,6,8,9) and H, = (3,7,8). Then PF(H;) =
{3,4,7} and PF(H,) = {4,5}. Therefore we have H} = H; = (3,4,5).

The following is the main Theorem of this section.

Theorem 3.7. Let H (resp. H*) be an almost symmetric numerical semigroup.
Then H* (resp. H) is an almost symmetric if and only if m(H) = t(H) + t(H*).
Proof. If H is almost symmetric, then
2g(H”) =2g(H) — 24(H)
=F(H) —t(H)
=F(H*) + m(H) — t(H). (by Proposition 3.4)
If H* is almost symmetric, then
2g(H) = 2g(H") + 2t(H)
=F(H*) + t(H*) + 2t(H)
=F(H)+2t(H) + t(H*) —m(H). (by Proposition 3.4)
Observing these inequalities, we deduce the assertion. |
Using Theorem 3.7 we prove Theorem 3.1.

Proof of Theorem 3.1. We assume that H is almost symmetric and maximal
embedding dimension. Then m(H) = t(H) + 1. Hence we have

t(H*) < 2g(H*) — F(H*) (by Proposition 2.2)
=2g(H) - 2t(H) — (F(H) —m(H)) (by Proposition 3.4)
=m(H) —t(H)
=1
This implies H* is symmetric.

Conversely, let H* be symmetric. By Theorem 3.7, it is enough to show that
m(H) = t(H) + 1. We assume m(H) > t(H) 4 1. Then

2g(H*) — F(H*) =2¢g(H) — 2t(H) — (F(H) —m(H)) (by Proposition 3.4)
> m(H) - t(H)
> 1.

Since H* is symmetric, this is a contradiction. Thus we get H is almost symmetric
and maximal embedding dimension. d

Let H = (a3, as, ...,a,) be an almost symmetric numerical semigroup with a; <
ay < ...< an. If e(H) = n = a, (that is, H has maximal embedding dimension),
then the maximal element of Ap(H,ay) is equal to an. If n < ay, then the maximal
element of Ap(H, a,) is greater than ay,.

Lemma 3.8. Let H = (aj,as, ..., a,) be a numerical semigroup and let n < ay. If
H is almost symmetric, then max Ap(H,a1) # an.
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Proof. We assume max Ap(H, a;) = a,. Since H is almost symmetric, by Theorem
2.4 we have that

Ap(Hya1) ={0 <oy < - <am<a,}U{B1 < < Bay—m2}
where @; + @m—i41 = an for all i € {1,2,... ,m} and PF(H) = {1 —a; < - -+ <
Bay-m—2 — a1 < an — a1}. Since e(H) < m(H), there exist ¢ such that a; = ; for

some j. Hence we get a, = a; + o, for some k. But this is a contradiction, because
a, is a minimal generator of H. O

Proposition 3.9. Let H be an almost symmetric numerical semigroup with e(H) <
m(H). Then the following conditions hold:

(1) e(H) + 1 < t(H) + t(H*) < m(H),
(2) t(H") < e(H).
Proof. (1) First, we show that t(H)+t(H*) < m(H). Since H is almost symmetric,
we get
2g(H") = F(H") + m(H) — t(H)
>F(H*)+t(H*) (by Proposition 2.2).
This inequality means t(H) + t(H*) < m(H). Next, we prove e(H) + 1 < t(H) +
t(H*). Assume that H = (ay,...,a,) and m(H) = a;. Put PF(H) = {fy < --- <
fum-1 < F(H)}. By Lemma 3.8, F(H) +a; # a; for all 5 € {2,--- ,a; — 1}. Also
we have that for any j € {1,...,t(H) — 1}, f; € PF(H*) by the symmetries of the
pseudo-Frobenius numbers of H. This means
0 < k:=Card{a; | a; —a; € PF(H)} < t(H) — 1.
Hence we have the inequality
e(H)— (t(H)—1) <e(H) —k < t(H").

(2) Let H = (ay, ..., a,). It is enough to show that PF(H*) C{F(H) —a; |1 <i <
n}. Take z € PF(H*). Since z ¢ H*, we get F(H) — z € H by 2.3 (2). We assume
F(H)—xz € 2M, where M denotes the maximal ideal of H. Then there exist h € M
such that F(H) — z = a; + h for some a;, this means F(H) € H, a contradiction.
Hence we have F(H) — z & 2M, that is, F(H) — = a; for some i. Thus we obtain
that PF(H*) C{F(H) —a; |1 <i<n}. O

Corollary 3.10. Let H be an almost symmetric numerical semigroup. If e(H) =
m(H) — 1, then H* is an almost symmetric with t(H*) > 2.

Proof. Assume that H is almost symmetric. By Proposition 3.9 (2), if e(H) =
m(H) — 1, then t(H) +t(H*) = m(H). We see from Theorem 3.7 that H* is almost
symmetric. O

The converse of Corollary 3.10 is not known. But if we assume that H is sym-
metric, then that is true.

Corollary 3.11. Let H be a symmetric numerical semigroup with e(H) < m(H).
Then e(H) = m(H) — 1 if and only if H* is an almost symmetric with t(H*) > 2.
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Proof. From Corollary 3.10, it is enough to show that H* is an almost symmetric
with t(H*) > 2, then e(H) = m(H) — 1. We assume that H is symmetric and H* is
almost symmetric with t(H*) > 2. Then by Proposition 3.9, we get t(H*) = e(H).
On the other hand, using Theorem 3.7, we have t(H) +t(H*) = 1 +t(H*) = m(H).

Hence e(H) = m(H) — 1. O
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1. INTRODUCTION

Throughout this talk, let S be a standard graded polynomial ring over a field K,
and m denotes the unique graded maximal ideal of S.

Definition 1.1. Let R be a regular local ring, and let I, I’ be proper ideals of R.
Then I and I’ are said to be direct linked, denoted by I ~ I’, if there exists a regular
sequence z = 21, ..., 2, in I N I" such that I’ = (2): I and I = (z): I'. Moreover, I
is said to be linked to I’ if there exists a sequence of direct links

) N N AN

Then I is in the linkage class of I’. In particular, if one can choose I’ as a complete
intersection ideal (i.e. an ideal generated by a regular sequence), then I is called
licct.

It is known that many good ideals are licci. For example, any Cohen-Macaulay
ideal of height 2 and any Gorenstein ideal of height 3 in a regular local ring are licci.
On the other hand, licci ideals enjoy nice properties. For instance, any licci ideal
is Cohen-Macaulay and the second power of any Gorenstein licci ideal is Cohen-
Macaulay. This fact provides many examples of squarefree monomial ideals whose
second power is Cohen-Macaulay; see also [13].

The following question (see also [14]) is natural.

Question 1.2. Suppose that I C S is a squarefree monomial ideal. When is I, licci
in R=5,7

In this talk, we give two partial answers to the question above. We first consider
the question in the case of edge ideals of graphs. An edge ideal can be considered
as a squarefree monomial ideal generated in degree 2.

1This is an extended abstract. The final version will be published elsewhere.
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Secondly, we consider the case of squarefree monomial ideals with small deviation,
that is, the number of the minimal set of generators of I is at most height I + 2. We
know that if the deviation of I is zero then I is complete intersection and thus licci.
In this talk, we prove that any Cohen-Macaulay almost complete intersection ideals
(i.e, the deviation is one) are always licci. We also classify licci squarefree monomial
ideals of deviation 2 completely.

2. HUNEKE-ULRICH THEOREM

The following result gives a necessary condition for a homogeneous ideal I in a
polynomial ring S to be licci in R = Sp,.

Theorem 2.1 (Huneke-Ulrich [5, Corollary 5.13]). Let S = Klz1,...,z,]| be a
standard graded polynomial ring over a field K. Put m = (z1,...,%,)S. Let I C S
be a homogeneous ideal of height g. Suppose that S/I is Cohen-Macaulay with the
following graded minimal free resolution:

by b1
0= P S(—ng) & -+ = P S(—n;) = S = /I - 0.

j=1 j=1
If max{ngy;} < (¢ — 1) min{ny;} holds true, then I, C R = Sy, is not licci.
Remark 2.2. Under the notation as in Theorem 2.1,
max{ng;} = a(S/I) +n = reg(S/I) + g,
where reg(S/I) (resp. a(S/I)) denotes the regularity (resp. the a-invariant) of S/I.
The following lemma is well-known.

Lemma 2.3. If I C S is generated by squarefree monomials, then a(S/I) < 0.

3. LICCI EDGE IDEALS

Throughout this section, let G be a graph, which means a simple finite graph
without loops and multiple edges. Let V(G) (resp. E(G)) denote the set of all
vertices (resp. edges) of G. Put V(G) = {1, zs,...,2,}, and let S = K[zy,..., 7]
be a polynomial ring over a field K. Then the edge ideal, denoted by I(G), is defined
by

I(G) = (.’L‘,‘.’L‘j | {SL‘,’,CIIJ'} S E(G))S

For a subset W C V(G), W is said to be a vertez cover of G if eNW # () for any
e € E(G). A vertex cover W is called minimal if it has no proper subset that is a
vertex cover of G. Then an irredundant primary decomposition of /(G) is given by

I(G) = N (i |z € W).
WCVis a minimal vertex cover of G

In particular,
height I(G) = min{§W | W is a minimal vertex cover of G}.
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A graph G is called unmized (or well-covered) if its edge ideal I(G) is unmized,
that is, all minimal covers have the same cardinality.

Lemma 3.1 (Gitler-Valencia [2, Corollary 3.4]). Assume that a graph G has no
isolated vertices. If G is unmized, then 2 - height I(G) > §(V(G)).

The main result of this section is the following theorem, which classifies all the
graphs whose edge ideals are licci.

Theorem 3.2 (Classification of licci edge ideals). Let G be a graph on V without
isolated vertices. Let S be a standard graded polynomial ring with n variables over
a field K, where n = f(V). Let m denote the unique graded mazimal ideal of S and
put R = Sy. Let I(G) C S denote the edge ideal of G. Put g = height I(G). Then
the following conditions are equivalent:

(1) I(G)m s licci.

(2) I(G) is Cohen-Macaulay and one of the following conditions are satisfied:
(a) (H(V),reg S/I(G)) = (29,9)-
(b) (#(V),reg S/1(G)) = (29,9 — 1).
(c) (4(V),reg S/I1(G)) = (29 — 1,9 — 1).

(3) G is isomorphic to one of the following graphs:

R
Gd:M I I for some h (0<h<g—2)
\—h’_/ g—2—nh
11
Y3

When this is the case,

I(Ga) = ({ziyi}ISng),

I(Gy) = ({zyihicicg, {Tjy1}e<i<h),

I(Ga) = {ziwihicicg—2, {Ti21hi<icn 2122, 2223, 2321),
I(Ge) = ({ziyiti<ico-3 2129, 2923, 2324, 2425, Z521)-

In what follows, we give a sketch of the proof of this theorem.
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Proof of (1) => (2). Assume that I(G)y, is licci. Then I(G) is a Cohen-Macaulay
ideal. Take a graded minimal free resolution of S/I(G) over S as follows:

by by
0= @ S(—ng) = -+ = P S(—n;) (= S(=2)®) — § — S/I1(G) — 0.
j=1 j=1
It follows from Huneke-Ulrich theorem (Theorem 2.1) that
(3.1) 29 — 1 = (g — 1)min{ny;} + 1 < max{ny} = a(S/I(G)) +n < n.
On the other hand, since I(G) is an unmixed edge ideal, we have n < 2g by

Gitler-Valencia theorem (Lemma 3.1). Thus n = 2g or 2g — 1. Moreover, the
Cohen-Macaulayness of S/I(G) implies that

(3.2) reg S/I1(G) = a(S/I(G)) + dim S/I(G) = a(S/I(G)) +n — g.

First suppose n = 2g. Then Equations (3.1) and (3.2) imply that reg(S/I(G)) =
g —1or g. Next suppose n = 2g — 1. Then we have that reg(S/I(G)) = g — 1
similarly. O

Proof of (2) = (3). First we consider the case of n = 2g. Such an unmixed graph
G (without isolated vertices) is called very well-covered.

An arbitrary very well-covered graph G has a perfect matching, that is, there exists
E' C E(G) such that §(E') = W2ﬁ and that e N e’ = () whenever e, ¢/ € E' with
e # €. Thus if G is very well-covered, then we may assume that V(G) = X UY,
where X = {z1,...,2,} (9 = height I(G)) is a minimal vertex cover of G and
Y = {y1,...,y,} is an independent set (that is, {y;,y;} ¢ E(G) forall1 <i < j < g)
and {z;,y;} € E(G) foralli=1,...,g. See [1, 10] for more details.

We consider the regularity of S/I(G) for any very well-covered graph G. Suppose
e = {z1,22}, € = {y1,92} € E. Then e and € are called pairwise 3-disjoint if
{zi,y;} ¢ E holds for all 1 < i,j < 2. Then we have

reg S/I(G) = the maximal number of pairwise 3-disjoint edges of G
by [10, Theorem 3.2].
Using this, we can conclude that G is isomorphic to G, (resp. Gp) if reg S/I(G) = g
(resp. g — 1).
Next we consider the case where n = (V') = 29— 1. By assumption, we have that
a(S/I(G)) = 0. Since G is an unmixed graph with (V) = 2g — 1, it follows from
(12, Lemma 14] that G contains one of the following graphs as a spanning subgraph:

AL e

g—2 . g—3

HE‘:O 11

—~~T
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By combinatorial argument, we can determine all the graphs whose edge ideals
are licci. g

Proof of (3) => (1). First we consider I(G,) = (21y1, Z2¥2, - - -, Zg¥g). Then I(Ga)m C
R is a complete intersection ideal, a fortiori, is licci.

Secondly, we consider I(G3) = ({Zi¥i }1<i<g, {Zj¥1}2<i<h)-
Y1 Y2 Y3 Yn Yn+1  Yg
o N T
Ty To Tz Tp Thyl Tg
If we put J1 = ({9 }1<i<g) and I = Ji: I(Gs), then

I = (o1, {zvi Ya<i<g, Y2Y3 -+ - Yn)-
Moreover, if we put Jo = (21, {Zi¥i}2<i<g) C 11, then

Jo: I = ({zithicich, {Z595} nt1<i<0)

is a complete intersection ideal (see e.g. Example 5.2). Therefore I(Gy)m C R is
licci. Note that it also follows from [14, Corollary 2.3].

We omit the proof of licciness for I(G.1) and I(Ge). O

4. SQUAREFREE MONOMIAL IDEALS AND HYPERGRAPHS

In the latter half of this talk, we discuss licciness of squarefree monomial ideals of
small deviation. In order to do that, we need a classification theorem of those ideals
in terms of hypergraphs, which were introduced in [8]; see [8, 9] for more details.

For an arbitrary squarefree monomial ideal I C S = K|z1,...,z,], let G(I) =
{my,...,m,} denote the minimal set of monomial generators of I. Then the hyper-
graph H(I) associated to I on a vertex set V = [u] is defined by

H() = {{] €V : m; is divisible by z;} : i = 1,2,...,n}.

On the other hand, for a hypergraph H, when n is large enough, if we assign a
variable zr to each F' € H, then

IH=( IT == j=1,2,...,u>

JEFEH

gives a squarefree monomial ideal of K[zp : F € H]. Thus we can construct a
squarefree monomial ideal from a given hypergraph. Note that #(Iy) = H, and
that there exist many ideals I such that H(I) = H.

Let I be a squarefree monomial ideal of S. Then I has a prime component of height
h if and only if H(I) has a minimal cover of cardinality h. Moreover, dim H(I) <
d(I) := p(I) —height I. In particular, d(I) = 0 if and only if dim #(I) = 0. Namely,
I is complete intersection if and only if H(I) consists of isolated vertices.

On the other hand, d(I) = 1 if and only if dim#(I) = 1 and there are no two
disjoint edges. Those ideals have been classified in [8].
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In order to classify all licci squarefree monomial ideals with d(I) = 2, we use a
classification theorem in [9]. Moreover, we use the following notion for simplicity.

Definition 4.1 (Extension). Let H, H' be hypergraphs on the vertex set V. We
say that H’ is an extension of H if H C H' and the set of facets of A coincides
with that of H'. In particular, for each integer ¢ > 0, an extension H’ is called an
i-extension if it is obtained from H by adding i-faces only.

5. LICCI ALMOST COMPLETE INTERSECTION SQUAREFREE MONOMIAL IDEALS

Throughout this section, let S = K|z, ...,z,] be a polynomial ring over a field
K and set m = (24, ...,%,). Then we can regard S an N-graded ring with deg z; = 1
for all 4.

For a homogeneous ideal I C S, I is called an almost complete intersection ideal
if I is minimally generated by height I + 1 elements. We know that if I, is licci then
I is Cohen-Macaulay. When I is almost complete intersection, the converse is also
true.

Theorem 5.1. Let I C S be an almost complete intersection squarefree monomial
ideal. Then the following conditions are equivalent.
(1) I is licci.
(2) I is Cohen-Macaulay.
(3) The associated hypergraph of I is isomorphic to one of the following hyper-
graphs with isolated vertices:

AA.&&}#

Example 5.2. Let S = K[xi, ., Zg,Y1,---,Yg] be a polynomial ring over a field
K. Put m = (1,...,%g,¥1,...,Yy) and R = Sy. For any integers 2 < h < g, an
ideal
I = (.’L‘lyl, T2Y2 ..., 17ng, Yiyz - - yh)R
is licci because
(@Y1, xgYg)R: I = (Tavp, ..., ZgYg)R: Y12 Y
(T1,. ., Th, Tht1Yht1, - - - ,ﬂUgZ/g)R

is complete intersection.

6. LICCI SQUAREFREE MONOMIAL IDEALS OF DEVIATION TWO

The main purpose of this section is to characterize any squarefree monomial ideal
of deviation 2 to be licci. In order to classify those ideals, it is enough to classify
Cohen-Macaulay hypergraphs of deviation 2.

The next theorem is the main result in this paper.
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Theorem 6.1. Let H be a Cohen-Macaulay hypergraph of deviation 2 without iso-
lated vertices, and put Iy, = (I3)m € R = Sn, where S is a standard graded poly-
nomial ring over a field K, and m denotes the unique graded mazximal ideal of S.
Then the following conditions are equivalent:
(1) I is not licci.
(2) The hypergraph H' given by removing all 2-faces from H is a disjoint union
of two Cohen-Macaulay hypergraphs of deviation 1.
(3) I is in a linkage class in the sum of two Cohen-Macaulay almost complete
intersection squarefree monomial ideals Ly and Ly such that ged(my, mp) =1
for any minimal monomsial generators my € Ly and my € Ly, respectively.

Corollary 6.2. Let I C S be a squarefree monomial ideal generated by at most 5
elements. Then Iy, is licci if and only if I, is Cohen-Macaulay.

Instead of proving the theorem, we give several key lemmata.

Lemma 6.3. If a Cohen-Macaulay hypergraph H; is an extension of a hypergraph
Hy and Iy, is licci, then so is Iy,.

Remark 6.4. If K is infinite, then the assertion of Lemma 6.3 follows from [6, The-
orem 2.12].

Lemma 6.5. Let S be a standafd graded polynomial ring, and let m denote the
unique graded mazimal ideal of S. Let I, I", J, J' C m be ideals of the same height.
Suppose that the following conditions are satisfied:

(i) I and I" are Cohen-Macaulay ideals.
(i) J and J' are complete intersection ideals.
(iii) There exist elements a, b, c € S such that

I=J+albc), J=Ja I'=J+(bc).

Then I and I" are doubly linked, that is, we can find an ideal I' such that I ~ I' ~ I".
If, in addition, I" is almost complete intersection, then I is licci.

Lemma 6.6. Let H be a Cohen-Macaulay hypergraph of deviation 2. Let H' be the
hypergraph given by removing all 2-faces from H. Then Iy and Iy are linked.

For instance,

_ 5 3 5
2 7 2 7

7. CLASSIFICATION OF COHEN-MACAULAY HYPERGRAPHS OF DEVIATION 2

For the convenience of the readers, we describe the list of Cohen-Macaulay hy-
pergraphs of deviation 2 in [9] here.

Theorem 7.1 ([9, Theorem 4.9]). Let H be a hypergraph without isolated vertices as-
sociated with a squarefree monomial ideal of deviation 2. Then it is Cohen—Macaulay
if and only if it is a hypergraph of either type (A) or type (B) :

-25-



(A) a disjoint union of two Cohen—Macaulay hypergraphs of deviation 1;
(B) some 0-extension of H is isomorphic to one of the following hypergraphs:

Case 1:
(Hy1)+! (Hy2)*t! (H,19)*H! (H,9)*2 H9) (H19)%2
<7 <7 <y <l <y A
(ng)+1 (H19) (H 9) (H19) (Hy10)*+! (H,10)%*
(H110)3! (H12)*Y (H12)Y? (H12)R (H12)2 (H2)f!
(Hq112)%? (Hi12)5®  (Hi12)F (H112) 5! (H112)F (H112)}?
(H12)F  (H12)F? (H12F (H12)E H2)F (H12)]!

Case 2:

(Ho6)™h (HeT)P (Ho8)4'  (H8)fF' (Ha8)F'  (Ha8)h HzS):;l (H28)1

i ==

(H9) (H9)F (H:9E (H9)F  (H29)3  (H9)f

Case 3:
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(Ha3)%! (H33)}? (H33)%' (H33)5 (H33)E! H35)

E<

"'lll

(H35)F (H35)E! (H35)? (H35)53 (H35)3! (H35) %5
P ¥ X PR
(H35)%" (H35)% (H36)%' (H36)3 (Hs6)5" (H36)5
F< B B B < G
(H36) 5! (H36)5
< G<

Case 4

(H43)E
e e - o® o0 - o
.9 )
T:;HI |‘ %&MJJ '
Case 5:
(H72)a (H72)B

PG A
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ULRICH MODULES
— A GENERALIZATION —

S. GOTO, R. TAKAHASHI, AND K. OZEKI

1. INTRODUCTION

Throughout this note, let A be a Cohen-Macaulay local ring with maximal ideal m
and d = dimA > 0. In [BHU] B. Ulrich and other authors explored the structure
of MGMCM (maximally generated maximal Cohen-Macaulay) A-modules, that is
maximal Cohen-Macaulay A-modules M with €% (M) = p4(M), where €2 (M) (zesp.
pa(M)) denotes the multiplicity of M with respect to m (resp. the number of elements
in a minimal system of generators of M). In [HK] these modules are simply called
Ulrich modules.

The purpose of our note is to study Ulrich modules and ideals in a slightly generalized
form. Let I be an m—primary ideal in A and assume that I contains a parameter ideal

Q of A as a reduction.

Definition 1.1. Our ideal I is called a Ulrich ideal of A, if
mI20,
(2) I? =QI, and
(3) I/I? is A/I-free.

Condition (2) together with condition (1) is equivalent to saying that the associated
graded ring G(I) = @, I"/I"*" of I is a Cohen-Macaulay ring with a(G(I)) = 1—d,
so that Definition 1.1 is independent of the choice of minimal reductions Q of I. If [ isa
Ulrich ideal, then I/Q is a free A/I-module with rank4,; I/Q = pa(I) — d. Therefore,
when A is a Gorenstein ring, Ulrich ideals are good ideals in the sense of [GIW].

Definition 1.2. Let M (# (0)) be a finitely generated A-module. Then we say that
M is a Ulrich A-module with respect to I, if

(1) M is a Cohen-Macaulay A-module with dim4 M = d,
(2) (M) =L4(M/IM), and
AMS 2000 Mathematics Subject Classi cation: 13H10, 13H15, 13A30.
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(3) M/IM is A/I-ree,
where e}(M) denotes the multiplicity of M with respect to I and £4(x) denotes the
length.

Ulrich modules with respect to the maximal ideal m of A are MGMCM modules in
the original sense of [BHU]. Notice that condition (2) in Definition 1.2 is equivalent to
saying that IM = QM, since M is a Cohen—Macaulay A-module with dim4 M = dim A
and the parameter ideal @ of A is a reduction of I.

In this note we shall discuss some basic properties of Ulrich modules and ideals, the
relation between them, and the structure of minimal free resolutions of Ulrich ideals

with some applications.

2. EXAMPLES

Let us note the following example.
Example 2.1. Let R be a Cohen—-Macaulay local ring with maximal ideal n and
dimR =d. Let F = R™ for n > 0 and
A=Rx F

the idealization of F' over R. Let q be a parameter ideal of R and put [ = q x F
and @ = qA (= q x qF). Then A is a d-dimensional Cohen-Macaulay local ring with
maximal ideal m = nx F' and I is an m—primary ideal of A which contains the parameter
ideal @ of A as a reduction. It is standard to check that I is a Ulrich ideal of A.

Hence this ring A contains infinitely many Ulrich ideals.
We begin with the following.

Theorem 2.2. Suppose that I is a Ulrich ideal in A. Then for alli > d,
Syza(A/I)

is a Ulrich A-module with respect to I, where Syzy(A/I) denotes the i ® syzygy of A/I

in a minimal free resolution.

Theorem 2.2 is proven by induction on d. Here we shall explain the basic technique
of induction. For the moment, assume that d > 0 and let a € Q@ \ mQ. Then a € mI.
Let A= A/(a), I =1/(a), and Q@ = Q/(a). We then have the following.

Fact 2.3. The ideal I is a Ulrich ideal of 4, if I is a Ulrich ideal of A.
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Proof. The exact sequence 0 — [I% + (a)]/I? 5 I/I? — 7/72 — 0 is split, since
(12 + (a)]/1* = (a)/[(a) N I?] = (a)/al = A/T
and since the homomorphism ¢ sends 1 to @ = a + I? which is a part of an A/I-free
basis of I/I2. Thus I/T is A/Tfree. O
Fact 2.4 (Vasconcelos [V]). Suppose that 1/1? is A/I-free. Then
Syzis(A/1)/a-Syzs(A/T) = Syziy ' (A/T) @ Syzz(A/T)
forall 7 > 1.
Proof. Tt is enough to show that the exact sequence
0—>A/I-E+I/aI—>T—>O

is split. We write I = (a) + (71, Za, ..., %) With £ = pa(I) — 1. Then

n
Ijal = Aa+ ) _ AT;
=1
where @ and 7; denote the images of @ and z; in I/al, respectively. We claim that this
sum is direct. Assume that ca+ ) ., ¢;Z; = 0 in I/al with ¢,c; € A. Then, because

I/I? is a homomorphic image of I/al, we still have that

ca + Z czT; =0
=1

in I/I* (here @ and 7; denote the images of a and z; in I/I?, respectively). Since
{a,z; € I/I* (1 < i < n)} forms a free A/I-basis of I/I?, we get ¢ € I. Thus
c@@=Y", T =0inI/al,sothat I/al 2 A/I &1 O
Theorem 2.2 now readily follows by induction on d. Remember that when d = 0, we

get I? = (0) and I = (A/I)™ (n = pa(I) > 0). Hence

Syzy(A/T) = (A/T)™

for alli > 0.

Remark 2.5. Fact 2.4 was known by W. V. Vasconcelos [V]. Using this, he proved
the famous result that an ideal I (# A) in a Noetherian local ring (A, m) is generated
by an A-regular sequence, if I has finite projective dimension and if the A/I-module
I/I? is free. Hence A is a RLR, once m has finite projective dimension.
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3. RELATION BETWEEN ULRICH MODULES AND ULRICH IDEALS

The converse of Theorem 2.2 is also true. Namely we have the following.

Theorem 3.1. The following conditions are equivalent.

(1) I is a Ulrich ideal of A.
(2) Syz4(A/I) is a Ulrich A-module with respect to I for all i > d.
(3) There ezists an ezact sequence

0O X—->F—->Y—>0

of finitely generated A—modules such that
(a) F is free,
(b) X C mF, and
(c) both X andY are Ulrich A-modules with respect to I.
When d > 0, one can add the following.
(4) pa(I) > d, I/I? is A/I-free, and Syz'4(A/I) is a Ulrich A-module with respect
to I for some i > d.

The implication (3) = (1) of Theorem 3.1 is based on the following.
Proposition 3.2. Let
0-X—->F—->Y—>0
be an ezxact sequence of finitely generated A-modules and assume that
(i) F is a free A-module,
(ii) X CmF, and
(iii) Y s a Ulrich A-module with respect to I.
Then X is a Ulrich A-module with respect to I if and only if I is a Ulrich ideal of A.
Proof. Let us note the proof of the only if part. We may assume that the field A/m is
infinite. Suppose that X is a Ulrich A-module with respect to I and look at the exact

sequence

0—- X/QX — F/QF - Y/QY — 0,
hence X/QX = Syz}, /@(Y/QY). Then, because .
Y/QY = Y/IY = (A/I)

(r = rankg F > 0), X/QX = (I/Q)", so that I 2 @ and I? C @, because X # (0)
and QX = IX. Besides, I/Q is a free A/I-module, since X/IX = (I/Q)" and X/IX
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is a free A/I-module. With the condition that for every minimal reduction @ of I, (1)
I C Q and (2) I/Q is a free A/I-module, one can deduce that I/I? is A/I-free and
that I? = QI as well, which we leave to the reader. O

We are now in a position to finish the proof of Theorem 3.1.

Proof of Theorem 8.1. (4) = (1) Let a € Q \ mQ and put A= A/(a), T = I/(a),
Q = Q/(a). Then by Lemma 2.4

Syz44(A/I)/a-Syz'4(A/T) = Syz%‘l(Z/T) @ Syziz(Z/T).

Therefore, because both Syz%‘ Y(4/T) and Syz4(A/I) are Ulrich modules with respect
to 1, thanks to the implication (3) = (1) T is a Ulrich ideal of A. Hence I? C @, which
yields I? = QI, because I/I? is A/I-free. O

Remark 3.3. Let k[[X]] be the formal power series ring over a filed k and put A =
K[[X]]/(X?3). We look at the exact sequence

0-m?—>A5A—-A/m—0

of A-modules, where z denotes the image of X in A and m = () the maximal ideal in
A. Then, since m® = (0), the A-module

m? = Syz%4(A/m)

is a Ulrich module with fespect to m, but m not a Ulrich ideal of A, since m? # (0).
This example shows that the implication (4) = (1) is not true in general, unless d > 0.

Question 3.4. It seems interesting to explore how many Ulrich ideals are contained in
a given Cohen-Macaulay local ring. For example, let k[[t]] be the formal power series

ring over a field k and let
A= Kk[[t™,t%2,...,t%]] C k[[t]]

be a numerical semigroup ring, where 0 < ai,as,...,4¢ € Z such that
GCD(ay,as,...,a0) = 1. Let X3 be the set of Ulrich ideals in A which are gener-
ated by monomials in ¢. It is then not difficult to check that X3 is finite and for

example, we have the following.

(1) Xlg[[ta,t47t5]] = {m}
2) Xlg[[t4,t5,t6]] = {(t4,t6)}'
(3) X]g[[ta7ta+17m’t2a—2]] = @, ifa Z 5.
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(4) Let 1 < a < b be integers such that GCD(a,b) = 1. Then X,f[[ta oy # 0 if and
only if a or b is even.
(5) Let A = k[[t4,5,t%"1]] (¢ > 2). Then §X§ =20 — 2.

4. MINIMAL FREE RESOLUTIONS OF ULRICH IDEALS

We now explore minimal free resolutions of Ulrich ideals. Let I be a Ulrich ideal of
A which contains a parameter ideal @) of A as a reduction.
Let

o RAF . SR BF A0

be a minimal free resolution of A/I and let 8; = BA(A/I) (i > 0) be the i-th Betti
number of A/I. We put n = pa(I) = fi.
We then have the following, which is proven by induction on d.

Theorem 4.1. The following assertions hold true.
(1) A/JI®40; =0 foralli>1.
(2) '

(n—d)i4(n—d+1)? (i>d),
- {

(D) + (= d)fia (1<i<d),
1 (i=0)

fori>0. Hence 8; = (‘f) + (n—d)Bi—1 for alli > 1.
What Theorem 4.1 (3) says is the following.

Corollary 4.2. The minimal free resolution of I is obtained by the direct sum of those
of @ and (A/I)" <.

Corollary 4.3. Syzy*(A/I) = [Syzy(A/I)]*? for all i > d. Hence
Syza " (A/T) = Syzy (A/I)
for alli > d, if A is a Gorenstein ring.

This result shows we can expect, in some sense, only one Ulrich module arising from
syzygies. We furthermore have the following. Let I;(8;) (¢ > 1) be the ideal of A

generated by the entries of the matrix ;.

Theorem 4.4. I;(0;) = I for all i > 1.
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Proof. By induction on d, we have 1;(9;) + Q = I for all ¢ > 1, while by Corollary 4.2
1,(8;) 2 Q for 1 < i < d. Therefore, since by Corollary 4.2 I (0;41) = 11(9;) if i > d,
the result readily follows. O

Corollary 4.5. Let I and J be Ulrich ideals of A. Then I = J if and only if
Syzia(A/1) = Syzy(A/J)
for some i > 0.

Let X4 = {I | I is a Ulrich ideal of A}. We have the following answer to Question
3.4.

Theorem 4.6. Suppose that A is of finite C-M representation type. Then X4 is a finite
set.

Proof. Let Y4 = {[Syz&(A/I)] | I € Xa}, where [Syz4(A/I)] denotes the isomorphic
class of Syz4(A/I). Let I € X4 and n = pa(I). Then, because I/Q = (A/I)"¢, we

have
n—d<(n—d)ra(4A/I) =14(I/Q) < r(A),
where r4(x) denotes the Cohen-Macaulay type. Hence
pa(Syz4(A/D)) = BHA/T) = (n—d +1)* < ((4) + 1)! < o0

by Theorem 4.1. Therefore, since A is of finite C-M representation type, the set V4 is
finite, so that X, is also finite, because X4 C V4 by Proposition 4.5. O

Let us explore one example.

Example 4.7. Let A = k[[X,Y, Z]|/(Z? — XY'), where k[[X,Y, Z]] is the formal power
series ring over a field k. Then X4 = {m}.

Proof. Let z,y, and z be the images of X,Y, and Z in A, respectively. Then the
indecomposable maximal Cohen-Macaulay A—modules (up to isomorphisms) are A and
p = (z,2). Since m® = (z,y)m, we get m € X4. Let I € X4. Then p4(I) = 3. We put
X = Syz%4(I). Then, because pa(X) = 4 and ranks X = 2, we see

X 2p @y = Syzi(4/m),

so that I = m by Corollary 4.5. a
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For one-dimensional Cohen-Macaulay local rings possessing finite C-M representation
type, we have the following, where k[[X, Y]] and k[[t]] are the formal power series rings
over a field k£ and z, y denote the images of X, Y in the corresponding ring, respectively.

Example 4.8. The following assertions hold true.

(1) Xigs ey = {(¢%,¢%)}.

(2) Xk[[te' t5]) = 0.

(3) Xy voce-yaeey) = {(z, y”“) (#2,y)}, where £ > 1.

(4) Xy rae-xay) = {(@* y)}.

(5) Xuxyyyxe—vaey = {(2%,9), ( — v, y(z + %), (z + ¥, y(z — ¥))}, where £ > 1.
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ASYMPTOTIC PERIODICITY OF PRIMES
ASSOCIATED TO MULTIGRADED MODULES

FUTOSHI HAYASAKA

1. INTRODUCTION

Let A C B be a graded ring extension of Noetherian N"-graded rings
generated in degrees dj,...,d,, which are linearly independent vectors
over R, with Ag = By = R. Let N = @4 Nn be a finitely generated
Zr-graded A-module and let M = @, ;- Mn be a finitely generated Z'-
graded B-module. Assume that N is a graded A-submodule of M. Then
what we want to study in this note is the following:

Problem 1.1. How does the set Assgr(Myn/Nn) behave asymptotically?

The problem of this type was originated in a question of Ratliff on the
asymptotic behavior of Assg(R/I™) for a given ideal I in R. This is a
special case in our setting where A = R(I) is the Rees algebra of I and
B = R|[t] is a polynomial ring over R. In 1979, Brodmann [2] gave an an-
swer to the question of Ratliff showing that the set Assg(R/I") is stable
for all large n > 0. Since then, the study of asymptotic prime divisors
began and many results have been obtained in the ideal cases. See [10]
for the details. One of the direction of the study is to extend Brodmann’s
original result to more general cases. Problem 1.1 in the standard multi-
graded cases were investigated by many authors and we know nowadays
the corresponding stability results in this cases. Then it is natural to ask
the following: What happens in the nonstandard multigraded cases? In
this note, we investigate the asymptotic behavior of Assg(M,/Ny) in the
general setting and prove that asymptotic periodicity occurs in a cone.
Our main result is the following:

Theorem 1.2. With our setting as above, there exists a vector k € N”
such that, in the cone Cy with verter k generated by dy,...,d,, the set
Assgp(My/Ny) is periodic with respect to dy,. .., d,. Namely, the equality
Assp(Mpim/Nntm) = Assg(Mn/Nyn) holds true for alln € Cx and all
m € I', where I is the semigroup generated by dy, ..., d,.
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This recovers all the known results [1, 2, 5, 7, 8, 9, 11, 12] on the
asymptotic prime divisors in the standard multigraded cases including
the ideal cases. Moreover, by using the technique due to Brodmann [3],
we have the same asymptotic behavior of grade(a, M,/N,) for a given
ideal a in R as a direct consequence of Theorem 1.2.

Theorem 1.3. Under the same situation as in Theorem 1.2, for any
tdeal a in R, there exists a vector k € N" such that, in the cone Cy
with vertex k generated by dy, ..., d,, grade(a, My,/Ny) is periodic with
respect to dy,...,d,. Namely, the equality grade(a, Mpim/Nntm) =
grade(a, My, /Ny,) holds true for alln € Cy and allm € T.

This also recovers all the known results [1, 3, 5, 12] on the asymptotic
grade/depth in the standard multigraded cases and generalizes the recent
result due to Colomé-Nin and Elias [4] and our previous work [6].

In the next section, we fix our notation and recall some basic results
about cones and graded modules that we need in the proof of Theorem
1.2. In section 3, we will give a proof of Theorem 1.2.

Throughout this note, N (resp. R) denotes the set of non-negative
integers (resp. real numbers), and r is any fixed positive integer. Vectors
will be always written by Bold-faced letters, e.g., a or Greek alphabet,

e.g., a,f,9.
2. PRELIMINARIES

Let dy,...,d, € N be any fixed linearly independent vectors over R.
We denote I' = {7, ¢;d; | ¢; € N} C N' the semigroup generated by
the fixed vectors di, ...,d,. For any vector k € N", let

Ci = {k+Zcidi i€ RZO} NN

i=1

be the cone with vertex k generated by dy,...,d, and let

T
Ay = {k—l—ZCﬁLdz ' 0 <], ¢ GR} NN’
i=1
be the basic cell of the cone Ci. Then it is easy to see that
(i) Ax is a finite subset of Cy,
(ii) for any n € Ck, there is a unique expression n = § + m with
0 € Ax and m €T, and

(ifi) Ci = Usea, (6 +T).
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Moreover, by [6, Lemma 2.1], one can easily see that

(iv) for any vectors k, k' € N”, there exists an integer £y > 0 such that
K 4+£4(d;+---+d,) € Cx for all £ > 4. In particular, Cx NCw # 0
and hence there exists a cone Cy such that Cy» C Cy N Cy.

Let B = @pcn- Bn be a Noetherian N'-graded ring generated in de-
grees dy,...,d, with Bo = R. Let M = @, ;- Mn be a finitely gen-
erated Z'-graded B-module. For any vector § € N7, we set MG+D) =
D mer Ms+m, which is a graded B-submodule of M. Let ko € N" be any
fixed vector. With this notation, we have the following two elementary
lemmas that we need in the proof of Theorem 1.2.

Lemma 2.1. Let § € Ay,. Then there exists a vector k =k(§) € 6 + T,
depending on the choice of 8, such that [(0) :pre+m) Ba]mp = (0) for all
1=1,...,7rand allm €T

Proof. Let § € Ay,. Fix ¢ and write [(0) :pe+r) Bq,] = Byr + -+ + Bys
where y; € Msim, and m; € I'. Write each m; = 7} _, ay;dy where
arj € N. Let §; := 1+ max{a;; | j = 1,...,s} and put k; := Sid..
Then [(0) :pe+1) Bd;|mysix, = (0) for all m € T'. Indeed, suppose y €
[(0) :are6+) Ba,mysr, and write y = biys + - - + bsys where b; € B. We
may assume that each b; € Bmys1k;,—(5+m;) = Bmtki—m;- If we write the
vector k; — m; as the linear combination of dy, ..., d, then the integer
coefficient of d; must be positive. Hence each bjy; € Bq,B - y; = (0).
Thus y = 0. Here, by putting k := 6+ k; +--- +k, € § +T', we have
the assertion. O

Lemma 2.2. Let § € Ay,. Then there ezists a vector k =k(6) € 6 + T,
depending on the choice of §, such that for any graded B-submodule H
of M@HD)  Assp(Hmix) € Assp(Hmiktq;) for all i =1,...,r and all
mel.

Proof. Let 6 € Ay,. By Lemma 2.1, there exists k € § + I' such that
[(0) :pr41) Ba;lmix = (0) forall i =1,...,r and all m € I". This vector
k is our desired one. Let H be a graded B-submodule of M®+D). Fix 4
and take any P € Assgp(Hmyx). Write P = [(0) :g h] for some nonzero
h € Hm+k- Since [(0) ‘H Bdi]m+k g [(0) I M(8+TD) Bdi]m+k = (0), we
have P = [(0) :gr h] = [(0) :r Ba;h]. Let wy,...,ws € Bq,h generate
an R-module Bg,h. Then P = [(0) :g Ba;h]l = (;=1[(0) :r w;] and
hence P = [(0) :g w;] for some j. Since w; € Bg;h C Hmixtd;, We have
Pe ASSR(Hm+k+di)' tl
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Before closing this preliminary section, we recall one more lemma we
need in the proof of Theorem 1.2.

Lemma 2.3. Let B be a Noetherian ring which is not necessarily graded
and let J1,. .., J, be ideals in B. Let M be a finitely generated B-module
and F' a submodule of M. Then there exists a vector a = (ay,...,q,) €
N" such that

1) Jo - JEH B F gy J; C IR JPF 4+ HY (M), and

(2) J*--- JErF N HG, (M) = (0)
foralli=1,...,r and all B = (B1,...,05,) € N" satisfying 8 > «, that
is, each §; > a;. Here H) (M) denotes the 0-th local cohomology module
of M with respect to the ideal J;.

Proof. See [5, Lemma 2.2]. O

3. PROOF OF THEOREM 1.2

Let me give a proof of Theorem 1.2. Let A C B be a graded ring
extension of Noetherian N"-graded rings generated in degrees dy, ..., d,,
where dy, ..., d, are linearly independent vectors over R, with Ag = By =
R. Let N = @,z Nn be a finitely generated Z"-graded A-module and
let M = P, .z~ My, be a finitely generated Z"-graded B-module. Assume
that V is a graded A-submodule of M. For any vector n € N", we set
A(n) := Assg(M,/N,) for short. We begin with the following.

Proposition 3.1. Let ko € N". Then for any § € Ay,, there ezists a
vector k = k(8) € § + T, depending on the choice of &, such that

Am+k) CAm+k+d,)
foralli=1,...,r and allm €T

Proof. Fix 6 € Ag,. Since N is a finitely generated A-module, so is
N©@+D) Hence there exists k; € § 4 I' such that Npix, = Am Ny, for all
m €. Let F := BNy, be a graded B-submodule of M®*T) generated
by the elements of Ny,. For i =1,...,r, let J; := Aq,B be an ideal in B
generated by the elements of Aq, and let H; := HY (M©+D) be the 0-th

local cohomology module of M©®+T) with respect to the ideal J;. Then,

by Lemma 2.3, there exists a vector & = (o, ..., a,) € N" such that
(1) JO BB ey J; © IR PR 4 H,
(2) J . JBF N H; = (0)
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foralli=1,...,7 and all 8 = (64,...,0,) € N satisfying B > a. Let
ky := ayd; + - - + a,d, € . Then the assertions (1) and (2) hold true
foralli=1,...,r and all § € N" satisfying f1d; +--- + B,d, € ko +T".
By Lemma 2.2, there exists a vector ks € I' such that

(3) Assp([Hilm+s+ks) © AsSR([Hilm+s+ks+d:)
foralli=1,...,randallm €. Let k :=k; + ko +ks € 6 +I'. Then
we claim that

Claim. A(m+k) CA(m+k+d;) foralli=1,...,r and allm € T.

Fix 4 and take any m € ', and put H := H;. Since m+ky+ks; € I', we
can write m+k, +k3 = f1d; +- - -+ G,d, for some 8; > 0. Let ay,...,q,
generate the ideal J;. Consider the graded B-linear map ¢ = *(ay, ..., ap)

i M(6+I‘)(_di) N (M(‘H'F)/[Jigl . Jiﬁi+1 . JfTF])eap )

Then Kerp = JP' ... JPH ... JBrF ) 64ry J; and we have the inclusion
b s (MO [ Kerg) (~d) — (MOD/J0 - o1 pem)) ™
By taking a degree (m + k + d;)-part of ¥, we have that
Assp(Mmyx/[Ker ¢]mix) € A(m +k + d;).
Consider the exact sequence
0— K — MO /b ... jhrF) - MO+ /Ker p — 0,

where K := Ker/[JP" - .- JP F]. By taking a degree (m + k)-part of
this exact sequence, we have that

A(m +k) C Assgr(Kmix) UA(m +k+d;).

Therefore it is enough to show that Assgr(Km+x) € A(m+k-+d;). Note
that Kerg = J& .. JBF + [Kero N H] by (1). Let W := Kerop N H.
Then
K = Kerp/[J? ... J°F]
= PP JEF WL T E]

~ W/WnJr . JF]
= W  (since [WNJ...JPF] = (0) by (2))
C H.
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Hence

Assp(Kmix) Asspr(Hmix)
Assp(Hmti+a;) (by (3))

A(n1+—k4—d0.

N 1NN

O
Proof of Theorem 1.2. Take any kg € N" and fix § € Ay,. Put d :=
d; + -+ d,. We divide the proof into three steps:

Step 1. For the fixed vector § € Ay,, there exists a vector k; € § + T
such that Alm+k;) C A(m+k;+d;) foralli=1,...,randallm € T.

This follows from Proposition 3.1.
Step 2. ;5o A(k: +£d) is a finite set.

Since N@+I) is a finitely generated A-module, there exists a vector
k' € 6 + T such that Npmiw = AmMNe for all m € T'. Take an integer
¢y > 0 satisfying 0 + fod € k' + I". Then the equalities

Niy+ta = Age—to)a Ny +0a = [T Lk, 2a
hold true for all £ > £y, where J := J;---J, and L := BNy, 14,q- Thus

My, +ea/Nx,+0a = [M/JZ‘ZOL] Kt ed for all £ > £y. Hence if £ > 4, then

A(ky +£d) = Assg ([M [I0L]
C ASSR (M/JZ—KOL)
— {QNR|Q e Assp (M/J*L)}.

Since it is easy to see that (J,5,Assp (M/J"L) is a finite set, we have
U, A(k: +£d) is a finite set so that (J,, A(ky +£d) is a finite set.

Step 3. There exists a vector k; € § +I' such that A(m + k) = A(k,)
forallm eT.

k1+ed)

Step 1 and Step 2 imply that there exists an integer ¢; > 0 such that
4) A(k; +4d) = A(k; + 44,d)
for all £ > ¢;. Let ko := k; +¢;d. This vector is our desired one. Indeed,
take m € I' and write m = $,d; +--- 4+ 3,d,. Let 8 := max{fi,...,5}.
Then, by Step 1, A(ky) C A(m + ky) C A(ky + Bd). Since A(ky) =
A(ky + 8d) by (4), we have A(ks) = A(m + k).
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Now, we note here that the above vector ko = ky(4) depends on the
choice of § € Ay,. After these three steps for every point § € Ay,, by
taking a cone

CkCCiuN | [ Cuw|
§€hk,
we have that A(n + m) = A(n) for all n € Cx and all m € I'. Indeed,
since n € Cy,, there is a unique § € Ay, such that n € § + T'. Thus
n,n+m € Ci, N (6+T) =ko(6) + T and hence A(n +m) = A(n) by
Step 3. This completes the proof. O
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1. INTRODUCTION

This is a joint work with Daisuke Hirose.

Throughout this talk, let R be a commutative Noetherian ring containing F, =
Z/pZ, and suppose that R is an F-finite domain, that is, the Frobenius map F': R —
R, defined by F(a) = a?, is a module-finite map. The ring R is called F'-pure (resp.
strongly F-regular) if R — RYP splits (resp. for any ¢ € R° = R\ {0}, there exists
a power ¢ = p° such that R — RY4(a — c/%) splits). Any strongly F-regular local
ring is F-pure.

Takagi and the first author [TW] defined the notion of F-pure thresholds for
(strongly) F-regular rings in terms of the F-purity of pairs. The F-pure threshold
fpt(a) corresponds to the log canonical threshold, denoted by lct(a), which is an
important invariant in higher dimensional birational geometry. See e.g. [HMTW,
MTW, TW].

Definition 1.1 (F-pure threshold). Let ¢ > 0 be a real number. For any nonzero
ideal a C R, the pair (R, a‘) is said to be F-pure if for all large ¢ = p® > 0, there
exists an element d € al®@=D! such that R — RY? (1~ d'/9) splits as an R-linear
map. Then the F-pure threshold, denoted by fpt(a), is defined by

fpt(a) = sup{t € Ry | the pair (R, a") is F-pure}.

In order to study the F-purity (of pairs), the following Fedder type criterion is
very useful.

Lemma 1.2 (Fedder type criterion cf. [Ta, Lemma 3.9]). Assume that (S,n) is
an F-finite reqular local ring (resp. a homogeneous polynomial ring over an F-finite
field k withn = Sy and k = S;). Let I C S be a radical (resp. a homogeneous
radical) ideal of S. Let t > 0 be any real number, and let b C S be an ideal. Put
R = 8/I, m = nR and a = bR. Then the pair (R, a") is F-pure if and only if for
all large g = p° > 0, bl@=DI(1l4: ) Z nld,

Remark 1.3. Let R be strongly F-regular local ring, and let a,J C R ideals with
a C v/J. Then the F-jumping exponent of a with respect to J is defined by

(1.1) ¢'(a) = sup{t € Ryo | 7(a") Z J},

1This is an extended abstract. The final version will be published elsewhere.
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where 7(a’) denotes the a’-test ideal defined by Hara and the second author in [HY].
If R is Q-Gorenstein or R and a are homogeneous, then the smallest F-jumping
exponent {™(a) coincides with the F-pure threshold fpt(a); see e.g. [Ta, Corollary
3.5].

Let us recall a variant of F-pure thresholds, so-called F-thresholds. Assume that
R is an F-finite F-pure domain of characteristic p > 0. Let Jl9 denote the ideal
generated by the g(= p®)th powers of the elements of J.

Definition 1.4 (F-thresholds [MTW, HMTW]). Let a C R be an ideal. Then
for every positive integer e, we define v™(p?) = max{r € Z |a” € mP’l}. Then the
F-threshold of a with respect to m, denoted by ¢™(a), is defined by

m €
c™(a) = lim Ve (p) )
e—oo  p°
In particular, c*(a) is said to be the diagonal F'-threshold of a (see [MOY]).
Remark 1.5. When R is F-pure, ¢’(a) always exists (see [HMTW, Lemma 2.3]).

The following proposition is well-known, which is a starting point of our study.

Proposition 1.6 (See [HMTW, Remark 4.5]). Assume (R,m) is a strongly F-
regular Q-Gorenstein local domain (resp. a (not necessarily Q-Gorenstein) homoge-
neous k-algebra with Ry = k). Let a be a nonzero ideal (resp. a nonzero homogeneous
ideal). Then
0 < fpt(a) < ™(a) < dim R.

holds true.

If R is regular, then fpt(a) = c™(a) holds.
Remark 1.7. We use the same notation as in Proposition 1.6. If R is regular, then
fpt(m) = c™(m) = dim R. Conversely, if R is not regular, then c™(m) < dim R; see
[HMTW, Corollary 3.2].

So the main aim of this talk is to consider the following problem.

Problem 1.8. Find a relationship between F-pure threshods fpt(R) and a-invariants
a(R) for homogeneous rings R, where

a(R) = max{n € Z|[HI™E(R)], #0}; see [GW]).

In this talk, we give an answer to this problem for affice toric rings.

2. MAIN RESULT

Before stating our result, we fix some notation.

Let d > 2 be an integer. Let N = Z? be a lattice of rank d and M = Homg(N, Z)
be the dual lattice of N. Put Ny = N ®z K for any ring K. Then there exists a
perfect pairing ( , ): Mr® Ng — R. Let 0 C Ny be a strongly convex rational
polyhedral cone, that is, there exists a minimal system of generators v1,...,v; € N
such that 0 = Ryov; + - -+ + Ryov, with {o} N {—c} = {0}. Furthermore, we may
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assume that v1, ..., v, is primitive, that is, for every ¢, we cannot replace v; with av;
for any a € R with 0 < a < 1. Let 0¥ C Mg be the dual cone of o defined by

oV ={ue Mg|(u,v) >0 forallv e g}

Then
R=klo" N M]:=k[X*|ueo' NM CkXE,. .., X5
is called the affine toric ring defined by o over a field k. Note that such a ring is
strongly F-regular.
In this talk, we also assume that R is homogeneous (standard graded), that is,
there exists a vector

Vpor = '[@1,...,a4) € Ng st. H:aXi+- - +agXa=1

contains all the vectors my, ..., m,, where m = (X™,..., X™«) denotes the unique
graded maximal ideal of k[c¥ N M]. "Under the notation as above, the following
theorem is the main result in this talk.

Theorem 2.1. Let k be a perfect field of characteristicp > 0. Let R = kjo¥ NM] be
a homogeneous affine toric ring over k, and let m denote the unique graded mazimal
ideal of R. Then the following statements hold:

(1) 0 < fpt(m) < —a(R)
(2) Equality holds true if and only if R is Gorenstein.
If R is Q-Gorenstein of index of 7 > 2, then

E < fpt(m) < —a(R) — 1
T T

Chiba and Matsuda [CM] proved Theorem 2.1 holds true for Hibi rings. On the
other hand, in characteristic 0, we obtain the following corollary.

Corollary 2.2. Let R = k[o¥ N M] be a homogeneous affine toric ring over a field
k of characteristic 0. Let m denote the unique graded mazimal ideal of R. Assume
that R is Q-Gorenstein. Then the following statements hold:

(1) let(m) < —a(R)(< dim R).

(2) Equality holds true if and only if R is Gorenstein.

In what follows, we give a sketch of the proof of Theorem 2.1.

2.1. Gorenstein case. We first consider the Gorenstein case. The following propo-
sition, which was given by Takagi and the first author in [TW] without proof, gives
a proof of Theorem 2.1 in the Gorenstein case.

Proposition 2.3 ([TW, Example 2.4 (iv)]). Assume that R is a homogeneous
Gorenstein strongly F-reqular domain. Let m = @n21 R, denote the unique graded

magzimal ideal of R. Then fpt(m) = —a(R) and (R, m*®) is F-pure.
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Proof. Write R = S/I, where S = k[Xj, ..., X,] is a polynomial ring and I C S is
an ideal with h = height I. Set n = (X3,...,X,)S. Let :

F: 0=Fo>Fha—> 2R F=5S->S1-0

be a graded minimal free resolution of R over S. As R is Gorenstein, we can write
Fy, = S(—cp) for some ¢, € Z. Then since

Kr=R(a(R)) = Ext§(R,S(-n))
Cok(Homg(Fj—1, S(—n)) — Homg(Fp, S(—n)))
= R(_n + ch))’

we have a(R) = —n + c,. Applying the Peskine-Szpiro functor to F. yields the
graded minimal free resolution of S/l as follows:

F(F.): 0= Fro=8(—cag) > Frox = -+ > FL 5 Fp =85 — /1 > 0.

In particular, S/I'9 is a Gorenstein ring with a(S/I'9) = —n + c,q for all ¢ = pe.
Hence

I . 1

W Homs(S/I,S/I[Q])
> Homs(S/1, Kg/ra(—a(S/19)))
= Kgr(~a(S/19))

IR

R(a(S/I) - a(S5/1))
R(=ca(g — 1)) = R(—(a(R) +n)(g - 1)).

Therefore, for each ¢ = p®, there exists an element o € I9: I of degree (a(R) +
n)(g — 1) so that

149 1 =119 4 Ro C 119 4 nla@®+n)a-1)
Now suppose that n~®®@-1([ld: 1) C nld. Since n is generated by an S-
sequence, we have
a e J4; [ Cnld: q-a®a-D _ gld 4 p(r+a(R)@-1)+1

As dega = (n + a(R))(qg — 1), we have that o € nld. But this implies that
I19: I C nld, which contradicts the assumption that R = S/I is F-pure ([Fe]).
Hence n~e®@=1 (1l [) ¢ nld. Namely, (R, m~*®) is F-pure.

Similarly, we can show that if ¢ > —a(R) then (R, m?) is not F-pure. a

2.2. General case. Recall that R is Q-Gorenstein if and only if there exists an
integer 7 > 1 such that Kg) is principal. The minimum one among such integers
r > 1 is called the indezx of R, denoted by Index(R). In particular, a Gorenstein
ring is just a Q-Gorenstein ring of index 1.

In what follows, let R = k[o¥ N M] be an affine toric ring. We use the same
notation as in Section 2. The following criterion for Q-Gorensteinness of toric rings
is known.

Lemma 2.4. Then the following statements are equivalent:
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(1) R is Q-Gorenstein.
(2) There exists a vector w € Mg such that (w,v;) =1 forallj=1,...,s.

When this is the case, if r = Index(R), then mo =7 -w € M and Kg) > X™R,
Put
Pm)={X\-u|A>1, ue CONV({my,...,m,}).
We define a real function \p: 0¥ — R by
An(u) = sup{A € Ryo|u € A- P(m)}.
Since Ap(u) = @171 + - - - +agzy for all u =*zy, ..., z4] €Y C R?, A\ is a linear
function which satisfies A\y(u) = deg X* for all u € ¢¥ N M. Using this function,

we can desribe fpt(m) and a-invariant. The following lemma is a reformulation of
Blickle’s theorem ([Bl, Theorem 3]).

Lemma 2.5 (See [Hi, Corollary 4.3]). Let R = k[oc¥ N M] be as above. Then we
have
fpt(m) = sup An(w),
weX
where X = {w € Mg |0 < (w,v;) <1 forallj=1,2,...,s}.
If R is Q-Gorenstein, then
fpt(m) = An(w),
where w € Mg with (w,v;) =1 for all j.

For a graded R-module M, the initial degree of M is defined by indeg(M)
min{n € Z|[M], # 0}. Also, relint(P) denotes the relative interior of P C Mg
R

Lemma 2.6 (Stanley). Let R = k[o¥ N M| be as above. Then there exists a vector
u, € M such that

—a(R) = An(u,) = deg X™=.
Furthermore, if u € relint(c¥) N M then An(u) > —a(R).

Proposition 2.7 (See also [TW, Theorem 2.7(2)]). Assume that R = k[o¥ N M] is
a homogeneous toric ring, which is not Gorenstein. Then

fpt(m) < —a(R).
Furthermore, if, in addition, R is Q-Gorenstein ring of index r > 2, then
1 1 1
fpt(m) (S ;ZZO and T S fpt(m) S —a(R) — —’I‘—
Proof. We divide the proof into two cases.
Case 1: Suppose that R is Q-Gorenstein.

Then we have

1 1
fpt(m) = An(w) = (W, Vnor) = T(mo,vno,) € TZ.

We first prove the left-hand side. Since R is strongly F-regular, we have fpt(m) >
0. Hence it follows that fpt(m) > - because fpt(m) > 0 and fpt(m) € ;Z.
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Next, we prove the right-hand side. Since R is not Gorenstein, KF, is not principal.
On the other hand, since Kg) is principal and it contains K, we have K, C Kg).
Therefore

7 - fpt(m) = 7(w, Vnor) = (Mo, Unor) = deg X™° < indeg(Ky) — 1= —r-a(R) — 1.
This yields the required inequality.
Case 2: Suppose that R is not Q-Gorenstein.

Let {v1,...,vs} be the set of primitive vectors of o. Take a vector u, € relint(c")NM
such that —a(R) = An(u,) = deg X*s as in Lemma 2.6. Then (u,,v;) > 1 for
all j = 1,2,...,s because (uq,v;) > 0 and (u,,v;) € Z. But since R is not Q-
Gorenstein, we have that (u,,v;) > 2 for some j with 1 < j < s. We may assume
that (ug,v1) > 2 without loss of generality.

Consider X = {w € Mg |0 < (w,v;) <1 forall j=1,2,...,s} as in Lemma 2.5.
Then one can easily see that 0 # u, —w € ¢ for all w € X. Indeed, :
(g — w,v5) = (Uq, vj) — (w,v;) >1—1=0;

and
(Ug —w,v1) = (Ug,v1) — (W, 11) 22 —1=1.
Since Am(Us) — An(w) = An(ug — w) > 0, we have Ay(w) < An(u,) for all w € X.

Since Ap|x is a continuous function on the compact set X, it takes the maximal
value on X say Ap(w’) for some w’ € X. Summarizing the above argument, we get

An(w) < An(Ww') < An(ug) = —a(R).
Hence Lemma 2.5 yields fpt(m) < Ap(w') < —a(R), as required. O

3. F-THRESHOLDS VS. a-INVARIANTS
The following theorem gives a relationship between F-thresholds and a-invariant.
Theorem 3.1. Suppose that R = k[oV N M] is homogeneoﬁs. Let m denote the
unique graded mazimal ideal of R. Then c™(m) > —a(R).
4. EXAMPLES AND QUESTIONS
In this section, we give typical two examples.

Example 4.1 (Veronese). Let r,d > 2 be integers. Let R = k[X;,..., X ™,
the rth Veronese subring of a polynomial ring over a field k, and let m denote the

unique graded maximal ideal. Then R is a Q-Gorenstein homogeneous toric ring
with dim R = d. Then we have

b ==, )= | L]

In particular,
(1) fpt(m) = —a(R) if and only if -+ € Z that is, R is Gorenstein (see e.g.
[GW]).
(2) ¢™(m) = —a(R) if and only if d=1 (mod 7).

_d+r-1
-—
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The Segre product of two polynomial rings can be regarded as a Hibi ring. Thus
both the F-pure thresholds and the diagonal F-thresholds of those rings were cal-
culated by Chiba and Matsuda [CM].

Example 4.2 (Segre product; see [CM]). Let m,n > 2 be integers. Let
R=k[Xy, ..., Xu]#k[Ys, ..., Y,]
be the Segre product of two polynomial rings. Then

(1) R is a homogeneous strongly F-regular ring with dmR=m+n —1.
(2) R is Gorenstein if and only if m = n. Otherwise, R is not Q-Gorenstein.
(3) fpt(m) = min{m,n} due to Masahiro Ohtani.

(4) ¢™(m) = —a(R) = max{m,n}.

In the last of this talk, we pose a conjecture and two questions.

Conjecture 4.3. Let R be a homogeneous strongly F-regular domain and m denotes
the unique graded mazimal ideal of R. Then

(1) fpt(m) < ~a(R) < c™(m).
(2) fpt(m) = —a(R) if and only if R is Gorenstein.

Question 4.4. When does fpt(m) = c¢™(m) hold?
Question 4.5. When does fpt(m) = dim R — 1 hold?
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Abstract

This article gives a survey of results about the Cohen-Macaulay property
and the depth of invariant rings.

Introduction

The main object of study in invariant theory is the invariant ring of a given group
action. Typical questions about such an invariant ring are: Can it be finitely
generated? How can generators be obtained algorithmically? To what extent can
group orbits be separated by invariants? What ring-theoretic properties does the
invariant ring have, and how do they relate to properties of the group action? This
paper deals with the last question and focuses on the Cohen—Macaulay property
and the depth. We will usually (but not always) restrict to the case of a finite group
acting linearly on a finite-dimensional vector space. This paper will present meth-
ods using group cohomology to prove results about the Cohen-Macaulay property
and depth of invariant rings. These methods were for the most part developed
around the last turn of the century.

It is well known that in the nonmodular case (i.e., when the group order is
not divisible by the characteristic p of the ground field), the invariant ring is
always Cohen—Macaulay. So the interesting case is the modular case. Before the
development of the above-mentioned cohomological methods, only sporadic results
and examples in the modular case were known. The best of these is a result by
Ellingsrud and Skjelbred [7], who considered the case of cyclic groups and obtained
an explicit formula for the depth of the invariant ring. Another result by Campbell
et al. [4] tells us that if G is a p-group, then vector invariants of three copies are
never Cohen—Macaulay.

The first section of this paper is devoted to the nonmodular case. We gen-
eralize the above-mentioned result that invariant rings in this case are always
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Cohen—Macaulay. The second section introduces the cohomological methods for
the study of the Cohen—Macaulay property and depth. The main results in the
case of finite groups are presented in Section 3. These include a result on vec-
tor invariants and a result saying that the group is generated by certain types
of elements, which both go back to joint work with Nikolai Gordeev. Finally in
the last section some results where the depth is determined precisely are discussed.

We will use the following notation. For a Noetherian ring R we consider the
Cohen—Macaulay defect

def(R) = sup {dim(Rp) — depth(Rp) | P € Spec(R)} € No U {co},

which measures the deviation of R from being Cohen-Macaulay. (In fact, for this
definition it suffices to assume that Rp is always finite-dimensional.) This number
is particularly interesting in the case that R = @D, R; is a graded ring with Ry
a field, which occurs for example when R is the invariant ring of a group acting
linearly on a vector space. In this case we can use Noether normalization to obtain
a graded subalgebra A C R, isomorphic to a polynomial ring, such that R is finitely
generated as an A-module. The Auslander-Buchsbaum formula then tells us that
def(R) is equal to the length of a minimal free resolution of R as an A-module. So
def(R) measures the homological complexity of R. In particular, R is free as an
A-module if and only if it is Cohen—Macaulay.

We will consider the standard situation of invariant theory, so V = K™ will be a
finite-dimensional vector space over a field K, and G C GL(V) will be a subgroup
of the general linear group. We will often make the restriction that G is finite or,
more generally, algebraic. If not stated otherwise,

R:=K[V]=Klzy,...,Zn)

will denote the polynomial ring on V, on which G acts by o(f) = foo™!. (If K
is finite, the action is first defined on the dual V* of V' as above and then on K[V]
by homomorphic extension.) Moreover,

RC:={fe€R|o(f)=fforalloc G}

will denote the invariant ring. This is the main object of interest in invariant
theory. In this article, our interest focuses on the Cohen-Macaulay defect def(R®).
With this notation, the formula by Ellingsrud and Skjelbred [7] mentioned above
can be stated as follows. If G is a cyclic group with Sylow p-subgroup P (where
p = char(K)), then

def(R®) = max{codim(VF) — 2,0}. (0.1)
1 The nonmodular case

The nonmodular case in invariant theory of finite groups is the case where the
group order |G| is finite and not divisible by the characteristic of K. This is the

-54 -



case where the results are nicest. For example, RC is always Cohen-Macaulay in
this case. We will present a proof of this by giving a more general result which, to
the best of the author’s knowledge, has not yet appeared in the literature in this
generality.

Theorem 1.1. Let R be a commutative ring with unity and let G C Aut(R) be
a group of ring-automorphisms of R. Furthermore, let H C G be a subgroup
such that the indez (G : H) is finite and invertible in R, and assume that R¥ is
Noetherian. Then

def(R%) < def(RY).

Proof. We may assume def(R¥) < co. Choose a system o7y, ...,0, of left coset
representatives of H in G. Since every a € R¥ satisfies the equation M, (z —
oi(a)) € R%[z], R¥ is an integral over RE. Let Q,Q' € Spec(RH¥) such that

R°NQ=R°NQ.

Then for a € Q we have [[_,0:(a) € RENQ C Q' so there exists i with
a € 0;1(Q"). Using the prime avoidance lemma, we conclude that there exists ¢
such that Q C o;(Q'). Since @ and Q' lie over the same prime ideal in RC, this
implies

Q' =0i(Q).
We claim that going down holds for the extension R® C R¥. Let P € Spec(R%)
and let Q' € Spec(RH) such that P C Q'. There exist Q, @ € Spec(R¥) such that

R°NQ=P, R°NQ=R°NQ, and QCQ.

By the above, there exists ¢ with Q' = oi(@), s0 0;(Q) € @ and R°Na;(Q) = P.
So indeed going down holds.
Now let P € Spec(R®). We need to show that

depth (R$) > dim(R) — def(R™).

Let ai,...,am be a maximal R¥-regular sequence in P. Then every element of P
is contained in an associated prime ideal of R¥ /(ay, ..., am)R¥, so by prime avoid-
ance, P itself is contained in an associated prime ideal @ of R /(ay, ..., am)R. It
is easy to see that as elements of RY, the a; form a maximal Rj-regular sequence,
S0

m = depth(RE) > dim(RE) — def(R¥) > dim(R§) — def(R"),  (1.1)

where the last inequality follows from going down (see Kemper [17, Corollary 8.14]).
We claim that aq, ..., an is R%-regular. So suppose that

k-1
b- ar = Z bjaj
j=1
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with 1 < k < m and b,b; € RS. The R¥-regularity yields

k-1
b= E C;a;
j=1

with ¢; € R¥, so

n k-1 n
1 1
== ait) =) (EZ :ai<cj)> a; € (a1, am) RC.
i=1 j=1 =1

This proves the claim, so
m < grade(P, R) < depth(R$),

where the second inequality follows from Bruns and Herzog [2, Proposition
1.2.10(a)]. Together with (1.1), this completes the proof. O

Returning to our standard situation where R = K[V] and G acts linearly on
V', we state the following consequence of Theorem 1.1.

Corollary 1.2 (Hochster and Eagon [12]). Assume that G is finite such that |G|
is not divisible by char(K). Then R® is Cohen-Macaulay.

A further consequence of Theorem 1.1 is the result by Campbell et al. [3] that
if R” is Cohen-Macaulay with P C G a Sylow p-subgroup, p = char(K), then R®
is also Cohen—Macaulay. .

Recall that a linear algebraic group G over an algebraically closed field K is
called linearly reductive if every G-module V (i.e., every finite-dimensional K-
vector space V' with a linear action given by a morphism G x V' — V) is completely
reducible. So a finite group G is linearly reductive if and only if |G| is not divisible
by char(K). The following celebrated result is a generalization of Corollary 1.2.

Theorem 1.3 (Hochster and Roberts [13]). Let G be a linearly reductive alge-
braic group over an algebraically closed field K and let V be a G-module. Then
K[V is Cohen—Macaulay.

2 A cohomological obstruction

We will now consider the more difficult nonmodular case of invariant theory and
start by considering an example.

Ezample 2.1. Let K be a field of positive characteristic p. The cyclic group G =
(o) = Cp of order p acts on the polynomial ring R := K z1, z2, T3, Y1, Y2, 3] by

o(z;) =z; and o(y;) =1y + ;.
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We find invariants
r; (1=1,2,3) and w;=zy;—z;y (1<i<j<3)
and the relation

1 T9 I3
T1U2,3 — T2U1,3 -+ Z3Uy2 = det Ty To T3 | = 0.
Y1 Y2 Y3

Since u; 2 does not lie in the ideal (xl,z2)RG, this shows that 1,5, z3 do not
form a RC-regular sequence. On the other hand, the z; can be completed to a
homogeneous system of parameters (by the invariants y; — 2} ~1y;, for example),
so it follows that RC is not Cohen—-Macaulay. This is probably the most accessible
example of a non-Cohen-Macaulay invariant ring. Of course we know from (0.1)
that def(R%) = 1. 4

In the above example, the invariants z; form an R-regular sequence, but fail to
be R%-regular. From a general investigation of this phenomenon, the cohomological
criterion given in the following lemma emerged. We consider group cohomology
H*(G, R) with values in R and write

m = inf {i > 0| H(G,R) # 0} € NU {00}, (2.1)

which we call the cohomological connectivity (see Fleischmann et al. [10]).
This number is not always easily accessible, but in many cases it is.

Lemma 2.2 (Kemper [14]). Let ay,...,a, € R® be an R-regular sequence. If
r < m+2 (withm defined in (2.1)), then ay, ..., a, is also RC-reqular. Ifr = m+2,
then aq, ..., a, is RC-regular if and only if the map

H™(G,R) —» H™(G,R")
induced by the multiplication by a4, ... ,a, is injective.

The last statement may be rephrased as follows: ay, . . . , a, fail to be R®-regular
if and only if there exists a nonzero a € H™(G, R) such that a;a = 0 for all 4.

The case m = 1 of the lemma can be proved by elementary calculations. The
general case can be proved by using the long exact sequence of cohomology and a
Koszul complex.

Ezample 2.3. We reconsider Example 2.1 in the light of the above criterion. A
nonzero cohomology class in a € H'(G, R) is given by the cocycle G — R, ¢/ —
j € K. So the cohomological connectivity is m = 1. For ¢ = 1,2,3, the class
z;a € HY(G, R) is given by

G— Ra Uj = jz’i = Uj(yi) — Yi,

which is a coboundary. So z;a = 0, and Lemma 2.2 tells us that z1, z,, 3 are not
RC-regular. q
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Lemma 2.2 is crucial for proving the general result presented in the following
theorem. Before we state it, we recall that a linear algebraic group G over an
algebraically closed field K is called reductive if it has no infinite normal, unipo-
tent subgroup. Examples of reductive groups include all classical groups (such as
GL,(K), SL,(K) and the symplectic and orthogonal groups) and all finite groups.
Every linearly reductive group is reductive, and in characteristic 0 the converse
holds. But in positive characteristic there is a wide gap between reductive groups
and linearly reductive groups. The following result may be regarded as a converse
to Theorem 1.3.

Theorem 2.4 (Kemper [15]). Let G be a reductive algebraic group. If G is not lin-
early reductive, there ezists a G-module V' such that K[V|© is not Cohen-Macaulay.

Proof (sketch). It is not hard to see that a linear algebraic group G is linearly re-
ductive if and only if H*(G, U) = 0 for every G-module U. So under our hypotheses
there exists a G-module U with H'(G,U) # 0. Choose a nonzero a € H'(G,U).
Such a class a defines an exact sequence

0-U—-W-—->K-—=0

of G-modules. (This can be seen by elementary considerations or, more abstractly,
by interpreting H*(G,U) = Extk(K,U) as Yoneda Ext.) Dualizing the above
sequence yields

0-K->W"->U"—0.

If w € (W*)% is the image of 1 € K, it turns out that w ® a is 0 as an element of
HY(G,W*®U). Forming V :=W @ W @ W @ U*, we find three copies a1, a,, as
of win R := K[V]. As an element of H!(G, R), a remains nonzero, but a;a = 0.
So by Lemma 2.2, the a; do not form an R%-regular sequence. On the other hand,
the a; can clearly be extended to a homogeneous parameter system of R. Since
G is reductive, it can be shown that they can also be extended to a homogeneous
parameter system of R®. Therefore RS is not Cohen-Macaulay. |

The reductivity hypothesis in Theorem 2.4 cannot be omitted. For example, ev-
ery invariant ring of the additive group over K = C is Cohen-Macaulay. It may be
worthwhile to mention in this context that, to the best of the author’s knowledge,
no example of a non-Cohen-Macaulay invariant ring K[V]¢ with char(K) = 0 is
known to date. An explicit version of Theorem 2.4 can be found in Kohls [18]
(see [19] for results on the Cohen-Macaulay defect).

3 Traces and wild ramification
In Theorem 2.4 (and its proof) we have produced a tailor-made representation V'
for a given group G such that Lemma 2.2 could be used to prove that K[V]€ is not

Cohen-Macaulay. The goal of this section is to use Lemma 2.2 to deduce results
on a given representation V of a group G.
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We will restrict to the case that G is finite and its order is divisible by p :=
char(K). The question is which elements of RS annihilate cohomology classes from
Hi(G, R) with i > 0. One answer is the following: For a polynomial f € R, define

the trace as
TH(f) = Y o(f) € BE.

o€G
Then for o € H(G, R) with i > 0 and f € R we have
Tr(f) - @ = cores (f - resg,ay (@) =0, (3.1)

where cores denotes the corestriction (see Evens [8, Proposition 4.2.4]).

Clearly the image I := Tr(R) C R of the trace map is an ideal. It is quite
easy to determine its height. Since going down holds for RCG C R, the height of I
equals the height of the ideal IR in R. So we consider the variety in V' determined
by I. It is easy to see that for z € V' the equivalence

Tr(f)(z) =0 forall feR <= p||G.l

holds, where

G,:={0€G|o(z) ==z}
denotes the point-stabilizer. So the variety determined by I is the union of all V*
with o € G of order p. We obtain

ht (Tr(R)) = min {codim(V’) | o € G, ord(c) = p} =: c. (3.2)
So the height of the trace ideal is completely accessible. We can now prove the
following result.
Theorem 3.1. Let G be finite. Then
def(RG) >c—m-—1
with ¢ and m defined by (3.2) and (2.1).

Proof. We may assume m < co. Let P be an associated prime ideal of H™(G, R)
as an R®-module. We claim that

grade (P, R%) <m+1. (3.3)

Indeed, if there existed a regular sequence ay, .. .,am42 € P, then the ideal in R
generated by the a; would have height m+2 (since going down holds for R® C R),
so the a; would form an R-regular sequence by the Cohen-Macaulay property of
R. Applying Lemma 2.2 then shows that ay, ..., am42 is not RC-regular after all.
By Bruns and Herzog [2, Proposition 1.2.10(a)], there exists Q € Spec(R®) with
P C @ such that

depth(Rg) = grade (P, RG) . (3.4)
By (3.1), the trace ideal Tr(R) is contained in P and therefore also in @, so
ht(Q) > ¢ by (3.2). We obtain

def(R®) > ht(Q) — depth(R3) > c—m —1,
where (3.3) and (3.4) were used for the last inequality. O
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Now we can give a lower bound for the less accessible quantity m, the cohomo-
logical connectivity. In fact, if |G| = p*m with (p, m) =1 and a > 0, then it can
be shown that there exists a positive integer 7 < 2p®~*(p — 1) such that H"(G,F,)
is nonzero. The argument uses the Evens norm in cohomology and can be found
in the proof of Theorem 4.1.3 in Benson [1]. It follows that

m < 2p° Hp—1) < 2|G|. (3.5)

We obtain the following result on vector invariants, i.e., invariants of several copies
of the same representation V.

Corollary 3.2 (Gordeev and Kemper [11]). Assume that G is finite of order di-

visible by p. Then
4 PR —
khmdef(K[/EB EB[/G)—OO.

k copies

This follows from Theorem 3.1 and (3.5) since the number ¢ from (3.2) tends
(linearly) to infinity when V' is replaced be the direct sum of k copies of V. Corol-
lary 3.2 tells us that the vector invariants in the modular case are getting worse
and worse, in terms of homological complexity, as the number of copies increases.

We also obtain results that link the Cohen—-Macaulay defect to the question
by what type of elements G can be generated. An element o € GL(V) is called
a k-reflection if codim (V?) < k. So the 1-reflections are the identity and the
pseudo reflections in the classical sense. In this context, a well-known result,
attributed to Shephard, Todd, Chevalley, and Serre, says that if R is isomorphic
to a polynomial ring, then G is generated by 1l-reflections. (In the nonmodular
case, the converse holds.) Concerning the Cohen—-Macaulay defect, we can use our
methods to deduce the following result.

Theorem 3.3 (Gordeev and Kemper [11]). Set k := def (R®) + 2. Then G is
generated by k-reflections and p'-elements (i.e., elements of order not divisible

by p).

Proof (sketch). Let N C G be the (normal) subgroup generated by the k-reflections
and p'-elements in G, and assume, by way of contradiction, that N g G. Then
HY(G/N, K) # 0, so the image of the inflation map H*(G/N, R) — H'(G,R) is a
nonzero submodule M C H*(G, R). As in the proof of Theorem 3.1, we choose an
associated prime ideal P of M and find Q € Spec(R®) with P C Q such that

depth(R$) = grade(P, R) < 2.

On the other hand, it follows as (3.1) that every relative trace

Tene(f) = ) o(f)

oceG/N
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with f € RY annihilates every element from M. So
Trw(RY) C P C Q.

As after (3.1), one can determine the variety in V defined by Try,c(R") and finds
that this is the union of all V? with ¢ € G such that ¢ N € G/N has order p (see
Fleischmann [9] or Campbell et al. [5, Theorem 7]). So

ht(Q) > ht(P) > ht (Try,g(R")) = min{codim(V?) | o € G, ord(¢N) = p} > &,
since G \ N contains no k-reflections by the definition of N. Therefore

ht(Q) — depth(Rg) > k — 2 = def(R),
a contradiction. O

A special case of Theorem 3.3 says that if G is a p-group and RE is Cohen—
Macaulay, then G is generated by 2-reflections (see Kemper [14]). This generalizes
the result by Campbell et al. [4] mentioned in the Introduction. Unfortunately,
the converse of Theorem 3.3 does not hold. In fact, there are examples of groups
generated by 1-reflections such that the Cohen—Macaulay defect of RE is arbitrarily
large. '

4 Determining the Cohen—Macaulay defect

So far we have only achieved to establish lower bounds for the Cohen-Macaulay
defect. But can anything be said about the exact value? For a given group
G C GL(V), the invariant ring R® can be computed algorithmically (given enough
time and memory space), and from this def(R®) can be determined (see Derksen
and Kemper [6, Chapter 3]. Apart from this, theoretical results on the precise
value of the Cohen-Macaulay defect are rather sporadic. One is the formula (0.1)
by Ellingsrud and Skjelbred [7]. Fleischmann et al. [10] proved the upper bound

def (R®) < max {codim(V") —m —1,0}, (4.1)

where P C G is a Sylow p-subgroup (p = char(K')) and m is the cohomological
connectivity. In all instances of theoretical results where the Cohen-Macaulay
defect of R® was determined, this bound turns out to be an equality. In fact,

def (R®) = max {codim(V") —m — 1,0}
holds if

e |G| is divisible by p but not by p* (see Kemper [16, Theorem 3.1]; the deter-
mination of m is hard in general),

e |G| is divisible by p but not by p? and acts by permutations of a basis of V'
(see [16, Theorem 3.3], which gives a formula for m is this case),
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e P is cyclic and G is p-nilpotent, i.e., there exists a normal subgroup N C G
with G/N = P (see Fleischmann et al. [10]; in this case m = 1),

o G = SLy(F,) and V is a symmetric power of the natural representation (see
Shank and Wehlau [20]; here m = 1),

e more generally, (G, V) is one of the cases dealt with in [16, Section 4] (then
m=1).

Notice that the result of Ellingsrud and Skjelbred is included in the one on
p-nilpotent groups with a cyclic Sylow p-subgroup.
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Monomial curves in affine four space

Kazufumi Eto

Nov. 8, 2011

We will give a theorem for a question whether every affine monomial
curve is a set-theoretic complete intersection. Let k be a field, N > 2 and
ni,...,ny natural numbers whose ged is one. The curve

O ={({t™,t™,... 1) t €k}

is called a monomial curve in affine N-space defined by ni,ng,...,nn.
And the kernel of the ring homomorphism

k[X1,...,XN] — K[t], X; —t" for each 4

is called the defining ideal of the monomial curve C.
In general, for an ideal I in a ring R, if

3fr, ..., frelst. VI=+/(f,-.-,f), r=htl,

then I is called a set-theoretic complete intersection.

We consider a question if every monomial curve C in affine N-space is a
set-theoretic complete intersection. Namely, if we put I be the defining ideal
of C, it asks whether there exist

fl;---;fN—l €I s.t. \/j= \/ (fl,...,fN_l).

There are partrial answers for it. If N = 3, it is affirmatively answered (e.g.
[6]). If N = 4 and if its defining ideal is Gorenstein or an almost complete
intersection, then the monomial curve is a set-theoretic complete intersection
([1], [4]). Further, if the characteristic of the field k is positive, Cowsik
and Nori prove that any affine algebraic curve is a set-theoretic complete
intersection ([2]). Thus we may assume that its characterisitic is zero.

Here is the main theorem:

Theorem 1 ([5, Theorem 3.11]). If N = 4 and if min{ny, ny, ng,ng} < 13
then the associated monomial curve with ny,ny,n3 and ny is a set-theoretic
complete intersection.
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This follows from the two theorems:

Theorem 2 ([5, Theorem 1.6]). If ny + ng is contained in the semigroup
generated by ne and nz, then the associated monomial curve with ny, ny,n3
and ny4 is a set-theoretic complete intersection.

Theorem 3 ([5, Theorem 1.5]). Let I be the defining ideal of a monomial
curve defined by ny, na, n3 and ng. Assume that there are v; € Ker(nq, ng, n3, ng)
and d; > 0 for j =1,2,3,4 with suppv; = {5}, >, d;v; =0 and

Ker(ny,ng, n3, ng) = ZZvj c Z*

If two of d; are one, then I is a set-theoretic complete intersection.

We give some notes. We regard (ny,na, n3,ny) as a map Z* = @l_ Ze; —
Z which sends ) o;(v)e; to Y 0;(v)n;. Then Ker(nq, ng,n3, ny) is a submod-
ule in Z* of rank 3. For v € Z*, we denote the support of v by supp v.
Eliahou (1984) proved the followmg

Proposition 4 ([3]). If
(1) ny =4, ng,n3,ng >4,
(2) ng=1,n3=2,n4 =3 mod 4,
(3) 2n3 > ny + ny,
then I is a set-theoretic complete intersection.

Applying the above, Eliahou also gives an example ([3]) in which I is
a set-theoretic complete intersection if (nq,ng,n3,n4) = (4,5,6,7). But, if
(n1,n2,n3,n4) = (4,6,7,9), then we cannot apply the above.

We observe the case n; = 4 again. If n, = n3 mod 4, then I is a set-
theoretic complete intersection, since it is reduced to the case N = 3. If
ne=1,n3 =2, ny =3 mod 4, then

v ="a,—1,—1,1) € Ker(4,ny, n3, ny).

If a <0, then ny4 is contained in the semigroup generated by 4,n, and nz. If
a > 0, then I is a set-theoretic complete intersection by Theorem 2. Hence,
if n; = 4, then [ is a set-theoretic complete intersection. To generalize this
argument, [ is a set-theoretic complete intersection in the following cases:

(1) n; =n; mod n; forany 1 <i < j,
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(2) ni +n; =0 mod n, for any 1 <14 < j,
3) ni+n; =n; mod n; for any 1 <3 < j and k > 0.
J

We observe another case. Assume n; = 7. If np =1, ng =2, ng =4

mod 7, then
ai az as ay
-1 2 0 -1
U = 1 y U2 = 1 ,U3 = 9 , Vg = 0 ev,
-1 0 -1 2

where V = Ker(7,ny,n3,n4). If one of ag,as or a4 is non negative, then 1
is a set-theoretic complete intersection. If as,as and a4 are negative, then
1, Vs, U3 and vy satisfy the conditions of Theorem 3 (note V' = ) Zv; and
v1 + vy +v3+vg = 0). In any case, I is a set-theoretic complete intersection.

Definition 1 Let V = Ker(ny, ng,ng,ng). If there are vy, vs,v3,v4 € V
with suppv 5 j such that the existence of them implies that I(V) is a set-
theoretic complete intersection, then we denote M (V') = (0(v;))i>1,j>1- We
also denote it by M (n1;ng, n3,n4). For example,

1 2 0 -1
M(71,2,4)=[-1 -1 2 0
1 0 -1 2

Note 1. The following are valid:
(1) M(ny;ng,n3,n4) = M(n1;nh, nf, n}), if (ng, n3, ng) = (ny,ny,ny) mod n,
2) M(nq;ng,n3,nyg) exists, if n; =n; mod n; for any 1 <14 < j,
j
(3) M(ny;ng,n3,ng) exists, if n; +n; =0 mod ny for any 1 <i < j,

(4) M(ny;ng,ns,n4) exists, if n; +n; =ng mod ng for any 1 <7 <j and
k>0,

(5) M(ni;ng,n3,na) exists, if M(ni;n1 — ng,n1 —ng,n1 — ny) exists.
For example, M(7;3,5,6) exists, since M(7;4,2,1) exists and
(3,5,6) =6(4,2,1) mod 7.

We investigate whether M (ny;ng,n3,ny) exists under the following as-
sumption:
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(1) O<n2<n3<n4<n1—n2,
(2) n; +n; #0 mod n; for any 1 < i < j,
(3) n; +n; £ng mod ny for any 1 <.i < j and k > 0,

(4) ng(nla ns, n4) = ng(nh na, n4) = ng(nh na, n3) = 17

(5) there are not a known triple (nf, n},n}) and d > 0 satisfying (ng, n3, ng) =
d(nh,nf,ny) mod n;.

For example, we have (1,2,5) = 5(2,4,1) mod 9, hence we have M(9;1,2,5) =
M(9;2,4,1). If n; is odd, then M(ny;1,2,4) exists, since

-1 2 0 -1
M(Ap +2ue+ 11,2,4) = | —po =1 2 pp—1],
- 0 =1 pm+1

where p; > 0 and p, is 0 or 1. Note that we need not give M(ny;1,2,4) if
n is even, since the condition (4) above. By Mathematica,

(1) if ny; <7, the only case is M(ny;1,2,4),

(2) if 11 < my < 14, the following cases of (ngy,n3,n4) are the rest:

(nl = 8) (172’5),
(n1=9) (1,2,4),(1,2,6),(1,4,7),
(n=10) (1,2,5),(1,2,7),(1,3,5), (1,5,8),
(m=11) (1,2,4),(1,2,5),(1,2,7),(1,2,8), (1,3,5),
(n1=12) (1,2,5),(1,2,7),(1,2,9),(1,3,5),(1,3,7), (1,3,8),
(1,4,7),(1,5,9), (1,7, 10),
(ny=13) (1,2,4),(1,2,5),(1,2,6),(1,2,8),(1,2,9), (1,2, 10),
(1,3,5), (1,3,9), (1,4,6), (1,4, 11),
(n1=14) (1,2,5),(1,2,7),(1,2,9), (1,2,11),(1,3,5), (1,3,7),
(1,3,8),(1,3,10), (1,4,7), (1,6,11), (1,7,9), (1,7, 10),
(1,7,12), (1,9, 11).

If ny < 13, the matrix M(nq;ng,n3,ny) exists! Here is the list of the
matrices M (ny;ng, ns,n4) ([5]):
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-1 2 -1 0
M(81,25) ={-1 -1 3 -1
~1 0 -1 2

,’U1-|—’U2+’U3+1)4=O,

-1 2 0 -
M(9;1,2,6)=| -1 -1 3 —>,’U1+Uz+'l)3+v4=0,

-1 0 -1 2
-1 2 -1 -
M(g;l‘,4,7)= -2 -1 2 - ,0’U1 +'l)2+’U3+’U4=0,
0o -1 -1 2
-1 2 =10
M(10;1,2,5)= -2 -1 3 0],vi+ve+v3+vs=0,
-1 0 -1 2)
-1 2 -1 0
M(10;1,2,7)=|-1 -1 4 =2}, vi+va+uvz+vs=0,o0r
-1 0 -1 2
-1 2 0 -1
-1 -1 2 0 ,’U1+'U2+’U3+'U4=O.
-1 0 -2 3

Note that, if w(v) = ¥(0,2,—2) for v € V, then suppv™ = {3} or
suppv~ = {4}. The above means that there exists M (V') in each case.

—2 3 -10
M(10;1,3,5)= [ -1 =1 2 0|, v +wv+vz+v,=0,
| -1 0 -1 2

-2 3 0 -1
M@10:;1,5,8)=| 0 —1 2 —1|, v +up+vs+ve=0,
1 -10 2

-1 2 -1 -1

M@11;1,2,5)=[ 0 =1 3 —1],2v + 20 +vs+uvg =0,
(-2 0 -1 5 )
0o 2 -1 -1

M(11,1,2,7)= -2 -1 4 -1 ,’U1+'U2+’U3+'U4=0,
(-1 0 -1 2 ) |
-1 2 0 0

M(11;1,2,8) = [ -1 =1 4 =1, 20+ v +v3+va =0,
(—1 0 -1 3)
-1 3 -1 -1

M(11,1,3,5)= o -1 2 -1 ,'Ul+’U2+’U3+’U4=O,
(-2 0 -1 3)
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0 2
-1
-2 0

E¥
(:? o
[

M(12;1,2,5) =

M(12;1,2,7) =

-1 2
-1
-1 0

M(12;1,2,9) =

-1 0

-2 3

M@121,35) = 0 -1
-2 0
0 2
-1 0
—3 -2
—2 3 0
-1 -1 4
-1 0 0
-1 3
-1
-1 0
-1 4
-1 -1
-1 0
—2 2
—2 -1
0 -1

M(12;1,3,7) =

M(12;1,3,8) =

M(12;1,4,7) =

M(12;1,5,9) =

-2 5
-1
-1
-1
-2 5

M(12;1,7,10) = | 0
~1
0 2
—2
-1 0
~1 2
~1 -1
—2 0

M(13;1,2,5) =

-1
-1 5
-1

-1 -1

3 -1 ,v1+v2+v3+v4=0,
-1 3

-1 0

4 -1}, vi+va+uvs+uvs=0,
-1 2

0 -1

3 -1 ,’U1+'1)2+’U3+’U4=0,0I'
-2 3

0

-3 , U1+ vy +v3+vg=0.

2

-1 0

2 -1 ,'Ul+’U2+’U3+'U4=O,
-1 3

0 -1

4 —11,2v;+vy+v3+2v4=0, or
0 4

—2

0 |, 2v14+2v34+v3+vs=0.

2

-1 0

3 0),2v1+ve4+v3+vs=0,
-1 3

-1 0

2 -1 ,2U1+’U2+2’U3+’U4=0,
-1 4

-1 -1

2 —1),ve+vs+v4=0,

-1 2

-2 -1

2 —1),vu+vy+v34+v4=0,o0r

0 2

-1

—1),v1+vy+v3+vs=0,
-1 2

-1 0

3 -1 , U1 +vy+vs+vg =0,
-1 3
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-1 2 0 -1
M@13;1,2,6)=| 0 -1 3 -1
2 0 -1 7

, V1 +2v2 + vz + vy =0,

-1 2 0 -1
M(13;1,2,8)= -2 -1 4 —1|,vi+va+vz+vs=0,
1

-1 0 -1 2
0o 2 -1 -1
M(13,1,2,9)= -2 -1 5 0 ,2’01+’U2+U3+’U4=0,
-1 0 -1 3
-1 2 0 -
M(13;1,2,10)= [ -1 -1 5 0 |, 3vi+ 20+ 03+ v =0,
-1 0 -1 4
3 -1 -1
M(13;1,3,5) = -1 2 =1],2v1+v2+2v34+v4=0,
( 0 -1 6 )
3 0 -1
M(13;1,3,9) = -1 3 0 |,2v1+ve+uv3+vs=0,
( 0 -1 3 )
l 6 0 -1
M(13;1,4,6) = 0 3 —-1},3v1+v+v3+3us=00r
PR )
-1 4 -1 0
-3 -1 5 =3],2v14+ve+2v3+vs=0,
0 0 -1 2
0 2 -1 -1
M(13;1,4,11)= -1 -1 3 —=1],n1+va+v3+v4=0,
-2 -1 -1 4

Note 2. If n; = 14, the exsitence of M(14,1,9,11) is not proved, while the
others exists.
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WEAKLY CLOSED GRAPH

KAZUNORI MATSUDA

1. INTRODUCTION

Throughout this article, let k be an F-finite field of positive characteristic. Let
G be a graph on the vertex set V(G) = [n] with edge set E(G). We assume that a
graph G is always connected and simple, that is, G is connected and has no loops
and multiple edges. Moreover, we note that labeling means numbering of V' (G) from
1 to n.

For each graph G, we call Jg := ([i,j] = X;Y;—X,Y; | {i,j} € E(G)) the binomial
edge ideal of G (see [HeHiHrKR], [02]). Jgisanideal of S := k[Xy,..., X, Y1,..., 5]

2. WEAKLY CLOSED GRAPH

Until we define the notion of weak closedness, we fix a graph G and a labeling of
V(G).
Let (ai, .. .,an) be a sequence such that 1 < a; <n and a; # a; if i # j.

Definition 2.1. We say that a; is interchangeable with a;yy if {a;, ai11} € E(G).
And we call the following operation {a;, a;41}-interchanging :

(al, ceey @1, G4, i1, Q42 - - - ,an) — (al, e ,a,-_l,ai.H,ﬂ, (47, P ,an)

Definition 2.2. Let {i,j} € E(G). We say that i is adjacentable with j if the
following assertion holds: for a sequence (1,2,...,n), by repeating interchanging,
one can make a sequence (ai,...,a,) such that a; =4 and ax4, = j for some k.

Example 2.3. About the following graph G, 1 is adjacentable with 4:

1 2

Indeed,
12,34 %2 (2,1,3,9 &% (21,43
Now, we can define the notion of weakly closed graph.

Definition 2.4. Let G be a graph. G is said to be weakly closed if there exists a
labeling which satisfies the following condition: for all ¢, j such that {i,5} € E(G),
i is adjacentable with j.
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Example 2.5. The following graph G is weakly closed:

4
5 1
6 2
3
Indeed,
(1,2,3,4,5,6) L2, (2,1,3456){34}(214356),
(1,2,3,4,5,6) 2% (1,2,4,3,5,6) % (1,2,4,3,6,5).

Hence 1 is adjacentable with 4 and 3 is adjacentable with 6.

Before stating the first main theorem of this article, we recall that the definition
of closed graphs.

Definition 2.6 (see [HeHiHrKR]). G is closed with respect to the given labeling if
the following condition is satisfied: for all {4, 5}, {k,{} € E(G) withi < jand k <
one has {j,l} € E(G) ifi=k but j #1, and {i,k} € E(G) if j = but i # k.

In particular, G is closed if there exists a labeling for which it is closed.

Remark 2.7. (1) [HeHiHrKR, Theorem 1.1] G is closed if and only if Jg has a
quadratic Grébner basis. Hence if G is closed then S/Jg is Koszul algebra.
(2) [EHeHi, Theorem 2.2] Let G be a graph. Then the following assertion are
equivalent;:
(a) G is closed.
(b) There exists a labeling of V(G) such that all facets of A(G) are intervals
[a,b] C [n], where A(G) is the clique complex of G.

The following characterization of closed graphs is a reinterpretation of Crupi and
Rinaldo’s one. This is relevant to the first main theorem deeply.

Proposition 2.8 (See [CR, Proposition 2.6]). Let G be a graph. Then the following
conditions are equivalent:
(1) G is closed.
(2) There exists a labeling which satisfies the following condition: for all i, j
such that {7,j} € F(G) and j > i + 1, the following assertion holds: for all
i<k<j, {ik} € E(G) and {k,j} € E(G).

Proof. (1) = (2): Let {¢,j} € E(G). Since G is closed, there exists a labeling
satisfying {i,7+1},{i+1,i+2},...,{j — 1,5} € E(G) by [HeHiHrKR, Proposition
1.4]. Then we have that {i,j — 1},{3,7 — 2},...,{3,7+ 2} € E(G) by the definition
of closedness. Similarly, we also have that {k,j} € E(G) for all i < k < j.

(2) = (1): Assume that ¢ < k < j. If {1,k},{3,5} € E(G), then {k,j} € E(G)
by assumption. Similarly, if {7, j},{k,j} € E(G), then {i,k} € E(G). Therefore G
is closed. O

The first main theorem is as follows:
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Theorem 2.9. Let G be a graph. Then the following conditions are equivalent:

(1) G is weakly closed.

(2) There exists a labeling which satisfies the following condition: for all 4,7
such that {i,j} € E(G) and j > i + 1, the following assertion holds: for all
i<k<j,{ik} € E(G) or{k,j} € E(G).

Proof. (1) = (2): Assume that {i,j} € E(G), {i,k} € E(G) and {k,j} ¢ E(G) for
some i < k < j. Then i is not adjacentable with j, which is in contradiction with
weak closedness of G.

(2) = (1): Let {i,5}E(G). By repeating interchanging along the following algo-
rithm, we can see that 7 is adjacentable with j:

(a): Let A:= {k|{k,7} € E(G),i <k < j} and C := 0.
(b): If A = { then go to (g), otherwise let s := max{A}.
(c): Let B := {t | {s,t} € E(G),s <t < j}\C = {t1,...,tm = j}, where
th<...<tm=17. .

(d): Take {s, ¢ }-interchanging, {s, t;}-interchanging, .. ., {s, tm = j}-interchanging
in turn.

(e): Let A:= A\ {s} and C :=C U {s}.

(f): Go to (b). ,

(g): Let U := {u|i<u<j{iu} € BE(G) and {u,j} € E(G)} and W := §.

(h): If U = 0 then go to (m), otherwise let u := min{U}.

(@): Let V := {v | {v,u} € EG),i <v < u}\ W = {v; =1i,...,u}, where
n=1<...<.

(j): Take {v; = i, u}-interchanging, {vs, u}-interchanging, ..., {v;, u}-interchanging
in turn.

(k): Let U :=U \ {u} and W := W U {u}.

(1): Go to (h).

(m): Finished. O

By comparing this theorem and Proposition 2.8, we get
Corollary 2.10. Closed graphs and complete r-partite graphs are weakly closed.

Proof. Assume that G is complete r-partite and V(G) = [;_; Vi. Let {3,j} € E(G)
with i € V, and j € V,. Then a # b. Hence for all i < k < j, k € V, or k ¢ V;. This
implies that {i,k} € E(G) or {k,j} € E(G). O

3. F-PURITY OF BINOMIAL EDGE IDEALS

Firstly, we recall that the definition of F-purity of a ring R.

Definition 3.1 (See [HoR]). Let R be an F-finite reduced Noetherian ring of char-
acteristic p > 0. R is said to be F-pure if the Frobenius map R — R, z > z* is
pure, equivalently, the natural inclusion 7 : R — RY?, (z + (2P)Y/P) is pure, that
is, M - M ® R/?, m — m ®1 is injective for every R-module M.

The following proposition, which is called the Fedder’s criterion, is useful to de-
termine the F-purity of a ring R.
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Proposition 3.2 (See [Fe]). Let (S, m) be aregular local ring of characteristic p > 0.
Let I be an ideal of S. Put R = S/I. Then R is F-pure if and only if I"” : I ¢ ml],
where JP| = (27 | z € J) for an ideal J of S.

In this section, we consider the following question:
Question 3.3. When is S/Jg F-pure ?

In [O2], Ohtani proved that if G is complete r-partite graph then S/Jg is F-pure.
Moreover, it is easy to show that if G is closed then S/Jg is F-pure. However, there
are many examples of G such that G is neither complete r-partite nor closed but
S/Jg is F-pure. Namely, there is room for improvement about the above studies.

The second main theorem of this article is as follows:

Theorem 3.4. If G is weakly closed, then S/Jg is F-pure.
Proof. For a sequence vy, vy, .. ., Vs, we put
Yo (U1, 2, - .o, 0s) X, i= (Yau [v1, v2) [U2, V3] - + - [Us-1, 0] Xy, )P L.
Let m = (Xy,...,X,,Y:,...,Y,)S. By taking completion and using Proposition
2.2, it is enough to show that Y1(1,2,...,n)X, € (J[Gp] : Jg) \mlP. Tt is easy to show

that Y3(1,2,...,n)X, € mP by considering its initial monomial.
Next, we use the following lemmas (see [02]):

Lemma 3.5 ([02, Formula 1]). If {a,b} € E(G), then
Yo (vi,...,¢0,0,d,...,0,)X,, =Y, (v1,...,¢,b,a,d,...,0,)X,,
modulo Jg].
Lemma 3.6 ([02, Formula 2]). If {a,b} € E(G), then
Yi(a, by, ..., v0)X,, =Ys(ba,c,...,v)X,,,
Yo, (v1,...,¢,a,0) Xy =Yy, (v1,...,¢,b,a) X,
modulo J[Gp].

Let {i,j} € E(G). Since G is weakly closed, i is adjacentable with j. Hence there
exists a polynomial g € S such that
Y1(1723 s )n)X =g [ivj]p_l
modulo Jg’] from the above lemmas. This implies Y1(1,2,...,n)X, € (J[é’] 1 Jg). O

4. DIFFERENCE BETWEEN CLOSEDNESS AND WEAK CLOSEDNESS AND SOME
EXAMPLES

In this section, we state the difference between closedness and weak closedness
and give some examples.

Proposition 4.1. Let G be a graph.

(1) [HeHiHrKR, Proposition 1.2] If G is closed, then G is chordal, that is, every
cycle of G with length ¢ > 3 has a chord.
(2) If G is weakly closed, then every cycle of G with length ¢ > 4 has a chord.
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Proof. (2) It is enough to show that the pentagon graph G with edges {a, b}, {b, c},
{c,d}, {d,e} and {a,e} is not weakly closed. Suppose that G is weakly closed.
We may assume that a = min{a,b,c,d, e} without loss of generality. Then b #
max{a,b,c,d,e}. Indeed, if b = max{a,b,c,d,e}, then c,d,e are connected with
a or b by the definition of weak closedness, but this is a contradiction. Similarly,
e # max{a, b, c,d, e}. Hence we may assume that ¢ = max{a, b, ¢, d, e} by symmetry.
If b = min{b, c,d}, then d, e are connected with b or c, a contradiction. Therefore,
b # min{b,c,d}. Similarly, b # max{b,c,d}. Hence we may assume that d =
min{b, c,d} and e = max{b,c,d} by symmetry. Then {a,b} and a < d < b, but
{a,d},{d,b} ¢ E(G). This is a contradiction. O

Next, we give a characterization of closed (resp. weakly closed) tree graphs in
terms of claw (resp. bigclaw). We consider the following graphs (a) and (b). We
call the graph (a) a claw and the graph (b) a bigclaw.

(a) (b)
One can check to a bigclaw graph is not weakly closed, hence we have the following
proposition:

Proposition 4.2. Let G be a tree.

(1) [HeHiHrKR, Corollary 1.3] The following conditions are equivalent:
(a) G is closed.
(b) G is a path.
(c) G is a claw-free graph.
(2) The following conditions are equivalent:
(a) G is weakly closed.
(b) G is a caterpillar, that is, a tree for which removing the leaves and
incident edges produces a path graph.
(c) G is a bigclaw-free graph.

Remark 4.3. From Proposition 3.2(2), we have that chordal graphs are not always
weakly closed. As other examples, the following graphs are chordal, but not weakly
closed:
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THE EQUALITY OF ELIAS AND VALLA AND
BUCHSBAUMNESS OF ASSOCIATED GRADED RINGS

KAZUHO OZEKI

1. INTRODUCTION AND THE STATEMENT OF MAIN RESULTS

The purpose of this paper is to study the Buchsbaumness of the associated graded
ring of ideals in a Buchsbaum local ring satisfying the equality of Elias and Valla [3],
without assuming that the base local ring is Cohen-Macaulay.

Throughout this paper let A denote a Noetherian local ring with the maximal ideal
m and d = dim A > 0. For simplicity, we assume the residue class field A/m is infinite.
Let I be an m-primary ideal in A and suppose that I contains a parameter ideal
Q = (a1,as, -+ ,aq) of A as a reduction, that is @ C I and the equality It = QI”
holds true for some (and hence any) integer n >> 0. Let £4(M) denote, for an A-module
M, the length of M. Then we have integers {e;(I)}o<i<a such that the equality

CalA/ T = eo(T) (" : d) —ex(I) (" v 1) oot (=1)ea(D)

1
holds true for all integers n > 0, which we call the Hilbert coefficients of A with respect
to I.
Let

R=R(I) := A[lt] and T =R(Q) = A[Qt] C A[t]
denote, respectively, the Rees algebras of I and Q. Let F =T/IT,
R =R/(I):= A[lt,t™"] C At,t™}] and G=G(I):=R/tT'R = @ /.
n>0

In the case where A is a Cohen-Macaulay local ring, we have the inequality
2e0(I) — e (I) < 20a(A/I) + La(I/I? + Q)

which is given in [3] and [7], and they showed that the equality 2e¢(I) — e;(I) =
204(A/T) + £4(I/T? + Q) holds true if and only if I3 = QI? and Q N I* = QI. When
this is the case, the associated graded ring G of I is Cohen-Macaulay. Thus the ideal 1
with 2eo(I) — e1(I) = 204(A/I) + £4(I/I* + Q) enjoys nice properties.

Key words and phrases: Buchsbaum local ring, associated graded ring, Hilbert function, Hilbert

coefficient
2010 Mathematics Subject Classification: 13D40, 13A30, 13H10, 13H15.
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The purpose of this paper is to extend their results without assuming that A is a
Cohen-Macaulay ring.
In an arbitrary Noetherian local ring A the inequality

2e0(I) — e (I) + e1(Q) < 20a(A/I) + £a(I/I? + Q)

holds true ([8, Theorem 2.4], [1, Theorem 3.1]). It seems natural to ask, what happens
on the ideals I satisfying the equality

2e0(I) —er(I) + er(Q) = 2La(A/1) + La(I/I* + Q).
To sate the results of the present paper, let us consider the following three conditions:

(C1) The sequence aj,as,---,aq is a d*-sequence in A, that is for all integers

n1,Mg, -+ ,ng > 1 the sequence a7’, a3?,- - - , a}? forms a d-sequence in any order.

(C2) (ar,ag,--- ,diy-++ ,aq) iaa; CTforalll <i<d.

(Cg) depthA > 0.

These conditions (C;),(Cs), and (C;) are naturally satisfied, when A is a Cohen-
Macaulay local ring. Condition (C;) (resp. condition (Cs)) is always satisfied, if A
is a Buchsbaum local ring (resp. I = m). Here we notice that condition (C;) is equiv-
alent to saying that our local ring A is a generalized Cohen-Macaulay ring, that is all
the local cohomology modules H (A) (i # d) of A with respect to the maximal ideal m
are finitely generated and the parameter ideal @ is standard, that is the equality

s Y B ‘

4/@) ~e@ =Y (*7 1) eatir()

=0
holds true. Hence condition (C;) is independent of the choice of a minimal system
{ai}1<i<a of generators of the parameter ideal Q. We note here that condition (Cy) is
also independent of the choice of a minimal system {a;}1<i<4 of generators of Q.

Let us now state our own result. The main result of this paper is the following
Theorem 1.1, which generalizes the result of [3] and [7] given in the case where A is a
Cohen-Macaulay local ring, because ¢;(Q) = 0 for all 1 < ¢ < d. We notice that, thanks
to condition (C;), the Hilbert coefficients ;(Q) of Q are given by the formula

eo(Q) ifi =0,
(-1)e(Q) = { LMY tied
S a(H () ifl<i<d—1

and one has the equality £4(A/Q") = Y% (—1)ie,(Q) M for all n > 0 ([9,
Korollar 3.2]), so that {e;(Q)}1<i<q4 are independent of the choice of the reduction Q
of I and so, are invariants of A. Here W = Hj (A) denotes the 0-th local cohomology
modules of A with respect to m and H,(G) the i-th local cohomology modules of G
with respect to the graded maximal ideal M = mT + T, of T.
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Theorem 1.1. Suppose that conditions (Cy) and (Cy) are satisfied. Then the following
two conditions are equivalent to each other.
(1) 2e0(I) —er(I) + €1(Q) = 204(A/I) + La(I/T* + Q).
(2) BCQP+W,  Q@+W)NI*+W)=QI+W, and (a1,az,- -+ ,ds," -+ ,04) 14
a; CI?+Q forall1 <i<d.
When this is the case, we have I? O W and the following assertions also hold true.
(i) For alln € Z,

W/BBnw ifn=2,
HY, (G, 2 I"NW/I"NW  ifn>3,
0) otherwise.

Hence [H) (@) =W/ W, [HY(G)]s = I*NW, and [HY(G)]n = (0) for all
n # 2,3 if A is a Buchsbaum local ring.
(i)
Hy(G) = [Hy (G)]2-: = Hy, (A)
foralll1<i<d-1,
(112) the a-invariant

a(G) = max{n € Z | [H},(G)l. # (0)}

of G is at most 2 — d,

(i) ex(I) = er(Q) +e2(Q) — eo(I) + ex(I) + La(A/T),

(v) e;(I) = e;-2(Q) + 26;_1(Q) + &(Q) for all 3 <1 < d, and

(vi) the associated graded ring G is a Buchsbaum ring with the Buchsbaum invariant
I(G) =I(A) if A is a Buchsbaum local ring.

The key of the proof of Theorem 1.1 is the use of the Sally module S of I with respect
to Q.

We are now in a position to briefly explain how we organized this paper.

In Section 2 we will summarize some auxiliary results on Sally modules for the later
use in this paper. We will give in Section 3 an outline of a proof of the implication
(1) = (2) and the last assertions of Theorem 1.1. In Section 3 we will also introduce
some techniques of Sally modules which is the key for the proof of Theorem 1.1. In
Section 4 we will give one example of an m-primary ideal I with 2eq(I) —e;(I)+e1(Q) =
204(A/T) + £4(I/I? + Q) in a Buchsbaum local ring (A4, m).

In what follows, unless otherwise specified, let (A, m) be a Noetherian local ring with
maximal ideal m and d = dim A > 0. Assume that the residue class field A/m of A is
infinite. Let I be an m-primary ideal in A and put Q = (a1, a2, - - .,aq) be a parameter
ideal of A which forms a reduction of I. We put

R=A[lt], T=A[Qt, R =A[lt,t7'], G=R/tT'R, and F=T/IT.
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We denote by H! (*) (z € Z) the i-th local cohomology functor of A with respect
to m. Let I(4) = >4 (d ")€4(H:,(A)) denotes the Buchsbaum invariant of A. Let
M = mT+T} be the unique graded maximal ideal in . We denote by Hi, (%) (i € Z) the
i-th local cohomology functor of T with respect to M and I(G) = Y7 (*718c(Hi, (G))
the Buchsbaum invariant of G. Let L be a graded T-module. We denote by L(a), for
each o € Z, the graded T-module whose grading is given by [L(c)], = [L]atn for all
n € Z. Let pa(I) denotes the number of a minimal system of generators of I.

2. THE STRUCTURE OF SALLY MODULES

In our proof of Theorem 1.1 we need some structure theorems of Sally modules.
Following Vasconcelos [11], we define
S =8q(I) := IR/IT = P 1" /Q"I
n>1
and call it the Sally module of I with respect to Q.
The purpose of this section is to summarize some auxiliary results on Sally modules,
which we need throughout this paper. See [5, 6, 11] for the detailed proofs.

Remark 2.1 (cf. [5, 6, 11]). We notice that S is a finitely generated graded T-module
and m%S = (0) for some integer £ >> 0, since R is a module finite extension of the
graded ring T and m = /@, so that dimy S < d.

Lemma 2.2. Suppose that conditions (Cy) and (Cy) are satisfied. Then
F=T/IT = (A/)[X1, X2, , X4]

as graded A-algebras, where (A/I)[X1, Xz, -+ ,X4] denotes the polynomial ring with d
indeterminate over the Artinian local ring A/I. Hence F is a Cohen-Macaulay ring
with dim F' = d.

Proof. See [6, Proposition 2.2]. O
Let us note the following lemma.

Lemma 2.3. Suppose that conditions (C1), (Cz), and (C3) are satisfied. Then AsspS C
{mT}, whence dimpS = d if S # (0).

Proof. See [6, Lemma 2.3]. O

Proposition 2.4. Suppose that conditions (C1) and (Cs) are satisfied. Then

LA/I™) = e(D) ("*d) — {eo(]) +1(Q) —eA(A/z)}C‘:; 4 1)

YD 1<Q>+e,(cz>}("+d ) £4(50)

=2
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for alln > 0.
Proof. See [6, Proposition 2.4]. d

Put s = dimr S < d. Then we write

s =" ) —a) (M) e () e

for all n > 0 with integers {e;(5) }o<i<s—1. Then by Proposition 2.4 we get the following

result, which is also given in [8, Proposition 6.2].

Corollary 2.5. Suppose that conditions (C1) and (C;) are satisfied. Then we have the
following.

(1) ex(I) = eo(I) + e1(Q) — La(A/T) + eo(S) and
(2) ei(I) = ei_1(Q) + ei(Q) + ei_l(S) fO’I~ all 2 < 1< d.

3. PROOF OF OUR MAIN THEOREM

In this section let us introduce some techniques, being inspired by [1, 2], which plays
a crucial role throughout this paper.
Let us begin with the following.

Lemma 3.1. Assume that I 2 Q and put u = pa(I/Q). Then there exists an exact
sequence

T(-1* % R/T — S(—1) = 0
as graded T-modules.
Proof. Let us write I = Q + (21,2, -+ ,z,) and put
¢:T(-1)* = R/T

denotes a homomorphism of graded T-modules with ¢(a1, @z, -+ ,au) = Dt Tt €
R/T for o; € T and 1 < i < i, where a;z;f denotes the image of o;z;t in R/T. Then
we have

Cokerg = R/[It-T + T] = R, /It-T

as graded T-modules. Then two isomorphisms
R, IR(~1) and ItT S IT(-1)

of graded T-modules induce the isomorphism R, /It-T = (IR/IT)(—1) of graded T-
modules. Therefore Coker¢ = S(—1) as graded T-modules, whence we get a required
exact sequence. a
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Tensoring the exact sequence of Lemma 3.1 with A/I, we get exact sequence
F(-1* % RIIR+T — (S/IS)(-1) = 0 (%)

of graded T-modules, where ¢ = A/I ® ¢.
Then thanks to this exact sequence (%) and Corollary 2.5, we get the following in-
equality which is originally proved by [8, Theorem 4.1] and [1, Theorem 3.1].

Proposition 3.2. Suppose that d > 0. Then we have
2e0(1) — e1(1) +e1(Q) < 20a(A/T) + La(I/I* + Q).

The following result plays a key role in our proof of Theorem 1.1.
Proposition 3.3. Suppose that conditions (C1), (Cz), and (C3) are satisfied. Assume
that I 2 Q. Then the following two conditions are equivalent to each other.

(1) 2e0(I) — ex(1) + e1(Q) = 2a(A/I) + £a(I/I* + Q),
(2) there exist exact sequences
0— ((I/P+Q)®F)(-1) - R/IR+T = S(-1) =0
and
0—-F—-G—->R/IR+T—0
of graded T-modules.

We get the following corollary by Proposition 3.3.

Corollary 3.4. Suppose that conditions (C1), (Cz2), and (C3) are satisfied. Assume
that 2e0(I) — e1(I) + e1(Q) = 2€4(A/I) + L4(I/I* + Q). Then we have the following.
(1) I"*2 C Q™I for alln >0,
(2) @"NI™ =Q"I for alln >0,
(3) depthG > 0,
(4) (a1,a2, - ,diy,-- ,a4) :ag CI2+Q forall1 <i<d.

In the rest of Section 3, let us introduce an outline of our proof of the implication
(1) = (2) and the last assertions of Theorem 1.1.
Let us note the following lemma.

Lemma 3.5. Put C = A/W with W = HY%(A). Then 2e0(I) — e;(I) + &1(Q) =
204(A/T) + L4(I/? + Q) if and only if 2eo(IC) — &1 (IC) + e1(QC) = 2£4(C/IC) +
04(IC/I2C +QC) and I2+Q D W.

Suppose that condition (C1) and (C,) are satisfied and assume that
2e0(1) — ex(I) + e1(Q) = 2£a(A/T) + La(I/1* + Q).
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Put C = A/W then we have 2e,(IC) — e1(IC) + e1(QC) = 2£4(C/IC) + £4(IC/T?C +
QC) and W C I? + Q by Lemma 3.5. Therefore, passing to the ring C, we get
Q+W)N(I?+W) = QI+ W and [(a1,az, - ,di,- - ,a4) : &) € I 4+ Q for all
1 <4 < d by Corollary 3.4 (2) and (4).

Thus the implication (1) = (2) in Theorem 1.1 has been proven modulo the following
Theorem 3.6.

Theorem 3.6. Suppose that conditions (C1) and (Cy) are satisfied and assume that
2e0(I) —er(I) + e1(Q) = 204(A/I) + £4(I/I* + Q). Then we have I* C QI* + W and
I2OW.

Taking the local cohomology functor Hj,(*) to the exact sequences of Proposition 3.3
(2), we may calculate the local cohomology modules Hj;(G) of the associated graded
ring G. Thus we may prove that our assertions (i), (i), and (444) are satisfied. Our
assertion (iv) and (v) are also satisfied by the exact sequences of Proposition 3.3 (2)
and Corollary 2.5. To prove our assertion (vi) of Theorem 1.1, we need to compute the
Koszul cohomology of the associated graded ring G of I.

4. AN EXAMPLE

In this section we construct one example of m-primary ideal I which satisfies 2e;(I)—
er(I) +e1(Q) = 204(A/I) + £a(I/I* 4+ Q) in a Buchsbaum local ring.
Our goal is the following.

Theorem 4.1. Let £ > 0 and d > 2 be integers. Then there exists an m-primary ideal
I in a Buchsbaum local ring (A, m) such that

d=dimA, H(A)=(0) fori#1,d, La(HL(A))=¢, and

2eo(I) — er(I) + e1(Q) = 2La(A/I) + £a(I/I* + Q)
for some reduction Q = (ay,as,- - ,aq) of I.

~ To construct necessary examples we need some techniques which due to [4, Section
6]. Let us begin with the following.
Let m, £ > 0 and d > 2 be integers. Let

U = k[{Xih<i<m, {Yih<i<e {Vich<icer<ie<a, {Zebr<r<d]

be the polynomial ring with m + £ + £d + d indeterminates over an infinite field k£ and
let

+(ViViy 115,57 <6 1<k K <dj#j ot k#K)

-k/

+(V2-Y;Z, |1<j <t 1<k <d).
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We put C' = U/a and denote the images of X;, Y}, V},, and Z in C by z;, y;, v;,, and
a, respectively. Then dim C = d, since v/a = (X;,Y;,V;, |1<i<m, 1<j<¢ 1<
k<d). Let M =C, = (2;,y;,v5,a | 1 <i<m,1<j<¥¢1<k<d) be the graded
maximal ideal in C'. Let A be a subset of {1,2,--- ,m}. We put

g=(a;|1<i<d) and Jp=q+ (zo | €A)+ (v, | 1<j<¥ 1<k <d).

Then M? = qM, J2 = qJr + q(v1, Y2, - - ,¥e), and J3 = qJ, whence q is a reduction
of both M and Jj, and a3, as, - ,aq is a homogeneous system of parameters for the
graded ring C.

Let B = Cx and put n = MB denotes the maximal ideal of B. We then have the
following. '

Theorem 4.2. The following assertions hold true.

(1) B is a Cohen-Macaulay local ring with dim B = d.

(2) eo(gB) = eo(JaB) =m +4Ld+ £+ 1.

(3) e1(JaB) = eo(JaB) — €p(B/JyB) + £ = fA + £d + £.

(4) e;(JAB) =0 for all 2 <i < d.

(6) G(JaB) is a Buchsbaum ring with depth G(J5B) = 0 and I(G(JAB)) = 4d.

Let us now consider the following.

Put J = Ju,...myB and A = k+ J. Then A is a local k-subalgebra of B with
maximal ideal m = J and B is a module finite extension of A, because £4(B/A) =
£4(B/J) —1 = £. Hence A is a Noetherian local ring with dim A = dim B = d by
Eakin-Ngata’s Theorem. We fix a subset A of {1,2,---,m} and put

I=JxB and @ = (a1,as, - ,aq)A.

Then I is an m-primary ideal in A and @ is a parameter ideal in A and a reduction of
I. We then have the following.

Theorem 4.3. The following assertions hold true.

(1) A is a Buchsbaum local ring with H: (A) = (0) for alli # 1,d and H}(A) = B/A,
whence h*(A) = ¢,

(2) eo() =m+4d+£+1,

3) ex(I) = A + £d+ £,

(4) e;(J) =0 for2<i<d—1 and eg(I) = (—1)%+1¢,

(5) 2e0(I) —e1(1) +e1(Q) = 20a(A/I) + £a(I/I? + Q), and

(6) G(I) is a Buchsbaum ring with Hy,(G(I)) = (0) for alli # 1,d and H},(G(I)) =
[Hi(G()): = Hy(A) = B/A.
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STABILITY OF QUASI-SOCLE IDEALS

JUN HORIUCHI

1. INTRODUCTION

Let A be a Noetherian local ring with maximal ideal m and d = dim A > 0. We study
quasi-socle ideals, i.e., ideals of the form I = Q : m? (¢ > 1) where () is a parameter
ideal in A. We are interested in determining when I? = QI, in which case we call I is
stable. To state the results, we need to first fix some notation and terminology.

For each m-primary ideal I in A we denote by {€}(A)}o<i<a the Hilbert coefficients
of A with respect to I. The Hilbert function of I is then given by the formula

L4(A/I™) = () (" ! d) T (” v 1) o (~1)ted()
for all n > 0, where £4(M) denotes the length of the A-module M.

Let Q be a parameter ideal in A. We set 1(Q) = £4(A/Q) — e3(A). Then A is a
Cohen-Macaulay ring if and only if I(Q) = 0 for some (and hence every) parameter
ideal Q. We say that A is a Buchsbaum ring if I(Q) is constant and independent of
the choice of parameter ideals () in A.

We say that A is a generalized Cohen—Macaulay ring if supgy I(Q) < oo, where Q
runs through parameter ideals in A. This definition is equivalent to saying that all the
local cohomology modules H: (A) (i # d) of A with respect to m are finitely generated.
When this is the case, one has the equality supy I(Q) = )iy (471 €a(H (A)). A good
reference for generalized Cohen—Macaulay rings is [T].

Let Q = (ay,az,...,aq) be a parameter ideal in a generalized Cohen—Macaulay ring
A. Then we say that Q is standard if I(Q) = 3%} (*71)€a(H (A)). This condition is
equivalent to saying that for all integers n; > 0 the sequence af*,a3?,...,a3* forms a
d-sequence in any order ([T, Proposition 3.2]). It is known that for a given generalized
Cohen—Macaulay ring A, one can find an integer £ > 0 such that every parameter ideal
@ contained in m? is standard ([T, Section 3]).

For each ideal I in A we set

R(I)=@I", GU)=E I/, and F(I)=PI/mI"
n>0 n>0 n>0
and call them, respectively, the Rees algebra, the associated graded ring, and the fiber
cone of 1.
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With this notation and terminology our purpose is to prove the following.

Theorem 1.1. Let A be a generalized Cohen—-Macaulay ring and suppose that
depth G(m) > 2. Let £ > 1 be an integer such that every parameter ideal of A contained
inm’ is standard. Then for each integer ¢ > 1, one can find an integert = t(q) > q+4+1
such that I is stable for every parameter ideal Q of A contained in m?, where I = Q : m9.
Moreover, for each positive integer q such that 1 < g < ¢, the integer t(q) is given by,
tlq)=q+C+1ifqg="Landt(q) =20 ifqg <.

Applying the results in [GN, Section 5] and [GO, Section 2] to our ideals I = @ : m9,
we readily get the following, which is the most important consequence of Theorem 1.1.
Notice that in both Theorem 1.1 and Corollary 1.2 one can choose £ = 1 when A is a
Buchsbaum ring.

Corollary 1.2. Let A be a generalized Cohen-Macaulay ring with depth G(m) > 2 and
choose an integer £ > 1 so that every parameter ideal of A contained in m¢ is standard.
Then for each integer ¢ > ¢, there exists an integer t = t(q) > q + £+ 1 such that the
following assertions hold true for every parameter ideal @ of A contained in mt, where
I=Q:mi.
(1) e(A) = e3(A) + ej(A) — La(A/).
(2) The Hilbert function of I is given by
La(A/T) = e(A)("5) =} (A) ("3 + ZiLa(=1)* [eG () +e(A)] ("54)
for alln > 0.
(3) Hy (G(I)) = [Hi (G(I))]1—: & HE (A) as an A-module for all i < d and

max {n € Z | [H{(G(D)) # (0} <1-d.

(4) The associated graded ring G(I) = @, I"/I™*" of I is a Buchsbaum ring
whenever A is Buchsbaum.

Here M = mG(I) + G(I)+ and [H,(G(I))]. (i,n € Z) denotes the homogeneous com-
ponent with degree n in the i-th graded local cohomology module H,(G(I)) of G(I) with
respect to M.

In [GHS] Goto, Sakurai and the author proved Theorem 1.1 and Corollary 1.2, as-
suming the extra condition on systems aj,as,...,aq of parameters that ag = ab for
some ¢ € m? and b € m. This is a technical but crucial condition in order to use the
result of Goto and Sakurai [GSa3, Lemma2.3], and thanks to the condition, they were
able to get the equality I2 = QI by induction on dimension d, where I = Q : m? and
@ C m7+t+1 The present proof of Theorem 1.1 and Corollary 1.2 is substantially differ-
ent from the one in [GHS]. It is based on Proposition 2.3 and valid for every parameter
ideal @ contained in mf, choosing an integer ¢ such that t > g+ £+ 1.
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Our research dates back to the works of Corso, Polini, Huneke, Vasconcelos, and Goto,
where they explored the socle ideals @ : m for parameter ideals @ in Cohen—Macaulay
rings and proved the following.

Theorem 1.3 ([CHV, CP1, CP2, CPV, G]). Let Q be a parameter ideal in a Cohen-
Macaulay ring A and let I = Q : m. Then the following conditions are equivalent.

(1) P #QI.

(2) Q is integrally closed in A.

(3) A is a regular local ring and the A-module m/Q) is cyclic.

Therefore, if A is a Cohen-Macaulay ring which is not reqular, then I 2 = QI for every
parameter ideal Q in A, so that G(I) and F(I) are both Cohen—Macaulay rings, where
I =Q :m. The Rees algebra R(I) is also Cohen-Macaulay if dim A > 2.

Perhaps Wang has provided the greatest achievement so far by affirmatively answer-
ing a conjecture posed by Polini and Ulrich that is rooted in linkage theory. We state
his result in the following way.

Theorem 1.4 ([Wan]). Suppose that A is a Cohen-Macaulay ring and let ¢ > 1 be an
integer. Let Q be a parameter ideal in A such that Q C m?*t! and put I = Q : m9. Then

mil =m?Q, ICmi! and I?=0QI,
provided depth G(m) > 2.

It seems natural to ask what we can expect when the base local ring is not nec-
essarily Cohen-Macaulay. Goto, Sakurai and the author [GHS, Theorem 1.1} gave
an answer in the case where the base ring A is Buchsbaum, showing the assumption
that depth G(m) > 2 is sufficient in order for Wang’s methods to work. Generalizing
the results in [GSal, GSa2, GSa3, GHS] our theorem 1.1 answers the question with
substantial generality in the case where A is a generalized Cohen-Macaulay ring.

2. PROOF OF THEOREM 1.1

In what follows, we denote by A a Noetherian local ring with maximal ideal m and
dimension d > 0. Let H (x) (i € Z) be the local cohomology functors of A with respect
to m. The purpose of this section is to prove Theorem 1.1.

Our proof is based on the following result of Cuong and Truong [CT, Theorem 3.3,
Corollary 4.1]. They deal with the case when ¢ = 1, but this can be generalized to
when ¢ > 1 in a straightforward manner.
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Theorem 2.1 ([CT, Theorem 3.3, Corollary 4.1]). Suppose that A is a generalized
Cohen-Macaulay ring and let ¢ > 1 be an integer. Then

d

supq £4(1Q /@) = 3 (§)£4(0) iz )

=0

where Q runs through standard parameter ideals in A. Furthermore, one can find an
integer k = k(q) > 1 such that every parameter ideal Q of A contained in m* is standard
with

d
a1 m1/Q) =3 (1) 2a((0) g9

Following result is due to Cuong and Quy [CQ, Corollary 4.3]. They generalized the
results of Cuong and Truong [CT, Theorem 3.3, Corollary 4.1] as one of applications of
their splitting theorem [CQ, Theorem 1.1].

Theorem 2.2 ([CQ, Corollary 4.3]). Suppose that A is a generalized Cohen—Macaulay
ring. Let £ > 1 be an integer such that every parameter ideal of A contained in m’
is standard. Then for each positive integer q such that 1 < q < £ and all parameter
ideal Q of A contained in m%*, the length £4([Q : m9)/Q) is independent of the choice
of parameter ideal @ and given by

d

Q@) = 3 (1) 4(0) sy ).

=0
We begin with the following.

Proposition 2.3. Suppose that A is a generalized Cohen—Macaulay ring and let ¢ > 1
be an integer. Let () be a standard parameter ideal in A and assume that

. (d
a1 m1/Q) = 3 (1) a0) sy ).
=0
Then
Q@+W]:m!=[Q:mI+W
where W = HY, (A).
Proof. We set A = A/W. Then Q N W = (0) ([T, Corollary 2.3]), we have the exact

sequence

0—H(A) - A/Q 5> A/QA — 0.
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Since QA is also a standard parameter ideal of A. By applying Hom4(A/m?, %) and
using Theorem 2.1 we get

a(1Q : m*/Q) < £a((0) my,(a) mq)+fA([QA 7 m/QA)

< £a((0) :mo 4y M7) + Z ( )ZA( (0) ‘g, 2y m9)
= £4((0) :mo,(a) M) + Z ( )fA (0) :mi,(a) M)

< Z < )EA((O) ‘mi (4) M),

=0
since H (A) = (0) and HE (A) = HE (A) for all i > 1. Therefore, because

d

eali@m1/Q) = 3 (1) a((0) sy ),

=0
we have
£4(1Q : m%/Q) = £4((0) :mg,(a) M?) + La([QA :z m7]/QA).
This shows that homomorphism A/Q < A/QA gives rise to an epimorphism
Hom4(A/m9, €) : Homs(A/m?, A/Q) — Homa(A4/m?, A/Q).
Hence
Q@+ W]:m!=[Q: m+
O

The following is the key for our proof of Theorem 1.1. This is a generalization of the
result of Goto and Sakurai [GSal, Theorem 3.9].

Theorem 2.4. Suppose that A is a generalized Cohen—-Macaulay ring and let ¢ > 1 be
an integer. Let Q be a standard parameter ideal in A and set I = Q : m?. Assume that
the following three conditions are satisfied.

(1) £a(1/Q) = i ($)£4((0) taxz, ay m).
(2) miI = miQ.

(3 Irca.
Then I 1is stable.

Proof. We have
Q@+W] m!=[Q:mI|+W=I+W
by Proposition 2.3, where W = H% (A). Let Q = (a1,as, . .., aq).
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Suppose that d = 1. We put A = A/W, m =m/W, T =IA, and Q = QA. Then
m?-] = m?%-Q; hence, m?-T" = m?-Q" for alln € Z. By the equality [Q+W]:mi=I+W,
we have I = Q : m% Let z € T Then, since T C Q, we have z = a,y with y € A. Let
a € @Y Then, a)(ay) = az € M1 =m*-Q’, we get a1(ay) = a2z for some z € A.
Hence ay € @ (notice that A is Cohen—Macaulay so that a; is A-regular), hence, we have
T =a1y € Q-1, because y € Q : m? = I. Thus we have I~ = Q-T, so that I2 C QI+w.
Therefore, since WNQ = (0) and 12 C Q, we get 12 C (QI +W)NQ = QI as claimed.

Suppose that d > 2 and our assertion holds true for d — 1. Let B = A/(a;). Then
conditions (1), (2), and (3) are satisfied for the parameter ideal @B in B. This is clear
for conditions (2) and (3). As for condition (1), for all 0 < i < d — 2 we have the short
exact sequence

0 — H{ (4) —» H (B) —» H(A) —» 0
of local cohomology modules, since a;HE (A) = (0) (0 <4 < d—1) and £4((0) : a;) =
£4(W) < oo ([T, Theorem 2.5]). Hence, by Theorem 2.1, we get

£4(1/@) = £4(1QB 15 m)/QB)
<X (") eal© iy

=0

= jg: (d; 1) [ZA((O) i () ™)+ £a((0) mpra mq)]

-y (£)24(© s w0

=01/,
so that i
1B 0 w)/QB) = 3 () a((0) i )

Therefore, condition (1) is satisfied also for @B. Thus we have I> C QI + (a;) by the
hypothesis of induction on d. Let us now choose z € I? and write = y + a;2z with
y € QI and z € A. Also, let & € m?. We then have

az = ay + a1(az) € @,

because z € I? and m?%] = m?4(Q). Consequently a;(az) € @* (notice that ay € Q?),
since aj, az,...,aq form a d-sequence in A ([T, Proposition 3.1]), we have a;(az) €
(a1) N Q* = a;Q. Hence az —v € (0) : a; € W ([T, Theorem 2.5)) for some v € Q,
which guarantees z € (Q+W) : m? = [+ W. Since a;W = (0), we get = = y+a,2 € QI.
Hence I? = QI. 0
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To prove Theorem 1.1 we need the following result of [GHS], in which we make use
of the assumption that depth G(m) > 2.

Proposition 2.5 ([GHS, Proposition 2.2]). Let A be a generalized Cohen—Macaulay
ring with depth G(m) > 2. Choose an integer £ > 1 so that every parameter ideal of A
contained in m¢ is standard. Let ¢ > 1 be an integer and let Q be a parameter ideal of
A such that Q C m3t*+1. We then have '

mil =miQ, ICm? and I CQ,
where [ = Q) : m9.
We are now ready to prove Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. Let £ > 1 be an integer such that every parameter ideal of A
contained in m? is standard. Take t(q) = max{k(q),q+ ¢+ 1}, where k(g) is the integer
obtained by Theorem 2.1. Then by Theorem 2.4 and Proposition 2.5 we readily get
I is stable for every parameter ideal Q = (ay,as,...,aq) of A contained in m‘, where
I = Q : m9. Moreover, for each positive integer ¢ such that 1 < ¢ < £, the integer ¢(q)
is given by, t(¢) = max{2¢,q+ £+ 1} by [CQ, Corollary 4.3] so that, t(q) = ¢+ £+ 1 if
g={fandt(q) =20ifg< ¢ O

Before entering into the proof of Corollary 1.2, let us give the notion introduced by
[GO]. Let I be an m-primary ideal of A and let @ = a;,4az,...,aq4 be a system of
parameters in A. We assume that @ = (a1,as, ..., aq) is a reduction of I. Then we say
that condition (C) is satisfied for a and I, if

(a1,...,Gi...,0q) 1a; T
forall1 <i:<d.

Proof of Corollary 1.2. We have I? = QI by Theorem 1.1. We notice that if ¢ > ¢,
condition (Cy) is satisfied for our system a of parameters and the ideal I = @ : m?. In
fact,

(a,...,ds .- 0q) i @; = (a1, .., Gi,-- -, 0q) - m?
for each 1 < i < d ([T, Lemma 1.1]), because @ C m* and every parameter ideal of A
contained in m? is standard. Therefore, since ¢ > ¢, we get

(al,...,di,...,ad):ai=(a1,...,d¢,...,ad):meg(al,...,di,...,ad):mqgl

as wanted. Hence the detailed description of the Hilbert function of our ideal I =
Q : m? follows from [GO]. By [GN, Section 5] the associated graded ring G(I) of I
is Buchsbaum, if A is Buchsbaum. Assertions (1), (2) (resp. (3), (4)) of Corollary
1.2 readily follow from [GO, Propositions 2.4, 2.5] (resp. [GN, Theorem 1.3, Section
5]). O
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UPPER BOUND OF MULTIPLICITY OF F-RATIONAL RINGS
AND F-PURE RINGS

KEI-ICHI WATANABE

1. INTRODUCTION

In the problem session of the workshop at AIM, August 2011, titled “Relating
Test Ideals and Multiplier Ideals”, Karl Schwede posed the following question.

Let (R, m) be a Noetherian local ring of characteristic p > 0 of dimension d and
embedding dimension v. Assume that R is F-pure. Then is the multiplicity e(R) of

R always satisfy
e(R) < ( y ) ?

Actually, this inequality is always true and follows from Briangon-Skoda type
theorem, which was proved by C. Huneke.
This is a joint work with Craig Huneke.

2. PRELIMINARIES

Let (R, m) be either a Noetherian local ring or R = @®n3oR, be a graded ring
finitely generated over a field Ry = k. We always assume that either R contains a
field of characteristic p > 0 or R is essentially of finite type over a field of charac-
teristic 0. We always assume that our ring R is reduced.

Definition 2.1. We denote by R° the set of elements of R that are not contained
in any minimal prime ideal. The tight closure I* of I is defined to be the ideal of R
consisting of all elements z € R for which there exists ¢ € R° such that cx? € I ld
for all large ¢ = p°.

Definition 2.2. We say that a local ring (R, m) is F-rational if it is a homomorphic
image of a Cohen-Macaulay ring and for every parameter ideal J of R we have
J* = J. It is known that F-rational rings are normal and Cohen-Macaulay.

Definition 2.3. Assume that R contains a field of characteristic p > 0 and g = p®
be a power of p.
(1) For a power ¢ = p® and ideal I in R, we denote by I [ the ideal generated
by {a?|a € I}.
(2) We write R/ then we say that R is F-pure if for every R module M, the

natural map M = M@grR — M®gRY?, sending x € M to z®1 is injective.
1
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(3) Let I be an ideal of R and z € R. If R is F-pure and if 9 € 119, then z € I.
This follows from (2) if we put M = R/I.

3. THE MAIN RESULTS

The following theorem is our main result in this article.

Theorem 3.1. Let (R, m) be a Noetherian local ring with dim R = d and embedding
dimension v. Then,

(1) If R is a rational singularity or F-rational, then e(R) < ( Z: i ) )

(2) If R is F-pure, then e(R) < ( Z )
This theorem easily follows from the following theorem.

Theorem 3.2. Let (R, m) be a Noetherian local ring with dim R = d and let J Cm
be a minimal reduction of m.

(1) If R is a rational singularity of F-rational, then m?® C J.

(2) If R is F-pure, then m®*! C J.

Proof. The statement (1) is well known and follows from Bricangon-Skoda type
theorem (cf. [HH], [LT]).

For the statement (2) we will prove the following statement.

Assume R is F-pure and [ is an ideal generated by r elements, then I"t1 C I.
This is sufficient to prove 3.2 since md+! ¢ md+1 = Jd+1,

Now take x € ITt1. Then we can take ¢ € R° such that for sufficiently large
N,czN € IT+DN_ Then ez € ¢(IT+DN : ¢). The latter is contained in cRN I+
and by Artin-Rees Lemma, there exists k such that cR N IC+DN  ofr+1)N-k
for sufficiently large N. Now, we have shown that cz¥ € cI"*+DN=k  Note that
I" C 19, Taking sufficiently large N = ¢ = p® and noting that c is a non zero
divisor, we get 27 € I'4. Since R is F-pure, we get z € I. O

It is easy to prove 3.2 using 3.1.

Proof of 3.2 => 3.1. We have the following inequality and the equality holds if and
only if R is Cohen-Macauly (cf. [BH], Corollary 4.7,11).

(3.1.1) e(R) <lgr(R/J)

So, it suffices to show that {g(R/J) is bounded by the right-hand side of the
inequalities in 3.1. Now, let zy,...,Z4,¥y1,- - ., Yv_q be minimal generators of m with
J = (z1,...,z4). Then R/J is generated by the monomials of yy, ..., y,_q of degree
< d—1 (resp. degree < d) in case (1) (resp. case (2)) by 3.2. It is easy to see that
the number of monomials of y,...,1,_4 of degree < d — 1 (resp. degree < d) is

(e (5 a
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Remark 3.3. Assume we have equality in 3.1 (1) or (2). Then R is Cohen-Macaulay
since we must have equality in (3.1.1), too. Moreover, since the associated graded
ring of R has the same embedding dimension and multiplicity with R, gr.(R) is also
Cohen-Macaulay in this case.

4. ActuaL UPPER BOUND
The upper bound in 3.1 (2) is taken by the following example.

Example 4.1. Let A be a simplicial complex on the vertex set {1,2,...,v}, whose
maximal faces are all possible d — 1 simplices. Then the Stanley-Reisner ring R =

k[A] has dimension d and e(R) = ( Y

d ) . Note that Stanley-Reisner rings are always
F-pure.

Remark 4.2. (1) Are there other examples where we have equality in 3.1 (2) if
v>d+27 It is shown in [GW] that in the case of d = 1, this is the only example
if we assume (R, m) is complete local ring with algebraically closed residue field.

(2) Also, are there examples where we have equality in 3.1 (1) if v > d + 2 and
d > 3?7 If d = 2, we have always e(R) = v — 1 (cf. [Li]).

5. CASE OF (GORENSTEIN RINGS

If R is Gorenstein, the upper bound is largely reduced by the duality. If (B,n) is
an Artinian Gorenstein ring with n® # 0 and n®** = 0, then
I(nt) < ([0 :p n°*H1]) = lg(B/n*"**'). Hence we have the following inequalities
by 3.2.

Theorem 5.1. Let (R,m) be a Gorenstein Noetherian local ring with dim R = d
and embedding dimension v.

(1) If R is a rational singularity or F-rational with dim R = 2r +1, then e(R) <
(v—r—l) (v—r—2)
+
r r—1
(2) If R is a rational singularity or F-rational with dim R = 2r, then e(R) <
2 v—r—1
r—1.

(3) If R is F-pure with dim R = 2r + 1, then e(R) <2 ( v : -1

r—1

(4) If R is F-pure with dim R = 2r, then e(R) < ('U;T>+(U—r—1>.

Remark 5.2. Again, the upper bound in (3), (4) is taken by the Stanley-Reisner ring
of “Cyclic Polytopes” (cf. [St]).

Acknowledgment. 1 am grateful to Naoki Terai for suggesting me about cyclic poly-
topes.
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ALMOST GORENSTEIN RINGS
SHIRO GOTO, NAOYUKI MATSUOKA, AND TRAN THI PHUONG

ABSTRACT. The notion of almost Gorenstein ring given by Barucci and Fréberg [2]
in the case where the local rings are analytically unramified is generalized, so that
it works well also in the case where the rings are analytically ramified. As a sequel,
the problem of when the endomorphism algebra m : m of m is a Gorenstein ring
is solved in full generality, where m denotes the maximal ideal in a given Cohen-
Macaulay local ring of dimension one. Characterizations of almost Gorenstein rings
are given in connection with the principle of idealization. Examples are explored.

1. INTRODUCTION

This paper studies a special class of one-dimensional Cohen-Macaulay local rings,
which we call almost Gorenstein rings ([7]). Originally, almost Gorenstein rings were
introduced by V. Barucci and R. Fréberg (2], in the case where the local rings are
analytically unramified. They developed in [2] a very nice theory of almost Gorenstein
rings and gave many interesting results, as well. Our paper aims at an alternative
definition of almost Gorenstein ring which we can apply also to the rings that are
not necessarily analytically unramified. One of the purposes of such an alternation
is to go beyond a gap in the proof of [2, Proposition 25] and solve in full generality
the problem of when the algebra m : m is a Gorenstein ring, where m denotes the
maximal ideal in a given Cohen-Macaulay local ring of dimension one.

Before going into more details, let us fix our notation and terminology, which we
maintain throughout this paper.

Let R be a Cohen-Macaulay local ring with maximal ideal m and dim R = 1. We
denote by Q(R) the total quotient ring of R. Let Kg be the canonical module of R.
Then we say that an ideal I of R is canonical, if I # R and I & K as R-modules.
As is known by [10, Satz 6.21], R possesses a canonical ideal if and only if Q(R) is a
Gorenstein ring, where R denotes the m—adic completion of R. Therefore, the ring R
possesses a canonical ideal, once it is analytically unramified, that is the case where
R is a reduced ring.

Let I be a canonical ideal of R. Then because Anng I = (0), the ideal I is m—
primary, and we have integers eo(I) > 0 and e;(I) such that the Hilbert function of
I is given by the polynomial

Cr(R/I™Y) = eo(I) (“* 1) — ex(I)

for all integers n > 0, where £g(M) denotes, for each R—module M, the length of
M. Let r(R) = £g(ExtRr(R/m, R)) be the Cohen-Macaulay type of R ([10, Definition
1.20]). Then our definition of almost Gorenstein ring is now stated as follows.

Definition (Definition 3.1). We say that R is an almost Gorenstein ring, if R pos-
sesses a canomnical ideal I such that e1(I) < r(R).
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If R is a Gorenstein ring, then we can choose any parameter ideal Q of R to be a
canonical ideal and get ;(Q) = 0 < r(R) = 1. Hence every Gorenstein local ring of
dimension one is an almost Gorenstein ring.

Let us explain how this paper is organized. In Section 2 we would like to show some
well-known results about the first Hilbert coeffficients e; (I) of m—primary ideals I in R
and the existence of canonical ideals in R. In Section 3 we shall give characterizations
of Gorenstein rings and almost Gorenstein rings as well, according to Definition 3.1.
In Section 4 we will study the problem of when the endomorphism algebra m : m (22
Homp(m, m)) of m is a Gorenstein ring. This is the problem which Barucci and
Froberg wanted to solve in [2], but Barucci finally felt there was a gap in [2, Proof of
Proposition 25]. However, we should note here that the counterexample [1, Example
p. 995] given by Barucci to [2, Proposition 25] is wrong, and the proof stated in [2] still
works with our modified definition of almost Gorenstein ring, which we shall closely
discuss in Section 4. In the last section 5 we will give a series of characterizations of
almost Gorenstein rings obtained by idealization (namely, trivial extension). Unless
otherwise specified, in what follows, let (R, m) denote a Cohen-Macaulay local ring
with dimR = 1. Let Q(R) be the total quotient ring of R and R the integral
closure of R in Q(R). For each finitely generated R-module M, let ur(M) denote
the number of elements in a minimal system of generators for M. Let v(R) = pgr(m)
and e(R) = ep(m), the multiplicity of R with respect to m. Let £g(*) stand for the
length. For given fractional ideals Fy, Fy of R, let Fy : F, = {z € Q(R) | zF> C F1}.
When we consider the ideal colon {z € R | zJ C I} for 1ntegral ideals I, J of R, we
denote it by I :g J in order to make sure of the meaning.

2. THE FIRST HILBERT COEFFICIENTS AND EXISTENCE OF CANONICAL IDEALS

In this section we shall summarize preliminary results, which we need throughout
this paper.

Let R be a Cohen-Macaulay local ring with maximal ideal m and dim R = 1. Let
I be an m-primary ideal of R. Then there exist integers eq(I) > 0 and e;(I) such
that

r(R/T™Y) = eo(I) (" i 1) —ei(D)

for all integers n > 0. We assume that there exists an element a € I such that
the ideal @ = (a) is a reduction of I, i.e., I"** = QI" for some integer r > 0 (this
condition is automatically satisfied, if the residue class field R/m of R is infinite).
We put

r =rtedg(I) := min{n € Z | I"** = QI"}.

For each integer n>0let L ={Z |z € I"} and put S = R[L] in Q(R). We then
have L. C I: 41 for alln > 0 Therefore since S = Un>0 o and I i, for alln > r,

an_

we get § = I = J” as R—modules. Hence S is a finitely generated R-module, so that

RCSCR.
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Let n > 0 be an integer. Then, since I"+!/Q"** = [L2]/R C S/R, we have
Cr(R/T™Y) = Lr(R/Q™) — Er(I"T1/Q™)
> (r(R/Q™) — Lr(S/R)
n+1

®/@)("7T) - uts/R)

and
ear/ ) = /@) (" 7

if n > r — 1. Consequently we get the following.
Lemma 2.1. eo(I) = £r(R/Q) and
0 < ei(I) = Lr(I"/Q") = £r(S/R) < Lr(R/R).
The following result is fairly well-known.
Proposition 2.2 (cf. [11]). 7 < ey (I) and
pr(I/Q) = pr(I) — 1 < Lr(I/Q) = eo(I) — Lr(R/I) < ex(1).

We furthermore have the following.

(1) pr(I/Q) = ¢r(I1/Q) if and only if mI C Q, i.e., mI =mQ).
(2) £r(I/Q) = ex(I) if and only if I* = QI.

Remark 2.3. Proposition 2.2 is a special case of the results which hold true
for arbitrary Cohen-Macaulay local rings of positive dimension. The inequality
£r(I/Q) < ei(I) is known as Northcott’s inequality ([11]), and assertion (2) of Propo-
sition 2.2 was proven by [9, 12] independently. The ideals I satisfying the condition
that mI C Q are called ideals of minimal multiplicity ([6]).

)—&@ML

Corollary 2.4. The following assertions hold true.

(1) Let I and J be m—primary ideals of R and suppose that I contains a reduction
Q=(a). IfI CJCI, then e () < es(J).

(2) Suppose that R is not a discrete valuation ring. Then e;(Q :r m) = r(R) for
every parameter ideal Q = (a) of R, where r(R) denotes the Cohen-Macaulay
type of R.

Let Kg denote the canonical module of R. The fundamental theory of canonical
modules was developed by the monumental book [10] of E. Kunz and J. Herzog. In
what follows, we shall freely consult [10] about basic results on canonical modules
(see [4, Part I] also).

As is well-known, R possesses the canonical module Kp, if and only if R is a homo-
morphic image of a Gorenstein ring ([13]). In the present research we are interested
also in the condition for R to contain canonical ideals.

Let us begin with the following.

Definition 2.5. An ideal I of R is said to be a canonical ideal of R, if I # R and
I =2 Kg as R—modules.

Here we confirm that this definition implicitly assumes the existence of the canon-
ical module Kg. Namely, the condition in Definition 2.5 that I = Kg as R—modules
should be read to mean that R possesses the canonical module Kg and the ideal I of
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R is isomorphic to Kz as an R-module. Notice that canonical ideals are m—primary,
because they are faithful R-modules ([10, Bemerkung 2.5]).
We then have the following result [10, Satz 6.21].

Proposition 2.6 ([10]). The following conditions are equivalent.

(1) Q(R) is a Gorenstein ring.
(2) R contains a canonical ideal.

Hence R contains a canonical ideal, if R is a reduced 7ing.
Let R denote the integral closure of R in Q(R).

Corollary 2.7. The following conditions are equivalent.

(1) There exists an R-submodule K of Q(R) such that RC K C R and K = Ky, as
R-modules.

(2) R contains a canonical ideal I and a € I such that (a) is a reduction of I.

When this is the case, every canonical ideal I of R contains an element which gener-

ates a reduction of I and the first Hilbert coefficient e;(I) is independent of the choice

of canonical ideals I.

As an immediate consequence, we get the following.

Corollary 2.8. Assume that Q(R) is a Gorenstein ring. If the residue class field R/m
of R is infinite, then there exists an R-submodule K of Q(R) such that RC K C R
and K =2 Kg as R—modules.

Remark 2.9. Corollary 2.8 is not true in general, unless the field R/m is infinite.
For example, we look at the local ring

R=K[X,Y,Z]]/(X,Y)N(Y,2) N (Z,X),
where k[[X,Y, Z]] is the formal power series ring over a field k. Then R is reduced
and dim R = 1. We put I = (z + y,y + z), where z, y, and 2 denote the images of
X, Y, and Z in R, respectively. Then I is a canonical ideal of R. If k = Z/2Z, no
element of I generates a reduction of I, so that no R-submodules K of Q(R) such
that R C K C R are isomorphic to Kg.

The R-submodules K of Q(R) such that R C K C R and K = Ky as R-modules
play a very important role in our argument. The following result insures the existence
of those fractional ideals K, after enlarging the residue class field R/m of R until it
will be infinite, or even algebraically closed.

Lemma 2.10 ([3, AC IX, p. 41, Corollaire]). Let (R,m) be a Noetherian local ring
with k = R/m. Then for each extension ki /k of fields, there exists a flat local homo-
morphism (R,m) — (Ry,m;) of Noetherian local rings which satisfies the following
conditions.

(a) my = mR;.

(b) Ri/m; = k;y as k-algebras.

We apply Lemma 2.10 to our context.

Proposition 2.11. Let R be a Cohen-Macaulay local ring with mazimal ideal m
and dim R = 1. Let k = R/m and let k1/k be an extension of fields. Suppose that
¢ : (R,m) = (Ry,my) is a flat local homomorphism of Noetherian local Tings such
that
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(a) my =mR;.

(b) Ry/my = ki as k-algebras.

Then Ry is a Cohen-Macaulay ring with dim Ry = 1. We furthermore have the

following.

(1) Q(R\l) is a Gorenstein ring if and only if Q(R) is a Gorenstein ring. When this
is the case, for every canonical ideal I of R the ideal IR, of R, is a canonical
ideal of Ry and e1(IR;) = e1(I).

(2) m; : my is a Gorenstein ring if and only if m : m is a Gorenstein ring.

(3) Let M, N be finitely generated R—modules. Then M = N as R-modules if and
only if R ®g M = R; Qg N as Ri—modules.

Corollary 2.12. Suppose that Q(ﬁ) is a Gorenstein ring. Then the first Hilbert
coefficient e;(I) of I is independent of the choice of canonical ideals I of R.

Proposition 2.11 is sufficiently general for our purpose, since we need exactly the
fact that the Gorenstein property of Q(R) is preserved after enlarging the residue
class field. We actually do not know whether the property in the ring R of being
analytically unramified is preserved after enlarging the residue class field.

Let us note the following.

Question 2.13. Let R be a Cohen-Macaulay local ring with maximal ideal m and
dimR = 1. Let k;/k be an extension of fields where k¥ = R/m. Suppose that R
is a reduced ring. In this setting, can we always choose a flat local homomorphism
(R,m) — (Ri1,m) of Noetherian local rings so that the following three conditions
are satisfied?

(a) my = mR;.

(b) R;/my =k as k-algebras.

(c) R, is a reduced ring.

3. ALMOST GORENSTEIN RINGS

In this section we define almost Gorenstein rings and give characterizations.
Let R be a Cohen-Macaulay local ring with maximal ideal m and dim R = 1.

Definition 3.1. We say that R is an almost Gorenstein ring, if R possesses a canon-
ical ideal I such that e;(I) < r(R).

This definition is well-defined, because by Corollary 2.12 the value e;(I) is inde-
pendent of the choice of canonical ideals I. If R is a Gorenstein ring, one can choose
any parameter ideal Q of R to be a canonical ideal, so that ;(Q) =0 < 1 = 1(R).
Hence every one—dimensional Gorenstein local ring is almost Gorenstein.

Before going ahead, let us note basic examples of almost Gorenstein rings which
are not Gorenstein.

Example 3.2. Let & be a field.

(1) We look at the rings R; = k[[t3,t*,¢°], R, = k[[X,Y,Z]]/(X,Y) N (Y,Z) N
(Z,X), and Rs = k[[X, Y, Z,W]|/(Y?, 2%, W2, YW, ZW, XW —Y Z), where k[[t]],
k[[X,Y, Z]], and k[[X,Y, Z, W]] denote the formal power series rings over k. Then
these rings Ri, Ry, and Rj are almost Gorenstein rings with r(R;) = r(Rz) = 2
and r(R3) = 3. The ring R, is an integral domain, R; is a reduced ring but not
an integral domain, and Rj is not a reduced ring.
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(2) Let a > 3 be an integer and put R = k[[t®, t*t,¢**~%71]]. Then e,(I) = ﬂ“{i) -1
for canonical ideals I of R. Since r(R) = 2, R is an almost Gorenstein ring if
and only if a = 3. This example suggests that almost Gorenstein rings are rather
rare.

We note the following.

Proposition 3.3. Let ¢ : (R,m) — (Ry,m;) be a flat local homomorphism of Noe-
therian local rings and assume that m; = mR;. Then the following conditions are
equivalent.

(1) Ry is an almost Gorenstein ring.

(2) R is an almost Gorenstein ring.

When this is the case, t(R;1) = r(R) and for every canonical ideal I of R, IR; is a
canonical ideal of Ry with e;(IR;) = e1(1).

We now develop the theory of almost Gorenstein rings. For this purpose let us
maintain the following setting throughout this section. Thanks to Lemma 2.10,
Proposition 3.3, and Corollary 2.8, we may assume this setting, after enlarging the
residue class field R/m of R to be infinite.

Setting 3.4. Let K be an R—submodule of Q(R) such that R C K C Rand K 2 Kp
as R-modules. Let S = R[K] and ¢ = R : S the conductor of S. We choose a regular
element a € m so that aK C R and put I = oK, Q = (a).

Notice that @ is a reduction of the canonical ideal I of R and S = R[L].
We begin with the following.

Lemma 3.5. (1) Let T be a subring of Q(R) such that K C T and T is a finitely
generated R—module. Then R: T =K : T.
(2) c=K: S and ¢g(R/c) = Lr(S/K).
(3) £r(1/Q) = Lr(K/R) and €r(S/R) = ¢r(R/c) + £r(1/Q).
Proof. For each subring T' of Q(R) such that K C T and T is a finitely generated
R-module, we have
K:T=K:KI'=(K:K):T=R:T,
since R = K : K ([10, Bemerkung 2.5]). Therefore, taking T'= S, we get £r(R/c) =
lr(R/(K : S)), while
Lr(R/(K :S)) =Lg([K : (K :S)]/(K : R)) ={r(S/K),

thanks to the canonical duality ([10, Bemerkung 2.5]). Thus ¢g(R/c) = ¢r(S/K).
Since K = L, we get ¢r(I/Q) = ¢r(K/R), so that

tr(S/R) = (r(S/K)+Lr(K/R)
(K :K/K:S)+4r(1/Q)
Lr(R/¢) + Lr(1/Q).

O

Since pgr(I) = r(R) ([10, Satz 6.10]), combining Proposition 2.2 with Lemma 3.5,
we get the following, which is the key for our argument.

Proposition 3.6. 0 <1(R)—1= pg(I)—1 < lr(I/Q) < e1(I) = Lr(R/c)+Lr(I/Q).
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First of all let us note a characterization of Gorenstein rings.

Theorem 3.7. The following conditions are equivalent.
(1) R is a Gorenstein ring.

(2) K = R.
(3) S = K.

(4) S=R.

(5) £r(S/R) = Lr(R/c).
(6) I =QI.

(8) er(I) =r(R) — 1.
As a consequence of Theorem 3.7, we have the following.

Corollary 3.8. The following assertions hold true.

(1) Suppose that R is not a Gorenstein ring. Then K :m C S.
(2) S is a Gorenstein ring if and only if ¢ = ac for some a € .

We now give a characterization of almost Gorenstein rings. The following result is
exactly the same as the definition of almost Gorenstein ring that Barucci and Fréberg
[2] gave in the case where the rings R are analytically unramified.

Theorem 3.9. R is an almost Gorenstein ring if and only if mK C R, i.e., ml =
mQ. When this is the case, mS C R.

Proof. Suppose that R is an almost Gorenstein ring. If £r(I/Q) = ei(I), then
I? = QI by Proposition 2.2 (2), so that R is a Gorenstein ring by Theorem 3.7.
If £r(1/Q) < ey(I), then we have r(R) —1 = £g(I/Q), because r(R) —1 < £p(I/Q) <
e1(I) < r(R). Therefore mI = mQ by Proposition 2.2 (1). Hence mI" = mQ" for
all n € Z, so that mS C R, because S = f;—: for n > 0. Conversely, suppose that
mK C R and we will show R is an almost Gorenstein ring. We may assume that R
is not a Gorenstein ring. Let J = Q :g m. Then J? = QJ by [5], since R is not a
regular local ring. Therefore I C J C 1, so that e;(I) < e;J) = r(R) by Corollary
2.4. Hence R is an almost Gorenstein ring. O

Since mK C mR, we readily have the following.
Corollary 3.10. If mR C R, then R is an almost Gorenstein ring.
We need the following.

Lemma 3.11. The following assertions hold true.
(1) €r(I?/QI) = Lr(R/(R : K)) < £r(S/K)-

(2) Lr((R:m)/R) =1(R).

(3) R is a discrete valuation ring, if m : m C R:m.

As a consequence of Theorems 3.7 and 3.9, we get the following characterization of
almost Gorenstein rings which are not Gorenstein. Condition (3) in Theorem 3.12 is
called Sally’s equality. m—primary ideals satisfying Sally’s equality are known to enjoy
very nice properties ([8, 15, 16]), where the ideals are not necessarily canonical ideals
and the rings need not be of dimension one. For instance, the fact that condition (3)
in Theorem 3.12 implies both the condition (5) and assertion (a) is due to [15].
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Theorem 3.12. The following conditions are equivalent.

(1) R is an almost Gorenstein ring but not a Gorenstein ring.

(2) ex() =r(R).

(4) ¢r(S/K) =1, i.e, S=K :m.

(5) €r(I?/QI) =1.

(6) m: m =S and R is not a discrete valuation ring.

When this is the case, we have the following.

(a) redg(l) = 2.

(b) Lr(R/I™Y) = (x(R) + £r(R/I) — 1)("1") — x(R) for alln > 1.

(c) Let G = @, ["/I™"" be the associated graded ring of I and M = mG + G the
graded mazimal ideal of G. Then G is a Buchsbaum ring with I(G) = 1, where
I(G) stands for the Buchsbaum invariant of G.

Proof. (1) < (2) This follows from the fact that r(R) — 1 < e;(I) (Proposition 3.6).
Remember that by Theorem 3.7 R is a Gorenstein ring if and only if e; (1) = r(R) — 1
and that R is an almost Gorenstein ring if and only if e; (1) < r(R).

(1) & (3) < (4) We have by Lemma 3.5 and Proposition 3.6

((S/K) = €a(R/<) = ex(I) — Lr(1/Q) = ex(I) — eolI) + £a(R/1).

Therefore, condition (3) is equivalent to saying that £g(S/K) = 1, i.e., £g(R/c) = 1.
The last condition says that ¢ = m, i.e., mS C R but S # R, or equivalently, R is an
almost Gorenstein ring but not a Gorenstein ring (Theorems 3.7 and 3.9). Remember
that £p((K : m)/K = 1 ([10, Satz 3.3]) and that by Corollary 3.8 (1) K : m C S,
if R is not a Gorenstein ring. Then, because R is not a Gorenstein ring if S # K
(Theorem 3.7), we get that £g(S/K) =1 if and only if S = K : m.

(4) = (5) By Theorem 3.7 R is not a Gorenstein ring, so that I? # QI and hence
Lr(I?/QI) = 1, because £r(I%/QI) < £r(S/K) by Lemma 3.11 (1).

(5) = (1) By Lemma 3.11 (1) we have R : K = m. Therefore mK C R and K # R,
so that R is an almost Gorenstein ring but not a Gorenstein ring.

(1) = (6) Suppose that R is an almost Gorenstein ring but not a Gorenstein ring.
Then R is not a discrete valuation ring, S # R, and mS C R. Hence

RCSCR:m=m:m

by Lemma 3.11 (3). Since £g(S/R) = ei1(I) = r(R) = ¢g((R : m)/R) (thanks to
Lemma 2.1, the equivalence of conditions (1) and (2), and Lemma 3.11 (2)), we get
S=m:m.

(6) = (2) By Lemma 3.11 (3) we have S = m : m = R : m. Therefore e;(I) =
Lr(S/R) = £g((R : m)/R) = r(R) by Lemma 2.1 and Lemma 3.11 (2).

Let us prove the last assertions. We put J = @ :gr m. Hence I C J, because R is
an almost Gorenstein ring.

(a) We have £p(I/Q) = r(R) — 1 by Proposition 2.2 (1). Hence ¢g(J/I) = 1,
because £5(J/Q) = r(R). Therefore I* = QI? by [8, Proposition 2.6], since J? = QJ
by [5]. Thus redg(I) = 2 by Theorem 3.7, because R is not a Gorenstein ring.

(b) This is clear.

(c) Let [HY,;(G@)]o denote the homogeneous component of the graded local coho-
mology module H%,(G) with degree 0. Then, thanks to the fact I3 = al?, a direct
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computation shows
HY(G) = [Hy(@)]o = (I :r a) /1.
We want to see that J = I% :g a. Let z € I? :g a. Then az € I? C J?> = aJ. Hence
z € J, so that we have
‘ ICI?:paCJ=(a):gm

Claim 1. [ # I? :p a.
Proof of Claim 1. Suppose that I = I? :g a. Then, since I C mI C (a), we have
I? =a(I? :ga) =al.
Hence R is a Gorenstein ring by Theorem 3.7, which is impossible. O

Thanks to Claim 1, we get I C I? :g a, so that J = I? :g a, since £g(J/I) = 1. Thus
H,(G) = [H,(G)]o = J/I = R/m. Hence G is a Buchsbaum ring with I(G) = 1. O

4. GORENSTEINESS IN THE ALGEBRA m : m

Let R be a Cohen-Macaulay local ring with maximal ideal m and dimR = 1. In
this section we shall settle in full generality the problem of when the endomorphism
algebra m : m of m is a Gorenstein ring. This is the question which V. Barucci
and R. Fréberg [2, Proposition 25] tried to answer in the case where the rings R are
analytically unramified and Barucci [1] eventually felt that there was a gap in their
proof.

Let v(R) = pr(m) denote the embedding dimension of R and e(R) = eg(m) the
multiplicity of R with respect to m. We then have the following.

Theorem 4.1. The following conditions are equivalent.

(1) m: m is a Gorenstein ring.
(2) R is an almost Gorenstein ring and v(R) = e(R).

Proof. After enlarging the residue class field of R, by Proposition 2.11 we may assume
that the field R/m is algebraically closed and the ring Q(R) is Gorenstein. We
may also assume that R is not a discrete valuation ring. Therefore we have an R-
submodule K of Q(R) such that R C K C R and K = Kg as R-modules (Corollary
2.8). Let us maintain the same notation as in Setting 3.4. Hence S = R[K] and
c=R:S Let A=m:m.

(1) = (2) Since R is not a discrete valuation ring, RC R:m=m:m = A by
Lemma 3.11. Suppose that R is a Gorenstein ring. Then, sincem = R: A and A
is a Gorenstein ring, the A-module m is locally free of rank one ([10, Satz 5.12]), so
that m = A as A-modules. Hence m = aA for some a € m. Therefore m? = am, i.e.,
v(R) = e(R) (see [14]).

Suppose now that R is not a Gorenstein ring. Since R : A = m, we have

ACK:mCS
by Corollary 3.8 (1).

Claim 2. Let X be a finitely generated A-submodule of Q(R) such that Q(R)-X =
Q(R). Then X is a reflezrive R-module, i.e., X = R: (R: X).
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Proof of Claim 2. Notice that R: (R: A)=R:m=Aand A: (A: X) = X for
every fractional ideal X of A ([10, Bemerkung 2.5]), since A is a Gorenstein ring. We
write A: X = 3¢ Ay, where ys are units of Q(R). Then

£ 14
X:A:(A:X):A:ZAyFﬂAyl.
i=1 i=1 I

Therefore, because Ayli =~ A and A is R-reflexive, we get
X C R:(R:X)

£
R: (R:ﬂAi)
=1 7

14

c R:S(R: AL
=1 Yi
£ 1
C m[R:(R:A—)]
i=1 Yi
_ N4t
-1 Y
so that X is a reflexive R—module. O

Claim 3. 4(S/A) = £a(m/c).
Proof of Claim 8. Let £ = £4(S/A) and take a composition series
A=A CAC---CA=S
as A-modules. Then applying [R : ], by Claim 2 we get
m=R:A=R:A2R:A2---2R:Ay=R:S=c¢
Hence £4(m/c) > £ and we get £4(S/A) = £4(m/c) by symmetry. O
We now notice that £4(X) = ¢g(X) for every A-module X of finite length, be-

cause A is a module-finite extension of R and the field R/m is algebraically closed.
Consequently

Lr(S/A) = L4(S/A) = La(m/c) = Lr(m/c)
and therefore by Lemma 3.11 (2) we get
r(S/R) = (r(S/A) + Lr(A/R)

= ¢r(m/c) + Lr((R : m)/R)

= (r(R/c) — 1) +1(R)

= ¢r(R/c) + (r(R) - 1),
so that ¢(I/Q) = r(R) — 1 = pr(I/Q) by Lemma 3.5 (3). Thus R is an almost
Gorenstein ring. Since mS C R, we have S C R:m = A. Hence S = A and ¢® = ac
for some a € ¢ by Corollary 3.8 (2). Thus v(R) = e(R), because ¢ = m.

(2) = (1) Suppose that R is a Gorenstein ring. Then e(R) < 2 and hence every

finitely generated R-subalgebra of R is a Gorenstein ring. In particular, the ring
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A = m : m is Gorenstein. Suppose that R is not a Gorenstein ring. Then S =m:m
by Theorem 3.12 and S is a Gorenstein ring by Corollary 3.8 (2), because ¢ = m and
m? = am for some a € m. O

Remark 4.2. In the proof of (1) = (2) of Theorem 4.1 the critical part is the fact
that £g(S/A) = £r(m/c), which in our context we safely get by the assumption that
R/m is an algebraically closed filed. Except this part the above proof is essentially the
same as was given by Barucci and Froberg [2]. We nevertheless do not know whether
we can still assume that R/m is an algebraically closed field, even if we restrict the
notion of almost Gorenstein ring within the rings which are analytically unramified.
See Question 2.13.

5. ALMOST GORENSTEIN RINGS OBTAINED BY IDEALIZATION

In this section we explore almost Gorenstein rings obtained by idealization. The
purpose is to show how our modified notion of almost Gorenstein ring enriches ex-
amples and the theory as well.

Let R be a Cohen-Macaulay local ring with maximal ideal m and dimR = 1.
For each R—module M we denote by R x M the idealization of M over R. Hence
Rx M = R® M as additive groups and the multiplication in R x M is given by

(a,2)(b,y) = (ab, ay + bx).
We then have a := (0) x M forms an ideal of R x M and a® = (0). Hence, because
R = (Rx M)/a, Rx M is alocal ring with maximal ideal mx M and dim Rx M = 1.
Remember that M = Kg as R-modules if and only if R x M is a Gorenstein ring,

provided M is a finitely generated R-module and M # (0) ([13]).
Let us begin with the following.

Proposition 5.1. Let I be an arbitrary m-primary ideal of R and suppose that there
ezists an element a € I such that Q = (a) is a reduction of I. Assume that R
possesses the canonical module Kg and put IV = Hompg(I,Kg). Then the following
conditions are equivalent.

(1) Rx IV is an almost Gorenstein ring.
(2) mI = mQ and I> = QI.
(3) ur(1/Q) = tr(I/Q) = ex(I).

As an immediate consequence of Proposition 5.1 we get the following.

Corollary 5.2. Suppose that R possesses the canonical module Kr. If R is not a
discrete valuation ring, then R x (Q :g m)V is an almost Gorenstein ring for every
parameter ideal Q in R, where (Q :r m)¥ = Hompg(Q :r m,Kg).

Proof. Let I = Q :g m. Then by [5] we have I 2 = QI, so that the ideal I satisfies
condition (2) in Proposition 5.1. O

Theorem 5.3. Suppose that R possesses the canonical module Kg and the residue

class field R/m of R is infinite. Let M be a Cohen-Macaulay R-module with

Anng M = (0). Then the following conditions are equivalent.

(1) Rx M is an almost Gorenstein ring.

(2) There ezists an m—primary ideal I of R and a € I such that M = IV as R-
modules, 1> = QI, and mI = mQ, where Q = (a) and IV = Hompg(I,Kg).
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When R is a Gorenstein ring, we can simplify Theorem 5.3 as follows.

Corollary 5.4. Assume that R is a Gorenstein ring and let M be a Cohen-Macaulay
R-module with Anng M = (0). Then the following conditions are equivalent.

(1) R x M is an almost Gorenstein ring.
(2) Either M 2 R or M & m.

The following result shows the property of being an almost Gorenstein ring is
preserved via idealization of the maximal ideal, and vice versa.

Theorem 5.5. The following conditions are equivalent.

(1) R x m is an almost Gorenstein ring.
(2) R is an almost Gorenstein ring.

When this is the case, v(R X m) = 2u(R).

Proof. We may assume that the residue class field R/m of R is infinite and the
ring Q(R) is Gorenstein. Hence there exists an R-submodule K of Q(R) such that
R C K C R and K = K as R-modules. We maintain the same notation as in
Setting 3.4. Hence S = R[K]. We choose a non-zerodivisor a € m so that aK C R.
Let I = aK, Q = (a), and J = I :g m. Therefore I is a canonical ideal of R.

(1) = (2) We may assume that R is not a Gorenstein ring. By Theorem 5.3 we may
choose an m-primary ideal a of R and b € a so that a® = ba, ma = mb, and m = a,
where * = Hompg(*, Kg). Since £g((I : m)/I) =1, weget J=1:m=a(K : m).
On the other hand, since K : m C S by Corollary 3.8 (1), we get

Q=()CI=aKCJ=a(K:m)CaSCaR.

Hence @ is also a reduction of J. Now notice that m = JV, since J =1 : m &2 m".
Then, because R x JV is an almost Gorenstein ring, we get mJ C @ by Proposition
5.1, so that mI C mJ C (). Hence R is an almost Gorenstein ring.

(2) = (1) By Corollary 5.4 we may assume that R is not a Gorenstein ring. Choose
a regular element b € m so that bS C R and put a = bS. Then b € a, a? = ba, and
ma C (b), since R is an almost Gorenstein ring. Now notice that S = K : m = mV
(Theorem 3.12) and we have m = SV = aV. Hence R X m is an almost Gorenstein
ring by Proposition 5.1.

Since the maximal ideal of R X m is m x m, we get

v(RXxm) = Lrum((mxm)/(mxm)?)
= lp((m@m)/(m* ®m?))
= 20p(m/m?)
= 2v(R),
which proves the last equality. a

We need the following.

Lemma 5.6. The following conditions are equivalent.

(1) R x m is a Gorenstein ring.
(2) R is a discrete valuation ring.

Let us note examples of almost Gorenstein rings obtained by idealization.
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Example 5.7. Let n > 0 be an integer. We put

R (n=0),
R,=¢{ Rxm (n=1),
(Ra1)1 (n>1).

Then the following assertions hold true.

(1) If R is a Gorenstein ring, then R, is an almost Gorenstem ring for all n > 0.
(2) R, is not a discrete valuation ring for every n > 1. Therefore by Lemma 5.6 Rn41
is not a Gorenstein ring for all n > 1.
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A Remark on the Finiteness Dimension ?

PHAM HUNG QUY
Dedicated to Professor Nguyen Tu Cuong on the occasion of his siztieth birthday

Abstract v

This note is the main part of my report at the 33rd symposium on Commutative Algebra
in Japan. The rest of my report can be seen in [14]. Let a be an ideal of a commutative
Noetherian ring R and M a finitely generated R-module. The finiteness dimension of M
relative to a is defined by

fa(M) = inf{i € No : Hi(M)is not finitely generated},

where H:(M) is the i-th local cohomology with respect to a. The aim of this paper is to show
that if z1, ..., z: is an a-filter regular sequence of M with t < fo(M), then the set

U Ass M/(z7,...,z7* )M

is finite.

1 Introduction

Throughout this paper, let a be an ideal of a commutative Noetherian ring R and M a finitely
generated R-module. For basic facts about local cohomology refer to [2]. We use No (resp. N) to
denote the set of non-negative (resp. positive) integers.
Local cohomology was introduced by A. Grothendieck. In general, the i-th local cohomology of M
with respect to a, H:(M), may not be finitely generated. An important problem in Commutative
Algebra is to find certain finiteness properties of local cohomology. In [4], C. Huneke raised the fol-
lowing conjecture: Is the number of associated prime ideals of a local cohomology module H, (M)
always finite? This question has received much attention in the case when M = R is a regular
ring (cf. [5], [10], [16]). Although A.K. Singh in [15] gave the first counterexample to Huneke’s
conjecture, it has positive answer in many cases. For a given positive integer ¢, Ass H (M) is finite
if either H:(M) is finitely generated for all i <t (cf. [1], [8]) or Supp H;(M) is finite for all i < ¢
(cf. [8]). Combining these results, the author in [14] showed that Ass H;(M) is finite if for each
i < t either H:(M) is finitely generated or Supp H:(M) is a finite set.
As mentioned above, if ¢ is the least integer such that HY(M) is not finitely generated, then
Ass HE(M) is finite. Such integer is called the finiteness dimension, denoted by fa(M), of M
relative to a (see, [2, Chapter 9]). The purpose of this paper is to show that the finiteness dimen-
sion provides a stronger result about the finiteness of certain sets of associated primes. Namely,
let %1,...,z; be an a-filter regular sequence of M with t < fo(M), ie. Supp ((z1, ..., zi—1)M :
z;)/ (21, ., £i1)M C V(a) for all i = 1,...,t, where V(a) denotes the set of prime ideals contain-
ing a. Then the set
U AssM/(z7?,...,z7 )M
n1,...,nt EN

is finite.

1Key words and phrases: Local cohomology, finiteness dimension, filter regular sequence.
AMS Classification 2010: 13D45; 13E99.
This work is supported in part by NAFOSTED (Viet Nam).
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2 The main result

Let a be an ideal of a commutative Noetherian ring R, and M a finitely generated R-module. We
begin by recalling some facts about the finiteness dimension of M relative to a.

Definition 2.1. (i) The finiteness dimension of M relative to a is defined by
fa(M) =inf{i € Ny : H:(M)is not finitely generated},
with the usual convention that the infimum of the empty set of integers is oo.
(if) The a-minimum a-adjusted depth of M is defined by
Aa(M) = inf{depth M, + ht(a +p)/p : p € Supp(M) \ V(a)},
with the convention that ht(a +p)/p=coifa+p=R.
Remark 2.2. (i) f,(M) € Ny provided aM # M and M is not a-torsion.

(ii) fo(M) = inf{i € N : a"H;(M) # Ofor alln € N}. Therefore there exists a positive integer
ng such that a™ H:(M) = 0 for all i < fo(M).

(iii) fa(M) < Aq(M) and the equality holds when R is universally catenary and all the formal
fibres of all its localizations are Cohen-Macaulay rings (see, [2, 9.6.7]).

We next recall the notion of a-filter regular sequence of M and its relation with local cohomology.

Definition 2.3. We say a sequence zy,...,2; of elements contained in a is an a-filter regular
sequence of M if

Supp ((z1, .., Zi-1)M : 2;)/ (21, ..., Tim1) M C V(a)
for all i =1, ...,t, where V(a) denotes the set of prime ideals containing a.

Remark 2.4. Let z1,...,z; be an a-filter regular sequence of M. Then

(i) For all p € Spec(R) \ V(a), Z,--- , %t is a poor My-sequence i.e. for each i = 2,...,t, the

element z; is a non-zerodivisor on M/ (1, ...,zs—1)M (cf. [12, Proposition 2.2]).

(ii) z7*,...,2;* is an a-filter regular sequence of M for all ny, ..., n; € N, moreover
Ass(M/(z7*, ...,z )M) \ V(a) = Ass(M/(z1, ...,zt) M) \ V(a).

iii) By [12, Proposition 3.4] we have H:(M) = HO(H? M)). Combining with the well-
a a

(Z1,...,@¢)
known fact that H{, =~ (M) = lim_, M/(27*, ..., z}*)M, it follows that

LTt)
AssH:(M) C U Ass M/(zT*, ...,z7t) M.

ni,...,nt €N

Proof of (ii). By [12, Proposition 2.2] we have z7%,...,z}* is an a-filter regular sequence of M
for all ny,...,n; € N. Let p € Ass(M/(z1,...,2:)M) \ V(a). By localization at p we have
pRyAss(M,/(%, -+, 5)M,) and 2, .-, 2t is an M,-sequence. The assertion now follows from
the fact that

Ass(M/ (27, ...,z )M) = Ass(M/(z1, ..., z:) M)

for all ny,...,n: € N provided z1, ..., z; is an M-sequence. O
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Recently, N.T. Cuong and the author proved the following splitting theorem (cf. [3]) whose
consequence plays a key role in this paper.

Theorem 2.5 ([3], Theorem 1.1). Let M be a finitely generated module over a Noetherian ring R
and a an ideal of R. Let t and ng be positive integers such that a™ Hi(M) =0 for alli <t. Then,
for all a-filter regular element T € a®™ of M, it holds that

Hy(M/zM) = Hy(M) & HH (M),

foralli<t—1, and
0 CHEY(M/eM) aqno Hz_l(M) @0 THE(M) ano.,

Corollary 2.6 ([3], Corollary 4.4). Let M be a finitely generated R-module and a an ideal of R.
Let t and ng be positive integers such that a®™ HL(M) = 0 for all i < t. Then for every a-filter
reqular sequence 1, ...,zs of M contained in a?™ | we have

O Ass Hi(M) = Ass (M/(z1, .., z;)M) (| V(a),
=0

for all j =1,...,t. In particular, H:(M) has only finitely many associated primes.

Corollary 2.6 implies that Un,enAss M/ (27, ..., zF) M is finite for every a-filter regular sequence
%1,.., 5 of M with t < fo(M). In order to prove the main result we need some preliminary
lemmas. The author is grateful to K. Khashyarmanesh for information that the following is a
sharp of [7, Lemma 2.1].

Lemma 2.7. Let M be a finitely generated R-module and a an ideal of R. Lett and ng be positive
integers such that a™ H {(M) =0 for alli < t. Then for every a-filter reqular sequence 1, ..., Tt of
M, we have a? ™ Hi(M/(z1, ...,z;)M) =0 for all0 < j<t—1andi<t—j.

Proof. The case j = 0 is trivial and by induction it is sufficient to show the assertion in the case
j =1 < t. The short exact sequence
0— M/(0:p 21) = M — M/z1:M — 0
induces the exact sequence
oo — HY{(M) — HY(M/z1M) — HZTH(M/(0 01 1)) — -+

Notice that 0 :ps 21 is a-torsion, hence Hit'(M/(0 :pr z1)) = HitY(M) for all ¢ > 0. Thus
a™ Ht 1 (M/(0 :ar 1)) = 0 for all ¢ <t — 1. The assertion is now clear. O

Proposition 2.8. Let M be a finitely generated R-module and a an ideal of R. Let t and ng
be positive integers such that a™Hi(M) = 0 for all i < t. Let z1,...,z¢ be an a-filter regular
sequence of M and j < t a non-negative integer. For all ny,...,ny € N such that n; > 2tng for all
j+1<i<t, we have

AssM/ (@™, .., &) M = AssM (2}, .., )7, g2, ..., 2} ") M.

Proof. By Remark 2.4 (ii) we have

Ass(M/(z, ..., zp*)M) \ V(a) = Ass(M/(z}*, ..., z}7 w?:_"f, e mft"f')M) \ V(a).

-117 -



On the other hand azj"°Hi(M/(m;“,...,z?’)M) = 0 for all i < t - j by Lemma 2.7, and
Corollary 2.6 implies that
t—j
UAssH;(M/(z’I“,...,z;L’)M)
=0
= Ass(M/(2}", ...,y 2200, .., 22 ") M) [V (a).

Ass(M/(z7*, ...,zp ) M) [V (a)

The proof is complete. O

Lemma 2.9. Let (R, m) be a local ring. Let z1,...,z; be an a-filter regular sequence of M such that
t < Aa(M), the a-minimum a-adjusted depth of M. Then z1,...,x; is an a-filter reqular sequence
of M in any order.

Proof. Tt is sufficient to show the assertion in the case t = 2 < A\,(M). Moreover we only need to
prove that z3 is an a-filter regular element of M (see [6, Theorem 117]). Indeed, let p € Ass M\V (a).
Then ht(a + p)/p > 2 by the definition of Ay(M). Thus there exists q € Spec(R) \ V(a) such that
q is a minimal prime ideal of (z;) + p. By localization at q we have £t is a M;-regular element.
Hence qR, € Ass(M/z, M), since ht(qRq/pRy) = 1 and pRy € AssM,. Thus q € Ass M/z, M.
Hence z2 ¢ q because 7 is an a-filter regular element of M/z; M. Therefore z5 ¢ p and so z5 is
an a-filter regular element of M. a

We now give the main result of this paper.

Theorem 2.10. Let M be a finitely generated R-module, and a an ideal of R. Let t be a positive
integer such thatt < fo(M), the finiteness dimension of M relative to a, and xy, ..., x; an a-filter
regular sequence of M. Then the set

U Ass M/(zT*, ..., z7 )M

ni,...,ntEN

is finite.

Proof. Let ng be a positive integer such that a™H:(M) = 0 for all i < fo(M). For each
(n1,...,nt) € N* we consider a t-tuple of positive integers (my, ...,m;) € Nt such that m; = n;
if n; < 2'ng, and m; = 2'ng if n; > 2'ng. We have that p € Ass M/(z7*,...,z}*)M iff pR, €
Ass My /(z7*, ...,x7*)M,. By Lemma 2.9 and a change of the order of the z;, if necessary, we can
assume that n; < 2'ng for all i < j, and n; > 2tng for all j 4+ 1 < i < ¢, for some j < ¢t. Now,
Proposition 2.8 implies that pR, € Ass M, /(z]?, ..., z7*) M, iff pR, € Ass M, /(z(™, ...,z ) M,.
Therefore

Ass M/(zT, ...,z )M = Ass M/(zT, ..., z7 ) M.
Hence
U Ass M /(2T ..., z0t )M = U Ass M/(z7, ...,z )M
ni,...,n: EN 1<my,...,m<2tng

is a finite set. O

It should be noted that L.T. Nhan in [13, Theorem 3.1] proved a similar result for generalized
regular sequences of M. We recall that in a local ring (R, m) a sequence 1, ..., z; of elements is
said to be a generalized regular sequence of M if 1 ¢ p for all p € AssM/(z1, ..., T;—1) M satisfying
dimR/p > 1, foralli=1,...,¢t.

-118 -



Question 2.11. Notice that Hi(M) = lim_, Exty(R/a™, M), by virtue of Theorem 2.10 it raises
the following natural questions.

(i) Is UpAss Extiy(R/a™, M) finite for all i < fo(M)?
(ii) Is
U AssExth(R/ (27, ..., zp?), M)

n1,...,nt EN

finite for all a-filter regular sequence 71, ...,x: of M and i <t < fo(M)?

If M is an a-torsion module, then f,(M) = oco. The following is a special case of Question
2.11(j).

Question 2.12. Is U, Ass Exth(R/a", M) finite for all ¢ provided M is a-torsion?

In [11], L. Melkersson and Schenzel asked whether the sets Ass Ext%(R/a™, M) become stable
for sufficiently large n. This question is not true in general since UpAss Ext%(R/a™, M) may be
infinite. However, Khashyarmanesh and Salarian have proved that Ass ExthL(R/a™, M) become
stable for sufficiently large n (cf. [9, Corollary 2.3]). Thus, Melkersson-Schenzel’s question and
Question 2.11 (i) has an affirmative answer in the cases fo(M) < 1. We may modify Melkersson-
Schenzel’s question as follows.

Question 2.13. whether the sets Ass Ext’k(R/ a™, M) become stable for sufficiently large n and for
alli < fo(M)?

Acknowledgement: The author is grateful to the organization for financial support.
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Abstract

This note reports on results from the recent paper [5]. A new definition
of the transcendence degree of an algebra over a ring is given. This has
the property that for a finitely generated algebra over a Noetherian Jacob-
son ring, the transcendence degree is equal to the Krull dimension. This
generalizes a well-known result in commutative algebra. As a consequence,
the transcendence degree of a finitely generated algebra over a Noetherian
Jacobson ring cannot increase when passing to a subalgebra.

The starting point of the investigations is the following result.

Theorem 1 (Coquand and Lombardi [2]). Let R be a commutative ring with uni-
ty and n € N a positive integer. Then the following statements are equivalent:

(a) dim(R) < n.
(b) For every ai,...,a, € R there exist my, ..., my, € No such that

n J

[Ter € (a;- [[a™

=1 i=1

j=1,...,n)R, (1)

where (S)r denotes the ideal in R generated by a set S C R.

A proof will be presented later in this note. Notice that (1) tells us that
[IL,a™ is an R-linear combination of monomials in ai,...,a, that are lexi-
cographically larger than [, ai*. This may be paraphrased by saying that
(a1,...,a,) is a zero of a polynomial over R whose trailing coefficient, with re-
spect to the lexicographic monomial ordering, is 1. This observation motivates
several questions: Can the lexicographic monomial ordering be replaced by other

monomial orderings? Does there exist a relative version of Theorem 1, similar to
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the statement that the dimension of a finitely generated algebra over a field equals
its Krull dimension?

Before proceeding, let us recall the concept of a monomial ordering. Through-
out this note, R will stand for a commutative ring with unity.

Definition 2. Let R[zy,x,,...] be the polynomial ring with infinitely many inde-
terminates and M the set of monomials (i.e., finite products of powers of the ;).
A monomial ordering is a total ordering “<” on M such that:

(a) ift € M, then1<t;
(b) Zf s,t1,t9 € M with t; < ty, then st; = sto.

The most important example of a monomial ordering is the lexicographic
monomial ordering, defined by:

n
Hz‘?" = Hafi & t=1t"ore; <e¢] for the smallest i with e; # €.

Given a monomial ordering “<” and a nonzero polynomial f € Rz, zs,...], we
can speak of the leading coefficient and the trailing coefficient of f, i.e., the
coefficient of the largest and smallest monomial, respectively, appearing in f with
nonzero coefficient.

The following definition generalizes the notion of the transcendence degree of
an algebra over a field.

Definition 3. (a) A nonzero polynomial f € R[z1,2,...] is called submonic
if there exists a monomial ordering “<” such that the trailing coefficient of f
s 1.

(b) Let A be an R-algebra (i.e., a commutative ring A with unity together with
a ring homomorphism R — A). Elements ay,...,a, € A are called alge-
braically dependent over R if there erists a submonic polynomial f €
R[zy,...,z,] such that f(ai,...,a,) = 0. (Of course the homomorphism
R — A is applied to the coefficients of f before evaluating at ay,...,a,.)
Otherwise, ai,...,a, are called algebraically independent over R.

(¢) For a nonzero R-algebra A, the transcendence degree of A over R is
defined as

trdeg(A: R) :=sup{n e N|

there exist ai,...,a, € A that are algebraically independent over R} .
If A= {0} is the zero ring, we define trdeg(A) = dim(A) = —1.

Let us consider some examples.
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Ezample 4. (1) If Ris an integral domain, then an element a € R is algebraically
dependent over R if and only if it is zero or a unit. In fact, algebraic depen-
dence means that there exist n € N and b € R such that a™ = ba™*'.

(2) If R is a nonzero finite ring, then trdeg(R : R) = 0 since for each a € R
there exist nonnegative integers m < n such that a™ = a™. So a satisfies the
submonic polynomial ™ — z".

(3) Let us consider R = Z. Since Z has nonzero elements that are not units, (1)
shows that trdeg(Z : Z) > 1. We claim that all pairs of integers a,b € Z are
algebraically dependent over Z. We may assume a and b to be nonzero and

write . .
a=:l:pri and b———:I:pri,
i=1 i=1
where the p; are pairwise distinct prime numbers and d;,e; € Ny. Choose
n € Ny such that n > d;/e; for all 4 with e; > 0. Then

gcd(a, bn+1) — Hp;ni“{di,(n+l)ei} divides prei — b,

i=1 i=1
so there exist ¢,d € Z such that
b = ca + db™. (2)

Hence (a,b) satisfies the polynomial z3 — cz1 — dz}*!, which is submonic

(with respect to the lexicographic ordering with z; > z5). This proves our
claim, so

trdeg(Z : Z) = 1.
Clearly this argument shows that every principal ideal domain that is not a
field has transcendence degree 1 over itself. It is remarkable that although
the transcendence degree is an algebraic invariant, the above calculation has
a distinctly arithmetic flavor. <

Of course by specifying a particular monomial ordering “=<” in Definition 3,
one gets the notions of submonicity, algebraic (in-)dependence and transcendence
degree with respect to “<”. The latter will be written as trdeg<(A : R). Using
this notation, Theorem 1 may be expressed by the equation -

trdeg,.. (R : R) = dim(R), (3)

which holds for every commutative ring with unity.

We are now ready to state the main result. Recall that a commutative ring with
unity is called a Jacobson ring if every prime ideal is an intersection of maximal
ideals. (Some authors use the term Hilbert ring.)

Theorem 5 (Kemper [5]). Let R be a Noetherian Jacobson ring and A a finitely
generated R-algebra. Then

trdeg(A : R) = dim(A).
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Since every field is a Jacobson ring, this generalizes the well-known classical
result that the dimension of a finitely generated algebra over a field equals its
transcendence degree. Comparing Theorem 5 to (3) raises the question whether
the hypothesis that R is a Jacobson ring is really necessary. The following example
shows that it is.

Ezample 6. Let p € Z be a prime and let
R={Zlabez, pto}
be the localization of Z at (p)z. Then
Q= R[1/p]
is a finitely generated R-algebra. But we have
dim(Q) = 0 < trdeg(R : R) < trdeg(Q : R),

where the first inequality follows from Example 4(1) and the second from R C Q.
So the statement of Theorem 5 fails in this example. <

In fact, more can be said: For every Noetherian ring that is not Jacobson, there
exists an example of the above type (see [5, Remark 2.7]. So the validity of the
statement of Theorem 5 characterizes Jacobson rings.

To give the reader an idea of the proof, we present a proof of Theorem 1.

Proof of Theorem 1. We prove (3), which is equivalent to Theorem 1. To this end,
we claim that the equivalence

trdegi (R: R) >n <= dim(R)>n

holds for all n € Ny. We use induction on n. There is nothing to show for n = 0,
so we may assume n > 0.

First assume that trdeg,, (R : R) > n, so we have ai,...,a, € R that are
algebraically independent over R with respect to lex. The set

U :={f(an) | f € R|z,)] is submonic} C R

is multiplicative. It follows from the choice of the lexicographic monomial ordering
that ai,...,a,_1 are, as elements of the localization U~ R, algebraically indepen-
dent over U~! R with respect to lex. By induction, there exists a strictly increasing
sequence Qo G - -+ G Qn_1 with Q; € Spec(U~'R). This yields a strictly increasing
sequence of prime ideals P; € Spec(R) with U N P, = . The last equation means
that the class of a,, in R/P; is algebraically independent, so Example 4(1) tells us
that R/P; is not a field. Therefore P,_; is not maximal, and we conclude that
dim(R) > n. :

Conversely, assume that dim(R) > n, so we have a strictly increasing sequence
Py G --- G P, with P; € Spec(R). Choose a, € P, \ P,_;. By Example 4(1),
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the class of a, in R/P,_; is algebraically independent, so U N Pp_1 = 0, with
U defined as above. It follows that dim(U~'R) > n — 1, so by induction there
exist ai,...,an_1 € R that are, as elements of U'R, algebraically independent
with respect to lex. To show that ai,...,a, € R are algebraically independent
with respect to lex, let f € R[zy,...,2,] be submonic with respect to lex. View-
ing f as a polynomial in the indeterminates 1, ..., 2,1 and extracting its trailing
coefficient ¢, € R[z,], we conclude that ¢y is submonic, so cy(a,) € U. But
co(an) 2 f (%1, -, Tn-1,an) € UT'RI[Z1,...,Tn_1] is submonic with respect to lex,
so it follows from the algebraic independence of aj, . .., an—1 as elements of U 1R
that f(ai,...,as) # 0. This completes the proof. O

The proof of Theorem 5 is much more involved. If A is an R-algebra, it follows
directly from.Deﬁnition 3 that

trdeg(A : A) < trdeg(A : R) < trdeg,,(A: R). (4)
The proof of Theorem 5 proceeds by establishing the inequalities
dim(A) < trdeg(A : A) (5)
for every Noetherian ring A and
trdegy(A : ) < dim(A) (6)

for every finitely generated algebra A over a Noetherian Jacobson ring R. Together
with (4), the inequalities (5) and (6) imply the theorem. The proof of (5) uses
the convex cone of a monomial ordering and the Hilbert—-Samuel polynomial. The
proof of (6) uses an induction argument similar to the first part of the above proof
of Theorem 1. For this induction, the following lemma, which may be of interest
in itself, is required.

Lemma 7 ([5]). Let a be an element of a Noetherian ring R and set
U, :={a"(1 +az) |n €Ny, z € R}.
Then the localization U7 R is a Jacobson ring.

In fact, the proof of (6) extends to the more general case that A is a subalgebra
of a finitely generated R-algebra. Let us call such algebras subfinite. So a refined
version of Theorem 5 can be stated as follows.

Theorem 8 ([2, 5]). Let A be an algebra over a Noetherian ring R. Then

if A is Noetherian

trdeg, (A : A) = dim(A) i trdeg(A : A) <
< trdeg(A : R) < trdege, (A4 : R) =dim(A).
7

if R is Jacobson, A subfinite
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Let us remark that the equality of dimension and transcendence degree for sub-
finite algebras over a field is known by Giral [3] (see also Kemper [4, Exercise 5.3]).

Ezample 9. Let a and b be two nonzero algebraic numbers (i.e., elements of an
algebraic closure of Q). There exists d € Z\ {0} such that a and b are integral over
Z[d7'], so A := Z[a,b,d™"] has Krull dimension 1. By Theorem 8, trdeg, (A :
Z) = 1, so a, b satisfy a polynomial f € Z[z,z,] that is submonic with respect to
lex. If 7"z} is the trailing monomial of f, then all monomials of f are divisible by
z7", so we may assume m = 0. We obtain

b* = g(a,b) - a + h(a,b) - b™*!

with g,h € Z[z,, z,] polynomials. This generalizes (2). It is not so clear how
the existence of such a relation follows directly from the properties of algebraic
numbers. <

Theorem 8 has the following corollary which, to the best of the author’s knowl-
edge, is new.

Corollary 10. Let R be a Noetherian Jacobson ring, B a subfinite R-algebra, and
A C B a subalgebra. Then
dim(A) < dim(B).

Ezample 11. Let R be a Noetherian Jacobson ring and A a finitely generated R-
algebra. Furthermore, let G be a group of automorphisms of A (as an R-algebra)
and H C G a subgroup. Then it follows from Corollary 10 that

dim (4%) < dim (4%),

even though the invariant rings need not be finitely generated (see Nagata [6]). <

Example 6 tells us that Corollary 10 fails if the hypothesis that R be Jacobson
is dropped.

This work is still in progress. Let us point to some open questions. In Theo-
rem 8, the lexicographic monomial ordering still plays a special role. This seems
annoying. The question is whether lex can be substituted by any other monomial
ordering. This is certainly the case if R is a field or, more generally, if R contains
a field over which A is subfinite. We also have the following result.

Theorem 12 ([5]). Let A be a Noetherian algebra over a Noetherian ring R with
0 < dim(A) < 1. Then Theorem 8 holds with lex replaced by any other monomial
ordering “<X”.

In view of Theorem 12, a candidate that comes to mind for a ring A such
that trdeg(A) > dim(A) for some monomial ordering “<” is the polynomial ring
Zlz]. Using a short program written in MAGMA [1], the author tested millions of
randomly selected triples of polynomials from Z[z] and verified that they were all
algebraically dependent with respect to the graded reverse lexicographic ordering,
even over the subring Z. This prompts the following conjecture.
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Conjecture 13. Let A be a Noetherian algebra over a Noetherian ring R. Then
Theorem 8 holds with lex replaced by any other monomial ordering “<”.

A further, more general question is to what extent the definition of submonic
polynomials given here is natural. More precisely, how far can the class of submonic
polynomials be extended such that

dim(A) < trdeg(A : R) (7

still holds for every finitely generated algebra A over a Noetherian ring R? How
far can it be shrunk such that

trdeg(A : R) < dim(A) (8)

remains true for every finitely generated algebra A over a Noetherian Jacobson
ring R? For example, (7) clearly still holds if all divisors of submonic polynomials
are included, and (8) holds when restricting to polynomials that are submonic with
respect to lex.
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An algorithm for computing the value-semigroup of an
irreducible algebroid curve

Takafumi Shibuta
Rikkyo University/JST CREST

1 Introduction

Let K be an algebraic closed field of arbitrary characteristic. A Noethe-
rian complete local ring 4 of dimension one with a coefficient field K
is called an algebroid curve over K. If A is domain, we say that 4

is irreducible. By Cohen’s theorem, 4 is isomorphic to K[[x]/I for

some K[x]| = K[x1,...,x.] and I C K[x]. Since the integral closure

of 4 in its fraction field is isomorphic to K[[#], we may regard 4 as a

subring of K[[#]. We define

S(4) := {dimg(4/n) | 0 # n € 4} = {ord,() | 0 # 17 € 4},

where ord, is the normalized valuation on K[¢], and call it the value-
semigroup (or semigroup of values) of 4. Since dimg(4/mmn2) =
dimg(4/m,) + dimg(4/n,), S(4) is actually a semigroup. It is know
that S(4) is deeply related to the singularity of 4. Kunz [2] has shown
that 4 is Gorenstein if and only if S(4) is symmetric. Here, we say
that a numerical semigroup H C N, gcd(H) = 1, is symmetric if for
anyneZ,neH@m—neHwherem=max{n€]N|n¢]N}.

We will give an algorithm for computing S(4). For plane curves
Clx, y1/{F(x,y)), S(4) can be computed using resolution of singular-
ity, or Puiseux expansion of F. For algebroid curves of arbitrary codi-
mension, Hefez—Hernandes [1] has given an algorithm for computing
S(A) if A4 is expressed as a subring of K[[¢], and then they mentioned
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a way of computing S(4) if 4 is expressed as a residue ring K[x]/p
of K[[x]. In this note, we will give a more effective way to compute
S(A4) in the case where 4 = K[x]/p.

2 Value-semigroup

We denote by N = {0, 1,2, 3,...}, N,, and R,, the set of non-negative
integers, positive integers, and positive real numbers, respectively.
For x = (x,...,x,) and a = (ay, . .., a,), we write x* = x{'--- x;".
Definition 2.1. Forw = (wy,...,w,) e N_ and 0 # f = ) ;v CaX® €
Klx], c. € K, we define ord,(f) = min{w - a | ¢, # 0} € N, and
n,(f) = Yp-a=ord, () CaX” € K[x]. We set ord,,(0) = oo and in,,(0) =
- 0. For an ideal I C K[x]l, we define in, (/) = (in,(f) | f € I) C K[x].
For K], we write ord/{(—) = ord,, and in/(-) = in;(-).

Let p c K[[x] be a one-dimensional prime ideal such that x; ¢ p
for all i, and 4 = K[[x]/p. For f € K[x], we define int(f;p) =
dimg K[x]/{p, /). Then

S(4) = {int(f,p) | f € K[x], f ¢ p}.

Let K[#] be the integral closure of 4 in its fraction field, and write
A = K[€] for & = (&1,...,&), & € K[[t]]. We set

¢ Klx] - K[z, f(x) > f(§),
Pinge © K[x] = K[1],  g(x) — g(ini(§)).
From now on, we write
w=wy,...,w,),w; = int(x;; p).

Note that w = (ord«(¢£)), . ..,ordr(£,)). S(4) contains the numerical
semigroup (w) generated by wy, ..., w,. However, the equality S(4) =
(w) does not hold in general. We will give a sufficient and necessary
condition for this equality. |
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Definition 2.2. We call K[in(4)] := K[in(n) | n € Al = K[f' | i €
S(4)] the initial algebra of A. We say that £ is a local SAGBI basis of '
A if K[in(4)] = K[in/(£)], in other words, S(4) = (w).

An algorithm for computing local SAGBI bases is given in [1] Al-
gorithm 3.2.

Proposition-Definition 2.3 (local reduction, see [1] Section 2). Let
n € K[[£]. Then there exist ¢ € K[x] and { € K[€£] satisfying the
following:

(1) n=q +<.

(2) ing($) € K[in(&)]if £ # 0.

(3) ordy(n) = ord,(q) if g # 0.
We call g a quotient, and ¢ a remainder of 77 on local reduction by £.

Proof We define n; € K[£€]], @; € K, and ¢; € IN” inductively on i in
the following manner: Set ng = 7. If in/(7;) € K[in«(§)], take ¢; € N
and B; € K such that ord,(n;) = ord,(£) and in(m;) = Biin(&*). We
set 741 = 1; — Bi.

If 5, ¢ K[in(€)] or n,, = 0 for some m € N, then g := ;’;61 Bix€i
and ¢ := 7, satisfy the desired conditions. If 0 # 7; € K[in/(£)] for all
i, then q := Yoo Bix¢ and ¢ := 0 satisfy the desired conditions. O

Lemma 2.4. Then in,,(Ker ¢¢) C Ker ¢in ).

Proof. Let f € Ker ¢, and f; = in,(f) € K[x]. Since the lowest order
terms appearing in the expansion of f(£) is fo(in/(§)) which should be
also zero. Hence fj € Ker @iy ¢). Thus in,,(Ker ¢¢) C Ker g ¢). O

Furthermore, the following holds.

Theorem 2.5 ([3]). Then +[/in,(Ker ¢¢) = Ker ¢in ).
Similarly to SAGBI bases ([4] Theorem 11.4), the following holds.
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Theorem 2.6 ([3]). The following are equivalent:
(1) € is a local SAGBI basis of A.

(2) Any remainder of f(§) on local reduction by & is zero for all
f € K[[x].

(3) One can take zero as a remainder of f(&) on local reduction by
& for all f € Ket(@inp).

(4) in,(Ker @) = Ker(¢in,e)-

By Theorem 2.6 (4) and Theorem 2.5, we can decide whether or
not S(4) = (w) holds without computing £.

Corollary 2.7. S(A4) = (w) if and only if in,,(p) = Vin,(p).
Lemma 2.8. Assume that in,(p) # Vin,(p). Take fy € /in,(p)\ in,,(p)

a w-homogeneous element. Then there exist £ € N and ¢; € N,
@; € K* for 1 < i < € such that int(f;;p) = ¢; - w < int(fi,1;p), and
int(fe; p) & 20 Nw; where f; = fi1 —aix“ for 1 <i<¢.

Algorithm 2.9 ([3]). Letp c R = K[[xy, ..., x,]l be a one-dimensional
prime ideal such that x; ¢ p for all 7, and set 4 = R/p. Then S(4) is
computed as follows.

(1) Letw = (wi,...,w,), w; = int(x;; p).

(2) Continue the following procedure while in,,(p) # Vin,(p).
e Take g € R such that int(g; p) ¢ >.’_; Nw; as in Lemma 2.8.
e Replace p by (p, x,+1 — g) € K[[x1,...,%+1].

e R:=K[x1,..., %411, Wp1 :=1nt(g; p), w = W1,..., Wy, W) €
N+ pi=r+1,

(3) Eventually it holds that in,,(p) = Vin,(p), and S(4) = 3.7_; Nw;
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For the output p of Algorithm 2.9, in,,(p) is a prime ideal, and it is
not hard to show that an ideal I c K[[x] is prime if in,(/) C K[x] is
prime for some v € IN’,. Thus one can use Algorithm 2.9 to obtain an
evidence of the primeness of p.

Example 2.10. Letp = (x* —22+x*z, 0* —x2)? -x5°2) € K[[x,y,z].
Then w = (8, 10, 12), and in,(p) = (x* — 2%, (0* — xz)*). Take y* —
xz € in,(p)\in,(p). Then int(l? — xz;p) = 51 ¢ (8,10,12). Let
' = (p,u— (? — x2)) € K[x,y,z,ul, and w’ = (8,10,12,51). Then
ing(p') = (x° = 22,u% = Xy’ YF — xz2). As iny(p) = Vinw (),
S(K[x,y,z1/p) = S(KI[x,y,z,ull/p") = (8,10,12,51).

Example 2.11. Let p = (2 — xz,x° + 22 — 2x%yz — y*) c K[[x,y,z].
Then w = (6, 8, 10), in,,(p) = (* — xz,x° +2° — 2x?yz), and Vin,(p) =
(6 —yz,y* — xz,2> — x*y). Let g1 = x> —yzand g, = x%y — z%. Then
int(gy; p) = 19, and int(gz; p) = 21. Let p’ = (p,u1 — g1,us — g2) C
Klx,y,z,u1,us]. and w' = (6,8,10,19,21). Then in,,(p") is prime.
Thus p is prime, and S(K[x, y,z]/p) = (6, 8,10, 19,21).
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ROOTS OF EHRHART POLYNOMIALS AND
SYMMETRIC 6-VECTORS

AKIHIRO HIGASHITANI

ABSTRACT. The conjecture on roots of Ehrhart polynomials, stated by Matsui,
the author, Nagazawa, Ohsugi and Hibi, says that all the roots o of the Ehrhart
polynomial of a Gorenstein Fano polytope of dimension d satisfy —% < Re(a) <
g —1. In this article, we observe the behaviors of roots of the generalized Ehrhart
polynomials of Gorenstein Fano polytopes. As a result, we prove that this conjec-
ture is true when the roots are real numbers or when d < 5.

INTRODUCTION

Let P ¢ RY be an integral convex polytope of dimension d and 0P its boundary.
Given a positive integer n, we write i(P, n) = §(nPNZ"Y), where nP = {na : a € P}.
In 1950’s, Ehrhart [7] succeeded in proving some fundamental properties on i(P, n).
The numerical function i(P,n) is a polynomial in n of degree d with i(P,0) =
which satisfies §(n(P \ 0P) N ZN) = (—1)%(P, —n), which is called Ehrhart’s “loi
de réciprocité”. We call i(P,n) the Ehrhart polynomial of P.

We define the sequence &g, 1, . - ., 04 of integers by the formula

00 d
(L= i(P )= 6N,
n=0 j=0

The sequence 6(P) = (8,61, .. .,0q) is called the §-vector of P. Thus, §p = 1 and
61 = (PNZN)—(d+1). Each ¢, is nonnegative ([14]). It follows from the reciprocity
law that 65 = #((P \ P) NZY). In particular, one has d; > d4. We refer the reader
to [3] or [9] for further information on Ehrhart polynomials and 4-vectors.

Note that the Ehrhart polynomial can be expressed with the J-vector by using
the binomial coefficients as follows:

i(P,n) = Zd: ("+d ])

j=0

On roots of Ehrhart polynomials, the following conjecture is proposed:

Keywords: Ehrhart polynomial, §-vector, Gorenstein Fano polytope.
The author is supported by JSPS Research Fellowship for Young Scientists.
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Conjecture 0.1 ([2, Conjecture 1.4]). All roots a of the Ehrhart polynomials of
integral convex polytopes of dimension d satisfy

—d <Re(a) <d -1,
where Re(a) denotes the real part of o € C.

It is proved in [2] and [6] that the conjecture is true when the roots are real
numbers or when d < 5. However, this has been disproved in [11] and [13]. There
exists a certain counterexample of dimension 15.

A Gorenstein Fano polytope, which is also said to be a reflexive polytope, is one of
the most interesting objects to study from viewpoints of both algebraic geometry on
toric Fano varieties and combinatorics on Fano polytopes. Moreover, the Ehrhart
polynomials and d-vectors of Gorenstein Fano polytopes have remarkable properties.
For a Fano polytope P C R? with its d-vector §(P), it follows from [1] and [10] that
the following conditions are equivalent:

e P is Gorenstein;
® §(P) = (80,01, - - .,04) is symmetric, i.e., §; = 4 for 0 <7 < |£];
e i(P,n) = (-1)%(P,—n —1).

When P C R? is a Gorenstein Fano polytope, since i(P,n) = (—1)%(P, —n — 1),
the roots of i(P, n) are distributed symmetrically in the complex plane with respect
to the line Re(z) = —%. Thus, in particular, if d is odd, then —% is a root of i(P,n).
It is known [4, Proposition 1.8] that, if all roots @ € C of i(P,n) of an integral
convex polytope P of dimension d satisfy Re(a) = —3, then P is unimodularly
equivalent to a Gorenstein Fano polytope whose volume is at most 2¢. In [8], the
roots of the Ehrhart polynomials of smooth Fano polytopes with small dimensions
are completely determined.

It seems to be meaningful to investigate root distributions of Ehrhart polynomials
of Gorenstein Fano polytopes. In [12], the following conjecture is also proposed:

Conjecture 0.2 ([12, Conjecture 3.10]). All roots o of the Ehrhart polynomials of
Gorenstein Fano polytopes of dimension d satisfy

d d
_S< <Z_1.
2_Re(a)_2 1

This conjecture says that if we restrict the objects to Gorenstein Fano polytopes
in Conjecture 0.1, then the range becomes half. We note that there also exists a
certain counterexample of dimension 34. (See [13].)

On many results on roots of the Ehrhart polynomials, Stanley’s nonnegativity of
d-vectors [14] plays an important role. (For example, see [4, 5] and [6].) Hence, it is
natural to define the following polynomial, which is derived from [6, Definition 1.2].

Definition 0.3. Given a sequence of nonnegative real numbers (8,41, ...,dq) €
R‘é‘gl satisfying that these numbers are symmetric, i.e., § = 64_; for 0 < i < 4],
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we define the polynomial

f(n)=i51<n+;i—i>

=0
in n of degree d. We call f(n) a symmetric Stanley’s nonnegative or SSNN polyno-
mial.

Thus, we consider the following question as a generalized form of Conjecture 0.2.

Question 0.4. Do all roots o of an SSNN polynomial of degree d satisfy
d d
——< <-=-17
5 < Re(a) < 5 1

In this article, we consider this question and it turns out that this is true when
the roots are real numbers or when d < 5. In fact,

Theorem 0.5. Let f(n) be an SSNN polynomial of degree d and oo € C an arbitrary
root of f(n).

(a) If « € R, then o satisfies —% <a< % — 1, more strictly, — LgJ <a< L%J -1
(b) Ifd < 5, then o satisfies —2 < Re(a) < $—1, more strictly, — 2] <a<|é-1

We prove Theorem 0.5 in Section 1. Moreover, in Section 2, we make computa-
tional experiments for observing that Question 0.4 seems to be also affirmative for
d = 6 and 7. However, this is no longer true when d = 8. (See Remark 2.1.)

1. A PrROOF OF THEOREM 0.5

In this section, we give a proof of Theorem 0.5.

Let f(n) = Y& 8:(""4™") be an SSNN polynomial of degree d. First of all, we

verify that f(n) satisfies ’
1) f(n) = (-1)*f(-n-1).
Let
d—1 -1
Ni(n) = H(n+d—i—j)+H(n+i—j)

for0<i < L%J—land
N _ H;l:("'i‘g -39) if d is even,
I.%J (n) - d—1 d+l _ d -1 _ . . X
[[iZo(n+ %t —4) + s (n + 452 = ), if d is odd.
It then follows that
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Since one has

d-1 d-1

DN =1) = (D[J(n—1+d—i= i)+ () [[(-n-1+i-3)
= ﬁ(n+1—d+z‘+j)+]:[(n+1—i+j)
= ﬁ(n+i—j)+ﬁ(n+d—i—j):Ni(n)

for 0 < i < [2] -1 and (-—l)dNL%zJ(—n — 1) = Ng(n), we obtain f(n) =
(D)% (-n—1).

We prove Theorem 0.5 (a) by using the above notations.

Proof of Theorem 0.5 (a). Let

o =y (- 1) = oo (n-2)

=0
Then, it is sufficient to prove that all the real roots of g(n) are contained in the
closed interval [—[£] + 1, |£] — 1]. Notice that g(n) satisfies

(2) g(n) = (-1)%g(-n).

For N; (n—3),0 <i< [£], we have the following:

(o-8) = Hereto) 4oy

1=0
where
d—2i—1 d—2i—1 1
Min)= ] (n+§+i—|—j) + H (n———i—j),
J= 7=0
and
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when d is even.

Let o be a real number with & > | 4] —1. On the coefficients of M;(n), it is obvious
that its coefficients are nonnegative rational numbers. Thus, we have M;(a) > 0
since @ > 0. In addition, one has ]_[12;51 (o — (% —i+ l)) >0since0 <1 <211
and 0 <3i < L%J

Hence, o cannot be a root of g(n) from the nonnegativity of dg,dy, ..., 14 More-

over, by virtue of (2), for a real number § with 8 < — L%J + %, B cannot be a root
of g(n), as desired. O

The rest part of this section is devoted to proving Theorem 0.5 (b).

1.1. The case where d =2 and 3.

e An SSNN polynomial of degree 2 has two roots. If both of them are real
numbers, then the assertion holds from Theorem 0.5 (a). If both of them
are non-real numbers, then it is easy from (1) to see that each of their real
parts is —3.

e An SSNN polynomial of degree 3 has three roots and one of them is —%.
Thus, we consider the rest two roots. However, the same discussion as above

can be done.

1.2. The case where d = 4. Let f(n) = £No(n) + 2 N1(n) + £ Na(n), where a,b, ¢
are nonnegative real numbers. Then f(n) has four roots and the possible cases are
as follows:

(i) those four roots are all real numbers;
(ii) two of them are real numbers and the others are non-real numbers;
(iii) those four roots are all non-real numbers.

We need not to discuss the cases (i) and (ii) by virtue of Theorem 0.5 (a) and (1).
Thus, we consider the case (iii), i.e., we assume that f(n) has four non-real roots.
Moreover, when a = 0, f(n) cannot have four non-real roots since both 0 and —1
are the roots of f(n). Hence, we may also assume that a # 0. In addition, we may
set a = 1 since the roots of f(n) exactly coincide with those of @
Let
5 > , 105 15 9
n

1
g(n) =4f <n 2) (2+2b+c)n” + (43 +7b 5¢ + 3 A b+ 6%

Our work is to show that if the roots « of g(n) are all non-real numbers, then o
satisfies —2 < Re(a) < 2. We set

2 8 8 16

We consider the roots of G(X). Let o and § (resp. D(G(X))) denote the roots of
G(X) (resp. the discriminant of G(X)). Then we may assume that D(G(X)) < 0.
In fact, when D(G(X)) > 0, i.e., both o and (3 are real numbers, then the roots of

G(X) = (2425 + )X + (43+7b—§c>x+1—05—9b+ I
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g(n) are £v/a, £+/B. Even if o (resp. ) is positive or negative, ++/a (resp. £+/5)
are either real numbers or pure imaginary numbers.

Let, say, & = 7?1 with 7 > 0 and 0 < 6 < 7. Then one has 8 = & = re~%-1,
Thus, the roots of g(n) are /resV=1, \/re(™ V=T, Vre5V=1 and Vre=(m=Hv=1,
Hence, it is enough to show that

0< Re(\/Fe%\/:T) = \/Fcosg = \/F\/—l +§OSG = \/——T+T2COSQ < g
Since G(X) = (2+2b+ ¢)(X — a)(X — (), we have |

1 — ¥b+isc 1 [210-30b+9c
2+2b+c 4 242 +c

and
. a+fB —43-Tbh+3c 1 864 14b—5c
rcosf = = = .=
2 22+ 2b+¢) 4 242b+c
By the way, one has
5\ 05 15 9
X)) = (4 —Zc) —4 == _=
D(G(X)) (3+7b 2c> (2+2b+c)<8 8b 16)

= 4(c® — 4(2b + 17)c + 4(4b + 32b 4 109)).
Let h(c) = w. Then one has h(c) < 0 and the range of ¢ satisfying h(c) < 0 is
2264 17) — 12vb+5 < ¢ < 2(2b+ 17) + 12vb + 5.
When b and c satisfy this, we have the following:
210 — 30b+9c 86+ 14b — 5¢
4 0) = -
(rreosf) =y 2+2b+c 2+ 2 +ec

b+ 4
_ 4 _gq. 2F4
\/9 8- 2+2b+c S ohtc O

< 4[/9-—48- b-4
24+20+2(204+17) +124/b+5

b+4
2+2b+2(26+17)+12\/b+
b—4 b+4
= 9-8- —4. +5 (=2 H(
\/ b+6+2vVb+5 b+6+2vb+5 ( (®)

4 . dH(b) )
< 9-8- —4. + 5, | since < 0 when b >0,
- 6-|-2\/_ 6+ 2v/5 ( - db e
= 4/5-2
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Therefore, one has

r+rcosf 4+/5 — 2 25 —1
2 ° s~ 2 °

1.3. The case where d = 5. Let f(n) = 2No(n) + &N1(n) 4+ §Na(n). Then f(n)
has five roots and one of them is —%. Thus we can deduce the case where d = 4 and
a proof can be given in the similar way, so we omit a precise proof.

N W

as required.

2. THE CASE WHERE d > 6

In this section, in order to observe that Theorem 0.5 seems to be also true when
d = 6 and 7, we make computational experiments for the case where d = 6 and 7.
Moreover, we present an example which shows that Theorem 0.5 is no longer true
when d = 8. In addition, we propose a possible counterexample of Conjecture 0.2
with d = 10, while such example is already known in [13].

Our method how to make experiments, say, the case where d = 6, is as follows. We
produce 4 nonnegative real numbers a, b, ¢, d at random, construct the polynomial

(136 (C57) ()
((5)+(57) +("5)

compute its roots and plot them on the complex plane. In Figure 1 drawn below,
we show the root distributions of a large sample (approximately 20,000) of SSNN
polynomials of degree 6. Similarly, in Figure 2, we show the root distributions of a
large sample (approximately 20,000) of SSNN polynomials

(3 () (C57) (7))
(1) (7)) =07+ (7))

with random nonnegative real numbers a, b, ¢, d. (Those are computed by Maple.)

Remark 2.1. (a) There exists an SSNN polynomial of degree 8 such that there is
a root @ which does not satisfy —4 < Re(a) < 3. In fact, if we set (0o, 01,...,08) =
(1,0,0,0,14,0,0,0,1) and f(n) = Ef=0 0; (""’88_1), then the roots of f(n) are approx-
imately

—0.5 + 0.44480014+/—1, —0.5 + 1.78738687+/—1,

3.00099518 + 5.29723208v/—1 and — 4.00099518 & 5.29723208v/ —1.
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FIGURE 1. d=6

10

e

FIGURE 2. d=7

On the other hand, f(n) cannot be the Ehrhart polynomial of any Gorenstein Fano
polytope of dimension 8 since §; < ds.

(b) When d = 10, some possible candidates which are counterexamples of Conjec-
ture 0.2 appear. For example, let (do,d4,...,010) = (1,1,1,1,1,23,1,1,1,1,1) and
f(n)y =310 6 ("*127*). Then one of approximate roots of f(n) is

=0
4.02470021 + 8.22732653+/—1.
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However, in a recent paper [13], a counterexample of Conjecture 0.2 is provided.
There exists a Gorenstein Fano polytope of dimension 34 whose Ehrhart polynomial
has a root o which violates —17 < Re(a) < 16.

REFERENCES

[1] V. Batyrev, Dual polyhedra and mirror symmetry for Calabi—Yau hypersurfaces in toric vari-
eties, J. Algebraic Geom. 3 (1994), 493-535.

[2] M. Beck, J. A. De Loera, M. Develin, J. Pfeifle and R. P. Stanley, Coefficients and roots of
Ehrhart polynomials, Contemp. Math. 374 (2005), 15-36.

[3] M. Beck and S. Robins, “Computing the Continuous Discretely,” Undergraduate Texts in
Mathematics, Springer, 2007.

[4] C.Bey, M. Henk and J. M. Wills, Notes on the roots of Ehrhart polynomials, Discrete Comput.
Geom. 38 (2007), 81-98.

[5] B. Braun, Norm bounds for Ehrhart polynomial roots, Discrete Comput. Geom. 39 (2008),
191-193.

[6] B. Braun and M. Develin, Ehrhart polynomial roots and Stanley’s non-negativity theorem,
Contemp. Math. 452 (2008), 67-78.

[7] E. Ehrhart, “Polyndmes Arithmétiques et Méthode des Polyédres en Combinatoire,”
Birkhauser, Boston/Basel/Stuttgart, 1977.

[8] G. Hegediis and A. M. Kasprzyk, Roots of Ehrhart polynomials of smooth Fano polytopes,
Discrete Comput. Geom. (2010).

[9] T. Hibi, “Algebraic Combinatorics on Convex Polytopes,” Carslaw Publications, Glebe,
N.S.W., Australia, 1992.

[10] T. Hibi, Dual polytopes of rational convex polytopes, Combinatorica 12 (1992), 237-240.

[11] A. Higashitani, Counterexamples of the Conjecture on Roots of Ehrhart Polynomials, to
appear in Discrete Comput. Geom.

[12] T.Matsui, A. Higashitani, Y. Nagazawa, H. Ohsugi and T. Hibi, Roots of Ehrhart polynomials
arising from graphs, to appear in J. Algebr. Comb., also avaiable at arXiv:1003.5444v2.

[13] H. Ohsugi and K. Shibata, Smooth Fano polytopes whose Ehrhart polynomial has a root with
large real part, arXiv:1109.0791.

[14] R. P. Stanley, Decompositions of rational convex polytopes, Annals of Discrete Math. 6 (1980),
333-342.

AKIHIRO HIGASHITANI, DEPARTMENT OF PURE AND APPLIED MATHEMATICS, GRADUATE
SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY, OSAKA UNIVERSITY, TOYONAKA, Os-

AKA 560-0043, JAPAN
E-mail address: smb037haQecs.cmc.osaka-u.ac. jp

-143 -



- 144 -



On the Auslander-Bridger type approximation of modules

Tokuji Araya (Tokuyama college of technology)
Kei-ichiro Iima (Nara national college of technology)

Throughout this article, let R be a commutative noetherian complete local ring with
maximal ideal m and residue field k. All modules considered in this article are assumed
to be finitely generated. An R-module C is said to be semidualizing if the natural ho-
momorphism R — Homg(C,C) is an isomorphism and Ext%(C,C) = 0 for all i > 0.
Various homological dimensions with respect to a fixed semidualizing module C' such as
C-projective dimension are invented and investigated. Here the C-projective dimension of
a nonzero R-module M, denoted by C-proj.dimp M, is defined as the infimum of integers
n such that there is an exact sequence of the form

0_}cbn_)Cbn—l__)..._ycbl——)cbo-—)M—)O,

where each b; is a positive integer. We denote by mod(R) the category of finitely generated
R-modules, by Z.C the full subcategory of mod(R) consisting of all modules X such that
Tor®(X,C) =0 for any 1 < i < n, by CS the full subcategory of mod(R) consisting of all
modules X such that X &Y ®g C for some module Y € 7,. A free module of rank one
is a typical example of a semidualizing module.

Let M be an R-module. Let

BB E s R B3R SM—0

be a minimal free resolution of M. We define the C-transpose of M to be the cokernel of
the map Hom(8;, C) : Hom(Fp, C) — Hom(Fy,C), and denote it by Trc M. We say that
M is n-C-torsionfree if the R-modules Ext%(TrcM, C) equal to zero for all 1 <1 < n.

If an R-module M belongs to CS, then there exists an exact sequence

8
Cbmtr T30 0 Oy s L, 001 B oo B 0 s 0,

We define the C-transpose prime of M to be the cokernel of the map Hom(0,,C) :
Hom(C%,C) — Hom(C",C), and denote it by Tr{c ) M. And we define the i-C-syzygy
of M to be the image of the map 8; : C% — C%-1, and denote it by ch,a.) M for each
0<i<n+1l

The following two theorems is well-known as Auslander-Bridger approximation theo-
rem and Cohen-Macaulay approximation theorem.
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Theorem 1 ([1]) The following are equivalent for a finitely generated R-module M:

(1) QM is n-torsionfree.

(2) There exists an exact sequence 0 — Y — X — M — 0 of R-modules such that
proj.dimpY < n, Exth(X,R) =0 (1 <i<n) and X is isomorphic to TrpQ% T Q%M.

Theorem 2 ([2]) Let R be a Cohen-Macaulay local ring with the canonical module.
Then, for every finitely generated R-module M, there exists an exact sequence 0 — Y —
X — M — 0 of R-modules such that inj.dimzY < n and X is a maximal Cohen-Macaulay
R-module.

Takahashi unifies above two approximation theorems using a semidualizing R-module.
The approximation theorem of Takahashi is stated as follows.

Theorem 3 ([5]) Let M and C be finitely generated R-modules. Assume that C is
semidualizing. Then the following conditions on M are equivalent:

(1) Q%M is n-C-torsionfree.

(2) There exists an exact sequence 0 — Y — X — M — 0 of R-modules such that
C-proj.dimpY < n and Exth(X,C) =0 (1 <i < n).

Our purpose is to give a middle term of the sequence in Theorem 3 explicitly. To
prove our theorem, we establish the following lemma.

Lemma 4 Let M and C be finitely generated R-modules. Assume that C is semidualiz-
ing, M belongs to C§ and Ext%(Try M, C) = 0 for 1 < i < n, then M is n-C-torsion free.

The main result in this article is the following theorem.

Theorem 5 Let M be an R—quule and let n > 0.
If M belongs to C$ and Exth(TY,QEM,C) = 0 for 1 < i < n, then there exists an

exact sequence
0T - TrepTr QM — M — 0

of R-modules with C-proj.dimzT < n.

We obtain another approximation theorem is the following.

Theorem 6 Let M be an R-module and let n 2‘0.
If TrrQ%M belongs to 7, and QpM is n-C-torsionfree, then there exists an exact

sequence
0—-T — TrpQgTrc QM — M — 0

of R-modules with proj.dimzT < n.
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SUBCATEGORIES OF EXTENSION MODULES
BY SERRE SUBCATEGORIES

TAKESHI YOSHIZAWA
( OKAYAMA UNIVERSITY )

ABSTRACT. We consider subcategories consisting of the extensions of modules in two
given Serre subcategories to nd a method of constructing Serre subcategories of the
module category. We shall give a criterion for this subcategory to be a Serre subcategory.

INTRODUCTION

Through this paper, R is a commutative noetherian ring and all modules are unitary.
We denote by R-Mod the category of R-modules and by R-mod the full subcategory
consisting of finitely generated R-modules.

In [2], P. Gabriel showed that one has lattice isomorphisms between the set of Serre
subcategories of R-mod, the set of Serre subcategories of R-Mod which are closed under
arbitrary direct sums and the set of specialization closed subsets of Spec (R). By this
result, Serre subcategories of R-mod are classified. However, it has not yet classified
Serre subcategories of R-Mod.

The main purpose in this paper is to give a way of constructing Serre subcategories of
R-Mod. To do this, we shall consider subcategory consisting of extension modules given
by two Serre subcategories. In particular, we give a necessary and sufficient condition for
this subcategory to be a Serre subcategory.

1. THE DEFINITION AND BASIC PROPERTIES OF
A SUBCATEGORY OF EXTENSION MODULES

We assume that all full subcategories of R-Mod are closed under isomorphisms. We
recall that a subcategory S of R-Mod is said to be Serre subcategory if the following
condition is satisfied: For any short exact sequence

0-L—-M-—->N-—0

of R-modules, it holds that M is in S if and only if L and N are in S. In other words,
S is called a Serre subcategory if it is closed under submodules, quotient modules and
extensions.

We give the definition of a subcategory of extension modules by Serre subcategories.

Definition 1. Let S; and S, be Serre subcategories of R-Mod. We denote by (51,S2) a
subcategory consisting of R-modules M with a short exact sequence

0-X—-M—-Y—0
of R-modules where X is in S; and Y is in S,, that is
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there are X € §; and Y € S, such that
(81,82) = ¢ M € R-Mod 0 X—-M->Y -0

is a short exact sequence.

Remark 2. Let S; and S, be Serre subcategories of R-Mod.

(1) Since the zero module belongs to any Serre subcategory, one has S; C (S, S;) and
S2 C (81, 8s).

(2) It holds S; D S, if and only if (S81,S,) = Si.
(3) It holds S; C S, if and only if (S51,S;) = Ss.
(4) A subcategory (S1,S,) is closed under finite direct sums.

Example 3. We denote by Sy, the subcategory consisting of finitely generated R-
modules and by S4,4in the subcategory consisting of Artinian R-modules. If R is a com-
plete local ring, then a subcategory (Syg., Sartin) is known as the subcategory consisting
of Matlis re exive R-modules. Therefore, (S, Sartin) is a Serre subcategory of R-Mod.

Proposition 4. Let S; and S; be Serre subcategories of R-Mod. Then a subcategory
(S1,82) is closed under submodules and quotient modules.

Proof. Let 0 = L — M — N — 0 be a short exact sequence of R-modules. We assume
that M is in (S;,S;) and shall show that L and N are in (S;,Ss).
It follows from the definition of (S, S,) that there exists a short exact sequence

0 X35M-SY >0

of R-modules where X is in &; and Y is in S;. Then we can construct the following
commutative diagram

0 0 0
X
L X
00— XnN XAL 0
Lok
0O— L —— M — N —s0
L ,
0 = XL Y N — 0
|
0 0 0
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of R-modules with exact rows and columns where P is a natural map induced by ¢ and
N’ = Coker(). Since each subcategory S; is closed under submodules and quotient
modules, we can see that X N L, X/(X N L) are in S; and L/(X N L), N’ are in S,.
Consequently, L and N are in (S1,S2). O

Here, a natural question arises.
Question. Is a subcategory (S1,S,) Serre subcategory for Serre subcategories S; and 87

The following example shows that a subcategory (S, Sz) needs not be a Serre subcat-
egory for Serre subcategories S; and Sa.

Example 5. We shall see that the subcategory (Sartin, S f..) needs not be closed under
extensions.

Let R be a one dimensional Gorenstein local ring with a maximal ideal m. Then one
has a minimal injective resolution

0—-R— P Er(R/p)— Er(R/m)—0
p € Spec(R)
htp =0

of R. (Eg(M) denotes the injective hull of an R-module M.) We note that R and
Egr(R/m) are in (Sartin, St.g.)-

Now, we assume that a subcategory (Sartin, Stg.) is closed under extensions. Then
Er(R) = ®up=oEr(R/p) is in (Sartin, S 4.)- 1t follows from the definition of (Sartin, St.g.)
that there exists an Artinian R-submodule X of Eg(R) such that Er(R)/X is a finitely
generated R-module.

If X = 0, then Er(R) is a finitely generated injective R-module. It follows from the
Bass formula that one has dim R = depth R = injdim Eg(R) = 0. However, this equality
contradicts dim R = 1. On the other hand, if X # 0, then X is a non-zero Artinian
R-module. Therefore, one has Assg(X) = {m}. Since X is an R-submodule of Er(R),
one has

Assg(X) C Assg(Er(R)) = {p € Spec(R) | htp = 0}.

This is contradiction as well.

2. THE MAIN RESULT

In this section, we shall give a criterion for a subcategory (Si, S,) to be a Serre subcat-
egory for Serre subcategories S; and So.

We start to show that the following assertion holds.

Lemma 6. Let S; and S; be Serre subcategories of R-Mod. We suppose that a sequence
0— L — M — N — 0 of R-modules is ezact. Then the following assertions hold.

(1) IfL €S and N € (81,82), then M € (81,82).
(2) IfL € (81,82) and N € 82, then M € (81,82).
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Proof. (1) We assume that L is in S; and N is in (81, S;). Since N belongs to (S1,S,),
there exists a short exact sequence

0 X—>N->Y -0

of R-modules where X is in S; and Y is in S,. Then we consider the following pull buck
diagram

0 0
|
0 L X’ X 0
n |
0 L M N 0
l
Y —Y
|
0 0

of R-modules with exact rows and columns. Since S; is a Serre subcategory, it follows
from the first row in the diagram that X’ belongs to S;. Consequently, we see that M is
in (81, 82) by the middle column in the diagram.

(2) We can show that the assertion holds by the similar argument in (1). O

Now, we can show the main purpose of this paper.

Theorem 7. Let S; and S, be Serre subcategories of R-Mod. Then the following condi-
tions are equivalent:

(1) A subcategory (S1,S,) is a Serre subcategory;

(2) One has (83, 81) C (81, 8s).
Proof. (1) = (2) We assume that M is in (S,,8;). By the definition of a subcategory
(82, 81), there exists a short exact sequence

0-Y-M-X—-0

of R-modules where X is in S; and Y is in S,. We note that X and Y are also in (S, S;).
Since a subcategory (S1, Sz) is closed under extensions by the assumption (1), we see that
M is in (S, Ss).
(2) = (1) We only have to prove that a subcategory (S;,S;) is closed under extensions
by Proposition 4. Let 0 - L — M — N — 0 be a short exact sequence of R-modules

such that L and N are in (S;,S;). We shall show that M is also in (Sy,Sy).
Since L is in (81, S2), there exists a short exact sequence

0-S—-L—-L/S—0
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of R-modules where S is in S; such that L/S is in S;. We consider the following push
out diagram

0 0
S:S
00— L — M N 0
] [
0 —— L/S P N 0
0 0

of R-modules with exact rows and columns. Next, since N is in (51, S2), we have a short
exact sequence

0-T—N-—N/T—0
of R-modules where T is in S; such that N/T is in S;. We consider the following pull
back diagram

0 0
0 L/S P — T —0
|
0 L/S P — N — 0
N/T —— N/T
0 0

of R-modules with exact rows and columns.

In the first row of the second diagram, since L/S is in S, and T is in &, P’ is in
(S2,S1). Now here, it follows from the assumption (2) that P’ is in (81,82). Next, in the
middle column of the second diagram, we have the short exact sequence such that P’ is
in (S1,8,) and N/T is in S,. Therefore, it follows from Lemma 6 that P is in (51, 52).
Finally, in the middle column of the first diagram, there exists the short exact sequence
such that S is in &; and P is in (S;,S;). Consequently, we see that M is in (S1,S2) by
Lemma 6.

The proof is completed. O
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Corollary 8. A subcategory (Sy,.,S) is a Serre subcategory for a Serre subcategory S of
R-Mod.

Proof. Let S be a Serre subcategory of R-Mod. To prove our assertion, it is enough to
show that one has (S,Sy,) C (Sfy.,S) by Theorem 7. Let M be in (S,S;,). Then
there exists a short exact sequence 0 - Y — M — M/Y — 0 of R-modules where Y’
is in S such that M/Y is in Sf,. It is easy to see that there exists a finitely generated
R-submodule X of M such that M = X +Y. Since X @Y is in (St4.,S) and M is a
homomorphic image of X @Y, M is in (Sf,4,S) by Proposition 4. O

Remark 9. A Serre subcategory is closed under arbitrary direct sums if it is obtained
from Gabriel’s correspondence. Therefore, if (St ,,S) # R-Mod, then (St e, S) is a
Serre subcategory which is not obtained from Gabriel’s correspondence.

We note that a subcategory S, consisting of Artinian R-modules is a Serre subcat-
egory which is closed under injective hulls. (Also see [1, Example 2.4].) Therefore we
can see that a subcategory (S, Sarun) is also Serre subcategory for a Serre subcategory of
R-Mod by the following assertion.

Corollary 10. Let S; be a Serre subcategory of R-Mod which is closed under injective
hulls. Then a subcategory (S1,S,) is a Serre subcategory for a Serre subcategory Sy of
R-Mod.

Proof. By Theorem 7, it is enough to show that one has (S, 81) C (S1,S2).
We assume that M is in (S,, S1) and shall show that M is in (S;, S;). Then there exists
a short exact sequence

0-Y->M->X-—>0

of R-modules where X is in S; and Y is in S,. Since S; is closed under injective hulls, we
note that the injective hull Eg(Y") of Y is also in S,. We consider a push out diagram

0—— Y M X 0
| | [
0 —— Eg(Y) T X 0

of R-modules with exact rows and injective vertical maps. The second exact sequence
splits, and we have an injective homomorphism M — X @ Eg(Y). Since there is a short
exact sequence
0—-X—>X@EgY)— Eg(Y)—0
of R-modules, the R-module X @ Eg(Y) is in (S1,S2). Consequently, we see that M is
also in (81, S;) by Proposition 4.
The proof is completed. a

Example 11. Let R be a domain but not a field and let @Q be a field of fractions of R.
We denote by Sr,» a subcategory consisting of torsion R-modules, that is

Sror = {M € R-Mod | M ® Q = 0}.
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Then we shall see that one has
(STU,‘,Sf,g) ;Ct (Sf_g,,STo,r) = {M € R-Mod | dimQM RrQ < OO}

Therefore, a subcategory (Sy.q., Stor) is @ Serre subcategory by Corollary 8, but a subcat-
egory (Stor, Sf.g.) is not closed under extensions by Theorem 7.

First of all, we shall show that the above equality holds. We suppose that M is in
(Sf.g.,STor). Then there exists a short exact sequence

0-X—-M-—-Y -0

of R-modules where X is in Sy, and Y is in Sro,. We apply an exact functor — ®z @ to
this sequence. Then we see that one has M ®p Q@ = X ®g ( and this module is a finite
dimensional )-vector space.

Conversely, let M be an R-module with dimg M ®g @ < oo. Then we can denote
M®rQ =", Q(m; ® lg) with m; € M and the unit element 1g of Q. We consider a
short exact sequence

0—>ZRmi—>M—>M/ZRmi—>0
i=1 i=1
of R-modules. It is clear that S°7 , Rm; is in Sy, and M/ Y ", Rm; is in Sror. So M is
in (Sy,.,Sror). Consequently, the above equality holds.

Next, it is clear that M ®p Q has finite dimension as Q-vector space for an R-module
M of (Stor, St.g.). Thus, one has (STor,St.9.) € (St.g., Sror)-

Finally, we shall see that a field of fractions @ of R is in (Sfg.,Sror) but not in
(STor>St.4.), S0 one has (Sror, Sf.g.) ;Ct (St.g.,STor)- Indeed, it follows from dimg Q®rQ =
1 that Q is in (Sy.g., Sror). On the other hand, we assume that Q is in (Sror, Syg.)- Since
R is a domain, a torsion R-submodule of @ is only the zero module. It means that @
must be a finitely generated R-module. But, this is a contradiction.
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A note on Cohen-Macaulay algebras with
straightening law

Mitsuhiro MIYAZAKIT*

1 Introduction

Let A be a graded algebra with straightening law (ASL for short) over a field
K on a poset P and Ag;s the discrete counterpart of A, that is, the discrete
ASL over K on P. It is known that dim Ags = dim A = rankP + 1. On the
other hand, depthAg; < depthA but little is known except for this fact. The
present author showed that if Ag; is Buchsbaum, then the equality holds.

If o is a minimal element of ind(A), the indiscrete part of A, then the
associated graded ring G = Gr,a(A) of the filtration {a"A} is an ASL on P
with ind(G) = ind(A) \ {e}. And it is well known that there is a flat family
whose general fiber is A and G is a special fiber. In particular, there is a
sequence A = Ag, Ay, ..., As = Agis of ASL’s over K on P such that for
each i, there is a flat family whose general fiber is A;_; and A; is a special
fiber. Therefore, if there is a Cohen-Macaulay ASL on P whose discrete
counterpart is not Cohen-Macaulay, then there is a Cohen-Macaulay ASL B
and a € min(ind(B)) such that Gr,p(B) is not Cohen-Macaulay.

In this note, we show that if there is a Cohen-Macaulay ASL A whose
discrete counterpart is not Cohen-Macaulay, then if we take A to be of min-
imal dimension among such ASL’s, there is a minimal element « of P such
that Gr,a(A) is not Cohen-Macaulay.

2 Preliminaries

All rings and algebras in this note are commutative with identity element.
Let K be a field and P a finite partially ordered set (poset for short). We
call a totally ordered subset of P a chain in P. The length of a chain X in

*Kyoto University of Education, e-mail:g53448@kyokyo-u.ac.jp
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P is #X — 1. The maximal length of the chains in P is called the rank of P
and is denoted as rankP. If every maximal chain in P has the same length,
we say that P is pure. We denote by K[P] the Stanley-Reisner ring of the
chain complex A(P) of P over K.

A monomial on P is a formal power product £7*&52 - - - £ of elements in P.
The support supp(£71€57 - - - £2°) of £7165% -+ - €% is {&; | e; > 0}. A monomial
u is called a standard monomial if supp(u) is a totally ordered subset of P
or (). A poset ideal of P is a subset I of P such that z € I and y < z imply
y € I. Note ) is a poset ideal of P.

Definition 2.1 Let A be a graded K-algebra and ¢: P — A is an injective
map. A is an algebra with straightening law (ASL for short) over K on P
with structure map ¢ if we embed P in A by ¢, the following conditions are
satisfied.

(ASL-0) A =D, ;A is a graded ring with Ay = K and every element of
P is a homogeneous element of positive degree.

(ASL-1) The standard monomials on P form a K-vector space basis of A.
(ASL-2) If @, B € P and a # 3, then

O‘IB = Z ba,@mu'

p:standard

where 0 # by, € K and min(supp(p)) < a, 8. (This is called the
straightening relation.)

The right hand side of the straightening relation may be the empty sum,
ie,af =0. If B =0 for any «a, B € P with a % 3, we say that A is the
discrete ASL over K on P. If A is an ASL over K on P, we say the discrete
ASL over K on P the discrete counterpart of A and denote Ag;s. We set

indA := U supp(u)
bapu#0

and call the indiscrete part of A. Note that if « is an element of P such that
there is no z € indA such that z < «a, then a8 = 0 for any 3 € P with

a ot .
Fact 2.2 dim A = rankP + 1.

Fact 2.3 There is a flat family whose general fiber is A and Ags is a special
fiber. In particular,

depthAg;s < depthA.
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Fact 2.4 ([Miy1, Theorem 4.4] see also [Miy2, Theorem 1.2]) If Aa
is Buchsbaum, then depthAgs = depthA.

Fact 2.5 ([Miy1, Corollary 3.4]) If there is a Cohen-Macaulay ASL on
P, then P 1s pure.

Definition 2.6 Let Q be a subset of P. If QA is a K-vector space with basis
{p | wis a standard monomial and supp(u) N # B}, we say that () is a
standard subset of P.

Remark 2.7 If Q is a standard subset of P, then A/QA is an ASL on P\ (0.

Fact 2.8 ([DEP, Proposition 1.2]) Let Q be a subset of P. If z € Q,
y < z and y € indA imply y € Q, then Q is a standard subset. In particular,
a poset ideal is a standard subset. :

Let :
F: A= DL DL, D -

be a filtration of homogeneous ideals of A such that (3,5, I = (0). Fora € A
with a # 0 set ord(a) := max{n | a € I,}. For a monomial ;" ---£* on P,

we set eord (€51 -+ - £8) := 7 ejord(&).

Definition 2.9 F is called a standard filtration if I, is a K-vector space
with basis {x | p is a standard monomial and eord(n) > n} for any 7.

Let Rr(A) be the Rees algebra with respect to F, i.e., Rr(A) = Al[,T" |
n > 0], where A[T] the polynomial ring with variable T and Grz(A) the
associated graded ring. Then the following fact is known.

Fact 2.10 ([DEP, Corollary 2.2]) If F is a standard filtration, then
Grz(A) is an ASL over K on P with structure map § — €T 4 Irae)41 €
Iord(e)/Torae)+1-  And there is a flat family whose general fiber is A and
Grz(A) is a special fiber. In particular, depthGrr(A) < depthA.

Let o be an element in P such that if 8 < o then 8 ¢ ind(A). Then it is
easily verified that the filtration

ADaADa’aD -

is a standard filtration with ord(e) = 1 and ord(8) = 0 for § € P\ {a} and
Graa(A) is an ASL on P with ind(Gra4(A4)) = ind(A)\{a} ([DEP, Theorem
3.1)).

Note that Rz(A) and Grz(A) are bigraded rings. We denote the degree
inherited form A as the first entry and the degree defined by the Rees algebra
structure as the second entry.
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3 Counter example of minimal dimension

In this section, we show that if there is a Cohen-Macaulay graded ASL A
on a poset P such that Ags is not Cohen-Macaulay and A is of minimal
dimension among such examples, there is a minimal element o of P such
that Graa(A) is not Cohen-Macaulay.

First let us recall the following result which is contained in the proof of
[Miy1, Theorem 4.4].

Lemma 3.1 Let o be a minimal element of ind(A) and set G = Graa(A).
If e = depthG < depthA, then [H5/(G)|w0) = 0 for any u € Z, where M is
the unique bigraded mazximal ideal of the Rees algebra Roa(A).

Now let a be an element of P such that {z € P |z < a} Nind(A) =0
and set Q = {z € P | z # a}, G = Graa(A), m the irrelevant maximal
ideal of A and M the unique bigraded maximal ideal of the Rees algebra
Raa(A). Then, by Fact 2.8, Q is a standard subset of P and A/QA ~ aA as
A-modules, since (0 :4 o) = QA.

Proposition 3.2 In the situation above, if A is Cohen-Macaulay, then
depthG = depthaA = depthA/QA.

Proof Set d = dimA. Let &, &, ..., & be a homogeneous system of
parameters of A. We compute Hi,(G) by the Cech complex with respect to
&, &, ..., &4, oT. Denote the Cech complex with respect to &, &, ..., &
by C(—)*. Then the Cech complex with respect to &, &, ..., &4, oT is the
double complex
c(-)
! .
C(_aT).’

Note that

@(Ga)(n,i) jad ozA/azA

nezZ
for any i € Z and

ad/a?A  i>0,

P Cuniy = Alad i=0,
nezZ 0 1< 0.

Now first suppose that depthG = d. Then [H*(C(Gar)*)]n,j) = 0 for any
i, J,n € Z with j <0 and i < d— 1, since G, j) =0, HiFY(G) =0 and &,
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&, ..., & are contained in @,z Raa(A)(no)- Therefore, Hy (cA/ a’A) =0
for any i with i < d—1 and H},(cA) = 0 for any ¢ with ¢ < d. It follows that

depthA/QA = depth(ad) > d.
Since dim A/QXA = d, we see that
depthA/QA = depth(aA) = d = depthG.

Next suppose that depthG = e < d. Then by Lemma 3.1, we see that
[H$(G))no) = 0 for any n € Z. And since H$(G) is a subquotient of a
local cohomology module of a Stanley-Reisner ring K [P], we see that

[H;,I(G)](n,i) =0 ifn>0o0rz>0.

Therefore, there is j < 0 and n € Z such that [H§;(G)](n,j) # 0- So we see
that

HYC(Gar)®) 20 and H'(C(Gor)?) =0 fori<e—1.
Therefore, since @, cz(Gar)nj) = aA/a?A for any j € Z, we see that
depth(aA/a?A) =e— 1.
It follows that

depthA/QA = depthaA = e = depthG.

Now we prove the following

Theorem 3.3 Suppose that there is a Cohen-Macaulay ASL whose discrete
counterpart is not Cohen-Macaulay. Set d = min{dim A | A is a Cohen-
Macaulay ASL whose discrete counterpart is not Cohen-Macaulay} and let
A be a Cohen-Macaulay ASL on a poset P of dimension d whose discrete
counterpart is not Cohen-Macaulay. Then there is a minimal element o of
P such that Graa(A) is not Cohen-Macaulay.

This theorem follows directly from the following

Lemma 3.4 Let A be a Cohen-Macaulay ASL of dimension d, where d is
as in Theorem 3.8, and let o be a minimal element of ind(A). If o is not a
minimal element of P, then Graa(A) is Cohen-Macaulay.
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Proof Assume the contrary. Since o is not a minimal element of P by
assumption, there is a minimal element 3 of P such that 3 < a.
Set Il = {z € P | z o 8}. Then by Proposition 3.2, we see that

depthA/ITA = depthGrga(A) = depthA = d

since § ¢ ind(A). Therefore, A/IIA is a Cohen-Macaulay ASL on P\ II.
Since 3 is the unique minimal element of P \ II, 8 is a NZD for A/IIA. So
A/(ITA+BA) is a Cohen-Macaulay ASL on P\ (ITU{A}) of dimension d — 1.
By the minimality of d, we see that P\ (Il U {G}) and therefore P\Ilis a
Cohen-Macaulay poset.

Nowset P ={z€Plz>a},b={z€P|z<a}and Q={z € P|
T o o} and take a saturated chain 3 <y, < v, < --- <7, < a in P. Then
Py = linkp\n({B, 71,72, ---,%}). In particular, P; is a Cohen-Macaulay
poset.

Since (2 is a standard subset by Fact 2.8, A/QA is an ASL on P\ Q. And
by Proposition 3.2, we see that

depthA/QA = depthGraa(A) < d.

On the other hand, by Fact 2.5, P is pure and so dim A/QA = d. Therefore,
A/QA is not Cohen-Macaulay. So the poset P\  is not Cohen-Macaulay.
But P\ Q = P,UP, and so K[P\ Q] = K[P,) ® K[P\]. Since P, is a
Cohen-Macaulay poset, we see that P, is not a Cohen-Macaulay poset.

Set B = A/(QQA+P,A). Then A/QA = B[P;), the Stanley-Reisner ring of
poset P, over the base ring B, since P, Nind(A) = @. Now since a(QA) = 0,
we see that

Ale™] = (4/Q4)[a7"] = (Bla )[P,].
(Neither A[a™'] nor Bla™!] is an ASL. But we do not use the ASL property
from now on.)

Ala™!] is a Cohen-Macaulay ring because it is a localization of a Cohen-
Macaulay ring. On the other hand, (B[a~!])[P] is not a Cohen-Macaulay
ring since P, is not a Cohen-Macaulay poset. This is a contradiction. I
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ALTERNATIVE POLARIZATIONS OF BOREL FIXED IDEALS
AND ELIAHOU-KERVAIRE TYPE RESOLUTION

RYOTA OKAZAKI AND KOHJI YANAGAWA

1. INTRODUCTION

Let S := k[z1, ..., %,] be a polynomial ring over a field k. For a monomial ideal
I ¢ S, G(I) denotes the set of minimal (monomial) generators of I. We say a
monomial ideal I C S is Borel fized (or strongly stable), if m € G(I), z;|m and
j < imply (z;/x;) - m € I. Borel fixed ideals are important, since they appear as
the generic initial ideals of homogeneous ideals (if char(k) = 0).

Recall that a squarefree monomial ideal I is said to be squarefree strongly stable,
if m € G(I), z;Jm, z; /m and j < i imply (z;/x;) - m € I. Any monomial m € S
with deg(m) = e has a unique expression

[
(1.1) m=]]za with 1< <ap<--<ac<n

=1

Now we can consider the squarefree monomial

e
sqQ
m* = H Toy+i—1
i=1

in the “larger” polynomial ring T = Kk(z1,...,zy] with N > 0. If I C S is Borel
fixed, then I*9 := (m® | m € G(I)) C T is squarefree strongly stable. Moreover,
for a Borel fixed ideal I and all 4,5, we have 87;(I) = B[;(I*%). Recall that this
operation plays a role in the shifting theory for simplicial complexes (see [1]).

A minimal free resolution of a Borel fixed ideal I has been constructed by Eliahou
and Kervaire [4]. While the minimal free resolution is unique up to isomorphism,
its “description” depends on the choice of a free basis, and further analysis of the
minimal free resolution is still an interesting problem. See, for example, [2, 6, 7, 8,
10]. In this paper, we will give a new approach which is applicable to both I and
I¥9. Our main tool is the “alternative” polarization b-pol(I) of I.

Let S :=k[z;; | 1 <i<n,1<j<d] be the polynomial ring, and set

@Z={Il?i‘1—.’131;,j|].SZ'STL,ZS]'Sd}CS;.

Then there is an isomorphism 5/(©) 2 S induced by S 3 x;; —> x; € S. Through-
out this paper, S and © are used in this meaning.

The first author is partially supported by JST, CREST.
The second author is partially supported by Grant-in-Aid for Scientific Research (c)
(n0.22540057).
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Assume that m € G(I) has the expression (1.1). If deg(m) (=€) < d, we set
(1.2) b-pol(m) = H‘Tﬂtui €s.
=1

Note that b-pol(m) is a squarefree monomial. If there is no danger of confusion,
b-pol(m) is denoted by m. If m =[], =%, then we have

i=1Ti »

m (= b-pol(m)) = H z;; €S, where b; = Zal.
1<i<n 1=1
bi—1+1<5<b;
If deg(m) < d for all m € G(I), we set
b-pol(I) := (b-pol(m) | m € G(I)) C S.

The second author ([12]) showed that if I is Borel fixed, then I := b-pol(I)
is a polarization of I, that is, © forms an S / I- -regular sequence with the natural
isomorphism S/(I + (©)) = S/I. Note that b-pol(— ) does not give a polarization
for a general monomial ideal, and b-pol() is essentially different from the standard
polarization even for a Borel fixed ideal I. Moreover,

@/={$1;,j—$i+11j_1|1Si<n,1<j§d}C§

forms an S/I-regular sequence too, and we have S/(I + (8')) = T/I® through
S >z l—) Tiyj1 € T (if we adjust the value of N = dimT). The equation
5(I) = BT;(I°%) mentioned above easily follows from this observation.

In this paper, we will construct a minimal S-free resolution P, of S /f, which is
analogous to the Eliahou-Kervaire resolution of S/I. However, their description can
not be lifted to I, and we need modification. Clearly, P, ®§§ /(©) and P,® 3 5/(8)
give the minimal free resolutions of S/I and T'/I respectively.

Under the assumption that a Borel fixed ideal I is generated in one degree (i.e.,
all elements of G(I) have the same degree), Nagel and Reiner [10] constructed
the alternative polarization I = b-pol(I) of I, and described a minimal S-free
resolution of I explicitly (and induced minimal free resolutions of I itself and I%%).
Their resolution is equivalent to our description. In this sense, our results are
generalizations of those for [10].

Batzies and Welker ([2]) developed a strong theory which tries to construct min-
imal free resolutions of monomial ideals using Forman’s discrete Morse theory ([5]).
If a monomial ideal J is shellable in the sense of [2] (i.e., has linear quotients, in
the sense of [6]), their method is applicable to J, and we can get a Batzies- Welker
type minimal free resolution. However, in many cases, it is almost impossible to
compute the differential map of their resolution explicitly.

A Borel fixed ideal I and its polarization I = b-pol(I) are shellable. We will
show that our resolution P, of S/ and the induced resolutions of S/I and T/I*
are Batzies-Welker type. In particular, these resolutions are cellular. As far as
the authors know, an ezplicit description of a Batzies-Welker type resolution of a
general Borel fixed ideal has never been obtained before.
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If I is generated in one degree, the CW complex supporting P, is regular by [10].
We believe that it is also true in general, but we can not prove it now.

9. THE ELIAHOU-KERVAIRE TYPE RESOLUTION OF S/ b-pol(])

Throughout the rest of the paper, I is a Borel fixed monomial ideal with degm <
d for all m € G(I). For the definitions of the alternative polarization b-pol(I) of I
and related concepts, consult the previous section. For a monomial m = [T,z €
S, set p(m) := min{i | a; > 0} and v(m) := max{s | ¢; > 0}. In [4], it is shown
that any monomial m € I has a unique expression m = m; -mj with v(m;) < p(m2)
and m; € G(I). Following [4], we set g(m) := my. For i with i < v(m), let

b;(m) = (z;/zx) - m, where k :=min{j | a; >0, j > i}.
Since I is Borel fixed, m € I implies b;(m) € I.

Definition 2.1. For a finite subset F' = { (31, 51), (32, J2), - - -, (igs Jq) } of Nx N and
a monomial m = [[_, 24, = [ 2 € GUI) with1 <oy <y <--- <. <,

=1 "1

we say the pair (F, ) is admissible (for b-pol(I)), if the following are satisfied:
(a) 1<iy <idp < -+ <ig <v(m), ‘
(b) jr = max{l| @ <i, } + 1 (equivalently, j. = 1+ 3", a) for all 7.

For m € G(I), the pair (§, m) is also admissible.

The following are fundamental properties of admissible pairs.

Lemma 2.2. Let (f, m) be an admissible pair with F = {(41,51),---, (iq, Jg) } and
m = [[z* € G(I). Then we have the following.
) jn<jp<-<Jg
(ii) Tk, - b-pol(b;.(m)) = =, ;, - b-pol(m), where k = min{l |l > ir,a >0 }.
For m € G(I) and an integer ¢ with 1 < i < v(m), set my; := g(b;j(m)) and
Mgy = b-pol(my). If i > v(m), we set my; := m for the convenience. In the
situation of Lemma 2.2, M,y divides z;, ; -m forall 1 <r <g¢.
For F = {(i1,51), .-, (ig,jg) } and 7 with 1 < 7 < ¢, set Fr := F\ {(ér, jr) },
and for an admissible pair (F,m) for b-pol(I),

B(F,m) = {r]| (F,, My;,y) is admissible }.

Lemma 2.3. Let (F,m) be as in Lemma 2.2.

(i) For allr with1 <r <g, (F,,m) is admissible.

(i) We always have q € B(ﬁ, m).

(iii) Assume that (E,rﬁ(ir)) satisfies the condition (a) of Definition 2.1. Then
r e B(Fv, m) if and only if either j, < jry1 O T =4.

(iv) Forr,s with 1 <7 < s < q and j, < js, we have b;, (b;,(m)) = b;,(b;.(m))
and hence (Mi))iia) = (M) tir)-

(v) Forr,s with1 <7 < s < q and jr = js, we have b; (m) = b;, (b;,(m)) and
hence Fﬁ(ir> = (ﬁ’(i,))(ir)-
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Example 2.4. Let I C S = K[z, 2,73,24] be the smallest Borel fixed ideal
containing m = (x1)2x3z4 In this case, mi;, = g(b;(m’)) for all m" € G(I). Hence,
we have mgy = (1)3z4, mp) = (21)*224 and mzy = (z1)%(23)% The following 3
pairs are all admissible.

d (E, m) = ({(1,3),(2,3),(3,4) H T1,1%1,2 L33 Ta,4)

o (Fy,mp) = ({(1,3),(3,4) }, 21,121, 72,3 Ta,a)

o (F3,m@) =({(1,3),(2,3) }, 21,1212 233 34)
(For this F, 4, = r holds and the reader should be careful). However, (F}, m w) =
{(2,3),6 4) }, %11 %12 T1,3 T4,4) does not satisfy the condition (b) of Deﬁnltlon 2.1.

Hence B(F,m) = {2,3}.
Next let I’ be the smallest Borel fixed ideal containing m = (z;)2z374 and (z;)2z,.

For F = {(1,3), (2, ,3),(3,4) }, (F,m) is admissible again. However m @ = (21)%z2
in this time, and (5, me) = ({(1,3),(3,4) }, 21,1 Z1,2T2,3) is no longer admissible.
In fact, it does not satisfy (a) of Definition 2.1. Hence B(F, ) = {3} for b-pol(I’).

For F' = {i,...,4} C Nwith i; < --- <4, and m € G(I), Eliahou-Kervaire call
the pair (F, m) admissible for I, if i; < v(m). In this case, there is a unique sequence
J1,- - -, Jq such that (ﬁ, ) is admissible for I, where F = {(G1,51),...,0Gq,99) }- In
this way, there is a one-to-one correspondence between the admissible pairs for
I and those of I. As the free summands of the Eliahou-Kervaire resolution of I
are indexed by the admissible pairs for I, our resolution of I are indexed by the
admissible pairs for I.

We will define a Z"*%-graded chain complex P, of free S-modules as follows.
First, set P, := S. For each q>1, we set

A, = the set of admissible pairs (f, m) for b-pol(I) with #F = q,
and
Bii= P SeF, ),
(F,m)eAq—1

where e(ﬁ, m) is a basis element with ,
deg (e(ﬁ, fﬁ)) = deg (r’ﬁ X H x":ryjr) € Z™4,
(ir.jr)EF

We define the S- homomorphism 0 : P, — Pq_l for ¢ > 2 so that e(F m) with
F= {(31,71), - - -, (ig,3q)} is sent to

r o~ r xim'r'r’ﬁ - o~
DN mie(F @)= Y (<L) R e(F ig,y),

1<r<q reB(F,m) Mir)
and 8 : P, — B by e(@,m) — m € S = P,. Clearly, 0 is a Z"™*%graded
homomorphism.
Set
ﬁ. i)’\;i) i)ﬁli)ﬁo—*)o
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Let > be the lexicographic order on the monomials of S with a:l —Tg > > T

Theorem 2.5. The complex P, is a Z™*%-graded minimal g-free resolution for
S/ b-pol(I).

Sketch of Proof. Calculation using Lemma 2.3 shows that 8 o d(e(F,m)) = 0 for
each admissible pair (F,m). That is, P, is a chain complex.

Now let I = (my,...,m;) with my = --- > my, and set I, := (my,...,m;). It is
easy to show that the I, are also Borel fixed. The acyclicity of the complex P can
be shown inductively by means of mapping cones. O

Remark 2.6. In their paper [6], Herzog and Takayama explicitly gave a minimal
free resolution of a monomial ideal with linear quotients admitting a regular de-
composition function. A Borel fixed ideal I is a typical example with this property.
However, while our I has linear quotients, the decomposition function can not be
regular in general. Hence the method of [6] is not applicable to our case.

3. APPLICATIONS AND REMARKS

Let I C S be a Borel fixed ideal, and © C S the sequence defined in Introduction.
As remarked after Example 2.4, there is a one-to-one correspondence between the
admissible pairs for T and those for I, and if (F,m) corresponds to (F,m) then
#f = #F. Hence we have

(3.1) o) = B35(D)
for all 4, j, where S and S are considered to be Z-graded. Of course, this equation

is clear, if we know the fact that T is a polarization of I ([12, Theorem 3.4]).
Conversely, we can show this fact by the equation (3.1) and [10, Lemma 6.9].

Corollary 3.1 ([12, Theorem 3.4]). The ideal T is a polarization of 1.

The next result also follows from [10, Lemma 6.9].

Corollary 3.2. P, ®; 5/(©) is a minimal S-free resolution of S/I.

Remark 3.3. (1) The correspondence between the admissible pairs for I and those
for f, does not give a chain map between the Eliahou-Kervaire resolution and our
P, ®5 5/(©). In this sense, two resolutions are not the same. See Example 4.9
below.

(2) Eliahou and Kervaire ([4]) constructed minimal free resolutions of stable
monomial ideals, which form a wider class than Borel fixed ideals. As shown in
[12, Example 2.3 (2)], b-pol(J) is not a polarization for a stable monomial ideal J
in general, and the construction of P, ®3 5/(6) does not work for J.

(3) Even if I is Borel fixed, the lcm lattice of I and that of T are not isomorphic
in general. Recall that the lem-lattice of a monomial ideal J is the set LCM(J) :=
{lem{m | m € ¢} | 0 C G(J)} with the order given by divisibility. Clearly,
LCM(J) forms a lattice. For the Borel fixed ideal I = (27 zy, 22,y yz), we have
ryVaz = zyVyz = 2Vyz = zyz in LCM(I). On the other hand, zyVzz = z1y222,
Ty V Yz = T1y1Y222 and Tz V Yz = 21y12 are all distinct in LCM(T) .
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Let a = {ag,a1,az,...} be a non-decreasing sequence of non-negative integers
with ag = 0, and T' = k[z1,...,zn] a polynomial ring with N > 0. In his paper
[9], Murai defined an operator (—)"® acting on monomials and monomial ideals of
S. For a monomial m € S with the expression m = [[;_; z,, as (1.1), set

[
m'Y(G) = Hzai“'ai—i (S T’
=1

and for a monomial ideal I C S,
M@= m@ | meq)cT.

If a;41 > a; for all 4, then I"® is a squarefree monomial ideal. Particularly in the
case a; = 1 for all 4, (=)@ is just (—)* mentioned in Introduction.

The operator (— )’7(“) also can be described by b-pol(—) as is shown in [12]. Let
L, be the k-subspace of S spanned by {z;; — z; | i +aj_1 =7 +aj_1}, and 6,
a basis of L,. For example, we can take

{.’L‘ij—ilfi+1j 1|1<i<n 1<_7<d}
as ©, in the case a; = i for all 5. With a suitable choice of the number N, the rmg
homomorphism S — T with z; 4 P Titq;_, induces the isomorphism S S/(8,) =

Proposition 3.4 ([12, Proposition 4,1]). With the above notation, ©, forms an
S/I- regular sequence, and we have (5/(84)) ®z (S/I) 2 T/I"Y through the iso-
morphism §/(0,) 2T

Applying Proposition 3.4 and [3, Proposition 1.1.5], we have the following.
Corollary 3.5. The compler P, ®z §/ (©4) is a minimal T-free resolution of
T/I"@. In particular, a minimal free resolution of T/I* is given in this way.

For a Borel fixed ideal I generated in one degree, Nagel and Reiner [10] con-
structed a CW complex, more precisely a polytopal complex, which supports a
minimal free resolution of I (or I, I°9). See [10, Theorem 3.13].

Proposition 3.6. Let I be a Borel fized ideal generated in one degree. Then Nagel-
Reiner description of a minimal free resolution of I coincides with our P,.

We do not give a proof of the above theorem here. We just remark that if I is
generated in one degree then m;y = b;(m) for all m € G(I) and P, becomes simpler
than the general case.

4. RELATION TO BATZIES-WELKER THEORY

In [2], Batzies and Welker connected the theory of cellular resolutions of mono-
mial ideals with Forman’s discrete Morse theory ([5]).

Definition 4.1. A monomial ideal J is called shellable if there is a total order —
on G(J) satisfying the following condition.
(*) For any m,m" € G(J) with m I m’, there is an m” € G(J) such that

m I m”, deg (M)) =1 and lem(m, m”) divides lem(m, m’).
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Let T be the total order on G(I) = {f | m € G(I) } such that m' C m if and
only if m’ > m in the lexicographic order on S with z; > 2 > -+ > Z,. In the
rest of this section, C means this order.

Lemma 4.2. The order C makes T shellable.

The following construction is taken from [2, Theorems 3.2 and 4.3]. For the
background of their theory, the reader is recommended to consult the original paper.

For § # o C G(I), let m, denote the largest element of o with respect to the
order T, and set lem(c) :=lem{m |m € o }.

Definition 4.3. We define a total order <, on G(I) as follows. Set
N, = {(Fﬁa)(i) | 1<i< l/(ma-) (ﬁia)(i) divides lcm(cr) }

For all m € N, and @’ € G(I) \ N,, define m <, m'. The restriction of <, to N,
is set to be C, and the same is true for the restriction to G (I)\ N,.

Let X be the (#G(I) — 1)-simplex associated with 260 (more precisely, 260 \
{0}). Hence we freely identify o C G (I) with the corresponding cell of the simplex
X. Let Gx be the directed graph defined as follows. The vertex set of Gy is
96\ {@}. For § # 0,0’ C G(I), there is an arrow o — ¢’ if and only if o D o’ and
#o = #0' + 1. For 0 = {my,my, .. mk} with My <, My <o+ <, Mg (= M,)
and l e Nwith 1 <1<k, set g —{m,c 5y My_i41,---, Mg } and

u(o) :=sup{l|3Im € G(I) s.t. M <, My_; and m|lem(oy) }-

If u := u(0) # —oo, we can define fi, := min.,{ M | M divides lem(0y) }. Let Ex
be the set of edges of Gx. We define a subset A of Ex by

A:={oU{n,} = o |u(o)# —oo,n, €0}
It is easy to see that A is a matching, that is, every o occurs in at most one edges
of A. Wesay ) # o C G(I ) is critical, if it does not occurs in any edge of A.

We have the directed graph G% with the vertex set 26D\ {0} (i.e., same as Gx)
and the set of edges (Ex \ A)U{oc = 7| (r = 0) € A}. By the proof of [2,
Theorem 3.2], we see that the matching A is acyclic, that is, G4 has no directed
cycle. A directed path in G% is called a gradient path.

Forman’s discrete Morse theory [5] guarantees the existence of a CW complex
X4 with the following conditions.

e There is a one-to-one correspondence between the i-cells of X4 and the
critical i-cells of X (equivalently, the critical subsets of G(I ) consisting of
i+ 1 elements).

e X, is contractible, that is, homotopy equivalent to X.

The cell of X4 corresponding to a critical cell o of X is denoted by o4. By [2,
Proposition 7.3], the closure of g4 contains 74 if and only if there is a gradient path
from o to 7. See also Proposition 4.6 below and the argument before it.

"Assume that 0 # ¢ C G(I) is critical. Recall that m, denotes the largest element
of o with respect to C. Take m, = [[; zj* € G(I) with m, = b-pol(m,), and set
q = #0 — 1. Then there are integers iy,...,1; with 1 <14; <... <14 < v(m,) and

(41) g ={(Me)i,) | 1<r<q}u{ms}
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(see the proof of [2, Proposition 4.3]). Equivalently, we have 0 = N, U {m,}. Set
Jro=1+ Siia for each 1 < 7 < g, and F, := {(is,51), ..., (ig,Jg) }- Then
(FC,, m,) is an admissible pair for I. Conversely, any admlss1ble pair comes from
a critical cell o C G(I ) in this way. Hence there is a one-to-one correspondence
between critical cells and admissible pairs.

Let X’ denote the set of all the critical subset o C G(f) with #0 =i+ 1, and

for (not necessarily critical) subsets o, 7 of G(T), let &, , denote the set of all the
gradient paths from o to 7. For o0 € X} of the form (4.1), e(o) denotes a basis
element with degree deg(lem(o)) € Z™*4. Set

Q=P Sele) (a>0).

geX

The differential map @q — Qq_l sends e(o) to

y r = q lcm( )
(4.2) ;(_1) Zirgr (0 \ {(M)iy}) = (=1) ,g;_l m(P) oy e
PEPp (ot

where m(P) = +£1 is the one defined in [2, p.166].
The following is a direct consequence of [2, Theorem 4.3] (and [2, Remark 4.4]).

Proposition 4.4 (Batzies-Welker, [2]). Q. is a minimal free resolution of I, and
has a cellular structure supported by X 4.

Theorem 4.5. Our description of the resolution P, coincides the Batzies- Welker
resolution Q. (more precisely, the truncation P>1 of P, coincides with Q. ).

First, note that the following hold.

(1) Let o and 7 be (not necessarily critical) cells with &, # @. Then lem(7)
divides lem(o).

(2) Let 0 € X%, 7 € X4 and assume that there is a gradient path o —
o\{m}=09—> 01— >0, =7. Then#0,_1 =#7+1=q+1, #0;=¢q
or ¢ + 1 for each 4, and o; is not critical for all 0 <4 < {.

(3) If 0 is critical, so is 0 \ { (M, ),y } for 1 <7 < gq.

Next, we will show the following.

Proposition 4.6. Let 0,7 be critical cells with #0 = #7 +1, and (F,, ma) and
(FT,mT) the admissible pairs correspondmg to 0 and T respectively. Set E,
{ (i1, 751), - (zq,]q)} with iy < -+ <'ig. Then Po\(s,},r # D if and only if there
is some v € B(F,,m,) with (F.,m,) = ((F, )ry (Ma) ). If this is the case, the
gradient path is the unique one from (o \ {M,}) to 7 (hence # P (i, }r = 1).
Sketch of Proof. Only if part follows from the above remark. Note that the second
index j of each z; i€ S restricts the choice of paths and it makes the proof easier.
Next, assuming E = (F )r and m, = (M) ;) for some r € B(Fg, m,), we will
construct a gradient path from o\ {m, } to 7. For short notation, set My := (My),)
and m m[s 4 := ((Ms) (i) ) i) By (4.1), we have o := (0 \ {f,}) = {My |1 <s<gq}
and 7 = {Mpq | 1 < s < g5 # r}U{My}. We can inductively construct a
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gradient path g = 01 = -+ — 04 = * - O2(g—r41)r—2 88 follows. Write t = 2pr + A
witht#0,0<p<gqg-—r, and0</\<2r For 0 <t < 2(q—r), we set

o-1U{Mg—ps } ifA=2s—1forsomel <s <
0t =14 041 \ { Mg—pt1,5 } if A =25 for some 0 < s <7}
ot \ { Mig—p+1 } if A =0,
where we set m[q+1 g = mig for all 5. In the case Mis,f) = Ms41,), it Seems to cause

a problem, but skipping the corresponding part of path, we can avoid the problem.
Since r € B(F,, W,), we have M, = M for all s > 7 by Lemma 2.3 (iv). Hence
O2(q—r) = {m[r+1,s] | 1<s <T}U{m[r]}U{m[T,s] | r<s< q}.

Now for s with 0 < s < r — 1, set o, with 2(¢ —r)r <t < 2(g—r+1)r—2
to be g¢—1 U { M} } if s is odd and otherwise oy \ {M}r4+1,4 }. Then we have

Oa(g-r+1)r-2 = T and the gradient path o ~» 7.
The uniqueness of the path follows from elementally (but lengthy) argument. [

Sketch of Proof of Theorem 4.5. Recall that there is the one-to-one correspondence
between the critical cells 0 C G (I ) and the admissible pairs (F,, m,). Hence, for
each g, we have the isomorphism Qq — P induced by e(c) — e(Fa, my).

By Proposition 4.6, if we forget “coefficients”, the differential map of @. and

that of P, are compatible with the maps e(c) — e(Fa, m,). So it is enough to
check the equality of the coefficients. But it follows from direct computation. U

Corollary 4.7. The free resolution P, ®z 5/(8) (resp. P, ®z 5/(8,)) of S/I
(resp. T/I"@) is also a cellular resolution supported by X4. In particular, these
resolutzons are Batzies-Welker type.

Remark 4.8. Recently, Mermin [8] showed that the Eliahou-Kervaire resolution
of a Borel fixed ideal is cellular and supported by a regular CW complex. In
the previous section, we showed that our resolution P, is cellular. However, the
regularity of the complex X 4 supporting P, is not clear, while we have the following.

(1) If the closure of an (i+1)-cell o4 contains an (i—1)-cell 74, there are exactly

two cells between them.

(2) The incidence number [o4 : 0%] is 1, =1 or 0 for all 04, 0%.

If X 4 is regular, the conditions of the above proposition hold obviously.
When I is generated in one degree, P is equivalent to Nagel-Reiner’s, and hence

a polytopal (hence regular) CW complex can be taken as the supporting complex
X 4 of our resolution ﬁ..

Example 4.9. Consider the Borel fixed ideal I = (z%, 22, 2y 2, TYW, TZ%, TZW).
Then b-pol(I) = (xlxz,xlygyg,xlygzg,xlygwg,mlzgz;»,,wlzgwg) and easy computa-
tion shows that the CW complex X4, which supports our resolutions P, of S /I
and P, ®39 S/(©) of S/I, is the one illustrated in Figure 1. The complex consists of
a square pyramid and a tetrahedron glued along trigonal faces of each. For a Borel
fixed ideal generated in one degree, any face of the Nagel-Reiner CW complex is a
product of several simplices. Hence a square pyramid can not appear in the case
of Nagel and Reiner.
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FIGURE 1. FIGURE 2.

We remark that the Eliahou-Kervaire resolution of I is supported by the CW
complex illustrated in Figure 2. This complex consists of two tetrahedrons glued
along edges of each. These figures show visually that the description of the Eliahou-
Kervaire resolution and that of ours are really different.

Question 4.10. Is the CW complex X, is regular for a general Borel fixed ideal?
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F-purity of isolated log canonical singularities

Shunsuke Takagi

In this article, we explain the correspondence of log canonical singularities and
F-pure singularities in the case of isolated singularities. This article is based on the
joint work [4] with Osamu Fujino, and the reader is referred to [4] for the proofs.

1 Preliminaries

First we recall the definition of log canonical singularities.

Definition 1.1. Let z € X be a point of a normal Q-Gorenstein complex algebraic
variety. Let f : Y — X be a resolution of singularities such that the exceptional
locus Exc(f) is a simple normal crossing divisor. Then we can write

Ky = f*Kx + ZaiEi)

where the a; are rational numbers and the E; are f-exceptional prime divisors on Y.
We say that z € X is a log canonical singularity (resp. a log terminal singularity) if
a; > —1 (resp. a; > —1) for all i such that z € f(E;). This definition is independent
of the choice of the resolution f.

Example 1.2. Let X = Spec C[X,Y, Z]/(X* + Y® 4+ Z¢). Then X has only log
canonical singularities if and only if L + 1 +1 > 1.

Fujino [3] introduced the invariant u(z € X) of an isolated log canonical singu-
larity x € X.

Definition 1.3. Let £ € X be an isolated log canonical singularity which is not
log terminal. First we assume that z € X is quasi-Gorenstein. Take a projective
birational morphism f : Y — X from a smooth variety X such that Exc(f) and
Supp f~!(z) are simple normal crossing divisors. Then we can write

Ky=f*Kx+F—E,

where E and F are effective divisors on Y and have no common irreducible com-
ponents. By assumption, E is a reduced simple normal crossing divisor on Y. We
define p(z € X) by

p(z € X) = min{dim W | W is a stratum of E}.
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This definition is independent of the choice of the resolution f.
In general, we take an index one cover p : X’ — X with ' = p~!(z) to define
pu(z € X) by
wz e X) =@ € X').
Since the index one cover is unique up to étale isomorphisms, the above definition
of u(z € X) is well-defined. By definition,

0<pu(zeX)<dmX -1.
Remark 1.4. A Gorenstein isolated log canonical singularity z € X with u = pu(z €
X) is called in [9] as a purely elliptic singularity (X, z) of type (0, u).
Next we recall the definition of F-pure singularities.

Definition 1.5. Let z € X be a (closed) point of an F-finite integral scheme X of
characteristic p > 0.

(i) z € X is said to be F-pure if the Frobenius map
F:0x,;— F.Ox, a—ad?
splits as an Ox ;-module homomorphism.

(ii) =z € X is said to be strongly F-regular if for every nonzero ¢ € Ox,, there
exist an integer e > 1 such that

€
cF°:O0x, — F;Ox, aw~ ca?

splits as an Ox z-module homomorphism.

Example 1.6. Let X = Spec F,[X,Y, Z]/(X3+ Y3+ Z3). Then X has only F-pure
singularities if and only if p = 1 mod 3.

Using reduction from characteristic zero to positive characteristic, we can define
the notion of F-purity in characteristic zero.

Definition 1.7. Let z € X be a point of a complex algebraic variety X. Choosing
a suitable finitely generated Z-subalgebra A C C, we can construct a point x4 of
a scheme X, of finite type over A such that (X4,z4) Xspecs C = (X, z). By the
generic freeness, we may assume that (X4,z4) is at over Spec A. We refer to
T4 € X4 as a model of x € X over A. Given a closed point s € Spec A, we denote
by x5 € X, the fiber of z € X over s.

We say that x € X is of strongly F-regular type (resp. dense F-pure type) if for
a model of z € X over a finitely generated Z-subalgebra A C C, there exists a dense
open subset (resp. a dense subset) of closed points S C Spec A such that z, € X,
is strongly F-regular (resp. F-pure) for all s € S.

Example 1.8. Let X = Spec C[X,Y, Z]/(X3®+ Y3 + Z3). By Lemma 1.6, X is of
dense F-pure type.
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Hara proved the equivalence of log terminal singularities and strongly F-regular
singularities.

Theorem 1.9 ([5]). Let z € X be a point of a normal Q-Gorenstein complez alge-
braic variety X. Then x € X is log terminal if and only if it is of strongly F-regular

type.

In this article, we will discuss an analogous statement for isolated log canonical
singularities.

2 Main Theorem

In order to state our main result, we need the following conjecture.

Conjecture A,. Let V be an n-dimensional projective variety over an algebraically
closed field k of characteristic zero with only rational singularities. Assume that
Ky ~ 0. Given a model of V over a finitely generated Z-subalgebra A of k, there
ezists a dense subset of closed points S C Spec A such that the natural Frobenius
action on H™(V;, Oy,) is bijective for every s € S.

Lemma 2.1. Conjecture A,, is true if n < 2.

Proof. By an argument similar to the proof of [8, Proposition 5.3], we may assume
that k = Q without loss of generality. Conjecture Ag is trivial. Conjecture A,
follows from a result of Serre [11].

_ So we consider the case when n = 2. Let : V — V be a minimal resolution.
V is an abelian surface or a K3 surface. Suppose given a model of over a finitely
generated Z-subalgebra A of k. Then there exists a dense subset of closed points
S C Spec A such that the Frobenius action on H? A Oy, ) is bijective for every s € S
(the abelian surface case follows from a result of Ogus [10] and the K3 surface case
follows from a result of Bogomolov—Zarhin [2] or that of Joshi and Rajan [7]). Since
X has only rational singularities, we may assume that H*(V,,Oy,) = H 2(V,, 03.)
as k(s)[F]-modules for all s € S. Thus, we obtain the assertion. EI

The recent progress in the minimal model program [1] allows us to prove the
following theorem.

Theorem 2.2 ([4, Theorem 3.3]). Let z € X be an isolated log canonical singularity.
If Conjecture A, holds where p = p(z € X), then x € X 1s of dense F-pure type.
In particular, if p(x € X) < 2, then x € X is of dense F'-pure type.

Sketch of Proof. Let d = dim X. After passing through an index one cover, we may
assume that z € X is quasi-Gorenstein. We take a dlt blow-up g: Z — X of z € X.
That is, g is a projective birational morphism satisfying the following properties:

(i) Kz + D = f*Kx, where D is a reduced divisor on X,
(ii) (Z, D) is a Q-factorial dlt pair,
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(iii) g is an isomorphism outside z,
(iv) Z has only canonical singularities.
Then we can take a minimal log canonical center V of (Z, D) such that
(v) V is a projective variety with only rational singularities,
(vi) dimV = p = p(z € X),
(vii) Ky ~ 0,
(viii) H*(V, Oy) = H*(D, Op).

Applying Conjecture A, to this V' and running a Kz-minimal model program with
scaling over X, we can obtain the assertion. O

Corollary 2.3. Let z € X be an isolated singularity of a normal Q-Gorenstein
complex algebraic variety of dimension < 3. Then z € X is log canonical if and
only if it is of dense F-pure type.

Proof. The if part follows from [6, Theorem 3.9]. The only if part follows from
Theorem 2.2, because p(z € X) <dimX — 1= 2. a
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