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Log canonical thresholds of binomial ideals

Takafumi Shibuta (Kyushu) and Shunsuke Takagi (Kyushu)

In this article, we discuss how to compute log canonical thresholds of
binomial ideals.

Let k be a field of characteristic zero and a be an ideal of the polynomial
ring k[z1, . .., Z,] over k. A log resolution of a is a proper birational morphism
X - X = A7 with X a nonsingular variety such that a0z = Ox(=F)
is invertible and Exc(m) U Supp(F') is a simple normal crossing divisor.

Definition 1. Let t > 0 be a real number and fix a log resolution = : X —
X = A7 with aO5 = Ogx(—F'). The multiplier ideal J (a*) of a with exponent
tis

J(a") = mOx(Kg/x — tF]) C k[z1,.. ., 2,
where K 3 /X is the relative canonical divisor of 7. This definition is indepen-
dent of the choice of the log resolution 7.

The reader is referred to [4] for basic properties of multiplier ideals.

Definition 2. Assume that a is contained in the maximal ideal (z1,...,z,).
The log canonical threshold of a at the origin 0 € A}, is

lcto(a) = sup{t € Rxo | J(a")o = k[Z1,- .., Zn)(@1,..2n) }

(when a is not contained in (z1,...,%Z,), we put lcto(a) = o00). The log
canonical threshold lcto(a) is a rational number.

The log canonical threshold plays a very important role in birational
geometry, and it has been related to various other points of view on singu-
larities.

Remark 3. (1) The log canonical threshold lcto(a) is related to the behavior of
symbolic powers of the ideal a. Assume for simplicity that a is a prime ideal



of height h > 1. Then, by an argument similar to that of Ein-Lazarsfeld-
Smith [2], one can prove the following: if lcto(a) > s for some integer s, then
for every integer r > 1,

a(hr—s) C a’.

(2) Budur-Mustata-Saito [1] proved that the log canonical threshold lcto(a)
coincides with the smallest root of the generalized Bernstein-Sato polynomial
bso(s), where f := (fi,..., fr) is a system of generators for a. The reader is
refereed to [1] for the definition of generalized Bernstein-Sato polynomials.

Since log canonical thresholds are defined via resolution of singularities,
it is difficult to compute them in general. When the ideal a is a monomial

ideal, there exists a combinatorial description of the multiplier ideal J(a*)
due to Howald [3].

Proposition 4 ([3]). Let a be a monomial ideal of k[z1,...,z,] and P(a) C

R? be the Newton polyhedron of a. Then for every real number t > 0,
J(@):=(z™ | m+1 € Int(t- P(a)) NN"),

where 1 := (1,...,1) € N*. In particular, if a = (z™,...,z™), then

lcto(a) = sup{t € Ry | 1 € ¢- P(a)}

= ma}({i)\, imi/\i <1, \€ on} .

i=1 =1

Motivated by Howald’s result, we will compute the log canonical threshold
lcto(a) by linear programming when a is a binomial ideal. We start with the
following lemma, which is proved using characteristic p methods such as F-
pure thresholds (see [6] for the definition of F-pure thresholds).

Lemma 5. Let k be a field of characteristic zero and a = (fi1,..., f) be an
ideal of k[z,...,x,] generated by binomials f; = z™ — vz, where a; =
(@i1, -+ @in), bi = (bi1, ..., bin) € Z%, \ {0} and v; € k* foralli=1,...,r.
We assume that the ideal a contains no monomials. Put

(au e QP bu . b.,.l\
_lawm o am b b
A= 1 O 1 O

\0

1)



and consider the following linear programming problem:

,
Maximize: Z(“" + ;)
i=1

SUbjeCt to: A (.ul)'- <y lry V1, - - ,VT)T < 1, Wi, Vi € QZO-

Suppose that there exists an optimal solution (u,v) such that A (u,v)T #
A (', V)T for all other optimal solutions (u',v') # (p,v). Then the log
canonical threshold lcto(a) is equal to the optimal value Y ;_, (u: + v4).

As a corollary of Lemma 5, we have the following theorem.

Theorem 6. Let a = (fi,...,fr) be an ideal of k[z1,...,z,] generated by
binomials f; = z™ — vz, where a;,b; € Z%; \ {0} and v; € k* for all
i=1,...,7. Suppose that the ideal a contains no monomials and, in addition,
that one of the following conditions is satisfied:

(1) fi,..., fr form a regular sequence for k[z1, ..., 5],

(2) fi,---,fr form a canonical system of generators of the defining ideal of
a monomial curve in A} (in this case, < 3).

Then the log canonical threshold Icto(a) is equal to

{0

i=1

T
Z(ai#i +bw) <1, pi+v <1, pi,v; € on}-

i=1

Proof. (1) If fi,..., f, form a regular sequence, then it is well-known that
the matrix A in Lemma 5 has full rank. In this case, the assumption in
Lemma. 5 is clearly satisfied. Thus, we obtain the assertion.

(2) The proof relies on a case-by-case argument, so we omit the proof. [

Example 7. (1) Let a = (23 — z523,22 — 7123, 7% — z}z,) be the defining
ideal of the monomial curve k[t3,¢4,t%] in A}. Then

(Ml,ﬂz,ﬂs,l’l,l’z, V3) = (1/9, 1/3,0, 1/3,2/3, 0)

is an optimal solution of the linear programming problem in Theorem
6. Thus, lcto(a) =1/9+1/3+0+1/3+2/3+0=13/9.



(2)

Let a = (2} — 2922, 74 — z3x3, 73 — 7,23) be the defining ideal of the

monomial curve k[t?,¢1°,¢!%] in A3. Then

(p’lall'%.u'& h, s, V3) = (5/24) O’ 07 1/27 07 1/6)

is an optimal solution of the linear programming problem in Theorem
6. Thus, lcto(a) =5/24+0+0+1/24+0+1/6 =7/8.

Let a = (23 — 22,22 — 2174, 22 — 7224) be the defining ideal of the
monomial curve k[t8, 10, ¢! ¢12] in A4. Then

(l‘l’l’ll’27,-l'3)yla V27V3) = (1/9) 1/3, 1/2a072/3a 1/3)

is an optimal solution of the linear programming problem in Theorem
6. Thus, Icto(a) =1/9+1/3+1/2+0+2/3+1/3 =35/18.

Let a = (2} — 2o73, 25 — 2324, 23 — 2125, 2] — 232fal, xiz§ — 2323) be
the defining ideal of the monomial curve k[t>3, %3, 18 ¢191] in A}. Then
a does not satisfy the assumption in Theorem 6, but we can still apply
Lemma 5 to this situation. It is easy to check that

(ulalJ‘Z, K3, 4, U5, V1, V2, V3, Vs, V5) = (1/5; 1/147 1/3) 0)07 1/21 01 Oa 010)

is an optimal solution of the linear programming problem in Lemma
5 and, in addtion, this solution satisfies the assumption in Lemma 5.
Thus, lcto(a) = 1/56+1/14+1/3+0+0+1/2+0+0+0+0 = 116/105.
By Remark 3 (1), we see that a® C a2, a® C a® and so on.

Question 8. Let a C k[zy,...,z,] be a binomial ideal which contains no
monomials and let fi,..., f. be a system of minimal binomial generators for
a. Then do fi,..., f, satisfy the assumption in Lemma 5? We don’t know
any counterexample for the moment.
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An algorithm for computing multiplier ideals

Takafumi Shibuta (Kyushu)

In this article, we give an algorithm for computing multiplier ideals using
Grobner bases in Weyl algebras.

Let X be the affine space C* with the coordinate system z = (z1,...,Zn)
and the coordinate ring C[z] = C[z1,...,%,]. Let a = (f1,---, fr) € Clz]
be an ideal. Suppose that 7 : X—>Xisa log resolution of a, that is, 7 is
a proper birational morphism, X is smooth and n~1V(a) = F is a divisor
with simple normal crossing support. Then the multiplier ideal of a with
exponent ¢ € Ry is defined by

() = J(e-8) = mOx(Kgx — [cF]) € Ox,

where Ky y is the relative canonical divisor of 7. Since multiplier ideals
are defined via log resolutions, it is difficult to compute them in general.
In this paper, we will give an algorithm for computing multiplier ideals us-
ing the theory of D-modules. Budur-Mustatd—Saito introduced generalized
Bernstein-Sato polynomials (or b-function) of arbitrary varieties in [2] and
proved relation between generalized Bernstein-Sato polynomials and multi-
plier ideals using the theory of the V-filtration of Kashiwara and Malgralge.
We modify the definition of Budur-Mustata—Saito’s Bernstein-Sato polyno-
mials to determine a system of generators of the multiplier ideals of a given
ideal.

Let Y = X x CT be the affine space C**" with the coordinate system
(z,t) = (T1,. .., Ty t1,.- -, tr). Then X = X x {0} =V (t1,...,t;) =C"isa
liner subspace of Y with the defining ideal Ix = (t1,...,t,). We denote by
0z = (0zy,---,0z,) and 8; = (8, ..., 0, ) the partial differential operators

O, = Biz.- and 9, = a%' We denote the rings of differential operators of X



and Y by

Dx = C(z,8,) =C(zy,...,%n,85,,...,0.),

Dy = C(z,t,0;,0:)) = C(z1,..., T, t1,- -, by, Osy .. ey 02,04y, ., 0).
We use the notation 2 = [T, i, t#2 = []7_, ¢, 8, = [~ og%,
and 6,"* = H;‘l=1 Bt'?j for p1 = (wa1,...,p1,), 11 = (l/ll,...,lll,,.) € 2%, and
p2 = (Ma1,---,H2n), V2 = (Va1,...,V2p) € Z%,. We define the decreasing
filtration V™ Dy called V-filtration of Dy along X x {0} as following:

VmDY = { Z a#lﬂzl'wzmmtwazmatuz I a#lﬂzvlvz € C}'

|p2|—|v2|>m

Definition 1. The V-filtration along X x {0} on a finitely generated left
Dy -module M is an ezhaustive decreasing filtration {VM}, such that:

(i) VM are finitely generated V°Dy-submodules of M.

(i) {VeM}q is indezed left-continuously and discretely by rational num-
bers, that is, VoM = Nu<a VM, and every interval contains only finitely
many a with GrVM # 0, and these a must be rational. Here GrS M :=
VM), VIM).

(iii) (V*Dy)(VeM) C VoHM for anyi € Z, a € Q.

(iv) (V*Dy)(VeM) = VetiM for any i > 0 if a > 0.

(v) the action of o + a is nilpotent on Grs M

Let ¢ : X — Y be the graph embedding z — (z, fi(z),..., fr(z)) of

= (f1,..., f+), and My = 1, C[z], where ¢, denotes the direct image for left

D-modules. There is a natural isomorphism M; 2 C[z]®cC[d,,,. . ., 8] (see

[1]), and the action of C[z] and &;,,...,8;, on M is given by the canonical
one, and the action of a vector field £ on X and ¢; are given by

£9®8”) = 9@~ (££;)9® 8,8,
J
ti(g®0") = fig®8" —vig® 8" Y.

where 1; is the element of Z" whose i-th component islifs=7and0
otherw1se



Definition 2. Let M be a Dy-module with the V -filtration. For u € M, the
Bernstein-Sato polynomial b,(s) of u is the monic minimal polynomial of the
action of o on V°Dyu/V!Dyu.

The existence of b,(s) is equivalent to the finiteness of the induced filtra-
tion V on (V°Dy)u/(V!Dy)u, and that follows from that of the properties
of V-filtrations in Definition 1.

Definition 3 ([2]). For g € Clz], we define bj4(s) to be bigy(s) the Bernstein
Sato polynomial of 1 @ g € My .

Theorem 4 ([2]). We will denote by V the filtration on Clz] = Clz] ® 1
induced by the V-filtration on 1,C[z]. Then J(a°) = V°*C|z] and V*C[z] =
J(a%7¢) for any @ € Q and 0 < € K 1. Therefore for a given rational number
c20,

J(@)={geClz] | c< if bsye(—c) =0}

In particular, the log canonical threshold lct(a) of a = (f1,...,fr) is the
minimal root of bg(—s).

To obtain an algorithm that gives the generators of multiplier ideals, we

modify the definition of Budur—Musta’gé—Satitc)fs Bernstein-Sato polynomial.
-_—(m

Weset 6 =1®1 € M; = 1,Clz] and M; ' = (V°Dy)3/(V™Dy)s. The
induced filtration V' on the _M(fm) is finite by the definition of the V-filtration
(Definition 1) as in the case of m = 1. For g € C[z], we denote by g ® 1 the

7™

image of g® 1 =gé in M, .

Definition 5. We define b;’f;)(s) to be the monic minimal polynomial of the
action of d on (V°Dy)g®1C M;m).

The existence of bgf";)(s) follows from the finiteness of the filtration V'

on M(fm) and the rationality of its roots follows from the rationality of the
V-filtration.

Theorem 6. For a given rational number ¢ < m + lct(a),

J(@) ={geCla] | c<¢ if B (=) =0}



In particular, the log canonical threshold lct(a) of a = (fy,...,f,) is the
minimal root of b(m)(-—s)

Lemma 7.

AnnD,,Hf = (; —f,|1<z<r)+(623+zazj (£:)8 | 1< j <n).

i=1

Theorem 8 (Algorithm for multiplier ideals). Let

It =t — fi | 1 <0 < 7) + (w10, +Zam,~(fi)5t,- 1< <d)+ (uup — 1)

1=1

be a left ideal of Dy[uy,us]. Then compute the following ideals;

1. If,l = IfﬂDy,

2. Jg(m) = Dy[s](Is1 + a™ + (s — o)) NCJaz,s].

Then the followings hold:

(i) b;";) (s) is the generator of (Js(m) : g) N C[s].

(ii) Let Jg(m) = NE_,q; be a primary decomposztzon of Jg(m). Then, for
1 <@ < £, there exists c(i) a root of b (—s) such that the generator of
q: N C[s] is some power of s + (i), and

{e@ 1 1<i<={c | bfP(~¢) =0}
(iii) For ¢ < lct(a) + m,

J@)= () &nCll.

ie{jle(s)<c}
The computations were made using Kan/sm1 [6] and Risa/Asir [4].

Example 9. Let a C C[z;, 22, z3] be the defining ideal of the space monomial
curve Spec C[T3,T*,T9] c C? with a system of generators f = (23 —zoz3, 22—
T1Z3,T2 — zlxg) Then

14 16 17 2 19 20

b1(5) = (6 3) s+ 3) (4 s+ Do+ D) (5426 + D) (54 D),



and

( Clz1, Z2, 73] 0<c< 3,

(1,22, T3) B<e<d,

J (@) = { (z%, 72, 73) ¥<e<k,
(2}, 2122, 7%,73) L <c<2
( a 2<c< %
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A simple proof of Nowicki’s conjecture on the kernel of
an elementary derivation

Shigeru Kuroda

1 Introduction

Let A[x] = Alz1,...,%n) be the polynomial ring in n variables over an integral domain
Aforn € N, and D an A-derivation of A[x], i.e., an A-linear map D : A[x] — Alx]
satisfying D(fg) = D(f)g + fD(g) for each f,g € A[x]. We say that D is elementary if
D(z;) belongs to A for each i. Then, the kernel ker D of D is an A-subalgebra of Alx]
containing

LP; := D(z;)z; — D(z:)z; for eachi,j € {l,...,n}.

In general, it is difficult to determine the structure of ker D. The problem of finite
generation of ker D is a special case of the Fourteenth Problem of Hilbert if A=kly] =
k[y1, .-, Ym] is a polynomial ring over a field k. In 1990, Roberts [13] gave a new coun-
terexample to the Fourteenth Problem of Hilbert by a construction different from that of
Nagata [11]. Roberts’ counterexample is obtained as the kernel of an elementary deriva-
tion (see [6] and [9] for generalizations of Roberts’ counterexample). On the other hand,
Weitzenbock’s theorem says that ker D is always finitely generated if k is of characteristic
zero and D is linear, i.e., each D(z;) is a linear form in y,...,Ym over k. We mention
that Kurano [7, Proposition 3.1] found a finite set of generators of ker D for a certain .
non-linear elementary derivation D (see also [2] and [4] for affirmative results).

Now, assume that k is of characteristic zero and m = n. Consider the elementary
derivation A of k[y][x] defined by

Alz) =y (E=1,...,n).

Weitzenbock’s theorem says that ker A is finitely generated, but it says nothing about the
finite set of generators. Nowicki [12, Conjecture 6.9.10] conjectured the following:
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Conjecture (Nowicki) The k[y]-algebra ker A is generated by LiAJ- = Y;T; — y;x; for
1<i<j<n.

Recently, Khoury [5] solved the conjecture in the affirmative by calculating a Grébner
basis for certain ideal. Khoury’s Grébner basis consists of several families of polynomials,
and he had to check many cases to show that all the S-polynomials are reduced to zero.

The aim of this article is to give a simple new proof of Nowicki’s conjecture by a
method similar to that used in the proof of Kurano (7, Proposition 3.1].

We remark that the result on the structure of ker A implies a more general result as
follows. For each A-domain B and an elementary A-derivation D of A[x], the B-derivation
Dp :=idp® D of B®4 A[x] = Blz,...,z,)] is elementary. Moreover, if B is flat over A,
then ker Dp = B ® ker D. Therefore, the result on ker A implies the following theorem.

Theorem 1 Let A be an integral domain containing a field k of characteristic zero, and
let D be an elementary A-derivation of A[x] such that A is flat over k[D(z1),. .., D(z,)]
and D(z:),...,D(z,) are algebraically independent over k. Then, ker D is generated by
L,%-forlﬁz’<j < n over A.

Actually, D induces an elementary R-derivation D’ of R[z1, ..., %), for which ker D =
A®gker D', where R = k[D(z1),...,D(z,)] ~ k[y].

We note that Khoury [5, Theorem 1.1] showed that ker D is generated by Lf’j for
1 <i < j < nover kly] for the k[y]-derivation D of k[y][x] defined by D(z;) = y¥ with
t; € Nfori=1,...,n. In this case, 4%,...,y! are algebraically independent over k, and
kly] is free over k[yf, ..., yl].

2 Idea of the proof

We only explain the idea of the proof in this report. The complete proof can be found in
[8], which will be published in Tokyo Journal of Mathematics.

First, we recall a useful lemma on initial algebras. Let A[T] be the polynomial ring in
a variable T' over a k-algebra A. For each f = aoT™ + a;T™ ! + --- + a,, € A[T]\ {0}
with ag # 0, we define ing f = aoT™. For a k-subalgebra B of A[T)], we define the initial
algebra ing B to be the k-subalgebra of A[T] generated by inr f for f € B\ {0}.

The following lemma is well-known.

Lemma 2 Ifiny B = kfinr g1,...,inrg,] for gi,...,9, € B, then B =k|gy, ..., g,].

The conjecture is proved by induction on n. The assertion is clear when n = 1. Assume
that n > 2, and let S; be the set of L; ; := zy;—zyjfor1 <i<j<lforeachl <l<n.
By the assumption on induction, it easily follows that

kly)[z1, ..., Za_1) Nker A = kly][Sn_1]. (1)

We claim that Lemma 2 and the following proposition imply that the k-algebra ker A
is generated by S :={y; |i=1,...,n} U S,, and therefore that the conjecture is true.



Proposition 3 The initial algebra in,, ker A is equal to k[y][Sn-1][t1Zn, - . ., Yn—1%n)].

In fact, k[y][Sn—1][t1Zn, - - - ; Yn—1Zn] is generated by in,, f for f € S, since in,, yi = ;i
fori =1,...,n,in,, L;j = L;j for 1 <i < j <n-—1,and in;, Lin = yiZs for 1 =
1,...,n—1.

To show Proposition 3, take any ® € ker A \ {0}, and write

® = ¢0x;’1n + ¢1x;n—l +---+ ¢>‘m (¢07 R a¢m S k[y][xh R ’x'n—l]v ¢0 # O):

where m is a nonnegative integer. Then, we get

0 = A(®) = A(¢o)z7 + moynzi ™ + A® — dozy),
deg, (Mmoynz™ ™ + A(® — pozyy)) <m — 1,

which imply A(¢o) = 0. Hence, ¢y belongs to k[y][Sn—1] by (1). Thus, we can express
b0 = > cant?oyer [ LY ¢)

a=(ay,...,an) 1<i<jsn—1

u = (Ui j)1<ici<n—1

where ¢,y € k for each a and u.
The following is a key lemma.

Lemma 4 In (2), we have Y7 a; > m for each a = (ay,...,an) with cau # 0.

We can deduce Proposition 3 from this lemma as follows. Assuming Lemma 4, there
exists 0 < a! < a; for i = 1,...,n — 1 such that E;:ll a; = m for each a with c, # 0.
Then, we can write

: _ m o _ a1—aj an_1—8y_; a] al _,,a Ui, j
myg, ¢ = ¢0.’En = E Ca,uly Tees Yn—1 " (yll'n) Lo (yn—lxﬂ) 1Y H Li,j :
a,u 1<i<j<n—-1

This proves that in,, ® belongs to k[y][Sn-1][¥1Zn, - - -, Yn-1Zn]. Thus, in;, ker A is con-
tained in k[y][Sn—1][¥1Zn, - - - , Yn—1Zn]. The reverse inclusion is obvious.

Lemma 4 is proved by a method similar to the method used in the proof of Kurano 7,
Proposition 3.1].

Note Drensky—Makar-Limanov [1] also gave a simple proof of Nowicki’s conjecture.
Very recently, Professor Mitsuyasu Hashimoto (Nagoya University) informed the author
that Goto-Hayasaka-Kurano-Nakamura [3, Theorem 3.2] and Miyazaki [10, Theorem 3.7]
also gave results which imply that Nowicki’s conjecture is true. Actually, ker A is equal to
the invariant subring for the Go-action on k[y][x] defined by y; + y; and z; — ; +ty; for
i=1,...,n for each t € G,. On the other hand, Goto-Hayasaka-Kurano-Nakamura and
Miyazaki determined sets of generators for certain invariant rings in which ker A appears.
The author would like to thank Professor Hashimoto for the information.
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ON SOME NUMERICAL INVARIANTS OF LOCAL RINGS
AND PROJECTIVE SCHEMES

GENNADY LYUBEZNIK

1. INTRODUCTION

Let (A, m, k) be a commutative Noetherian local ring containing a field.
Let ¢ : R — A be a surjection from a regular local ring R containing a field
and let I = ker¢. Let H:(R) denote the ith local cohomology module of R
with support in I. Let

i j(A) = dimg(Extiy(k, H} ~/(R)))

where n = dimR. These integers were introduced in our old paper [9] where
it has been shown that \;;(A) are finite and depend only on A, i.e. they
are independent of R and ¢.

The above definition of A; j(A) is valid only if A admits a surjection from
a regular local ring containing a field in which case it is not hard to show
that Ai;(A) = A j(A) where A is the completion of A with respect to m.
A complete local ring containing a field always admits a surjection from
a regular local ring containing a field. Hence even if A does not admit a
surjection from a regular local ring, one can set A;;(A) def i j (A). In this
way )i j(A) becomes defined for every local ring containing a field.

Some of the properties of these integers proven in our paper [9] are the
following:

o If \; j(A) # 0, then 0 < 4,5 < d where d = dimA.

®e \yq # 0. '

If A is regular, the integers \; j(A) are trivial in the sense that A; j(4) =1
and all other \; j(A) vanish [9]. Thus );;(A) are measures of the singularity
of A.

Part of the reason these integers are so interesting is that they are de-
fined algebraically yet exhibit some striking and mysterious connections to
topology. For example, if A is the local ring at an isolated singular point z
of a complex analytic variety X, then \; j(A) can be completely expressed
in terms of classical singular (not Zarisky!) topology of X around z [3].

2. THE INTEGER \gq4(A)

The "top” integer Ag4(A) has attracted special attention. In our original
paper [9] we asked if this integer is always equal to 1. Counterexamples in

NSF support is gratefully acknowledged.
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dimension d = 2 have been given independently by K.-I. Kawasaki [7] and
U. Walther [12]. Another important result of K.-I. Kawasaki on the way to
a complete understanding of Ay 4(A) says that if A is Cohen-Macaulay, then
Ada(A) =1 [8].

In our survey [10] we had stated a conjecture about what Ay 4(A) is equal
to in general. In addition to the above-mentioned results of Kawasaki and
Walther the conjecture was motivated by a result of Yanagawa [13, 3.16] on
Ad,d(A) in the case that A is a quotient of a regular local ring by a monomial
ideal. This conjecture has then been proven by us in characteristic p > 0 [11]
and later in general by our student W. Zhang in a beautiful and completely
characteristic-free paper [14].

The Hochster-Huneke graph I'p of a commutative Noetherian local ring
B is defined as follows. The vertices of I'g are the top-dimensional minimal
primes of B and two distinct vertices P and Q are joined by an edge if and
only if the height of the ideal P + Q equals 1. W. Zhang’s result [14] is the
following.

Theorem 2.1. Ay 4(A) equals the number of the connected components of

the Hochster-Huneke graph I'g where B = 71; is the completion of the strict
Henselization of A.

This theorem completely describes A\g4(A) in topological terms. This
underscores the tantalizing and mysterious connection between \; j(A4) and
topology.

In the case d = 2 this result was essentially proven by K.-I. Kawasaki [7]
and U. Walther [12]. W. Zhang’s proof for d > 2 proceeds by induction on d,
the case d = 2 being known. Namely, let a € A be an element outside all the
minimal primes of A and let A = A/aA. It is easy to see that B = B/aB is
the completion of the strict Henselization of A. The induction step basically
consists in proving two things, both of which are given short and beautiful
proofs in [14]: (i) Aga(A) = Ag-1,4-1(A4), and (ii) I'p and ' have the same
number of connected components.

The theorem is stated in terms of I'g rather than I'4 because the faithful
flatness of B over A implies that Ay 4(B) = Ag4(A) and because B has two
important properties that A need not have, namely, B is complete and has
a separably closed residue field. In general there may be several minimal
primes of B over every minimal prime of A and consequently I'4 may have
fewer connected components than I'g. In fact each of the two operations,
completing and separably closing the residue field, may increase the num-
ber of connected components of the Hochster-Huneke graph of the ring in
question. Equality between \g4(A) and the number of the connected com-
ponents of I'4 holds if A is complete and has a separably closed residue field,
but in general it need not hold.

3. THE PROJECTIVE CASE

In [10, p. 133] we asked the following question:
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Let Y be a projective scheme over a field k and let A be the local ring at
the vertex of the affine cone over Y in some embedding of Y into PL. Is it
true that X j(A) depends only on'Y,i and j, but not on the embedding?

A positive answer to this question would produce a new set of numerical
invariants of projective varieties.

In a beautiful and very recent preprint W. Zhang [16] gave a positive
answer to this question in the characteristic p > 0 case. We have no doubt
that the answer is positive in characteristic 0 as well, but this remains to be
proven.

In the rest of this note we sketch some of the ideas of W. Zhang’s proof.
We assume for the rest of this note that k is a field of characteristic p > 0.
Let Y C P} be a projective embedding of Y, let R be the homogeneous
coordinate ring of P} and let I C R be the defining ideal of Y. Let

Mid — Ext’é“"'(EthH—j (R/I,R), R).

This R-module is naturally graded and Mf’j , the degree-l piece of M%J, is a
finite-dimensional k-vector space for every . W. Zhang proved the following.

Theorem 3.1. Mf)’j (i.e. the degree zero piece of M™) is independent of
the embedding.

This is proven by showing that
Mg? = Ext; )} (Exts, (O, wy), wy)

where wy, = f!((')speck) is a dualising complex of Y (here f : Y — Speck
is the structure morphism of Y) and Ext denotes sheaf Ext (we use the
same notation as in [4]). Since the right-hand side does not involve any
embedding, the theorem follows. Both the statement and the proof of this
theorem are completely characteristic-free.

Next we recall the definition of the Frobenius morphism F from the cat-
egory of R-modules to itself. Let R’ be the additive group of R regarded as
an R-bimodule as follows. Left multiplication by elements of R is the usual
one while 7'r = rPr’ for all r € R and ' € R'. For an R-module M one sets

F(M)=R @M

F(¢ . M N N) - (RI ®RM r'®m—v_r’)®¢(z) Rl ®R N)

F(M) is viewed as an R-module via multipication by elements of R on the
left.

Since R is a regular ring, R’ is flat over R, hence the functor F is exact
[6]. Another elementary property of F is that F(R/I) = R/I Pl where I'P!
is the ideal generated by the p-th powers of the elements of I; in particular,
F(R) = R. Exactness of F implies that F' commutes with Ext}(—, R), i.e.
F(Ext,(M, R)) 2 Ext’y(F(M), R). All of this together implies that

F(M?) = ExtH—4(Ext~J(R/I, R), R).
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The natural surjection R/I Pl - R/Iis degree-preserving. Since the
functor Ext;’,‘{"l_’(Ext?'l—J (=, R), R) is covariant, this surjection induces a
degree preserving map of graded R-modules

¢: F(M™) = R @p Mb — M.
Identifying 1 ® g M*J with M*J we get an induced map f: MH — M
that satisfies the following properties: (i) f(rz) = rPf(z) for all r € R and
x € M*, and (ii) degf(z) = pdegz. In particular we get a map in degree
Z€ero N N
fo: Mg» — Mg’
satisfying f(cx) = cPf(z) for every c € k and every z € Mf,’j .

From now on we assume that the field k is separably closed, in which

case fo(Mg’) is a k-vector subspace of Mg’. This does not involve any

loss of generality for separably closing the field does not affect Aij(A). The
resulting descending chain of k-vector spaces

Mg? > fo(MG7) 2 f(Mg7) o ...
stabilizes because Mg’ is finite-dimensional. We denote this stable space
(Mg”)s. The next step in W. Zhang’s proof is the following.

Theorem 3.2. )\; ;(A4) = dimk(.Mf]’j )s-

Since Mf,’j is independent of the embedding and (M:,’j )s is a subspace

of My?, this theorem implies that there is an upper bound on \; j(A) over
all the projective embeddings of Y, i.e. the set of possible values of Aij(A),
for a fixed Y, is finite. This was the main result of W. Zhang’s earlier
preprint [15]. In his very recent preprint [16] W. Zhang has finally proved
the following

Theorem 3.3. The map fo : Mf,’j — M?;j is independent of the embedding.

Theorems 3.1, 3.2 and 3.3 immediately imply

Main Theorem. If the characteristic of the field k is p > 0, then Aij(A)
depends only on 'Y, and j but not on the embedding.
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Cohomology groups of semigroup rings
and toric varieties

Masanori Ishida, Tohoku University

1 Introduction

I will explain the relation between Yanagawa’s result on the local cohomologies of square-
free modules and Fujino’s cohomology vanishing theorems of differential modules on
projective toric varieties and toric polyhedra.

Let M ~ Z" (r > 0) and . C M be a finitely generated additive subsemigroup with
0 € .%. We assume & + (—) = M. For a field k of any characteristic, the semigroup
ring S = k[.#] is defined. We denote the k-basis of S by {e(m) ; m € &#}. This is
a k-subalgebra of the group ring k[M] with the basis {e(m) ; m € M }. For a subset
A C M, we denote by (A); the vector space with the basis {e(m) ; m € A}

We investigate this ring combinatorially by using the associated cone. Let Mg =
M ®z R ~ R and C(%) C Mg the closed convex cone generated by .. Then C()
is a rational polyhedral cone of dimension r. We denote by 7 the dual cone of C(”) in
the dual space Ng of Mg. The normalization of S is k[M N C(S )]. In particular, S is
normal if and only if & = M N C(#) (= M NnV). The definition of squarefree modules
on a normal S is given in the next section.

If C(.%) is strongly convex, i.e., if C(#)N(-C(¥)) = {0}, then the vector subspace
m = (&\ {0}) is the M-homogeneous maximal ideal of 5. If E is an M-graded S
module, then each local cohomology group H (E) is an M-graded S-module.

Theorem 1.1 (Yanagawa[Y]) Assume that & = C(%)NM and C(S) is strongly
convez. Let E be a finitely generated M-graded S-module. If E is squarefree, then each
local cohomology group Hi (E) is the Matlis dual of a squarefree module. In particular
Hi(E)Ym)=01ifm¢g -5

On the other hand, Fujino proved the following theorem by his method of multipli-
cation maps which is analogous to that of Frobenius morphisms.

Theorem 1.2 (Fujino[F1]) Let X be a projective toric variety, L an ample line
bundle, B a reduced torus invariant Weil divisor and i a nonnegative integer. Then

Hi(X,Q(log B)® L)=0

for all j > 0.



This theorem is generalized for the modules of differentials on a projective toric
polyhedron [F2]. Here toric polyhedron is a torus action invariant subvariety of a toric
variety defined by a squarefree ideal.

Yanagawa used the description of the local cohomology groups by Burns and Herzog
[BH] for the proof of his theorem. There is a similar description of the cohomology groups
of coherent sheaves on a projective toric variety (cf. [I3]). Then we can understand the
relation between these two theorems.

2 Squarefree modules

Let 7 be a strongly convex rational polyhedral cone of Ng. The set of faces of 7 is
denoted by F'(m). For each integer 0 < i < r, we set F(m)(i) = {0 € F(r) ; dimo = i}.
We denote by S, the normal semigroup ring k[M N 7V].

Let E' be an M-graded S,-module. For each m in M, we denote by E(m) the
homogeneous part of degree m. If m is in M and m' is in M N7V, the multiplication of
e(m) defines a k-linear map pg(m,m’) : E(m) — E(m + m’).

Definition 2.1 An M-graded S;-module F is said to be squarefree if the following
conditions are satisfied.
(1) E(m)=0ifm¢g Mnn".
(2) pe(m,m’) is an isomorphism if m € M N7V and 7 Nm* = m N (m + m')L.

Note that for an element m in M N7V, 0 = 1 N'm* is a face of 7 and m is in the
relative interior of the face 7¥ N ot of 7V. If m;, m, are in the relative interior of a
face of m¥, then m; + m; is also in the relative interior. Hence if F is squarefree, then
both E(m;) and E(my) are isomorphic to E(m; + my). This implies that there exists
a k-vector space E(o) for each o € F(m) such that E(m) is identified with E(c)e(m)
for all m in M Nrel.int(x¥ N o). If o and 7 are in F(r) and o < 7, then for m, m’
with m € M Nrel. int(7¥ N74) € M N7V Not and m’ € M Nrel. int(7V N ot), we have
m+m' € M Nrel.int(7¥ N o'). Hence the multiplication of e(m’) induces a k-linear
map fg(o/7): E(T) — E(0), which does not depend on the choice of m, m’. Namely, we
have a contravariant functor fg from F(m) to k-vector spaces defined by fr(o) = E(0).
Conversely, if a contravariant functor f from F(r) to k-vector spaces is given, then we
define a squarefree M-graded S;-module E; by

Ef= @ f(rnmbe(m).

meMnnV

The multiplication map e(m’) : Ef(m) — Ez(m + m/') for the above m, m’ is defined by

fla/7): f() — (o).
The following proposition is proved easily (cf. [Y]).

Proposition 2.2 Let E be a squarefree M-graded S,-module.

(1) E is finitely generated if and only if the dimension of E(0) is finite for every o in
F(r).



(2) E is a free Sy-module if and only if fe(o/™) is an isomorphism for every o in F(r).
In this case, E is isomorphic to Sy ® E().

(3) E is a quotient of a squarefree free S.-module if and only if fe(o/7) is surjective for
every o in F(r). In this case, E is a quotient of Sx ®k E().

(4) E is an Sy-submodule of a squarefree free S.-module if and only if fg(0/c) is injective
for every o in F(m). In this case, E is an Sy-submodule of Sx ®k E(0).

Example 2.3 We denote by kp(r) or simply k the constant functor defined by k(o) =
k. Then the squarefree module Ej, is equal to Sy. For a star closed subset ® of F(w), the
ideal I(®) = Nyea P(0) is a squarefree module which corresponds to the functor

0 ifoed
G(")z{ k ifoeFr)\®.

Here a subset ® of () is said to be star closed if 0 € ® ando <7 < T imply 7 € F(m).

Example 2.4 Let V be a k-vector space of finite dimension. Suppose that a subspace
A(7) C V is given for every v € F(m)(1). We define the functor A by

A= [1 AW

YEF(a)(1)

for every o € F(r). For 0,7 € F(m) with 0 < 7, the morphism A(o/T) is defined
to be the inclusion map A(t) — A(c). Then the squarefree module E4 is a reflective
submodule of S; @ V.

When chark = 0, the modules of differentials on an affine toric variety defined in
Danilov’s paper [D] belong to Example 2.4. Let V = My = M ®z k and Q(0) = M lo]k
for every ¢ in F(r) where M[o] = M No*. Then Eq is equal to Danilov’s sheaf Qk(")
of 1-forms on the affine toric variety X(m) = Spec Sy. More generally, for any p with
0 < p <1, the contravariant functor QP defined by Q7(0) = A? M(o]x defines a squarefree
module Eq, which is equal to Danilov’s sheaf Q‘;(") of p-forms on X ().

Let p be a face of 7. If m is an element of M with 7N m* = p, then the localization
S,[e(m)~] is equal to S, = k[M N p"].

Proposition 2.5 Let E be a squarefree M -graded Sy-module and p a face of w. Then
E, = E ®s, S, is a squarefree S,-modules. The corresponding contravariant functor fg,
from F(p) to k-vector spaces is equal to the restriction felF(p).

Let ¥ be a fan of Ng and Z = Z(X) the associated toric variety. For a T-equivariant
©z-module £ and for an element o in I, the Oz(X (0))-module £(X(0)) has M-grading
corresponding to the Ty-action. We call £ a squarefree sheaf if £ (X (o)) is a squarefree
S,-module for every o in X. A quasicoherent squarefree Oz-module € corresponds to a
contravariant functor from ¥ to k-vector spaces. We denote the functor by fe.

Let P C Mg be an integral convex polytope of dimension r. The set of cones

A(P)={(P-2) ;z € P}



is a projective fan of Ng, and the associated projective toric variety Z(P) has the
tautological line bundle Ozp)(1) such that

H®(Z(P), Ozp)(1)) = (M N P); .

Set M = M ®Z and let N be its dual Z-module. Denote by C(P) the closed convex
cone generated by P x {1} C MR = M ®z R and w the dual cone in Ng = N ®z R.
Then Z(P) = Proj S, for S,, = k[M 4 Nw"], where the degree of the monomial e((m, d)) is
defined to be d for every (m,d) in M = M & Z. There exists a natural bijection between
A(P) and F(w)\ {w}. Namely, if 0 = (P — z)V, the corresponding face & of w is defined
by wN(z,1)L. The projection Ng = Ng ®R — Ng induces bijection & — o for every o.
For a finitely generated graded S,-module E, we denote by £ the coherent O z(p)-module
E™. For the tautological ample line bundle Ozp)(1), we denote £(d) = £ ® Oz(P)(1)®d

For a contravariant functor f from A(P) to k-vector spaces, the functor f from F(w)
is defined by f(5) = f(o) for every o in A(P) while f(w) is defined to be the projective
limit of {f(0) ; o € A(P)}.

Proposﬂ;mn 2.6 Let & be a finitely generated squarefree Oz(py-module, and E the
squarefree M-graded S,,-module associated to the contravariant functor fg. Then € is
isomorphic to the associated sheaf E~.

For every o in A(P), there exists an exact sequence
0 — M[o] — M[g) — Z — 0,

which induces the exact squence

0 — AMlo] — AF[s] — A Mio] — 0 1)

for every integer 0 < p < r. Let F§ be the functor from A(P) to k-vector spaces defined
by Fp(o) = Q(5) for every o in A(P). If char k = 0, the sequence

0 — QP(c) — FB(6) — QP Y(0) — 0
induced by (1) is exact. Hence we get an exact squence
0 — Q3p) — Erp — (p) — 0
of squarefree modules on Z(P) for every integer 0 < p < r. Well-known exact sequence
0 — Qpbn — Opn(=1)®"* — Op. — 0

on a projective space is a special case. Here Opn(—1)®"*! can be understand as a
squarefree module @}, Oprdz; on P™ with respect to the homogeneous coordinates
[$0,$1, ce 7:1:11]'



A subset ® C F(w) is said to be locally star closed if 0,p € ® and o0 <7 < p imply
r € ®. For a locally star closed subset ® C F(w) and a contravariant functor G from
F(w) to an abelian category A, the complex C*(®,G) in A is defined as follow.

We define ®(i) = {0 € ® ; dimo = i} for every i € Z. We set

Ci@,0)= @ Glo)®Z(o)

o€d(r—i)

for every i, where Z(o)* is the dual of a free Z-module of rank one whose generators
are the orientations of o. Namely, Z(0)* = Ze: if we take an orientation e,. The
homomorphism di : C¥(®,G) — C**(®,G) is defind as follows. The component of di
for 7 € ®(r — i) and o € ®(r —i — 1) is G(o/7) ® ¢, where g3, is the isomorphism
Z(r)* — Z(0)* defined by the incidence of o and 7 if ¢ < 7 and the zero map otherwise.
Note that C¥(®, G) = 0 if ®(r — i) = 0. In particular, C*(®,G) =0 if ¢ ¢ [0,7].

For a finitely generated graded S-module E, the local cohomology group Hi(E)is
equal to that of the complex C*(F(w), E.) by [BH], where E, is the contravariant functor
defined by E.(0) = E ®s,, S,

We set F(w)' = F(w) \ {w}. For the cohomology groups of the coherent sheaf £ (@),
we get the following theorem.

Theorem 2.7 For any 0 < i <r, we have

dGBZH"(Z(P),g(d)) = H*(C*(F(w), E)) -

Since the cohomology groups of C*(F(w), E,) and C*(F(w)', E.) are equal in degree
greater than one, we get the following corollary.

Corollary 2.8 Hi(E) is a graded module. For any2 < i <7 +1 and d € Z, we

have
Hi(E)s= H(C*(F(w),E.))a = H(Z(P),£(d)) -

We also have the following.
Corollary 2.9 There ezists an ezact sequence of k-vector spaces
0 — HY(E)y — Eq — H°(Z(P),E(d)) — Hn(E)a — 0.

If E is a squarefree S,-module, then Hi(FE) is an M-gra,ded S,-module. Its m-
component is zero if m is outside M N (—w) by Yanagawa’s theorem. This implies the
vanishing of H*(Z(P), €(d)) for i > 0. This shows the relation of Yanagawa’s theory and
Fujino’s vanishing theorem of differential modules on projective toric varieties. We can
discuss the case of toric polyhedra similarly.
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1 Introduction

This report is a preliminary version, and a more detailed final version will
be published elsewhere.

Let A be a Z"-graded ring, I a prime ideal (resp. radical ideal, primary
ideal) of A, and I* the homogeneous ideal generated by the all homogeneous
elements of I. Then it is well-known that I* is again a prime ideal (resp.
radical ideal, primary ideal). In particular, if P is a prime ideal of A, then
the local ring Ap- makes sense. In particular, the following theorem makes
sense.

Theorem 1.1. Let M = Z", A be an M-graded noetherian ring, and P
a prime ideal of A. If Ap. is Cohen-Macaulay (resp. Gorenstein, complete
intersection, regular), then so is Ap.

This theorem was conjectured by Nagata [8] for the case that n =1 for
the Cohen-Macaulay property, and solved by Hochster-Ratliff [5], Matijevic—
Roberts [7], Matijevic [6], Aoyama-Goto [1], and Avramov—Achiles (2], affir-
matively.



If M is a finitely generated abelian group with torsion elements and A is
M-graded, then even if P is a prime ideal, P* may not be a prime. However,
a homogeneous ideal of the form P* has some special interest. For homoge-
neous ideals I and J, if IJ C P*, then either I C P* or J C P*. Our start
of this research is to consider a substitute of Ap- in this context.

More generally, let S be a scheme, G an S-group scheme, and X a noethe-
rian G-scheme, where a G-scheme means an S scheme on which G acts. We
assume that the second projection p, : G x X — X is flat of finite type. Un-
der these settings, we define a G-prime, G-primary, and G-radical G-ideals.
As we will see, these are natural generalization of prime, primary, and rad-
ical ideals, respectively. We study some important properties of G-stable
closed subschemes defined by G-primary ideals. Moreover, we generalize
Theorem 1.1. :

Utilizing this research, we can remove the assumption that G is smooth
with connected fibers from the talk of Ohtani [9] given at the 29th Symposium
on Commutative Algebra in Japan. This will be discussed elsewhere.

2 G-prime ideals

Let S, G, and X be as in the introduction.

Definition 2.1 (Mumford). A G-linearized Ox-module (an equivariant
(G,0x)-module) is a pair (M, ®) such that M is an Ox-module, and ® :
a*M — p3M is an isomorphism of Ogy x-modules such that

(B x1x)*®: (ux1x)*a*M — (u x 1x)*ptM
agrees with
(b x 1x)*a*M 5 (1g x a)*a*M 3 (1g x a)*piM
=« x P« = * ¥
= Pa3a" M = prapa M = (u X 1x)*'peM,

where py3 : G X G x X — G x X is the projection. In this case, we sometimes
say that M is a G-linearized Ox-module with ® its structure map.

Definition 2.2. A morphism ¢ : (M,®) — (N, ¥) of G-linearized Ox-
modules is a morphism ¢ : M — N such that ¥ o (a*p) = (p3p) o ®.

Thus we have a category of G-linearized Ox-modules in a natural way.



Definition 2.3. Let (M, ®) be a G-linearized Ox-module. We say that N/
is an equivariant (G, Ox)-submodule of M if N is an Ox-submodule of M,
and ®(a*N) = psN (note that a and p, are flat). If, moreover, M = Oy,
then we say that N is a G-ideal of Ox.

If NV is an equivariant (G,Ox)-submodule of M, then (N,®|y) is a
G-linearized Ox-module, and the inclusion N/ < M is a morphism of
G-linearized Ox-modules. Conversely, if ¢ : N/ — M is a morphism of
G-linearized Ox-modules, then the image of ¢ is an equivariant (G, Ox)-
submodule of M.

The following is [4, Corollary 12.8, Lemma 12.12].

Theorem 2.4. The category Qch(G, X) of quasi-coherent G-linearized Ox-
modules is a locally noetherian abelian category, and (M, ®) is a noetherian
object of Qch(G, X) if and only if M is coherent. The forgetful functor
Fx : Qch(G,X) — Qch(X) given by (M, ®) — M is faithful exact, and
admits a right adjoint.

(Quasi-) coherent G-linearized O x-modules are closed under various ring-
theoretic operations.

Lemma 2.5. Let M, N, L be in Qch(G, X), T be a G-ideal, and M,
M,, M3, and M), be quasi-coherent equivariant (G, Ox)-submodules of M.
Let £ and M3 be coherent. Then the following modules have structures
of quasi-coherent G-linearized Ox-modules: Tor X (M, N), Ext}, (£, M),
Hi(M) = limExty, (Ox/I", M), the Fitting ideal Fitt;(£), Mi N M,
Z,\ M,\, IMl, Ml : M3, and M1 : 7.

Let M be in Qch(G, X), and m be an Ox-submodule of M. The sum
of all quasi-coherent equivariant (G, Ox)-submodules of M contained in m
is denoted by m*. m* is the largest quasi-coherent equivariant (G, Ox)-
submodule of M contained in m.

Let Y = V(a) be a closed subscheme of X. Then Y* := V(a*) is the
smallest G-stable closed subscheme of X containing Y.

From now on, all ideals and G-ideals are required to be coherent. All
modules and G-linearized modules are required to be quasi-coherent.

Lemma 2.6. Let M be in Qch(G, X), m, n, and m, be Ox-submodules of
M, and N be a coherent equivariant (G, Ox)-submodule of M. Let Z be a
G-ideal of Ox. Then we have: 1) ([, m})* = (M, ma)*; 2) m*Nn* = (mNn)*;
) (m:N)=m*:N;4) (m:I)*=m*:T.



3 G-prime and G-radical G-ideals

Lemma 3.1. Let P be a G-ideal of Ox. Then the following are equivalent.

e There exists some ideal p of Ox such that p is prime (i.e., V(p) is
integral) and p* = P.

e P # Ox, and if 7 and J are G-ideals of Ox and ZJ C P, then T C P
or J CP.

Definition 3.2. If the equivalent conditions in the lemma are satisfied, we
say that P is a G-prime G-ideal.

Definition 3.3. Let T be a G-ideal of Ox. Then Vz(Z) denotes the set of
G-prime ideals containing Z. We set §/7 := (ﬂPeVG(I) P)*, and call ¥/7 the
G-radical of T.

Lemma 3.4. Let Z, J, and P be G-ideals of Ox. Then we have: 1) 7 C
VIC VI, YI=VI' 2)IZID>J, then VI > ¥T. 3) YIT =
VINT = YIN §T. 4) ¥ ¥Z = YZ. 5) If P is a G-prime, then
VP="P.

Lemma 3.5. Let 7 be a G-ideal of Ox. Then the following are equivalent.
1) T = V7T; 2) T is the intersection of finitely many G-prime G-ideals; 3)
There exists some ideal a of Ox such that a is radical (i.e., V'(a) is reduced),
and a* = T.

If the equivalent conditions in the lemma are satisfied, then we say that
7 is G-radical. A G-prime G-ideal is G-radical.

4 G—primary submodules

From now on, until the end of this report, let M be a coherent G-linearized
Ox-module, and N its coherent equivariant (G, Ox)-submodule.

Definition 4.1. We say that N is G-primary if N' # M, and for any
coherent equivariant (G, Ox)-submodule £ of M, either N : L = Ox or
N :Lc YN : M holds.

If N is G-primary, then P = VN : M is G-prime. In this case, we say
that N is P-G-primary.



Lemma 4.2. For a prime ideal p of Ox, p* is G-prime. For a radical ideal
a of Ox, a* is G-radical. If n is a p-primary Ox-submodule of M, then n*
is a p*-G-primary submodule of M. For a G-primary submodule N of M,
there exists some primary Ox-submodule n of M such that n* = N.

An expression

N=M;nNn---NM,

is called a G-primary decomposition if this equation holds, and each M; is
a G-primary submodule of M. We say that the decomposition is minimal if

N # ;. M; for any i, and § M, : M is distinct.
Proposition 4.3. A has a minimal G-primary decomposition.

Proof (sketch). Let
N=mn---Nm,

be a usual primary decomposition. Then
N=N*=mn---Nm)*=mjN---Nmy
is a G-primary decomposition. We can make it minimal, as usual. a
Theorem 4.4. The set
AssgM/N) = {§/M; M |i=1,...,1}
is independent of the choice of minimal G-primary decomposition
N=Mn---NM,,
and depends only on M/N.

We call an element of Assg(M/N) a G-associated G-prime. The set
of minimal elements of Assg(M/N) is denoted by Ming(M/N'), and its
element is called a G-minimal G-prime. An element of the set Assg(M/N)\
Ming(M/N) is called a G-embedded G-prime.

Theorem 4.5. Let
N=Mn---NM,

be a minimal G-primary decomposition and

Mi = m,;,l M- nmi,si



a minimal primary decomposition. Then

T
N = n(mhl ﬂ e n mi,Si)

=1
is a minimal primary decomposition.
Proposition 4.6. A G-primary submodule N of M does not have an em-
bedded prime. For each minimal prime p of M /N, we have p* = YN : M.

Corollary 4.7. We have

Ass(M/N) = [TAss(M/My)= J]  Ass(Ox/P)
i=1 PeAssg(M/N)
and
Assg(M/N) = {p" | p € Ass(M/N)}
Corollary 4.8. Ass(M/N) = Min(M/N) if and only if Assg(M/N) =
Mlng(M/N)

5 Smooth group schemes and Group schemes
with connected fibers

For some groups, the notion of G-prime G-ideal agrees with that of G-ideal
which is a prime ideal.

Lemma 5.1. Assume that G is S-smooth. If a is a radical ideal of Ox, then
a* is also radical. In particular, any G-radical G-ideal is radical.

Corollary 5.2. Assume that G is S-smooth. If 7 is a G-ideal of Oy, then
VI = ¥/Z. In particular, V7T is a G-radical G-ideal.

Lemma 5.3. Assume that G — S has connected fibers. If q is a primary
ideal of Ox, then q* is also primary. In particular, a G-primary G-ideal is
primary.

Corollary 5.4. Assume that G — S has connected fibers. If Z is a G-ideal,

then a minimal G-primary decomposition of Z is also a minimal primary
decomposition.

Corollary 5.5. Assume that G — S is smooth with connected fibers. If p
is a prime, then p* is also a prime. Any G-prime G-ideal is a prime. For a
G-ideal T of Ox, any associated prime of 7 is a G-prime G-ideal.



6 G-stable closed subschemes defined by G-
primary G-ideals

Theorem 6.1. Let 0 be G-primary in Ox. Then the dimension of the fiber
of po : G x X — X is constant.

Theorem 6.2. Let 0 be G-primary in Ox. If X has an affine open covering
(Spec A;) such that each A; is Hilbert, universally catenary, and for
any minimal prime P of A;, the heights of maximal ideals of A;/P
are the same (for example, X is of finite type over a field or Z). Then the
dimensions of the irreducible components of X are the same.

Remark 6.3. There is an example of G = X such that the dimensions of
the irreducible components are different. The bold face assumptions are
necessary. The bold face property is preserved by of-finite-type extensions.

The following is a generalization of Theorem 1.1.

Theorem 6.4. Let y € X and Y = §. Let n be the generic point of an
irreducible component of Y*. Then: 1) dimOx, > dimOx,. 2) If M,
is maximal Cohen—Macaulay (resp. of finite injective dimension, projective
dimension m, dim —depth = n, torsionless, reflexive, G-dimension g), then
so is M,.. 3) If Ox,, is a complete intersection, then so is Ox,. 4) If G
is smooth and Oy, is regular, then Oy, is regular. 5) Assume that G is
smooth and X is a locally excellent F,-scheme. If Oy, is weakly F-regular
(resp. F-regular, F-rational), then so is Ox 4.

Some special cases of Theorem 6.4 was proved by the author [3], and the
author and M. Ohtani (unpublished).
Consider the case S = SpecZ, G = G}, and X = Spec A is affine. Then

A is a Z™-graded ring.

Corollary 6.5. Let A be a locally excellent Z™-graded F,-algebra. Let P be
a prime ideal of A, and let P* be the prime ideal generated by homogeneous
elements of P. If Ap« is weakly F-regular (resp. F-regular, F-rational), then
so is Ap.

Corollary 6.6. Let Y be a G-stable closed subscheme of X defined by a
G-primary G-ideal. If n and ( are generic points of irreducible components
of Y, then dim Ox, = dim Ox.



X is said to be G-artinian if every G-prime of Oy is a G-minimal G-prime
of 0.

Corollary 6.7. A G-artinian G-scheme is Cohen-Macaulay.
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Goto numbers of parameter ideals

William Heinzer and Irena Swanson

Let (R, m) be a Noetherian local ring. The Goto number ¢(Q) of a parameter
ideal @ is defined as the largest integer g such that @ : m? is integral over ). By
G(R) we denote the set of all Goto integers in R.

This work started from the group work at the workshop “Integral closure, multi-
plier ideals, and cores”, at the American Institute of Mathematics (AIM) in Decem-
ber 2006. Shiro Goto presented the background, motivation, and some intriguing
open questions. A motivating result for the group work at AIM was:

Theorem 1. (Corso, Huneke, Vasconcelos (2], Corso, Polini [3], Corso, Polini, Vas-
concelos [4], Goto [5]) Let (R, m) be a Cohen-Macaulay local Ting of positive dimen-
sion. Let Q be a parameter ideal in R and let I = @ : m. Then the following are
equivalent:

1. I’ #QI.
2. The integral closure of @ is Q.

3. R is a regular local ring and pu(m/Q) < 1.

Consequently, if (R, m) is a Cohen-Macaulay local ring that is not regular, then
I? = QI. If dim R > 1, it follows that the Rees algebra R[It] is a Cohen-Macaulay
ring, and even without the assumption that dim R > 1, the fact that 12 = QI
implies that the associated graded ring gr;(R) = R[It]/IR[It] and the fiber ring
R[It]/mR][It] are both Cohen-Macaulay.

Goto and Sakurai [8, 9] explored the Buchsbaumness properties of the associated
rings of I = @ : m if (R, m) is a Buchsbaum local ring. Namely, if I> = QI, then by
Yamagishi (12, 13] and by Goto-Nishida [7], the Rees algebra, the associated graded
ring, and the fiber ring of I are all Buchsbaum rings with certain specific graded
local cohomology modules. Goto and Sakurai proved many instances of when this
is the case. Namely, they proved that the equality I? = QI holds if e(R) = 2
and the depth of R is positive, giving many specific conditions for sufficiency of
the Buchsbaumness of the associated graded, fiber, and Rees rings. They proved
more generally for Buchsbaum rings of dimension at least 2 that I? = QI holds for
infinitely many parameter ideals Q).

In [6], Goto, Matsuoka, and Takahashi explored the Cohen-Macaulayness of
the associated graded and fiber rings and of Rees algebras for quasi-socle ideals
I = Q : m®. They proved that if (R,m) is a Gorenstein local ring of positive




dimension and multiplicity at least 3, then m2I = m2Q and I3 = QI?, the associated
graded ring and the fiber ring of I are both Cohen-Macaulay rings, and the Rees
algebra of I is Cohen-Macaulay if dim R > 3. They also showed that wild behavior
can occur in general. For example, if R is the numerical semigroup ring k[[t4,¢7,1%]],
where k is a field and ¢ an indeterminate over k, then R is a one-dimensional non-
Gorenstein Cohen—-Macaulay local ring such that with @ = (¢°), the associated
graded ring of I = @ : m? is Cohen—Macaulay if and only if s = 4,8,9, and it is
Buchsbaum ring if and only if s # 7. The fiber ring is always Buchsbaum and it is
Cohen-Macaulay if and only if s = 4, 9.

In all examples above, @ : m and @ : m? are integral over ). This paper is about
understanding the largest g such that @ : m9 is integral over (), namely about the
Goto number of Q).

Even the Goto numbers in regular rings have interesting behavior: If R is one-
dimensional, g(Q) = 0 for all @; if R is two-dimensional, g(Q) equals the order of Q
minus 1 [10, Theorem 2.2]; but in higher-dimensional regular rings, g(Q) can be
arbitrarily larger than the order of Q. In fact, g((z$,23,...,2%)) = (d—2)(n—1) +

e—1,if z1,..., x4 is a regular system of parameters, and e < n are positive integers.
More general results have been proved recently by Goto, Kimura, Matsuoka, and
Phuong.

We study in detail the behavior of Goto numbers in non-regular one-dimensional
Noetherian domains.

The following fact about parameter ideals in general makes it easier to study
parameter ideals in one-dimensional Noetherian domains (not necessarily regular):
If Q; and @2 are ideals such that @), is not contained in any minimal prime, and if
e is a positive integer such that ¢); : m® is not integral over ()1, then @, : m¢, is
not integral over @1Q2. Thus in dimension 1, if @)1, @, are parameter ideals, then
9(Q1Q2) < min{g(Q1),9(Q2)}. A consequence is that in dimension 1, there exists
a positive integer n such that all parameter ideals contained in m™ have the same
Goto number, and this number is the minimal possible Goto number. Namely, the
set of all Goto numbers is a non-empty subset of non-negative integers. This set
has a minimum, which means that there exists a parameter ideal @) in R such that
for all parameter ideals @, g(Qo) < g(Q). Let n be a positive integer such that
m”™ C (. Then for all parameter ideals @ in m™, @ C Qo, and so by the previous

part, g(®@) < 9(Qo) < g(Q), whence equality holds.
A more specific lower bound for Goto numbers is given by the following theorem:

Theorem 2. [10, Theorem 3.4] Let (R,m) be a one-dimensional Noetherian local
reduced ring such that R is module-finite over R. Let C = R :r R be the conductor
of Rin R, and let € m and y € C generate parameter ideals. Then for each
positive integer n, the Goto number g(z™y) = g(zy). Thus for all parameter ideals
Q = qR C zC = zC, we have g(Q) = g(xy). Furthermore, this is the minimal
possible Goto number of a parameter ideal in R.

Goto numbers are one measure of the size of the integral closure of a parameter
ideal. This size is perhaps more aptly measured by ¢(Q)/Q). The following theorem




describes when the set of all such lengths is bounded:

Theorem 3. [10, Theorem 3.5] Let (R, m) be a one-dimensional Noetherian local
ring with m-adic completion R. Then the set {€r(Q/Q) | Q is a parameter ideal of R}

is finite if and only if £5(V OE) is finite.

The conditions in the theorem above imply that G(R) is finite, and we suspect
that the converse holds as well. The famous example by Nagata, of a Noetherian
local domain of dimension 1 whose integral closure has nilpotents (and since it is

Cohen-Macaulay, V OR does not have finite length), is as follows: Let A = kP[[X]][],
where k is a field of characteristic p > 0 such that [k : k?] = oo, and let

AlY]
(Y? = 3 s B0X7P)

R =

where {b;}$2, are elements of k that are p-independent over kP. Here the set G(R)
of Goto numbers of parameter ideals of R is infinite. It suffices to prove that the
completion R of R has this property. But R is isomorphic to S = k[[X, Z]]/(Z?).
We prove below that under these conditions, G(R) is infinite.

Theorem 4. [10, Theorem 3.8] Let (R,m) be a one-dimensional Noetherian local
ring. If there exists a nonzero principal ideal yR such that R/yR is one-dimensional
and Cohen-Macaulay and (0) : y is contained in the nilradical, then the set G(R) is
infinite.

Proof The assumption that R/yR is one-dimensional and Cohen-Macaulay implies
that each P € AssR/yR is a minimal prime of R. Let

zem)\ U P.

PeAssR/yR

If R has minimal primes other than those in AssR/yR, choose z also to be in each
of these other minimal primes of R. For each positive integer n, let @, := (y+z™)R.
Notice that @, is a parameter ideal of R. Checking integral closure modulo minimal
primes, we see that (y,2")R +n C @Q,, where n is the nilradical of R. We prove
that (@) > n. Let 7 € (Qn : m*). Then r € (@, : z"), so rz" = a(y + z"),
for some @ € R. Hence (r —a)z" = ay, so r — a € (yR : z"). Since z" is regular
on R/yR, we have r — a = by, for some b € R. It follows that z"by = ay, so
(z"b—a)y = 0 and z"b—a € (0) : y C n. Therefore a = 2"b+c, where c € n. Hence
r = ba" + by + c € Q,. We conclude that g(Q,) > n, and therefore that G(R) is
infinite.

In particular, if (R, m) is a one-dimensional Cohen-Macaulay local ring such that
m is minimally 2-generated, then G(R) is finite if and only if the m-adic completion
Rof Ris reduced, and this holds if and only if R is module-finite over R.

A possibly more general case of when the set of Goto numbers is finite is given
by [10, Proposition 3.11]:



Proposition 1. Let (R, m) be a one-dimensional Noetherian local ring, and let z,y
be elements of R such that for all n, y + 2" is a parameter. Assume that for all n,

(y): 2™ C (y+2") and (2") : y C (y +z"). Then G(R) is infinite.

It is likely that G(R) being finite is equivalent to R being module-finite over
R in general (for one-dimensional Noetherian local domains R). In search of a
counterexample, we tried to modify Nagata’s example, always either confirming the
suspicion of equivalence, or producing rings in which it is too hard to compute Goto
numbers or the integral closure.

More is known about Goto numbers in numerical semigroup rings. Such rings
have module-finite integral closure, thus the set of Goto numbers is a finite set. In
the sequel, S denotes a numerical semigroup, minimally generated by a,,...,aq,
with a; < -+ < a4. The Frobenius number of S is the largest integer f that is not
contained in S. The corresponding numerical semigroup ring is R = k[[t* : s € S]].

Theorem 5. [10, Theorem 4.1] Let R be the numerical semigroup ring. Then
g(t™*1*1) = min{g(Q) | Q is a parameter ideal of R}.

Moreover, for all e > f + a; + 1, we have g(t) = g(t/Ta+1).

The lower bound for e given in theorem above is sharp: if G = (9,19), then
f=143,a: =9, f+a;+1 =153, and g(z'5?) = 9 > min{g(z%) :i=1,...,d} = 8.

For parameter ideals (t*), the following are upper bounds on their Goto numbers
(10, Propositions 5.1, 5.3]: g(t*) < [*LZZ‘J“—I] —1, and for j > 1, g(t%) < [ﬁ%l_—blj,
where b; is the largest integer in S that is strictly smaller than a;.

Below is a small list of computed Goto numbers for a few numerical semigroups.
The generators of the semigroups are in the first column, column 2 contains the
expected bounds from the previous paragraph for g(¢%), column 3 contains the
Goto numbers g(t*), column 4 contains the Frobenius number f of the semigroup,
and the last column lists all elements of S that are smaller than f:

generators [fi‘%ﬂl -1, g(z™), f seS0<s<f
of G [—-"—HJ

3.4,5 1,1,1 1,1,1 2

3,5,7 1,2,1 1,2,1 4 3

3,7,8 1,2,2 1,2,2 5 3

3,7,11 1,3,3 1,3,2 8 3,67

3,8,10 1,3,2 1,3,2 7 3,6

3,8,13 1,4,3 1,4,2 10 3,6,8,9
3,10,11 1,3,3 1,3,3 8 3,6

3,10,14 1,4,4 1,4,3 11 3,6,9,10
3,10,17 1,5,5 1,5,3 14 3,6,9, 10,12, 13



3,11,13
3,11, 16
3,11,19

4,5,6

4,5,7
4,5,11

4,6,7

4,6,9
4,6,11
4,6,13

4,7,9
4,7,10
4,7,13
4,7,17
4,9,10
4,9,11
4,9,14
4,9,15
4,9,19
4,10,11
4,10,13
4,10,15
4,10,17

5,6,7
5,6,8
5,6,9
5,6,13
5,6, 14
5,6,19
5,7,8
5,7,9
5,7,11
5,7,13
5,8,9
5,8,11
511,14
6,7,8
6,7,9
6,7,10
6,7,11

1,4,3
1,5,4
1,6,5
2,2,2
2,1,2
2,2,2
2,2,2
2,3,3
2,3,3
3,4,4
2,3,2
2,4,3
2,3,2
2,4,3
2,4,4
2,3,4
2,5,5
2,3,4
2,4,4
2,4,4
2,5,5
2,5,5
2,6,6

2,2,2
2,2,2
3,2,3
3,3,3
3,2,3
3,3,3
2,2,2
2,3,3
2,3,2
3,3,3
2,3,2
2,4,3
2,4,5
3,3,3
3,3,3
3,2,3
3,2,3

1,4,3
1,5,3
1,6,3
2,2,2
2,1,2
2,2,2
2,2,2
2,2,3
2,2,3
2,2,4
2,2,2
2,4,3
2,3,2
2,4,2
2,4,3
2,2,3
2,5,4
2,3,3
2,4,3
2,3,3
2,3,4
2,3,4
2,3,5

2,2,2
2,2,2
3,2,3
2,3,3
3,2,3
3,3,3
2,2,2
2,3,3
2,3,2
3,2,3
2,3,2
2,43
2,3,3
3,3,3
3,3,3
3,2,3
3,2,3

3,6,9

3,6,9,11, 12
3,6,9,11, 12, 14, 15

4,56

4,5

4,5

4,6,7,8

4,6,8,9,10
4,6,8, 10, 11, 12

4, 6,8, 10, 12, 13, 14
4,7,8,9

4,7,8,10, 11, 12

4,7,8

4,7,8,11, 12

4,8,9, 10,12, 13, 14

4,8,9, 11,12, 13
4,8,9,12, 13, 14, 16, 17, 18
4,89, 12, 13

4,8,9,12, 13

4,8, 10,11, 12, 14, 15, 16
4,8, 10, 12, 13, 14, 16, 17, 18
4,8, 10, 12, 14, 15, 16, 18, 19, 20
4,8, 10, 12, 14, 16, 17, 18, 20, 21,
22 '
5,6,7

5,6, 8

5, 6,9, 10, 11, 12

5, 6, 10, 11, 12, 13

5, 6, 10, 11, 12

5, 6, 10, 11, 12

5,7, 8,10

5,7, 9,10, 12

5,7, 10, 11, 12

5,7, 10, 12, 13, 14, 15
5,8,9,10

5,8, 10, 11, 13, 15, 16

5, 10, 11, 14, 15, 16, 19, 20, 21, 22
6,7, 8,12, 13, 14, 15, 16
6,7,9,12, 13, 14, 15, 16
6,7, 10, 12, 13, 14

6,7, 11,12, 13, 14



6,10,15
7,8,9
7,8,10
7,8,11
7,9,10
7,9,11
7,9,12

7,9,13
7,9,15

7,9,17
7,9,19
7,9,20
7,9,22
7,9,24
7,9,26
7,9,29
7,9,31
7,9,33
7,10,11

7,10, 12
7,10,13

7,10, 15
7,10, 16

7,10, 18

3,5,5
3,3,3
3,2,3
3,3,3
3,3,3
3,44
4,4,4

3,3,4
3,4,3

4,4,4
4,4,4
4,55
4,54
4,4,4
5,5,5
5,6,5
4,5,4
5,5,5
3,4,3

3,4,3
3,5,5

4,5,4
3,4,4

4,5,4

3,4,4
3,3,3
3,2,3
3,3,3
3,3,3
3,4,4
4,3,4

3,3,4
3,4,3

4,34
4,3,4
3,5,5
3,5,4
4,4,4
5,3,5
3,6,5
4,54
5,4,5
3,3,3

3,4,3
3,55

4,4,4
3,4,4

4,34

29
20
19
20

22
26

29

24
26

29
31
33
33

29

38
40
33
38

26

25
32

33
29

33

6, 10, 12, 15, 16, 18, 20, 21, 22, 24,
25, 26, 27, 28

7, 8,9, 14, 15, 16, 17, 18

7,8, 10, 14, 15, 16, 17, 18

7,8, 11, 14, 15, 16, 18, 19

7,9, 10, 14, 16, 17, 18, 19, 20, 21
7,9, 11, 14, 16, 18, 20, 21, 22, 23,
25

7,9, 12, 14, 16, 18, 19, 21, 23, 24,
25, 26, 27, 28

7,9, 13, 14, 16, 18, 20, 21, 22, 23
7,9, 14, 15, 16, 18, 21, 22, 23, 24,
25

7,9, 14, 16, 17, 18, 21, 23, 24, 25,
26, 27, 28

7,9, 14, 16, 18, 19, 21, 23, 25, 26,
27, 28, 30

7,9, 14, 16, 18, 20, 21, 23, 25, 27,
28, 29, 30, 32

7,9, 14, 16, 18, 21, 22, 23, 25, 27,
28, 29, 30, 31, 32

7,9, 14, 16, 18, 21, 23, 24, 25, 27
28

7,9, 14, 16, 18, 21, 23, 25, 26, 27,
28, 30, 32, 33, 34, 35, 36, 37

7,9, 14, 16, 18, 21, 23, 25, 27, 28,
29, 30, 32, 34, 35, 36, 37, 38, 39
7,9, 14, 16, 18, 21, 23, 25, 27, 28,
30, 31, 32

7,9, 14, 16, 18, 21, 23, 25, 27, 28,
30, 32, 33, 34, 35, 36, 37

7,10, 11, 14, 17, 18, 20, 21, 22, 24,
25

7, 10, 12, 14, 17, 19, 20, 21, 22, 24
7,10, 13, 14, 17, 20, 21, 23, 24, 26,
27, 28, 30, 31

7,10, 14, 15, 17, 20, 21, 22, 24, 25,
27, 28, 29, 30, 31, 32

7,10, 14, 16, 17, 20, 21, 23, 24, 26,
27, 28

7,10, 14, 17, 18, 20, 21, 24, 25, 27,
28, 30, 31, 32



7,10, 19 3,5,4 3,54 32 710,14, 17,19, 20, 21, 24, 26, 27,
28, 29, 30, 31

8,9, 30 5,4,5 545 37 8,9 16,17, 18, 24, 25, 26, 27, 30,
32, 33, 34, 35, 36

8,9,39 6,5,6 6,46 46 8,9, 16,17, 18, 24, 25, 26, 27, 32,
33, 34, 35, 36, 39, 40, 41, 42, 43,
44, 45

9,10,13 4,3,4 4,34 34 9, 10,13, 18,19, 20, 22, 23, 26, 27,
28, 29, 30, 31, 32, 33

9,19,21 4,8,8 48,6 71 9, 18,1921, 27,28, 30, 36, 37, 38,
39, 40, 42, 45, 46, 47, 48, 49, 51,
54, 55, 56, 57, 58, 59, 60, 61, 63,
64, 65, 66, 67, 68, 69, 70

46911 1,222 1,1,21 7 4,6
4,6,11,13  2,2,2,2 1,1,2,1 9 4,6,8
46,13,15  2,3,3,3 1,1,3,1 11 4,6,8,10
47910 1,2,1,1 1,2,1,1 6 4
47,10,13  1,3,2,2 1,3,2,1 9 4,7,8
4,9,10,11  1,2,2,2  1,2,2,2 7 4
4,9,10,15  1,3,3,3  1,3,2,2 11 4,8,9,10
4,9,11,14  1,2,3,2  1,2,2,2 10 4,8,9
4,914,15 1,3,3,3  1,3,3,2 11 4,8,9
4,10,11,13  1,2,2,2  1,2,2,2 9 4,8
4,10,11,17  1,3,3,3  1,2,2,2 13 4,8,10,11,12
4,10,13,15  1,3,3,3  1,2,3,2 11 4,810
514,16,21  2,6,55  24,3,2 27 5,10, 14,15, 16, 19, 20, 21, 24, 25,
26

7,9,19,20 4,4,4.4 3,3,4,3 31 7,9, 14, 16, 18, 19, 20, 21, 23, 25,
26, 27, 28, 29, 30
7,9,19,22 3,3,3,3 3,2,3,3 24 7,9,14,16, 18,19, 21, 22, 23
7,10,12,13 2,3,2,2 2,3,2,2 18 7,10,12, 13, 14,17
7,10,12,13,16  2,3,2,2,2  2,3,2,2,2 18 7,10, 12, 13, 14, 16, 17
7,10,12,16 3,4,3,3 3,4,3,3 25 7,10,12, 14, 16, 17, 19, 20, 21, 22,
23, 24
Observe that it need not be that the maximum of the values in the second column
in the previous table is the same as the maximum of the values in the third column.
See R = k[[z%,z7,2%): in this case, the associated graded ring of R is even Cohen-
Macaulay, so the failure of the Cohen-Macaulay property is not a reason for this
phenomenon.
For two-generated numerical semigroups, Goto numbers are more predictable:
g(tfra+l) = g(t®) = a; — 1 < g(t*?) = a3 — 1 — | 2=*] [10, Theorems 5.5 and 5.10].
The minimum possibly Goto number has many other characterizations:



Proposition 2. [10, Proposition 5.6] Let t be the mazimum wnteger such that for
alla€{1,2,...,a1}, m* Zt*R (R-module containment). Then t = g(t/+a1+1),

Proposition 3. [10, Proposition 5.7] For each o € {1,...,a,}, find elements 8 € S
such that 8 —a & S. Among all such B3, fir one for which t° has the largest m-adic
order. As o varies, let t' be the smallest of these orders. Then t' = g(tf tartl),

The following characterization is due to Bryant [1]:

Proposition 4. [1, Proposition 2.11] The minimum Goto number among all Goto
numbers of parameter ideals in a numerical semigroup ring k[[t, ... t%]] with a; <
az < -+ < aq, is min{g(t®), g(t/+*1)}.

Bryant [1] further studied under what semigroup conditions the associated graded
ring of m is Cohen—Macaulay or Gorenstein.

The maximum possible Goto number of any parameter ideal in a numerical
semigroup ring is at most [ ;&], as proved by Bryant (and appears in [10, Theorem
4.7]). However, it is a much harder problem to understand this issue. For one thing,
for any parameter ideal of the form (¢° + higher order terms), its Goto number is
at least g(¢°), and strict inequality can happen .in many cases. For example, if
S = (5,11), then f = 39, and g(t*°) = 4 < g(t! + ) = 5 = g(t*). Note
that ¢*° and #%° 4% are in the conductor C of R. An example that plays out
 differently is with S = (5,6,9), where g(t%) = 2, g(t°) = 3, but g(t® + ) = 2 (since
(t° +tM)m3 C (¢ + ¢9)).

Another paper of interest is Shen’s [11].
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THE STRUCTURE OF SALLY MODULES OF RANK ONE
— THE BUCHSBAUM CASE -

SHIRO GOTO AND KAZUHO OZEKI

1. INTRODUCTION

Throughout this paper let A denote a Noetherian local ring with the maximal ideal
m and d = dim A > 0. Let I be an m-primary ideal in A and suppose that our ideal I
contains a parameter ideal @ = (a;,as,- - ,aq4) of A as a reduction, that is Q@ C I and
the equality I™*! = QI™ holds true for some (and hence for any) integer n > 0. Let
£4(M) denote, for an A-module M, the length of M. We then have integers {e;(I)}o<i<d
such that the equality

eaar ) = eod)(" 4 7) e (M5 L) (0t

holds true for all integers n > 0, which we call the Hilbert coefficients of A with respect
to I. Let
R=TR():=A[lt] and T =7R(Q):= A[Qt] C At]
denote, respectively, the Rees algebras of I and @, where ¢ stands for an indeterminate
over A. Let
R =R/(I):= Allt,t™] and G=G(I):=R/tT'R 2@ I/I""

n>0

Following Vasconcelos [16], we then define

S =So(I) = IR/IT = P I /Q"I
n>1
and call it the Sally module of I with respect to Q. Here we notice that S is a finitely
generated graded T-module and m*-S = (0) for some integer £ >> 0, since R is a module
finite extension of the graded ring T and m = /I, so that dimr Sg(I) < d.

In [16] Vasconcelos gave an elegant review, in terms of his Sally module, of the works
[11, 12, 13] of Judith Sally about the structure of m-primary ideals I with interaction
to the structure of the graded rings G and the Hilbert coefficients e;(I)’s of I. Let us
recall a part of his work.

As is well-known, in the case where A is a Cohen-Macaulay local ring, we have the
inequality

e1(1) > eo(I) — La(A/I)
([9]), and Craig Huneke (7] showed that the equality e, (1) = eo(I) —£a(A/I) holds true
if and only if 1?2 = QI. When this is the case, the associated graded ring G = G(I)
and the fiber cone F(I) = @,,, I"/mI™ of I are both Cohen-Macaulay, and the Rees



algebra R of I is also a Cohen-Macaulay ring, provided d > 2. Thus, the ideals I with
e1(I) = eo(I) — £a(A/I) enjoy very nice properties.

Sally [13] firstly investigated the second border, that is the ideals I satisfying the
equality

el(I) = eo(I) b fA(A/I) +1
and gave several important results. Among them, one finds the characterization of
ideals I with e;(I) = eo(I) — £a(A/I)+ 1 and ey(I) # 0.

She says, however, nothing about the case where e;(I) = 0 and it seems natural to ask
what happens, when e;(I) = 0, on the ideals I which satisfy the equality e (I) = eo(I)—
£4(A/I) + 1. This long standing question has motivated the researches [3, 4], where
the authors and Koji Nishida gave the following structure theorem of Sally modules of
m-primary ideals I with e,(I) = eo(I) — £4(A/I) + 1. To state it, let

B=T/oT 2k[X;, X3, Xd,

which is the polynomial ring with d indeterminates over the residue class field k = A/m
of A.

Theorem 1.1 ([4, Theorem 1.2]). Suppose that (A, m) is a Cohen-Macaulay local ring.
Then the following three conditions are equivalent to each other.
(1) ex(I) = eo(I) — L4(A/I) + 1.
(2) m:S = (0) and rankg S = 1.
(3) S = (X1,X2,---,Xc)B as graded T-modules for some 0 < ¢ < d, where
{Xi}ti<i<c are linearly independent linear forms of the polynomial ring B.

When this is the case, ¢ = £4(I?/QI) and I3 = QI?, and the following assertions hold
true.

(i) depthG > d — ¢ and depthp S =d —c+ 1.
(ii) depthG =d —c, if ¢ > 2.
(iii) Suppose ¢ < d. Then
ntly _ n+d\ n+d-1 n+d—(c+1)
war) =an (") —am (") + (TrE 6T
for alln > 0. Hence
O 0 ifiF#c+],
et(I)_{ (_1)c+1 fi=c+1

for2<i<d.
(iv) Suppose c =d. Then

a3 )n(* 117

for alln > 1. Hence e;(I) =0 for2 <1 <d.

In the case where (A4, m) is a Buchsbaum local ring, Alberto Corso [1] also investigated
the Sally module Sg(m) of the maximal ideal m and gave several inspiring results about
the dimension of Sg(m) together with an important description of the Hilbert function



of m in terms of the Sally module Sg(m). These results of [1, 3, 4] are, however, only
known ones about the structure of Sally modules.

The present research aims, being inspired by Corso [1], at a systematic approach
towards further developments of the theory of Sally modules Sq(I) of m-primary ideals
I in not-necessarily Cohen-Macaulay local rings (A, m), in order to answer the natural
questions of what is a possible equality corresponding to the equality

el(I) = eo(I) —EA(A/I) +1

in the Cohen-Macaulay case and of what kind of properties the Sally modules Sg(I)
and the ideals I enjoy, provided the equality holds true.
To sate the results of the present paper, let us consider the following four conditions:

(Co) The sequence aj,az,- - - ,aq is a d-sequence in A in the sense of Huneke [6].
(C1) The sequence ai,az, - ,aq is a d*-sequence in A, that is for all integers
n1, Mg, -+ ,Ng > 1the sequence af*,ay?, - - , a3 forms a d-sequence in any order.

(Cy) (ar,az,- "+ ,di, - ,0a) :a0; STforalll <i<d

(Cs) depth A > 0.
These conditions (Cp), (C1), (Cz), and (Cs) are naturally satisfied, when A is a Cohen-
Macaulay local ring. Condition (C;) (resp. condition (Cs)) is always satisfied, if A is a
Buchsbaum local ring (resp. I = m). Here we notice that condition (C;) is equivalent
to saying that our local ring A is a generalized Cohen-Macaulay ring, that is all the
local cohomology modules H: (A) (i # d) of A with respect to the maximal ideal m are
finitely generated and the parameter ideal @ is standard, that is the equality

d-1

twa/Q) - (@ =3 (17 ) eat(a)
=0

holds true. Hence condition (C;) is independent of the choice of a minimal system
{a;}1<i<a of generators of the parameter ideal Q. We note here that condition (Co) is
also independent of the choice of a minimal system {a;}1<i<a of generators of Q.

Although some parts of the results which we shall refer to in this section still hold true
under milder assumptions (Cp), (Cz), and (Cs), or under the assumption that I = m
only, for the sake of simplicity of the statement let us now assume that conditions
(C1),(Cz), and (C3) are satisfied. We then have the inequality

er(I) > eo(X) +e1(Q) — £a(A4/1),

and the equality e;(I) = eo(I) + €1(Q) — £4(A/I) holds true if and only if I* = QI
(Corollary 2.5). When this is the case, we have

His (G) = [Hi(G)1—s = Hi(4)
for all 0 < ¢ < d and the a-invariant
a(G) = max{n € Z | [H}(G)]. # (0)}

of G is at most 1 — d, where G = G(I) and M = G4, and the ring G is a Buchsbaum
ring if so is A (cf. [2]). Thus the ideals I again enjoy very nice properties, if e;(I) =



eo(I) +e1(Q) — €a(A/I). The next target is, of course, the case where the equality
e1(I) = eo(I) +e1(Q) — La(A/I) + 1
holds true, which leads us to the main result Theorem 1.2 of this paper.
The following Theorem 1.2 completely generalizes Theorem 1.1 given in the case
where A is a Cohen-Macaulay local ring, because €;(Q) = 0 for all 1 < i < d. We

notice that, thanks to condition (C;), the Hilbert coefficients e;(Q) of @ are given by
the formula

eo(Q) ifi=0,
(-1)ei(Q) = { eA(H;’n(A)) ifi=d,
Yioy (5N ea(HL(A)  if1<i<d-1
and one has the equality £4(A/Q™*!) = ZLO( 1)e;(Q) ("+d"') for all n > 0 ([14,
Korollar 3.2]), so that {e;(Q)}1<i<q are independent of the choice of the reduction Q of
I and so, are invariants of A.

Theorem 1.2. Suppose conditions (Cy),(Cz), and (C3) are satisfied. Then the follow-
ing three conditions are equivalent to each other.
(1) ex(I) = eo(I) + €1(Q) — ZA(A/I) +1.
(2) m-S = (0) and rankg S =
(3) S = (X1,Xs,--+,X,)B as gmded T-modules, where 1 < ¢ < d and {X;}<i<c
are linearly mdependent linear forms of the polynomial ring B.

When this is the case, we get ¢ = £4(I?/QI) and I® = QI?, and the following assertions
also hold true.

(i) depthp S=d—c+1.
(ii) Suppose c < d. Then

a0 (L85

—(c+1)
b Y@ e@) (")

=2

for allm > 0. Hence
ei(l) = ei-1(Q) + &(Q) fiFc+l,
' ei-1(Q) +&(Q) + (-1)*  fi=c+1

for2<i<d.
(ili) Suppose c=d. Then

i - (19015

+ (D)o (@ )+e,(Q)}<n+d )

1=2

for alln > 1. Hence e;(I) = e;—1(Q) + &:(Q) for2 <i < d.



In contrast with the case where A is a Cohen-Macaulay local ring, in general one cannot
control depth G in terms of the integer c, since the Rees algebra 7' = R(Q) of Q is not
necessarily a Cohen-Macaulay ring.

We are now in a position to briefly explain how we organize this paper.

We shall discuss outline of proof Theorem 1.2 in Section 3. We will summarize in
Section 2 some auxiliary results on Sally modules for the later use in this paper. We
will introduce the result that S = a as graded T-modules for some graded ideal a of B,
once the equality e;(I) = eo(I) + €1(Q) — £a(A/I) + 1 holds true (Theorem 2.6), which
is one of the keys for our proof of Theorem 1.2, similarly as in the Cohen-Macaulay
case. In Section 3 we shall also discuss consequences of Theorem 1.2.

In what follows, unless otherwise specified, let (A,m) be a Noetherian local ring
with d = dimA > 0. Let I be an m-primary ideal in A and let S = Sg(I) be the
Sally module of I with respect to a minimal reduction @ = (a1,as,- - ,aq4) of I. We
put R = A[lt], T = A[Qt], R = A[lt,t"}], G = R'/t"'R/, and B = T/mT. We
denote by H: () (¢ € Z) the i-th local cohomology functor of A with respect to m. Let
M = mT + T, be the unique graded maximal ideal in T'.

Let I = U, o [I™" 14 I"] = U5, 1™ 14 (a},a3,- - ,a})] denote the Ratliff-Rush
closure of I, which is the largest m-primary ideal in A such that I C I and e;(I) = e;(I)
for all 0 <3 < d (cf. [10]).

2. PRELIMINARY STEPS FOR THE PROOF

The purpose of this section is to summarize some auxiliary results on Sally modules,
which we need throughout this paper. Let us begin with the following.

Lemma 2.1. The following assertions hold true.

(1) mtS = (0) for integers £ > 0. Hence dimrS < d.
(2) The homogeneous components {Sy }nez of the graded T'-module S are given by

S, & { () #n<0,
n QeI ifn > 1.

(3) S = (0) if and only if I = QI.

(4) Suppose that S # (0) and put V. = S/MS. Let V, (n € Z) denote the ho-
mogeneous component of the finite-dimensional graded T /9M-space V' with de-
green and put A = {n € Z | V, # (0)}. Let ¢ = maxA. Then we have
A={1,2,---,q} and ro(I) = ¢+ 1, where

ro(l) =min{n € Z | I"*' = QI"}

stands for the reduction number of I with respect to Q.
(5) S =TS, if and only if I3 = QI2.

Proof. See [3, Lemma 2.1]. O

In the following Lemma 2.2 Serre’s condition (S;) on T plays a crucial role. This
condition is automatically satisfied, once both conditions (C;) and (Cs) are satisfied
(cf. [15, Theorem 6.2]).



Lemma 2.2. Suppose that conditions (Cyp), (Cz2), and (C3) are satisfied. Assume that
the ring T' satisfies Serre’s condition (Sp). Then AsspS C {mT}, whence dimrS = d if

S # (0).
Proof. See [5, Lemma 2.3]. O
Proposition 2.3. Suppose that conditions (Co) and (Cz) are satisfied. Then
+d +d-1
wiary = an ("5 el + @ - taamy ("7 )

d

n+d—1
£ @+ a@) ("5 ) - s
=2 .
for alln > 0.
Proof. See [5, Proposition 2.4]. O

We put p = mT. Then since Assr.S C {p} by Lemma 2.2, the following result is
proven exactly in the same way as in the proof of (3, Proposition 2.2 (3)].

Proposition 2.4. Suppose that conditions (Co) and (Cq) are satisfied. Then
e1(I) = eo(I) + e1(Q) — La(A/I) + €5, (S}),
whence ey (I) > eo(I) + €1(Q) — La(A/I).

Combining Lemmas 2.1 (3), 2.2, and Proposition 2.3 with Proposition 2.4, we get
the following, which is more or less a finer version of [1].

Corollary 2.5. Suppose that conditions (Cy), (C2), and (C3) are satisfied. Then
er(I) = eo(I)+e1(Q) —£a(A/I) +£1,(Sy). The equality ey (I) = eo(I) +e1(Q) —£a(A/I)
holds true if and only if I* = QI. When this is the case, one has e;(I) = e;_1(Q)+¢;(Q)
for2<i<d.

Proof. Since AsspS C {p} by Lemma 2.2, we have S, = (0) if and only if S = (0),
that is equivalent to saying that I2 = QI by Lemma 2.1. When this is the case, by
Proposition 2.3 we readily get e;(I) = e;—1(Q) +i(Q) for all 2 <7 < d. a

The following result is one of the keys for our proof of Theorem 1.2.

Theorem 2.6. Suppose that conditions (C1), (Cz), and (C3) are satisfied. Then the
following three conditions are equivalent to each other.

(1) es(1) = eo(I) +e1(Q) — £a(A/T) + 1.
(2) mS = (0) and rankgS = 1.
(3) There ezists a non-zero graded ideal a of B such that S = a as graded T-modules.

To prove Theorem 2.6, we need the following estimation of ey(I), which is a gener-
alization of Narita’s theorem [8] given in the case where A is a Cohen-Macaulay local
ring.



Theorem 2.7. Suppose that d > 2 and that condition (C,) is satisfied. Then
ea(1) > e1(Q) +e2(Q)-
Proof. See [5, Theorem 2.10]. O

3. OUTLINE OF PROOF OF THE MAIN THEOREM

We notice that the equivalence of conditions (1) and (2) in Theorem 1.2 follows from
Theorem 2.6. The implication (3) = (2) is clear. Therefore we have only to show the
implication (1) = (3) together with the last assertions in Theorem 1.2. Suppose that
condition (1) in Theorem 1.2 is satisfied. Then, thanks to Theorem 2.6, mS = (0) and
we get an isomorphism
p:S—a

of graded B-modules, where a is a graded ideal in B. Notice that once we are able
to prove that I® = QI?, since S = BS; by Lemma 2.1 (5), the ideal a is generated
by lineally independent linear forms {X;}1<i<. of B with ¢ = £4(12/QI) (recall that
a & S; & I2/QI; see Lemma 2.1 (2)). When this is the case, (1) = (3) and the last
assertions in Theorem 1.2 follow. Hence our Theorem 1.2 has been proven modulo the
following.

Theorem 3.1. Let W = H2 (A) and assume that conditions (C;) and (C,) are satisfied.
Suppose that e;(I) = eo(I) + e1(Q) — La(A/I) +1. Then B C QI* + W.

Proof. See [5, Theorem 1.3]. O

We lastly discuss consequences of Theorem 1.2.

Thanks to Theorem 1.2, we get the following generalization of Sally’s theorem ([13,
16]), which corresponds to the case where ¢ = 1 in Theorem 1.2. We denote by B(—1)
the graded B-module whose grading is given by [B(—1)], = B,_; for all n € Z.

Corollary 3.2. Suppose that d > 2 and that conditions (C1), (Cg), and (Cs) are
satisfied. Then the following three conditions are equivalent to each other.

(1) S = B(-1) as graded T-modules.

(2) ex(I) = eo() + e1(Q) — La(A/I) + 1 and ex(I) # e1(Q) + e2(Q).

(3) I3 = QI? and £4(I%/QI) = 1.
When this is the case, we have

LA/ = eo(I) (” : d) o) (n + f; 1)

b (@ ea(Q>}<n 2o ) ’ (n is 2)

1=2
for all n > 0, and the following assertions hold true.
(a) depthy S =d.
(b) e2(I) =e1(Q) +e2(Q) + 1.
(c) ei(]) = &i1(Q) +&i(Q) for 3 <i < d.



The characterization of the case where ¢ = d in Theorem 1.2 is the following.

Corollary 3.3. Suppose that d > 2 and that conditions (C;), (Cz), and (C;) are
satisfied. Then the following three conditions are equivalent to each other.
(1) S = B, as graded T-modules and depth G = 0.
(2) es(]) = eo(I) +e1(Q) — La(A/T) +1, ei(I) = ;-1(Q) +&(Q) for 2 <i < d, and
depthG =0.
(3) I? = QI and L4(I/T) = 1.
Here I = U, 5,[I™*" :4 I"] denotes the Ratliff-Rush closure of I.
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A remark on the regularity of a system of
parameters of a local ring of mixed characteristic

Kazuma Shimomoto (University of Minnesota)

Throughout this article, (R, m) will denote a local Noetherian ring. An R-algebra
B is said to be a (balanced) big Cohen-Macaulay R-algebra if some (every) system
of parameters of R is a regular sequence on B. Then it is well known that any local
ring containing a field has a big Cohen-Macaulay algebra. However, for a local ring
(R, m) of mixed characteristic, the existence of such an algebra is known only in the
case when dim R < 3 and the final settlement in all characteristics has been resisted
for more than 30 years. By this reason, it is expected that one might be able to find,
at least, a weaker version of big Cohen-Macaulay algebras, which suffices to prove
certain homological conjectures.

Recently, P. Roberts suggested in [6], [7] a new approach based upon Fontaine’s
theory for constructing almost Cohen-Macaulay algebras in mixed characteristic. In
this report, we prove a result on the regularity of a certain system of parameters of
a local ring of mixed characteristic. After stating the main theorem, we will make
a brief comment on the proof of the theorem with its relation to almost Cohen-
Macaulay algebras. We prove the following theorem:

Theorem 1. Let (R, m) be a complete local domain of mized characteristic p > 0

and let p, xs, . .., Tq be a system of parameters for R. Then there exists an R-algebra
B such that:

(1) (p,.’L‘g, s ,IL'd)B 7é B;

(2) z,...,z4 forms a regular sequence on B/pB, and

(3) p is not a nilpotent element of B.

Before starting the proof, let us make a couple of comments. First off, the
method we use in the proof of the theorem is nothing new, and it has been one of
the commonly used methods since M. Hochster succeeded in proving the existence
of big Cohen-Macaulay modules to establish the homological conjectures in the
equicharacteristic case. However, we want to emphasize that the main idea used
to produce the required algebra B has been extended to the construction of almost
Cohen-Macaulay algebras in mixed characteristic (see [8]).



Second, we recall a recent work of G. Dietz 1] on the study of algebras over local
rings of positive characteristic that can be mapped to big Cohen-Macaulay algebras.
Especially, he proved that such an algebra can be modified into an absolutely in-
tegrally closed, m-adically complete and separated quasilocal big Cohen-Macaulay
algebra domain. He also developed a great deal of machinery to study intrinsic prop-
erties of such algebras over local rings of positive characteristic and his idea plays a
role in our proof. Now we recall the definition of Hochster’s algebra modification [4].

Definition 2 (algebra modifications). Let z,,...,zxy1 be a sequence of a local
ring (R, m) and for an R-algebra T, let ¢1,...,tx1 be a sequence of T such that
Tpyrtes1 = Zf=1 z;t;. Let Xi,..., Xy be a set of indeterminates over 7. Then we

say that
T T[Xi,..., Xk

(trr — Sy ©:X0)
is an algebra modification of T. We define a sequence of algebra modifications:

T="T, Ty T,

such that every T;,; is an algebra modification of T;.

Let F denote a nonempty family of systems of parameters of R. Then as a
universal object, we define Mod(7'/R) as a polynomial algebra over T' (quite possibly
in infinitely many variables) modulo an ideal generated by elements as stated in the
definition of algebra modification that are associated to all possible relations on T
with respect to systems of parameters in . Inductively, we put Modo(T/R) := T,
Modg41(T/R) := Mod(Modi(T/R)/R), and Modw(T/R) := li—n)lkeN Modi(T/R). It
turns out that Mod,(7'/R) is a possibly improper big Cohen-Macaulay R-algebra.

The absolute integral closure of an integral domain A is defined as the integral
closure of A in an algebraic closure of the field of fractions of A and denote it by
A*. We recall the following brilliant result:

Theorem 3 (Hochster,Huneke [3]; Huneke,Lyubeznik [5]). Let (R,m) be a local
Noetherian domain of characteristic p > 0. Assume one of the following conditions:

(1) R is an excellent local domain.
(2) R is a homomorphic image of a Gorenstein local ring.
Then R is a balanced big Cohen-Macaulay R-algebra.

Definition 4. Let T be an algebra over a local ring (R, m) and let 0 < ¢t < dim(R)
be fixed. Then we say that a sequence of algebra modifications with respect to F is
of type > t if every T}y, is a modification of T; with respect to a relation of type at
least ¢.



The proof of the following proposition follows directly from the definition. We
will apply the proposition to the case where the family F consists of a single system
of parameters of a mixed characteristic local ring, say p, za,. .., Zq.

Proposition 5. Suppose that z1,...,%4 is a system of parameters of R and S is an
R-algebra. Let 0 < t < dim(R) be any fized integer. Then the following conditions
are equivalent:

(1) There exists an S-algebra B such that 1 & (z1,...,%a)B and T441, . .., Ta forms
a reqular sequence on B/(z1,...,z:)B.

(2) Suppose that
S = To ? T1 e Ts

is any finite sequence of algebra modifications of S of type > t with respect to
z1,...,2q4. Then we have 1 ¢ (z1,...,24)Ts.

Proof of Theorem 1. We begin with a sequence of algebra modifications of relations
of type > 1 with respect to p, z, . . ., &4 and we prove the theorem by contradiction.
Suppose that, as in Proposition 5, there is a sequence of algebra modifications of
type > 1 with respect to p, zs,...,za:

T:R=To T1 S Ts

such that 1 € (p,z1,...,24)Ts. We remark that R/pR is a complete local ring of
characteristic p > 0 in which z,...,z4 forms a system of parameters. We keep the
same notation for a system of parameters of R/pR.

After dividing the sequence 7 out by p, we show that the induced sequence maps
to a sequence of modifications of R/pR. We let

T [ X(’) (1)] (z)

Tiyn = T 370 Sk € T;.
(sth — z,-=1 x,-X} )’

Then we have ’ ) ( )

Ti[X7",.. ¢
Ti+l = (z)[ k ](z) (mOdp)'

(Skt1 ZJ 2$JX )
We set T
Ti+1 = 1+1

(p, X9, ., XNTyy

Now it follows that a new sequence:

=

T:R/pR=T, — T,



is a sequence of modifications of R/pR with respect to s, ..., x4, satisfying 1 €
(zg,...,24)Ts. Let Q be a fixed minimal prime ideal of R* over pR*, where R* is
the absolute integral closure of R. Since R*/Q is the absolute integral closure of
R/(QNR), a complete local domain of characteristic p > 0, it follows that z,,...,z4
is a regular sequence on R*/Q, as mentioned previously. By replacing the sequence
7 with T ® (R*/Q), we have a sequence of bad modifications of R*/Q. Then a
standard method (see [2] for more detail) provides us the following commutative
diagram:

RY/Q == R*/Q R*/Q
] ]
R+/Q —_ Tl Ts

in which the first vertical arrow is the identity map, and so we get a contradiction
(za,...,24)RT/Q = R*/Q. Hence we have proved (1) and (2).

In order to prove (3), we need to construct a commutative diagram similar to
the one as above. Let S := R[—'—], the localization of R at pzy---z4. Then

pr2--Tq
D, T, ..., x4 truely forms an improper regular sequence on S, and for any sequence
of algebra modifications R — T} — - -+ — T; of R, we get the commutative diagram:
S S e S
R T e » T

in which R — S is the natural inclusion. If we assume p is nilpotent in T, then
it implies that p is nilpotent in S. But this is a contradiction. As the required
algebra B can be constructed as a large direct limit of various sequences of algebra
modifications of R of type > 1, we conclude that p is not nilpotent in B as well,
which proves (3). O

Question 6. Let (R, m) be a complete local domain of arbitrary characteristic. Then
is R* an almost Cohen-Macaulay R-algebra in the sense of P. Roberts?

Finally, I would like to acknowledge a simple remark due to Prof. Y. Yoshino
that has led to simplifications and improvements of the main result in [8].
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COEFFICIENT IDEAL OF IDEALS GENERATED BY
MONOMIALS

SATOSHI OHNISHI AND KEI-ICHI WATANABE

ABSTRACT. In a commutative Noetherian ring R, the coefficient ideal of I relative
to J the largest ideal b for which Ib = Jb when [ is integral over J. In this paper,
we compute a(I,J) by the socle sequence when R = k[X1, ..., Xq4], a polynomial
ring over a field k and I, J are ideals generated by monomials. Also we will show
that our computation is closely related to the reduction number of I.

1. INTORODUCTION

Let R be a Noetherian ring and J C I be ideals in R. If I is integral over J, there
exists an integer 7 such that I"*! = I"Jor I - I" = J - I". Conversely, if Ia = Ja
for some ideal a which contains a non zero divisor, then I is integral over J. If
a, b are ideals in R satisfying Ja = Ja and Ib = Jb, then we can easily see that
I(a+b) = J(a+b). So, there is the largest ideal a(Z, J) such that Ia(1, J) = Ja({, J).
We call this a(I, J) the coefficient ideal of I with respect to J.

This notion was defined by I. M. Aberbach and C.Huneke [AH] and they also
showed a theoretical algorithm to compute a(I,J) when R/I is an Artinian ring.
But this algorithm is too complicated to compute a(I, J) actually.

In this paper, we treat the case when R = k[X1,..., X4, a polynomial ring over
a field k, J = (X{,...,X3?) and I is a monomial 1dea1 containing J. We give
an algorithm to compute a(I,J) by giving the socle of a(, J) since a(I, J) is also
generated by monomials and is determined by giving its socle.

To give the socle of a(I,J), we introduce the notion of “socle sequence” and
“step” of the elements of the sequence. Then the maximum number of steps gives
the reduction number 7;(I).

2. BASIC PROPERTIES

In this paper, let R be a commutative Noetherian ring, J C I be two ideals of
R. We always assume [ is integral over J and I # J. By J we denote the integral
closure of J.

Definition 2.1. The coefficient ideal of I with respect to J is
a(I,J) = max{a|a isan ideal with al = aJ}.
Obviously, a(I,J) C J : I. Let us list some basic properties of a(f, J).
Proposition 2.2. Let I,I',J,J' be ideals of R and I,I' C'J. Then
JcIlcIl'=a(l,J)2a(l',J),
JcJ cI=a(l,J)Ca(l,]).



We will recall a theoretical algorithm to compute a(/, J) for m primary ideals I, J
due to I. M. Aberbach and C. Huneke.

Definition 2.3. Let J C I be ideals, and I -C J. The reduction number of I with
respect to J, 7;([I), is the least integer r = r;(I) such that I"*! = I"J.

Proposition 2.4. (¢f. [AH], [Hun]) Let J C I be ideals of R with I C J. We define
the sequence of ideals {a,} as follows.

(i)ay=J: 1.

(i) If ay, ..., a, is defined, then a, . = Ja, : I.

Then we can assert the following.
(1) If’l‘ = TJ(I)/' Irc Cl(I, J),
(2) ans1 C a, and a(l,J) C a, for alln,
(8) If R/I is Artinian, then the sequence a; 2 ap D - stabilizes and a(I,J) = a,
forn> 0.

Corollary 2.5. Let R — R’ be a finite flat local extension of Noetherian rings
and if J C I are ideals in R primary to some mazimal ideal m with I C J, then
a(IR,JR) =a(l,J)R.

Proof. Since the colon is preserved under flat ring extension, our assertion is clear

from the construction in Proposition 2.4. O

We recall some properties of ideals of k[Xj,...,Xq4] generated by monomials.
First, we fix some notation. For m = (mj,ms,...,my) € N¢ (we denote N =
{0,1,2,...}), we write X = X[ X7 ... X7, For m = (mi,my,...,my),n =
(n1,na,...,nq) € N% we define operations,

mEn=(m;E£n;,myEn,,...,myEny),
am = (amy,amy,...,amy) for a € N.

Also, we write m > n when m; > n; foralli=1,2,...,d.

In the following, R = k[X1,...,X4),m = (Xi,...,X4) and I,J are m primary
ideals and we always assume that I, J are generated by monomials.

Remark 2.6. Note that I : m is also generated by monomials. By Proposition 2.4,
a(1, J) is a monomial ideal too.

The socle of an m primary ideal plays very important role in our computation.

Definition 2.7. Let I be an m primary ideal generated by monomials. We denote
by p(I) the number of minimal generators of I.
If (I : m)/I is minimally generated by X™1, ..., X™: we define the socle of I

SOC(I) = {ml; cee )—n—ls}'

Conversely, if S = {m,...,m,}, then we denote by Is the unique m primary
ideal generated by monomials, whose socle is S (cf. the next proposition).

Proposition 2.8. Let I be an m primary ideal generated by monomials.
(1) Let R = k[X,Y] and I = (X%, Xkryh . Xks-1Yb-1 Yio) with kg > ky >
o>k 1>0and0<ly < - <. Then

SOC(I) = {(k‘o — 1,l1 - 1), (kl - 1,l2 - 1), “ey (ks—l;ls - 1)}



(2) Conversely, if S = {(k},13),...,(ky,1,)} withky > ... >k} andl} < ... <,
then
Is = (in+1’ Xk’2+lyl'l+l, o ,Yll’+1).
In particular, p(I) = §Soc(I) + 1.
(3) Let R = k[X1,...,X4) and S = {m,, ..., m,} wherem; = (m;,, mi,, ..., m;,).
Then the monomial m primary ideal Is with Soc(Is) = S is given by the fol-
lowing.

S
+1 i+l g1
Is=ﬂ(xf“l Xt X

i=1

3. CALCULATIONS OF a(l,J) AND SOCLE SEQUENCE

Let us calculate the coefficient ideal of ideals generated by monomials. Let
R = k[X1,...,X4] be a polynomial ring over a field k¥ with maximal ideal m =
(X1,...,Xq) and put J = (X7*,..., X34 C I = (J, X' X352 - X3?) (0 < 53 < @).
Write F' = X;' X352 --- X%, In this section, we treat only this case and in the next
section we treat the case when I = (J, Fi,..., Fy,). Since I must be integral over J,
we assume

Remark 3.1. Let (a;,s;) = di, a} = a;/d; and s; = s;/d; (i = 1,2,...,d). Let
R =k[Y,.. Yd] and consider R’ as a subring of R by putting ¥; = X%. Define
J = o, a"’) F' =YYy K:",I’ = (J', F")R'. Then since R is a free R’
module, we have a(I,J) = a(I ! J’ ) and thus we can reduce to the case (a;, s;) = 1.

Proposition 3.2. Let J = (X{*,...,X7¢) C I = (J,F) with F = X" X5%--- X3*.
Weputw=a;+--+ag—(s1+ -+ sa).

(1) If we assume a; < 81+ -+ 84 for alli =1,2,...,d, then a(I,J) D m¥~%*!
and a(I,J)  m@~d,

1 9% 1

(2) Let m = (m,, ..., mg) with z,_ Tisve, “a— then X € a(I, J).
Proof. (1) Since m¥~4+1F C mZ(“‘“l)“, we can easily reduce that m¥~4+1F C J
and hence m¥~4*1] = m*~%*1J. This shows that m¥~%*! C a([, J).

Next, put M = X@7171... X%717% ¢ qu—d Then FM = X{* ™' X;d-l ¢ J.
Hence a(1,J) p m¥~.

’L + 7
(2) Assume FX™ ¢ J. Then we must have Zf T 5 < Ez 1 smce the
" 1T 91 T 1

socle of R/J is generated by X~ ... X$¢~'. Hence if Z >3, ﬁ:—’
we have FX™ = X% X™ for some i and m’ = (ml,...,md) Since Zz,l - >1,

i m a My . . m
Yot - > —, wecan repeat this process. This means that X™ € a(I, J ). O

i i

Since a(I, J) is generated by monomials, we can express a([, J) by giving its socle.
Now, we compute Soc(a(I, J)) by “socle sequence”.



Construction 3.3. Construct the sequence S = (m,) C N? inductively as follows.
We call this sequence the socle sequence of I with respect to J.

(1) Put my = (a3 —s1 — 1,...,a4 — 84 — 1). We say my is the element of step 1
of the socle sequence and denote Step(myp) = 1.
(2) Define
u; = (a1 — 81, —82,..., —Sa)
Uy = (—81,a2 — S2,—83,...,—84)
Ug = (=81, .., ~Sd-1,0d — S4)-

(3) Let 0 = (41,...,%n) be the sequence of integers with 1 < 1; < d for every
J. We define m, = my +u;, +... +u;,. We call o’ a subsequence of o if
o' = (i1,...,4n) for some h' < h.

(4) We call a sequence o permissible if m, > 0 for every subsequence o’ of
o. If o is permissible, then we define Step(m,) = o + 1. Note that if
o' = (i1,...,%n-1), then we have

F_ma — Xi h"h Xz,
(6) S ={m, | o is permissible}.
Theorem 3.4. Soc(a(l,J)) = S. Namely a(I,J) = Is

Proof. Part 1. First we prove a(/,J) C Is. Since Soc(ls) = S, we check X% ¢
a(1,J) for every m, € S by induction on step h = Step(m,). If h = 1, since
Xm0 . F=XP"' X3 ¢ J, X™0 ¢ J: I and hence X™ ¢ (I, J). Let h > 1
and assume X™ ¢ a(/, J) for smaller values of h.

If there exists m, such that X™- € a(/,J) then since X® - F € a(I,J)] =
a(I,J)J, we must have

(%) X®e . F = X0 XMt

for some k with X™-™* € q([,J). So it suffices to show that m, — u, € S and
Step(m,, — ;) = Step(m,) — 1 for every k satisfying (*), since X% ¢ qa(I, J) by
induction hypothesis. So it suffices to prove the following Lemma. O

Lemma 3.5. Assume that o is permissible with fo = h > 1. If m_  — u, > O then
there exists a permissible sequence T whose last entry is k such that m, = m, and
flo =tir.

Proof of Lemma. Use induction on h = Step(m,). If ¢ = (i;) then m, — u, =
my+(0,...,8Qi,...,—0k,...,0) 2 0 for k # 4;. Therefore we have k = ;.

Assume that h > 2, and assume the lemma is true for smaller values of h. Suppose
o = (0',ip-1) where ¢’ = (i1,...,%h-2). Put m,, = (mi,...,m}). If k = ip_;, we
have nothing to prove. If k # 4y,_, since m,—u, = my.+(0,...,a;,_,,..., —ax,...,0)
> 0, we have mj, > a;. This is possible only if ¢; = k for some 7, 1 < j < h—2. Now,
let j be the last index with i; = k. Then put 7 = (41,...,%j-1,%j41, - -, Ih-1, k). It
is easy to show that 7 is permissible by our construction. O



Proof of 8.4. Part 2. Next we prove a(I,J) D Is. It suffices to show that for every
m, € S and for every i, X;X™ € a(I,J). If o = (¢',ip) and X, X™" € a(I,J),
then X;X™ € a(I, J) since

F(XiX™) = X" (XiX™).

Thus by induction on Step(m,), we have only to show that X;X™ € a(/, J) for
every i. But this is already proved in 3.2 (2). O

Remark 3.6. Let m,,m, € S. Then the following statements hold.
(1) If m, = m, then Step(m,) = Step(m,) and s1/a1 + - - - + sa/aa = 1.
(2) There is no relation such as m, > m, for any o, .

Proof. Let Step(m,) = h and Step(m,) = h'. If m, > m,, then we have the
following equation for each coefficient;

(@+1)ai—hsi—1> (Bi+1)a—Hsi—1(h=1= o,k =1=) B).
Hence (a; — Bi)ai— (h—R')s; > 0 for every i. If h = A’ then o = B fori =1,2,...,d
and m, = m,. If b # R/, there exists 4 such that (s — Bi)a; — (b — I')s; > 0.

Z(a,--ﬂ,-)=h-h’>(h-h’)2%

Thus we have 1 > Z % contradicting our hypothesis. O
~ a;
7

Remark 3.7. We can show that the number of steps of the socle sequence is always
finite. Since an element of S is a lattice point in a bounded region, S is always a

finite set.
(1) If s1/ay + - -+ + safaq > 1, and if o’ € N* is a subsequence of o € NA+t with
t>0,m, = (kig, .- ki), Mo = (k1,67 .. -, kaor), then we have

k k k1o ko
(_1ﬁ+...+ d'°>_<_l_W‘_+...+_‘i'_”)<0.
a’l ad ay ad

k k
Since (—-1—” 4o+ —:i) is strictly decreasing, the number of steps is bounded.
d

ax
k g o .
(2) In the case s1/ay + -+ + sa/aq = 1, -%— +--+ —:+> is constant for all o
1

d
which is permissible. If the number of steps is not bounded, then the socle sequence
must have a loop. But if m, = m,, where 7 = (0,%,...,%), then X® € a(l, J),

Loy

which contradicts our theorem. So the socle sequence has no loop and the maximal
number of steps is finite.

We will see in Section 5 that the maximum number of steps of the socle sequence
is closely related to the reduction number 7;(I).

Example 3.8. Let J = (X®,..., X5 c I = (J,F) with F = X7'Xp*--- X3¢ If
8 > 921 for at least two indices i, then my — u; 2 O for any j. Hence a(l,J) =
(Xpme, ., Xgem%).



4. CALCULATIONS OF a(I,J) IN GENERAL CASE

Let R = k[X, ..., X4 be a polynomial ring over a field k& with maximal ideal m =
(Xi1,...,Xq) and put J = (X{*,..., X3*). In this section, let I = (J, Fy, Fy, ..., Fy,),
where each Fj is a monomial integral over J for ¢ = 1,2...,n. Also in this case,
we can construct the socle sequence S and show that a(/,J) = Is as in 3.4. In
the following, we treat the case n = 2, namely I = (J, F,G), since to describe the
general case, the notation will be too complicated and the argument is essentially

the same.
Now, let I = (J, F,G) with F = X]* X2 -- Xsd and G = thX -X;“. Since

must be integral over J, we assume s_ + - + 2> and — + + —>1 We
may assume G & (J, F) and F ¢ (J, G) so that for some i ], sz >t and s; < tj.

Construction 4.1. We construct the sequence S’ = (m,) C N¢ inductively and
call this sequence the socle sequance of I with respect to J.
(1) Let my, = (a1 —81—1,...,a9—s4—1) and my, = (a1 —t1—1,...,aa—t4—1).
We say my, and my, are elements of step 1 of the socle sequence.

(2) Define
L = (a’l — 81,782+, _sd) v = (01 —ty, —ta,..., _td)
Uy = (—81,02 — S2,—83,...,—54) Yy = (—t1,a3 — tg, —t3,...,—tq)
ud = (_817 .oy —8d-1,04 — Sd) 'U__d = ("‘tl, ey _td—17a'd — td)

(3) Let o = (c;w;,, - - -, w;, ) be the sequence wherec = 1 or 2, and w;, = u;; ory;,
for every j. If c =1 (resp. ¢ = 2) then we define m, = my, + w L+ +wzh
(resp m, = mg, +w; +...+w,) Wecal o a subsequence of o if

= (Gw;,,--- —w) for some h’ <h.

(4) We call a sequence o permissible if m,» > 0 for every subsequence o’ of
o. If o is permissible, then we define Step(m,) = fo + 1. Here o = h, if
o= (cw,,---,w;,). Also, we define Step(my,) =1 for i = 1,2.

(5) We put S"={m, | o is perm1551ble} and

S ={m, | for every 7 # 0, m, ? m,}.
Theorem 4.2. Let [ = (J,F},F,...,F,) and S be as above. Then a(I,J) = I;.
We treat the case n = 2 and follow the notation of 4.1.

Proof. Part 1. First we prove a(I,J) C Is. Since Soc(Is) = S, we check X™ ¢
a(l, J) for all m, € S by induction on step h. If h = 1, since X0 - F = X% .G =
Xa-l...x% 1 ¢ J XM XM, ¢ J: [ and hence ¢ a([, J).

Let A > 1, and assume X™- ¢ a([,J) if m, € S and Step(m,) < h— 1. Now
assume that there exists m, € S such that X™- € a(/,J). As in the proof of 3.4,
we have only to prove the following Lemma. O

Lemma 4.3. Let 0 = (c;w,,,...,u;, _,) be permissible, fo =h > 1. If m, —u, > 0
then there exists a permissible sequence T whose last entry is u; such that m. = m,
and o = f.



The proof of this lemma is the same as that of 3.5 and we omit it.

Proof of 4.2. Part 2. Let us prove a(I,J) D Is. Assume that a(/,J) € Is. Then
Is-J G Is - I. Hence there exists M € Ig such that M & a(I,J). MF ¢ IsJ or
MG ¢ IsJ. Suppose that MF ¢ IgJ, write M = X™ and m = (m;, ..., mq). Then
one of the following conditions hold:

(1) mi+ (s; —a;) <Oforalli=1,2,...,d.

(2) m; + (si —a;) > 0 for some i =1,2,...,d, and X;*MF ¢ I for all such i.
Let us assume (1). m; < a;—s; — 1 for all 4« = 1,2,...,d. Thus we can write
m = my, —p with p= (p1,...,ps) > 0. Sincemy € S = Soc(ls), X™ ¢ Is. This
is a contradlctlon' .

Next, let us assume (2) and M' = X;“MF(= X™*%). Since M' ¢ Is, M
generates some element X™ where m, € S = Soc(Is). Therefore we can write
m—1u, =m, —p >0 with p=(p1,...,pa) > 0. Actually, (0,x,) is permissible.
Hence X o ¢ Is. This is a contradiction! So a(I, J) = Ig, the theorem is proved. O
Remark 4.4. We ask if the number of steps is finite or not in this case.

(1) If sy/a1+---+8a/aqg > 1 and ty/a; +- - - +ta/aq > 1 then (% + -+ %’-)

1
is strictly decreasing sequence, so the number of steps is finite. ’

(2) Let us consider the case s1/a1 + -+ s4/ag=1ort1/a;+---+ts/ag=1. In
this case, there are examples when some permissible sequence contains a loop as is
shown in the next example. :

Example 4.5. We give an example where the number of steps of the socle sequence
is not bounded. Let R = [X,Y] over a field k£ with maximal ideal m = (X,Y)
and J = (X1°,Y1°) I = (J,F,G) with F = X%Y® G = X°Y®. Then my, =
(6,0),v; = (5,—5),u, = (—5,5). We have a loop my, +v; + v, = my,.

5. REDUCTION NUMBER AND NUMBER OF STEPS

‘Again let R = k[X1,...,X4] be a polynomial ring over a field k¥ with maximal
ideal m = (Xy,...,Xy) and put J = (X{,..., X34 Cc I = (J,X{'X3?--- X3?) C
J (0 < s < a;). Write F = X{*X;%--- X3*. In this section, we will show that
the reduction number 7;(I) is equal to the maximal number of steps of the socle
sequence. Recall that r;(I) = min{r e N| I"*! = JI"}.

Definition 5.1. We denote by Step(S) the maximum step in the socle sequence S
of I with respect to J (cf. Remark 3.7).

We begin with a property of r;(I). For a real number z, [z] denotes the largest
integer not larger than z.

Lemma 5.2.

| [EEDEE

Proof. Since I"*! = Fr*1R + JI", it is easy to see that
Fr+1 e JI" < Fr+1 € Jr+l‘

ry;(I) = min {h



(h + ].)S,;
a;

and if t = 30, [ ], then F"*! € J* and ¢ J*+!. g

Theorem 5.3. Let S be the socle sequence of I with respect to J. Then
r7(I) = Step(S).

Proof. In 3.8 we have seen that Step(S) = 1 if and only if Z [?} > 2. So let

r;(I), Step(S) > 1. First we show that r;(I) > Step(S). Let m = my+ aqu, +-- -+
aguy € S (01 +- -+ ag=1t—1) of step t(< Step(S)) (x; is as in Construction 3.4).
Then we have the following:

m>0 < (a;+1)a;—ts;—1>0fori=1,2,...,d

@aiz[ﬁ] fori=1,2,.. d4=>t—1>2[ts’]

a;

d
h+1)s;
Hence t —1 ¢ {h Z [%} > h+ 1. Therefore 7;(I) > Step(S).
i=1 i
Next we show that the existence of m € S of step 7 = r;(I) to prove r;(I) <
Step(S). We want to show the existence of a permissible sequence ¢ such that
o = r — 1. We can prove the existence of o by the following lemma. We put

S o . .
nij = [%], r = ry(I) and oy,,...,aq, are non-negative integers which satisfy
i

@ > [fﬁ} and 3¢ i, =7 — 1.

a;
Lemma 5.4. Let n; j,a;, € Zxo fori=1,2,...,d and j = 1,2,...,r satisfying the
following conditions.

1) Zn,]<]—1forallj

(
i=1
(2) nij+1 =mnij orng;+1 foralli,j.
(3
(4)

) oz” > ni, for alli.

4) Za,rgr—l

Then For all j =1,2,...,7 — 1, there ezists (1, ...,aq4;) Such that
(a) Zai,]’ = ] - 1, (b) am-ﬂ 2 ai,j fOT all i, (C) Q5 Z .

Proof of Lemma. It sufficces to prove that there exists (c j,.. ., aq;) satisfying (a),

(b), (¢) for j = r—1. If n;, = n;_1+1 for some ¢ then we have (a1 ,-1,...,24,-1) =
d

(oqpy...,0ir—1,...,a4,) for such i. Suppose n;, = n;,_1 for all i. Zn,-,j <r-2
i=1

by assumption (1). Hence we have weaker condition a;,_1 > n;,_; for some i. So

we can take (@1,-1,...,Qdr-1) = (Q1,r,...,%r —1,...,04,) for such i. 0O



Now we come back to the proof of the theorem. Let us construct a permissible
sequence m, with Step(m,,) = r. Let m,, = my+u;, +. . . +u;, with Step(m,,,) = t+1
be subsequnce of m,. It suffices to determine m,,, fort =1,2,...,7—1 from {e; ;} as
in the following Lemma. If o;; = #{j | 3; = ¢,1 < j < r—1}, then m,, is determined
from a;; (t = 1,...,7 — 1) and we have constructed a permissible sequence with
Step(m,) = . O

In the case d = 2, we have u(a(I, J)) = Step(S), where p(I) denotes the minimal
number of generators of I. Hence we have the following.

Corollary 5.5. If d = 2, then p(a(I,J)) =r;(I) + 1.

6. EXAMPLES

In this section, we give some examples. Let R = k[Xj, ..., X,] be a polynomial
ring over a field k with maximal ideal m = (Xj,... Xd).
Example 6.1. Let R = k[X,Y] and J = (X", Y™) C I = (J, X°Y™"*) with (n,s) =
1. Then by 3.2, we have a(I,J) D m"!. On the other hand, [£] + [t =2 ] > tif
and only if ¢ is a multiple of n. Hence the 7;(I) =n—1 and by 5.5, u(a(l,J)) =
Hence we have a(I,J) = m™"L.

Example 6.2. Let R = k[X,Y, Z] and J = (X5,Y",Z7) C I (J X2Y223). Then

my = (2,4,3),u = (3,-2,-3),u, = (~2,5,-3),u3 = (—2,-2,4). So the socle
sequence of I with respect to J is as follows;
(2,4,3)

I

(5,2,0) (0,9,0) (0,2,7)

~N 7

(3,0,4)

|

(1,5,1)

Thus, a(l, J) = (X3, Y%, Z9)n(X®, Y, Z)N(X, Y10, Z)N(X,Y?, 28N (X4,Y, Z5)N
(X2, ¥, 22) = (X8, Y0, 25 XY, X 75, X2Y3, X3Y®, X4Z, Y324, Y° 22, Y*7,
XY Z4, X3YZ) The reduction number ry(I) =4.
Example 6.3. If I = (J, Fy, F,) and if we put I; = (J.F}) (i = 1,2), then by 2,2, we
have a(I,J) C a(I1,J) Na(l, J). The following example shows that the inclusion
above is strict in general.

Let B = k[X,Y],J = (X, Y1), I, = (J,XSY®),I, = (J,X*Y*) and T =
(J,X%YS, X8Y*). Then a(I},J) = (X3,Y®) and a(lz,J) = (X® X°Y3,Y”). Hence



a(l;, J)Na(lz, J) = (X8 X3Y3,X3Y®,Y"). On the other hand, the socle for a(I, J)
is computed as follows;

(4,4) (2,6)
el
(7,0) (5,2)

Therefore
a(1,J) = (XB,Y) N (X%, Y?) N (X5, Y%) N (X2, V%) = (X®, X5V, X5Y®, X3Y®,Y7).
Hence X°® € a(I;,J) Na(ly, J) but X6 & a(7, J).
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ON A CATEGORY OF COFINITE MODULES

KEN-ICHIROH KAWASAKI
(NARA UNIVERSITY OF EDUCATION)

We assume that all rings are commutative and noetherian with identity throughout this
report.

1. INTRODUCTION
Our aims in this report are to prove the following theorems:

Theorem 1. Let (A, m) be a local ring, and I an ideal of A. We denote by M(A,I)cos
the collection of A-modules N satisfying the condition
(*) Supps(N)CV(I) and Ext/(A/I,N) is of finite type, for all j.

If I is an ideal of A of dimension one, then the collection M(A, J)cf is a category,
which is closed under kernels and cokernels, and so forms an abelian subcategory of all
A-modules M(A).

Theorem 2. Let (R,n) be a regular local ring, J an ideal of R of dimension one. Let
N* be in the derived category D¥(R). Then N°® is cofinite if and only if H'(N®) is in
M(R, J)cos for all 4.

These results are concerned with some questions given in (7).

Remark 1. Some results were known under the condition that dim A < 2 (cf. [16, Theorem
7.4, p. 664]).

Let R be a regular ring, and J an ideal of R. The J-cofiniteness is defined as follows:

Definition 1. Let N°® be in the derived category D(R). We say N°® is J-cofinite, or
for short cofinite, if there exists M* € Dy (R), such that N* ~ D;(M?*) in D(R). Here
Dj( —) is the J-dualizing functor which we shall introduce below.

2. PRELIMINARIES

Let A be a ring. In this section, we recall terminologies on derived categories and
derived functors. In this report, we follow the notations by that of (8]:

M(A) : Category of A-modules and A-homomorphisms,

C*(A) : Category of complexes of A-modules and homomorphisms between complexes,
K*(A) : Category of complexes of A-modules and homomorphisms up to homotopies,
D*(A) : Derived category from K*(A) localized by quasi-isomorphisms,

where we write * in spite of +, —, b or . Let A’ be a thick abelian subcategory of M(A)
(ie. any extension in M(A) of two objects of A’ is in A’). We define K7,(A) (and D7, (A)
) to be the full subcategory of K*(A) (respectively D*(A)) consisting of these complexes
X* whose cohomology objects H*(X*®) are all in A’. In this report, we denote K},(A)



(respectively D},(A)) for K7, (A) (respectively D,(A)) in the case that A’ is the category
of all A-modules of finite type.

Let R be a regular ring of finite Krull dimension d (complete with respect to the J-adic
topology). Let E5 = I';(E*®), where E* is an injective resolution of R and I';( — ) is
the J-power torsion subfunctor of the identity functor on M(R) (cf. [14, §1, p. 41]).
Let D;( — ) be the functor Hom*( — , E3) (or RHom*( — ,RT';(R))) on the derived
category D(R). In this report, we call this functor D;( — ) the J-dualizing functor (or
the dualizing functor on J) according to [14, § 4.3, p. 70]. Further we often denote its
cohomologies H*(D,( — )) by D%( — ) for some i, according to the notations in [7].

3. THE MAYER-VIETORIS SPECTRAL SEQUENCE

We shall propose that the Mayer-Vietoris spectral sequence for the dualizing functor.

Proposition 3. Let R be a regular ring, let I, I, ... ,I, C R be ideals and let M be an
R-module. There is a spectral sequence in the second quadrant:

Py (-p)+q
E = = B1<ip<is<- <zp<nD1 o+l +...+1,.p(M) = DIInIzn---nIn(M)'

Proof. The proof is based on that given by G. Lyubeznik [15]. ]

Remark 2. Applying the case of n = 2 to Proposition 3, we have so-called the ‘Mayer-
Vietoris exact sequence’.

Lemma 4. Let A be a ring, I an ideal of A, N* € D*(A) a complez. And let W* be in
D~(A/I) (we also see this complex over A via the natural map A — A/I). Then there is
a spectral sequence between the hyperexts:

EPY = Ext?(W*, Ext(A/I, N*)) = HP? = ExtP*y(W*, N*).

Remark 3. As a special case, we have well-known spectral sequences for ordinal extension
modules.

We refine the lemma of {12, lemma 1] in terms of the derived category:

Lemma 5. Let N* € D*(R) a complez, J an ideal of R. Then the following conditions
are equivalent:
(i) Ext’(R/J, N°®) is of finite type over R for all j > 0;
(i) Ext-’(R/\/— N*) is of finite type over R for all j > 0;
(iii) Ext/(R/P,N*®) is of finite type over R for all j > 0 and for all P € Mln(R/J)
(iv) Ext?!(W, N*) is of finite type over R for all j > 0 and for all finitely generated
R-modules W such that Supp W C V' (J).
(v) Ext?(W*, N*) is of finite type over R for all j > 0 and for each W* € DSy(R)
such that Supp H'(W*) C V(J) for all 1 > 0.
(vi) Ext?(W*, N*) is of finite type over R for all j > 0 and for each W* € Dy (R)
such that Supp H'(W*) C V(J) for all 1 > 0.

Proof.  The following implications are clear: (iv) = (i), (iv) = (ii), (iv) = (iii), (v) =
(iv) and (vi) = (v).

The program for the proof is as follows: First we prove the implication (i) = (iv).
Secondly we prove the implication (ii) = (i). Next we prove the implication (iii) = (ii).
Further we shall prove the implication (iv) = (v). Finally we prove the implication (v)
= (vi). o

Finally we introduce the following theorem (cf. [7, Theorem 5.1]):



Theorem 6. Let N* € D*(R) be a complez, J an ideal of a regular ring R. And we
suppose that R is J-adic complete. Then the following conditions are equivalent:
(i) N°* is J-cofinite;
(ii) (a) Supp(H*(N*®)) C V(J) for alli >0, and
(b) The equivalent conditions in Lemma 5.

Proof. See [7, Theorem 5.1] for the proof. O

Remark 4. Let J be an ideal of a regular ring R. We suppose that R is J-adic complete.
If M is an R-module of finite type, then Ext*(R/J, D;(M)) is of finite type over R.

Proof.  Since M is an R-module of finite type, D;(M) is a cofinite complex. It follows
from Theorem 6 that Ext*(R/J, D;(M)) is of finite type for all 4. i

4. DUALIZING FUNCTORS AND ASSOCIATED PRIME IDEALS

In this section, we prove several lemmas which we need to prove Theorem 1. Throughout
this section, we assume that (R, m) is a regular local ring and J is an ideal of R. Let
(E*,{d*}) be a minimal injective resolution of R. If J is an ideal of dimension one, then
T';(E*) is a complex consisting of injective modules in degree d —1 and d. We note that
I';(d%') is surjective by the local Lichtenbaum-Hartshorne vanishing theorem. So the
complex I';(E*) is an injective resolution of kerI';(d*"!) (We note that kerI" 7(d471) is
just the local cohomology module H¢ *(R)).

Now we start to prove the following lemma.

Lemma 7. let A be a ring, let p be a prime ideal of R. Let M be an A-module of finite
type. Then the following conditions are equivalent:
(i) M, =0;
(ii) no associated prime of M is contained in p;
(iii) Homa(M, E(A/p)) =0.

Proof. The proof is elementary and not so difficult. m|

Lemma 8. Let R be a regular local ring, J an ideal of R. Let M be an R-module of finite
type. If the complex D;(M) is isomorphic to the complex consisting of a single module,
then HY(D;(M)) € M(R, J)eos for all i (it is non-zero for only one i).

The following lemmas are proved by using the affine duality theorem.

Lemma 9 (Compare Lemma 7.3 in [7]). Let (R, m) be a regular local ring, J an ideal of
R of dimension one. Let M be an R-module of finite type. Then DdJ‘l(M ) =0 if and
only if no associated prime of M is contained in p;Upy U+ Up,, where p1,Pa,... ,Pr s
the minimal prime ideals containing J.

Remark 5. The conditions in Lemma 9 are equivalent to Homg(M,T';(I%!)) = 0.

Lemma 10 (Compare Lemma 7.4 in [7]). Let (R,m) be a regular local ring, J an ideal
of R of dimension one. Let M be a non-zero R-module of finite type. If every associated
prime of M is contained in p;NpzN---Np, then DI(M) = 0. Further if D3(M) =0, then
some associated prime of M is contained in p1 Ups U - - Up,, where p1,p2,... ,pr is the
minimal prime ideals containing J (that s, some associated prime q of M 1is contained in

p; for some 1 =1i(q)).



Lemma 11. Let (R, m) be a regular local ring, J; an ideal of R and M an R-module of
finite type. Suppose that P, a prime ideal of R of dimension one which does not contain
Ji. If Py is not in Supp(M), then cohomology modules H*(RHom®(R/Py, Dy, (M)))are
of finite type over R for all i.

5. PROOF OF THE MAIN THEOREMS

Now we shall prove the main theorems.
Proof of Theorem 2.

We may assume that J is a radical ideal. We set J; = p;NpaN---Np;N---Np, for
1 < i < r, where the check * means the omission. We note that J = J; Np;. Then we .
have the natural map between complexes: Dj, (M) — D;(M). We shall be able to prove
the theorem by the induction on r. To prove the theorem, we use several lemmas in [10],
which we must refine. m]

Corollary 12. Let (R,n) be a regular local ring, and J an ideal of R. If J is an ideal of
R of dimension one, then the set M(R, J)cos is closed under kernels and cokernels, and
so forms an abelian subcategory of the category M(R) of all R-modules.

Proof. Let f : Ny — Nj be in M(R,J)ey, that is, N; (i = 1,2) are R-modules
satisfying the condition (*): Supp(N;) C V(J) and Ext%(R/I, N;) is of finite type, for all
j. Consider the R-homomorphism f : N; — N, as the map between complexes, each of
which consists of a single module: We denote this complex by f*: Ny — Ny, that is,
fi:Ni — Niis f: Ny — Ny if i = 0, zero otherwise. Then each of them is a cofinite
complex by Theorem 2. Hence the third side of a triangle constructed by f, which is also
a cofinite complex. The third side of a triangle constructed by f is the mapping cone C}.
It follows from Theorem 2 again that the cohomology modules of the mapping cone by
f are in M(R, J)cop. The differential dic_f ! is just f if i = 0 and the zero map otherwise.
From Theorem 2, the cohomology modules of C} are in M(R, J). These cohomology
modules are just the kernel and cokernel of f. Therefore M(R,J)qs is closed under
kernels and cokernels, and so forms an abelian subcategory of the category M(R). O

Proof of Theorem 1

Now we prove Theorem 1. We may assume that A is a complete local ring A, since the
natural map A — A is a faithfully flat. So we have a surjection from a complete regular
local ring R to A. We suppose that I is an ideal of A of dimension one. Let J be the
pre-image of I in R, so J is an ideal of R and also of dimension one. Further we assume
that R is J-adic complete. We proceed by Delfino’s argument (cf. [4]). a

Our theorems and corollaries shall produce the following corollaries.

Corollary 13. Let (A, m) be a local ring, and I an ideal of A. Let M, N be A-modules of
finite type. If I is an ideal of A of dimension one, then the generalized local cohomology
module H}(M, N) is I-cofinite for all j.

Proof. One can give the proof of the corollary according to the method in (2] (cf.
[17]). )



Corollary 14. Let (R,n) be a regular local ring, and J an ideal of R. Let M be an
R-module of finite type. If J is of dimension one, then the cohomology modules D% (M)
applying the J-dualizing functor to M is J-cofinite for all j.

Proof. Apply N = R to Corollary 13. The assertion follows from [7, Proposition 4.2).
O

The following theorem is investigated by several authors (cf. [10], [4], [5], and [18])
concerning the first question in [7] and the question in [6].

Theorem 15. Let (A,m) be a local ring, and I an ideal of A. Let M be an A-module
of finite type. If I is an ideal of A of dimension one, then the local cohomology module
HI(M) is I-cofinite for all j.

Proof. It is proved if we apply M = A to Corollary 13. O

The following results on Bass numbers are quickly obtained from our Theorems and
Corollaries by [10, Lemma 4-2].

Corollary 16. Let (A,m) be a local ring, and I an ideal of A. Let M, N be A-modules
of finite type. If I is an ideal of A of dimension one, then all the Bass numbers of the
generalized local cohomology module H} (M, N) are finite for all j.

Corollary 17. Let (R,n) be a regular local ring, and J an ideal of R. Let M be an
R-module of finite type. If J is of dimension one, then all the Bass numbers of the
cohomology modules D%,(M) applying the J-dualizing functor to M are finite for all j.

Theorem 18. Let (A, m) be a local ring, and I an ideal of A. Let M be an A-module of
finite type. If I is an ideal of A of dimension one, then all the Bass numbers of the local
cohomology module H}(M) are finite for all j.
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LYUBEZNIK RESOLUTION AND THE ARITHMETICAL
RANK OF MONOMIAL IDEALS

KYOUKO KIMURA (NAGOYA UNIVERSITY)

1. INTRODUCTION

Let S be a polynomial ring over a field K, and let I be a monomial ideal
of S. We write G(I) = {mq,ma,...,m,} as the minimal set of monomial
generators of I and p(I) = p as the cardinality of G(I). It is a difficult
problem to construct a minimal graded free resolution of S/I. But Taylor [13]
constructed an explicit graded free resolution T, of S/I, which is called the
Taylor resolution of I:

T.:O——»T,L—dfﬁ ”_1di——1>-'-£>To——>S/I——+O,

where free basis of T are
Cirigisy 1 J 81 <lg < << p
with the degree
deg e;,i...i, = deglem(my,, Miy, ..., M4,),

and the differential d; is given by

s

. lem(mi,, ..., m,
ds(eiliz.,.i,) = Z(—l)J ! ( 2 : ) ei1-~~i;-~~i,'

lem(my, ..., Mg, ..., m;,)

j=1

In 1988, Lyubeznik [10] also found an explicit graded free resolution of S/I,
which is called a Lyubeznik resolution of I. Actually, a Lyubeznik resolution of
I is a subcomplex of the Taylor resolution of I generated by all L-admissible
symbols. Here, a symbol e;,;,.., is said to be L-admissible if and only if m,
does not divide lem(m,, mi,,,,...,m;,) for all t < s and for all ¢ < 4. In
general, the length of a Lyubeznik resolution of [ is rather shorter than that of
the Taylor resolution of I, and often coincides with the projective dimension
of S/I. Note that the Taylor resolution of I is determined uniquely by the
monomial ideal I, but a Lyubeznik resolution of I, even the length of it,
depends on a order of elements of G(I).
On the other hand, the arithmetical rank of I is defined by

ara ] := min {r . there exist aj, . ..,ar € I such that v/(a1,...,a,) = \/T} .

A trivial upper bound for the arithmetical rank of I is w(I), which is equal to
the length of the Taylor resolution of I. The main theorem in this report is
the following one:



Theorem 1. Let I be a monomial ideal of S. If the length of a Lyubeznik
resolution of I is A, then

aral < ).

Moreover, we assume that I is squarefree. In this case, Lyubeznik [9] proved
that ara I > pdg.S/I, where pdg S/I denotes the projective dimension of S/1I.
The author expects that ara ] = pdg.S/I holds for almost all squarefree mono-
mial ideals, and proved that equality for some classes of squarefree monomial
ideals with Terai and Yoshida ([7, 8]). For example, we proved ara ] = pdgS/I
when p(I) — height I = 2 ([8]). Barile [1, 3, 4], Barile-Terai [5], Morales [11]
also proved that equality for some classes of squarefree monomial ideals. From
our theorem, we have the following corollary:

Corollary 2. Let I be a squarefree monomial ideal of S. If the length of the
Lyubeznik resolution of I with respect to some order of monomial generators
is equal to the projective dimension of S/I, then

aral = pdg S/I.

In particular, if a Lyubeznik resolution of I is minimal, then the same assertion
18 true.

Barile [1, 2, 3] provided some classes of squarefree monomial ideals whose
Lyubeznik resolution can be minimal. In particular, in [2, Remark 1], she
pointed out a necessary and sufficient condition for a Lyubeznik resolution to
be minimal. Novik [12] proved that a Lyubeznik resolution is minimal for the
matroid ideal of a finite projective space.

Theorem 1 is proved by taking X elements which generate I up to radical. In
this report, we provide those A elements and explain key points of this taking.
But we omit the detailed proof of Theorem 1, which can be obtained in [6]. In
Section 3, we give some examples of squarefree monomial ideals which satisfy
the assumption of the Corollary 2.

2. HOw TO FIND A\ ELEMENTS

Let X\ be the length of the Lyubeznik resolution of I with respect to some
order of monomial generators my, my, ..., m, of I. For simplicity, we set

1< <ipg < - <is < p()
€iyip-i, 18 L-admissible

L, = {[il,ig,...,is] e N° .




To prove Theorem 1, we show that /(ay, ..., a;\) = /T holds for

(a1 = My,
az = Mgy + E My My« + =My 4,
[i11ig,iy—1]€LN_1
i1>3
j ap = My + E My Mg * * = My 1
linrigsvin—g41]€La—p41
i1 >+1
ay = m) + E My, =M+ My + -+ My
li1)el,
\ i1 22+1

To explain the idea of this taking, we consider the following ideal:
I = (2122%3, T124%5, ToT4T6T7, T3Ts, T1T2T5T6T9)-

We label generators of I with this order as my, my, ..., ms. First, we see L-
admissible symbols. For example, let us consider ess and ejz4. Since myms is
divisible by m;, we have that e45 is not L-admissible. On the other hand, ej34
is L-admissible. To see this, we must check the following 3 conditions:

(a) m, does not divide my for all g < 4;
(b) mg does not divide lem(mg, my) for all ¢ < 3;
(c) m, does not divide lem(my, ms, my4) for all ¢ < 1.

The condition (a) is trivial because mq, my,..., ms is a minimal system of
monomial generators of I. Also, lcm(mg, my) = 2223%4T6T72s is not divisible
by m; = z17223 and my = z12425. Thus the condition (b) is satisfied. Note
that the condition (c) says nothing because there are no integers ¢ with (1<)g <
1. These observations yield the following lemma:

Lemma 3. Suppose [iy,1a,...,1s] € Ls.
(1) [y, ---1%5,) € Ly forall1 < jy <-+- < Jp <'s.
(2) Ifiy > 1, then [L,41,12,...,%5] € Ley1. In particular, if [11,1a,...,95] €
Ly, then i; = 1. ‘
(3) Suppose £ < iy. If [€,i1,12,...,0s) & Lsy1, then megmymy, ---m;, s
divisible by at least one of my, mgy, ..., Mp_1.

This lemma, is easy to see from the definition of the L-admissibleness, but
it plays a key role in the proof of Theorem 1.
Now, we return to the above ideal I. Sets L, are given as follow:

Ly = {1}, 2], 8], [4], [81},
Ly ={[1,2],[1,3], (1,4}, [1,5], 2,3], [2,4], [2, 5], 3, 4]},
Ls; ={[1,2,3],[,2,4],[1,2,5],(1,3,4]}.



Note that all elements in L3 contain 1 by Lemma 3 (2). Thus we take a; = m;.
Next in Ly, we ignore elements which contain 1, and the rest elements are ones
which contain 2, and [3,4]. Thus we take a; = mg + mamy. Finally in L;, we
ignore [1] and [2], and take a3 = mg + my + ms.

Next, we verify that a,, as, a3 generate I up to radical. Set J = (ay, as, a3).
“We only need to show that mq,my,...,ms € V/J. Since a; = my, we have
my € J. To see my € V/J , we consider moays. Then moas € VI yields that

mg + maomsmy € \/7

Since [3,4] € L and [2, 3,4] ¢ L3, we have that mymsmy is divisible by m; by
Lemma 3 (2), (3). Thus we have m3 € J and my € v/J. Then we also have
mamg = ag — my € VJ. Similarly, msas € J yields that

m§ + msmy + mams € V.

Because [3, 5] ¢ Lo, we have that mgms is divisible by m; or my by Lemma 3
(3). Thus mams € v/J. Therefore mz € v/J. Then we have a} := my +ms =
az —mg € V' J, and myaj € V/J yields

mﬁ+m4m5 € \/7

By a similar argument as above, we have my € v/J, and ms = af —my € V/J.
Hence, v/J = v/T holds.

Actually, the Lyubeznik resolution of I with respect to the above order is
minimal and we have pdgS/I = 3 = aral. But if we change the order of
generators, it is not necessarily minimal. For example, we change the order of
generators of I as follow:

m1 = T1T4Ts5, M2 = T1T2T3, T3 = TaT4TeT7, T4 = T3T8, M5 = T1T2T5T6T9,

Then [1,2,3,4] € L4, and the Lyubeznik resolution of I with respect to this
order is not minimal. More precisely, its length is bigger than the projective
dimension of S/I.

3. EXAMPLES

First, we give squarefree monomial ideals I which satisfy the assumption of
Corollary 2. That is, the length of a Lyubeznik resolution of I is equal to the
projective dimension of S/I.

Example 4. Let I be a squarefree monomial ideal with u(I) — pdg S/I < 1.
Then the length of the Lyubeznik resolution of I with respect to some order of
monomial generators is equal to the projective dimension of S/I. Let us check
it.

When p(I)—pdg S/I = 0, the assertion is clear because the Taylor resolution
of I is minimal.

Next, we consider the case u(I) — pdgS/I =1. Set po = p(I). In this case,
we can assume that m, divides my:--m, because the Taylor resolution of I
is not minimal (see also [7, Lemma 2.2]). Then [1,2,...,u] ¢ L, and L, = 0.



Therefore, the length of the Lyubeznik resolution of I with respect to this
order is at most u(I) — 1= pdgS/I.

Moreover if p(I) — height I < 1, then a Lyubeznik resolution of I can be
minimal with respect to the order of monomial generators mentioned in above.
It can be checked by the classification of these ideals; see [7, Theorem 4.4].

But when p(I) — height ] = 2, there exists an ideal I such that all of

Lyubeznik resolutions of I are not minimal.
Example 5. Let us consider the following 2 ideals Iy, Io:

I = (712273, T172L4L5T6Ts, T123T4T5T7T9, L2T3T4T6T7T10),

I, = ($1$2$3$5, T1Z2%4T6, L1T3T4T6T7T8, 5'32333-’134335557139)-
Both of these ideals I satisfy u(I) = 4, pdg S/I = height I = 2, and u(I) —
height ] = 2. The Lyubeznik resolution of I; with respect to this order of
generators is minimal. In fact,

LZ = {[17 2]a [1) 3]) [17 4]}
and Lz = 0. On the other hand, the Lyubeznik resolution of /> with respect
to this order of generators is not minimal. Since [1,2,3] € L3, even the length
of it is bigger than the projective dimension of S/I. In fact, it is also true for
arbitrary orders of generators of I,.

Lastly, we give a squarefree monomial ideal whose Lyubeznik resolution has
the quite short length.

Example 6. Let I be the squarefree monomial ideal generated by the following
10 elements:

T1T2T3, L1%2Ts5, T1T3T6, T1T4L5, T1L4T6, T2L3T4, T2T4T6, T2T5%6, L3T4Ts5, T3L5T6-
Then I is the Stanley—Reisner ideal of the Reisner’s triangulation of the pro-
jective plane. The projective dimension of S/I is given by
4. S/ 3 when char K # 2,
pds S/ = 4 when char K = 2.
The length of the Taylor resolution of I is equal to w(I) = 10, and this is quite
bigger than the projective dimension of S/I. On the other hand, the length of
the Lyubeznik resolution of I with respect to this order of generators is equal

to 4. This number is very close to the projective dimension of S/I. In fact, it
is equal to the arithmetical rank of I (see Yan [14]).
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Ideals generated by some 2-minors

MASAHIRO OHTANI

(Nagoya University)

For a natural number n, let S be a polynomial ring k[X3, ..., Xn, Y1, ..., Ya)
over a field k with 2n variables, [n] the set of natural numbers {1,2,...,n}. For
i,j € [n], [¢,j] denotes the 2-minor

Xi X\ _ vy
det(Yi Yj>—XiY] Y.X;.

In this article, assume that all graphs are simple, i.e., they do not have multiple
edges or loops. For a graph D whose vertex set is [n], we define an ideal Ip of
S as follows :

Ip = ([1, 4] | D has an edge which connects i and j).

Problem 1. What are the ideal Ip and the ring S/Ip?

First, we compute a Grobner basis of Ip as the set of “minimal irreducible
paths” of D.

1 Grobner basis

Recall that the definition of a path of a graph.

Definition 2. A walk P of a graph D is vpe v1€a...mUnm such that (1) each v;
is a vertex of D, that (2) e; is an edge of D which connects v;—; and v; and
that (3) vo < Um.

In addition, P is called a path if v; # v; for each i # j.

Remark 3 This definition is unusual. We usually P = vpejv;€s...€Um a walk
if conditions (1) and (2) hold. So 1-2-3 is a path but 3-2-1 is not.

For a path P = vpeivi€z...mUm, We call an element of the set J(P) :=
{v1,vg, ..., Um—1} & joint of P, and m is called the length of P.

Now we assume that D is simple, so an edge is determined by vertices which
are connected by it. So we express a path P = vge1v1€;...6mUn 88 P = vgV1...Um
simply.

We define an order on the set of walks of D.



Definition 4. For two walks P = vgv;...Up, and @ = uou;...up, of D, we say
that P < @ if vo = ug, Um = up and J(P) C J(Q) hold.

A walk P = vgu;...v,, is minimal if and only if P is a path and there never
exists an edge which connects v; and v; where 7 and j do not adjoin.

Definition 5. We say that a minimal path P = vgu;...v,, is irreducible if there
never exists a joint v; such that vg < v; < V.

Example 6. Let D be the graph

2 3

4 5

This graph D has 10 paths and all paths are minimal. A path 2-4-1-5 is not
irreducible because there is the joint 4 which is more than 2 and is less than 5.

For a minimal irreducible path P = vgv;...v,, we define a binomial gp by
gp = Mp - [vo, Um], where Mp is a monomial

m—1 .
Y,. fp <
Mp:=T] Zn,  Zp:={ 70 2 P25P0
Xpi, i pi>pm

Theorem 7. G := {gp | P is a minimal irreducible path of D} is the reduced
Grobner basis of Ip with respect to the reverse-lexicographic order which is
defined by Y1 > Yo > - >Y, > X1 > Xp > -+ > X,

Example 8. Let D be the graph in Example 6. The ideal I is generated by
4 binomials [1,4], [1,5], [2,4] and [3,5]. By the theorem, the following G is the
reduced Grébner basis :

_J 1,4, 1,9], [2,4], 3,5]
= { Xa[1,2), Xs[1,3], Yi[4,5], YiXs[3,4], YiXaXs[2, 3] }

P = 2-4-1-5 is not irreducible and the corresponding binomial is unnecessary.
In fact, the equation Y;X4(2,5] = X, - Y1[4, 5] + Y1.X5 - [2, 4] holds.

By the theorem, we can prove that Ip is a radical ideal because of the
following easy lemma.

Lemma 9. Let I be an ideal of a polynomial ring S over a field. Assume that
there is a monomial order < such that the initial ideal in.Ip of Ip with respect
to it is generated by square-free monomials. Then I is a radical ideal.

Corollary 10. The ideal Ip is a radical ideal.

So Ip is expressed as the intersection of some prime ideals of S. In the
next section, we construct the prime decomposition of Ip.



2 Prime decomposition

First, we determine whether Ip is prime. For a vertex v of D, N(v) denotes
the neighborhood of v

{z | z and v are connected by an edge of D}.

Definition 11. For a vertex v of D, D is complete around v if there is an edge
of D which connects z and y for any elements z # y of N(v).

Proposition 12. For a graph D, the following conditions are equivalent :
(1) D is complete around all vertices of D,

(2) D is the direct sum of complete graphs,

(3) Ip is a prime ideal.

From now on, assume that Ip is not prime. By the proposition, D has a
vertex v around which D is not complete. For this v, we make two ideals as
follows :

(1) ID+(Xv)Yu)> (2) ID+([x’y] |$:yEN(U))'

These ideals respectively correspond to graphs which made by following oper-
ations :

(1) Clearing the vertex v and all edges such that v is its end, (&)
(2) Adding all edges which connect two vertices in N (v).

In both operation, the number of vertices around which the graph is not com-
plete decrease.

Proposition 13. Ip = (Ip + (X, Yy)) N (Ip+ ([z,y] | z,y € N(v)))

Applying operations (&) until there are vertices around which the graph
is not complete, we can express Ip as the intersection of the ideals which
correspond to direct sums of complete graphs. So we can get the prime de-
composition of Ip.

Examplé 14. Let D be the following graph :
2

3 4

D is not complete around the vertex 1 since N(1) = {2,3,4} holds.
Apllying the operations (&) to 1, we get the following graphs :



3e- a4 3 N 4

ID + (Xlayl) = (Xl,)/l)’ ID + ([2)3]’ [3’4]a [2>4]) = I2(X)

. . X1 X2 X3 X4 .
where X is the matrix Y, v, Y5 Y, and I5(X) denotes the ideal gen-

erated by all 2-minors of X. These ideals are prime, so we get the prime
decomposition Ip = (X,Y;) N I (X).



STRUCTURE THEOREMS OF PROJECTED VARIETIES
ACCORDING TO MOVING THE CENTER

SIJONG KWAK

1. INTRODUCTION

Let V be an (n + 1)-dimensional vector space over an algebraically closed field
k and let X be a non-degenerate reduced closed subscheme in a projective space
P™ = P(V) and R = k|[zo, ...,Zn) be the coordinate ring of P(V). We are mainly
interested in the geometric properties of X and its projections carried by the min-
imal free resolution of the saturated ideal Ix. In general, there is a basic exact
sequence of graded R-modules associated to the embedding X — P™ as follows:

(1.1) 0— R/Ix —>E—->H:(Jx/|pn) —0

where E = @5 H*(X, 0x(£)) the graded module of twisted sections of Ox and
H}(Ix/pn) = @50 H' (P™, Ix/p~(£)) is the Hartshorne-Rao module. For a projec-
tively normal embedding of X, R/Ix = E and H}(Jx/p») = 0. There are many
classical conjectures and known results about simplest linear syzygies (i.e. property
N,) for highly positive embeddings of projective varieties ([5], [12)).

First of all, consider the minimal free resolution of R/Ix as follows;

(1.2) oo Li— Li_y —--+-— L = R— R/Ix — 0 (as R-modules)

where L; = @, R(—i — §)®Pii. Then, one can define that X (or R/Ix) satisfies
property Ngp (cf. [5]) if one of the following conditions holds:

(a) Bij=0for1<i<pandall j > d in the minimal free resolution (1.2);
(b) the truncation (Ix)»q of Ix in degrees > d is generated in degree d and
the minimal free resolution of (Ix)>q is linear until p-th step, namely,

<o > R(—d—p+ 1)®Bp.a-1 e — R(_d)ebﬁl,d-x —~R— R/(IX)Zd — 0.

The case of d = 2 has been of particular interest. For d = 2,p = 1, Ix is generated
by quadrics and N, > means that Ix is generated by quadrics and there are only
linear relations on quadrics. Note that property Nap is the same as property Np
(defined by Green-Lazarsfeld) if the given variety is projectively normal.

One more important projective invariant of a projective scheme X is the Castelnuovo-
Mumford regularity which measures the maximal degree of all syzygy modules in
the whole minimal free resolution of R/Ix. A closed subscheme X C P" is said to
be m-regular if one of the following conditions holds (see [4]):

(a) Bij = 0 for all j > m, i > 0 in the minimal free resolution (1.2), that is,
the i-th syzygy module L; is generated by elements of degree < i+ m — 1;
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(b) H*(P™,Jxpn(m — 1)) = 0 for every ¢ > 1. More precisely,
e i=1, H(P",Ix/pr(m — 1)) = 0 (Castelnuovo-normality)
ei>1, H(Ox(m—1—1%)) = 0 (vanishing not depending on the embedding).

We define reg(X) := min{m| X C P™ is m-regular }. For an integral projective
scheme X in P, it has been a long open problem to show that

reg(X) < deg(X) — codim(X) + 1 (Eisenbud-Goto conjecture ).

Remark that the condition N3 p, Ny, and reg(X) have their own algebraic and
geometric properties respectively. For history and summary, also see [5],[11].

On the other hand, the simplest type of the minimal free resolution of E =
D0 H(X,0x(£)) until p-th step should be of the form:

— R(-p— 1)®ﬂp,1 N R(_3)®ﬁ2,1 . R(_z)@ﬂl,l —R® R(_I)G)c S E=0

where ¢ = codim(V, H°(Ox(1))). In this case, we can say that E satisfies property
Nf (cf. [12]). The property N}',S of F gives us interesting geometric information on
X by using cohomological methods as follows:

(a) Let X C P(V) be a reduced, non-degenerate projective variety and ¢ =
codim(V, H°(0x(1))). If E satisfies property Ni as a R-module, i.e.

oo — R(=2)®P11 ., RO R(-1)®° - E -0,

then X is k-normal for all k > ¢+ 1 and cut out by hypersurfaces of degree
< c¢+2. (Theorem 1.1 in [12]).

(b) Furthermore, if F satisfies property N;,g for some p > 1 and X is k-normal
for all k > kg for some kg < c+1. Then Ix is generated by forms of degrees
< ko + 1 and satisfies property Niy+1,p (Theorem 3 in [2]).

In this note, we are more naturally interested in the simplest syzygies of R/Ix
and geometric properties of both X and its projections by using the mapping cone
construction and the Koszul cohomology method.

Acknowledgements I would like to express my special thanks to Professors C.
Miyazaki and N. Terai for their invitation for me to be able to attend “The 30-th
conference on Commutative Algebra, Japan” held in Fukuoka (2008.11.18-21) and
for their hospitalities during my stay there.

2. GRADED MAPPING CONE CONSTRUCTION UNDER PROJECTIONS
The mapping cone under projection and its related long exact sequence is our

starting point to understand algebraic and geometric structures of projections.

e W=@_ k- z,CV =@k zi: vector spaces over k.

e S1 =klz1,...,z5) C R = k[zo,...,Zy] : polynomial rings.

e M : agraded R-module (which is also a graded S;-module).
e K51(M) : the graded Koszul complex of M as follows:

0=A"WRM— - > NWOM-WeM—-M-—0
whose graded components are K> (M);+; = A'W ® M;.

—100—
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Consider the multiplicative map ¢ : M(—1) X238 M as a graded S;-module homo-
morphism such that ¢(m) = zo - m. Then we have the induced map

7 :Fo = K51 (M(-1)) 25 G, = KJ* (M)
between graded complexes. In each degree, we have
K5 (M(=1))isj = NW @ My L5 NW @ M; = K (M)is

given by B(e; ® m) = e ® Zom where e = 25, A -+ Az, for 1 < 51,...,8 < n,
and m € M;_1. Then @ = x zo also induces the map on homology as follows:

Tor}* (M, k)itj-1 2, Tory (M, k)is;

I I
Hi[KS*(M(-1)]i+; — Hi[K3 (M))i45-

Now, we construct the mapping cone (C. (%), 93) induced by @ such that C, (7)) =
Go PF.[-1] and
o Ci(@)itj = [Gilirs BFicilir; = NW @ M; ® AW ® M.

o the differential 85 : Ci( §) — Ci—1(P) is given by

_(9 @
9% = ( 0 -0 ) :
where 8 is the differential of Koszul complex K5*(M) and 95 0 85 =0.

Finally, the mapping cone (C,.(%), 0 3) becomes a complex over S; and we have the
exact sequence of complexes

(2.1) : 0 — Gy — Co(®) — Fo[-1] — 0.

From the exact sequence (2.1), we have a long exact sequence in homology:

2.2 — Tord (M, k)iy; — Hi(Co(@)ivs —
2.
TorSt, (M, K)irjo1 —— Torgh, (M,k)ir; —

and the connecting homomorphism ¢ is the multiplicative map induced by P.
In the following Lemma 2.1, we claim that TorR(M ,k) can be obtained by the
homology of the mapping cone.

Lemma 2.1. Let M be a graded R-module. Then we have the following natural
isomorphism:
TOI‘?(M, k)i+j = Hi(C.(i_ﬁ))i.{.j.

From the long exact sequence (2.2) and Lemma 2.1, we obtain the following
useful Theorem.

Theorem 2.2. Let Sy = k[z1,...,%s]) C R = k[Zo,1. .. ,Zn) be polynomial rings.
For a graded R-module M, we have the following long exact sequence:

— Tor{ (M, k)it; — TorP (M, k)iy; — Tor!, (M, k)iyj—1 —
&, TorSt (M, k)iss — Tor® y (M, K)i; — Torsty(M, K)irjo1 —
— Tor;2 (M, k)iy; — or;” 1 (M, k)iy; — or; 2 o(M, k)itj—1

—101—



SIJONG KWAK

whose connecting homomorphism § is the multiplz'cative map X Tg.
Proof. It is clear from (2.2) and Lemma 2.1. O

Note that Theorem 2.2 gives us an useful information about syzygies of outer
projections (i.e. isomorphic or birational projections) of projective varieties.
As a first step, we obtain the following interesting Corollary.

Corollary 2.3. Let I C R be a homogeneous ideal such that R/I is a finitely
generated S1-module. Assume that I admits d-linear resolution up to p-th step for
p>2. Then, for1<i<p-—1,
(a) the minimal free resolution of R/I as a graded Sy-module is given as follows:
— Loy — > S1(— d)ea'ald 1 ——)@1_1 1(=d+1i) - R/I -0,
where L; = S1(— d+1—z)$ﬂ*d 11<i<p—1;
(b) in particular, Bpy_, = (-1)'+ Zl<]<z 17468 _1(R/T).
Proof. (a) First, consider the exact sequence

— Torf(R/I,k); — Tord'(R/I,k);—

Tory* (R/I,k); —  Tord(R/I,k); — O.

Since Torf (R/I)] =0 for all j # d and Torg(R/I) = 0 for all j # 0, we obtain
that B8, = A_lfora110<‘7<d—1and,3 =0forall j¢{0,1,...,d—1}.

Note that TorR(R/I),H =0for1<i<p and j#d—1by assumptlon that
I is d-linear up to p-th step. Applying Theorem 2.2 for M = R/I, we have an
isomorphism induced by § = x z,

]
Tor2y (R/I, k) i-1)45 — Tor{ (R/1, k) a-1)+(i41)»
for 1 <i<pandforall j¢{d—2,d— 1}. Hence we conclude that
Torf_‘l(R/I, k)ii-1)+j =0 for 1<i<p and j#d-1
since R/I is finitely generated as an S;-module, which means that
Li=Si(~d—i+1)%%%1 for 1<i<p-1.
(b) Note that we have
(2.3) 0 — Tor?*(R/I,k)iya—1 — Torf(R/I,k)ira_1 — Tor® (R/I,k)ira—2 — 0
for1<i<p-1 such that
Baa(R/T) = By 1(R/T) = B2, 4y (R/D).
Then, by induction on p, we get the desired result. O
Notation 2.4. In this paper, we use the following notations:
® R = kl[zg,...,z,] = Sym(V) and S; = k[zs, Zt41 - .., Ta] = Sym(W): two
polynomial rings where W C V, codim(W, V) = ¢.
o A =PU) = Z(z¢,zt41, -+ ,Tn) is a linear space in P* where U is a t-
dimensional vector space with a basis {zg,z1,- -+ ,Zs_ 1}
o mp: X =Y, =ma(X) C Pt = P(W) is the projection from the center A

and ANX =¢.
(M ) := dimy, Tor(M, k)i+; for a finitely generated R-module M.
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o Hi(F) := @z H(F(0)) and h(F) = dim H*(F) for a coherent sheaf F.

From now on, we consider a projection mp : X — Y; = ma(X) C P(W) where
dimA =t—1>0,ANX = ¢. Then, the following basic sequence

0 — R/Ix — E — H!(Jx) — 0 (as S;-modules)

is also exact as finitely generated S;-modules as Lemma ?7? shows. Furthermore, it
would be very useful to compare their graded Betti tables by the mapping cone as
we see in the subsequent sections.

Proposition 2.5. Let X be a reduced non-degenerate projective variety in P =
P(V). Consider the linear projection mp:X — P(W),Sym(W) = S; from the center
A such that ANX = ¢, A =P(U) = Pt~. Then, we have the following results:
(a) If X satisfies property N3 p, then R/Ix satisfies property Nf_t as Sg-module
for1 <t < p, i.e. it has the simplest syzygies up to (p—t)-th step as follows:
S S¢
oo Sy(—pAt—1)Peer — Sy (—2)®Pr — S, @ S (-1)®* - R/Ix — 0.
(b) More generally, if X satisfies property Nq,p, then R/(Ix)>q has the simplest
syzygies up to (p —t)-th step as Si-module for 1 <t < p,
d-1
=Lyt —-— = Sy(~d)®Prie—s — P Sym*(U) ® Si(~i) — R/(Ix)2a = 0.
=0
where L; = St(-—i—d+1)®ﬁ=‘s'§—l for1 <i<p-tand Sym*(U) = H°(O(3))
is a vector space of homogeneous forms of degree i generated by U.
On the other hand, we have the similar result for E = @,z HO(X,0x(¢)) as
the following proposition shows.

The following theorem gives us a geometric meaning of property Ny, and note
that part (b) was also proved in Theorem 1.1 in [5] with a different method.

Theorem 2.6. Let X be a reduced non-degenerate projective variety satisfying
property Ngp in P™. Consider the linear projection ma:X = Y, Cc PPt = P(W)
from the center A such that ANX =¢, A= P(U) = Pt~1,t < p. Then, we have
the following results:
(a) every fiber of mp is (d — 1)-normal, i.e. reg(ry (y)) < d for ally € Yy;
(b) reg(X N L) < d for any linear section X N L as a finite scheme where
L = P*, 1 < ko < p. In particular, for a projective variety satisfying
property N p, there is no (p+ 2)-secant p-plane.

Proof. For a proof of (a), consider the minimal free resolution of R/(Ix)»q in
Proposition 2.5.(b), namely,
d-1
- = Sy(~d) PP — D Sym (V) @ Si(~i) = B/(Ix)24 = 0
=0
where Sym*(U) = H®(04(3)) is a vector space of homogeneous forms of degree ¢
generated by U. By sheafifying this exact sequence and tensoring & Opn-:(d — 1),
we have the surjective morphism of sheaves
d—-1
- — P Sym’(U) ® Opn-+(d — 1 = 1) — TAsOx(d—1) — 0.

=0
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For all y € Y;, we have the following surjective commutative diagram (*) by
Nakayama’s lemma:

d-1

DSym' (V) © Opn-e(d~1-9) ®k(y) — mA.Ox(d-1)Qk(y) — 0

i=0
I (%) l
HO((A, 9), O(aq)(d — 1)) — H'(Ony-1y(@=1)) —0.

Therefore, as a finite scheme, w4 ~1(y) is (d — 1)-normal for all y € Y.

For a proof of (b), suppose that reg(X N L) > d for some linear section X N L
as a finite scheme where L = P%0 for some 1 < ko < p. Then we can take a linear
subspace A; C L of dimension kg — 1 disjoint from X N L. Then X N L is a fiber
of projection ma, : X — P"~ko—1 at 7, (L). However, this is a contradiction by
(a). O

3. STRUCTURE THEOREMS OF PROJECTED VARIETIES ACCORDING TO MOVING
THE CENTER

For a projective variety X C P", property N, is a natural generalization of
property Np. The following theorems show that property Na, plays an important
role to control the normality and defining equations of projected varieties under
isomorphic and birational projections up to (p — 1)-th step.

Theorem 3.1. (Isomorphic projections of varieties satisfying Nyp)
Let X CP™ be a reduced non-degenerate projective variety satisfying property Ny p
for some p > 2. Consider any isomorphic projectionmp : X — Y, CP*t t < p—1.
Suppose X is m-normal for all m > no(X). Then we have the following:
(a) H'(Ix(m)) = H'(Jy,(m)) Vm > t+1. Consequently Y; is m-normal if and
only if X is m-normal, and'Y; is m-normal for V. m > max {no(X),t+1};
(b) Y: is cut out by equations of degree at most t + 2 and satisfies property
Niy2,p-t;
(c) reg(Y:) < max{reg(X), ¢ +2}.

In the complete embedding of X C P(H%(0x(1))), property Na, is the same as
property Ny. In this case, we have the following Corollary which is already given
in Theorem 1.2 in [12] and Corollary 3 in [2].

Corollary 3.2. Let X C P(H%(0x(1))) = P" be a reduced non-degenerate projec-
tive variety with property Ny for some p > 2. Consider an isomorphic projection
X =Y, CP(W) =Pt ¢ = codim(W,H(Ox(1))),1 <t < p-—1. The
projected variety Y; C P(W) satisfies the following:

(a) Y: is m-normal for allm >t +1,

(b) Y; is cut out by equations of degree at most (t+2) and moreover Y; satisfies

property Nayipt,
(c) reg(Y:) < max{reg(X),t+ 2}.

Theorem 3.3. (Birational projections of varieties satisfying N, ;)

Let X C P™ be a reduced non-degenerate projective variety satisfying property Ny
for some p > 2. Suppose X is m-normal for all m > ng(X) and consider a
birational projection g : X — Y1 C P*~! where g € Sec(X) U Tan(X)\ X. Then
we have the following:
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(a) H!(Jx) = H!(Jy,). Consequently, Y1 is m-normal if and only if X is
m-normal for all m > 1, and Yy is also m-normal for all m > no(X);

(b) Yy is cut out by at most cubic hypersurfaces and satisfies property N3 p_1;

(c) reg(Y1) < max{no(X) + 1,reg(Oy;) + 1}

e Moving the center of projection

So far, we have shown the uniform properties for any projection morphism of a
projective variety with the condition Na,p,p > 2. On the other hand, the following
propositions show that the number of quadric equations and the depth of projected
varieties depend on moving of the center of projections. For a complete embedding
X c P(H(L)), the same result is given in [16].

Proposition 3.4. Let X C P™ be a reduced non-degenerate projective variety sat-
isfying property Nap, p > 2. Consider the projection mq X —Y; C P*1 where
q ¢ X. Let £4(X) is the secant locus of the projection mq. Then the following holds:
(a) RO(P™1,Ty,(2)) = RO(P™,Tx(2)) — n+ s where s = dim (X)),
(b) depth(Y;) = min{depth(X),s + 2} under the condition that H'(Ox(j5)) =
0,V < —i,1 <4 < dim(X).

We give some examples related to our proposition.

Example 3.5. (A non-normal variety with non-vanishing cohomology) For
a projective normal variety X, let 6(X) := min{depth Ox ;| = is a closed point}.
Then Hi(Ox(£)) = 0 for all £ << 0 and i < §(X) by vanishing theorem of Enriques-
Severi-Zariski-Serre. In the proof of proposition 3.4, for s = 0 we have an interest-
ing example Y; such that Y7 has only one isolated non-normal singular point and
HY(Oy, (£)) # 0 for all £< 0. In this case, 1 : X —» Y1 is a smooth normalization
of Y1 .

The Proposition 3.4 can be extended to the inner projections by letting s =
dim(X) as follows.

Proposition 3.6. Let X be a smooth projective variety, L a very ample line bundle
and (X,L) satisfies property Np,p > 1. For the complete embedding X — P" =
P(H(L)), consider the inner projection Y1 = ma(X \ {q}) in P*~! for a point
g € X \ Trisec(X). Then we have the following:

(a) hO(P™1,Ty,(2)) = R°(P™,Tx(2)) —n+ dim(X);

(b) depth(Y;) = depth(X).

On the other hand, for a projective variety X C P™ with the condition Np p,p > 2
and q ¢ X, we obtained that 7,(X) satisfies at least property N3 p_1 by Theo-
rem 3.7 and Theorem 3.3. Thus, it is quite natural to ask property N3 p—1 for
the projected varieties under some assumptions. Property N2, is rigid : if X is
a reduced subscheme in P™ with the condition Npp,p = codim(X,P"), then X
is 2-regular([5]), but Property Nap is very subtle under outer projections in gen-
eral. However, for general inner projections, the pro jected varieties satisfy property
Nz p-1. As an example, consider the rational normal curve C = v4(P!) in P2 we
have the following equivalent condition as follows (see [1], [15]): let S¢(C) be the
¢-th higher secant variety of C' with dim S¢(C) = min{2¢—1,d}. Then we have the
following filtration on higher secant varieties of C:

C ¢ Sec(C) = 5%(C) ¢ S*(C) G-+ & sl#l(c) ¢ stei+1(C) =P¢ and
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(a) mg(C) C P4~1 is a rational normal curve with property N2 4 for g € C,
(b) mg(C) C P*~! is a rational curve with one node satisfying property Nayg_3
for g € Sec(C) \ C,
(c) mg(C) C P47! is a smooth rational curve with property Np,_3 for ¢ €
S¢(C)\ s1(0).
Note that all projected curves are m-normal for all m > 2 and thus 3-regular.

On the other hand, the inner projection of X from gq is a rational map defined
on X \ {q}, so we take Zariski closure of the image Y. Geometrically, this is just
adding points, which is the image of tangential projection from g, to mq(X \ {q}).
Algebraically, this process corresponds to just the elimination of 1st variable g of
ideal Ix (so, Y is defined by Iy = Ix (1S ideal-theoretically).

X o T ﬂq(X\{Q})

|
o Zariski closure
Bly(X) —>Y C P(W)
From (1], we know that this morphism 7 is an embedding if ¢ € X \ Trisec(X).
We also have the following interesting behavior for syzygies of inner projections.

Theorem 3.7. (inner projection of varieties satisfying N, ,)

Let X C P™ be a non-degenerate projective variety satisfying property Ny, for some
P 2> 2 and q be a smooth point of X. Consider the inner projection mg: X =Y C
P"~1. Then we have

(a) There is a surjection of syzygies up to p — 1-th step, i.e.
3 Torf(Ix)iy; — Tors  (Iy)i—14; for 0<i<p—1
(b) The projected variety Y is cut out by quadrics and satisfies property Ny p_1.
Proof. See [10] for details. O
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DUALIZING COMPLEX OF A TORIC FACE RING
—NORMAL AND NON-NORMAL CASES—

KOHJI YANAGAWA

1. INTRODUCTION

Stanley-Reisner rings and affine semigroup rings are important subjects of com-
binatorial commutative algebra. The notion of toric face rings, which originated
in an earlier work of Stanley [8], generalizes both of them, and has been studied
by Bruns, Romer and their coauthors recently (e.g. [1, 3, 5]). Contrary to these
classical examples, a toric face ring does not admit a nice multi-grading in its most
general setting. It makes the study of this ring complicated. It is also noteworthy
that a toric face ring is an example of Yuzvinsky’s “ring of sections” ([10)).

A toric face ring k[M)] supported by a finite regular cell complex X is built of
affine semigroup rings k[M,] with dimk[M,] = dim o + 1 for each cell o € &. To
get k[ M], we “glue” k[M,] along with X.

In this article, we describe a dualizing complex of k[M]. When k[M,] is normal
for all 0 € X, then the description is pretty concise. The results in this part are joint
work with R. Okazaki ([7]). In the general case, our description is a generalization
of “Ishida complex” ([6]) for an affine semigroup ring.

For the proof of the former case, we introduce the notion of squarefree modules
over R := k[M]. As in the case of affine semigroup rings ([9]), from a squarefree R~
module M, we assign a constructible sheaf M* on (the underlying topological space
of) X. Our dualizing complex (more precisely, a complex which is quasi-isomorphic
to the dualizing complex) If, is composed of squarefree modules. In our context,
(I3,)* is Verdier’s dualizing complex of X with coefficients in k, and RHompg(—, I})
corresponds to Poincaré-Verdier duality on X. From this observation, we see that
the Cohen-Macaulay (resp. Gorenstein®, Buchsbaum) property of R is a topological
property of the underlying space of X. Unfortunately, there is not enough space to
introduce this direction here. Consult [7] for detail.

2. NOTATION AND CONSTRUCTION

Let X be a finite regular cell complex with the intersection property, and X its

underlying topological space. More precisely, the following conditions are satisfied.
(1) 0 € X, X = U,cx 0, and 0 € X are pairwise disjoint;

(2) If 0 # 0 € X, then, for some i € N, there exists a homeomorphism from

an i-dimensional ball {z € R* | ||z|| < 1} to the closure & of o which maps

{z € R*|||z|| < 1} onto o (In this case, set dimo =1 and call ¢ an i-cell);

The second author is partially supported by Grant-in-Aid for Scientific Research (c)
(n0.19540028).
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(3) For o € X, the closure & can be written as the union of some cells in X
(4) For 0,7 € X, there is a cell v € X such that T =3 N7 (here v can be ().

We regard X as a partially ordered set by o > 7 Lo

Example 2.1. We shall give two typical examples of such a cell complex. One is
associated with an (abstract) simplicial complex A C 2. Take its geometric real-
ization |A|, and let p be the map giving the realization. Then X := |A| together
with {the relative interior of p(F) | F € A} is a cell complex with the above con-
ditions. The other example is a polytope P. In this case, P itself is the underlying
topological space; the cells are the relative interiors of its faces.

Definition 2.2. A conical complez (X, X) on X consists of the following data.

(1) ¥ ={C, | 0 € X} is a set such that C, C RY™7+! i5 a finitely generated
pointed cone with dim C, = dimo + 1. (The word “pointed” means that
{0} is a face of C,.)

(2) An injection ¢, : C; — C, for 0,7 € X with o > 7 satisfying the following.

(a) to,r can be lifted up to a linear map R4m™+1 —, Rdimo+1,

(b) The image ¢, -(C;) is a face of C,. Conversely, for a face C’ of C,, there
is a sole cell 7 with 7 < ¢ such that ¢, ,(C;) = C'. Thus we have a one-
to-one correspondence between { faces of C, } and {7 € X |7 <o }.

(€) too =idg, and tyr © Lry = Ly for o, 7,0 € X with o > 7 > .

A typical example of a conical complex is a pointed fan, i.e., a finite collection ¥
of pointed cones in R™ satisfying the following properties: (1) for ' c C € &, (' is
aface of C' if and only if C' € 3; (2) for C,C" € &, CNC" is a face of both C and C".
In this case, as an underlying cell complex, we can take { rel-int(CNS™1) | C € T },
where S™~! denotes the unit sphere in R, and the injections ¢ are inclusion maps.

Example 2.3. There exists a conical complex which is not a fan. In fact, consider
the Mobius strip as follows. Regarding each rectangles as the cross-sections of

U

z

3-dimensional cones, we have a conical complex that is not a fan (see [2]).

Definition 2.4. A monoidal complez M supported by a conical complex (X, X)
is a set of monoids {M, },cx with the following conditions:

(1) M, C Z%™7*! for each ¢ € X, and it is a finitely generated additive
submonoid (so M, is an affine semigroup) with ZM, = Zdm7+1;
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(2) M, C C, and R5oM, = C, for each o € X (hence the cone Cj, is automat-
ically rational);

(3) for 0,7 € X with o > 7, the map (g : C, — C, induces an isomorphism
M., = M, Nty (C:) of monoids.

For example, let & be a rational pointed fan in R®. Then {CNZ" | C € &}
gives a monoidal complex. More generally, a family of affine semigroups { M¢ C
Z" | C € T} satisfying the following conditions, forms a monoidal complex; (1)
R>oM¢ = C for each C € %; (2) Mg N C' = Mg for C,C" € & with C' C C.

For a conical complex (¥, X) and a monoidal complex M supported by X, we
set

M| = lim M, |ZM| := lim ZM,,
ocEX oEX
where the direct limits are taken with respect to the inclusions ¢, , : M, — M, and
induced map ZM, — ZM,, respectively, for o, € X with o > 7. Let a,b € |ZM]|.
If there is some o € X with a,b € ZM,, there is a unique minimal cell among these
0’s by our assumption on X. Hence we can define a +b € |ZM]|.

Definition 2.5. Let (Z,X) be a conical complex, M a monoidal complex sup-
ported by ¥, and k a field. Then the k-vector space

kM] = P ki

a€|M|

equipped with the following multiplication

o b totb  if a,b € M, for some o € X;
~ o otherwise,

has a k-algebra structure. We call k[M] the toric face ring of M over k.

It is easy to see that dim R = dim X 4+ 1. When ¥ is a rational pointed fan in R™
and M, = C, N Z" for each o, k[M] is just an earlier version due to Stanley ([8]).
Henceforth we refer a toric face ring of M supported by a fan as an embedded toric
face ring. Every Stanley-Reisner ring and every affine semigroup ring (associated
with a positive affine semigroup) can be established as embedded toric face rings.

An embedded toric face ring always has the natural Z"-grading such that the
dimension, as a k-vector space, of each homogeneous component is less than or
equal to 1. However a non-embedded one does not have such a grading.

Example 2.6. Consider the conical complex given in Example 2.3, and choose each
rectangles to be a unit square. In this case, we can construct a monoidal complex M
such that u, v, w, T, y, z are generators of M. Weset S := k[Xy, Xy, Xu, Xz, Xy, Xz],
where X, ..., X, are variables. Clearly, k[M,] is a polynomial ring if dimo <1,
and a 3 dimensional normal semigroup ring of the form kia, b, c,d]/(ac — bd) if
dim o = 2. Therefore we conclude that

k[M] = S/(X:BX'U - Xqu, Xsz - XyXunXa:Xz - XuX'wa XuXvXun XuX'qu)-
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Let R := k[M] be a toric face ring, Mod R the category of R-modules, and
mod R its full subcategory consisting of finitely generated modules.

Definition 2.7. M € Mod R is said to be ZM-graded if the following conditions
are satisfied;
(1) M = D ,czr Ma as k-vector spaces;
(2) t*- My C Myyp if a € M, and b € ZM,, for some 0 € X, and t*- M = 0
otherwise.

Clearly, R itself is ZM-graded. An ideal of R is ZM-graded if and only if it is
generated by monomials (i.e., elements of the form ¢?). Of course, since R is not a
graded ring in the usual sense, the word “ZM-graded” is abuse of terminology.

Let Modza R (resp. modzag R) denote the subcategory of Mod R (resp. mod R)
whose objects are ZM-graded and morphisms are degree preserving (i.e., f : M —
N with f(M,) C N, for all a € |ZM|). It is clear that Modzy R and modzy R
are abelian.

3. CECH COMPLEX AND DUALIZING COMPLEX (NORMAL CASE)

In the rest of this article, M is a monoidal complex supported by a cell complex
X, and R :=k[M)] is its toric face ring. Set d := dim R (hence dim X =d — 1).

Unless otherwise specified, the results in this section are taken from the joint
work [7] with Okazaki.

Lemma 3.1. Let M € Modza R, and let T' be a multiplicatively closed subset of
R consisting of monomials. Then T~*M € Modza R.

Proof. Take any z/t* € T~*M with a € [M|, b € |ZM)|, and = € M,. If there is no
o € X with a,b € ZM,, then z/t* = (zt*)/t** = 0; otherwise, b — a is well-defined.
So set deg(z/t*) = b — a. O

For 0 € X, set T, := {t* | a € M, } C R. Then T, forms a multiplicatively
closed subset consisting of monomials. Well, set

- -1
Ly= @ T,'R
oeX
dimo=i—1

and define 0 : Ly, — L by
oz)= Y e(r,0): fro(x)

T>0
dimr=1

for z € T;'R C L%, where e(o,7) : X x X — {0,%1} is an incidence function
on X and f,, is a natural map T, 'R — T 'R for 0 < 7. Then (L%,d) forms a
complex in Modzn R:
Lk:O—»L%LL}%-—a—)---i)L%—ﬂO.
We set m := (t* | 0 # a € |/M|). This is a maximal ideal of R.
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Proposition 3.2 (cf. [5, Theorem 4.2]). For any R-module M,
Hi (M) = H'(LR, ®r M) (Yi€Z).
The proof for the Z"-graded case given in [5] also works here. (Moreover, the

proof is essentially same to that of the corresponding statement for an affine semi-
group ring.)

For ¢ € X, a monomial ideal p, := (| a € [M|\ M) of R is prime. In fact,
the quotient ring k[o] := R/p, is isomorphic to the affine semigroup ring k[M,].

We say R is cone-wise normal, if k[o] is normal for all 0 € X. We now describe
the dualizing complex of R in the cone-wise normal case. Set

I = EB k(o]
geX
dimk{o]=—1i
fori=0,...,d, and define I5* — Iz**" by
T — Z (o, 7) - pro(z)

dimk(r]=i—-1
<0

for z € k[o] C I, where p,, is the natural surjection k[o] — k[r]. Then
I&:O——)Iﬁd—rI};d+l———>~--—+I%——>0
is a complex.

Theorem 3.3. If R is cone-wise normal, then Iy is quasi-isomorphic to the nor-
malized dualizing complez Dy, of R.

If M is embedded (ie., R is Z"-graded), the assertion can be easily proved
by usual “graded” argument. However, in the general case, we need much more
technical argument. The rest of this section is devoted to a sketch of the proof.

The dualizing complex D} is of the form

0— P Er(R/p)— & ErR/p)— - & Er(R/p) -0,
p€Spec R, pESpec R, p€Spec R,
dim R/p=d dim R/p=d-1 dim R/p=0

where Er(R/p) is the injective envelope of R/p and cohomological degrees are given
by a similar way to If. :
Lemma 3.4. For 0 € X with d, := dimKk|o], there is a canonical embedding
k(o] — ng". Via this embedding, I}, is a subcomplex of Df.

Proof. Since ko] is normal, its canonical module is just the ideal J, := (t* | a €
rel-int(C,) N M, ) of k[o]. By the exact sequence 0 — J, — klo] — Kkl[o]/J, — 0
with dim(k[o]/Js) < do, We have

klo] = Extz*(J,, D}) = Ker(Homg(Js, D) — Hompg(Js, D% ™))
= {z € Dz* | p,z =0 and Opy(Joz) =0 } € Dp*.
So we get the first assertion.

—113—



To prove the second assertion, note that klo] is a Z%-graded ring. Let Dy
(resp. "Dy;,,) be the usual (resp. Z%-graded) dualizing complex of k[o]. It is well-
known that Dn.([a] is an injective resolution of *Dll‘({a]’ and the latter is a subcomplex
of the former. Since Dy, & Homg(k[o], D), Dg(,) can be regarded as a subcom-
plex of Dy. Hence "Dy, is a subcomplex of D%, and we have a (non-canonical)
inclusion *DB:IZT = *Exoi(klo]) — Dg%, where *Eyp,(k[o]) is the injective enve-
lope of k[o] in the category of Z%-graded k[o]-modules. Note that the “positive
part” @ en, [*Eiio) (k[o])]a of *Exjs)(k[o]) is isomorphic to k[o]. Since the inclusion
*‘DII.([a'] — D% induces quasi-isomorphism Homk[a](Ja,*D,;[a]) = Homg(J,, Dy) &
k[o], the canonical inclusion k[o] — Dz% is nothing other than the positive part
klo] = @,em, ["Puo) (k[o])]a through the inclusion *Eypy(k[o]) — Dz%. For 7 € X
with 7 < o, k[7] is a quotient ring of k[s], and "Dy = Homyoy(K[7],"Dg,,)) is a
graded subcomplex of * ko) Lhe canonical inclusion k[r] — Dyp* also given by
the positive part of *Dk_[f]’ = "By (k[r]) — D;ldT. Summing up these facts, we see
that Iy is a subcomplex of Dj. See [7] for detail. O

Definition 3.5. We say M € modzu R is squarefree, if there is an exact sequence
of the form
0—M— @k[a]”” - @k[a]m" (Ing, m, € N)
ogeX ogeX

in modza R. Let Sq R be the full subcategbry of modza R consisting of squarefree
modules.

Lemma 3.6. Sq R is an abelian subcategory of modza R with enough injectives,
and indecomposable injectives in this category are K[o]’s.

Let Inj-Sq be the full subcategory of Sq R consisting of all injective objects,
that is, finite direct sums of ko] for various o € X. As is well-known, the bounded
homotopy category K®(Inj-Sq) is equivalent to D*(Sq R). We see that K?(Inj-Sq) >
J* + Hom%x(J*,I}) € K°(Inj-Sq) defines an exact functor D : K®(Inj-Sq) —
K®(Inj-Sq)°P. '

Lemma 3.7. There is the following commutative diagram,;
U

Db(Sq R) & K®(Inj-Sq) Db(Mod R)
Dl 1RH°m(—»D?z)
K*(Inj-8q)® — D*(Mod R)®,
where U is the functor induced by the forgetful functor Sq R — Mod R.

Proof. Since Iy is a subcomplex of Dy, by Lemma 3.4, we have a chain map
D(J*) = Hom%(J®, I) — Homyk(J*, Dy) = RHompg(J*, D}),

which gives a natural transformation ¥ : UoD — RHompg(—, D)o U. It is easy to
see that ¥(k[o]) is isomorphism for all o € X (k[o] is a normal semigroup ring, and
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we can use “graded” argument). Hence ¥ is a natural isomorphism by a well-known
result [4, Proposition 7.1] on derived categories. ]

Since R € Sq R, we have I, = D(R) & RHom(R, D}) = D} in D*(Mod R) by
Lemma 3.7. This completes the proof of Theorem 3.3.

4. DUALIZING COMPLEX (NON-NORMAL CASE)

We can define the ZM-graded Matlis duality (—)¥ : Modzsm R — (Modza R)P
in a natural way. By an argument similar to the last step of the proof of The-
orem 3.3, we have the following. Since R is not (graded) local, this is not very
trivial.

Proposition 4.1. If R is cone-wise normal, the Matlis dual (Ly)V of the Céch
complez L%, is quasi-isomorphic to the dualizing complex D%.

In this section, we show that the above fact holds in general (i.e., even if Ris
not cone-wise normal).
Set

M, - M :={a—b|a€M,,beM, for some T >0} C|ZM]|
For ¢ € M, — M, let t¢ be a basis element with degree c, and
E (M) := (ts|ce M, — M)
the k-vector space spanned by these elements.
We can regard E,(M) as a ZM-graded k[M]-module by
o e {tg” if a + c exists and a + c € M, — M
? 0 otherwise.

Then E,(M) is the ZM-graded Matlis dual of Rr,.

Remark 4.2. As shown in the proof of [5, Theorem 5.1], if M is embedded, E;(M)
is the injective envelope of k[o] in the category of Z"-graded R-modules. For T € X
with 7 > &, the submodule Homg (k[7], E,(M)) of E,(M) is

(t2*|a € M,, be M,),
which is isomorphic to the injective envelope of ko] in the category of Z% -graded
k[7]-modules (note that k[o] is a quotient ring of k(7] in this case).

For 0,7 € X with o > 7,

t% —s

g

2 faeM,-M,
0 otherwise
gives an R-homomorphism g, , : E;(M) — E;(M). In fact, g, is the ZM-graded

Matlis dual of the natural map Ry, — Ry, (note that T, D 7T’ in this case).
We have a complex Jg of the form

0 P EM—- P EM--— D EM) - E(M) =0,

gEX geX oEX
dimo=d-1 dimo=d-1 dim =0
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O+ Es(M) 3 2 +— Z £(0,7) - gro(z) € @ E.(M).

dim r=i-1 dim 7=i-1
T7<0o

We put the cohomological degree of @ ;. ,;_; E-(M) to —i. Clearly, Jy is the
ZM-graded Matlis dual of the Céch complex L$,.

Theorem 4.3. The complez J§, is quasi-isomorphic to the normalized dualizing
complex Dy, of R.

Outline of the proof. For each o € X, set M,, := Z% N Cs. Then M = {M, }oex
is a monoidal complex supported by X again. Let R := k[M] be the toric
face ring of M. Naturally, R is a subring of R and J} is a subcomplex of J

(here we regard Jz’é as a complex of R-modules). Since R is cone-wise normal,

% Is quasi-isomorphic to the dualizing complex D% by Proposition 4.1. Note

that D% = Hom%(R, D}). Via the injection R R, we have a chain map
¢: Dy = Hom}c(ﬁ, D%) — Hompg(R,Dy) = D%. Repeating the argument in
the previous section (after suitable modification), we can prove that the composi-
tion 5

Jp — Jz — D} — Dy
is a quasi-isomorphism. O

Corollary 4.4. R is Cohen-Macaulay (resp. Gorenstein) if and only if so is the
local Ting Ry,.
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Integral closure algorithms

Anurag Singh and Irena Swanson

Let’s first look at three examples of integral closure:

1. (Nagata) Let k be a field of characteristic 2, let X,Y,Z be indeterminates
over k, and let by, by, ... be countably many elements of k such that for all n,
[k2(by,...,bs) : k?] = 2". Then the integral closure of the three-dimensional
Noetherian local domain

KXY, ZKY Y bauX' + 2 boin Z')

is not Noetherian.

9. Let R = Z[V/D)], where D is a non-zero integer. Write D = gn? for some
square-free integer ¢ and some integer n. Then

= Z[‘-*g@] ifg=1 mod 4;
Z[\/é] ifg#£1 mod 4.

3. Let R be a monomial algebra, i.e., R = klz2: a € E] C k[z1,...,%4), where &
is a subsemigroup of N¢. Then R is also a monomial algebra, and

R = k[z®: a € ZENQxE].

If we are interested in algorithms for computing the integral closures of rings, we
probably want to find a finite set of generators of R over R. Thus, the input rings
had better not be as in Example 1 above; not only is the integral closure of that
ring not module-finite over R, it is not even Noetherian.

The integral closure of the ring in Example 2 above was determined directly, not
via a step-by-step algorithm. Many other examples of integral closures by theorems
are known, starting with Dedekind, then more examples in the 1930s by Albert [1],
[2], and many more by others. A more recent paper is due to Tan and Zhang [15].
In the rest of this paper, we concentrate not on such theorems, but on step-by-step
algorithmic procedures.

Bruns and Koch in Normaliz [3] implemented a program that computes efficiently
the integral closures of finitely generated monomial algebras, as in Example 3. The
theory behind Normaliz is explained in [4]. However, that algorithm does not extend
to the computation of the integral closures of general affine domains.
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Our interest lies in describing algorithms for the integral closure of general com-
putable integral domains, such as affine domains. The first general method was
described by Stolzenberg in 1968 [14], and was improved by Seidenberg in (11, 12].
Their method was not very algorithmically constructive or effective. The first effec-
tive procedure, from the mid-1990s, is due to de Jong [5], based on the 1971, 1984
work of Grauert and Remmert [7, 8]. However, computation of integral closure is
very time and memory-consuming, and many times the established symbolic com-
puter algebra computer systems do not return an answer, so a search for different
algorithms continues.

In this article we start by reviewing the history of the computation of integral
closure in greater detail, and at the end we present our more recent algorithm [13],
based on the work of Leonard and Pellikaan [9]. All the methods up to the Leonard—
Pellikaan one successively approximated the integral closure “from below,” namely,
by building successively strictly larger rings contained in the integral closure. The
new algorithm instead starts with a finitely generated module over R that contains
the integral closure, and the successive steps produce strictly smaller submodules,
eventually terminating in the integral closure “from above.” This algorithm only
works in prime characteristic. We implemented our algorithm in Macaulay2, and
sometimes our algorithm computes the integral closure faster than de Jong’s. We
show computation comparisons at the end.

Here is a summary of general procedures for computing the integral closure:

Stolzenberg-Seidenberg:

1. Find a module-finite extension R’ of R that satisfies Serre’s condition (R;).
Details. We assume that there exist units u;,us,... in R whose differences
are also units. Let P be a prime ideal of height 1 such that Rp is not regular.
Let a,b be part of a minimal generating set of PRp. Then there exists 4 such
that u,z++a is integral over Rp and is not in Rp.

2. Compute a primary decomposition of cR’, where ¢ is an arbitrary non-zero
element in the conductor of R'.

3. Under the assumption that R’ satisfies (R,), the integral closure of R equals

o the intersection of the minimal components of cR’

Cc

Note that. the existence of infinitely many units as in 1. is not constructive. How-
ever, the finding of integral elements that are not in the ring, as in 1., as given in
the Stolzenberg and Seidenberg articles, is constructive, after establishing a Noether
normalization A of R and a conductor element of c of R that is a non-zero element
of A. It relies on the structure theorem of finitely generated modules over princi-
pal ideal domains (which A is after localizing at any prime ideal minimal over (c).
The existence of c is guaranteed if R is separably generated over a subfield, and
in general, Seidenberg’s [12] gives a method for handling the non-separably gener-
ated case. Neither Stolzenberg nor Seidenberg discuss how one computes primary
decompositions as in 2.
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Grauert-Remmert-de Jong:

The crucial theorem is the following. Let J be an integrally closed ideal such
that V(J) contains the non-normal locus. Then Homg(J, J) = R if and only if R is
integrally closed.

In case of affine domains over perfect fields, by the Jacobian criterion, one can
take in the theorem J = y/Jgr/x or J = c—IR_/k- Then Hompg(J, J) is a ring between R
and R, and if R # R, then Hompg(J, J) is strictly larger than R. Repeat with R’ in
place of R. This is the algorithm.

The computation of the integral closure of an ideal in general requires the compu-
tation of the integral closure of the Rees algebra of an ideal; thus if in the procedure
above we used J = -J_RF’ we would have to compute the integral closure of a ring for
which the integral closure is probably harder to compute. Thus instead one always
takes J = /Jrsk. This is still a difficult computation, but more doable, due to the
work of Eisenbud, Huneke, and Vasconcelos [6]. The more variables there are, the
more time-consuming it is to compute Jg/x. After one passes to the ring Hompg(J, J),
the number of variables typically increases, making it even more difficult to compute
the integral closure.

A simplification in characteristic zero is due to Lipman (10):

Lipman:
In characteristic 0, the Grauert-Remmert-de Jong conditions are equivalent to
Homp(J™!,J~!) = R, where J = Jg/x and J~! = Hompg(J, R).

Vasconcelos’s algorithms in characteristic 0:

Vasconcelos [16, 17] proved two different methods for computing the integral
closure. He replaced some steps in the de Jong’s algorithm, and for his second
algorithm, Vasconcelos established an upper bound on the number of steps.

1. Compute a Noether normalization A of R.

2. Set R** = Homu(Homu(R, A), A). This is a subring of R that satisfies (Sz).

3. If R satisfies (R;), so does R**, hence R™ is the integral closure of R. If R
does not satisfy (R;), then apply the Grauert-Remmert—de Jong or Lipman’s
step to get a strictly larger ring, then proceed with double dual as above.

Here is another version, with effective bound S owi pe1 MAp/J. 4/kAp) on the num-
ber of steps:

1. Cet a Noether normalization A’ of R, and r € R such that Q(A)(r) = Q(R).
Set A = A'[r]. Then A is Gorenstein, A C R is module-finite, Q(A) = Q(R).

9. Set R = Hom4(Homa(R, A), A). As before, R C R' CR, R satisfies (53).

A different algorithm in prime characteristic:
(Leonard-Pellikaan 03, Singh-Swanson 08). This is a new method that first
computes a module-finite extension Vo of R that contains R, and then successively
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computes submodules. For simplicity we state the result for affine domains R in
characteristic p.

1. Let D be a-non-zero conductor element of R.
2. Set Vp = %R. Fore>0,set Vo1 ={f € V.: fP € V.}. Then

VW22V, 2132 -

are algorithmically constructible R-modules.
3. The descending chain stabilizes, and if V, = V,,1, then R = V,.

In general, there is no descending chain condition for modules between R and
Vo, but the given construction does terminate. There is a theoretical upper bound
on the number of steps needed for termination, namely, if D is a non-zero conductor
element such that V5 = %R, and if for all Rees valuations v of the ideal DR,
v(D) < p°, then V, in the construction equals the integral closure of R.

We end this paper with a table of performance comparisons between the de
Jong’s algorithm and ours. As our algorithm uses the Frobenius homomorphism
(raising ring elements to pth powers, where p is the characteristic of the ring), it is
expected that as p increases, our algorithm performs worse. But it is not always
too bad, see below. All computations were done in Macaulay 2 on a Mac Book Pro,
and the times are measured in seconds.

Computing the integral closure of Z,[z, y,u,v]/(z%v — y?u):
characteristic p 2 3 ) 7| 11| 13| 17| 37| 97

LPSS 0.0410.0310.04]0.040.040.050.05]0.13 [0.59
de Jong 0.0810.090.09/0.090.14]0.15{0.15|0.15 [0.15

There are many cases where our algorithm performs much better. In the sub-
sequent tables we give examples of this. Note that * denotes that the computation
did not finish in 6 hours.

Computing the integral closure of Z,[u, v, w, z,y, 2]/ (u?z* + wvy* + v?2%)
characteristic p 2 3 5| 7 11

LPSS 0.0710.22 9.67 143 | 12543
de Jong 1.16 * x| * *

Computing the integral closure of Z,[u, v, w, z, y, 2]/ (u?zP + wvy® + v22P)

characteristic p 2 3 5 7| 11] 13(17(19| 23

LPSS 0.06 10.07| 0.09] 0.27]1.81/4.89 /26 |56 {225
de Jong 0.16]1.49|75.00 4009 * % | k| %
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Computing the integral closure of Zp|zy, . - - , zg) modulo the kernel of the map to
Z,|z,y, z,t] mapping z1 — 23, Ty oy — 2, T3 = 22, Ty > T, Ts o Yt, Te > TZL:

characteristic p| 2 3 )
LPSS 0.4[2.08 1198.17
e Jong * * *

Computing the integral closure of Zplxy, - - , 5] modulo the kernel of the map
to Z,[z,y, 2] mapping 1 — Byl zyy— 2%, T3 2, T 22, x5 — Y2
characteristic p 2 3 )

LPSS 0.11]0.21 [1744.27
de Jong *10.32 *
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DIOPHANTINE INEQUALITY FOR EQUICHARACTERISTIC
EXCELLENT HENSELIAN LOCAL DOMAINS

HIROTADA ITO, SHUZO IZUMI

2000 MSCN: 13F30, 13F40, 13H99, 11D75, 11325

KEY woRrDs: Diophantine inequality, m-valuation, prod-
uct inequality, linear Artin approximation

The famous result in Diophantine approximation is Roth’s theorem:

Ifz € R\ Qs an algebraic number,
Ve>03c(z, € >0Vxe€ZVyeZ : Iz - )—ycl > c(z, €yl .

This means that a non-rational real algebraic number can not be efficiently
approximated by rationals in comparison to the denominator of the latter.
There is a quite analogous result for the field of quotients (the Laurent series
field) in a single variable. Recently Rond [Ro2] obtained a Diophantine
inequality for the field of quotients of the convergent or formal power series
ring in multivariables in connection with the linear Artin approximation
property (Spivakovsky, cf. [Rol]).

In this talk we assert that Diophantine inequality holds for the field of
quotients of a good local domain, a generalization of Rond’s theorem:

Theorem . Let (4, m) be an equicharacteristic excellent Henselian local
domain and v an m-valuation (a good valuation defined by Rees [Re4]) on
the field K := Q(A) of quotients of A. If z € K\ K is algebraic over K, then
we have the following:

Ja>03c>0VxedVyed : |z—2;-|6>c|y|‘;.

Note that K is not generally the field quotients of A (cf. [Rol], 2.4).
Our proof is quite similar to Rond’s. He used the product inequality [1z1]
for the order function v on an analytic integral domain. We need Rees’s
inequality [Red] for m-valuations on complete local rings, a generalised
and stronger variant of the product inequality. To be precise, we use its

Date: December 26, 2008.
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further generalization to analytically irreducible excellent domains by Hiibl-
Swanson [HS]. We also need Rees’s strong valuation theorem [Re2], [Re3]
to connect valuations to the maximal-ideal-adic order. Combining these
results we have the following:

Fact. Let (4, m) be an equicharacteristic analytically irreducible excellent
local domain and let v be an m-valuation on A. Then we have:

AC>035s>0F>0Vxed: sv(x) < Vin(x) < vm(x) + C < to(x) + C.

This can be also used to show that Theorem implies the following in the
same way as [Ro2], 3.1.

Corollary . Let (4, m) be an equicharacteristic analytically irreducible
excellent Henselian domain and let P(X, Y) € A[X, Y] be a homogeneous
polynomial. Then the Artin function of P(X, Y) is majorised by an affine
function, i.e.

dadBVxeAdAVyed: vo(P(x, y) > ai+p
= dxeddyed: vax-x)2i, va(y —y) =i, P(X, ) = 0.
The case P(X, Y) = XY is nothing but the product inequality [Iz1].

Note. After proof of our [ItIz], we have found that Hickel [Hi] proves a
result more general than our Corollary. He treats linear Artin approximation
for simultaneous equations, whereas we treat only a single equation.

We assume the ring to be analytically irreducible in Theorem and Corol-
lary above. This is, however, unnecessry as in [Hi].

We wish to express our deep thanks to Professor I. Swanson for important
suggestion to improve our result on the occasion of the symposium.

We shall explain these things elsewhere.
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STABLE CATEGORIES AND DERIVED CATEGORIES

TOKUJI ARAYA

1. INTRODUCTION

Let R = @, R» be a d-dimensional graded Gorenstein ring with
R, = k be an algebraically closed field of characteristic 0. We de-
note by mod” R the category of finitely generated graded R-modules
with degree preserving morphisms, by CMZ R the full subcategory of
mod? R consisting of all graded maximal Cohen-Macaulay modules and
by CM? R the stable category of CMZR.

For a path algebra kQ given by a finite quiver @, we denote by
modkQ the category of finitely generated left k@Q-modules and by
Db(mod kQ) the bounded derived category.

In this lecture, we shall show the following theorem.

Theorem 1. Suppose R has a simple singularity, then there exists
a Dynkin quiver Q such that CMZ R is equivalent to D°(mod kQ) as
triangulated categories.

Since R is a d-dimensional graded Gorenstein ring with a simple
singularity, R is isomorphic to k[z,y, 22, 23," - ,24)/(f) where f is a
one of the following polynomials (cf. [6, Theorem 8.8]);

Pog b 222+ 42 (An)
st + v 24+ 22 4+ 2 (Dn)
f={ Bryt+B+d+-+2] (Es)
Brop+A+d+-+2 (B
B+ 22+t 2 (Es)

The following theorem which is called Knorrer’s periodicity is a one
of key theorem to show Theorem 1 (cf [5], [6, Theorem 12.10]).

Theorem 2 (Knorrer’s periodicity). If R is a graded Gorenstein ming
with a simple singularity, then CM” R is equivalent to CMZ R™ as tri-
angulated categories. Here, RY = k[z,y, 22,23, "+ , 24, zar1)/(f + 2541)-

The detailed version of this paper will be submitted for publication elsewhere.
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By using Knorrer’s periodicity, we may check only the cases of dim R =
1,2 and Kajiura, Saito and Takahashi proved the case of dim R = 2
case.

Theorem 3. 3, Theorem 3.1] Let Q be a Dynkin quiver of correspond-
ing type of f. Then, CM? R is equivalent to D*(mod kQ) as triangu-
lated categories.

Thus, it is enough to show the case of dim R = 1.

2. PROOF OF THEOREM 1

Through in this section, we assume that R is a 1-dimensional graded
Gorenstein ring with a simple singularity and isomorphic to k[z,y]/(f)
where f is a one of the following polynomials;

y2 _ :L.n+1 (An)
zy? + 2" (D,)
f=¢ 22 +¢* (E6)
B+ (Er)
3 +y° (Es)

We prepare the following theorem to show Theorem 1.

Theorem 4 ([5], [2]). Let T be an algebraic triangulated category with
a tilting object T € T. Then there ezists a triangle equivalence

K°(prEnd #(T)) —» T

where K®(pr End 7(T')) is the homotopy category of bounded complezes
of finitely generated projective End 1(T')-modules.

If we find a tilting object T € CM” R with End (T') = kQ for some
Dynkin quiver @), then we get the Theorem 1 by Theorem 4. From now
on, we shall find a tilting object for each case.

We denote by (A, (41,142, - ,i,)) the cokernel of

S T
.y A .

D rG) = D R

t=1 t=1
for some integers 41,49, - , 4y, J1,J2, - ,Js and s X r-matrix A. Note
that the integers ji, j2,- - - ,Js are determined by 41,49, -« , 4, and A.
1. R = k[z,y]/(y? — ™) (degz =2, degy =2m +1).

We put X; as follows;
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-y

X; = { (@ ) (=24, ~2m = 1)) @<i<m)

In this case, we can see that T' := ®321 X; is a tilting object and
End (T) is isomorphic to the path algebra kQ of Dynkin quiver Q of
type (Azm)-

X2m -_— X2m—1 > > Xl
2. R = klz,y)/(y* — 2°™) (degz =1, degy =m).

We put X; as follows;

X, = { ((_zzym_,- fy) (=1, —m)) (1<i<m-1).
((v£=m), (—m)) (i =)
In this case, we can see that T':= (@7:11 Xi) ® X, @& X_ is a tilting

object and End (T") is isomorphic to the path algebra kQ of Dynkin
quiver Q of type (Dm1)-

o

. R = klz,y]/(zy* + *™) (degz = 2, degy =2m — 1).
We put X; and Y; as follows;

X = (=), (~2mo+ 1). Y= (), (0).
KXoy = (s 2y )» (25 —2m+ 1))

Yzjz((zzfny_.fj),(—2j+2,—2m+1) . '
;yyzj+1 . - (1<j<m)
Xojr1 = (( (=27, —2m +1)).

p2m—J —zy

| Vg1 = ((zzm?ij_l ), (-2, —2m+1)).

—
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Xom+2i-1 = Xom—2i41(—21 + 1).
Xom+2i = Xom—2i(—2i — 1). :
. 1<i<m-1
Yomi2i-1 = Yom—oit1(—2i + 1). (lsi<m-1)
Yoms2i = Yom—2i(—2i + 1).
X4m_1 = X1(—2m + 1) Y4m_1 = Y1(—2m + 1)
In this case, we can see that T := @21:1—1 X is a tilting object and

End (T') is isomorphic to the path algebra kQ of Dynkin quiver Q of

type (A4m_1).
X4m—1 _— X4m—2 — - — X

4. R = klz,y)/(zy? + 2™+ (degz =1, degy = m).
We put X; and Y; as follows; ’

Xy = ((w)(,<(—m))~ . ) ) Y1 = ((v2+*),(0)).
Xoj = mZm?ij+1 _m;y , (=4, —m)). )
Yo = ((zznf}lj-f-l f;) ,(=j+1,-m)). t=ssm
Xojr1 = ((321:—yj+1 x::;) (=3, —m)
Yoj1 = (( .4 xj) , (=7, —m)) -

z2m—J -y

Xz = ((sv2v=Tem1 ), (-m)). Yo = ((s#v=1em ), (—m)).

(1<j<m-1)

In this case, we can see that T := (@f;"l X;) ® X, @ X_ is a tilting
object and End (T') is isomorphic to the path algebra kQ of Dynkin
quiver @ of type (Damt2).

Xy

AN

X2m > X2m—1 > > Xl

d

X_

5. R=k[z,y]/(z® + ) (degz = 4, degy = 3).
We put X; and Y; as follows;
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sV Y
X3 = ((yo o a2 y02> )(—5) —3) _4a —6)> . Y:? = X3(1)
0

0 2?
Xo=((52%).(-6,-0). Ya = Xa(1)
X5 = X(-1). Ys = Ya(-1).
Xs = Yi(-9). Yo = Xi(~1).

In this case, we can see that T' := @2;1 X; is a tilting object and
End (T) is isomorphic to the path algebra k@ of Dynkin quiver @ of
type (Ee)-

X4

l

X6 Xs X3 Xo X1

6. R = k[z,y)/(z® + zy°) (degz =3, degy = 2).
We put X; and Y; as follows;

2 —yz) ) (—2: _3)) .
=2),0 ~9)).

8
< 8

=
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In this case, we can see that T := 69::1 X, is a tilting object and
End (T') is isomorphic to the path algebra kQ of Dynkin quiver Q of
type (Er).

X4

l

X7 XG X5 X3 X2 -Xl

7. R = k[z,y]/(z® + °) (degz =5, degy = 3).
We put X; and Y; as follows;



vt zy2 22 0 0 =y
—z? 3 zy—xz 0 O
2 2 .3
= —zy? —x?y> 0 —=zy O o 9 A _7 B _
X5— 0 0 0 y -z O 7( 2) 3> 4, 7, 5, 6)
0 0 0 0 ¢ -z
0 0 0 x 0 32
y—-z O 0 0 -z
0y2 —z zy 0 O
_ z 0 y2 0 =zy O
Ys = 00 0 gyt zy? 22 ’(—6’ —4,-9, -2, ‘—37—4)
00 0 —-z2 ¢ =y
00 0 —zy? —2® ¢
-z 0
Xo=((0v =), (~7,-5,-6)
6 — v 5 ) ) ) .
z 0 y
vt zy? z?
Yo=(( -2 v oy },(~2,-3,—4)
—oy? —a? ¢
:z:: Y 02 Ty
— v —z -y* 0
X1 = 0 o v (3T, 6,—5)
0 % y3 —m2
Y, oY
— y> —z* —zy® 0
1/7— 0 0 z2 y2 ,( 5, 4, 3,“‘7)
0 0 ¥ -z
2
— )
xo= (3 5) o, 5).

In this case, we can see that T' := @f___l X; is a tilting object and
End (T) is isomorphic to the path algebra kQ of Dynkin quiver @ of

type (Es).

Xe

Xg X7 X5 X4 X3 X2 Xl
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PICARD GROUPS AND AUTOMORPHISM GROUPS
OF CATEGORIES

NAOYA HIRAMATSU AND YUJI YOSHINO
(OKAYAMA UNIVERSITY)

1. INTRODUCTION

Let k be a commutative ring and let A be a commutative k-algebra.
We denote by A-Mod the category of all A-modules and all A-homo
morphisms. Let € be an additive full subcategory of A-Mod. When we
say that € is a full subcategory of A-Mod, we always assume that €
is closed under isomorr hisms, and we simply write X € € to indicate
that X is an object . *. Since A is a k-algebra, every additive full
subcategory € is a k-category. Recall that F : € — € is a k-linear func-
tor if it induces k-linear mappings Hom(X,Y) — Hom4(F(X), F(Y))
for all X,Y € €. A covariant functor F: ¢ — € is called a k-linear
automorphism of € if it is a k-linear functor giving an auto-equivalence
of the category €.

In this note, we study the automorphism groups of additive full sub-
categories. We denote the set of all the isomorphism classes of k-linear
automorphisms of € by Aut(€), which forms a group by defining the
multiplication to be the composition of functors. We will show a cer-
tain structure theorem for Auty(€) (Theorem 12). To this end we shall
define the Picard groups for arbitrary additive full subcategories € and
we will give a certain presentation theorem for k-linear automorphisms
of €.

2. PICARD GROUP OF ADDITIVE CATEGORIES

Throughout the note, we always assume that € is an additive full
subcategory of A-Mod that contains A as an object. We note that we
will be able to prove the following result which enables us to describe
the form of any A-linear automorphisms of €.

Theorem 1 ([2, Corollary 3.1]). For any element [F] € Aut4(€), there
is an isomorphism of functors F' = Homu(N, —)|e for some N € €.

Later we shall give a proof for this theorem in more general form.
Taking the theorem into consideration, we make the following defini-
tion.

The detailed version of this paper will be submitted for publication elsewhere.
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Definition 2. We define Pic(€) to be the set of all the isomorphism
classes of A-modules M € € such that Hom4 (M, —)|e¢ gives an auto-
equivalence of the category €. That is,

Homy(M,=)|¢: € — € ~

Pic(€)={Mec | gives an (A-linear) equivalence b=

We define the group structure on Pic(€) as in the following manner:
Let [M] and [N] be in Pic(€). Since the composition Homy4 (M, —)|¢ o
Hom4(N, —)|c¢ is also an A-linear automorphism, it follows from The-
orem 1 that there exists an L € € such that

Homy(L, —)|e = Homy (M, —)|¢ o Hom4(N, —)|c.
We define the multiplication [M]-[N] by [L] in Pic(€). We remark that
Hom4(M, —)|e o Homu(N,—)|¢ = Homu(M ®4 N,=)|e
= Homy (N, —)|e o Homu(M, )],

and hence we have [M] - [N] = [N] - [M]. In such a way Pic(€) is an
abelian group with the identity element [4]. We call Pic(€) the Picard
group of €.

Note from Yoneda’s lemma that the multiplication in Pic(€) is well-
defined. Furthermore, the mapping Pic(€) — Aut,(€) which sends [M]
to Homa(M, —)|¢ is an isomorphism of groups by Theorem 1. Since
Aut4(€) is naturally a subgroup of Aut,(€), we can regard Pic(€) as
a subgroup of Aut,(€) through the isomorphism Pic(€) = Aut,(€).

In the rest of this section, we shall give several examples of Pic(<).
Recall that the classical Picard group of the ring A, which is denoted
by Pic A, is the set of isomorphism classes of invertible A-modules i.e.
Pic A = {invertible A-modules}/ = . The multiplication in Pic A is
defined by tensor product.

Example 3 ([2, Example 3.8, 3.11]). We denote by A-mod the full sub-
category consisting of all finitely generated A-modules. We also denote
by Proj(A) (resp. proj(A)) the full subcategory consisting of all pro-
jective A-modules (resp. all finitely generated projective A-modules).
If A'is an integral domain, we denote by Tf(A) (resp. tf (A)) the full
subcategory consisting of all torsion free A-modules (resp. all finitely
generated torsion free A-modules). Let € be one of the full subcate-
gories A-Mod, A-mod, Proj(A), proj(A), Tf(A) and tf(A). Then we
have an isomorphism Pic(€) 2 Pic A. See also [2, Proposition 3.7).

Example 4 ([2, Example 3.9, 3.10]). Let A be a Krull domain and
let Ref(A) be the full subcategory consisting of all reflexive A-lattices.
(Respectively, let A be a Noetherian normal domain and let ref(A)
be the full subcategory consisting of all finitely generated reflexive A-
modules.) Then there is an isomorphism Pic(Ref(A)) = C4(A) (resp.
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Pic(ref(A)) = C£(A)), where CY(A) denotes the divisor class group of
A.

Example 5 ([2, Example 3.12]). Let (4, m) bea Noetherian local ring.
We consider the full subcategory d=*(A) of A-Mod which consists of
all the finitely generated A-modules M satisfying depth M > 1. If
depth A > 1, then Pic(d='(A)) is a trivial group.

Let (A, m) be a Cohen-Macaulay local k-algebra, that is, A is a Noe-
therian local k-algebra with maximal ideal m and satisfies the equality
depth A = dim A. We denoted by CM(A) the category consisting of all
the maximal Cohen-Macaulay modules over A. See [3] for the details
of CM(A).

Theorem 6 ([2, Theorem 5.2]). Let A be a Cohen-Macaulay local k-
algebra of dim A = d 2> 3. Suppose that A is regular in codimension

two, i.e. Ay is a regular local ring for any prime ideal p with ht(p) = 2.
Then Pic(CM(A)) is a trivial group.

Proof. Let [M] be an arbitrary element in Pic(CM(A)). Assuming that
M is not free, we shall show a contradiction. Take a free cover F' of M
and we obtain an exact sequence 0 — Q(M) — F — M — 0. We
remark that the first syzygy module Q(M) belongs to CM(A). Apply
Hom4 (M, —) to the sequence, and we get an exact sequence:

0 — Homa(M,Q(M)) — Homa(M, F)
s Homa(M, M) L Ext}(M, Q(M)).

Notice that f # 0, since we have assumed that M is not free. Because
of the assumption, we see that Extly (M, Q(M)), =0 for all prime ideals
p with ht(p) = 2. This implies that dim Extl (M, Q(M)) < d—3, hence
the image Im(f) is a nontrivial A-module of dimension at most d — 3.
In particular, we have depth Im(f) <d-3.

On the other hand, since Homa (M, —)|em(a) is an automorphism of
CM(A), the modules Hom4(M, Q(M)), Homa(M, F) and Hom4(M, M)
have depth d. Hence we conclude from the depth argument [1, Propo-
sition 1.2.9] that depth Im(f) > d—2. This is a contradiction, and the
proof is completed. a

3. STRUCTURE OF Autg(€)

Let € be an additive full subcategory of A-Mod. In this section, we
study the group of all the k-linear automorphisms of €.

Definition 7. Aut(€) is the group of all the isomorphism classes of
k-linear automorphisms of &, i.e.

F is a k-linear covariant functor that }

Autg(€) ={F: €~ ¢l gives an equivalence of the category ¢
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Note that the multiplication in Aut(€) is defined to be the composition
of functors, hence the identity element of Auty(€) is represented by the
class of the identity functor on €.

We denote by Auty a(A) the group of all the k-algebra automor-
phisms of A. For o € Auty ag(A), we can define a covariant k-linear
functor o, : A-Mod — A-Mod as in the following manner. For each
A-module M, we define 0, M to be M as an abelian group on which the
A-module structure is defined by a om = o (a)mforac A, me M.
For an A-homomorphism f : M — N, we define o, f:oM — o,N
to be the same mapping as f. Note that o, f is an A-homomorphism,
since (o.f)(aom) = f(c~ (a)m) = 07 (a)f(m) = ao o, f(m) for all
a € Aand m € M. Notice that o, is a k-automorphism of the category
A-Mod.

Definition 8. Let € be an additive full subcategory of A-Mod. Then
€ is said to be stable under Auty..iz(A) if 0,(€) C € for all o €
Autk_alg (A) .

All the full subcategories we have shown in the previous section (e.g.
A-Mod, Ref(A), d='(A), CM(A), etc.) are stable under Autyag(A).
Note that if € is stable under Aut ,4(A) then o,|c gives a k-linear
auto-equivalence of € for all o € Auty ng(A). Therefore we have a
natural group homomorphism ¥ : Auti a1g(A) — Auty(€) which maps
o to the class of o,|c. It is easy to verify the following lemma holds.

Lemma 9. Assume that € is stable under Autg_qy(A) and that A € €.
~ Then the natural group homomorphism ¥ : Autg.a4(A) — Auty(€) s
an injection.

By this lemma, we can regard Auty ag(A) as a subgroup of Aut,(€).

Definition 10. Let N be an A-module. Given a k-algebra homomor-
phism 0 : A — A, we define an (A ®, A)-module N, by N, = N as an
abelian group on which the ring action is defined by (a®b)-n = ac(b)n
fora®b e A®,Aandn € N. In such a case, we can define a
k-linear functor Hom4(N,, —) : A-Mod — A-Mod, for which the
A-module structure on Homu(N,,X) (X € A-Mod) is defined by
(6- f)(n) = f((1®Db)-n) for f € Homu(N,,X),be Aandn € N.

If o is a k-algebra automorphism of A, then it is easy to see the
following equality of functors holds:
(67")x o Homa(N, ) = Homy(N,, )-

The following theorem enables us to describe the forms of k-linear
automorphisms of €.

Theorem 11 ([2, Theorem 2.5]). Let A be a commutative k-algebra
and let € be an additive full subcategory of A-Mod such that A € €.
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For a given k-linear automorphism F € Auty(€), there is a k-algebra
automorphism o € Auty_qy(A) such that F is isomorphic to the com-
position of functors 0. o Homyu(N, —)le, where N is any object in ¢
satisfying F(N) = A in €.

Proof. We give below an outline of the proof. See {2, Theorem 2.5] for
the detail.

Since A is commutative, the multiplication map ax : X — X by an
clement @ € A is an A-homomorphism for all objects X € €. Thus
we can define a natural transformation a(a) : F' — F by a(a)(X) =
F(ax) : F(X) — F(X). Denote by End(F) the set of all the natural
transformations F' — F, and this induces the mapping

o:A—End(F); a— F(ay)

Note that End(F) is a ring by defining the composition of natural
transformations as the multiplication and it is also a k-algebra, since
F'is a k-linear functor. By using the fact that Fis an auto-equivalence,
it is straightforward to see that o is a k-algebra isomorphism.

Since F is a dense functor and A € €, there is an object N € € such
that F(N) = A. For such an object N, we can identify Enda(F(N))
with A as k-algebra through the mapping A — Enda(F(N)) which
sends a € A to the multiplication mapping ar(v) by a on F(N). Thus
we have a k-algebra homomorphism

B:End(F) — Enda(F(N)) = A; ¢+ w(N).

We easily see that 3 is a k-algebra isomorphism.
Now define a k-algebra automorphism o : A — A as the composition
of a and f3;

A —% End(F) —2— Ends(F(N)) — A
a — Flay) — Flagqy) — o(a).
Then, for each object X € €, we have isomorphisms of k-modules;
F(X) —— Hom(F(N), F(X)) —2 ., Homa(N,1, X)
r —— (zpevy:ile—z) — F~Yzrmy),

whose composition we denote by ¢x. Since F~Y(o(a)r@v)) = aqv) holds
for a € A, we can show that ¢x is an A-module isomorphism for all
X € €. Since it is easily verified that ¢x is functorial in X, we have
the isomorphism of functors F' = Homy(N,-1, ), and the proof is
completed.

Remark that Theorem 1 is just a special case of this theorem where
k=A.

Assume furthermore that an additive full subcategory € is stable
under Auty.ag(A). Then we have shown by the above argument to-
gether with Lemma 9 that Auti(€) contains two subgroups, Pic(€)
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and Aut.ag(A). Moreover, Theorem 11 implies that these two sub-
groups generate the group Autg(€). Thus it is straightforward to see
that the following theorem holds.

Theorem 12 ([2, Theorem 4.9]). Assume that an additive full subcat-
egory € is stable under Auty_qy(A) and assume that A € €. Then there
1s an isomorphism of groups

Autg(€) = Auty_q(A) x Pic(€).

As an application, we can prove the following structure theorem of
Autg(CM(A)). Recall that a local ring (4, m) is said to have only an
isolated singularity if A, is a regular local ring for all prime ideals p
except m.

Theorem 13. Let A be a Cohen-Macaulay local k-algebra with dimen-
sion d. Suppose that A has only an isolated singularity. Then there are
1somorphisms of groups ‘
~ Autk_a[ A) 'Lf dim A 75 2,
Auti(CM(4)) = { Autk_a,:gA) x CU(A) if dim A = 2.
Proof. If dim A = 0, then CM(A) = A-mod and hence Pic(CM(A)) =
Pic A is a trivial group by Example 3. If dim A = 1, then CM(A) =
d>'(A) and we have shown in Example 5 that Pic(CM(A)) is again
a trivial group. If d = 2 then A is a normal domain and we have
CM(A) = ref(A), hence Pic(CM(A)) = C¢(A) by Example 4. If d >
3, then we see from Theorem 6 that Pic(CM(A)) is a trivial group.
Therefore the assertion holds by Theorem 12. O
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LEFT VERSUS RIGHT ACTION OF FROBENIUS

YUJI YOSHINO AND TAKESHI YOSHIZAWA
( OKAYAMA UNIVERSITY )

1. INTRODUCTION

This is a work still in progress, based on the joint research of Rodney
Y. Sharp, Yuji Yoshino and Takeshi Yoshizawa.

In this note R always denotes a commutative Noetherian complete
local ring of prime characteristic p > 0 and f is the Frobenius map
over R, i.e. f(r)=rPforallT € R.

The skew polynomial ring R[z, f] is the set of all polynomials Y o 75T
(r; € R) with commuting relations zs = sPz for all s € R. Note that a
left R[z, f]-module H is a left R-module H with action of z from the
left so that z-7h = Pz -h forr € Rand h € H. Similarly, a right
Rz, f]-module M is a right R-module M with action of z from the
right so that mr? -z =m - zr forr € Rand m e M.

The main result of this note is concerning the relationship between
the category of left R[z, f]-modules and the category of right Rz, f]-
modules, where R is an F-finite complete local ring.

We define an (R, R)-bimodule R' to be R! = R as an abelian group
with the (R, R)-bimodule structure defined by

r.t.s—=rsPt forallr,s€ Randte R

We denote the set of all left R-homomorphisms by Homy r(M, N) for
left R-modules M and N. Similarly, for right R-modules M and N,
we denote the set of all right R-homomorphisms by Hom,r(M, N).

If a left R-module H has a left action of z, then a left R-homomorphism
o: R'®p H — H is specified, ie. a(r®h) =rz-hforre€ R and
h € H. Conversely, if an R-module H is given together with a left
R-homomorphism o : R! ®z H — H, then H has a left action of z
by z-h = a(l®h) for h € H. Therefore we denote by (H,a) to
describe a left Rz, f]-module H, where H is an underlying R-module
and a € Homp(R! ®g H,H). Note that we have an isomorphism
of (R, R)-bimodules Homiz(R' ®r H, H) = Homg(H, Homp(R', H)).
Thus, specifying oo € Homy r(R! ®g H, H) is equivalent to specifying

)

The detailed version of this paper will be submitted for publication elsewhere.
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the corresponding element & in Hom,;p(H, Hom;g(R!, H)). We denote
= (H,a) = [H,a).
Slmllarly, a right R[z, fl-module M is described as (M, ) (resp.
[M B]) where M is an underlying R-module and 8 € Hom,z(M ®p
M) (resp. # € Hom, (M, Hom,r(R!, M))).

Example 1.1. The Frobenius mapping on R defines a natural struc-
ture of a left R[z, f]-module on R, i.e.

z-r=f(r)=rP (reR)

Example 1.2. Let K be a perfect field with a ring homomorphism
R — K. Then K is a right Rz, f]-module by the following right
action of z.

r-z=r'" (reK).

A left R[z, f]-homomorphism H = (H,a) — H' = (H',d/) of left
R[z, f]-modules is an R-homomorphism ¢ : H — H’ which commutes
with the left action of z. In other words, ¢ makes the following diagram

commutative:
R'® rH 2 H

1®<p1 lpl
R'@r H — H'.
A right R[z, f]-homomorphism is defined similarly.

2. CATEGORY EQUIVALENCE

- For a local ring (R, m), we denote the injective hull of the R-module
R/m by Er(R/m). First we note the following result.

Lemma 2.1. [3, Lemma 3.6] Let g : (R,m) — (S,n) be a local homo-
morphism of local rings and assume that g is finite. Then there is an
isomorphism of S-modules Hompg(S, Er(R/m)) & Es(S/n).

We note that Hom;g(R!, Eg(R/m)) is an (R, R)-bimodule on which

the action of R is given by
(sps')(r) = o(r - 5)s" = rsPs'p(1)

for 5,s' € R, r € R! and ¢ € Hom;g(R!, Er(R/m)).

Similarly, Hom,z(R", Er(R/m)) is an (R, R)-bimodule on which the
action of R is given by

(s1ps')(r) = sip(s'r)

for s,s' € R, r € R' and ¢ € Hom,g(R?, Egr(R/m)).
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Using the lemma above, we can show the following lemma which en-
ables us to convert left R-homomorphisms to right R-homomorphisms.

Lemma 2.2. Suppose that R is an F-finite local ring with mazimal
ideal m. Then there is an (R, R)-bimodule isomorphism

Hoer(Rl,ER(R/m)) =~ Homr(R', Er(R/m)).

Remark 2.3. (1) Let R be F-finite as in Lemma 2.2. Then, by
Lemma 2.1, there exists a right R-module isomorphism § : £ r(R/m) —
Hom, g(R!, Er(R/m)). Therefore the mapping

3 € Hom,r(Eg(R/m), Hom,r(R', Er(R/m))
defines a right R[z, f]-module structure on Er(R/m).

(2) Let k be a perfect field, S = k[[t1, 2, - - - ,tn]] and n be maximal
:deal of S. Then it is well known that Es(S/n) is the inverse polynomial
system k[t7%, 57, ... 1,1, We set Eg’)(S/n) = k[t;?,t;7,...,t;F] as
the p-th Veronese subring of k[t7t, 650, ... t;1]. We define the mapping
7 : Es(S/n) — ép)(S/n) which sends a polynomial 3" ¢iy i1 ™ -+ 15"
to its p-multiple part ) ; - —: o (mod p) Ciy..ints ™ o - ", Under these
circumstances, we should note that Eg(S/n) has a right z-action by
defining

e -z =m(e)/? (e € Es(S/n)).
This action is called the standard right z-action on Es(S/n). Moreover,
given a residue ring R = S/I where I is an ideal of S, the standard right
z-action on Es(S/n) induces a right z-action on Er(S/n) = (0 :Es(s/m)
I). Hence Eg(S/n) naturally has a structure of right R[z, f]-module.

In the rest of this section, let R be an F-finite complete local ring
with maximal ideal m and let E be the injective hull of the R-module
R/m. We denote by (—)" the Matlis-duality functor Hompg(—, E).
Recall that an R-module M is called a Matlis reflexive R-module if the
natural homomorphism M — MV is an isomorphism. All Artinian
(resp. Noetherian) R-modules are Matlis reflexive. Furthermore it is
known by Enochs [1] that an R-module M is Matlis reflexive if and
only if it can be embedded into a short exact sequence

0 — A — M — N — 0,

where A is an Artinian R-module and N is a Noetherian R-module.

Let £ be the category of all left R[z, f]-modules which are Matlis
reflexive as R-modules and left R[z, f]-homomorphisms. Similarly let
R be the category of right R[z, f]-modules which are Matlis reflexive
as R-modules and right R[z, f]-homomorphisms.
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Now suppose we are given a left R[z, f]-module H = (H,a) with
a € Homyr(R' @ H,H). We shall construct a right Rz, f]-module
structure on H". Taking the Matlis dual of the left R-homomorphism
a: R'®g H — H, we have a right R-homomorphism

o' : H' — Homp(R' ®r H, E).

Combine this with the isomorphisms of (R, R)-bimodules which ob-
tained from the adjoint formula and Lemma 2.2, we can get a right
R-homomorphism

D(a): HY @ R* — HY,
which makes H" aright R[z, f]-module. We define D(H) = D(H, a) =
(H',D(a)).

In such a way we have defined the contravariant functor D from
the category of left Rz, f]-modules to the category of right R[z, f]-
modules.

As in the same manner as above, we can define a contravariant func-
tor D’ from the category of right R[z, f]-modules to the category of
left R[z, f]-modules.

We can show that these contravariant functors give a duality between
the categories £ and R. The following theorem is a main result of this
note.

Theorem 2.4. Let R be an F-finite complete local ring. Then there
exist contravariant functors D : L — R and D' : R — L which
gwe the equivalences of categories.

3. AN APPLICATION

Definition 3.1. (1) A left R[z, f]-module H is called z-torsion free if
it satisfies the condition that z - h = 0 implies h = 0 for h € H.

(2) A right Rz, f]-module M is called z-divisible if it satisfies the
condition that for any m € M there is m’ € M such that m =m’ - z.

Using Theorem 2.4 we can show the following theorem, in which the
implication (1) = (2) is known to hold by R. Y. Sharp [2, Theorem
3.5] without the assumption that R is F-finite.

Theorem 3.2. Let R be an F-finite complete local ring with mazimal
ideal m, and let E be the injective hull of R/m. Then the following two
conditions are equivalent.

(1) E has a left Rz, f]-module structure by which E is z-torsion free.
(2) R is a reduced F-pure ring.

The following lemma is necessary to prove Theorem 3.2.
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Lemma 3.3. The R-module E has a left R[z, f]-module structure by
which E is z-torsion free if and only if R has a right R[z, f]-module
structure by which R is z-divisible.

Proof. Assume that F is a z-torsion free left R[z, f]-module. As noted
in Section 1, it is described as (E,a) = [E, @), where o € Hom;r(R' ®
E,E) and & € Homg(E, Hom;g(R', E)) such that

a(e)(r)=rz-e (r€R, ecE).

Since E is a z-torsion free, & is injective. It follows from the definition
of D' that & is a composition of D(a)V with various isomorphisms.
Therefore & is injective if and only if so is D(a)", which is equivalent to
that D(a) is surjective. D(c) induces a right R[z, f]-module structure
on R such that

r-z=D(a)(r®1) (r €R).

Since D(a) is surjective, R is z-divisible. The converse is proved in a
similar manner. O

Now we are able to prove Theorem 3.2.

Proof. (1) = (2): By the above lemma R is a z-divisible right R[z, f]-
module. To prove that R is reduced, we have only to show that 77 = 0
implies that r = 0 for r € R. Suppose * = 0. Since R is z-divisible, we
can find an element s € R with s -z = 1. Then we have r = (s- z)r =
stP-z=0-z=0.

To show that R is F-pure, define a mapping ¢ : R — RP by 9(r) =
(r-z)? for any r € R. Since ¥(rsP) = (rs?-x)P = (r-zs)? = (r-z)Ps? =
y(r)sP holds for s € R, 9 is an RP-linear mapping. Furthermore 9 is
surjective. In fact, for any s? € RP, we can take r € R with r -z = s,
then (r) = sP. Thus the RP-linear mapping 1 gives a splitting of the
natural embedding R? — R as RP-modules. Hence R is F-pure.

(2) = (1): Now assume that R is a reduced F-pure ring. It is enough
to show that R has a structure of z-divisible right R[z, f]-module. Since
R is F-pure, there exists a surjective RP-linear mapping ¢ : R — RP.
We define the right action of z on R by -z = @(r)/? for all 7 € R.
This is well-defined, since R is reduced. Choose r € R so that o(r)=1.
Then, for any s € R, we have rs? -z =718 = 1s = s. Therefore R is
z-divisible. (]
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MODULES IN RESOLVING SUBCATEGORIES

RYO TAKAHASHI

1. INTRODUCTION

In the 1960s, Auslander and Bridger [2] introduced the notion of a
resolving subcategory of an abelian category with enough projectives.
They proved that in the category of finitely generated modules over
a left and right noetherian ring, the full subcategory consisting of all
modules of Gorenstein dimension zero, which are now also called totally
reflexive modules, is resolving.

In this note, we study the distribution of modules in a given resolving
subcategory of mod R. To be more precise, let X be a resolving sub-
category of mod R. There are three main purposes. The first purpose
is to find a better module X’ € X when a module X € X is given. The
second purpose is to count the (minimum) number of steps required to
construct such X’ from X. The third purpose is to consider how many
nonisomorphic indecomposable modules are in X.

Throughout this note, let R be a commutative noetherian ring. All
R-modules considered in this note are assumed to be finitely generated.
We denote by mod R the category of finitely generated R-modules. By
a subcategory of mod R, we always mean a full subcategory of mod R
which is closed under isomorphisms.

In this note, many things are omitted for lack of space. For details,
see [7].

2. FOUNDATIONS

In this section, we define the resolving closures and the nonfree loci
of an R-module and a subcategory of mod R, and study their basic
properties.

Definition 2.1. A subcategory X of mod R is called resolving if X
satisfies the following conditions.

(1) X contains all projective R-modules.

(2) X is closed under direct summands: if M is in X and N is a direct
summand of M, then N is also in X

(3) X is closed under extensions: for any exact sequence 0 — L —
M — N — 0 in mod R, if L and N are in X, then so is M.
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(4) X is closed under kernels of epimorphisms: for any exact sequence
0—L—>M—N—0inmodR, if M and N are in X, then so is
L.

A lot of important subcategories of mod R are known to be resolving.
Here, let us make a list of examples.

Example 2.2. (1) It is trivial that the subcategory mod R of mod R
is resolving.

(2) It is obvious that the subcategory proj R of mod R consisting of all
projective R-modules is resolving.

(3) Let I be an ideal of R. Then the subcategory of mod R consisting
of all R-modules M with grade(I, M) > grade(I, R) is resolving.
This can be shown by using the equality grade(I, M) = inf{i € Z |
Exth(R/I, M) # 0}.

(4) Let R be a Cohen-Macaulay local ring. Then, letting I be the
maximal ideal of R in (3), we see that the subcategory CM(R)
of mod R consisting of all maximal Cohen-Macaulay R-modules is
resolving.

(5) An R-module C is called semidualizing if the natural homomor-
phism R — Hompg(C, C) is an isomorphism and Exty(C,C) = 0
for every i > 0. An R-module M is called totally C-reflexive,
where C is a semidualizing R-module, if the natural homomor-
phism M — Homg(Hompg(M,C),C) is an isomorphism and
Exth(M,C) = Exth(Homg(M,C),C) = 0 for every i > 0. The
subcategory Go(R) of mod R consisting of all totally C-reflexive
R-modules is resolving by [1, Theorem 2.1].

(6) A totally R-reflexive R-module is simply called totally reflezive.
The subcategory G(R) of mod R consisting of all totally reflexive
R-modules is resolving by (5); see also [2, (3.11)].

(7) Let n be a nonnegative integer, and let K be an R-module (which is
not necessarily finitely generated). Then the subcategory of mod R
consisting of all R-modules M with Torf(M,K) = 0 for i > n
(respectively, ¢ > 0) and the subcategory of mod R consisting of
all R-modules M with Ext%(M,K) = 0 for i > n (respectively,
¢ > 0) are both resolving.

(8) Let R be a local ring. We say that an R-module M is bounded
if there is an integer s such that BR(M) < s for all i > 0, where
BE(M) denotes the ith Betti number of M. The subcategory of
mod R consisting of all bounded R-modules is resolving. This can
be shown by using the equality 47(M) = dimy, Tor(M, k), where
k is the residue field of R.
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(9) Let R be local. We say that an R-module M has complezity cif cis
the least nonnegative integer d such that there exists a real number
r satisfying the inequality BE(M) < ri%=1 for 4 > 0. The subcate-
gory of mod R consisting of all R-modules having finite complexity
is resolving.
(10) Let R be local. We say that an R-module M has lower complete
intersection zero if M is totally reflexive and has finite complexity.
The subcategory of mod R consisting of all R-modules of lower
complete intersection dimension zero is resolving by (6) and (9).

Now we define the resolving closures of a subcategory of mod R and
an R-module.

Definition 2.3. For a subcategory X of mod R, we denote by res X (or
resp X when there is some fear of confusion) the resolving sucategory
of mod R generated by X, namely, the smallest resolving subcategory
of mod R containing X. If X consists of a single module X, then we
simply write res X (or resg X).

Next we recall the definition of the nonfree locus of an R-module and
define the nonfree locus of a subcategory of mod R.

Definition 2.4. (1) We denote by NF(X) (or NFg(X)) the nonfree
locus of an R-module X, namely, the set of prime ideals p of R
such that the Rp-module X, is noniree.

(2) We define the nonfree locus of a subcategory X of mod R as the
union of NF(X) where X runs through all (nonisomorphic) R-
modules in X, and denote it by NF(X) (or NFr(X )).

- Example 2.5. Let R be a Cohen-Macaulay local ring. Then the non-
free locus NF(CM(R)) coincides with the singular locus Sing R of R.

The nonfree locus of a module can be described as the support of an
Ext module.

Proposition 2.6. Let ¢ : 0 — Y - P —- X — 0 be an ez-
act sequence of R-modules such that P is projective. Then one has
NF(X) = Supp Exth(X,Y). Hence NF(X) = Supp Exth(X, 2X).

Recall that a subset Z of Spec R is called specialization-closed pro-
vided that if p € Z and q € Spec R with p C ¢ then q € Z. Note that
every closed subset of Spec R is specialization-closed.

Corollary 2.7. (1) The nonfree locus of an R-module is a closed sub-
set of Spec R in the Zariski topology.
(2) The nonfree locus of a subcategory of mod R is specialization-closed.
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3. THE STRUCTURE OF RESOLVING CLOSURES

In this section, we investigate the structure of the resolving closure
of an R-module. For this, we first build a filtration of subcategories
in the resolving closure of a subcategory of mod R, and inductively
construct the resolving closure. This is an imitation of the notion
of thickenings in the thick closure of a subcategory of a triangulated
category, which were introduced by Avramov, Buchweitz, Iyengar and
Miller [3]. Recall that the additive closure add X (or addr X) of a
subcategory X of mod R is defined to be the subcategory of mod R
consisting of all direct summands of finite direct sums of modules in
X.

Definition 3.1. Let X be a subcategory of mod R. For a nonnegative

integer n, we inductively define a subcategory res® X (or resh X) of

mod R as follows:

(1) Set res’ X = add(X U {R}).

(2) For n > 1, let res™ X be the additive closure of the subcategory of
mod R consisting of all R-modules Y having an exact sequence of
either of the following two forms:

0—A—-Y—B-—0,
0—-Y—>A—-B—=0

where A, B € res™ 1 X.

If X consists of a single module X, then we simply write res™ X instead
of res™ X.

Remark 3.2. Let X,) be subcategories of mod R, and let n be a

nonnegative integer. Then the following hold.

(1) There is an ascending chain {0} C res®X C res!X C ... C
res" X C --- C res X of subcategories of mod R.

(2) The equality res ¥ = J, ., res” X' holds.

For a subcategory X of mod R, we denote by ind X' (or indg X ) the
set of nonisomorphic indecomposable R-modules in X.

Example 3.3. (1) Let us consider the 1-dimensional complete local
hypersurface R = C[[z,y]]/(z?) over the complex number field.
Then the subcategory res'(zR) coincides with CM(R), and there
exist infinitely many nonisomorphic indecomposable R-modules in
res!(zR).

(2) Let k be a field. We consider the 2-dimensional hypersurface R =
k[z,y,2]]/(z®). Put p(f) = (z,y—2f)R for an element f € k[[z]] C
R. Then p(f) is an indecomposable R-module in res'(zR), and
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there exist uncountably many nonisomorphic indecomposable R-
modules in res'(zR).

Next, we study the structure of the nonfree locus of an R-module.
We establish the following lemma, which is proved by taking advantage
of an idea used in the proof of [4, Theorem 1].

Lemma 3.4. Let R be a local ring with mazimal ideal m. Let

a:O—»Li»M—>N—>O

be an exact sequence of R-modules. Let = be an element in m. Then
there is an ezxact sequence

0—>L(—f»)L69M—>K——>O.
If this splits, then so does 0.

Using the above lemma, one can prove the following proposition,
which will play an essential role in the proofs of the main results.

Proposition 3.5. Let X be an R-module. Let p be a prime ideal in
NF(X) and z an element in p. Then there is @ commutative diagram

f

0:0————>QX———>R"———+X———>O

(3.5.1) l l “

o0 — QX — X3 — X — 0
of R-modules with exact rows, and the following statements hold:
(1) X; €res’ X,

(2) V(p) C NF(X;) € NF(X),
(3) D(z) NNF(X,) = 0.

Using this proposition, one can prove the following theorem.

Theorem 3.6. For any R-module X and any subset W of NF(X)
which is closed in Spec R, there exists an R-module Y € res X such
that W = NF(Y).

Let X be an R-module. For an R-module Y € res X, we now con-
sider how many resolving operations are needed to take to construct
Y from X. Here, resolving operations mean extensions and kernels
of epimorphisms. For this, we introduce the following invariant which
measures the minimum number of required resolving operations. This
s an imitation of a level in a triangulated category defined in 3].
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Definition 3.7. For two R-modules X and Y, we define
step(X,Y) =inf{n > 0|Y € res} X}.

Remark 3.8. Let X be an R-module.

(1) One has step(X,Y) = 0 for every R-module Y’ € res! X = add(X &
R). In particular, step(X, X) = step(X, R) = step(X,0) = 0.

(2) One has step(X,Y) < oo for an R-module Y if and only if Y
belongs to res X.

In general, the invariant step(—, —) does not induce a distance func-
tion. However, it satisfies the triangle inequality.

Proposition 3.9. Let X,Y,Z be R-modules.

(1) Let m,n be nonnegative integers. IfY € res™ X and Z € res"Y,
then Z € res™™ X,
(2) The inequality step(X, Z) < step(X,Y) + step(Y, Z) holds.

Let Z be a subset of Spec R. For a prime ideal p in Z, we define the
height of p with respect to Z as the supremum of ht(p/q) where q runs
through all prime ideals in Z that are contained in p. We denote it by

htz(p).
The following theorem is one of the main results.

Theorem 3.10. Let X be an R-module and let p be a prime ideal
in NF(X). Then there erists an R-module Y € res X satisfying the
following three conditions:

(1) step(X,Y) < 2htxr(x)(b),

(2) p € NF(Y),

(3) htnrry(p) = 0.

Applying this theorem to a local ring R, we get the following result.

Corollary 3.11. Let R be a local ring. Then for every nonfree R-
module X, there ezists a nonfree R-module Y in res X satisfying the
following conditions:

(1) step(X,Y) < 2dim NF(X),

(2) Y is free on the punctured spectrum of R.

Restricting the above corollary to the Cohen-Macaulay case, we ob-
tain the following result on maximal Cohen-Macaulay modules.

Corollary 3.12. Let R be a Cohen-Macaulay local ring. Then for any
nonfree mazimal Cohen-Macaulay R-module X, there ezists a nonfree
mazimal Cohen-Macaulay R-module Y satisfying the following two con-
ditions:
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(1) step(X,Y) < 2dim Sing R,
(2) Y is free on the punctured spectrum of R.

Forgetting the first condition on the module Y in Corollary 3.11, we
obtain the following result.

Corollary 3.13. Let R be a local ring and X a resolving subcategory
of mod R. If there exists a nonfree R-module in X, then there exists a
nonfree R-module in X which is free on the punctured spectrum of R.

4. RESOLVING SUBCATEGORIES OF COUNTABLE TYPE

In this section, we investigate resolving subcategories in which there
exist only countably many nonisomorphic indecomposable modules.
The following proposition plays a key role for this goal, which is proved
by using Theorem 3.6.

Proposition 4.1. For a subcategory X of mod R one has an inclusion
of sets:

NF(X) C {\/EmExth(Y, 7) | Y, Z € ind(res X)}.

Definition 4.2. We say that a subcategory & of mod R has coubtable
type if the set ind X is countable.

We say that a Cohen-Macaulay local ring R has countable Cohen-
Macaulay representation type if CM(R) has countable type.
The result below is a direct consequence of Proposition 4.1.

Corollary 4.3. Let X be a subcategory of mod R. Ifres X has count-
able type, then NF(X) is at most a countable set.

The converse of this corollary does not necessarily hold.
The lemma below is proved by using so-called countable prime avoid-
ance; see [6, Lemma 2.2] for the proof.

Lemma 4.4. Let R be a local ring with residue field k, and as-
sume either that R is complete or that k 1is uncountable. Let Z be a
specialization-closed subset of Spec R. If Z is at most countable, then
dimZ < 1.

Corollaries 4.3, 2.7(2) and Lemma 4.4 yield the following theorem,
which is one of the main results of this note.

Theorem 4.5. Let R be a local ring with residue field k, and assume ei-
ther that R is complete or that k is uncountable. Let X be a subcategory
of mod R such that res X has countable type. Then dim NF(X) < 1.
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Combining this theorem with Corollary 3.11 gives the following re-
sult.

Corollary 4.6. Let R be a local ring with residue field k, and assume
either that R is complete or that k is uncountable. Let X be a nonfree
R-module such that res X has countable type. Then there exists a non-
free R-module Y € res X which is free on the punctured spectrum of R
and satisfies step(X,Y) < 2.

We immediately get the following corollary from Theorem 4.5.

Corollary 4.7. Let R be a local ring with residue field k, and assume
either that R is complete or that k is uncountable. Let X be a resolving
subcategory of mod R of countable type. Then dim NF(X) < 1.

Applying this corollary to the subcategory of maximal Cohen-
Macaulay modules over a Cohen-Macaulay local ring (cf. Example
2.2(4)), we can recover a theorem of Huneke and Leuschke.

Corollary 4.8. [4, Theorem 1.3](6, Theorem 2.4] Let R be a Cohen-
Macaulay local Ting of countable Cohen-Macaulay representation type.
Assume either that R is complete or that the residue field is uncount-
able. Then dim Sing R < 1.
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On the third symbolic powers of prime ideals defining
space monomial curves
Koji Nishida

Chiba University

Let A = k[X,Y,Z] and k[t] be the polynomial rings over a field k. We take positive
integers ny,7ng,ng such that GCD{ny,ng,n3} = 1. Let p : A — k[t™,t"2,t™] be the
epimorphism of k-algebras such that

P(X) = t"™,p(Y) =t" and ¢(Z) =t".
We put P = Ker ¢, which is a prime ideal in A of ht4 P = 2. The n-th symbolic power

of P is P™ = P"Ap N A. Ein - Lazarsfeld - Smith [1] and Hochster - Huneke [3] proved
that the following inclusions hold true.

Theorem 1 P®™ C P™ for any n > 0.
In this talk, we consider the following question.

Question P® C p??  PWC P37

These inclusions obviously hold if P is a complete intersection, and so we assume that P
is not a complete intersection in the rest of this report. Then we have the following result
due to Herzog [4].

Theorem 2 P is generated by the mazimal minors of the matriz of the form
X Y# 27
YP zv X¥ )
where o, 8,7, c, 3,7 are positive integers.
We put a= 27" — XA YF b= Xt — YBZ7 and ¢ = YP*F — X*Z7. Then we have

the following two relations:

X%+ YPb+ Z7c=0 and YPa+ 2"+ X%c=0.
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We will find certain elements of the symbolic powers from relations derived from the
relations above. For example, if v < v/,

(X% +YPb+27c)b— (YPa+ 20+ X¥c) Z"c=0.

X%b+YP W —YPZ  Vac— X¥ 2772 = 0.
X%b— XY 2712 =YPZY Yac — YPb2.

We put o = min{e, o'} and assume 8 < . Then
X (Xo¥"gb— X" 2712 ) = YP (27 Vac — YFBp?) .
Because X', Y? is an A-regular sequence, 3d; € P® such that

X¥dy=Z"ac—YP PR and YPdy= X**"gb— X¥ " 2712

Lemma 3 We may assume that one of the following conditions is satisfied;
Typel: a<do, <fF and v<v,

Type2: a>d', f<f and y<4'.

Proof. For example, if @ < o/, 8> ' and v > 7/, then

X yo z7 \  (YP oz X\ (XY Z7 P
Y8 zv X« X Y# zZv z7 Y® xe« )

Change the variables Y and Z. Then the matrix is of Type 1 if @ = o/, and Type 2 if
a<do. g

In the rest of this talk we always assume that the matrix is of Type 1 or Type 2.

Lemma 4 Let a be an ideal in k[X,Y] generated by monomials
XPO , XPIYQI e XPr—lYQr—l , YQr ,

wherepy >p1 >+ 2p,1>0and0=¢q <q1 <--- < gr_y < gr. Then

r—1
bux,y) (KX, Y]/a) = Z Pi(Giv1—a).
i=0
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Theorem 5 (cf. [5]) We put o' = min{a, o }. Then there ezists d; € P® such
that P@® = P% + (dp) and
X¥dy = 2" ac-YP PR
YPd, = X ab— X%~ 27
Zdy = —X*¥'a®+X¥"YP Phe.

Proof Recall X®a+Y#b+ Z7¢=0and YPa+ 270+ X¥c=0.
27 X¥dy = a-2Z7c=Y?Pb- 2%
= a(-X%—Y?b) - Y?Pb(-YPa— Xc)
— X% —Y®ab+YPab+ XY Phe
— X%+ X¥YP b,
We put a = P2+ (dg). It is easy to show a # o' or f# f or vy # 7.
First we consider the case where v # 7'. Because X o"dy = ZV Yac — Y#—Pp? and
4" —v >0, we have X o d, (?) —YF-Bp? (% _Y# -8 x2a+2

dy = — XAy P b,
@)

Then, as (Z) + P = (2) + (Xt | X¥YF YPHF'), we see

X2a+2a' X2a+2a’ —a' Yﬁ' -8 Xa+2a’ Yﬁ’ Xa+a’ Yﬁ+ﬁ’ )
Z + a= Z + ( ] 1" ) v ’ / ) ’ ’ ) .
( ) ( ) X« +o Y2ﬁ , X« Y,B+2ﬂ ,Y2ﬁ+2ﬁ

Therefore by Lemma 4, we get
LA(A)(Z) +a)=3(cf +B+F).
On the other hand, as a € P®,
La(A)(Z)+a) > La(A/(Z)+ PP)) = ez)(A/PD) =

La (Ap/PPAp) - o(AlP) = 3- La( A/(Z) + P) = 3(af + /B +'F).

(Z)+a=(Z)+P?.
P® = (2)nP® 4 a=ZP? +a.
P® =q.

Similarly, if 3 # B’ (resp. a # o), we see
La(A/(Y) +a) = La(A/(Y) + PP) = 3(ay+ o'y +a7),

( resp. £a( A/(X) +a) = La(A/(X) + P®)) =3(By + B + v ),
and we get a = P®. 4
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Theorem 6 (cf. [2], [6]) Suppose that the matriz
X y# zv
( Ye zv X« )

is of Type 1. Puto” =min{c, o/~a}, f” =min{B, /'~B} and¥" = min{vy, v —7}.
Then there exist d3 and dy in P® such that P®) = PP® 4 (ds, d}) and

Xedy = —YPF' 770" g2 _ yP-B=B" gr="p3
Yﬂl' d3 = Z"_'Y” bd2 + Xa'—aZ—y’ _.Y_,yllacz
ZVdy = —YPPady 4+ XYy F-P-F"p2.

X¥'dy = YPP'Z7Vedy — YPR-B3
YPdy = X'bdy — X' meme" 72721
Z7dy = —X*YPPady — XX oy BB gy g 4 X -y B =B 2,

Proof. Because the matrix is of Type 1, we have

Xy = Z"Vac-YPPR ... (1)
YPd, = ab— X¥-2z7-72 ... (2)
Zdy = —a?+ X¥2YPPpc ... (3).

In order to find d3, we notice a®- b= a - ab. Then
(X¥=oYP~Pbc — Z7dy) b = a (YPdy + X¥ =227 7c?)
by (2) and (3). .. —YPady+ X¥~YF~Pb2c = Zbdy + X¥ 227 Vg .
Y& (—YPP ady + X¥-0YPPF"b2c) = 27" (bdy + X¥ =277 ac?) .
Thus we get d3 as Y#', Z7" is an A-regular sequence.
Similarly, we get dj from (1) and (2).

We put @ = PP® + (d3, dy) C P®. In order to show a = P®, we notice 2a # o or
28 # [ or 2y#+'. If 2y # v/, then we have

ta(A/(Z) +a) =6(af +a'f+d'B) = La(A/(Z)+P?),

and so (Z) + a = (Z) + P® | which means a = P® . Similarly we get a = P® in the
case where 20 # ' or 2y # 4.
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Theorem 7 (cf. [2], [6]) Suppose that the matriz
X YF zv
( YP Zv X¥ )
is of Type 2. Puto” = min{<, a—a'}, B =min{ B, f'—B} andy" = min{~y, v —7}.
Then there ezist dg,dy and df in P® such that P® = PP® + (ds, dj, d3) and

Xald3 — _Yﬁ_ﬁIlZ,Y/_,Y_7/Ia2c _ Yﬂl_ﬁ_ﬂllbs
YP'dy = Z7bdy+ 2777 ac
Z"dy = ~YP P ady + Y e
Xd, = —Z""bdy+ 277" ac?
Y'Bdg — _Xa—a’—-a" Z,r_,yuab2 _ X""""‘"Z’Y"'Y"’Y"ca

Z7d, = XY cdy + X0 "a%

X¥dy = YP P ady +YP A Be
YOd = —X¥cdy + X7 0%
Z,ng — _Xo‘_al—a”Y.ﬁ"ﬂ”as _ Xa/_aIIYﬂ/_ﬁ_ﬁllbcz ]

Theorem 8 P® C P?,

Proof. We prove in the case where the matrix is of Type 1. Because PB®) = ppP® 4
(ds, dy), it is enough to show d3, dj € P?. Let us prove ds € P2, We use Y?'ds =
Z7"bdy + X¥ o271 ac?.

Z1bdy = 277 (XA —YPZY Ydy = X 2 dy — YP 2 Ty

xXeted zv=7"gq, = X¥Z77". X%,
= X¥Z77 (2" Vac - YPPR?)
X¥Z7"ac mod Y#'P2.
YBZ Y dy = YPZY " Z7dy € YR P
Z27"bdy = X¥ 2" ac mod Y¥'P?.
On the other hand
X-eg’ =gt = XY 771 e (YA — X Z7)
= —X¥2""ac mod YP'P?.
Thus we get Y#"ds € YP'P? | and so d3 € P?.

Similarly, we can prove dy € P?. y
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Theorem 9 (P®)2C p3.
Proof. It is enough to show dp € P3. ,

Example 10 Supposechk=2. Ifa<da',38< 8 ,v<9 <2y and 3y <2, then
P® ¢ P3 . For example, setting n, =28, ny =11, n3 =9, we have

X Y* Z°
P=I2(Y z3 X)’

Proof. In this case dy € P® satisfies
YPdy =ab— 277" and Z7dy = —a® +Y? Poc.
Because chk = 2, the first equality implies Y?2d,? = a2b? — Z2"'~27¢*. On the other
hand, from the second equality we get
a®? = (YP Pbc — 27dy ) b = YP ~Pbic — 27b%d, .
Y#dy? 4+ 7222t = YP Phbc — 2704, .
Y (YP ¥ —dy®) = 27 (bPdp + 27 ~9c?) .
Jey € P such that Z%, = YP~%b3c — d,%.

Then Z7¢4 5 —dy? % —Z2+ 50 ey 5 —Z74" | However, as (Y)+ P = (Y) +
(Xt Xz, Z77) | we have
V) +PP=@)+( - 2%,

This means ey & P3, since (37 +37 ) —(7+4Y)=2y—v >0.
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STRONGLY EDGE DECOMPOSABLE SIMPLICIAL COMPLEXES
ARE LEFSCHETZ

SATOSHI MURAI

ABSTRACT. We study a relation between the strong Lefschetz property of Stanley—
Reisner rings and contractions of simplicial complexes. We define edge decompos-
able simplicial complexes by generalizing Nevo’s definition of edge decomposable
spheres, and prove that every edge decomposable simplicial complex has the strong
Lefschetz property.

1. INTRODUCTION

In this paper, we study a relation between the strong Lefschetz property of
Stanley-Reisner rings and a combinatorial operation, called contractions.

We first recall the basis on simplicial complexes. Let A be a simplicial complex on
[n] = {1,2,...,n}. Thus A is a collection of subsets of [n] satisfying that (i) {i} € A
for all 4 € [n] and (ii) if F € A and G C F then G € A. An element F of A is called a
face of A and maximal faces of A under inclusion are called facets of A. A simplicial
complex is said to be pure if all its facets have the same cardinality. Let fi(A) be the
number of faces F' € A with |F| = k+1. The dimension of A is the maximal integer
k such that fi(A) # 0. The vector f(A) = (fo(A), f1(A),..., fa—1(A)) is called the
f-vector of A, where d = dim A+1. The h-vector h(A) = (ho(A), h1(A),. .., ha(A))
of A is defined by the relations

hi(A) = Zi:(—l)i‘j (‘; :Z) fi21(A) and fiq (D) = Z (Z:Z ) hi(A),

=0 =0

where we set f_1(A) = 1. Note that knowing f(A) is equivalent to knowing h(A).
The link of A w.r.t. a face F' € A is the simplicial complex lka(F) = {G C [n]\ F':
GUF € A}. To simplify, we write lka({i}) = Ika(¢) and 1ka({3,7}) = Ika(3, 7).

Next, we define contractions of simplicial complexes. The contraction of A w.r.t.
an edge {i,7} € A, where i < j, is the simplicial complex

Ca(i,j)={FeA:ig FYU{F\{ihhu{j}:i € FeA}.
Note that the contraction Ca(i, ) is obtained from A by identifying two vertices 4
and j. We say that A satisfies the Link condition w.r.t. {1,j} € A if
lka (6) N 1ka (7) = Ika i, ).

The next result of Nevo [N] shows an importance of the Link condition when we
consider contractions.

The author is supported by JSPS Research Fellowships for Young Scientists.
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Theorem 1.1 (Nevo). Let A be a PL-manifold without boundary. Then A is PL-
homeomorphic to Ca(3,j) if and only if Ika (i) Nlka(5) = lka(, 7).

One of the main open problem in f-vector theory is the g-conjecture for simplicial
spheres, that is, the characterization of h-vectors of triangulations of spheres (or
more generally Gorenstein™ complexes). Let S = K|zy,...,Z,| be the polynomial
ring over a field K. The Stanly-Reisner ideal In C S of A is the ideal generated
by all squarefree monomials zr = [],.rz; with F ¢ A. The ring K[A] = S/IA is
called the Stanley—Reisner ring of A over a field K. A (d—1)-dimensional simplicial
complex A is said to be Gorenstein* (or homology sphere) if K[A] is Gorenstein and
h4(A) = 1. On h-vectors of Gorenstein* complexes, there is the following conjecture.

Conjecture 1.2 (g-conjecture for homology spheres). If A is a (d — 1)-dimensional
Gorenstein* complex, then (hg, h; — ho, ..., hl%) — hng_l) is an M-vector (that is,
the Hilbert function of a standard graded K-algebra).

The above conjecture is important since if the conjecture is true then it yields the
complete characterization of h-vectors of Gorenstein* complexes (see [9]).

An algebraic approach for Conjecture 1.2 is to study the Lefschetz property of
Stanley—Reisner rings. Let / C S be a homogeneous ideal and A = S/I. Let d be
the Krull dimension of A. We say that A has the strong Lefschetz property if A is
Cohen-Macaulay and there exist a linear system of parameters (1.s.0.p. for short)
01,...,84 € S; of A and a linear form w € S; such that the multiplication map

W% (A)(8y,-..,0a)A), — (A/(Bs, ... ,62)A)

(2 S—1

is bijective for 1 = 0,1,..., 5], where s = max{k : dimg(A/(6y,...,04)A)x # 0}.
The element w is called a strong Lefschetz element of A/(61,...,04)A. A (d — 1)-
dimensional simplicial complex A is said to have the strong Lefschetz property (over
K) if A is Cohen-Macaulay and there exist an l.s.o.p. © =6;,...,0, of K[A] and a
linear form w such that the multiplication map w?® % : (K[A]/©); — (K[A]/O)a; is
bijective for ¢ = 0,1,..., 4] (equivalently, K[A] has the strong Lefschetz property
and hg(A) # 0).

Stanley [S] proved the g-conjecture for boundary complexes of simplicial polytopes
by proving that they have the strong Lefschetz property in characteristic 0. Stanley’s
result leads the following conjecture.

Conjecture 1.3 (algebraic g-conjecture). Every Gorenstein* complex has the strong
Lefschetz property.

It is known that Conjecture 1.3 implies Conjecture 1.2. On the Lefschetz property
and contractions, we prove the following result.

Theorem 1.4. Let A be a pure simplicial complex on [n] satisfying the Link con-
dition with respect to {i,5} € A. If Ca(3,7) and lka(i,7) have the strong Lefschetz
property then A has the strong Lefschetz property.

Note that the above theorem was also proved by Babson-Nevo [BN] in the special
case when char(K) = 0 in a different way.

Since the boundary of a simplex has the strong Lefschetz property, Theorem 1.4
proves the strong Lefschetz property for the following class of simplicial complexes.
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Definition 1.5. The boundary of a simplex is edge decomposable and, recursively, a
pure simplicial complex A is said to be edge decomposable if there exists {i,7} € A
such that A satisfies the Link condition with respect to {,7} and both C(3, j) and
lka (4, 5) are edge decomposable.

Corollary 1.6. If A is edge decomposable then A has the strong Lefschetz property.

Example 1.7. Let T be the simplicial complex generated by {1,2},{2,3},{3,4}
and {1,4} (that is, T is a cycle of length 4). Then T satisfies the Link condition
with respect to {1,2}. Also, Ca(12) is the boundary of the simplex {2,3,4} and
lka(1,2) = {0}. Hence T'is strongly edge decomposable.

Similarly, consider the simplicial complex I generated by {1,2},{2,3},{3,4} and
{2,4}. Then I" also satisfies the Link condition with respect to {1,2} and we
have Cr(1,2) = Ca(1,2) and lkr(1,2) = ka(1,2). Thus I is also strongly edge
decomposable. Note that I" is not Gorenstein*.

The simplicial complex & = T'U {{1,3}} is not strongly edge decomposable since
¥, does not satisfy the Link condition with respect to any {i,j} € .

On edge decomposable complexes, the following facts are known:

o 1-dimensional and 2-dimensional spheres are edge decomposable (see [N]).

e the join of edge decomposable complexes is edge decomposable. In particular,
a squarefree complete intersection is edge decomposable (if it is not a cone).

e there exists a 3-sphere which is not edge decomposable ([DEGN, §7]).

e there are many edge decomposable spheres which are not the boundary of a
simplicial polytope ([M]).

e A shifted complex has the strong Lefschetz property if and only if it is edge
decomposable.

Theorem 1.4 and Corollary 1.6 do not depend on the characteristic of the base
field. In particular, these results show that 2-dimensional spheres and squarefree
complete intersections have the strong Lefschetz property in any characteristic, while
Stanley’s theorem only guarantees the Lefschetz property in characteristic 0.

2. How TO USE THE LINK CONDITION

In this section, we study an algebraic meaning of the Link condition. For a
monomial ideal I, let G(I) be the unique minimal set of monomial generators of I.

Lemma 2.1. Let A be a simplicial complez on [n] and let 1 <4 < j <n be integers.
Then A satisfies the Link condition with respect to {i,5} if and only if In has no
generators which are divisible by ;.

Proof. We first show the ‘only if’ part. Let z;z;Tr € Ix with F C [n]\ {3,7}. Since
F ¢ H(A(l,]) = lkA(Z) ﬂlkA(j), z,op € Ip Or T;Tp € In. Thus TiT;TF ¢ G(IA)
Next, we prove the ‘if’ part. The inclusion lka (i) N lka(5) D lka (3, 7) is obvious.
What we must prove is lka (4) Nlka(j) C Ika(s, 7). Let F' € lka (i) Nlka(j). Suppose
F ¢ ka(i,j). Then z;z;zr € Ia and there exists zg € G(Ia) such that G C
{i,j}UF. Since {ifUF € Aand {j}UF € A, we have G ¢ {i} UF and
G ¢ {j} UF. Thus we have {i,j} C G, however, this contradicts the assumptio

that zg € G(Ia) is not divisible by z;z;. Hence F' € lka(i, 7). a
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For a simplicial complex A and a face F' € A, the simplicial complex sta(F) =
{F'UG : F' C F, G € lka(F)} is called the star of A w.r.t. a face F € A. For
integers 1 <14 < j < n, let ;; be the graded K-algebra automorphism of S induced
by @ij(zx) = zx for k # j and @;j(z;) = z;+z;. We write in(I) for the initial ideal of
a homogeneous ideal I of S w.r.t. the degree reverse lexicographic order induced by
Ty > - >, (see [E, §15] for the definition). Algebraically, the benefit of Lemma
2.1 can be explained by the following fact.

Lemma 2.2. Let A be a simplicial complez on [n] and let 1 < i < j < n be integers.
Let T' = Ca(i,7) Usta(i,4). If In has no generators which are divisible by z;z; then

ln(()O.,J(IA)) = II‘.

Proof. We claim that A and I' have the same f-vector. Let Ay = {F € A : |F| =
k +1}. A routine computation shows

(D) =10kl = {FeAx:i¢ForieF, j¢F, (F\{i})u{j} €A}
+{{i}UF € Ay : {j} € F or F € ka(i) N1ka(5)}|.
By the definition of contractions

fe-1Ca(i,9)) = {F € Ac i@ Fori €F, j ¢ F, (F\{i})U{s} ¢ A}|.
Also, since A satisfies the Link condition w.r.t. {4, }, it follows that
{{itUF e Ay : {j} € For F €lka(i) N1ka(4)} = {F € sta(i,5)x : i € F}.

Since fi(T') = fe(Ca(i, 7)) + [{F € sta(i,j)x : i € F}|, the above equations show
that A and I" have the same f-vector.

Since A and I" have the same f-vector, Ix and Ir have the same Hilbert function.
Since I and in(y;;(Ia)) also have the same Hilbert function, what we must prove
is G(Ip) - in(goij(IA)). Let zp € G(Ip)

Case 1: Suppose i ¢ F. If j € F then zp € In. Thus in(pij(zr)) = zr €
in(pi;(Ia)) as desired. If j € F then F ¢ A and (F \ {5}) U {{} € A by the
definition of contractions. Thus in(p;(zr — z(m\hugp)) = TF € in(pi;(1a)).

Case 2: Suppose i € F. If j ¢ F, then since F' & sta(i,7), F\ {i} ¢ lka(i) or
F\ {i} ¢ Ika(j) by the Link condition. Thus zp € Ix or T(r\(ipugy € Ia- In both
cases we have zr € in(p;;(1a)) since in(py;(zr)) = in(pi(zEgpoy)) = or. If
J € F then zp € Ia. Since {i,5} C F, by the assumption, there exists z¢ € G(I,)
such that G C F and {i,5} ¢ G. Then in(y;j(z¢)) is either z¢ or Te\pHu}- In
both cases in(p;;(z¢)) divides 7. Hence zr € in(p;;(Ia)) as desired. O

Lemma 2.2 is false if Ip has a generator which is divisible by z;z;. Indeed, it is
easy to see that if z;2;xr € G(Ia) then 22z is a generator of in(p;;(1a)).
The next Lemma and Lemma 2.2 give a nice relation between Ca (¢,7) and A.

Lemma 2.3. Let A be a simplicial complex satisfying the link condition w.r.t.
{i,7} € A and T' = Ca(i,j) Usta(s,5). Then

(1) 0 — K[sta(s,5)] = K[I] — K[Ca(i,§)] — 0

is ezact, where the first map is the multiplication by z; and where the second map is
a natural surjection induced by the inclusion Ca(z,j) C T.
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Proof. For any simplicial complex X, it is easy to see that

0 — K[sts(i)] == K[E] - K[Z—{i}] —0

is exact, where £ — {i} = {F € £:i ¢ F}. On the other hand, by the definition of
F, Str(i) = StA(’i,j) and " — {l} = CA(i,]) 4d

Finally, we remark the following simple fact.

Lemma 2.4. Let A be a (d— 1)-dimensional simplicial complez on [n] and {i,7} €
A. IfdimCa(i,j) # d — 1 then Ca(i,7) is a cone.

Proof. Suppose dimCa(4,5) < d — 1. Then all facets of A contain {3,5}. Thus
Ca(i,j) is a cone. O

If a (d — 1)-dimensional simplicial complex A is a cone, then hg(A) = 0. In
particular A cannot have the strong Lefschetz property.

3. PROOF OF THEOREM 1.4

In this section, we prove Theorem 1.4. The original proof given in [M] is rather
technical. Here, we give a simpler proof.

We identify a sequence of linear forms 61, ...,04 € S; with an element of K™*4,
We require the following known facts.

Lemma 3.1. Let I C S be a homogeneous ideal and d the Krull dimension of S/I. If
A = S/I has the strong Lefschetz property, then there ezits a nonempty Zariski open
subset U C K™<@+1) such that, for any sequence of linear forms 01,...,04,0441 €U,
0,,...,04is anl.s.0.p. of A and bas1 15 @ strong Lefschetz element of A/(6s,...,0a)A.

Lemma 3.2 (Wiebe [W]). Let I C S be a homogeneous ideal. If S/in(I) has the
strong Lefschetz property then S/I has the strong Lefschetz property.

Proof of Theorem 1.4. Let T' = Ca(i,j) Usta(i, ). By Lemmas 2.2 and 3.2, it is
enough to prove that T' has the strong Lefschetz property.

We first prove that I' is Cohen-Macaulay. By the assumption, Ca(i,j) and
sta (i, ) are (d—1)-dimensional Cohen-Macaulay complexes. Indeed, dimsta(z, ) =
d — 1 since A is pure, and dimCa(i,j) = d — 1 follows from Lemma 2.4 since
Ca(i,7) has the strong Lefschetz property. Also, Ca(4,j) and lka(3,7) are Cohen-
Macaulay by the assumption, and sta(i,) is Cohen-Macaulay since Klsta(s,7)] =
K[lkA(i’ .7)] [wia :BJ']'

Consider the exact sequence (1) given in Lemma 2.3. Then since every ring
appearing in (1) is a (d — 1)-dimensional and since K[sta(4,4)] and K[Ca(3, 7)) are
Cohen—Macaulay, it follows that K[I] is Cohen—-Macaulay.

Let 0y, ...,04,w be generic linear forms. Then © = 64, ...,0; is a common 1.8.0.D.
of K[sta(4,4)), K[Ca(i,7)] and K [[). Since these rings are Cohen—Macaulay,

0 — Klsta(i,)]/© == K[I1/© — K[Ca(i,5)]/© — 0
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is exact. Consider the commutative diagram
0 = (K[sta(,0)/0)ica =2 (K[[)/0) — (K[Ca(i,5)]/0)i — 0

l xwd—% l de—2z’ l do—2i

0 — (Klsta(i,1)]/©)@-2)-¢-1) —> (K[[1/O)aci — (K[Ca(i,7)]/O)ai — 0

Then, since Ca(%,7) has the strong Lefschetz property, by Lemma 3.1, the third
vertical map in the commutative diagram is bijective. Also, since lka (t,7) has the
strong Lefschetz property, the multiplication map w® 2% : (K[lka(s,5)]/0)is; —
(K[lka (4, 7)]/©)(a~2)-@-1) is bijective. Since K([lka(i,5)][z:, z;] = K[sta(i, )], by
Lemma 3.1, K[sta (4, j)] has the strong Lefschetz property and the first vertical map
in the commutative diagram is bijective. Then the second vertical map must be
bijective. Hence I' has the strong Lefschetz property. a

4. OPEN PROBLEMS
Here, we give a few open problems.

Problem 4.1. Let A be a Gorenstein* complex which satisfies the Link condition
w.rt. {1,j} € A. Prove that if A has the strong Lefschetz property then Ca(i, )
also has the strong Lefschetz property.

The above problem is important since if it is true then the algebraic g-conjecture
holds for all PL-spheres (see [BN] for details).

We say that a Gorenstein* complex A is irreducible if it does not satisfies the
Link condition for any edge in A. It is not difficult to prove that if A is Gorenstein*
and satisfies the Link condition w.r.t. {i,j} then Ca (s, 7) is also Gorenstein*. Then
Theorem 1.4 shows that, to prove the algebraic g-conjecture, it is enough to prove

Problem 4.2. Prove that every irreducible Gorenstein* complex has the strong
Lefschetz property.
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A NOTE ON THE BUCHSBAUM-RIM MULTIPLICITY

FUTOSHI HAYASAKA

This note is a summary of the paper [7] with Eero Hyry (University of
Tampere). In this note we prove that the Buchsbaum-Rim multiplicity
e(F/N) of a parameter module N in a free module F' = A" is bounded
above by the colength £4(F/N). Moreover, we prove that once the equal-
ity £4(F/N) = e(F/N) holds true for some parameter module N in F,
then the base ring A is Cohen-Macaulay.

1. INTRODUCTION

Let (A,m) be a Noetherian local ring with the maximal ideal m and
d=dimA > 0. Let F = A" be a free module of rank r > 0, and let M
be a submodule of F such that F/M has finite length and M C mF.

In their article [4] from 1964 Buchsbaum and Rim introduced and
studied a multiplicity associated to a submodule of finite colength in a
free module. This multiplicity, which generalizes the notion of Hilbert—
Samuel multiplicity for ideals, is nowadays called the Buchsbaum-Rim
multiplicity. In more detail, it first turns out that the function

A(n) := £a(Sn(F)/Ra(M))

is eventually a polynomial of degree d+r—1, where Su(F) = @B,5¢ Sn(F)
is the symmetric algebra of F' and R(M) = D,>0 Ra(M) is the image
of the natural homomorphism from Sa(M) to S4(F). The polynomial
P(n) corresponding to A(n) can then be written in the form

d+r—1 .
Z ; (n+d+r—1-—1
P(n) = (_1)ei< d+r—1—1 )

i=0
with integer coefficients e;. The Buchsbaum-Rim multiplicity of M in F,
denoted by e(F/M), is now defined to be the coefficient eg.

Buchsbaum and Rim also introduced in their article the notion of a
parameter module (matrix), which generalizes the notion of a parameter
ideal (system of parameters). The module N in F is said to be a param-
eter module in F, if the following three conditions are satisfied: (i) F/N
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has finite length, (ii) N C mF, and (iii) ua(N) = d+r—1, where wa(N)
is the minimal number of generators of NV.

Buchsbaum and Rim utilized in their study the relationship between
the Buchsbaum-Rim multiplicity and the Euler-Poincaré characteristic
of a certain complex, and proved the following:

Theorem 1.1 (Buchsbaum-Rim [4, Corollary 4.5]). Let (A, m) be a Noe-
therian local ring of dimension d > 0. Then the following statements are
equivalent:
(1) A is a Cohen-Macaulay local ring;
(2) For any rank r > 0, the equality £4(F/N) = e(F/N) holds true
for every parameter module N in F = A".

Then it is natural to ask the following:

Question 1.2.
(1) Does the inequality £4(F/N) > e(F/N) hold true for any param-
eter module N in F'?
(2) Does the equality £4(F/N) = e(F/N) for some parameter module
N in F' imply that the ring A is Cohen-Macaulay?

The purpose of this note is to give a complete answer to Question 1.2.
Our results can be summarized as follows:

Theorem 1.3. Let (A, m) be a Noetherian local ring of dimension d > 0.

(1) For any rank r > 0, the following two inequalities
La(F/N) > e(F/N) and £4(A/I(N)) > e(F/N)
always hold true for every parameter module N in F = A", where
I(N) is the 0-th Fitting ideal of F/N.
(2) The following statements are equivalent:
(¢) A is a Cohen-Macaulay local Ting;
(i1) For some rank r > 0, there exists a parameter module N in
F = A" such that the equality £4(F/N) = e(F/N) holds true;
(iii) For some rank r > 0, there erists a parameter module N in
F = A" such that the equality £4(A/I(N)) = e(F/N) holds
true.
When this is the case, the equality Lo(F/N) = £4(A/I(N)) =
e(F/N) holds true for all parameter modules N in F = A" of any
. rank r > 0.

Note that the equality £4(F/N) = £4(A/I(N)) is known by [1, 2.10].
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2. HiGHER EULER-POINCARE CHARACTERISTICS

In order to prove Theorem 1.3, we will investigate higher Euler-Poincaré
characteristics of a generalized Koszul complex.

Let (A, m) be a Noetherian local ring of dimension d > 0. Let F' = AT
be a free module of rank 7 > 0 with a basis {t1,...,t.}. Let M be
a submodule of F' generated by c1,¢z,...,Cn, Where n = y,A(M ) is the
minimal number of generators of M. Writing ¢; = cijt1 + - + crjty for
some ¢;; € A, we have an r X n matrix (ci;) associated to M. We call this
matrix the matrix of M, and denote it by M. Let I(M) = Fitto(F/M)
be the 0-th Fitting ideal of F/M. Let K. (M t) be the generalized Koszul
complex associated to a matrix M and an integer t € Z. For the definition
and basic facts about the generalized Koszul complex, we refer the reader
to [2, 8] and [6, Appendix A2.6]. We assume that F/M has finite length
and M C mF. Then I(M) is an m-primary ideal, because /I(M) =
\/Anns(F/M). Hence each homology module Hy(K. (M t)) has finite
length, because the module Hp(K. (M t)) is annihilated by the ideal
I(M). So the Euler-Poincaré characteristics of K. (M t) can be defined
as follows:

Definition 2.1. For any integer ¢ > 0, we set
Xa(Ko(M; 1)) =Y (= 1)U a(Hyp(Ko(M;1)))
p2q

and call it the g-th partial Euler-Poincaré characteristic of K. (M t).
When q = 0, we simply write x(Ko ( ;¢)) for xo(K (M t)), and call it
the Euler-Poincaré characteristic of Ko(M;1).

Buchsbaum and Rim studied in [4] the Euler-Poincaré characteristic
of the Buchsbaum-Rim complex K, (M 1) in analogy with the Euler-
Poincaré characteristic of the ordinary Koszul complex in the case of
usual multiplicities. In 1985 Kirby investigated in [9] Euler-Poincaré

characteristics of the complex K, (M t) for all t and proved the following:

Theorem 2.2 (Buchsbaum-Rim, Kirby). For any integert € Z, we have

@y = { P BT

In particular, x(K.(M; t)) > 0 for all t € Z.
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The last statement holds for the higher Euler-Poincaré characteristics,
too:

Theorem 2.3. For any ¢ > 0 and any t > —1, we have
Xq(Ko(M;t)) 2 0.

Proof. Let M = (cij) € Matyxn(A) be the matrix of M and X = (X;;)
be the generic matrix of the same size r xn. Let A[X] = A[X;; |1 <<
r, 1 < j < n] be a polynomial ring over A and let B = A[X]m x). We will
consider the ring A as a B-algebra via the substitution homomorphism
¢$:B—A;Xi ey Letb:=Kerg=(X;;—¢; |[1<i<r, 1<j<
n)B and let C¢(X) := Ho(K.(X;t)). Then, using ideas from [5], we can
prove the isomorphism

Hy(KJ(M;t)) 2 Hy(K.(b) ®5 Cy(X))

for any p > 0 and any ¢t > —1, where K,(b) is the ordinary Koszul
complex associated to a sequence b. Hence we have

Xa(Ko(M; 1)) = xo(K.(b) ®5 Ci(X))

for any ¢ > 0 and any t > —1. Here the right hand side is non-negative by
Serre’s Theorem ([11, Ch. IV Appendix II]). Thus x,(K.(M;t)) > 0. O

3. PROOF OF THEOREM 1.3

Theorem 1.3 will be a consequence of the following more general result:

Theorem 3.1. Let (A, m) be a Noetherian local ring of dimension d > 0.

(1) For any rank v > 0, the inequality La(Ho(K.(N;t))) > e(F/N)

holds true for any integer t > —1 and any parameter module N

m F=A".

(2) The following statements are equivalent:
(i) A is a Cohen-Macaulay local ring;

(it) For some rank r > 0, there exist an integer —1 < t < d
and a parameter module N in F' = A" such that the equality
L4(Ho(K4(N;t))) = e(F/N) holds true.

When this is the case, the equality £4(Ho(K.(N;t))) = e(F/N)

holds true for any integer —1 <t < d and any parameter module

N in F = A" of any rank r > 0.
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Proof. (1): Let N be a parameter module in F = A", and let ¢t > —1.
By Theorem 2.2 we obtain that

e(F/N) = x(K.(N;t)) = La(Ho(Ku(N; 1)) — x1(Ko(N; 1)).

Since x1(K.(N;t)) > 0 by Theorem 2.3, the desired inequality follows.

(2): Assume that the ring A is Cohen-Macaulay. Let N be any param-
eter module in F' = A" of any rank 7 > 0. Let n = pa(N) =d+r—1.
Then, since grade[(N) = ht [(N) =d =n —r+ 1, K,(N;t) is acyclic
for all -1 <t < n—r+1=d. Therefore, by Theorem 2.2, we have
e(F/N) = x(Ko(N;t)) = La(Ho(Ke(N;t))). This proves the implication
(i) = (ii), and also the last assertion.

It remains to show the implication (ii) = (i). Assume that there exist
integers r > 0, —1 <t < d, and a parameter module N in F = A" such
that £4(Ho(KW(N;t))) = e(F/N). Arguing as in the proof of Theorem
2.3 and using the same notation, we get

x1(K.(b) ®5 Ci(X)) = xi(K.(N;1))
= {4(Ho(K.(N;t))) —e(F/N) = 0.
We note here that dimg C;(X) = rn and hence b is a parameter ideal
of Cy(X). Therefore the equality x1(K.(b) ®p C¢(X)) = 0 implies that
C¢(X) is a Cohen-Macaulay B-module. On the other hand, pdg Cy(X) =
d, because the complex K,(X;t) is a minimal B-free resolution of Cy(X)
of length n — r + 1 = d. Hence, by the Auslander-Buchsbaum formula,
we have
d+rn = pdgCy(X) + depthg Cy(X)
= depth B
< dimB = d+mn.

Thus depth B = dim B so that B is Cohen-Macaulay. Therefore A is
also a Cohen-Macaulay local ring. O

Taking t = 0,1 in Theorem 3.1, now readily gives Theorem 1.3. We
close this note with the following question.

Question 3.2. Let F be a fized free module of rank r > 0. Assume that
A is a Buchsbaum local ring. Then the difference £4(F/N) — e(F/N) of
length and multiplicity of a parameter module N is independent of the
choice of a parameter module N in F'?
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1 Introduction

Grassmannians and their Schubert subvarieties are fascinating objects and
attract many mathematicians. Let G, , be the Grassmannian consisting of
all m-dimensional vector subspaces of an n-dimensional vector space V' over
a field K. Then the homogeneous coordinate ring of G is K[['(X)], where
X = (Xj;) is the m x n matrix of indeterminates. See (2.2) for the notation.

For a Schubert subvariety of G, n, there correspond integers b1, .- bm
with 1 < b; < -++ < by, < n and the universal m x n matrix Z with the
condition

Ii(ZSbi—l) = (0) for i = 1, .., M

and the homogeneous coordinate ring of the Schubert subvariety of Gmp is
K[[(Z)). |

On the other hand, because of the universal property of Z, any subgroup
of GL(m, K) acts on K[Z]. The present author defined the notion of doset
Hibi ring in order to study the rings of O(m) and SO(m) invariants of K [Z].

A (generalized) doset Hibi ringis a normal affine semigroupring and there-
fore is Cohen-Macaulay. In this note, we state a criterion of a (generalized)
doset Hibi ring to be Gorenstein.

2 Preliminaries

(2.1) In this note, all rings and algebras are commutative with identity
element.

We denote by IV the set of non-negative integers, by Z the set of integers,
by R the set of real numbers and by R the set of non-negative real numbers.
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Let K be a field and Xj, ..., X, indeterminates, S a finitely generated
additive submonoid of N”. We set K[S] := K[X*® | s € S] where X® =
X7t X for s = (s1,...,5:). Then

Theorem 2.1 ([Hoc]) (1) K[S] is normal if and only if S = ZSN R, S.
(2) If K[S] is normal, then it is Cohen-Macaulay.

(2.2) Let m, n be integers with 0 < m < n. For an m X n matrix M with
entries in a K algebra S, we denote by I;(M) the ideal of S generated by the
t-minors of M, by M=* the i x n matrix consisting of first i-rows of M, by
Mc<; the m x j matrix consisting of first j-columns of M, by I'(M) the set
of maximal minors of M and by K[M] the K-subalgebra of S generated by
the entries of M.

(2.3) Let P be a finite partially ordered set (poset for short).

The length of a chain (totally ordered subset) X of P is #X — 1, where
#X is the cardinality of X.

The rank of P, denoted by rankP, is the maximum of the lengths of
chains in P.

A poset is said to be pure if its all maximal chains have the same length.

A poset ideal of P is a subset [ of P such that z€ I,y € Pandy <z
imply y € I.

For z, y € P, y covers z, denoted by z < y, means z < y and there is no
z€ Psuchthat z <z <y.

For z,y € P with z <y, weset [z,y]p :={z€ P|z < 2z<y}

(2.4) Let H be a finite distributive lattice. A join-irreducible element in
H is an element o € H such that o can not be expressed as a join of two
elements different from a. That is, = 8V vy = a = 8 or a = ry. Note that
we treat the unique minimal element of H as a join-irreducible element.

Let P be the set of all join-irreducible elements in H. Then it is known
that H is isomorphic to J(P) \ {0} ordered by inclusion, where J(P) is the
set of all poset ideals of P. The isomorphisms ®: H — J(P) \ {0} and
U: J(P)\ {0} — H are given by

®(a):={z€P|z<ain H} fora € H and
v(I) =\ for I € J(P)\ {0}.

el
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(2.5) Let L be another distributive lattice, @ the set of join-irreducible
elements in L and ¢: H — L a surjective lattice homomorphism. We set

eB):= N\ «

acp~1(B)
Then
Lemma 2.2 (1) ¢*(p(a)) <o foranya € H.
(2) p(@*(B)) =B for any B € L.
(3) Br < B2 = ¢*(Br) < 9" (B2)-
(4) Fora€ H and B € L, p(a) > f <= a2 ¢*(B).
(5) ¢"(BrV B2) = " (A1) V ¢*(B2)-
(6) ye Q= ¢*(y) € P.
Remark 2.3 (1) A ¢"(B2) # ¢" (1) A *(B2) in general.

By (2) and (3) of Lemma 2.2, we may regard L as a subposet (not a
sublattice) of H by ¢*. Then, by (6) of Lemma 2.2, @ is identified as a
subset of P.

Lemma 2.4 By the identification above, the composition map J(P)\ {0} ~
HS L~ JQ)\ {0} is identical to the map I — I N Q.

3 Hibi rings, doset Hibi rings and generalized
doset Hibi rings

Let K be a field, H a finite distributive lattice, P the set of join-irreducible
elements of H, J(P) the set of poset ideals of P and {T;}sep a family of
indeterminates indexed by P. Hibi [Hib] defined the ring Rx(H), which is
called the Hibi ring nowadays, as follows.

Definition 3.1 ([Hib]) Rx(H) = K[[[,<o Tz | @ € H].
Then
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Theorem 3.2 ([Hib]) Ry (H) is an ASL over K generated by H with struc-
ture map a — Hzga T;. The straightening law is aff = (a A B)(a V B) for a,
B € H with a o4 .

For a map v: P — N, we set TV := HzePT:(z). We also set T (P) :=
{viP>N|a<b=v(a)>v(b)}and T(P) :={v: P - N\ {0} |a<
b= v(a) > v(b)}. Then

Theorem 3.3 ([Hib]) Rx(H) is a free K-module with basis {T" | v €
7(P)}.

Remark 3.4 By Theorem 2.1, R (H) is a normal affine semigroup ring and
hence is Cohen-Macaulay.

Now we recall the definition of a doset by DeConcini-Eisenbud-Procesi.

Definition 3.5 ([DEP, Section 18]) A subset D of H x H is called a doset
if

(1) {(,@) |la€e H} c D C {(a,ﬂ)la,ﬁeH,qgﬂ} and
(2) if a; < az < a3, then

(1,03) € D & (a1,02) € D and (g, a3) € D.

Let L be another distributive lattice and p: H — L a surjective lattice
homomorphism. We set D := {(a,8) | a < 8, p(a) = ¢(8)}. Then it is
easily verified that D is a doset.

Definition 3.6 Doset Hibi ring over K defined by ¢, denoted by Dx (), is
the subalgebra of Rk (H) generated by {af | (o, 8) € D}

Remark 3.7 If (o, 8), (¢/,8') € D, then

(aB)(e'B)
(andY(ava)(BAB)BYA)
= (and)((aVa)A(BAB))(aVa)V(BAB))PBYE)

and

plava)A(BAB)) = pland)
p((avd)V(BAB)) = ¢BVE).
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So (aAnd, (aVa)ANBAB)), ((avd)V(BAB),BVP) € D. Therefore, we
see, by repeated application of straightening law, that {on0z - - agr_r0gr |
a; <o <--- < ooy, (0gi-1,09;) EDfori=1, ..., r} is a K-free basis of
the doset Hibi ring.

Now let Q be the set of join-irreducible elements of L. As mentioned in
(2.5), we regard @ as a subset of P.

Regarding Rx(H) as a subring of K[T; | = € P)], a standard monomial
aqog -+ - ey with oq < ag < -+ < @, corresponds to T, where v(z) = #{i |
z < o;}. On the other hand, by the identification L ~ J(Q) \ {0} and
Q C P, ¢(a) corresponds to {y € Q | y < o in H} by Lemma 2.4. So a
standard monomial ajas--- a9, on H with a1 < ag < -+ < oo satisfies
(agi1,05) € D for i = 1, ..., r if and only if v(y) = 0 (mod 2) for any
y € @, where v is an element of T (P) corresponding to o - - - agr. Therefore
we have the following

Theorem 3.8 Dk(y) is a free K-module with basis {T” | v € T(P),v(y) =
0 (mod 2) for anyy € Q}. In particular, by Theorem 2.1, Dk () is a normal
affine semigroup ring, and therefore, is Cohen-Macaulay.

Note the description of Dk (i) in the theorem above depends only on H
and Q. Therefore we can generalize the notion of doset Hibi ring as follows.

Definition 3.9 Let H be a finite distributive lattice, P the set of join-
irreducible elements of H, Q a subset of P. We define the generalized doset
Hibi ring defined by H and Q, denoted by Dk (H,Q), as Dx(H, Q) := K[T" |
veT(P), v(y) =0 (mod 2) for any y € Q].

The following is the direct consequence of the definition.

Theorem 3.10 The generalized doset Hibi ring Dx(H,Q) is a free K-
module with basis {T* | v € T(P), v(y) = 0 (mod 2) for any y € Q}.
In particular, by Theorem 2.1, Dk (H,Q) is a normal affine semigroup ring
and hence is Cohen-Macaulay.

Note that if Q contains the minimal element zo of H, then by setting L=
J(@Q) \ {0} and ¢ the map corresponding to J(P) \ {0} — J(@Q) \ {0},
(I —» INQ), Dx(H,Q) is equal to Dx (). In particular, D (H,Q) is the
ordinal doset Hibi ring.
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4 Gorenstein property

In this section, we state a criterion for a (generalized) doset Hibi ring to be
Gorenstein.

Set P* := P U {00}, where oo is a new element such that z < oo for any
z€P, Q" :=QU{oo} and P := PTU{(y1,42) € Q* xQ* | 11 < yo in Pt}
We define the order on P by by extending y1 < (y1,%2) < v2 for y1, y» € QF
with y; < y2 in P*. Then
Theorem 4.1 Dg(H, Q) is Gorenstein if and only if

(1) P is pure and
(2) for any y1, y2 € Q" with y1 < ys, rank[y, ¥2]5 = 0 (mod 2).

Example 4.2 (1) If

where big dots express elements of @, then

Pt = and P =

Therefore, Dk (H, Q) is Gorenstein.
(2) If
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then

I
'_‘Ux

Pt =

Therefore, P is not pure and Dg(H, Q) is not Gorenstein.
(3) If

then

So there are y, ¢ € Q* such that y < y' and rank[y,y']5 = 3. There-
fore, Dx(H, Q) is not Gorenstein.
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