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F-thresholds, tight closure, integral closure, and
multiplicity bounds

Shunsuke Takagi (Kyushu University)

This is a joint work with Craig Huneke, Mircea Mustata and Kei-ichi Watanabe.

Let R be a Noetherian ring of prime characteristic p and denote by R° the set of
elements of R that are not contained in any minimal prime ideal. The tight closure
I* of an ideal I C R is defined to be the ideal of R consisting of all elements z € R
for which there exists ¢ € R° such that cz? € I for all large ¢ = p°, where I'9
is the ideal generated by the g** powers of all elements of I. The ring R is called
F-rational if J* = J for every ideal J C R generated by parameters.

Let a be a fixed proper ideal of R such that a N R° # 0. To each ideal J of R
such that a C v/J, we associate an F-threshold as follows. For every ¢ = p°, let

v!(q) := max{r € Nja" ¢ Jl9},

where J9 is the ideal generated by the g*® powers of all elements of J. Sincea C Vv,
this is a nonnegative integer (if a C J!9, then we put v/(q) = 0). We put
J J
c](a) = limsup -V“LQ), ¢t (a) = hminf-uiﬁ@,

g—oo G 9= g
When cZ (a) = c¢Z(a), we call this limit the F-threshold of the pair (R, a) (or simply
of a) with respect to J, and we denote it by c’(a). The reader is referred to [3] and
[4] for basic properties of F-thresholds.

Example 1. Let R be a Noetherian local ring of characteristic p > 0, and let
J = (z1,...,z4), where z1,...,z4 form a full system of parameters in R. It follows
from the Monomial Conjecture that (z; - - - £4)?~ & J1@ for every g. Hence vj(g) >
d(g — 1) for every g, and therefore ¢/ (J) > d. On the other hand, it is easy to see
that ¢ (J) < d, and we conclude that ¢’(J) = d.

We can describe the tight closure and the integral closure of parameter ideals in
terms of F-thresholds.

Theorem 2. Let (R, m) be a d-dimensional ezxcellent analytically irreducible Noethe-
rian local domain of characteristic p > 0, and let J = (z1,...,z4) be an ideal gen-
erated by a full system of parameters in R. Given an ideal I 2 J, we have I C J* if



and only if ¢! (J) = d (and in this case ¢!(J) ezists). In particular, R is F-rational
if and only if X (J) < d for every ideal I 2 J.

In order to prove Theorem 2, we start with the following lemma.

Lemma 3. Let (R,m) be an ezcellent analytically irreducible Noetherian local do-
main of positive characteristic p. Set d = dim(R), and let J = (z,,...,z4) be an
tdeal generated by a full system of parameters in R, and let I 2 J be another ideal.
Then I is not contained in the tight closure J* of J if and only if there ezists gy = p®
such that z%-! € J'®) where £ = z1z, - - - z4.

Proof. After passing to completion, we may assume that R is a complete local
domain. Suppose first that z%~! € I®, and by way of contradiction suppose
also that I C J*. Let ¢ € R° be a test element. Then for all ¢ = p®, one has
cz?@-1) g cJlawl ¢ Jlawl 5o that ¢ € Jlawl : z9@w-1) C (Jl)* by colon-capturing
[2, Theorem 7.15a]. Therefore c? lies in (,_,. J l) = (0), a contradiction.
Conversely, suppose that I ¢ J*, and choose an element f € I \ J*. We choose
a coefficient field k, and let B = k|[[z,, ..., g4, f]] be the complete subring of R gen-
erated by z,,...,z4, f. Note that B is a hypersurface singularity, hence Gorenstein.
Furthermore, by persistence of tight closure [2, Lemma 4.11a}, f ¢ ((z1,...,z4)B)*.
If we prove that there exists go = p® such that z%~! € ((zy,...,Z4, f)B)1%!, then
clearly z%~1 is also in I!%]. Hence we can reduce to the case in which R is Gorenstein.
Since I € J*, it follows from a result of Aberbach [1] that Ji9: I C m™@) where
n(q) is'a positive integer with lim, .., n(g) = co. In particular, we can find gy = p*®
such that Jlol : Jlel C J Therefore z%-! € Jlool: J C Jlol. (Jiq"]: I [‘101) =17 l"°],
where the last equality follows from the fact that R is Gorenstein. o

Proof of Theorem 2. Note first that for every I 2 J we have ¢ () < d. Suppose
now that I C J*. It follows from Lemma 3 that J4@~1) ¢ I9 for every g = p®. This
gives v1(q) > d(g — 1) for all g, and therefore ¢! (J) > d. We conclude that in this
case cl(J)=cL(J)=d.

Conversely, suppose that I € J*. By Lemma 3, we can find gg = p* such that

b= (z%,...,2%, (z; - - z4)®7?) C Ilo0l,
If (z1,...,24)" € b9, then
< (g0-1)(d-1)+q(g—1)—1=qqd—q—d.

Therefore v/} (q) < qgod — q — d for every g, which implies c?(J) < god — 1. Since go
is a fixed power of p, we deduce

(= icﬁ“‘(J) < icb(J) <d- lca
do do do



Theorem 4. Let (R,m) be a d-dimensional formally equidimensional Noetherian
local ring of characteristic p > 0. If I and J are ideals in R, with J generated by a
full system of parameters, then

(1) cJ(I)<difand only if I CJ.
(2) If, in addition, J C I, then I C J if and only if ¢ (I) = d.

Proof. Note that if J C I, then ¢’ (I) > ¢’ (J) = ¢/(J) = d, by Example 1. Hence
both assertions in (2) follow from the assertion in (1).

One implication in (1) is easy: if I C J, then we have ¢ () < c](J) =c/(J) =d.
Conversely, suppose that ¢} () < d. In order to show that I C J, we may assume

that R is complete and reduced. Indeed, first note that the inverse image of Jﬁfed

in R is contained in J, hence it is enough to show that I R,ed - Jﬁ“d. Since J}Ai’,,ed
is again generated by a full system of parameters, and since we trivially have

IRrs(IReea) < (1) < 4,

we may replace R by ﬁ,,ed.

Since R is complete and reduced, we can find a test element c for R.
Claim. Let a, b be ideals of R such that a C V/b. Then ‘ci(a) < a if and only if for
every power go of p, we have al®@1+9/9 C pldl for all g = p® > qo.

Proof of Claim. First, assume that c(a) < . By the definition of c5 (a), for any
power qo of p, there exists g; such that v5(q)/qg < a+ 1/go for all ¢ = p* > ¢.
Thus, v2(q) < [aq] + ¢/q, that is, al*d1+9/% C bldl for all g = p® > ¢;. For the
converse implication, note that by assumption, v%(q) < [aq] + ¢/go — 1 for all large
q = p° > qo. Dividing by ¢ and taking the limit gives c& (a) < a+1/go. Since go is
any power of p, we can conclude that c5 (a) < a. O

By the above claim, the assumption ¢ (I) < d implies that for all go = p® and

for all large g = p®, we have
J9d+/m) C jla,

Hence [9J9(@-1+(1/@)) C Jldl and thus

19 C Jld. jold-1+(1/a0)) C (je—d+i-(a/a))
where the last containment follows from the colon-capturing property of tight closure
[2, Theorem 7.15a). We get cI? C cRNJ9~4+1-(e/20) C ¢ ja-¢+1-(9/0)~L for some fixed

integer | that is independent of g, by the Artin-Rees lemma. Since c is a non-zero
divisor in R, it follows that

Iic Ja—9+1-(a/a)-1, (1)



If v is a discrete valuation with center in m, we may apply v to (1) to deduce
qv(I) > (q —d+1-2— l) v(J). Dividing by ¢ and letting ¢ go to infinity gives
v(I) > (1 - %) v(J). We now let go go to infinity to obtain v(I) > v(J). Since
this holds for every v, we have I C J. A O

Two years ago (at the 27 Symposium on Commutative Algebra in Japan), we
proposed the following conjecture, generalizing a result in [5].

Conjecture 5 (cf. [6, Conjecture 3.2]). Let (R, m) be a d-dimensional Noetherian
local ring of characteristic p > 0. If J C m is an ideal generated by a full system of
parameters, and if a C m is an m-primary ideal, then

e(a) > (%)de(.]).

Example 6. Let R = k[X,Y, Z] /(X% + Y3+ Z°) be a rational double point of type
Eg, with k a field of characteristic p > 0. Let a = (z,2) and J = (y,2). Then
e(a) = 3 and e(J) = 2. It is easy to check that c/(a) = 5/3 and c*(J) = 5/2. Thus,

e(a) =3 > % = (CJL@)):(J),

48 2 \°
=2> == — .
e(J) > 5 (c“(])) e(a)
Two years ago, we reported the following result as an'evidence of Conjecture 5.

Theorem 7 ([6, Proposition 3.3]). If (R, m) is a regular local ring of characteristic

p>0andJ=(zp,...,23), with z1,...,zq4 a full reqular system of parameters for
R, and with a,,...,aq positive integers, then the inequality given by Conjecture 5
holds.

We will conclude this article with a result related to the graded version of Con-
jecture 5.

Theorem 8. Let R = @, Ra be an n-dimensional graded Cohen-Macaulay ring
with Ry a field of characteristic p > 0. If a and J are ideals generated by full
homogeneous systems of parameters for R, then

e(a) > (ﬁﬁ)ne(n.

Proof. Suppose that a is generated by a full homogeneous system of parameters
T1,...,Z, of degrees a; < --- < a, and J is generated by another homogeneous
system of parameters fi,..., fn of degrees d; < --- < d,. Fix a power g = p® of p,



and define the nonnegative integers £, ...t inductively as follows: ¢ is the

least integer t such that zt € Jl4. If i > 2, then t(e) is the least integer t such that
(e)_ #(®)

i 1. .r,“ll - ot € Jld. We also define the integer N(® to be the least integer N

such that IV C J lq] Note that N(® is greater than t(e) +--+ t,(fll n+ 1. Since

the lim sup of the ratios (N® +n — 1)/p® is ¢ (a), it suffices to prove that

(N® +n—1)a;--a, > n"q"ds - dn.

First, we will show the following inequality for every i =1,...,n —1:

tge)al +-- tfe)m >q(di+---+ d;). (2)
(© o)y 4 © © _1 4
Let I; ) be the ideal of R generated by z7 , 28 l:c; vy T - :z:f_l 1ol . By

the definition of t(’) .,tEe , we have that Ife) C Jl4. The natural surJectlon of
R/ I,(e) onto R/J!9 induces a comparison map between the minimal free resolutions.
Looking at the i*® free modules, we have the map
R(-tPa - —t¥%) > @ Rl-gdy——qd).
1$v1$~~v$v.;$n
In particular, unless this map is zero, tge)al 4+ t,(e)ai must be at least as large as

the minimum of the twists, which is g(d; + - - - + d;). So it remains to see the reason
why this map cannot be zero. Assume it is zero: then the map

Tor®(R/I®), R/b;) — Tor®(R/J, R/b;)

will be zero, where b; is the ideal generated by z;,...,z;. On the other hand, using
the Koszul complex on z,,...,T;, we see that this map can be identified with the

natural map
(Iﬁe) . b-)/I.(e) (J9 : b;)/J9.

#© (e)_
Since the ideal I;° oF : b; is generated by :1:1 1 :z:f‘ ! modulo Ii(e), the map is zero

(e) (e)
if and only if zl 1. -:cf ~!is in J19. However, this contradicts the definition of
()
£,
Next, we will prove the following estimate:
P01+ +t& g+ (NO =t — .. ) 4 n—1)a, > g(dr+ - +dn). (3)

Since aM'® C J, we have that

Nie) Ny | N(e) N<=> N© _ ;N N(e) _1)(N(&)—1
(M, ..,z g C (2. )i aV = (2N, 2N 4 W)

PR 7 n 17y n
The ideal (z7' © 2N Jldis of the form (zV'?,. .., 2N y(©)), where the extra
generator y(®) has degree N®(a; +--- + a,) — g(d1 + - - - + dp,). We write

y© = Z . N i
my 4ot mn=(n—1)(N(-1)



(e) (e)
Rl P I . .
modulo (zV,...,zN¥*). Since z% --z,"27" is not in Jl9, we see that y(© is

N {41 NE () +1 (
not in (z) ye ’f“‘l - N ¢)) To check this, suppose that y(® is in
N () 4 N©—) 41 ) )
T M Zay ™, zN). Then Jil = N,z : y© will contain
(e) (e) (&) (e) (e)
ING) Ny | NE-41 Nt +1 Nle) -1 -1
@M,z (o D ) Oz -zl . Thus,

SOME Tpy,..m, Must be nonzero, where m; < N (‘) tﬁe) for 1 <1< n-1and
m, < N® —1. Since the degree of D is greater than or equal to the minimal degree
of monomials ™ ...z with rp, ,, nonzero, we can conclude that

degD = N®(a; + -+ a,) — q(d1 + - - + dn) :
> (N® =gy 4o 4 (NO =t Y + (¢ + -+t —nt 1),

which implies the desired estimate.
To finish the proof, we will use the following claim.

Claim. Let ay,...,a, and f,..., 5, be two n-tuple of real numbers, and let 1 =
1 < 72 < -+ < 7y, be another one. Assume that yyoq+---+%a; > N+ +%06
foralli=1,...,n. Thena;+---4+an > PG1+-- + fn.

Proof of Claim. Let \; = a; — B; for 1 < i < n. Then v +---+ 92 > 0 for all
it =1,...,n. Wewill prove that A\;+---4+X, > 0 by induction on n. We may assume
that n is greater than one. The assertion is obvious if every A; > 0. Suppose that
A; < 0 for some i. Clearly ¢ > 2. Since ~; > 7;_1, it follows from that v\ < v_1 .
We then define v; = v; for 1 < j <i—1and v; = 741 for : < j < n— 1. Define
also Ay = A for 1 <j<i-2, A ;=XAag+Nand A= fori<j<n—1
Since YA} +---+9;A; > 0for all j = 1,...,n—1, the induction hypothesis implies

that Ay 4+ 4 An = X, + -+ X,_; > 0. O

Seta; =tP for1<i<n-1anda, = N<=>—t§e)—- —t¥ 4n—1
Set ﬂ, = gd;/a; and ;. = a;/a; for 1 <4 < n. Then 13 < -+ < ,, because
a1 < --- < a,. The inequalities oy + -+ v 2 b1+ +vPifor1 <i<mn

follow from the estimates (1) and (2). Using the above claim, we can conclude that
© dl dn
NO+n—l=ert+-ten2fit. . fo=g( -+ =

Comparing the arithmetic and geometric means of {gd;/ a,-}i, we see that
(N(e) +n-1)"a;...ap, 2 n"¢"d;...d,
O

Remark 9. Theorem 8 does not imply the graded (Cohen-Macaulay) version of Con-
jecture 5, because a minimal reduction of an R, -primary homogeneous ideal is not
necessarily homogeneous.
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1. INTRODUCTION

By a simplicial complex A on the vertex set V = [n] = {1,2,...,n}, we mean

that A is a family of subsets of V which satisfies the following conditions:
(i) {i} € Aforeveryi eV (i) Fe A, G C Fimply G € A.

An element of A is called a face of A. The dimension of A, denoted by
dim A, is the maximum of the dimension dim F' = §(F) — 1, where F' runs
through all faces of A and {(F') denotes the cardinality of a set F'. A simplicial
complex A is called pure if all facets (maximal faces with respect to inclusion)

of A have the same dimension.
For a face F of A,

linka(F)={G€A : FUGe A, FNG=0}
is called the link of F'. For a subset W of V,
Aw={FeA: FCW}
is called the restriction to W of A.

Throughout this talk, let K be a field, and let S = K[X,,...,X,] be a
polynomial ring over K, unless otherwise specified. The ring S can be viewed as
a standard graded K-algebra (i.e., S = @,y is an N-graded ring with Sp = K,
S = K|[S]) with the unique homogeneous maximal ideal m = (X;,...,Xy).

For a simplicial complex A, the Stanley-Reisner ideal In and the Stanley-
Reisner ring K[A] are defined by

In = (Ko Xy 0 10 < <ip <, {i,..., 5} € A)S,
K[A] = S/Ia.

Note that any squarefree monomial ideal J/ € S with indegl > 2 can be
written as I = I for some simplicial complex A, and that K[A] is a graded
reduced K-algebra with dim K[A] = dim A + 1. See [BH, St] about simplicial
complexes and Stanley—Reisner rings.

Let R = S/I be an arbitrary standard graded K-algebra. The ring R is
said to be Buchsbaum (resp. to have (FLC)) if Ext5(S/m,R) — HL(R)) is
surjective (resp. H:(R) has finite length) for every ¢ < dim R. In particular,
any Buchsbaum ring has (FLC).

n: The 29th symposium on Commutative Ring Theory; Nov.17-21, 2007; at Nagoya
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The Stanley—Reisner ring K[A] has (FLC) if and only if A is pure and
K|links{z}] is Cohen-Macaulay for every 2 € V. When this is the case, K[A]
is Buchsbaum; see e.g., [St].

Let A be a simplicial complex, and let G(Ip) = {ma,...,m,} denote the
minimal set of monomial generators of Ja. Then one can easily check the
following fact.

Fact 1.1. Let Ip = (my,...,m,) be as above. Then I is a complete intersec-
tion (i.e., In is generated by a reqular sequence) if and only if ged(m;, m;) =1
for every i, j with i # j.

In general, if I C S is generated by a regular sequence, then S/I¢ is Cohen-
Macaulay for every integer £ > 1. When [ is generically a complete intersection
(i.e., Ip is a complete intersection for all minimal prime ideal P over I), the
converse is also true; see [CN]. Hence, for example, I, is a complete intersec-
tion if and only if S/I4 is Cohen-Macaulay for every £ > 1.

In [GT], Goto and Takayama introduced the notion of generalized complete
intersection complexes and characterized those complexes: a simplicial com-
plex A is said to be a generalized complete intersection complex if A is pure
and K[linka{z}] is a complete intersection for any vertex i € V. The following
theorem gives a motivation of our study.

Theorem 1.2 (Goto-Takayama (see also [GT))). Let A be a simplicial complex
on V = [n]. Then the following conditions are equivalent:

(1) K[A] is a generalized complete intersection in the sense of [GT].
(2) S/I4 has (FLC) for every £ > 1.

Clearly, a complete intersection is a generalized complete intersection. In
[GT), they gave examples which are not complete intersections but generalized
complete intersection complexes. However, their complexes A are disconnected
or dim A = 1. So it is natural to ask the following question:

Question 1.3. Assume that a simplicial complex A is connected and dim A >
2. If A is a generalized complete intersection complex, then is it a complete
intersection?

The main aim of this talk is to give a complete answer to this question.
Before stating our result, let us define the following notion:

Definition 1.4. A simplicial complex K[A] (or A) is called a locally com-

plete intersection (resp. Gorenstein, Cohen-Macaulay) if K[A]p is a complete

intersection (resp. Gorenstein, Cohen—-Macaulay) for every P € Proj K[A].
Note that K[A] is a locally complete intersection if and only if K[A]x,

is a complete intersection for every 1 < ¢ < n. Moreover, since k[A]x, =
K[linka{i}][X;, X;] we have:

Lemsna 1.5. Let A be a simplicial compler on V = [n]. Then the following
conditions are equivalent:

-10-



(1) K[A] is a locally complete intersection.

(2) K[A]x, is a complete intersection for everyi € V.

(3) K[linka{i}] is a complete intersection for everyi € V.
In particular, A is a generalized complete intersection if and only if A is pure
and a locally complete intersection.

Corollary 1.6. Let A be a simplicial complez on V. If K[A] is a complete
intersection (resp. Gorenstein, Cohen—Macaulay), then so is K|[linka (F)] for
any face F' of A.

Proof. It immediately follows from the fact linkjnx, i (F'\ {}) = linka (F) for
i€ F. O

Example 1.7. Let A be a simplicial complex corresponding to 5-gon. That
iS, K[A] = K[Xl, X2, X3, X4, Xs]/(X1X3, X1X4, X2X4, X2X5, X3X5). Then
K[A] is a locally complete intersection but not a complete intersection.

Indeed, K|[linka{1}] & K[X2, X5]/(X2Xs) is a complete intersection. Simi-
larly, K[linka{4}] is also a complete intersection for other i € [5].

The following theorem is a main result in this talk; see also Section 2.

Theorem 1.8. Let A be a simplicial compler on V = [n] with dimA > 2.
Assume that A is a locally complete intersection. Then it is a disjoint union
of finitely many simplicial complezes whose Stanley—Reisner rings are complete
intersections.

In the case dim A = 1, we can also characterize locally complete intersection
complexes. See Section 3.

2. PROOF OF THE MAIN THEOREM

In this section, we will prove the main theorem. First of all, we remark the
following lemma.

Lemma 2.1. Assume that V = ViUV, such that ViNVy = 0. Let A; be a
locally complete intersection complez on V; fori=1,2. Then a disjoint union
Ay U A, is also a locally complete intersection complez on V.

Proof. Put Vi = [m] and V; = [n]. If we write

K[A = K[X1,...,Xn]/In, and K[Ay] = K[V,...,Y;]/Ia,,
then

KAl = K[X;,. .. 1 Xm, 11, JYol/(Iay, Ing, { XY h<icm, 1<j<n)-

Hence
K[A]Xi = K[A]X‘ and I([A]yJ = K[Ag]yj

are complete intersection rings. Thus A is also a locally complete intersection.

O
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Remark 2.2. In the above lemma, we suppose that both A; and A, are general-
ized complete intersections. Then A;UA; is a generalized complete intersection
if and only if dim A; = dim A,.

Example 2.3. Let A be the disjoint union of the standard (m — 1)-simplex

and the standard (n — 1)-simplex. Then A is a locally complete intersection
complex by Lemma 2.1. Moreover, K[A] is isomorphic to

K[Xla'"’Xma}/l)'“,y;l]/(xi}fj 01 stm’ 1 S]Sn)
and it is a generalized complete intersection if and only if m = n.
By virtue of Lemma 2.1, it suffices to show the following theorem.

Theorem 2.4. Let A be a simplicial complez on V = [n]. Assume that A is
connected and dim A > 2. Then the following conditions are equivalent:

(1) K[A] is a complete intersection.

(2) K[A] is a locally complete intersection.

(2)’ K[A] is a generalized complete intersection.

From now on, assume that A is a locally complete intersection, connected
complex which is not a complete intersection. Suppose that dim A > 1. Note
that A is pure since A is connected and locally complete intersection and
hence A satisfies Serre condition (S;). Let G(Ia) = {my,...,m,} denote the
minimal set of monomial generators of Jo. Then p > 2 and degm; > 2 for
every i = 1,2,...,u, and that there exists ¢, j (1 < ¢ < j < n) such that
ged(mg, m;) # 1.

In order to prove Theorem 2.4, it is enough to show that dimA = 1. In
what follows, X;, Yj,... denote corresponding variables to vertices z;, Yjye oo

Lemma 2.5. We may assume that degm; = degm; = 2.

Proof. Take m;, my (j # k) such that ged(mj,mi) # 1. If degm; =
deg my = 2, then there is nothing to prove.

Now suppose that degmy > 3. By [GT, Lemmas 3.4, 3.5], we may assume
that degm; = 2 and ged(mj, my) = X,. Write m = X, X;, ---X;, and
m; = X, X,. Then [GT, Lemma 3.6] implies that X;, X, € G(Ip). Set m; =
XX, € In. Then degm; = degm; = 2 and ged(m;, m;) = X, # 1, as
required. a

The following lemma is simple but important.

Lemma 2.6. Let z,,z,,y be distinct vertices such that X Y, XY € Io. For
any z € V \ {z1, Z2,y}, at lease one of monomials X1Z, XoZ and Y Z belongs
to IA.

Proof. Tt immediately follows from the fact that K[linka{z}] is a complete
intersection. O

Lemma 2.7. There exist some integers k, £ > 2 such that

(1) V= {xly--'ambyl"")yl}'
(2) X1Ya, ..., XuYs € Ia.
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B)#{i : 1<i<k, X;Y; ¢ I} <1 holds for eachj=2,...,L.

Proof. By Lemma 2.5, there exists vertices zi,z2,y1 € V such that X;Y;,
X,Y; € I5. Thus one can write V = {zi,...,Zk, ¥1,-- -, Ye} such that

Xl}/h XZ)II, R Xk}fl € IA,
}flna }fl}l:ia RN} }/1}/[ ¢ IA'

If£=1, then A = Ay} U Afa,,..z,) is a disjoint union since {y1,z;} ¢ A for
all . This contradicts the connectedness of A. Hence £ > 2. Thus it is enough
to show (3) in this notation.

Now suppose that there exists an integer j with 2 < j < £ such that

i 1<i<k XY;¢Ia}>2

When k = 2, we have X,Yj, X,Y; ¢ Ia. On the other hand, as X,Y;, X»Y; €
In and Y; # X, X5, Y1, we obtain that at least one of XY}, X,Y;, VY] belongs
to Ia. It is impossible. So we may assume that k > 3 and X;_,Yj, XY € Ia.
Then {zx_1}, {zx} and {y:1} belong to linka{y;}, and X;_,Y7, X;Y; form part
of a minimal system of generators of Jjinx Ay} This contradicts the assumption
that K|linka{y;}] is a complete intersection. O

In what follows, we fix the notation as in Lemma 2.7. First, we suppose
that there exists 7o with 1 < 4y < k such that

My 0 1<5<6 XY ¢ Ia}=1.

In this case, we may assume that XY, ¢ Ip and X;Y; € I forall3 <5 <¢
without loss of generality. Note that X,Y5,..., XY, € In by Lemma 2.7. We
claim that {z1, y»} is a facet of A. As X;Y, € Ia foreachi=2,...,k, we have
that {z1,¥2,7:} ¢ A. Similarly, {z1,%2,v;} ¢ A since X;Y; € Ia for j = 1 or
3 < j <. Hence {z1,y.} is a facet of A, and dim A = 1 because A is pure.
By the observation as above, we may assume that for every ¢ with 1 <1 <k,
{7 - 1<7<6XY;¢ 1} 22

or X;Y; € Inholdsforall j=1,...,L
Now suppose that there exists j1,j2 with 1 < 51 < jo < £ such that X;Yj,,
X;Y;, ¢ In. Then XY, X;Y;, € I for all r # i by Lemma 2.7. It follows
that X, X; € Ia from Lemma 2.6. Then we can relabel z; (say y,+1). Repeating
this procedure, we can get one of the following cases:
Case 1: V= {z1,...,Z,¥1,---,Ys} such that X;Y; € I, for all 4, j with
1<i<r,1<j<s

Case 2: V = {Z1,Z2, Y1, - -, Ym» 21, - - - 1 Zp, W1, - - . , Wg} Such that

XY;eln, XoY;€ln (=1,...,m)
X1Z; ¢ In, XoZj€ln (j=1,...,p)
XlI/I/.’ieIA’ qu/} ¢‘IA (]=1a)Q)

holds for some m > 1, p,q > 2.
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If Case 1 occurs, then A = Agg,, .z} UAgy,,..y,) is a disjoint union. This
contradicts the assumption. Thus Case 2 must occur. If {z;,z,} € A, then
it is a facet and so dimA = 1. Hence we may assume that {z;,z.} ¢ A.
However, since A is connected, there exists a path between z; and z,.

Cases (2-a): the case where {z;,wx} € A for some k with 1 < k <gq.

We may assume that {z;, w1} € A. Now suppose that dim A > 2. Then
since {21, w1 } is not a facet, there exists u € V\{z1, zo} such that {z;, w;,u} €
A Hfu=2(2<j<p)(resp. u=y; (1 <i< m)),then G(Linkyfw,}) contains
X2Z, and X,Z; (resp. X,Y;); see figure below. It is impossible since linka {w; }
is a complete intersection. When u = wy, we can obtain a contradiction by a
similar argument as above. Therefore dim A = 1.

21 !
T <V \. 2
Zj
Figure: the case {z,2;,w;} € A in Case (2-a)

Cases (2-b): the case where {z;, wi} ¢ A for all j, k.
Then we may assume that (i) {z1,y1} € Aand (ii) {y1,v2} € Aor {y1, w1} €
A. Now suppose that dim A > 2. Then since {z;,y:1} is not a facet, we have

{z1,91,u} € A, {z1,1,w} € Aor {z1,1,2} € A

When {z1,y1,%:} € A, we obtain that {X,Y, X1Y;} € G(linka(z}). This is
a contradiction. When {z1,y1,wx} € A, we can obtain a contradiction by
a similar argument as in Case (2-a). Thus it is enough to consider the case

{z1,91, 2} € A
First we suppose that {y1,y.} € A.

21 h Y2
I e T2

Zj
Figure: the case {21, 1, 2}, {y1,¥2} € A in Case (2-b)

Then linka{y:} contains an egde {2,2;} and {y.}. Since linka{y:} is also
connected, we can find vertices z,, ys such that {z,,ys} € linka{y;}. In
particular, {z,,ys, ¥1} € A. This yields a contradiction because X;Y7, X;Yp is
contained in G(Jinka{z})-

Next suppose that {y;,w:} € A.
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21 Y1 w1

Zj
Figure: the case {z1,¥1, 2}, {y1, w1} € A in Case (2-b)

Then linka{y;} contains .an egde {z1,2;} and {wy}. Since linka{y;} is also
connected, we can also find vertices z,, yp such that {z,,ys} € linka{y:}
(notice that {z;, wx} ¢ A). Hence we have dim A = 1. We complete the proof
of Theorem 2.4.

Let A be a simplicial complex with dim A > 2. The Stanley-Reisner ring
K[A] satisfies the Serre condition (S;), that is, depth K[A]p > min{2, height P},
if and only if A is pure and linka(F) is connected for every face F' with
dim linka (F') > 1.

Corollary 2.8. Let A be a simplicial compler with dim A > 2. Assume that
K[A] satisfies (Sz). Then the following conditions are equivalent:
(1) K[A] ts a complete intersection.
(2) For any face F with dimlinka F' = 1, linka F' is a complete intersec-
tion.
(3) There exists W C V such that dim Ay\w < dim A — 3 which satisfies
the following condition:

“ linka{z} is a complete intersection for allz € W.”
Proof. Note that A is pure. Put d = dim A + 1.
(1) = (3): It is enough toput W = V.
(3) = (2) : Let W be a subset of V satisfying the condition (3). Let F be
a face with dim linka (F) = 1. Since A is pure, §(F) = d — 1 — dim linka (F) =
d —2. As dim Ay\w < d — 4, F is not contained in V \ W. Thus there exists

i € F such that i € W. Then since linka{:} is a complete intersection by the
assumption, linka (F') is also a complete intersection, as required.

(2) = (1) : We use an induction on d > 3. First suppose that d = 3. Then
for each 4 € V, we have that dimlinka{:} = 1. Hence linka{i} is a complete
intersection by the assumption (3). Hence by Theorem 2.4, K[A] is a complete
‘intersection.

Next suppose that d > 4. Let i € V. Since K[A] satisfies (S;), we have that
' = linka {4} is connected and dimT' = (d —1) — 1 = d — 2 > 2. Moreover, for
any face G in " with dim linkp(G) = 1, linkp(G) = linka (GU{i}) is a complete
intersection by assumption. Hence, by the induction hypothesis, K [linka {¢}] is
a complete intersection. Therefore K[A] is a complete intersection by Theorem
2.4 again. |

Combining Theorem 2.4 with Cowsik—Nori’s theorem and Goto-Takayama'’s
theorem, we get:
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Corollary 2.9. Let A be a simplicial complez with dim A > 2. Assume that
A is pure and connected. Then the following conditions are equivalent:

(1) S/1 is Cohen—Macaulay for every £ > 1.

(2) S/IY is Buchsbaum for every £ > 1.

(3) S/I4 has (FLC) for every £ > 1.

If §/I% is (FLC) (resp. Cohen—Macaulay) for some positive integer £, then
S/Ia is Buchsbaum (resp. Cohen-Macaulay). In particular, A is pure. See
[HTT, Theorem 2.6].

If A is not connected, then (2) and (3) are not necessarily equivalent. See
below.

Example 2.10. Let n > 2 be a positive integer. Let

I=Ia=(z1,--5,Z0)(W1-- - Yn) S S =K[T1,.. -, Zn, Y1, - -, Yn)-

Then A is the disjoint union of the standard (n—1)-simplices. Moreover, S/I¢
has (FLC) for every £ > 1 by Theorem 1.2. And one can see that S/I¢ is not
Buchsbaum for every £ > 2.

3. THE CASE dimA =1

Proposition 3.1. Let A be a connected simplicial complez of dimA = 1.
Then the following conditions are equivalent:

(1) K[A] is a locally complete intersection.
(2) K[A] is a locally Gorenstein.
(3) A is either one of the following complezes:
(a) n-gon for somen > 3;
(b) n-pointed path for some n > 2.

Proof. Suppose that dimlinka {7} = 0. Then links {3} consists of finite points.
Hence if it is Gorenstein, then it is either one point or two points. Such a link
is also a complete intersection. O

In the case dim A = 1, (1) and (3) in Corollary 2.9 is not equivalent in
general. But we get the following result.

Proposition 3.2. Let A be a simplicial complez with dim A = 1. Assume
that A is pure and connected. Then the following conditions are equivalent:

(1) S/1% is Cohen-Macaulay for every £ > 1.
(2) S/I4 is Buchsbaum for every £ > 1.
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SEVERAL RESULTS ON FINITENESS PROPERTIES OF LOCAL
COHOMOLOGY MODULES OVER COHEN MACAULAY LOCAL RINGS

KEN-ICHIROH KAWASAKI

We assume that all rings are commutative and noetherian with identity throughout this
paper.

1. INTRODUCTION

In 1993, Huneke and Sharp (cf. [2]) and Lyubeznik (cf. [6]) showed the following
results:

Theorem 1 (Huneke, Sharp and Lyubeznik). Let (R, m) be a regular local ring containing
a field, and I an ideal of R. Then the following assertions hold for all integers i,j > 0:
(i) Hi(H(R)) is an injective module;
(1) inj. dimp(H}(R)) < dim H}(R);
(iii) the set of associated prime ideals of H;(R) is a finite set;
(iv) all the Bass numbers of H;(R) are finite.

Our aims in this report are to develop results of Theorem 1 to those over Cohen-
Macaulay local rings. We shall introduce the following theorems:

Theorem 2. Let ¢ : (R, m) — (A, n) be a local ring homomorphism of local rings, which
is module-finite and flat. Let i be a non-negative integer. Further let I be an ideal of A
satisfied with the condition that if we set N R=J then I = JA.

(a) If the set of associated prime ideals of H(R) 4s a finite set, then so is the set of
associated prime ideals of H}(A);

(b) if all the Bass numbers of H5(R) are finite, then so are all the Bass numbers of
Hi(A). ,

Theorem 3. Let ¢ : (R,m) — (A, n) be a local ring homomorphism of regular local rings,
which is module-finite and flat, and I an ideal of A. Leti,j be non-negative integers. Set
INR = J. Suppose that I = JA and R is an unramified regular local ring. Then the
following assertions hold:
(i) inj.dim, HIH}(A) < 1;

(i) inj.dim, Hi(A) < dim Hj(A) + 1;

(iii) the set of associated prime ideals of H}(A) is a finite set;

(iv) all the Bass numbers of Hj(A) are finite.

Here it is worth while mentioning that S. Takagi and R. Takahashi recently showed
finiteness properties of local cohomlogy modules over rings with finite F-representation
type (cf. [11]). Mainly we shall prove part (i) and (ii) of Theorem 3 in this report.
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2. PROOF OF THEOREM 2: OUTLINE

Definition 1. Let T be a module over a ring A and P a prime ideal of A. We define the
Jj-th Bass number u;(P,T) at P to be

p5(P,T) = dimyp) Exth, (5(P), Tp),
where k(P) = Rp/PRp (cf. [1]).

Remark 1. Let ¢ : (R, m) — (A, n) be a local ring homomorphism of local rings, which is
module-finite and flat. Then such properties for an extension are preserved by localization:
let P be a prime ideal and set p = P N R. Then the local ring homomorphism of local
rings ¢p : R, — Ap is module-finite and flat (cf. [9, Theorem 7.1, p.46)).

Remark 2. Let ¢ : R — A be a ring homomorphism of rings, / an ideal of A and
J = 1IN R. The condition / = JA of Theorem 2 and 3 is preserved by localization, i.e.,
for any prime ideal P C A we have JR, = IAp N R, where p = PN R.

Proposition 4. Let A — B be a local ring homomorphism of local rings, which is flat.
Let py, p2 be prime ideals of A. Then p, = p, if and only if Assg(B/p1B) = Assg(B/p2B).

Proof of Theorem 2. The proof follows from Bourbaki’s formula and Propositition 4. O

Thanks to Theorem 1, our theorem proposes the following corollary. One can find the
collection of properties for the faithfully flat and flat local ring homomorphisms in [4].

Corollary 5. Let (A,n) be a Cohen-Macaulay local ring containing a field k, of dimen-
sion d, and z,,Zs,... ,Z4 a system of parameters. Let I be an ideal of A generated by
polynomials over k in z,,zs,... ,z4. Suppose that A/n is separable over k (or rather,
over the image of k in A/n via the natural mapping A — A/n). The following statements
hold for all integers i,j > 0:

(a) the set of associated prime ideals of Hi(A) is finite;

(b) all the Bass numbers of Hi(A) are finite.

Ezample 1. Singh [10] and Katzman [3] gave the examples of rings with respect to sets
of infinite associated prime ideals of the top local cohomology modules. Especially Katz-
man’s example states that even the second local cohomology module has an infinite set of
distinct associated prime ideals. The local ring R and the local cohomology module are
as follows:

R= k[S, ta z,y,u, ’U]m/(Sliz’Uz - (S + t)zyuv + ty2U2), H(Zu,v)(R)$

where m is the irrelevant maximal ideal (s,t,z,y,u,v).

On the other hand, our result states that Hj(R) satisfies finiteness properties (a) and
(b) as in Corollary 5, for all j > 0 and for the ideal I generated by polynomials f; =
fl(S,.’E,’U,t -y,t- u)’ f2 = fz(S,.T,‘U,t —y,t— u)a LR fr = fr(S,l',’U,t -yt - u) in
s,z,v,t —y,t — u over k.

Remark 3. The converse statements of (a) and (b) in Theorem 2 also hold by Proposition
4 and faithfully flatness of ¢ .
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3. SEVERAL RESULTS OVER REGULAR LOCAL RINGS
In this section, we prove part (i) and (ii) of Theorem 3.

Definition 2. A regular local ring (R, m) is called unramified if R contains a field or if
p € m? in the unequal characteristic case, where p is the characteristic of the residue field
R/m. We note that if R contains a field then the characteristic of R and its residue field.
are equal, and the converse also holds.

We shall introduce several lemmas.

Lemma 6. Let (A,n) be a local ring with the mazimal ideal n, M be an (not necessarily
finite) A-module with support V(n). Letl be a non-negative integer. Suppose that M is
an A-module of finite injective dimension.

(i) If there is an A-module N with finite length such that Ext’(N, M) = 0 for all
n > 1, then M is an injective A-module;

(i) if there is an A-module N with finite length such that Ext%(N, M) = 0 for all
n>1+1, then inj.dimy, M < L.

Lemma 7. Let A be a ring, and l a positive integer. Let _
0—M —M—M —0 #)

be an ezact sequence of A-modules.
(1) If M’ and M" are injective A-modules, then M is an injective A-module;
(2) ifinj.dim, M’ <1 —1 and inj.dim, M" <, then inj.dim, M <.
In addition suppose that M is an injective A-module.
(3) If M’ is an injective A-module, then M" is an injective A-module;
(4) ifinj.dimy M’ <1, then inj. dim, M" <1 —1.

Lemma 8. Let A be a ring, a an ideal of A, and M an (not necessarily finite) A-module.
Let 1 be a positive integer. Denote by I* a minimal injective resolution of T

0 M-—pr2pnd,p® |
BN 725 Kl - AN 2 oA
Further we denote by d’ the restriction of & to T'o(I?), after applying the functor To( — )
to I*.
(1) If Hi(M) is an injective A-module for all j > 0, then ker & is an injective A-
module for all j > 0, and Im d’ is an injective A-module for all j > 0;

(2) if inj. dim, Hi(M) <1 for all j > 0, then inj. dim kerd’ <1 for all j > 0, and
inj.dim, Imd’ <1—1 for all j > 0.

Lemma 9. Let (A,n) be a local ring and T an (not necessarily finite) A-module. Let 1 be
a positive integer.

(1) If inj. dim,, Tp < dimTp for each prime ideal P € Spec(T) with P # n and
Hi(T) is injective for all j > 0, then T has finite injective dimension and
inj.dim, T < dim T}

(2) if inj.dimy, Tp < dimTp + ! for each prime ideal P € Spec(T) with P # n
and inj. dim, Hi(T) < 1 for all j > 0, then T has finite injective dimension and
inj.dim, T <dimT + 2] - 1.
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Remark 4. More generally, we can slightly improve part (2) of Lemma 9 as follows:
if inj.dim,,Tp < dimTp + k for each prime ideal P € Spec(T) with P # n and
inj. dim 4 H7(T) <l for all j > 0, then T has finite injective dimension and inj.dim, T' <
dmT+k+1-1.

Proposition 10. Let ¢ : (R,m) — (A,n) be a local ring homomorphism of local Tings,
which is module-finite and flat, and T' an R-module. Then we havedimr T = dim4 T®rA.

Proof of Theorem 3. We only prove (i) and (ii). By the results in (7], the assertions (iii)
and (iv) in Theorem 3 follow from those of (a) and (b) in Theorem 2.

(i) First we note that H7 Hi(A) has a finite injective dimension as an A-module by the
regularity condition of A. Since the support of HH}(A) is in V(n), we only prove that

Ext}y (A/n, H H}(A)) =0

for all p > 1. ‘
By the results of Zhou [12], Hi H%(R) has injective dimension < 1. Thus we have

Exth(R/m, HLH}(R)) = 0

for all p > 1. Since the map ¢ : R — A is a module-finite ring homomorphism (hence
an integral extension), the radical of mA is equal to n. Then it follows from flatness of ¢
that H]Hi(A) = H. ,H' ,(A) = H{ H(R) ®g A. Further, we have

Extl,(A/mA, H,Hj4(A)) = Extk(R/m, HLH;(R)) @ A= 0

for all p > 1 since ¢ is flat. Since A/mA is an A-module of finite length and HIH}(A)
has a finite injective dimension as an A-module, it follows from part (ii) of Lemma 6 that
HI  H%,(A) has injective dimension < 1. Therefore the injective dimension of HiHi(A)
is not greater than one.

(i) We shall show the assertion (ii) by induction on d = dim H}(A) > 0. Note that
d = dim H%(R) by Proposition 10. ‘

Suppose that d = 0. Then the support of Hi(A) is contained in V(n), so the injective
dimension of Hi(A) = HY(Hi(A)) is one by part (i) of the theorem.

Suppose that d > 0. Let P € Supp,(Hi(A)) be a prime ideal such that P is not the
maximal ideal. Set p = P N R; p is not the maximal ideal of R, since the extension
R — A is integral. Then the ring homomorphism R, — Ap is a module finite extension
and flat between regular local rings by Remark 1. The condition I = JA is preserved
by localization (cf. Remark 2), that is JAp = (JR,)Ap for a prime ideal P of A. Also,
the property of a ring being unramified is preserved by localization. The dimensions of

i(A)p and HY(R), are less than d and Proposition 10 implies that we can apply the
inductive hypothesis for the local cohomology module Hi(A)p over Ap, that is,

inj.dimy, Hj(A)p < dimHj(A)p+1<d-1+1=d.
Further H?H}(A) has injective dimension < 1 for all j > 0 by part (i) of the theorem.

So the assertion follows from Remark 4, that is inj. dim4 H¥(A) < d + 1. The proof is
completed. [}

Corollary 11. Let (A,n) be a complete ramified regular local ring, of dimension d, and
Ty,Ts,...,Zq @ System of parameters, where 1 = p is the characteristic of the residue
field A/m. Suppose that I is an ideal of A generated by polynomials over Z in z,, . .. , z4.
Then we have the following assertions for integersi,j > 0:

(i) inj.dim, Hi(H}(A)) < 1
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(ii) inj.dim, Hi(A) < dim Hi(A) + 1; '
(iii) the set of associated prime ideals of H}(A) is finite;
(iv) all the Bass numbers of Hi(A) are finite.

Now we propose the following questions:

Question 1. Let 4,j be non-negative integers. Let (A,n) be a regular local ring, I an
ideal of A. Is Hi H:(A) injective 7

Question 2. Let 4, j be non-negative integers. Let (R, m) be an unramified regular local
ring, J an ideal of R. Is HLH*(R) injective 7

If the above questions were answered affirmatively, we could prove that the upper bound
of the injective dimension of local cohomology modules is its dimension over an unramified
(and also any) regular local ring. Question 2 is suggested in Lyubeznik’s paper [7]. We
can prove this, modifying that of (iv) of Theorem 3.

Proposition 12. Let ¢ be a non-negative integer.
(1) If Question 1 has an affirmative answer for all j > 0, then inj.dim, Hj(A) <
dim Hi(A) holds over a regular local ring (A,n) for all ideals I of A;
(2) if Question 2 has an affirmative answer for all j > 0, then inj. dimp H5(R) <
dim H%(R) holds over an unramified regular local ring (R, m) for all ideal J of R.

Although the following assertions hold not only over a regular local ring but also over
other rings, we concentrate rings on regular local rings.

Ezample 2. Let i, j be non-negative integers. Let (R, m) be a regular local ring, I an ideal
of R. If the dimension of I is zero, then HI Hi(R) is injective.

Ezample 3. Let i, j be non-negative integers. Let (R, m) be a regular local ring, I an ideal
of R. If the dimension of I is one, then H? Hi(R) is injective.

Ezample 4. Let i, j be non-negative integers. Let (R, m) be a regular local ring; I an ideal
of R. If I is a principal ideal, then H7 H}(R) is injective.

Ezample 5. Let (R, m) be a regular local ring, Let ¢, j be non-negative integers, I an ideal
of R. If I is generated by a regular sequence, then HZ H}(R) is injective.

Proposition 13. Leti,j be non-negative integers. Let (R, m) be a regular local ring, I an
ideal of R and f is a non-zero and non-unit element of R. If I is a subideal of a principal
ideal (f) up to radicals, then HI H}(R) is injective.

Corollary 14. Let 4,j be non-negative integers. Let (R, m) be a regular local ring, I an
ideal of R. If the height of I is one, then H] H}(R) is injective.
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Abstract: We study the Cohen-Macaulay property of the associated graded ring of con-
tracted homogeneous ideals in K|[z,y]. Surprising, the problem is closely related to the
description of the Grobner fan of the ideal of the rational normal curve. We completely
classify the contracted ideals with a Cohen-Macaulay associated graded ring in terms of
the numerical invariants arising from Zariski’s factorization. These results are contained
in “Contracted ideals and the Grébner fan of the rational normal curve” arXiv0705.3767,
joint work with E.De Negri and M.E.Rossi which is going to appear in the ﬁrst volume of
the new journal “Algebra a.nd Number Theory”.

Let K be a field, R = K|z, y] and I be a homogeneous ideal of R with VI=m= (z,y).
Denote by gr;(R) the associated graded ring of I, that is, gr;(R) = @xI*/I**!. Denote by
p(I) the minimal number of generators of I and by o(I) the order of I which is, by definition,
the least degree of a non-zero element in I. By the Hilbert-Burch theorem we know that
u(I) < o(I) + 1. The ideal I is said to be contracted if u(I) = o(I) + 1. Contracted ideals
can be characterized also as the ideals which are contracted from a quadratic extension.
Explicitly, for a linear form £ one considers a quadratic extension R[z/£,y/¢] of R. Then
I is contracted if and only if IR[z/¢,y/¢]N R = I for some £. Contracted ideals have been
introduced by Zariski in his studies on the factorization property of integrally closed ideals,
see [ZS, App.5]. Every integrally closed ideal I is contracted and has a Cohen-Macaulay
associated graded ring gr;(R), see [LT]. In general, however, the associated graded ring of
a contracted ideal need not be Cohen-Macaulay. So we are led to consider the following:

Problem 0.1. Describe the contracted homogeneous ideals I of K|z, y] such that gr;(R)
is Cohen-Macaulay.

Zariski proved a factorization theorem for contracted ideals asserting that every con-
tracted ideal I can be written as I = L, - - - Ls where the L; are themselves contracted but
of a very special kind. In the homogeneous case and assuming K is algebraically closed,
each L; is a lex-segment monomial ideal in a specific system of coordinates depending on i.

Reca.ll that a monomial ideal L in R is a lex-segment ideal (lex-ideal for short) if whenever
z°y® € L with b > 0 then also z°+1y*~! € L. Every lex-ideal L of order d can be written as

L=(z%z% 1™, y™)

and hence can be encoded by the vector a = (ag, ay, . - - ,aq) With increasing integral coor-
dinates and ag = 0.

Therefore to every contracted ideal I with factorization I = L; --- L, we may associate
sequences a, - . .,as, where a; = (a;; : 5 =0,...d;) € N4+! are increasing and a;p = 0. For
instance:

-25-



Example 0.2. Let

2 0 0 0 0 0
—z -3y y 0 0 0 0
-9 -z4+3y 0 0 0
X = 0 0 -z—-y 0 0
0 0 0 -z—y 12 0
0 0 0 0 —T—y y
0 0 0 0 0 -z

and let I be the ideal of 6-minors of X. We have u(I) = 7 and o(I) = 6, so I is contracted.-
Zariski’s factorization of I is

I=(2° 2%, 29, 9°) (23, zut, 2, )

where z; = £+ y and y; = y. Hence we associate to J the sequences a; = (0,2,3,9) and
as = (0,4,7,9).

With respect to the terminology introduced above, in [CDJR] it is shown that:
Theorem 0.3. One has

depth gr;(R) = min{depthgr; (R):i=1,...,s}.

In particular, the Cohen-Macaulayness of gr;(R) is equivalent to the Cohen- Macaulayness

of gry,(R) for everyi=1,...,s.

Therefore, to answer Problem 0.1, one has to characferize the lex-ideals L with Cohen-
Macaulay associated graded ring.

Problem 0.4. For every d describe the sequences a = (ao, as,...,a4) € N¥! with in-
creasing coordinates and ag = 0 such that gr; (R) Cohen-Macaulay. Here L is the lex-ideal
associated to a.

Since R is regular, gr; (R) is Cohen-Macaulay iff Rees(L) is Cohen-Macaulay. As Rees(L)
is an affine semigroup ring, the result of Trung and Hoa [TH] could be applied. But we
have not been able to follow this line of investigation.

Denote by P the defining ideal of the Veronese embedding of P! — P¢ in its standard
coordinate system. It is well-known that P is the ideal of K[to,...,ts] generated by the

2-minors of the matrix
: to t1 ta ... ... tg—1
T, =
¢ <t1 ty .. .. ta g
We show that:

Proposition 0.5. Let L be a lez-ideal. Denote by a the sequence associated to L. Then
depth gr; (R) = depth K[to, . . ., ta]/ ing(P).

Here ing(P) denotes the ideal of the initial forms of P with respect to the vector a. In
particular, gr;(R) is Cohen-Macaulay if and only if in, (P) is perfect.

Therefore Problem 0.4 becomes equivalent to:
Problem 0.6. For every d determine the vectors a € N%*! such that in,(P) is perfect.

To answer 0.6 we first show:
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Proposition 0.7. The initial monomial ideals of P which are perfect are in bijective cor-
respondence with the subsets of {1,2,...,d — 1}. So P has ezactly 29-1 perfect initial
monomial ideals.

The fact that P has exactly 29~! perfect monomial initial ideals can be derived also by
combining results of Hosten and Thomas [HT] with results of O’Shea and Thomas [OT].
~ We explain this bijective correspondence with an example. Suppose d = 6 and take the
sequence and the subset {3,4} of {1,2,3,4,5}, Set i = {0,d} U {3,4} = {0,3,4,6}. The
corresponding perfect initial ideal I of P is obtained by dividing the matrix Ts in blocks
(from column 7, + 1 t0 iy41)

R=<mt1hlnlf4%>
th ty t3 | ts | ts e
and then taking anti-diagonals of minors whose columns belong to the same block,
82, t1ty, 13,13,
and main diagonals from minors whose columns belong to different blocks
tots, tots, tots, t1ts, t1ts, T1ts, tola, Lats, tats, Lals, als.

The ideal T is the initial ideal of P with respect to every term order 7 refining the weight
a = (0,3,5,6,10,16,21) obtained from the “permutation” vector o = (3,2,1[4|6,5) € Ss
by setting ap = 0 and a; = Z ._,0;. With respect to this term order the 2-minors of Tg
are a Grobner basis of P but not the reduced Grobner basis. The corresponding reduced
Grdbner basis is

1} —tots, tata —tots, 3 —tits, tols —tits tots — tots,

tits —tots, tots — 1], his— 1], tta— 13, hie —tals,

tots — tats, tole —13, tals — 13, tale —tats, tf—tats.

So for every vector a = (ao,a1,...,as) € QF, satisfying the following system of linear
inequalities

2a; > ag + ax* a;+as>ap+az 2a; > a;+azx ap + a4 > a; + ag*

ap+as>as+az ay+ag>ax+az  ap+as > 2a3 a; + as > 2a;3
as + a4 > 2a3 ay+ag>az3+as as+as>az+a; az+ag > 2a4
az + as > 2ay a3z + ag > ag+ asx 2as > aq + ag*

we have in,(P) = I. More precisely, if we set
C(i) ={a € Q%' :in,(P) = I}

then C(i) is the convex cone is defined by above system of inequalities. The * indicates an
essential inequalities. One has:

C(i) = {a € Q%" : I is an initial ideal of ing(P)}
For a given d we set:
CM;={a € Q%" : iny(P) is perfect}

the “Cohen-Macaulay region” of the Grobner fan of P. Our main theorem is the following:
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Theorem 0.8.

CM;=U; C(i)
where the union is extended to the set of the 241 sequencesi = (0=t <i; < - <t =d).

Combining these results we obtain an explicit characterization, in terms of the numerical
invariants arising from the Zariski factorization, of the Cohen-Macaulay property of the
associated graded ring to a contracted homogeneous ideal in K|z, y].

Theorem 0.9. Let I be a contracted homogeneous ideal of K|z, y] with Zariski factorization
I =1L, --L,. Denote by d; the order of L; and by a; € N%+! the sequence associated to
L;. Then gr;(R) is Cohen-Macaulay iff a; € CMy, for alli=1,...,s.

As the regions C My, are the union of cones C(i) which are described explicitly in terms
of linear inequalities, Theorem 0.9 answers 0.1..
Two of the cones of the Cohen-Macaulay region CM, are special as they correspond to
opposite extreme selections:
(1) (the lex-cone) If i = (0,1,2,...,d), then the closed cone C(i) is described by the
inequality system :
Qi +a; 2 ay + Gy
with u = [(i + 7)/2], v = [(¢ + j)/2] for every i,j. Setting
b =a; —ai
the cone C(i) can be described by:
bit1 2 b;
for every i = 1,...,d — 1. In this case the initial ideal of P is (¢;t;: j —i > 1) and
it can be realized by the lex-order with £y < t; < -+ < t; or by the lex-order with
to > t; > --- > tg. This is the only radical monomial initial ideal of P. The lex-
ideals “belonging” to C(i) are the integrally closed. Indeed, they are the products
of d complete intersections of type (z,y*).
(2) (the revlex-cone) If i = (0,d) then the closed cone C(i) is described by inequality
system
a;i +a; 2 Go + iy
ifi+j <dand
a;+a; > aq+ Giyjd

if i+ j > d. It can be realized by the revlex-order with { < ¢; < --- < ¢4 or by
the revlex-order with t5 > t; > --- > t4. The corresponding initial ideal of P is
(t1,---,t4-1)%. The lex-ideals L “belonging” to the cone are characterized by the
fact that L? = (z¢,y%)L, that is, they are exactly the lex-ideals with a monomial
minimal reduction and reduction number 1. It is not difficult to show that the
simple homogeneous integrally closed ideals of K|[z,y] are exactly the ideals of the
form (z¢,y°) with GCD(d,c) = 1. In other words, C(i) contains the exponent
vectors of all the simple (i.e. not product of two proper ideals) integrally closed
ideals of order d.

Example 0.10 (0.2 continued). For the ideal I the corresponding sequences are a; =
(0,2,3,9) and ap = (0,4,7,9). The region CMsj is the union of 4 cones: C; = C(0,3) the
revlex-cone, C, = C(0, 1,3),Cs = C(0,2,3) and Cy = C(0, 1,2, 3) the lex-cone. The revlex-
cone (] is described by the inequalities b; > b, > bs. The union of the cones Cs, Cs, Cy
form what we call the big cone that is described by the inequality b; < b3. So we see that
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a belongs to the big cone and a; € C;. Hence both a; and a; belong to CMj3. It follows
that gr;(R) is Cohen-Macaulay.

For a lex-segment L associated to a vector a there is a closed relationship between the
Hilbert series of gr; (R) and the multigraded Hilbert series of in,(P).

Given a monomial initial ideal I of P (perfect or not) consider the associated closed
maximal cone of the Grébner fan:

Cr={a € Q%" : I is an initial ideal of ing(P)}.
The key observation is the following:

Lemma 0.11. Let L be a lez-ideal with associated vector a belonging to C;. For k € N
set My(I) = {@ € N¥*! : t= & I |a| = k}. Denote by > My(I) the sum of the vectors in
My (I). By construction 3 My(I) € N+ and

length(R/L¥) =a- > Mi(I)
for all k.

In terms of Hilbert series Lemma 0.11 can be rewritten as in the following lemma.
Lemma 0.12. Let L be a monomial ideal with associated sequence a belonging to C;. Then
Hi(z)=a- VHg(t)s==

where V = (8/08ty,...,0/0tq) is the gradient operator.

Where H}(z) is the Hilbert series Y length(R/L¥*?)z* of L and Hg/;(t) is the Z#+!-
graded Hilbert series of S/I.

Combining Lemma 0.11 with Lemma 0.12 we have that Hilbert coefficients, the h-
polynomials of L are linear functions in the a;’s whose coefficients just depend on I. The
explicit expressions can be computed in terms of the multigraded Betti numbers or in terms
of Stanley decompositions of S/I. For example:

I:=Ideal(

t[2]-2, tloltl6], t[11t[4], t[0)t[4], t[01t[3], t[0lt[2],t[3]t[5]"2,
t[0]-2t[5], t[41t[5]1-3, t[5]1°5, t[0]t(6]~4, t[4ltl[6], t[3]t[6],
t[4]1-2, t[2]t[6], t[3]1t(4], t[21t[4], t[21t[5], t[3]1~2, t[2]t[3]

)

Inequalities describing C_I

al0]+a[5]<alt]+al4] al1]+a[2]<a[0]+a[3] 2a[1]+a[3]<2al0]+a[5]
a[1]+4a[6]1<5a[5] a[4]+a[5]<al[3]}+al6] a[3]+a[5l<al[2]+a[6]

h-vector of L associated to every vector a of C_I

(0) al0] + al1] + a[2] + a[3] + a[4] + a[5] + a[6]
(1) al0] + 4a[1] - 2a[2] - al[3] - 2a[4] + 4a[5] + a[6]
(2) -al0] + a[1] + a[2] - a[3] + al4] - 2a[5] + a[6]
(3) al3] - al4)} - a[5] + al6]

(4) -al0] + a[1] + 2a[4] - 3a[5] + al6]

(5) al0] - al1] - al4] + a[5]
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We discuss also how the formulas for the Hilbert series and polynomials of gr; (R) change
by varying the corresponding cones of the Grébner fan of P. There are two Hilbert poly-
nomials in this setting, the one associated to length(L¥/L**!) and the one associated to
length(R/L**?). To distinguish one from the other we use an asterisk to denote the second.

We have:

Proposition 0.13. Let I, J be monomial initial ideals of P. Then
(1) The formula for the multiplicity that is valid in the cone Cr equals that that is valid

in Cy iff VI=V1J.

(2) The formula for the Hilbert series that is valid in the cone Cr equals that that is
valid in Cy iff I = J.

(3) The formula for the Hilbert polynomial* that is valid in the cone C; equals that that
is valid in C; iff I and J have the same saturation.

Furthermore there is a conjectural relation with the hypergeometric Grébner fan intro-
duced by Saito, Sturmfels and Takayama in [SST] and the equality between the formulas
giving the Hilbert polynomials. Precisely, we conjecture that the formula for the Hilbert
polynomial valid in the cone Cf equals that that is valid in C; iff I and J have the same
minimal components.

The ideals I, J below are non-Cohen-Macaulay initial ideals of P. We display the for-
mulas for the h—vectors and Hilbert coefficients ey, €1, €5 valid in the correspondmg cones
(computed via Stanley decompositions).

I (tits, tito, toto, t3, 1324, 13, toty, taota, t2)
(ho) a@o+a;+az+as+as

(hl) 2a9 + a; — 3a, + a3 + 2a4

(h2) 2ap —4a; + 3a; — 2a3 + a4

(hs) —ao+2a; —a

(eo) 4ag + 4ay

(e1) 3ap —a; — 3az + 4ay

(e2) —ap+ 2a; —2a3+ ay

J (tltg, tltz,t%,tg,tzt‘;,tzt:g, t%)
) ap+a;+ax+az+ay
(hl) 3ap — a1 — 2a, + a3 + 2a4

) az—2a3+ay

(hs) 0

(60) 40,0 + 40,4

(61) 3(10 —a; — 3(13 + 4(14

(62) as — 2&3 + a4

In this case I'? = J'P = (t1t3,15,3,12) as conjectured and J = J®& # [t =
(t2, tats, t2t4, 13, 13) as we know by Proposition 0.13.
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On codimension-one A!-fibrations over
Noetherian normal domains

Nobuharu Onoda (University of Fukui)

1. Introduction

This is a joint work with S. M. Bhatwadekar and A. K. Dutta. Let R be
a commutative ring. For a prime ideal P of R, we denote by k(P) the field
Rp/PRp. A polynomial ring in n variables over R is denoted by RI".

Definition 1.1. We shall call an R-algebra A to be a codimension-one
A'-fibration over R if
k(P)®g A = k(P)M

for every P € Spec R with ht P < 1.

Let R be a Noetherian normal domain with field of fractions K. Then
the following results were proved in ([2], 3.4) and ([1], 3.10) respectively.

Theorem 1.2. Let A be a flat R-subalgebra of RI™ such that K®zA = K
and k(P) ®g A is an integral domain for every prime ideal P in R of height
one. Then A = R[IX] for an invertible ideal I of R.

Theorem 1.3. Let A be a faithfully flat finitely generated R-algebra such
that K @z A = KW and k(P) ®g A is geometrically integral for every prime
ideal P in R of height one. Then A = R[IX] for an invertible ideal I of R.

Recently the two results were shown to emanate from the following result.

Theorem 1.4. Let A be a faithfully flat R-algebra such that A is an R-
subalgebra of a finitely generated R-algebra B and such that A satisfies the
fibre conditions:
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(i) K @ A = K11
(ii) For every prime ideal P in R of height one, k(P) ®g A is an integral
domain with tr.degyp) k(P) ®r A > 0 and k(P) is algebraically closed in
k(P) ®r A.
Then A & R[IX] for an invertible ideal I of R.

In this note, we explore the structure of a faithfully flat codimension-one
Al-fibration over a Krull domain; in particular, over a Noetherian normal

domain. As an application we show that all previous results described above
can be deduced from this structure theorem.

2. Structure theorem
‘We begin by noting the following result.
Lemma 2.1. Let R be a Krull domain and A a flat R-algebra. Then A is

a codimension-one A'-fibration over R if and only if Ap = Rp! for every
P € SpecR with ht P = 1.
Set-Up
Throughout this section we will assume that
R: Krull domain with field of fractions K.
A ={PeSpecR|htP =1}
A: a faithfully flat R-algebra such that Ap = Rpl¥ for every P € A.
z: A fixed element of A such that T-'A = K|z], where T = R\ {0}.
¥ = {T'| T is a finite subset of A}.
I,b={Pe€eA|a€ P}, where0#a€ R.

Definition 2.2. For I € X, we set

Rr=()Rer
P¢T

and
Ar = S1ANn Rp[.’l?],
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where S = R\ (Uper P)- Note that
Rr, = R[l/d]
for0 #a € R. ‘
The following resuit holds for the ring Ar defined above.

Lemma 2.3. For I" € &, we have

Ar = (RN Rr) (:‘ . °>"

n>0

for some elements c,d(# 0) € R. In particular, for 0 # a € R,

Ao, = @RNRYE) (235)

n>0

for some c, d(# 0) € R. Furthermore, we have
(1) Ar C A.

(2) (Ar)p = Ap for PeT.

(3) (Ar)p = Rplz] for P € A\T.

Lemma 2.4. Let I be an ideal of R and suppose that [ is R-flat. Then [ is
an invertible ideal of the form

I =RNdR[1/a)
for some d € I,a € R. Moreover we have
I" = RNd"R[1/a]
for every positive integer n.
From Lemmas 2.3 and 2.4, we have the following

Corollary 2.5. Suppose that Ar, is flat over R. Then Ar, = R[IX] for an
invertible ideal I of R.

Lemma 2.6. Let I'; and I'; be finite subsets of A. If I'; C I's, then
Ar, C Ar,.
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Lemma 2.6 shows that the rings Ar, together with inclusion maps, form

a direct system _
{Ar|T eZ}

indexed by ¥. We now prove the structure theorem:
Theorem 2.7. A = limAr <= UAF).
r

Proof. Set C = limAr. Then C = | Ar, and hence C C A. For the
converse inclusion A C C, let w be an arbitrary non-zero element of A.
Since A C K|[z], we can write ‘

w=E§z" + &2+ b

for some n > 0 and &,...,&, € K. Note that A; := {P € A | vp(§) < 0}
is a finite set for 0 # £ € K, because writing £ = b/c with b,c(# 0) € R,
we have vp(c) > vp(b) > 0 for P € A, so that A C Assg(R/cR). Set
I' = UL,A¢. Then T is a finite subset set of A, and w € Rp[z] for any

wE (ﬂ Ap) N (ﬂ Rp[x]) ,
Per P¢r

P ¢ T'. Therefore
which implies w € Ar C C. This completes the proof. 0O

Lemma 2.8. For P € A, writing PRp = pRp with p € R, we have

Ap = Rp [:c—c]

pe

for some ¢ € R and e > 0. Furthermore, the integer e is uniquely determined
for P.

For P € A, we denote by ep the integer e given in Lemma 2.8 above.
Note that
ep >0« Ap 75 RP[I].

From Theorem 2.7, we shall now deduce that finite generation of A is equiv-
alent to the finiteness of the set

Ao={P€AI6P>O}.
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Lemma 2.9. Let I';, T'; be elements of ¥ such that I’y C I';. Then Ar, g Ar,
if and only if there exists P € I'; \ T'; such that P € A,.

We say that R is a retract of A if there exists an R-algebra map p: A — R
such that p|g = idg.

Theorem 2.10. The following conditions are equivalent:
(1) A is finitely generated over R.

(2) Ayp is a finite set.

(3) R is a retract of A and A is a Krull ring.

(4) A = R[IX] for an invertible ideal I of R.

Proof. We shall give a proof only for (1)=>(2) and (2)=-(4).
(1)=(2): Recall that, by Theorem 2.7, we have

A =limAr = JAr. (1)
r

Let A = R[f1,...,fs)- By (1), for each ¢ there exists I'; € ¥ such that
fi € Ar,. Then, setting I’ =T U---UT,, we have f; € Ar for each i, which
implies A = Ar. Now suppose that Ay is an infinite set. Then there exists
P € Mg\ T, because I' is a finite set. Let I' = T U {P}. ThenI' C I and
P eTI"\T. Thus Ar # Ar by Lemma 2.9. On the other hand, by Lemma
2.6, we have

A=Ar C Ar C A,

so that Ar = Arv, a contradiction.

(2)=(4): Let Ag = {P1,...,Pn} and let a be a non-zero element of
P N---NPy,. Then Ag C T, and hence, by Lemma 2.9, we have Ar, = Ar
for every I' € T such that T’y C I'. It thus follows from Theorem 2.7 that

A= Ar, = @P(RNdR1/a]) (’” = C>".

n>0

Since A is flat over R, we have A = R[IX] by Corollary 2.5. d

3. Applications

We now give a few applications of our results.
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Theorem 3.1. Let R be a Krull domain with field of fractions K and A a
faithfully flat R-algebra such that A is an R-subalgebra of a finitely generated
R-algebra B and such that A satisfies the fibre conditions:

(1) K®rA= K,

(ii) For every prime ideal P in R of height one, k(P) ®g A is an integral
domain with tr. degyp) k(P) ®r A > 0 and k(P) is algebraically closed in
k(P) ®r A.

Then A = R[IX] for an invertible ideal I of R.

Proof. Let T = A\{0} and let T~'Q be a maximal ideal in T~! B, where Q is
a prime ideal in B. Then QN A = 0 and T'B/T~1Q is algebraic over T-'A.
Thus, replacing B by B/Q, we may assume that B is an integral domain
algebraic over A. Since B is finitely generated over R, there exist elements
f,91,.-.,9m in A such that B[1/f] is integral over R[g1,...,gm,1/f]. Let d
be a non-zero element in R such that df € R[z] and dg; € R[z] for 1 <i < m;
such d exists because A C K[z]. Then we have

R[1/d[gy,--.,9m,1/f] C R[1/d|[z,1/f] C Al1/d,1/f] C B[1/d,1/f],

and hence A[1/d, 1/ f] is integral over R[1/d][z,1/f]. Note that R[1/d][z,1/f]
is a Krull domain because so is R. Thus R[1/d][z,1/f] is integrally closed.
Note also that both R[1/d][z,1/f] and A[1/d,1/f] have the same quotient
field K (z). Therefore we have

R[1/d)lz,1/f] = A[1/d,1/ f}.

Let £ be the coefficient of the highest degree term of f as a polynomial in
K|z, and let b = df. We will show that ep = 0 for P € A with db ¢ P.
Indeed, suppose on the contrary that e := ep > 0 for some P with db ¢ P.
Since d ¢ P, we have R[1/d] C Rp, so that

Ap[1/f] = Rplz,1/f].

Hence, writing Ap = Rp[(z—c)/p®] with ¢ € R, we have f™(z—c)/p® € Rp[z]
for a sufficiently large integer n. From this it follows that b™ € p®Rp, and
hence b € PRp N R = P, a contradiction. Therefore ep = 0 for P with
db ¢ P, which implies Ag C T'gp. Thus Ay is a finite set, and hence, by
Theorem 2.10, A = R[IX] for an invertible ideal I of R. a
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Lemma 3.2. Let R be an integral domain and A an R-domain having a
retract p: A — R. Set J = ker p. Then the following assertions hold.

(1) If A is flat over R, then A is faithfully flat over R.

(2) If f is a non-zero element of J, then f is transcendental over R. In
particular R is algebraically closed in A.

(3) Suppose that tr.degz A > 0 and J is finitely generated. Let P be a prime
ideal in R such that PA remains prime in A. Then tr.degg/p A/PA > 0.

Theorem 3.3. Let R be a Krull domain and A a flat R-algebra with a
retract p: A — R. Suppose that A satisfies the following conditions:

(i) K ®g A= KU
(ii) For every prime ideal P in R of height one, k(P) ®r A is an integral
domain.

If J := kery is a finitely generated ideal of A, then A = R[/X] for an
invertible ideal [ in R.

Proof. Let P be a prime ideal in R of height one. Then A/PA C Ap/PAp
because of flatness of A over R, which implies that PA is a prime ideal in
A. Thus, by Theorem 2.10 and Lemma 3.2, it suffices to show that A is a
finite set. Let gi,...,gm be generators of J and let d be a non-zero element
of R satisfying dg; € R[z] for each ¢ = 0,...,m. Let P be an element in
A\ T We will show that e := ep = 0; if this is the case, then Ay C T,
and hence Ay is a finite set. Suppose on the contrary that e > 0, and write
Ap = Rpl(z — ¢)/p°] with ¢ € R. For simplicity we set z = (z — c)/p".
Let pp: Ap — Rp be the retract induced by ¢, and let pp(2) = c;. Since
Ap = Rp[z], it then follows that ker pp = (z — c1)Rp[z]. Replacing z by
z — ¢;, we may assume that ker pp = zRp[z]. Furthermore replacing z by
z — ¢, we may assume that z = z/p®. Note that ker pp = Jp. Note also that
gi € Rp[z] for each i, because dg; € R[z] and d ¢ P. Hence, for each i, we
have g; € Rp[z]NzRp[z] = zRp[z], so that g; = zh;(z) where h;(z) € Rp[z].
Now, since z € Jp and Jp = (g1,--.,9m)Rp[2], we can write

I% = zhy(z)u1(z) + - - - + Thm(T)um(2)
for some u;(2),...,um(z) € Rp[z]. Dividing both sides of the above equation

by z, and substituting z = 0, we have 1/p® = hy(0)u1(0)+- - - +hm(0)un(0) €
Rp. This is a contradiction, as desired. O
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Remark 3.4. The condition “J is finitely generated” is necessary. Consider
R=Zand A=Z[% |p prime ].

Theorem 3.5. Let R be a locally factorial Krull domain and A a flat
codimension-one A’-fibration over R. Then at each prime ideal Q € Spec R,
either k(Q) ®r A = k(Q)M or k(Q) ®r A = k(Q). Suppose in addition that
R is a local ring with maximal ideal m and residue field k(= R/m). Then
the following conditions are equivalent:

(1) A is finitely generated over R.
(2) tr.deg, A/mA > 0.

(3) dim A/mA > 0.

(4) A= RI.

4. Examples

We give below some examples to illustrate the hypotheses in Theorem
3.1

Example 4.1. The hypothesis on flatness is needed even when A is a finitely
generated subalgebra of RIY. For instance, consider R = k[[t1, t5]] and

A = R[ti X,t,X] = R[U,V]/(t2U — t, V).
Example 4.2. The hypothesis on faithful flatness is also necessary. Consider
R = k[[t1,t2)] and A = R[U,V]/(t1U + t,V — 1).

Example 4.3. The condition “k(P) is algebraically closed in k(P) ®g A” is
necessary. Let R = R[[t]] and

A =R[U,V)/(tU + V2 +1).

Then A is a finitely generated flat R-algebra, K®rA = RIY and A/tA = Cl1l.
But A # RI.

Example 4.4. Let k be an infinite field and R = k|[[t;, t5]]. Let

A = R[{X/q | q a square-free non-unit in R}].
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Then
Ap = Rp[X/p] = Rp""

for every P € Spec R with ht P = 1, where P = pR. However A/(t1,t;)A =

k. Note that since
A=|JRIX/d),
q

A is flat over R and hence faithfully flat over R. A is not finitely generated.
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Invariants of the unipotent radical
of a Borel subgroup
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1 Introduction

Grassmannians and their Schubert subvarieties are fascinating objects
and attract many mathematicians. The homogeneous coordinate ring
of the Grassmann variety consisting of m-dimensional subspaces in an
n-dimensional vector space over K is the subring of the polynomial ring
over K generated by maximal minors of the m x n matrix of indetermi-
nates. And the homogeneous coordinate ring of a Schubert subvariety
is generated by the universal m x n matrix with the following property
for some integers by, by, ..., by with 1 <b; <by <--- < by < 1.

(1) All the i-minors of first b; — 1 columns are zero.

If a matrix M satisfies the property (1), then Mg also satisfies (1) for
any upper triangular matrix g, so the Borel subgroup consisting of the
upper triangular matrices of the general linear group and its subgroups
act on the homogeneous coordinate ring of a Schubert subvariety of a
Grassmannian and the algebra generated by the entries of the universal
matrix with (1). We study the ring of invariants of the unipotent radical
of this Borel subgroup in §3. }

It is also known that there is an m X n universal matrix with condi-
tions on minors related both to rows and columns. The direct product
of Borel subgroups, consisting of lower triangular matrices and upper
triangular matrices respectively, of the direct product of general linear
groups, and its subgroups act on the algebra generated by the entries of
the matrix with universal property. We also study the ring of invariants
of the unipotent radical of this Borel subgroup.
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2 Preliminaries

All rings and algebras in this note are commutative with identity ele-
ment.

Let K be an infinite field of arbitrary characteristic. For an s x t
matrix M = (m;;) with entries in a K-algebra S, we denote by K[M]
the K-subalgebra of S generated by the entries of M, by I, (M) the ideal
of S generated by all r-minors of M, by M¢; the s X j matrix consisting
of the first j columns of M, by M<! the i x t matrix consisting of the
first < rows of M and by I"(M ) the set of all maximal minors of M.

Let ! be a positive integer. We set

H(l) :={[a1,a2,...,a;] |1 La1 <ay<---<a, <l a;, € Z}.

For a = [a1,as,..., a,;] € H(l), we set sizea = 7. We define the order
on H(l) by

lai,...,ar) < [by,... b](d=9f>r>s a; <bfori=1,2,

It is easy to verify that H(l) is a distributive lattice.
For positive integers m and n, we set

A(m x n) :={[a|f] | @« € H(m), [ € H(n), sizea = size[}

and define the order on A(m x n) by

[lf] < [¢/18] €S a < o in H(m) and B < 8 in H(n).
For 6 = [a1,...,ar|b1,...,b,] € A(m x n) and an m X n matrix M =
(mij), we set Oy := det(my,p,)i;. We also set A(m x n;d) = {vy €
A(m xn) |y > 6}

Now we fix integers m and n with 1 <m < n. Let X bean m x n
matrix of indeterminates, that is, X = (X;;) and {X;;}1<i<m,1<j<n are
independent indeterminates. Then

Fact 2.1 ([DEP1]) K|[X] is an algebra with straightening law (ASL
for short) over K generated by A(m x n) with structure map § — Jx.

Next we fix § = [a1, ag, ..., ar|b1, b2, ..., b;] € A(m X n). Since
A(m x n)\ A(m x n;6) is a poset ideal of A(m x n), we see by [DEP2,
Proposition 1.2],
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Corollary 2.2
R(X;68) :== K[X]/(A(m x n) \ A(m x n;0))K[X]
is an ASL over K generated by A(m X n;4).

The image X of X in R(X; 6) is the universal matrix which satisfies
the condition

L(X

XY = [(KXapo1) = (0) fori=1,2,...,7+1,
where we set a,,; =m+1and b,y =n+1. Thatis,if M isanm xn
matrix with entries in a K-algebra S and

(%) Li(M=%7Y) = [[(Mgp,—1) = (0) fori=1,2,...,7+1,

then there is a unique K -algebra homomorphism R(X;d) — S mapping
X to M.

3 Invariants of the unipotent radical of a
Borel subgroup of GL(n, K)

Now let G = GL(m, K)xGL(n, K), B~ the Borel subgroup of GL(m, K)
consisting of lower triangular matrices, B¥ the Borel subgroup of
GL(n,K) consisting of upper triangular matrices and U~ (resp. Ut)
the set of all urhpotent matrices in B~ (resp. BY). If gy € U™ and
g2 € U*, then gi~ 1X g, satisfies (¥). So there is an automorphism of
R(X;96) sendmg X to g;*Xgy. Therefore, U~ x U* acts on R(X;4).
We may also consider the action of Ut on R(X;).

We set _ -
0 0 - 0
0 0 0
}/:111 0 0
Ve : : :
s Y:lzl }/:122 0
Yo,1 Yoo 0 Yoo
L le Ym2 Ymr |
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and

0 --- 0 Z1b1 Zlb2 Zlb,- oo Zin

0 --- 0 0 Zzb2 Zzb, oo Zon
Z5:= : : ’

o --- 0 0 --- 0 - Zw,  Zm

where Y;; and Z;; are independent indeterminates.

Lemma 3.1

Iz((YZ )Sai—l) — (0) o
Ii((YZZ;)SbH) —() fri=bL..nr+l

Therefore there is_a unigue K-algebra homomorphism R(X;9)
K|[Y;, Z5] mapping X to YsZs.

We introduce the lexicographic monomial order on K[Ys, Zs] induced
by Vo1 >Yo411> > Y >V > > Y > Y3 > >V >
Db, > Zipye1 > > Zin > Zopy > = > Log > Lgpy > -+ > L.

Lemma 3.2 Ify=[ey,...,¢s|d1,...,ds] is an element of A(m x n;§),
then
lm(')’Ygzg) - )/;11}/622 e )/csled:[ZZdz e ZSds'

proof Since

Vyvszs = Z [c1,. .-, Csler, ... esly;ler, - - eslda,. .., ds]z,
le1,..-,es]€H(r)

and

Im([cy, ..., csler,-- ., esly;[er, .- -, esldi, ..., ds]z;)
= }/6161 T Y::sesZeuh T Zesds,

the result follows form the definition of monomial order. §
If pw = [liilea, .- cisyldi, - - -, dis)) is a standard monomial on
A(m x n;6) in the sense of ASL, then

u s(i)

Im(py,z,) = HH Yei;iZidis- (3.1)

i=1 j=1

In particular, we can reconstruct p form lm(uy;z,). So
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Lemma 3.3 If p and y/ are different standard monomials on A(m X
n; o), then lm(py,z,) # lm(uy,z,). In particular, {py;z, | p is a standard
monomial on A(m X n;8)} is linearly independent over K.

Therefore

Propoéition 3.4 The K-algebra homomorphism in Lemma 3.1 is in-
jective. In particular, R(X;0) ~ K|[Y5Zs].

For g € U™, we can define a K-algebra automorphism of K[Z;] which
maps Zs to Z;g. Therefore U™ acts on K [Z;]. As for this action we have

Lemma 3.5 K[Zs)V" = K[Zw,, Zaby, - - - » Zet,)-

proof First we define the row degree on K[Z;] by deg Z;; :==e; € N".

Since the action of U™ fixes row degree, we may assume, by extending
Zs, that [by,bo,...,b] = [1,2,...,n], that is, Zs is the n x n upper
triangular matrix of indeterminates.

Let f be an arbitrary element of K[Zs]U". Since the action of U+
fixes the row degree, in order to prove that f € K|[Z11, Za, ..., Znnl,
we may assume that f is homogeneous of row degree (di, da, ..., dn).
Write f as

d dn
dy—i1 rdp—i dn—i
_S_ E fivigin(Z12y - -y Ziny Z23, - - oy Zn—1n) 217 Zg5 P ZpnT™

11=0 in=0

where fii,..i, 1S @ homogeneous polynomial of Zi3, Z13, ..., Zin, Zo3,
Zoty -+ Zony Z34y - - -y Zn—1, Of Tow degree (i1, iz, ..., in)-

Let g = (gi;) be an element of UT. Since the image of Z;; by the
action of g is

J
> Zugy (3.2)

for i < j, we see that the image of f is of the following form.

di d2 dn

>, z e Z Firigin(9125 -+ > G1ns 923, - - s Gn-1,0) B2 253 - - Zim

11=0i2=0 in=0
+ (terms of lower degree in Z11, Zaz, ..., Znn)

Since g(f) = f for any g € UT and K is an infinite field, we see that
fil,iz,...,in =0 if (ila 7:27 ce ai'n) # (dla d2a v 7dn)7
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that is, f € K[Zn, Loy ..., Z.,m].

On the contrary, it is clear form (3.2) that Z; € K [ZJ]U+ for i =1,
2, ..., n. Therefore K[Zs)V" = K[Z11, Zoz, . - ., Zn). ¥

By symmetry, we see that U~ acts on K[Y;] and K[Y;]V" =
K[Ya1,Ya50, .., Yarr)

Proposition 3.6 {[ci, ..., ci|b1, ..., bilysz; | [c1, --., &) € H(m;[aq,
..., ar))} is a sagbi basis of

KI[Ys, Z1vy, Zoy, - - -, Zew) O K[Y5Z5).

In particular,

K[Y:Sa Zlbu Z2b2, sy Zrbr] N K[YtSZJ] = K[U P((}/&Zts)bl,bz,-.-,bi)]:

i=1

where My, b, denotes the matriz consisting of by, by, ...b;_; and b;-th
columns of M.

proof It is clear that

[Cl, e ,q]bl, . ’bi]Yézs
= [Cl,. .. ,Ci|1,2,... ,i]y6[1,2, . .,ilbl, ce ’b":]Zé
€ K|[Ys, Z1by, Zovys - - - s Zrb,) N K|[Y5Z5).

Now suppose that f € K[Y5, Zib,, Zob,, - - - » Zrb,) N K[Y5Z5] and let
f= Z Tul
U

be the standard representation of f in the ASL K[Y;Z;] ~ R(X;4).
Then by Lemma 3.3, we see that there is a unique standard monomial
4 such that
Im(f) = Im(py,z,)-

Since Im(py,z,) = Im(f) € K[Ys, Z1vy, Zav,, - - - » Zrb,), We see, by (3.1),
that p is of the form [T;_;[ci1, - .., Cisti)|bi1, - - -, bisp))- The result fol-
lows. 1

The action of Ut on K[Z;] induces an action of U on K|[Y;Zs].
Since

K[Y:Zs)"" = K[Z3)"" [Ys) N K[Y324),

we see the following
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Theorem 3.7

K[Y;Z)"" =K [LTJ L((YsZs)bs ba,...0:)]-

i=1
And therefore,
R(X;8)"" = K[| JT (Kes ba,..0))-

=1

Note 3.8 If [a3, as, ---, a;] = [1, 2, ..., m], then K[['(YsZ;5)] is the
homogeneous coordinate ring of the Schubert subvariety.

4 Invariants of the unipotent radical of a
Borel subgroup of GL(m, K) x GL(n, K)

First we state the following
Proposition 4.1
K[}’:;Zg] N K[Y:;, Zlb1)22b27 LR Zrb,] N K[Za, Y;11, Y;,zz, . aYa,-r]
= KoY YaiZiZoy, - Zp, |i=1,...,7].
proof It is clear that Y;,1Yo,0 - - Ya,iZ16, Zob, - - - Zip; = [a1, - -, ailb1,
., bilyszs € K[Y5Zs) N K([Ys, Zaby, Zabys -« -5 Zrb,) 0 K[Z5, Yay1, Yago,

vy Yo fori=1,2,...,7.
Suppose that f € K[%Za] nK[Y:Sa Zlbla Z2b2: RN Z’rbr] nK[Z67 Y:zlla

Y2, -, Ya,r) and let
f=2 rup
u

be the standard representation of f in the ASL K[Y;Z;] ~ R(X;J4).
Then there is unique standard monomial p such that Im(f) = Im(uy,z,).

Since lm(,uyézé) = lm(f) € K[}/&ZJ] N K[Yt.;, Libyy Lobyy - - - Zrb,] N
K[Zs, Ya,1, Yayas -, Yarr], we wee by (3.1) that u is of the following
form.

H= H[a’la az, ... ,a’i(t)lbla bZ, s ab‘i(t)]
t=1

So we see that

{YouYoro - YaiiZioy Zovy -+ Zin, | i =1,...,7}

= {la1,..-,ailb1,...,bilysz; |1 =1,...,7}
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is a sagbi basis of K[Y;Zs] N K[Ys, Zb,, Zobyy - - - Zrb,) N K[ Zs, Ya,1,
Ya,2, -+, Ya,r]. The result follows. i
Since

K[YEZJ]U"XU“’

= K[Y5Z5)V" NK[Y5Z5)U"

= KI[Ys, Zay> Zovgs - - - » Zow,) N K [Y5.Z5]
NK[Zs,Yay1, Yas2,- - -, Yar) N K[Y52Z5),

We see the following
Theorem 4.2

K[}/JZJ]U_XU+
K[Ya1Yayo - YaiZ1p Zop, - Zap, | i =1,...,7]
= K[[al,...,ai!bl,...,bi]yaz5 |?:= 1,...,7’].

And therefore,
R(X;6)V" V" = Kllay,as, ..., ailby, bo, ..., bilx | 1= 1,2,...,7).
In particular, it is isomorphic to the polynomial ring over K with
variables.
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An upper bound on the reduction number of an ideal

Koji Nishida  (Chiba University)

1. INTRODUCTION

This is a joint work with Y. Kinoshita, Kensuke Sakata and Ryuta Shinya.

Let Q, I and J be ideals of a commutative ring A such that Q@ C I C J. As is noted
in [1, 2.6], if J/I is cyclic as an A-module and J? = QJ, then we have I® = QI*. The
purpose of this report is to generalize this fact. We will show that if J/I is generated by
v elements as an A-module and J? = QJ, then I**2 = QI**'. We get this result as a
corollary of the following theorem, which generalizes Rossi’s assertion stated in the proof
of [7, 1.3].

Theorem 1.1. Let A be a commutative ring and {Fp}n>o a family of ideals in A such
that Fy = A, IF, C F,,, for any n > 0, and I**! C QF; + aFy for some k > 0 and an
ideal a in A. Suppose that F,,/(QF,—, + I™) is generated by v, elements for any n > 0
and v, =0 forn>>0. Weputv=73_,,Vn. Then we have

I'v+k+l — QIv+k + ru"u+l:+1 .

If a family {F,}n>o of ideals in A satisfies all of the conditions required in 1.1 in the case
where a = (0), we have F, = QF,_; for n > 0. As a typical example of such {Fy}n>0,
we find {ﬁ‘}nzo when I contains a non-zerodivisor, where I™ denotes the Ratliff-Rush
closure of I™ (cf. [9]). If A is an analytically unramified local ring, then {I™},> is also an
important example, where I™ denotes the integral closure of I™. It is obvious that {J"}n>0
always satisfies the required condition on {Fp}n>o for any ideal J with I C J C T.

We prove 1.1 following Rossi’s argument in the proof of {7, 1.3]. However we do not
assume that A/7 has finite length. And furthermore we can deduce the following corollary
which gives an upper bound on the reduction number ro(I) of I with respect to Q using
numbers of gerators of certain A-modules.

Corollary 1.2. Let (A, m) be a Noetherian local ring and { Fy,}n>o @ family of ideals in A
such that Fy = A, IF, C Foyq for any n > 0, and I**! C QF; + mFyy for some k > 0.
Then we have

1g(I) < k+ Y pa(Fo/(@Fua+17)

n>1

IA

1+ pa(F/T) + Y pa(Fn/QFn-1) -

n>2
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2. PROOF OF THEOREM 1.1
In order to prove 1.1 we need the following lemma, which generalizes [4, 2.3].

Lemma 2.1. Let I, 15,...,Iy be finite number of ideals of A. For any1 <n < N, we
assume that I, is generated by v, elements and

N
I1-I,C ! + ZQn+l_[Il .
=1
Let v:=v, 4+ vo+:--+vny > 0. Then, for any v elements a1, as, ... ,a, in I, there ezists
o € QI'! such that

N
alag---a,,—aeﬂ[I"+":In].

n=1

Proof of Theorem 1.1. If v = 0, then we have F,, = I™ for any n > 0, and so
I¥+! C QF; + aFyy; = QI* + al*t! C I*+!, which means I**! = QI* + aI**'. Hence we
may assume v > 0. For any n > 0, let us take an ideal I,, generated by v, elements so
that F,, = QF,_; + I™ + I,. We can easily show that

(#) Fo=T"+)Y Q"I

£=0 .
for any n > 0 by induction on n. Now we choose an integer N so that N > k and I,, =0
for any n > N. Then by (#) it follows that

N
I-In C Py = ™' 43 Q™17
=0
for any 0 < n < N. Let a,a,,...,a, be any elements of I. Then, by 2.1 there exists
o € QI*! such that

N
aap-ray—o €[ [[™: L.

n=0

We put £ = a;ay---a, — 0. Then by (#) we get

EF, = €I +Zn:Q"-l EL,CI' I+ zn:Qn—t It C ot
£=0 £=0
for any 0 < n < N. Now the assumption that I**! C QF} + aFj4, implies
(M CQ-EFi+a-EFn C Q- I ga. "
Therefore we get
a1a3 - - @y - IF* = (€ + o) IFH! ; QI"** 4 qIv+e+L |

Then, as the elements a,, ay, . . ., a, are chosen arbitrarily from I, it follows that I?-I*¥+1 C
QI-u+k + uIv+k+1 C I"+k+1. Thus we get Iv+k+1 — Q1v+k + qu+k+1‘ '
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Proof of Corollary 1.2.  We put v = ZnZI pa(Fu/(QF,_1 + I™)). We may assume
v < 0o. Then, setting a = m in 1.1, it follows that I+5+! = QI"** 4+ mJ***+1. Hence we
get I*tk+1 = QI"** by Nakayama’s lemma, and so rq(I) < v+ k. In order to prove the
second inequality, we choose k as small as possible. If k < 1, we have
ro(I) <k +v <1+ pa(F/D)+ Y palFa/QFn-1) .
n>2

So, we assume k > 2 in the rest of this proof. In this case we have

k
) ro() < k+ualB/D) + 3 palFa/@Fact +IM) + S pa(Fa/QFncy).

n=2 n>k+1
If 2 < n<k,then I" € QF,_; + mF,, and so the canonical surjection

Fo/(QFacr + mF,) — Fo/(QFacy + I + mF,)
is not injective, which means

pa(Fo/QFy_y + 1) < pa(Fo/QFn-1) — 1.
Thus we get

k k
S balFa/QF iy + I™) <D pa(Fn/QFa1)} = (k= 1).

n=2 n=2

Therefore the required inequality follows from (f).

3. COROLLARIES
In this section we collect some results deduced from 1.1 and 1.2.

Corollary 3.1. Let J be an ideal of A such that J 2 I and J?=QJ. If J/I is finitely
generated as an A-module, then rq(I) < pa(J/I) + 1.

Proof. We apply 1.1 setting F, = J" for any n > 0 and a = (0). Because I C J* = QJ,
we may put k = 1, and hence we get I**2 = QI”*!, where v = p4(J/I). Then 1q(J) <
v+ 1.

Corollary 3.2. Let (A,m) be a two-dimensional regular local ring (or, more generally, a
two-dimensional pseudo-rational local ring) such that A/m is infinite. IfI is an m-primary
ideal with a minimal reduction Q, then rg(I) < pa(I/I)+ 1.

Proof. This follows from 3.1 since (T)? = QT by [5, 5.1] (or [6, 5.4]).

Corollary 3.3. Let p be a prime ideal of A with htp = g > 2. Let Q@ = (a1,az,..-,a)
be an ideal generated by a regular sequence contained in the k-th symbolic power p®) of
p for some k > 2. Then we have 1q(I) < pa((@ : p®))/Q) + 1 for any ideal I with
Q CICQ:p®, if one of the following three conditions holds ; (i) A, is not a regular
local ring, (ii) A, is a regular local ring and g > 3, (iii) Ap is a regular local ring, g = 2,
and a; € p**D forany1 <i<g.
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Proof. This follows from 3.1 since (Q : p*)? = Q(Q : p®) by [10, 3.1].

Corollary 3.4. Let (A,m) be a Buchsbaum local ring. Assume that the multiplicity of A
with respect to m is 2 and depth A > 0. Then, for any parameter ideal Q in A and an
ideal I with @ CIC Q:m, we have rg(J) < pa((Q : m)/Q) + 1.

Proof. This follows from 3.1 since (Q : m)? = Q(Q : m) by [3, 1.1].

In order to state the last corollary, let us recall the definition of Hilbert coefficients. Let
(4,m) be a d-dimensional Noetherian local ring and I an m-primary ideal. Then there
exists a family {e;(T) }o<icq Of integers such that

- n+d—i
41y )i,
La( A/ )-g( 1 ei() ( Iy )
for n > 0. We call e;(/) the i-th Hilbert coeficient of I. On the other hand, if A4 is an
analytically unramified local ring, then {I™ },5o is a Hilbert filtration (cf. [2]), and so
there exists a family { (/) }o<i<a Of integers such that

R e ; n+d-—1
e/ = Y- v (M)
1=0
for n > 0. As is proved in (7, 1.5, if A is a two-dimensional Cohen-Macaulay local ring,
then we have .
ro() < ex(I) —eo(I) + La(A/T) +1
for any minimal reduction @ of I. We can generalize this result as follows.

Corollary 3.5. Let (A, m) be a two-dimensional Cohen-Macaulay local ring with infinite
residue field and I an m-primary ideal with a minimal reduction Q. Then we have the
following inegqualities.

(1) ro(Z) < e1(J) —eo(J) + £4(A/I) +1 for any ideal J such that I C J C T.

(2) ro(J) <& (I) —&(I) + La(A/T) + 1, if A is analytically unramified.

Proof. (1) Setting F, = Jn for any n > 0 in 1.2, we get
U) < 14+pa(/D)+ Y pa(I7/QI")

n>2

< 1+ £4(T/T) + 30 £a(T7/QIN)

n>2

3 La(TH QUMY — £a(1/Q) +1.

Because e;(J) =35, ZA(’JV"/Q%) by [2, 1.10] and
£a(1/Q) = La(A/Q) — La(A/T) = eo(J) - La(A/T),

the required inequality follows.
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(2) Similarly as the proof of (1), setting Fy, = I" for any n > 0 in 1.2, we get
rU) < Y La(T*/QI™T) — £4(1/Q) + 1.

n>1
Because the depth of the associated graded ring of the filtration {17 }axo is positive, we
have & (1) = 3_,5; fal In/QI™1) by [2, 1.9]. Hence we get the required inequality as
£4(1/Q) =%(I) — La(A/T).

4. EXAMPLE

In this section we give an example which shows that the maximum value stated in 3.1
can be reached. It provides an example in the case where dim A/I > 0.

Example 4.1. Let n > 3 be an integer and S = k[Xo, X1, ... , Xn] be the polynomial ring
with n + 1 variables over a field k. Let A = S/a, where a is the ideal of S generated by
the mazimal minors of the matric

(Xo Xy o Xoo )

X; X, oo X, :

We denote the image of X; in A by z; for 0 < i < n. It is well known that A

is a two-dimensional Cohen-Macaulay graded ring with the graded mazimal ideal m =

(T0, T15- - -, Zn)-

(1) Let I = (zo,Z1,%n) ond Q = (Zo,Z,). Then we have m? = Qm, pa(m/I) =n -2,
and rq(I) =n—1.

(2) Let I = (z0,Z1,Zn-1), J = (Z0,T1, - .- Tn-1), and Q = (To,Tn—1). Then we have
dimA/I=1, J*=QJ, pa(J/I)=n—-3, and1g(I) =n—2.

Proof. (1) Let0<i<j<n. Ifi=0orj=n,thenzz; € @m. On the other hand, if
i> 0 and j < n, then the determinant of the matrix

(X %)

Xi Xjn

is contained in @, and so z;z; = z;_1Z;4;. Hence we can show that z,z; € @m for
any 0 < i < j < n by descending induction on j —i. Thus we get m? = Qm. It
is obvious that ws(m/I) = n — 2. Therefore I" = QI™ ! by 3.1 (In fact, we have
" = 1,721y = 1" 2 2Ty = ToTy 2 11T = ToTy "3 T3 = T’y M mzs = - =
To"2 - T1Tpo1 = T2 - ToTy = To" ‘T, € Q™ C QI™1). In order to prove rg(I) =n—1,
we show z,"* ¢ QI™~2. For that purpose we use the isomorphism

@ A— k[{ "7t Yoicn]

of k-algebras such that ¢(z;) = s" ' for 0 < i < n, where s and ¢ are indeterminates.
We have to show ¢(z1)" " & 0(Q)@(I)™ 2. Because p(I) = (s, s""'¢,1"), we get

p(I)f C ({son Pt | 0<a<l,0< B <a})
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for any £ > 1 by induction on ¢, and so
W(Q)‘P(I)n—2 C ({S(a+1)n—ﬂt(n-2-—a)n+ﬂ, san-ﬂt(n—l—a)n+ﬂ I 0 <a<n- 2’ 0 < ﬂ < a})
Therefore, if p(z;)""! = (s*1t)""! = s(*~ 1’11 € »(Q)p(I)™ %, one of the following two
cases :

(i) (@+1)n—pB<(n—-1)%and (n—2-a)n+B<n-1o0r

(i) en—f<(n—-1)2and (n—-1-a)n+p<n-1
must occur for some « and § with 0 < @ <7 — 2 and 0< 8 < a. Suppose that the case
(i) occured. Then we have

(@+1)n—B<(n—-1n—-(n—-1)and (n—2—a)n<n-1-4.
As the first inequality implies
n—1-<(n-ln—-(a+1l)n=(n—-2-a)n,
it follows that
n—1-F=n-1n-(a+1)n,
and so
an—-fB=n?-3n+1.
Then, as an > n? — 3n = (n — 3)n, we have n — 3 < @ < n — 2, which implies a = n — 2.
Thus we get
(n=2n—B=n?~3n+1,
and so 8 =n — 1, which contradicts to 8 < a. Therefore the case (ii) must occur. Then
we have
an—pf<(n—-1)n—(n—1)and (n-1-a)n<n—-1-4.
As the first inequality implies
n-1-fg<(n—-1)n—-an=(mn-1-an,
it follows that
n-1-f=(n-1)n—-an,
and so
an—fB=n2—-2n+1.

Then, as an > n? — 2n = (n — 2)n, we get @ > n — 2, which contradicts to @ < n — 2.
Thus we have seen that z,""! ¢ QI" 2.

(2) Let b = (X, X1,...,Xn-1)S. Then a C b, and so b is the kernel of the canonical
surjection S — A/J. Hence A/J = k[ X, ], which implies dimA/J = 1. Let 0 < i <
j€n—-1.Ifi=0o0rj=n-1, then z;z; € QJ. On the other hand, if : > 0 and j < n,

then ;z; = z;_17;4;. Hence we can show that z;z; € QJ forany 0 <i<j<n—1by
descending induction on j — 1. Thus we get J? = QJ. It is obvious that p4(J/I) = n—3.
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Therefore I = QI™ 2 by 3.1. This means dimA/] = dimA/Q = dimA/J =1. In
order to prove ro(I) = n — 2, we show z,""2 € QI™3. For that purpose we use again
the isomorphism ¢ stated in the proof of (1). Although we have to prove o(z)" 2 ¢
©(Q)p(I)"?, it is enough to show :

(sn—lt)n-Z ¢ (sn, stn—l)(sn, Sn—lt, stn—l)n-."lB ,
where B = k[s, t]. Because
(sn——lt)n-Z — sn-? . (sn—2t)n—2
in B and

(sn, st"'l)(s", S"-lt, stn—l)n—3B = Sn-—2 . (Sn—l,tn-l)(sn-l, sn—2t’ tn-l)n—:-}B’

we would like to show
(sn2t)m2 ¢ (5”1, Yy (s, 5™, "1)n=3pg.
However, it can be done by the same argument as the proof of
("Y1 ¢ (7, ¢7)(s™, 8P, £
and hence we have proved (2).
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SALLY MODULES OF RANK ONE

SHIRO GOTO, KOJI NISHIDA, AND KAZUHO OZEKI

1. INTRODUCTION

This paper aims to give a structure theorem of Sally modules of rank one.

Let A be a Cohen-Macaulay local ring with the maximal ideal m and d = dim A > 0.
We assume the residue class field k = A/m of A is infinite. Let I be an m-primary ideal
in A and choose a minimal reduction @ = (ai, a2; -++,aq) of I. Then we have integers
{e; = ei(I)}o<i<q such that the equality

EA(A/In'H) _ eo(’n-l—d) ——61<n+d_1> +...+(—1)ded
d d—1
holds true for all n > 0. Let

R=R(I):=A[lf] and T=R(Q) = A[Qt] C Al

denote, respectively, the Rees algebras of I and @, where t stands for an indeterminate
over A. We put
R =R/(I) = Allt,t™!] and G=G(I):=R/t"'R = PI/I"".
n>0
Let B = T/mT, which is the polynomial ring with d indeterminates over the field k.
Following W. V. Vasconcelos [11], we then define

So(I) = IR/IT

and call it the Sally module of I with respect to Q). We notice that the Sally module
S = Sg(I) is a finitely generated graded T-module, since R is a module-finite extension
of the graded ring T ’

The Sally module S was introduced by W. V. Vasconcelos [11], where he gave an
elegant review, in terms of his Sally module, of the works [8, 9, 10] of J. Sally about
the structure of m-primary ideals I with interaction to the structure of the graded ring
G and the Hilbert coefficients e;’s of 1.

As is well-known, we have the inequality ([6])

€1 2 60—£A(A/I)
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and C. Huneke [3] showed that e; = eg — £4(A4/I) if and only if I? = QI (cf. Corollary
2.3). When this is the case, both the graded rings G and F(I) = @,.,/"/mI™ are
Cohen-Macaulay, and the Rees algebra R of I is also a Cohen-Macaulay ;ing, provided
d > 2. Thus, the ideals I with e; = eg — £4(A/I) enjoy very nice properties.

J. Sally firstly investigated the second border, that is the ideals I satisfying the
equality e; = eg — £4(A/I) + 1 but es # 0 (cf. [10, 11]). The present research is a
continuation of [10, 11] and aims to give a complete structure theorem of theVSally
module of an m-primary ideal I satisfying the equality e; = eg — £4(A/I) + 1.

The main result of this paper is the following Theorem 1.1. Qur contribution in
Theorem 1.1 is the implication (1) = (3), the proof of which is based on the new result
that the equality I* = QI? holds true if e; = eg — £4(A/I) + 1 (cf. Theorem 3.1).

Theorem 1.1. The following three conditions are equivalent to each other.

(1) e =eg— La(A/T) + 1. '

(2) mS = (0) and rankg S = 1.

(3) S = (X1,Xs,--,X.)B as graded T-modules for some 0 < c < d, where

{Xi}1<i<c are linearly independent linear forms of the polynomial ring B.

When this is the case, ¢ = £4(I%/QI) and I3 = QI?, and the following assertions hold
true.

(i) depthG > d — ¢ and depthp, S =d —c+ 1.

(ii) depthG=d —¢c, ifc > 2.

‘ (iii) Suppose ¢ < d. Then

+d +d-1 +d—c—1
fA(A/In-'—l)=€0<nd )—€1<nd‘1 )+(nd—cf1 )

for alln > 0. Hence

o 0 ifi#c+1,
ST (D) ifi=ctl

for2 <i<d.
(iv) Suppose c =d. Then

n+1y _ n+d '— n+d—1
T I
foralln>1. Hencee; =0 for 2 <i<d.

Thus Theorem 1.1 settles a long standing problem, although the structure of ideals
I with e; = ey — £4(A/I) + 2 or the structure of Sally modules S with mS = (0) and
rankg S = 2 remains unknown.
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Let us now briefly explain how this paper is organized. We shall prove Theorem 1.1
in Section 3. In Section 2 we will pick up from the paper [1] some auxiliary results on
Sally modules, all of which are known, but let us note them for the sake of the reader’s
convenience. In Section 4 we will construct one example in order to see the ubiquity of
ideals I which satisfy condition (3) in Theorem 1.1.

In what follows, unless otherwise specified, let (A, m) be a Cohen-Macaulay local
ring with d = dim A > 0. We assume that the field £ = A/m is infinite. Let I be an
m-primary ideal in A and let S be the Sally module of I with respect to a minimal
reduction Q = (a1,aq,--- ,a4) of I. We put R = A[It],T = A[Qt], R' = Al[lt,t71], and
G=R/t7'R. Let

U In+l n U[In+1 (alva'2> ’ 70‘3)]

n>1 n>1
denote the Ratliff-Rush closure of I, which is the largest m-primary ideal in A such
that I C I and e;(1) = e; for all 0 <4 < d (cf. [7]). We denote by p4(*) the number of
generators.

2. AUXILIARY RESULTS

In this section let us firstly summarize some known results on Sally modules, which
we need throughout this paper. See [1] and [11] for the detailed proofs.
The first two results are basic facts on Sally modules developed by Vasconcelos [11].

Lemma 2.1. The following assertions hold true.
(1) mfS = (0) for integers £>> 0.
(2) The homogeneous components {Sn}nez of the graded T-module S are given by
S, = { (0) 7'f n <0,
Im/IQr  ifn> 1.

(3) S = (0) if and only if I* = QI.

(4) Suppose that S # (0) and put V = S/MS, where M = mT + T is the graded
mazimal ideal in T. Let V,, (n € Z) denote the homogeneous component of the
finite-dimensional graded T/M-space V with degree n and put A = {n € Z |
Vo # (0)}. Let ¢ = maxA. Then we have A ={1,2,---,q} andro(I) =g+ 1,
where to(I) stands for the reduction number of I with respect to Q.

(5) S =TS, if and only if I* = QI°.

Proof. See [1, Lemma 2.1]. O

Proposition 2.2. Let p = mT. Then the following assertions hold true.
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(1) AsspS C {p}. Hencedimr S =d, if S # (0).

(2) La(A/I™Y) = eo("1%) — (€0 — £a(A/D))-("F%7") — £4(Sn) for alln > 0.

(3) We have e; = eq — £o(A/I) + 1, (S;). Hence ey = eg— £4(A/I)+ 1 if and only
if mS = (0) and rankp S = 1.

(4) Suppose that S # (0). Let s = depth S. ThendepthG=s—1ifs<d. S is
a Cohen-Macaulay T-module if and only if depthG > d — 1.

Proof. See [1, Proposition 2.2]. O

Combining Lemma 2.1 (3) and Proposition 2.2, we readily get the following results
of Northcott [6] and Huneke [3].

Corollary 2.3 ([3, 6]). We have e; > eq — £a(A/I). The equality e; = ey — £4(A/T)
holds true if and only if I* = QI. When this is the case, e; = 0 for all2 < i < d.

The following result is one of the keys for our proof of Theorem 1.1.

Theorem 2.4. The following conditions are equivalent.
(1) mS = (0) and rankpS = 1.
(2) S = a as graded T-modules for some graded ideal a (# B) of B.

Proof. We have only to show (1) = (2). Because S; # (0)and S =3, ., S, by Lemma
2.1, we have S = B(—1) as graded B-modules once S is B-free. B

Suppose that S is not B-free. The B-module S is torsionfree, since AssrS = {mT}
by Proposition 2.2 (1). Therefore, since rankg S = 1, we see d > 2 and S = a(m) as
graded B-modules for some integer m and some graded ideal a (# B) in B, so that we
get the exact sequence

0— S(—m)— B— B/a—0

of graded B-modules. We may assume that htga > 2, since B = k[X;, X, -+, X{]
is the polynomial ring over the field k = A/m. We then have m > 0, since a4 =
[a(m)]; = S1 # (0) and ap = (0). We want to show m = 0.

Because dim B/a < d — 2, the Hilbert polynomial of B/a has degree at most d — 3.
Hence

ZA(Sn) ZA(Bm+n) - ZA([B/a]Tan)

= ("I - e

n+d-1 n+d-—2
= ( d—1 >+m( d—2 )-i-(lowerterms)

for n > 0. Consequently
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NS (e o= tata/m ("7 T) ~euis)

_ ec,(";“d) ~ (eo— £4(A/T) +1)-(n;ri 1) _m(”;f;2>

+(lower terms)

by Proposition 2.2 (2), so that we get e, = —m. Thus m = 0, because e; > 0 by
Narita’s theorem ([5]). a

The following result will enable us to reduce the proof of Theorem 1.1 to the proof
of the fact that I® = QI? if e; = eg — £a(A/I) + 1.

Proposition 2.5. Suppose e; = eg — £a(A/I) +1 and I = QI*. Letc = 24(I%/QI).
Then the following assertions hold true.
(1) 0 < c<d and pup(S) =c.
(2) depthG > d — ¢ and depthg S =d —c+1.
(3) depthG =d —c, ifc> 2.
(4) Suppose ¢ < d. Then L4(A/I™) = eo(";d) - el(”:f;l) + (") for all
n > 0. Hence
{0 fitc+l
G\ (-1 ifi=c+1
for2<i<d.
(5) Suppose ¢ = d. Then Lo(A/I") = eo("19) — e ""f;l) for alln > 1. Hence
eg=0for2<i<d.

Proof. We have mS = (0) and rankp S = 1 by Proposition 2.2 (3), while S = T'S; since
I3 = QI? (cf. Lemma 2.1 (5)). Therefore by Theorem 2.4 we have S = a as graded
B-modules where a = (X1, X, -+, X.) is an ideal in B generated by linear forms
{X:}1<ice- Hence 0 < ¢ < d, up(S) = ¢, and depthp S =d—c+ 1, so that assertions
(1), (2), and (3) follow (cf. Proposition 2.2 (4)). Considering the exact sequence

0—-S—B—B/a—0
of graded B-modules, we get
£4(Sn) = La(Bn) —La([B/als)

_ n+d—1 _ n+d—c—1
- d—1 d—c—1

-63 -



for all n > 0 (resp. n > 1), if ¢ < d (resp. ¢ = d). Thus assertions (4) and (5) follow
(cf. Proposition 2.2 (2)). O

3. PROOF OF THEOREM 1.1

The purpose of this section is to prove Theorem 1.1. See Proposition 2.2 (3) for the
equivalence of conditions (1) and (2) in Theorem 1.1. The implication (3) = (2) is
clear. So, we must show the implication (1) = (3) together with the last assertions in
Theorem 1.1. Suppose that e; = eg — £4(A/I) + 1. Then, thanks to Theorem 2.4, we
get an isomorphism

p:S—a

of graded B-modules, where a C B is a graded ideal of B. Notice that once we are able
to show I3 = QI?, the last assertions of Theorem 1.1 readily follow from Proposition
2.5. On the other hand, since a = S = BS; (cf. Lemma 2.1 (5)), the ideal a of B
is generated by linearly independent linear forms {X;}i<i<c (0 < ¢ < d) of B and so,
the implication (1) = (3) in Theorem 1.1 follows. We have ¢ = £4(I?/QI), because
a; £ S; =I1?/QI (cf. Lemma 2.1 (2)). Thus our Theorem 1.1 has been proven modulo
the following theorem.

Theorem 3.1. Suppose that ey = eg — £4(A/I) + 1. Then I® = QI

Proof. We proceed by induction on d. Suppose that d = 1. Then S is B-free of rank
one (recall that the B-module S is torsionfree; cf. Proposition 2.2 (1)) and so, since
S # (0) (cf. Lemma 2.1 (3)), S & B(—1) as graded B-modules. Thus I® = QI? by
Lemma 2.1 (5).

Let us assume that d > 2 and that our assertion holds true for d — 1. Since the field
k = A/m is infinite, without loss of generality we may assume that a, is a superficial
element of I. Let A

-‘Z = A/(al)a 7 = I/(G]), and 6 = Q/(a’l)
We then have e;(I) = ¢; for all 0 < i < d — 1, whence
€1 (T) = eo(T) - ez(Z/T) + 1.

Therefore the hypothesis of induction on d yields = Q_Tz. Hence, because the element
ait is a nonzerodivisor on G if depthG > 0, we have I3 = QI? in that case.

Assume that depthG = 0. Then, thanks to Sally’s technique ([10]), we also have
depth G(I) = 0. Hence KX(TZ/Q I) = d — 1 by Proposition 2.5 (2), because e; (1) =

-64 -



eo(T) — ¢5(A/T) + 1. Consequently, £4(S1) = £a(I*/QI) > d — 1, because 72/_67 Tisa
homomorphic image of I?/QI. Let us take an isomorphism
p:S—a
of graded B-modules, where a C B is a graded ideal of B. Then, since
la(ay) =£€a(S1) >d-1,

the ideal a contains d — 1 linearly independent linear forms, say X1, Xo,---,X41 of B,
which we enlarge to a basis Xy, -, X4-1, X4 of B;. Hence

B = k[X17X27 ot aXd]y
so that the ideal a/(X;, Xo,- - - , X4—1)B in the polynomial ring
B/(X1,X2,- -+, Xa-1)B = k[X4]

is principal. If a = (X1, X2, ,X4-1)B, then I* = QI* by Lemma 2.1 (5), since
S = BS;. However, because £4(I?/QI) = £4(a;) = d — 1, we have depthG > 1 by
Proposition 2.5 (2), which is impossible. Therefore a/(X1, Xs,---, X4-1)B # (0), so
that we have

a= (X1, Xz, Xa1,X$)B

for some o > 1. Notice that & = 1 or @ = 2 by Lemma 2.1 (4). We must show that
a=1.

Assume that a = 2. Let us write, foreach 1 <1 < d, X; = b;it with b; € Q, where
b;t denotes the image of bt € T in B = T/mT. Then a = (bit, bat, - - -, ba_1t, (bat)?).
Notice that

Q = (bl,b%"' ,bd)7
because {X;}1<i<a is a k-basis of B;. We now choose elements f; € Sy for 1 <17 < d—1
and fi € S, so that o(f;) = X; for 1 <4 < d—1and o(fs) = X7. Let 2 € I? for
1<i<d-—1and zg € I® such that {f;}1<i<a-1 and f; are, respectively, the images
of {zit}1<i<a-1 and 24t in S. We now consider the relations X;f; = X, f; in S for
1 S 1 S d—1 and ngl = led, that is

bz — biz; € QzI

for1<i:<d-—1and

b?izl —b1zg € QI
Notice that

Q% = b1Q% + (ba, ba, -+, ba—1)? (b2, b3, - -+ , ba) + bFQ
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and write
bgzl —bizg=bim+ 71+ b37'3
with 1 € Q2], Ty € (bg, b3, e ,bd_l)z‘(bQ, b3, s ,bd)I, and T3 € QI Then
bi(zl - 7'3) =b(n+ Zd) + Ty € (bl) + (bg, bs, - - - ,bd_1)2.

Hence z; —73 € (by)+(bo, b3, - - -, bg_1)?, because the sequence by, by, - - - , by is A-regular.
Let 2 — 73 = byh + K’ with h € A and A’ € (by, b3, - - ,b4_1)%. Then since

bi[b3h — (11 + 24)] = 72 — b3h' € (b, bs, -+ ,ba)?,

we have b3h — (11 + 24) € (ba, b3, -+, ba)3, whence bh € I3.
‘We need the following.

Claim. h ¢ I but h € I. Hence I # I.

Proof. If h € I, then bih € QI, so that z; = bjh + h' + 73 € QI, whence fi = 0in S
(cf. Lemma 2.1 (2)), which is impossible. Let 1 <7 < d —1. Then

bizy — biz; = bi(bih + K + 73) — byzi = bi(bih — ) + bi(K + 73) € Q°I.
Therefore, because b;(h' + 73) € Q*I, we get
bi(bih — ) € (b)) N QL.
Notice that
b)NQ* T = (b)) N[B1QI + (by, bs,--- ,bg)?I]
= QI+ [(b) N (b2, bs,--- ,bd)zf]
= b1QI + by(bo, b3, - ,bg)?

= QI
and we have bh — z; € QI, whence bh € I? for 1 < i < d — 1. Consequently b?h € I®
for all 1 < i < d, so that h € I, whencefsél. O

Because £4(1/I) > 1, we have

€ = €0—€A(A/I)+1
eo(I) — €a(A/I) + [ — La(I/T)]
eo(lf) ~ £a(A/T)

el(I)

€1,

IAN A
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where eo(I)—€4(A/I) < e;(]) is the inequality of Northcott for the ideal I (cf. Corollary
2.3). Hence £4(1/I) =1 and &;(I) = eo(I) — £4(A/T), so that

I=I+(h) and I*=QI
by Corollary 2.3 (recall that Q is a reduction of I also). We then have, thanks to [4,

Corollary 3.1], that I3 = QI?, which is a required contradiction. This completes the
proof of Theorem 1.1 and that of Theorem 3.1 as well. O

4. AN EXAMPLE

Lastly we construct one example which satisfies condition (3) in Theorem 1.1. Our
goal is the following. See [2, Section 5] for the detailed proofs.

Theorem 4.1. Let 0 < ¢ < d be integers. Then there ezists an m-primary ideal I in a
Cohen-Macaulay local ring (A, m) such that

d=dimA, e(])=-eo(I)—La(A/I)+1, and c=La(I*/QI)
for some reduction @ = (a1, as,--- ,aq) of I.

To construct necessary examples we may assume that ¢ = d.
Let m, d > 0 be integers. Let

U = k[{X; hejem, Y, {Vih<ica, {Zih<icd]
be the polynomial ring with m + 2d + 1 indeterminates over an infinite field k and let
a = [(X1<i<m)+ @)X 11<i<m)+(Y)+(Vi[1<i<d)
+(ViV; |1<4,5<d, i# )+ (V- ZY |1<i<d)
We put C = U/a and denote the images of X;, Y, V;, and Z; in C by z;, y, v;, and a;,
respectively. Then dim C =d, since va= (X; |1<j<m)+ (Y)+ (Vi|1<i<d).
Let M =Cy ==(z; | 1<ji<m)+ @)+ (i |1<i<d)+(ai|1<i<d)bethe
graded maximal ideal in C. Let A be a subset of {1,2,---,m}. We put
J=(a;]1<i<d)+(za|a€A)+(v;|1<i<d) and q=(a; |1 <3< d).

Then M? = qM, J?> = qJ + qy, and J* = qJ?, whence q is a reduction of both M and
J, and a1, as, - - - , aq is a homogeneous system of parameters for the graded ring C.

Let A= Cy, I = JA, and Q = qA. We are now interested in the Hilbert coefficients
eis of the ideal I as well as the structure of the associated graded ring and the Sally
module of I. We then have the following, which shows that the ideal I is a required
example.
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Theorem 4.2. The following assertions hold true.

(1) A is a Cohen-Macaulay local ring with dim A = d.

(2) S = B, as graded T-modules, whence £4(I%/QI) = d.
(3) eol)=m+d+2ande;(I) =§A+d+ 1.

(4) e;(I) =0 for all2 <i < d.

(5) G is a Buchsbaum ring with depth G = 0 and I(G) =d.

Proof. See [2, Theorem 5.2] O
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ANALYTIC SPREAD OF SQUAREFREE MONOMIAL
IDEALS

KYOUKO KIMURA (NAGOYA UNIVERSITY)

INTRODUCTION

This is a joint work with Naoki Terai (Saga Univ.) and Ken-ichi Yoshida
(Nagoya Univ.).

Let S be a polynomial ring with each variable has degree 1 over an infinite
field k, and I a squarefree monomial ideal of S. The arithmetical rank of I is
defined by :

aral := min{r:there exist ai,...,a, € I such that v/(as,...,a,) = \/7}

It is known by Lyubeznik [2] that pdg S/I < ara ], where pdg S/I denotes the
projective dimension of S/I. Let J be a minimal reduction of /. The number
of a minimal set of generators of J, which is independent on the choice of J,
is called the analytic spread of I. We denote it by I(I). Since v'J = VT holds,
we have

pdg S/T < aral < 1(J).

Schmitt—Vogel lemma [4, Lemma, pp. 249] is an important and useful tool
in the study of the arithmetical rank. Using this lemma, Schmitt—Vogel proved
ara] = pdg S/I for

(*) I=(zu,...,zlil)ﬂ---ﬂ(:z:.,l,...,a:qiq),

where z;; are variables in S pairwise distinct. Note that this ideal I is the
Alexander dual of a complete intersection ideal.

In this report, we refine Schmitt—Vogel lemma for reductions and prove
I(I) = pdg S/I for the ideal (*) as its application.

1. MAIN THEOREM

In this section, we consider a commutative ring R with unitary. Let I, J be
ideals in R with J C I. We say J is a reduction of I if there exists s € N such
that Is*! = JI®. It is easy to see that if J is a reduction of I, then VI = VI
The main theorem of this report is the following:
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Theorem 1. Let R be a commutative ring with unitary. Let Py, P1,...,P, C R
be finite subsets, and we set

P= UPg,

£=0
=E a, £=0,1,...,r
a€EP,

Assume that

(C1) §h =
(C2) For all >0 and a,a” € P, (a # a"), there ezist some £' (0 < ¢ < £),
a' € Pp, and b € (P) such that aa” = a'b.

Then we have (go, g1, - - -, 9r) 5 a reduction of (P).

The difference between our theorem and Schmitt-Vogel lemma is the as-
sumption of the existence of b € (P) in (C2). The second condition of Schmitt—
Vogel lemma is

(C2)’ For all £ > 0 and a,a” € P, (a # a"), there exist some £' (0 < ¢ < )
and a’ € Pp such that aa” € (a');

and the conclusion is 1/(go, 91,- - -, 9r) = /(P)-

Remark 2. Schmitt-Vogel lemma allows us to add some exponent e(a) for each
a € P, in the sum g, i.e., we may put

ge= Z ac(@)
a€EP,
Thus we can take g, as homogeneous if R is graded. But our theorem is not

allowed to add such e(a).
2. PROOF OF MAIN THEOREM

In this section, we prove Theorem 1.
As first, we fix notation. Put I = (P), J = (go, g1,---,9r), and

I = (JUP) £=0,1,...,r

It is enough to show IZ C JI?" for £ =0,1,...,r. We show this by induction
on £. In fact, we show

I}" 2!— I2¢ 2“1+J12'-1’ £=0,1,...,r

If £ =0, then Iy = (P,) = (go) C J because §Fy = 1. Let us consider the case
of £ > 0. Take ay,...,ay € U§=0Pj. We may assume ay,...,a,, € P, and

-1
Am41y - -0 (S U]—OP
First, we assume that we can renumbering ay,. .., an such that

{a'la alll}a L) {a'[m/ZJa a'I]_Im/2_j }’
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where ay # af, a§ = aym/2j+x (A =1,...,|m/2]), and |@] denotes the max-
imal integer which does not exceed a. Then we can use the condition (C2),
that is, there are @), € U;;%, P; and by € I such that ayal = a}by. Thus

lm/2]
ay-- -0y = H aﬁ\b,\ A2|m/2)+1 " " G2t
A=1
[m/2] [m/2]
= Hai\ Q41 ° - * Gt Hb,\ A2|m/2j+1" " " Qm-
=1 A=1

Note that m < 2¢ and |m/2] > (m — 1)/2. Then it is easy to see that
|m/2)+2¢—m > 2¢-1~1/2. Since |m/2]+2'~m € Z, we have |m/2]+2'-m >
2¢-1, Therefore
Q- ag € X7 1FFT

Next, we consider the case that we cannot make |m/2] pairs of distinct
elements. This case occurs if and only if there exist a € P, (uniquely) such
that

a=a =" = 0|(m-1)/2/+2»

by renumbering as,...,am. Then

01G2 Gpt = QAg -+ Aot

= (gl -_ Z a”) a2 o 0’2‘

a"’€Py, a''#a
= geap- - Gy — E a"ay- - ag.
a""€Py, a''#a

The first term belongs to JI2~1. Thus we consider a”as- - az in the second
term only. Since max{#{i : a; = a} : a € P,} is strictly reduced, the problem
can be reduced to the first case.

QE.D.

3. AN APPLICATION

In this section, we apply Theorem 1 to some ideals and calculate the analytic
spread of them.
Consider the ideal

(*) I=(1711,...,131,'1)n"‘n(qu,...,zqiq),

where 13, . . ., Zqi, are all distinct variables. Then one can easily see that

q
pdg S/T = is—q+1.

s=1
Schmitt—Vogel [4] proved aral = pdg S/T (see also Schenzel-Vogel [3]). They
proved it by applying

Pr= {1 Tq, : L+ +L=L+g}, £=0,1,...,r
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to Schmitt-Vogel lemma, where r = >°7_, i, — g. Since these Py, P,,..., P;
also satisfy the assumption of Theorem 1, we have the following corollary:

Corollary 3. Let I = (z11,...,Z1,) N -+ N (Zq1,- - -, Tqi,). Then we have
I(I) =pdg S/I.
In particular, (go, g1, - - -,9r) 8 a minimal reduction of I.

Although I(I) = pdg S/I is also proven by computing the dimension of fiber
cone, we construct a minimal reduction of I explicitly.

By giving an example, we remark that the relation between our theorem
and the reduction number.

Let I = (11, Z12) N (Z21,Z22) N (31, Z32). This is a special case of the ideal
(*) and pdg S/I =2+ 2+ 2 — 3+ 1 = 4. The minimal reduction of I which
derived from Corollary 3 is generated by the following 4 elements:

go = TnZ21%31,
g1 = T12T21Z31 + T11T22T31 + T11T21T32,
g2 = T12T22T31 + T12T21T32 + T11T22T 32,
g3 = T12T22T32-

Put J = (g0,91,92,93)- Then what is the reduction number r;(I) of J ?

From the our proof of Theorem 1, we can only see r;(I) < 2° -1 = 7. But

I® = JI? holds. In fact, r;(I) = 2. Thus the upper bound of r;(I) derived
from Theorem 1 is very big in general.
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QUASI-SOCLE IDEALS IN LOCAL RINGS WITH GORENSTEIN
TANGENT CONES

SHIRO GOTO, SATORU KIMURA, NAOYUKI MATSUOKA, AND TRAN THI PHUONG

1. INTRODUCTION

This talk aims at a study of quasi-socle ideals in a local ring with the Gorenstein
tangent cone. Our purpose is to answer Question 1.1 below, of when the graded rings
associated to the ideals are Cohen-Macaulay and/or Gorenstein rings, estimating their
reduction numbers with respect to minimal reductions.

Let A be a Noetherian local ring with the maximal ideal m and d = dim A > 0. Let
Q = (z1,%, - ,Zq4) be a parameter ideal in A and let ¢ > 1 be an integer. We put
I = Q : m? and refer to those ideals as quasi-socle ideals in A. Then one can ask the
following questions, which are the main subject of the present research.

Question 1.1.
(1) Find the conditions under which I C Q, where Q stands for the integral closure of
Q.
(2) When I C Q, estimate or describe the reduction number rqg(J) = min {0<nezZ]
I™+1 = QI™} of I with respect to Q in terms of some invariants of @ or A.
- (3) Clarify what kind of ring-theoretic properties of the graded rings associated to the
ideal
R(I)=@PI", G(I) =@ /1", and F(I) = P r/mr
n>0 n>0 n>0
enjoy.

In this talk we shall focus our attention on a certain special kind of quasi-socle ideals.
We now assume that the tangent cone, that is the associated graded ring G(m) =
@, om"/m"*! of m, is a Gorenstein ring and that the maximal ideal m contains a
syst;m Z1,Za,- - ,Tq of elements such that the ideal (z1, 2, - ,T4) is a reduction of m.
Let aj,aq,- - - ,aq, and g be positive integers and we put Q = (27*,z5%,- -+ ,z¢’) and [ =
Q:mi. Let A= A/Q, m=m/Q,and ] = I/Q. Let p = max {n € Z | ™" # (0)},
that is the index of nilpotency of the ideal W and put £ = p+ 1 — g. We then have the
following, which are the answers to Question 1.1 in our specific setting.

Key words and phrases: Quasi-socle ideal, regular local ring, Cohen-Macaulay ring, Gorenstein ring,
associated graded ring, Rees algebra, Fiber cone, integral closure.
2000 Mathematics Subject Classification: 13H10, 13A30, 13B22, 13H15.

-73 -



Theorem 1.2. The following three conditions are equivalent to each other.
MmIcq.
(2) mi = miQ.
(3) £>a; foralll1 <i<d.

When this is the case, the following assertions hold true.

(i) rq(I)=[4] :=min {n € Z | 4 <n}.
(i) The graded rings G(I) and F(I) are Cohen-Macaulay.

Theorem 1.3. Suppose that £ > a; for all 1 < i < d. Then we have the following.

(i) G(I) is a Gorenstein ring if and only if £ | g.
(ii) R(I) is a Gorenstein ring if and only if ¢ = (d — 2)¢.

Our setting naturally contains the case where A is a regular local ring with
Z1,Z2," -+ ,Tq a regular system of parameters, the case where A is an abstract hypersur-
‘face with the infinite residue class field, and the case where A = Ry, is the localization
of the homogeneous Gorenstein ring R = k[R;] over an infinite field k = R, at the irrel-
evant maximal ideal M = R,. In Section 3 we will explore a few examples, including
these three cases, in order to see how Theorems 1.2 and 1.3 work for the analysis of
concrete examples. The proofs of Theorems 1.2 and 1.3 themselves shall be given in
Section 2.

A 2. PROOF OF THEOREMS 1.2 AND 1.3

The purpose of this section is to prove Theorems 1.2 and 1.3. First of all, let us
restate our setting, which we shall maintain throughout this talk.

Let A be a Noetherian local ring with the maximal ideal m and d = dim A > 0. We
assume that the associated graded ring G(m) = @, ., m"/m"™*! of m is Gorenstein and
that the maximal ideal m contains a system z;, z5, e ,xq of elements which generates
a reduction of m (the latter condition is satisfied if the filed A/m is infinite). Hence
A is a Gorenstein ring and the initial forms {X;}1<i<q of {Z;}1<i<cq With respect to m
constitute a regular sequence in G(m) and we have a canonical isomorphism

G(m/(z1, 22, ,74)) = G(m)/ (X1, Xa, -+, Xag)
of graded A-algebras ([VV]). Let a1, as,- - ,aq, and g be positive integers and we put
Q= (z*,23%,--- ,zz') and I =Q:m%
Let A= A/Q,M=m/Q, and T = I/Q. Then
G(m) = G(m)/(X:™, X%, -+, Xa™),
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whence G(T) is a Gorenstein ring. Let p = max {n € Z | m" # (0)}, that is the index
of nilpotency of the ideal W, and we have p = a(G(m)) = a(G(m)) + Zf___l a;, where
a(x) denotes the a-invariant of the corresponding graded ring ([GW, (3.1.4)}).

Let £ = p+ 1 — q. By [Wat] (see [O, Theorem 1.6] also) we then have the following.

Proposition 2.1. (0) : @ = @~ for alli € Z. In particular T = (0) : @9 = m’
whence I = Q + mé.

The key for our proof of Theorem 1.2 is the following.

Lemma 2.2. Suppose that £ > a; for all1 <i < d. Then
Q N mn€+m g meIn-l
forallm>0andn > 1.

Proof. We have
d

Q n mn£+m — § ::E?imnl+m—a,~
=1
since Ty1,To, " , T4 is a super regular sequence with respect to m. Because

m+m—a;,=Mn—1)+m+{l—a)>(n-1),+m
for each 1 < ¢ < d, we get

mnl+m—a..; - m(n-—l)£+m — mm.(ml)n—l.

Therefore, since m® C I by Proposition 2.1, we have

d
Q nmnl+m — E :‘,E;zimnﬁ+m—a,~
i=1

d
Z ziaimm (ml)n—l

i=1

- meIn—l

as is claimed. D

N

Let us now prove Theorem 1.2.

Proof of Theorem 1.2. (2) = (1) This is well-known. See [NR].

(3) = (2) By Proposition 2.1 we get m?] = m?Q + matt whence m?*¢ C Q, so that
mitt = Q Nmt C mIQ by Lemma 2.2, because £ > q; for all 1 < i < d. Thus
m?i] = mIQ.

(1) = (3) Let 1 < i < d be an integer. Then zf € m* C I C Q. Consequently, z{ is
integral over Q = (z3*,73%,- - ,z3¢) so that, thanks to the monomial property of the
regular sequence £ = T1, Tz, - ,Td, We get a% >1. Hence £ >q; forall 1 <i < d.
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Let us now consider assertions (i) and (ii). Let n > 1 be an integer. Then I™ =

QI™ ! + m™ since I = Q + m? (Proposition 2.1), so that
RQNI"=QI" '+ [@QNm™ C QI

because @ N m™ C Q™! by Lemma 2.2. Therefore Q N I" = QI*! for all n > 1,
whence G(I) is a Cohen-Macaulay ring ([VV, Corollary 2.7]).

We will show that rq(I) = [4]. Notice that

ro(I) = min{n > 0| I"* € Q},

because I"*! = QI™ if and only if I"*! C Q. Firstly, suppose that I**! C Q. We then
have m(™*Y¢ = (0) (recall that T = m?), whence (n + 1)¢ > p+ 1. Therefore
S p+1 qg+f ¢

n+12> 7 ——e——z-i-l,
because £ = p+ 1 — g, so that we have n > {.
Ifn >4, then (n+1)¢ > (9+1)e=q+e=p+1 and so T""' = m™1¢ = (0),

whence I"+1 C Q. Thus ro(I) = [4].
To see that F(I) is a Cohen-Macaulay ring, it suffices to show that

QNmI™" =mQI™!
for all n > 1. By Lemma 2.2 we have

QNmI" = QNmQI"! +mH
= mQI™ +[QNmrtH]
C mQI, .
whence Q NmJ/™ = mQI" 1. O
Assume that £ > q; for all 1 <4 < d and let Y;’s be the initial forms of z{*’s with
respect to I. Then Y1,Y3,---,Y}; is a homogeneous system of parameters of G(I), since

Q is a reduction of I (Theorem 1.2). It therefore constitutes a regular sequence in
G(I), because G(I) is a Cohen-Macaulay ring by Theorem 1.2 (ii), so that we have a
canonical isomorphism
GI) = G(I)/ (Y1, Yz, -+, Ya)

of graded A-algebras ([VV]). Hence a(G(I)) = a(G(I))+d. Let r be the index of nilpo-
tency of I, that is r = a(G(I)). Then since 7 = rg(I) (recall that £,%, 5%, - | 24 is
a super regular sequence with respect to I) and a(G(I)) = a(G(I)) — d ([GW, (3.1.6)]),
by Theorem 1.2 (i) we have the following.

Lemma 2.3. Suppose that £ > a; for all 1 <i<d. Then a(G(I)) = [{] —d.

Carollary 2.4. Assume that £ > a; for all 1 <1< d. Then R(I) is a Cohen-Macaulay
ring if and only if [1] < d. When this is the case, d > 2.
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Proof. Since G(I) is a Cohen-Macaulay ring by Theorem 1.2 (ii), R(I) is a Cohen-
Macaulay ring if and only if a(G(I)) < 0 ([TI]). By Lemma 2.3 the latter condition is
equivalent to saying that [§] < d (cf. [GSh, Remark (3.10)]). When this is case, d > 2
because 0 < [4]. O

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. (i) Notice that G(I) is a Gorenstein ring if and only if so is the
graded ring
G(I) = G(I)/("1,Ya,- - ,Ya),
where Y;’s stand for the initial forms of z{*’s with respect to /. Let r be the index of
nilpotency of T. Then 7 = 1g(I) = [4], and G(I) is a Gorenstein ring if and only if the
equality ' '
0):T = T
holds true for all i € Z (O, Theorem 1.6]). Hence if G(/) is a Gorenstein ring, we have
0): 1= T = m™. On the other hand, since I = m’ and ¢ = p+ 1 — £, by Proposition
2.1 we get ‘
(0):T=(0): mf =m".

Therefore g = r¢, since m™* = m? # (0). Thus ¢ | g and r = £.

Conversely, suppose that £ | g. Hence r = ¢ by Theorem 1.2 (i). Let ¢ € Z. Then
-t fn—(r+1—i)£

. =+ — =r+1—1 .
since T = W, we get T , while

0): T = (0) : i = mr+1 ¥

T e
=1

by Proposition 2.1. We then have (0) : for all i € Z, since

(r+1-i)=g+l—il=p+1—il

Thus G(7) is a Gorenstein ring, whence so is G(I).

(ii) The Rees algebra R(I) of I is a Gorenstein ring if and only if G(I) is a Gorenstein
ring and a(G(J)) = —2, provided d > 2 ([I, Corollary (3.7)]). Suppose that R(/) is a
Gorenstein ring. Then d > 2 by Corollary 2.4. Since a(G(I)) = 1g(I) — d = -2, by
assertion (i) and Theorem 1.2 (i) we have § = ro(I) = d — 2, whence ¢ = (d — 2)¢.
Conversely, suppose that ¢ = (d — 2)¢. Then d > 3 since ¢ > 1. By assertion (i) and
Theorem 1.2 (i) G(I) is a Gorenstein ring with ro(I) = § = d — 2, whence a(G(I)) =
(d—2) —d = —2, so that R([) is a Gorenstein ring. a

Example 2.5. Suppose that p > 5 is an odd integer, say p = 27 + 1 with 7 > 2. Let
g=p—1 Then £=p+1—g =2 Hence, choosing a; < 2foralll <i < d, we
have I = Q + m? C Q with rg(I) = 7 by Theorem 1.2. Since £ | g, by Theorem 1.3 (i)
the ring G(I) is Gorenstein. The ring R(I) is by Theorem 1.3 (ii) a Gorenstein ring, if
d=T1+2.
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3. EXAMPLES AND APPLICATIONS

In this section we shall discuss some applications of Theorems 1.2 and 1.3. Let us
begin with the case where A is a regular local ring.

3.1. The case where A is a regular local ring. Let A be a regular local ring with
Ty,Z9, -+ ,Zq & regular system of parameters. Similarly as in the previous sections, let

Q=(z1",25",-+,2g’) and I=Q:m’

with positive integers ai,as,--- ,aq, and g. Then G(m) = k[X;, Xo, -, X4 is the
polynomial ring, where k = A/m and X,’s are the initial forms of z;’s, so that we have
d

d
p=2ai——d and €=Z(a¢—1)+1—q7

i=1 i=1

since a(G(m)) = —d. Notice that the condition that
£>max {a; |1 <i<d}

is equivalent to saying that
daj>q+d-1
J#i
for all 1 <i < d, because £ —a; = E#i aj — (g+d—1). When this is the case, d > 2.

Example 3.1. The following assertions hold true.
(1) Let d = 2. Then I C Q@ if and only if min{a;,a,} > g+ 1.
(2) Let d =3. Then I C @ if and only if min{a; +a; | 1 <i<j <3} >qg+2.
(3) Choose integers a and g so that 2 < a < dand (d—1)(a—1) < ¢ < d(a—1). Let
ai=aforall1 <i<d ThenIC Abut] g Q. For example, let d = 3,a = 2,
and ¢ = 3. Then

(z'{’,zg,zg) :m®=m Z (z%’x%’mg)'

Example 3.2. The following assertions hold true.

(1) Let d = 2 and assume that I C Q. Then G(I) is not a Gorenstein ring.

(2) Suppose that d > 3 and let n > d — 1 be an integer. Let a; =d — 1, a; = n for
all 2 <7 <d, and ¢ = (d — 2)n. Then R(I) is a Gorenstein ring.

(3) Suppose that d =5 and let a; =4 forall 1 <4 < 5. Let g =8. Then I C Q and
G(I) is a Gorenstein ring with ro(J) = 1, but R(I) is not a Gorenstein ring.

Since the base ring A is regular, the Cohen-Macaulayness in Rees algebras R(I)
follows from that of associated graded rings G(I) ([L]). Let us note a brief proof in our
context.

-78 -



Proposition 3.3. Suppose that £ > a; for all 1 < i < d. Then the Rees algebra R(I)
is a Cohen-Macaulay ring.

Proof. By Corollary 2.4 we have only to show [4] < d. Let ax = max{a; | 1 <i < d}.
Then because £ > ai, we have

d
~ (a; —1)+1 1
%+1=p:1sEJ‘I(J ) =Z“’ +1<d,
% PFra
whence [4] < d as is wanted. O

Let L = {(aq,02," - ,2q) € Z¢ | o > 0 foralll < i < d}. For each @ =
(a1,az, -+ ,aq) € L we put 2% = 1‘[;’=1 zXi. Let a be an ideal in A. Then we say that a
is a monomial ideal, if a is generated by monomials in {z;}1<i<4, thatisa = (z* | a € A)
for some A C L. Monomial ideals behave very well as if they were monomial ideals in
the polynomial ring k[z;,Ts, - ,Z4) over a field k (see [HS] for details). For instance,
the integral closure @ of our monomial ideal @ is also a monomial ideal and we have

the following.
Proposition 3.4 ([HS)). Let A={a e L| YL, % > 1}. Then Q = (z% | a € A).

=1 a;

Corollary 3.5. Suppose that d > 2 and let n > 2 be an integer. We put q =

(231,28, ,z7). ThenG=q+m" = (z77!) + m™ and all the powers 7" (m > 1) are

integrally closed.

Proof. Let J = q+m" and a = (27,2%,--- ,z}). Then a C g and m" C @, so that
J € q. Let m > 1 be an integer and put K = (z’ln("_l),zg"‘, .-, z). We will show

that K C J™ Let a € L and assume that ey T Efﬁ 2 > 1. We want to show

that z* € J™. We may assume that oy < m(n—1). Let oy = (n—1)i+j with4,j € Z
such that 0 < j < (n —1). Then 0 < ¢ < m. Since ;(%I_T)"‘Zd 2i > 1, we get

i=2 mn =
d
noy + (n — 1) Zai > mn(n — 1),
i=2
so that
d
(n—1)- Zai >mn(n —1) — na; = nf(n — 1)(m — 1) — j],
i=2
whence

d .
) nj

> — — .

;=2 a; > n(m —1) 1

Because;"_j;=j+;-;L]and0§j<n-1,wehavef}f=j+;-5<j+1andso

d
ZaiZn(m—i)—j.

=2
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Thus
7% = g{" g x5t € g Vignim=i) ¢ gm.
whence K C J™ by Proposition 3.4.
Because J™ C q™ and q™ C K, we have J™ C ™ C q™ C K, whence J™ = q" =

q™ = K. Letting m = 1, we get J = q. This completes the proof of Corollary 3.5. O

Thanks to Corollary 3.5, we get the following characterization for quasi-socle ideals
I = @ : m? to be integrally closed.

Theorem 3.6. Suppose that d > 2 and a; > 2 for all 1 < i < d. Then the following
two conditions are equivalent to each other.
(1) I=0Q.
(2) Either (a) a; = £ for all1l < i < d, or (b) there ezists 1 < j < d such that a; = £
ifi#janda;=¢€—-1.
When this is the case, I" = I™ for alln > 1, whence R(I) is a Cohen-Macaulay normal
domain.

Proof. (1) = (2) Since I = Q, we get ¢ < p and I = Q + m? (Proposition 2.1). Notice
that
RCI=Q:mM'C(Q:mY) :m=Q: :mi*,
because I C A. Hence @ : m%*! ¢ Q. Consequently £ —1=p+1— (g+ 1) < a; for
some 1 < ¢ < d by Theorem 1.2, so that, thanks to Theorem 1.2 again, we have
{= a; Z a;
forall 1 <j<d Let A={1<j<d|a; <} We then have the following.
Claim. (1) aj=/-1,ifj€A.
(2) A < 1.
Proof. Let j € A. Then a; < £ = a; whence j # i and £ > 3. Let a = (a; — 1)e; + (a; —
a;)e;. Then a € L but, thanks to the monomial property of ideals, z* ¢ Q+m‘ =1 =Q,
because S p. ok = a; — 1 = £—1 and z* ¢ Q. Consequently, 3 ¢_, 2 &% <1by
Proposition 3.4, so that 1 < 2 L -+ —1 because

~—1 a; —a;
.7 + J
a; ai

<1

Let n = a; —a;. Then a;(a;—a;) <a;jas 1< - +—1 whence a;n < a; = a; + n so that
0<(aj—1)(n—1)<1. Hencen=1 (recallthat a; > 2) and a; —a, 1=¢-1.
Assume A > 2 and choose j,k € A so that j # k. Weputy = z] 2. We then have
Yol = (2 (252 = (o) (2 )2 € QY because a; = ap = £ — 1 by assertion
(1). Hence y € Q = Q + m, which is impossible because y ¢ Q (recall that £ > 3) and
y ¢ m¢, thanks to the monomial property of ideals. Hence fA < 1. O
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If A = 0, we then have £ = a; for all 1 < j < d. If A # 0, letting A = {j}, we get
a; =£if i # j and a; = £ — 1. This proves the implication (1) = (2).

(2) = (1) Suppose condition (b) is satisfied. Then I = Q + mf = (zf™!) + mf = Q@
by Proposition 2.1 and Corollary 3.5. Suppose condition (a) is satisfied. Then I C @
by Theorem 1.2 and I =@ + m¢ = m¢ by Proposition 2.1, whence I = Q. In each case
all the powers of I are integrally closed (see Corollary 3.5 for case (b)), whence the last
assertion follows from Proposition 3.3. O

Example 3.7. Suppose that d > 3 and let n > d — 1 be an integer. We look at the
ideal

Q= (1:‘11_1’1"121’1:;’ T ’z:il)
and let ¢ = n(d—2). Then £ =n, as p=nd—(n+1), whence I C Qand I =Q+m" =
(z3=')+ m". The ring R(I) is by Theorem 1.3 (ii) a Gorenstein ring, since ¢ = (d—2)¢.
If n =d, then I = (z¢7') + m? and ™ = I™ for all m > 1 by Corollary 3.5, so that
R(I) is a Gorenstein normal ring.

3.2. The case where A = Rjs. Our setting naturally contains the case where A = Ry
is the localization of the homogeneous Gorenstein ring R = k[R;] over an infinite field
k = Ry at the irrelevant maximal ideal M = R,. Let us note one example.

Example 3.8. Let S = k[X,Y, Z] be the polynomial ring over an infinite field k and
let R=S/fS, where 0 # f € S is a form with degree n > 2. Then R is a homogeneous
Gorenstein ring with dim R = 2. Let z;, z; be a linear system of parameters in R and
let M = R,. We look at the local ring A = Ry. Let a; =2, a; = n, and ¢ = n. Let
Q= (z%,23)A and I = Q : m?, where m = M A. Then

p=a(R)+ (a1 +az) =2n—1.
Hence £ =g =n,sothat I CQ, I = Q+ m" = (z2) + m", and G(I) is a Gorenstein
ring with ro(J) = 1 (Theorems 1.2 and 1.3). We have Q@ £ m% if n > 3.

3.3. The case where A = k[[t*,t"]]. Let 1 < a < b be integers with GCD(a,b) = 1.
We look at the ring A = k[[t®, ] C k[[t]], where k[[t]] denotes the formal powers series
ring over a field k. We put z = t* and y = t®. Then A is a one-dimensional Gorenstein
local ring and m = (z,y). Because A = k[[X,Y]]/(X® — Y°) where k[[X,Y]] denotes
the formal powers series ring over the field k, we get '

G(m) 2 k[X,Y]/(Y?).

Let n,q > 1 be integers, and put @ = (z") and I = Q : m?. Then because a(G(m)) =
a—2 wehave p=a+n—2and £ =(a+n)—(g+1). Consequently I C Q if and
only if ¢ < a (Theorem 1.2), whence the condition that I C Q is independent of the
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choice of the integer n > 1. When this is the case, by Theorems 1.2 and 1.3 we have
the following.

Theorem 3.9. The following assertions hold true.

(1) re) = [emtmg -
(2) The graded rings G(I) and F(I) are Cohen-Macaulay rings.
(3) The ring G(I) is a Gorenstein ring if and only if (a +n) — (¢ + 1) divides q.

Hence, if ¢ = a — 1, we then have, for each integer n > 1 such that n | ¢, that G(I) is a
Gorenstein ring.
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A FAMILY OF GRADED MODULES ASSOCIATED TO A
MODULE

FUTOSHI HAYASAKA

This note is a summary of the paper [9] with E. Hyry (University of
Tampere). In this note we introduce a certain family of graded modules
associated to a given module. These modules provide a natural extension
of the notion of the associated graded ring of an ideal. We will investigate
their properties. In particular, we will try to extend the Rees theorem
on the associated graded ring of an ideal generated by a regular sequence
to this context.

1. INTRODUCTION

Let A be a commutative ring and let J be an ideal in A. In 1957, Rees
proved in [19] that the associated graded ring

G =A@t/ el e

of J is isomorphic to the polynomial ring over A/J, if the ideal J is gen-
erated by a regular sequence on A. In particular, the module J¢/J¢! is
A/ J-free for all £ > 0. Rees’s theorem is a key result for the applica-
tions of the associated graded ring in commutative algebra and algebraic
geometry.

Recently many authors have investigated graded structures associated
to modules, especially in connection with the theory of Buchsbaum-Rim
multiplicities. Several results valid in the ideal case have been extended
to the module case (for example, see [2, 12, 13, 15, 17, 18, 20, 21]). How-
ever, a good notion of an associated graded ring of a module satisfying
a suitable version of Rees’s theorem seems to be lacking.

Two possible candidates for the associated graded ring of a module
appear in the article [12] of Katz and Kodiyalam. Let A be a Noetherian
ring and let F be a free A-module of rank r > 0. Let M be a submodule
of F and let R = R(M) be the Rees algebra of M, which is the subalgebra
of the polynomial ring S = Sym 4(F) defined as the image of the natural
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homomorphism Sym,(M) — Sym,(F). Let I(M) be the 0-th Fitting
ideal Fitto(F/M) of F/M. Katz and Kodiyalam investigated the graded
A/I(M)-algebra
R/IIM)R=A/I(M)® M/I(M)M & M2 /IMM* & -- - ,

where M* denotes the homogeneous component R, of degree £ in R.
When r = 1, the ring R/I(M)R is exactly the associated graded ring of
the ideal M in A. In order to study the Buchsbaum-Rim polynomial,
they also introduced a graded R/I(M)R-module, namely

RF/R* =F/M & MF/M*® M*F/M®*&--- .

When r = 1, this module coincides with the ordinary associated graded
ring of the ideal M in A. They observe in the proof of [12, Proposition
3.4] that the module M*F/M**! is a direct sum of (*")-copies of F/M,
_ if A is a two dimensional regular local ring and M is a parameter module
in F (i.e., the length of F/M is finite and the number of generators of M
is just 7+1). This can be viewed as the module version of Rees’ theorem.
The goal of this note is to generalize this observation as follows:

Theorem 1.1. Let A be a Noetherian ring and let F be a Atree A-module

of rank r > 0. Let M be a submodule of F such that M is a perfect

matric of size v x (r 4+ 1). Then the natural surjective homomorphism
(F/M)[},l, . )},r+1] —>>RF/R+

of R/I(M)R-modules is an isomorphism. In particular, the A-module

MEF /M is a direct sum of (“17)-copies of F/M for all £> 0.

Here M denotes the matrix whose columns correspond to the generators
of M with respect to a fixed basis of F. Moreover, we say that the matrix
M perfect if I(M) is a proper ideal having the maximal possible grade.

As a corollary, we have the following.

Corollary 1.2 (cf. [12]). Let (A, m) be a Cohen-Macaulay local ring of
dimension two. Let F = AT be a free module of rankr > 0 and M a
parameter module in F. Then the map

"2 (F/M)[}/l,,},r-kl] —»RF/R+

is an isomorphism and hence the module M*F/M**! is o direct sum of
(t7)-copies of F/M for all £ > 0.
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This is a direct consequence of Theorem 1.1. Since A is a two-dimensional
Cohen-Macaulay local ring, the matrix M of a parameter module M is
perfect of size r x (r + 1). Thus the assertion follows from Theorem 1.1.

In section 2, inspired by the article of Katz and Kodiyalam, we are
going to introduce a family of graded R/I(M)R-modules {G:(M)}i>0,
where

Gt(M) = St/MSt-l @MS:/M2St_1 GBMZSt/MSSt_l @ .

This includes the above two graded modules R/I(M)R = Go(M) and
RF/R* = G1(M). We can then ask when the natural surjective homo-
morphisms ¢y : (Si/MSi1)[Y1,.- ., Ya] = Gi(M) are isomorphisms. In
section 3, we will discuss the generic case. It turns out that in the generic
case the maps ; are always isomorphisms (see Proposition 3.1). We can
then show that the general case can be reduced to this case provided
that a certain condition P; holds in the generic case (see Theorem 3.2).
Finally, in section 4, we will prove in Theorem 4.1 that the condition P;
holds true in the case of a generic 7 x (r + 1) matrix. This will imply our
main Theorem 1.1.

2. THE ASSOCIATED GRADED MODULES OF A MODULE

Let A be a Noetherian ring and let F be a free A-module with a basis
{t1,...,t-}. Let M be a submodule of F with generators ci,...,cq and
the matrix M = (c;;). We put I(M) = I(M) = Fitto(F/M). Let
S = Alty,...,t,) be the symmetric algebra of F'. Let R = R(M) be the
Rees algebra of M, which is now the A-subalgebra of S generated by
¢1,...,Cq. For each integer £ > 0, we denote by M?* the homogeneous
component R, of degree £ in B. We always understand products and
powers of modules to be taken inside the symmetric algebra S of our
fixed free module F. We put Rt = ®p>0M*.

Let R(MS) be the Rees algebra of the ideal MS in S, which is the S-
subalgebra S[;T, .. . , ¢, T of the polynomial ring S[T’). The ring R(MS)
becomes a bi-graded A-algebra by letting degt; = (0,1), degc,T = (1,0).
That is,

R(MS) = P M?S,.

p,g20
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Now consider the bi-graded A/I(M)-algebra
G =G(MS)®4 (A/I(M))

where G(MS) = R(MS)/(MS)R(MS) is the associated graded ring of
MS. So
G = P M*S,/MHS, ;.
P,g20

Here we set MS_; = I(M).

Definition 2.1. For any non-negative integer t > 0, we set

Gt(M) = @ g(p,t) = RSt/R+St-1a

p20

and call the module G4(M) as the associated graded module of M of type
t

Let S[Y1,...,Y;] be a polynomial ring over S with degY; = (1,0).
Consider the bi-graded homomorphism

6 (S/MS)Y,..., Yo =G Yyio ¢+ (MS).
Taking the degree (*,t)-part, we obtain the homomorphism
Pt : (St/MSt_])[},l, . ,Yn] —> Gt(M),

of graded (A/I(M)) [Yh,...,Ys]-modules. With this notation, our prob-
lem is now the following.

Problem 2.2. Let M be a submodule of F. Assume that the matriz M
is perfect of size r X n (i.e., I(M) is a proper ideal and grade I(M) =
n—r+1). Is the map p; then an isomorphism?

We note here that modules with a perfect matrix are called complete
intersection modules in [21]. This problem can be reduced to the generic
case provided that a certain condition P; holds in the generic case.

3. THE REDUCTION TO THE GENERIC CASE

In this section we will reduce Problem 2.2 to the generic case. Let
X = (Xi;) be a generic matrix of size r x n and let
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be the corresponding polynomial ring over the ring of integers Z. Let
G = B be a free module of rank r and let N C G be a submodule of G
such that N is the generic matrix X. Let V = Symg(G) = Blty,. .- ytr)
be the polynomial ring over B and let U = R(N) be the Rees algebra of
N. Let

$j=X1jt1+""+X,-jt,-€Vv, (j=1,...,n)

be the generators of N. For a generic matrix of an arbitrary size, one
can check that the sequence ,, . . . , T, form a d-sequence on V and hence
the ideal NV is of linear type ([22]). Furthermore, in the generic case,
we have the following.

Proposition 3.1. For any integer t > 0, the map
@ (Vi/NVied)Va, o, Yol = Gu(N) = UVi/U Ve
is an isomorphism. In particular, the natural surjective homomorphism
[pile : (Vif NVeey)(5537) — NNV
is an isomorphism of B-modules for all £ > 0.

We now consider the following condition
P,: The B-module Vpit/N*V, is perfect of grade n —r+ 1 for all £> 0.

We will see in the next Theorem 3.2 that if this condition holds true,
then the general case of our Problem 2.2 can be reduced to the generic
case. For this, we recall here that A is a Noetherian ring, F is a free
A-module of rank r > 0 and S is the polynomial ring Alt1,...,t].

Theorem 3.2. Let M be a submodule of F with a perfect matriz M of
sizer xn. Let 0 <t (< n—r) be a fized integer. If condition Py holds
true, then the map

C,Dt : (St/MSt-l)[}/], P ,Yn] —_— Gt(M)
is an isomorphism.
Here we give some remarks on condition P.

Remark 3.3. We do not know whether condition P; holds true or not,
except for the following cases.
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(1) The free resolution of V;41/NV, is given by the generalized Koszul
complex (see [4, 14] and also [8, Appendix A2.6]). So the length
of this resolution is just n — r + 1 when 0 < t < n — r. However,
when t > n — r + 1, the resolution is at least of length n — r + 2.
Hence condition P; does not hold whent > n —r + 1.

(2) When t = 0, it is known that condition P, holds true. This
follows from the theorem of Buchsbaum-Eisenbud [5, Corollary
3.2] (see also [13, Proposition 3.3]). Hence ¢y is an isomorphism
if the matrix is perfect (cf. [13, Lemma 3.2]).

(3) When n = r + 1, condition P; holds true. This will be proved in
the next section (Theorem 4.1).

4. A SKETCH OF PROOF OF THEOREM 1.1

In this final section we will give a sketch of proof of Theorem 1.1. Let
X = (Xi;) be a generic matrix of size 7 X n and let

B=K[X]=K[X;;|1<i<r, 1<j<n]

be the corresponding polynomial ring over an arbitrary commutative
Noetherian ring K. Let G = BT be a free module of rank r and let
N C G be a submodule of G such that N is the generic matrix X.
Identify Symg(G) with the polynomial ring V = Blti,...,t,] and let
U = R(N) be the Rees algebra of N. By Theorem 3.2, it is enough
to show that condition P; (stated before Theorem 3.2) holds true when
n=r+1.

Theorem 4.1. Suppose that n =+ 1. Then the module Vo 1/N*V; is
a perfect B-module of grade 2 for all £ > 0. In particular, condition P,
(stated before Theoremn 3.2) holds true.

Let me give a sketch of proof of Theorem 4.1. We assume in the
following that n = r + 1. We put z; = Xi;t1 + -+ X,t, and set | =
(z1,---,2r41)V = NV. Let R = R(I) be the Rees algebra of I, which
is the V-subalgebra V[T, ..., z,41T) of the polynomial ring V[T]. We
regard the ring V[T as a bi-graded B-algebra by letting degt; = (0,1),
degT = (1,—1). Then the Rees algebra R becomes a bi-graded B-
subalgebra of V[T)]. Note that the B-module N*V; is now isomorphic to
the homogeneous component R;; of R for all £,z > 0. We thus want to
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show the following:
(1) pdgRp1 <1 forall p>0.

Let S = V[Y,...,Y;41] be a polynomial ring over V. We regard S as
a bi-graded B-algebra by setting deg¥; = (1,0) for all j =1,...,7 + 1.
We now have the bi-graded presentation € : § — R ; Y; — z;T of
R. To show the inequality (1), we will first construct a graded S-free
resolution of R. This will be achieved by using the Z-complex, which
was introduced by Herzog-Simis-Vasconcelos in [11]. We refer the reader
to [10, section 3] for a similar approach.

Let K.(z;S) and K,(Y;S) be the Koszul complexes associated to se-
quences £ = Zy,...,Zr41 and ¥ = Y1,..., Y1 in S, respectively. We
denote by d. and dy the corresponding differentials. These complexes
become bi-graded complexes:

K(@8): 5 K(0,-i=1) 5 K(0,=i) S -,
Ku(Y38): - % Kua(-i-1,0) % Ki(-i,0) & -,

where K; = A'S"*1. Let
Z, = Ker(K;(0,—1) 5 K;_1(0,—i + 1))

be the i-th module of cycles of K.(z;S), which is a graded submodule
of K;(0,—i). Since d; o dy + dy 0dz = 0, {2.,dy} is a subcomplex of
K.(Y;S). This complex is called the Z-complex associated to a sequence
z and denoted by Z,(z) ([11]). Note that the 0-th homology Ho(Z.(z)) =
Symy,(I). Since z is a d-sequence on V, Z,(z) is acyclic with the O-th
homology Ho(Z.(z)) = R ([11, Theorem 5.4]). Hence we have the graded
exact sequence

0= Zypa(-ntln-1)% - % 2(-2,2) EB Z(-1,) BSSR—0.
If we now resolve each of the modules Z;(—i,1) by a certain (graded)

complex P.; and lift the differentials Z;(—4,4) 2% Zi_y(—i+1,i — 1) to

maps P.; — Pa;—1 of complexes, then the associated double complex will

give us an S-free resolution of R.

It is well-known that zi,...,z, is a regular sequence on V (see [1,
Proposition 1]). Hence we have for all : > 2 the exact sequence

0o Koua(—iyi—r—1) % 5 Ky (—i,~1) B Zi(~4,i) — 0.
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This gives us a graded S-free resolution P.; of Z;(—,1) for i > 2.

In order to find a resolution of Z;(—1,1), we need to introduce some
more notation. Let K,(t;S) be the Koszul complex of the sequence
t=ty,...,t, in S with the differential d;. We interpret it as bi-graded
complex

Ku(:8): - % Lin(0-i-1) 5 L(0,-) % -,
where L; = A'S". Since [t; --- t,]o X = [z1 -+ Z,41], there is a map

of complexes AX : K (z;S) — K.(t;S). Taking the S-duals, this gives
amap AtX : K*(t;S) — K*(z;S) of complexes, where *X denotes the
transpose of X. Identifying the Koszul complexes with their duals, we
obtain a map of complexes

fo: Ko(t;8)(0,-1) — K.(z; S)[1],

where each f;: L;(0,—i—1) — K;41(0, —i—1) is a graded homomorphism
of degree zero. More explicitly, setting A; = (—1)""!det X; where X;
is the matrix obtained by deleting j-th column of X, one can check, for
example, that fo =t [A; Ay --- A,41] and f; is the identity map.

We then have the following.

Proposition 4.2. With the notation above, there is the following graded
resolution of Z;(—1,1) :

Ke(-1,-r+1) K2(-1,-1)
0— Ly_y(=1,—-r+1) 5 ® izl T g T & 7(-1,1) -0,
Ly_2(-1,-7+72) Lo(-1,0)

where do = (dy fo), dry = (f_c-i: ) and d; = (‘f) 5 ) for all
1<i<r—2.

Let P,; be the above graded resolution of Z;(—1,1). Look at the
following commutative diagram.

0 0 0
T T 7
‘11’) Z3(—3’3) ﬂ” ZZ(_Za 2) ‘11; Zl(—l’l) d—}'; S - 0
1 1 T
+dy
g P,3 oy P, ( = ) Pa
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Let Tot(P..) be the total complex of the resulting double complex P...
Now consider the corresponding spectral sequence. Since Z,(z) is acyclic
with Ho(Z.(z)) = R, standard arguments yield the following graded S-
free resolution of R:

Tot(Pes) = S = R — 0.

Note that this resolution gives us the defining equations of R :

Y1 - Yo
_ Ty T2 - Irqd
“"2(}’1 Y, - Yr+1)+Ir+l X

Hence, by [3, Theorem (3.3)], it suffices to prove the inequality (1) in the
case K = Z/pZ where p is a prime. In other words we can assume that
B = K[X] where K is a field.

When r = 1, the assertion is immediate from the above resolution. In
the following we therefore assume that r > 2. Using the above resolution
of R, we can compute Tor? (K, R) for i > 2 as follows:

- Bi(i,—i) (2<i<r-1)
B ~ IJ. ~ i\
Tor/ (K, R) = H;_1(Tot(P..)) = { L(<1,-r) (i=r).
where ¥ = +®p K and B; = Im(K 41 (—i—1,0) % K,(=1,0)) C K(—4,0)
is the 4-th module of boundaries of the complex K, (Y; S). Hence we have
Tor2(K,R,1) = (0) for all i > 2, because

{ [Bilp+ig-i = (0) ifg<i
(L] =(0) ifg<r.

Tlp-1,g-1
Consequently, we have pdg Rp1 < 1. This completes the proof of Theo-
rem 4.1 and hence we have Theorem 1.1. O
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A modification of Ikeda’s theorem

Shin-ichiro lai

1 Introduction

Let (A, m) be a Noetherian local ring and let I be an ideal of A with gradel > 2.
Assume that A is a homomorphic image of a Gorenstein local ring and that the
field A/m is infinite. Let ¢t be an indeterminate over A. We define R(I) := A[It] C
Alt], R(I) = Allt,t7] C Alt,t71], and G(I) := R/(I)/t7'R'(I) and call them
respectively the Rees algebra, the extended Rees algebra, and the associated graded
ring of I. Let Kg(r), Kr/(n), 2nd Ko denote the graded canonical modules of R(]),
R/(I), and G(I), respectively. Let a(G([)) stand for the a-invariant of G(I). We
always assume A is a quasi-Gorenstein ring, which means that the canonical module
of A is a free A-module of rank 1. The purpose of this paper is to prove the following
result, which is a modification of theorem given by ITkeda [I].

Theorem 1.1. Assume that R(I) is a Cohen-Macaulay ring and a(G(I)) = —2.
Then the following two conditions are equivalent.

(1) R(I) is a Gorenstein ring.
(2) Krn E R/(I)(—1) as graded R'(I)-modules.

Let us give some consequences of the theorem above. We define I := Unsol ™ :
I™. which is called the Ratlifi-Rush closure of I. We set F = {I'};ez and R/(F) :=
Y ez Iitt C Alt,t™Y). Let k be a positive integer. With this notation, the first
corollary can be stated as follows.

Corollary 1.2. Assume that R(I*) is a Cohen-Macaulay ring and a(G(I¥)) = —2.
Then the following two conditions are equivalent.
(1) R(I*) is a Gorenstein ring.
(2) Kn(ry 2 R(F)(—Fk) as graded R'(I)-modules.
To state the second corollary of the theorem, we set up some notation. We put

d=dimA. Let a(4) = [[=2(0) :4 Hi(A) and let NCM(A) := {p € SpecA | 4,
is not a Cohen-Macaulay ring}. Then NCM(A) = V(a(A)). Put s = dim NCM(4)
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and there is a system of parameters z;, z,, . . . , 4 for A such that z,,1,Z,42...,Z4 €
a(A). For each i < s, we put J; := (Zi41,Zit2,- - -, Za). Then we have

Corollary 1.3. Assume thatd > 2. Let s =0 and I = Jy. Then the following two
conditions are egquivalent.

(1) R(I*) is a Gorenstein ring.
(2) A is a Cohen-Macaulay ring and k=d — 1.

The implication (2) = (1) is already known (see [O], 4.3). The converse impli-
cation (1) = (2) is a result in this paper. The third one is the following

Corollary 1.4. Assume thatd > 3. Let s < 1 and [ = Uezo J1 1 8. Then the
following two conditions are equivalent.

(1) R(I*) is a Gorenstein ring.

(2) A has finite local cohomology modules and k = d — 2.

The implication (2) = (1) is already shown in the last symposium. The converse
implication (1) = (2) is a result in this paper.

2 Proof of Theorem 1.1

The goal of this section is to prove Theorem 1.1. We put R = R(I), R' = R'(J),
and G = G(I). To begin with we note

Lemma 2.1. Let a be an integer and let k = {Ki}i>—q-1 be an I-filtration of A
such that k_q—1 = A and ka1 2 Ko Set grya(k) = @;>_, Ki—1/k:i that is a
graded G-module. If there is an embedding G(a) — gra(k) of graded G-modules,
then k; = I'+°*1 for all integers i > —a — 1.

Proof. See the proof of Theorem 3.2 in the paper [GI]. O

Let the ideal I be generated by elements a;,a,,...,a, € A. We may assume
a; is an regular element of A. Let X1, Xs,...X,,Y are indeterminates over A. We
consider the A-algebra homomorphisms ‘

v AX1, Xs, ... Xn] = R
such that o(X;) =a;t forall 1 <7< n and
¢ AX, Xs, ... X, Y] = R

such that ¢/(X;) = a;tforalll <i<mnand ¢'(Y)=1t"1. Put P = A[X;, X,,... X,)
and F; = X;Y — a;. Then we get the following equality.
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Claim 2.2. ker ¢’ = (Fy, Fs, ... Fn)P[Y] + ker pP[Y].

Proof. Take any element F' € ker ¢'. Dividing F by R, F,,...F,, we can write
F=Y",Q:F.+H+H' where Q; € P[Y], H € P, and H' € A[Y]. Then ¢/(F) =
H(ait, ast, . .. ,ant) + H'(t™?), which is an element of Alt,t71). Since ¢/(F) =0, we
get H' € A, and hence H + H' € ker . O

Set f; = aitY — a;, which is an element of R[Y]. We note f; is a regular element
on R[Y] because so is a;. Look at the graded R-algebra homomorphism

¢¥:R[Y] > R

induced by the injection R — R of graded rings such that ¢(Y) = t~. Then the
claim above implies the following equality.

Lemma 2.3. ker ) = (f1, f2,- - - fa)-

ker ¢ R[Y]
Theref e get the exact sequence 0 —
erefore we g e q FEY] — FRY]

— R’ — 0 of graded

R[Y]-modules. Let us now prove the theorem.

Proof of Theorem 1.1. Assume that R is a Gorenstein ring. Then Kpy) = R[Y](m)
for some m € Z. Taking the Kgy}-dual of the graded exact sequence

0— R[Y](1) L RY] = R—0
of graded R[Y)-modules, we get the graded exact sequence
0— R[Y)(m) & RY](m —1) = R(=1) = 0

of graded R[Y]-modules because Kr = R(—1) as graded R-modules. Therefore
m=0 PutS= T?RL}[%]’-] and we obtain that S is a Gorenstein graded ring with
Ks = S as graded S-modules (recall that deg f, = 0). Since Y is a regular element
on S, we have Kgjys = [S/Y S](—1) as graded S-modules. Put L = fll‘—;f{’,—]. Then
R = S/L and G = S/YS + L as graded rings, so that Kp = Homg(S/L, S)
and K¢ = Homgy(S/YS + L,[S/Y S](-1)) as graded S-modules. Hence we get
Kp = (0):s L and Kg = [YS :g L/YS](-1) as graded S-modules. We can check
Claim 2.4. YS:s L=[(0):s L] +YS.

The above claim implies that the natural map 7 : (0) :s L — [Y'S :5 L)/YS is
surjective. And we have kerm = Y[(0) :s L]. Therefore Kp Jt7Kr = Kg(1)
as graded G-modules. Thanks to [I], we get Kp/t"'Kp = G(-1) as graded G-
modules. Let w = {w;}icz stand for the canonical [-filtration of A (see [GI], 1.1

and notice that the canonical filtration exists if the base ring A satisfies Serre’s
condition (S;)), namely the I-filtration w fulfills I* C w;_q—; for all i € Z and
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Kr() = Y ;g wit' C Aft,t77] as graded R'(I)-modules. Therefore we get wiiq = I*
by Lemma 2.1, and hence Kg/(1) = R(1)(—1) as graded R'(J)-modules.

Conversely, assume that Kr/(;) = R/(J)(—1) as graded R'(I)-modules. Hence
Kp /t7'Kp = G(—1) as graded G-modules. The embedding Kg /t'Kg/(—1) — Kg
follows from the exact sequence 0 — R'(1) L R G—0of graded R’-modules,
so that we can find an embedding G(—2) — K¢ of graded R'-modules. By [TVZ],
there is an J-filtration k = {k;}i»o of A such that k; = A, k1 2 k2, Kr = @), ki
as a graded R-module, and K¢ = @,,, ki-1/k; as a graded G-module because R
is a Cohen-Macaulay ring. Therefore we get k; = I'~! by Lemma 2.1, and hence
Kr() = R(I)(—1) as graded R(J)-modules. Then R is a Gorenstein ring. O

We remark that Corollary 1.3 does not hold true‘without the assumption that
the ring A is quasi-Gorenstein. Let us close this paper with the following typical
example in [HR], (2.2).

Example 2.5. Let k[[s,t]] be a formal power series ring over a field k. Let A =
k[[s?,t,8%,st]] and I = (s%,t). Then R(I?) is a Gorenstein ring but A is not a
Cohen-Macaulay ring.
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CONTRAVARIANTLY FINITE RESOLVING SUBCATEGORIES OVER
A GORENSTEIN LOCAL RING

RYO TAKAHASHI

INTRODUCTION

The notion of a contravariantly finite subcategory (of the category of finitely generated
modules) was first introduced over artin algebras by Auslander and Smalg [5] in connection
with studying the problem of which subcategories admit almost split sequences. The
notion of a resolving subcategory was introduced by Auslander and Bridger [2] in the
study of modules of Gorenstein dimension zero, which are now also called totally reflexive
modules. There is an application of contravariantly finite resolving subcategories to the
study of the finitistic dimension conjecture [4].

This paper deals with contravariantly finite resolving subcategories over commutative
rings. Let R be a commutative noetherian henselian local ring. We denote by mod R
the category of finitely generated R-modules, by F(R) the full subcategory of free R-
modules, and by C(R) the full subcategory of maximal Cohen-Macaulay R-modules. The
subcategory F(R) is always contravariantly finite, and so is C(R) provided that R is
Cohen-Macaulay. The latter fact is known as the Cohen-Macaulay approximation theo-
rem, which was shown by Auslander and Buchweitz [3].

In this paper, we shall prove the following theorem; the category of finitely generated
modules over a henselian Gorenstein local ring possesses only three contravariantly finite
resolving subcategories.

Theorem A. If R is Gorenstein, then all the contravariantly finite resolving subcategories
of mod R are F(R), C(R) and mod R.

The main theorem of this paper asserts the following: let X' be a resolving subcategory
of mod R such that the residue field of R has a right X-approximation. Assume that
there exists an R-module G € X of infinite projective dimension with Exth(G, R) = 0 for
i > 0. Let M be an R-module such that each X € X satisfies Ext}(X, M) = 0 for i >> 0.
Then M has finite injective dimension. From this result, we will prove the following two
theorems. Theorem A will be obtained from Theorem B. The assertion of Theorem C is
a main result of [12], which has been a motivation for this paper. (Our way of obtaining
Theorem C is quite different from the original proof given in [12].)

Theorem B. Let X # mod R be a contravariantly finite resolving subcategory of mod R.
Suppose that there is an R-module G € X of infinite projective dimension such that
Exto(G, R) = 0 for i > 0. Then R is Cohen-Macaulay and X = C(R).

Theorem C (Christensen-Piepmeyer-Striuli-Takahashi). Suppose that there is a nonfree
R-module in G(R). If G(R) is contravariantly finite in mod R, then R is Gorenstein.
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Here, G(R) denotes the full subcategory of totally reflexive R-modules. A totally reflex-
ive module, which is also called a module of Gorenstein dimension (G-dimension) zero,
was defined by Auslander [1] as a common generalization of a free module and a maximal
Cohen-Macaulay module over a Gorenstein local ring. Auslander and Bridger [2] proved
that the full subcategory of totally reflexive modules over a left and right noetherian ring
is resolving. The other details of totally reflexive modules are stated in [2] and [11].

If R is Gorenstein, then G(R) coincides with C(R), and so G(R) is contravariantly finite
by virtue of the Cohen-Macaulay approximation theorem. Thus, Theorem C can be viewed
as the converse of this fact. Theorem C implies the following: let R be a homomorphic
image of a regular local ring. Suppose that there is a nonfree totally reflexive R-module
and are only finitely many nonisomorphic indecomposable totally reflexive R-modules.
Then R is an isolated simple hypersurface singularity. For the details, see [12].

CONVENTIONS

In the rest of this paper, we assume that all rings are commutative and noetherian, and
that all modules are finitely generated. Unless otherwise specified, let R be a henselian
local ring. The unique maximal ideal of R and the residue field of R are denoted by m and
k, respectively. We denote by mod R the category of finitely generated R-modules. By a
subcategory of mod R, we always mean a full subcategory of mod R which is closed under
isomorphisms. Namely, in this paper, a subcategory X’ of mod R means a full subcategory
such that every R-module which is isomorphic to some R-module in X is also in A’.

1. CONTRAVARIANT FINITENESS OF TOTALLY REFLEXIVE MODULES

In this section, we will state background materials which motivate the main results of
this paper. We start by recalling the definition of a totally reflexive module.

Definition 1.1. We denote by (—)* the R-dual functor Homg(—, R). An R-module M
is called totally reflezive (or of Gorenstein dimension zero) if

(1) the natural homomorphism M — M** is an isomorphism, and
(2) ExthL(M,R) = Exth(M*,R) = 0 for any i > 0.

We introduce three subcategories of mod R which will often appear throughout this
paper.

We denote by F(R) the subcategory of mod R consisting of all free R-modules, by
G(R) the subcategory of mod R consisting of all totally reflexive R-modules, and by C(R)
the subcategory of mod R consisting of all maximal Cohen-Macaulay R-modules. By
definition, F(R) is contained in G(R). If R is Cohen-Macaulay, then G(R) is contained
in C(R). If R is Gorenstein, then G(R) coincides with C(R).

Next, we recall the notion of a right approximation over a subcategory of mod R.

Definition 1.2. Let X be a subcategory of mod R.

(1) Let ¢ : X — M be a homomorphism of R-modules with X € X. We say that ¢
is a right X'-approzimation (of M) if the induced homomorphism Hompg(X', ¢) :
Hompg(X', X) — Hompg (X', M) is surjective for any X' € X.
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(2) We say that X is contravariantly finite (in mod R) if every R-module has a right
X -approximation.

The following result is well-known.

Theorem 1.3 (Auslander-Buchweitz). Let R be a Cohen-Macaulay local ring. Then C(R)
is contravariantly finite.

Corollary 1.4. If R is Gorenstein, then G(R) is contravariantly finite.
The converse of this corollary essentially holds:

Theorem 1.5. [12] Suppose that there is a nonfree totally reflezive R-module. If G(R) is
contravariantly finite in mod R, then R is Gorenstein.

This theorem yields the following corollary, which is a generalization of [21, Theorem
1.3].

Corollary 1.6. Let R be a non-Gorenstein local ring. If there is a nonfree totally reflezive
R-module, then there are infinitely many nonisomorphic indecomposable totally reflerive
R-modules.

Combining this with [25, Theorems (8.15) and (8.10)] (cf. [14, Satz 1.2] and [10,
Theorem B]), we obtain the following result.

Corollary 1.7. Let R be a homomorphic image of a regular local ring. Suppose that there
is a nonfree totally reflerive R-module but there are only finitely many nonisomorphic
indecomposable totally reflezive R-modules. Then R is a simple hypersurface singularity.

2. CONTRAVARIANTLY FINITE RESOLVING SUBCATEGORIES

In this section, we will give the main theorem of this paper and several results it yields.
One of them implies Theorem 1.5, which is the motive fact of this paper.

First of all, we recall the definition of the syzygies of a given module. Let M be an
R-module and n a positive integer. Let

Fo=(--™F%F, " - 8K 3 F-0)

be a minimal free resolution of M. We define the nth syzygy Q"M of M as the image of
the homomorphism d,,. We set Q°M = M.

We recall the definition of a resolving subcategory.

Definition 2.1. A subcategory X of mod R is called resolving if it satisfies the following
four conditions. :
(1) X contains R.
(2) X is closed under direct summands: if M is an R-module in X and N is a direct
summand of M, then N is also in X.
(3) X is closed under extensions: for an exact sequence 0 — L—-M—N—0of
R-modules, if L and N are in X, then M is also in X
(4) X is closed under kernels of epimorphisms: for an exact sequence 0—-L—-M-—
N — 0 of R-modules, if M and N are in &, then L is also in X
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Now we state the main theorem in this paper.

Theorem 2.2. Let X be a resolving subcategory of mod R such that the residue field k
has a right X -approzimation. Assume that there ezists an R-module G € X of infinite
projective dimension such that Exth(G,R) = 0 for i > 0. Let M be an R-module such
that each X € X satisfies Extiy(X,M) = 0 for i > 0. Then M has finite injective
dimension.

We shall prove Theorem 2.2 in the next section. In the rest of this section, we will state
and prove several results by using Theorem 2.2. We begin with two corollaries which are
immediately obtained.

Corollary 2.3. Let X be a resolving subcategory of mod R which is contained in the
subcategory { M | Extiy(M,R) = 0 fori > 0} of mod R. Suppose that in X there is an
R-module of infinite projective dimension. If k has a right X -approzimation, then R is
Gorenstein.

Proof. Each module X in X satisfies Exth(X,R) = 0 for i > 0. Hence Theorem 2.2
implies that R has finite injective dimension as an R-module. O

Corollary 2.4. Let X be one of the following.
(1) G(R). ,
(2) The subcategory { M | Ext'y(M,R) = 0 fori > n} of mod R, where n is a non-
negative integer.
(8) The subcategory { M | Exty(M,R) =0 fori >0} of mod R.
Suppose that in X there is an R-module of infinite projective dimension. If k has a right
X -approzimation, then R is Gorenstein.

Proof. The subcategory X' of mod R is resolving. Since X’ is contained in the subcategory
{M | Exti(M, R) = 0 for i > 0}, the assertion follows from Corollary 2.3. O

Remark 2.5. Corollary 2.4 implies Theorem 1.5. Indeed, any nonfree totally reflexive
module has infinite projective dimension by [11, (1.2.10)].

For a subcategory X of mod R, let X (respectively, *.X) denote the subcategory
of mod R consisting of all R-modules M such that Exth(X,M) = 0 (respectively,
Exth(M,X) = 0) for all X € X and i > 0. Applying Wakamatsu’s lemma to a re-
solving subcategory, we obtain the following lemma.

Lemma 2.6. Let X be a resolving subcategory of mod R. If an R-module M has a right
X -approzimation, then there is an ezact sequence 0 - Y — X — M — 0 of R-modules
with X € X andY € X+. '

By using this lemma and the theorem which was formerly called “Bass’ conjecture”,
we obtain another corollary of Theorem 2.2.

Corollary 2.7. Let X be a resolving subcategory of mod R such that k has a right X-
approzimation and that k is not in X. Assume that there is an R-module G € X with
pdr G = oo and Exty(G,R) = 0 for i > 0. Then R is Cohen-Macaulay and dim R > 0.
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Before giving the next corollary of Theorem 2.2, we establish an easy lemma without
proof.

Lemma 2.8. (1) Let X be a contravariantly finite resolving subcategory of mod R.
Then, k € X if and only if X = mod R.
(2) Let X be a resolving subcategory of mod R. Suppose that every R-module in Lxh)
admits a Tight X -approzimation. Then X = +(&*).
(3) Let M and N be nonzero R-modules. Assume either that M has finite projective
dimension or that N has finite injective dimension. Then one has an equality

sup{i | Ext(M,N) # 0} = depth R — depthy M.

Now we can show the following corollary. There are only two contravariantly finite
resolving subcategories possessing such G as in the corollary.

Corollary 2.9. Let X be a contravariantly finite resolving subcategory of mod R. Assume
that there is an R-module G € X with pdg G = 0o and Ext(G,R) =0 fori > 0. Then
either of the following holds.

(1) X = modR,

(2) R is Cohen-Macaulay and X = C(R).

Proof. Suppose that X # mod R. Then k is not in X. By Corollary 2.7, R is Cohen-
Macaulay.

First, we show that C(R) is contained in X. For this, let M be a maximal Cohen-
Macaulay R-module. We have only to prove that M is in +(X*). Let N be a nonzero
R-module in X1. Theorem 2.2 implies that N is of finite injective dimension. Since
M is maximal Cohen-Macaulay, we have sup{i | Extih(M,N) # 0} = 0. Therefore
Exti(M,N) =0 for all N € X* and i > 0. It follows that M is in +(X'*), as desired.

Next, we show that X is contained in C(R). We have an exact sequence 0 — Y —
X -k —0with X € X and Y € X! by Lemma 2.6. Since k is not in X, the module Y
is nonzero. By Theorem 2.2, Y has finite injective dimension. For a nonzero R-module
X' in X, we have equalities 0 > sup{i | Exty(X',Y) # 0} = depth R — depthp X' =
dim R—depthp X’. Therefore X' is a maximal Cohen-Macaulay R-module, as desired. [J

Next, we study contravariantly finite resolving subcategories all of whose objects X
satisfy Ext3°(X, R) = 0. We start by considering special ones among such subcategories.

Proposition 2.10. Let X be a contravariantly finite resolving subcategory of mod R.
Suppose that every R-module in X has finite projective dimension. Then either of the
following holds.

(1) X = F(R),

(2) R is regular and X = mod R.

Proof. If X = mod R, then our assumption says that all R-modules have finite projective
dimension. Hence R is regular. Assume that X # mod R. Then there is an R-module M
which is not in X. There is an exact sequence 0 - Y — X — M — 0 with X € & and
Y € X+ by Lemma 2.6. Note that Y # 0 as M ¢ X. Fix a nonzero R-module X' € X
We have Exth(X’,Y) = 0 for all 4 > 0, and hence pdp X’ = sup{i | Ext{(X",Y) #
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0} = 0 by the Auslander-Buchsbaum formula. Hence X’ is free. This means that X is
contained in F(R). On the other hand, X contains F(R) since X is resolving. Therefore
X = F(R). O

Combining Proposition 2.10 with Corollary 2.9, we can get the following.

Corollary 2.11. Let X be a contravariantly finite resolving subcategory of mod R. Sup-
pose that every module X € X is such that Exty(X,R) = 0 for i > 0. Then one of the
following holds.

(1) X = F(R),

(2) R is Gorenstein and X = C(R),

(8) R is Gorenstein and X = mod R.

Proof. The corollary follows from Proposition 2.10 in the case where all R-modules in
X are of finite projective dimension. So suppose that in & there exists an R-module of
infinite projective dimension. Then Corollary 2.9 shows that either of the following holds.
(1) X =modR,
(2) R is Cohen-Macaulay and X = C(R).
By the assumption that every X € X satisfies Exth(X,R) = 0 for i > 0, we have
Exth(k,R) = 0 for i > 0 in the case (i). In the case (i), since Q% is in X where
d = dim R, we have Extt?(k, R) = Ext%(Q%, R) = 0 for i > 0. Thus, in both cases, the
ring R is Gorenstein. (]
Finally, we obtain the following result from Corollary 2.11 and Theorem 1.3. It says

that the category of finitely generated modules over a Gorenstein local ring possesses only
three contravariantly finite resolving subcategories.

Corollary 2.12. Let R be a Gorenstein local ring. Then all the contravariantly finite
resolving subcategories of mod R are F(R), C(R) and mod R.

3. PROOF OF THE MAIN THEOREM

Let M be an R-module. Take a minimal free resolution F, = (- -- L NN SR 0)
of M. We define the transpose Tr M of M as the cokernel of the R-dual homomorphism
d; : Fy — F} of d;. The transpose Tr M has no nonzero free summand.

For an R-module M, let M*M be the ideal of R generated by the subset

{f@) | feM zeM}

of R. Note that M has a nonzero free summand if and only if M*M = R.

Proposition 3.1. Let X be a subcategory of modR and 0 — Y LX o M-0an
ezact sequence of R-modules with X € X andY € X1. Let G € X, set H = TrQG,

and suppose that (H*H)M = 0. Let 0 - K 5 F 2 H — 0 be an ezact sequence of
R-modules with F' free. Then the induced sequence

0 — K@rY 22 FerY 222 HopY —— 0

is ezact, and the map h ® g Y factors through the map FQr f : FQrY — F Qg X.
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Proof. We can show that there is a commutative diagram

0 — H®gY —» H@rX —— H®M ——0

alaf Bl ’710
0 —— Homg(H*,Y) —— Hompg(H*,X) —— Hompg(H*,M) —— 0
with exact rows, and see that ¢ is a split monomorphism. Thus, the homomorphism

h®grY factors through the homomorphism F'®pg f. We have isomorphisms Torf(H )=
Tor?(Tr QG,Y) = Homg(QG,Y) = 0, which completes the proof of the proposition. O

Now we can prove the following, which will play a key role in the proof of Theorem 2.2.

Proposition 3.2. Let X be a subcategory of mod R which is closed under syzygies. Let
0—-Y —= X — M — 0 be an ezact sequence of R-modules with X € X andY € X+t
Suppose that there is an R-module G € X with pdg G = oo and Exty(G,R) = 0 for
i > 0. Put H; = TrQ('G) and assume that ((H;)*H;)M = 0 fori > 0. Let D =
(D?);50 : mod R — mod R be a contravariant cohomological 8-functor. If DI(X) =0 for
j >0, then D¥(Y) = DI(M) =0 for j > 0.
Proof. Replacing G with QG for i > 0, we may assume that Exty(G,R) = 0 for all
i > 0and that (H;)*H)M =Oforalli > 0. Let F, = (- “8 F, % f_, %' ... &
F 4 F, — 0) be a minimal free resolution of G. Dualizing this by R, we easily see that
H; & (Q*3G)* and QH; & (*2G)* for 1 > 0. By Proposition 3.1, for each integer i > 0
we have an exact sequence
0 — (VF2G)* ®rY — (Fiya)' @Y L (243G)' @Y — 0
such that f; factors through (Fi;2)* ®r X. The homomorphism D’(f;) factors through
D?((Fi;12)* ®gr X), which vanishes for j > 0. Hence D(f;) = 0 for j > 0, and we obtain
an exact sequence
0 — DI((Fiua)” ®rY) = DI((2*?G)" ®rY) =¥ DI (Q™°G) @ Y) — 0
for 1 > 0 and j > 0. Thus, there is a sequence
Dj((Qi+2G)* ®r Y) EL:; Dj+1((Qi+3G)* ®r Y) 5i+__1_-_;+1 Dj+2((Qi+4G)* ®r Y) Ei+ﬂ+2 L.
of surjective homomorphisms of R-modules, and €;; is an isomorphism. It follows that
D¥((Fiz2)* ®rY) = 0 for i > 0 and j > 0. Thus we have D/(Y) = 0 for j > 0, and
Di(M) =0 for j > 0. O

Now we can prove our main theorem.

Proof of Theorem 2.2. Since k admits a right X-approximation, there exists an exact
sequence 0 = Y — X — k — 0 of R-modules with X € X and Y € X by Lemma 2.6.
For an integer i > 0, put H; = TrQ(Q'G). The module H; has no nonzero free summand.
We have (H;)*H; # R. Hence ((H;)*H;)k = 0 for ¢ > 0. Applying Proposition 3.2 to
the contravariant cohomological d-functor D = (Exth( ,M));»0, We obtain Di(k) = 0
for j > 0. Namely, we have Extj;(k, M) = 0 for j >> 0, which implies that M has finite
injective dimension. O
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Abstract

We introduce the k-strong Lefschetz property (k-SLP) and the k-weak Lefschetz
property (k-WLP) for graded Artinian K-algebras, which are generalizations of the
Lefschetz properties. The main results obtained in this article are as follows:

1. Let I be a graded ideal of R = K [z1, T2, z3] whose quotient ring R/I has the
SLP. Then the generic initial ideal of I is the unique almost revlex ideal with the same
Hilbert function as R/I.

2. Let I be a graded ideal of R = K z1,z2,-. - ,Tn] whose quotient ring R/I has
the n-SLP. Suppose that all k-th differences of the Hilbert function of R/I are quasi-
symmetric. Then the generic initial ideal of I is the unique almost revlex ideal with
the same Hilbert function as R/I.

3. We give a sharp upper bound on the graded Betti numbers of Artinian K- -algebras
with the k-WLP and a fixed Hilbert function.

1 Introduction

The strong and weak Lefschetz properties for graded Artinian K-algebras (Definition 1.
SLP and WLP for short) are often used in studying generic initial ideals and graded Betti
numbers ([Wat87), [Iar94], [HW03], [HMNWO03], [Cim06], [ACPO06], [AS07]). We generalize
the Lefschetz properties, and define the k-strong Lefschetz property (k-SLP) and the k-weak
Lefschetz property (k-WLP) for graded Artinian K -algebras (Definition 12). This notion was
first introduced by A. Iarrobino in a private conversation with J. Watanabe in 1995. The
first purpose of the article (Theorem 22) is to determine the generic initial ideals of ideals
whose quotient rings have the n-SLP and have Hilbert functions satisfying some condition.
The second purpose is to give upper bounds of the graded Betti numbers of graded Artinian
K-algebras with the k-WLP (Theorem 31).

Let K be a field of characteristic zero. Suppose that a graded Artinian K-algebra A
has the SLP (resp. WLP), and £ € A is a Lefschetz element. If A/(¢) again has the SLP

E-mail addresses: harima@kus.hokkyodai.ac. jp, wachiChit.ac. jp

-107 -



(resp. WLP), then we say that A has the 2-SLP (resp. 2-WLP). We recursively define the
k-Lefschetz properties (Definition 12): A is said to have the k-SLP (resp. k-WLP), if A has
the SLP (resp. WLP), and A/(l) has the (k — 1)-SLP (resp. (k — 1)-WLP). We have the
characterization of the Hilbert functions of graded Artinian K-algebras with the k-SLP or
the k-WLP (Proposition 16). In addition, for a graded Artinian ideal I C R, we show that
R/I has the k-SLP (resp. k-WLP) if and only if R/ gin(I) has the k-SLP (resp. k-WLP),
where gin(J) denotes the generic initial ideal with respect to the graded reverse lexicographic
order.

We explain our results on generic initial ideals. A monomial ideal I is called an almost
revlex ideal, if the following condition holds: for each minimal generator u of I, every
monomial v with degv = degu and v >y eviex u belongs to I. Almost revlex ideals play a key
role in the article. The characterization of the Hilbert functions for almost revlex ideals is
given in Proposition 17. We start with the uniqueness of generic initial ideals in the case of
three variables.

Theorem (see Theorem 10). Let I C R = K|[zy,z;,23] be a graded Artinian ideal whose
quotient ring has the SLP. Then gin(I) is the unique almost revler ideal for the Hilbert
function of R/1. In particular, gin(I) is uniquely determined only by the Hilbert function.

For related results of the case of three variables, see Cimpoeag [Cim06] and Ahn-Cho-Park
[ACP06], where the uniqueness of gin([/) is proved under slightly stronger conditions than in
the theorem above. We give some examples of complete intersection of height three whose
generic initial ideals are the unique almost revlex ideals (Example 11).

By using the n-SLP, we obtain the following result for the case of n variables. In the
following theorem, ‘quasi-symmetric’ is a notion including ‘symmetric’ (Definition 18).

Theorem (see Theorem 22). Let I C K[z1,%,,...,Z,] be a graded Artinian ideal whose
quotient ring has the n-SLP, and has the Hilbert function h. Suppose that the k-th difference
A*h is quasi-symmetric for every integer k with 0 < k < n — 4. Then gin(I) is the unique
almost revlez ideal for the Hilbert function h. In particular, gin(I) is uniquely determined
only by the Hilbert function h. ,

Here the operator A is defined by (Ah); = max{h; — hi—1,0}, and AKh is the sequence
obtained by applying A k-times.

The key to proving this theorem is a uniqueness of Borel-fixed ideals whose quotient rings
have the n-SLP (Theorem 19). We give some examples of complete intersection of height n
whose generic initial ideals are the unique almost revlex ideals (Example 24).

We next explain our result on the maximality of graded Betti numbers. Let R =
K|z, T3, ..,T,]- The following result on the maximal graded Betti numbers is first proved
for k = 1 by Harima-Migliore-Nagel-Watanabe [HMNWO03].

Theorem (see Theorem 31 and Corollary 32). Let h be the Hilbert function of some
graded Artinian K -algebra with the k-WLP. Then there is a Borel fized ideal I of R such
that R/I has the k-SLP, the Hilbert function of R/I is h, and f;;1;(A) < Biivi(R/I) for
all graded Artinian K-algebra A having the k-WLP and h as Hilbert function, and for any i
and j.
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In particular, when k = n, the ideal I for the upper bounds is the unique almost revlez
ideal for the Hilbert function h. :

Some of the results of this article have been obtained independently and at the same time
by Constantinescu (see [Con07]) and Cho-Park (see [CPO7)).

2 Generic initial ideals in K[z1,z3,z3] and the SLP

In this section, we first recall the Lefschetz properties (Definition 1) and related facts. The
main goal of this section is Theorem 10: for a graded Artinian ideal I C K|[z1, 22, T3] whose
quotient ring has the SLP, the generic initial ideal of I with respect to the the graded
reverse lexicographic order is the unique almost revlex ideal for the same Hilbert function
as K[$1,I2,.’I)3]/I.

2.1 The Lefschetz properties

Definition 1. Let A be a graded Artinian algebra over a field K, and A = @;_, A its
decomposition into graded components. The graded algebra A is said to have the strong
(resp. weak) Lefschetz property, if there exists an element £ € A; such that the multiplication
map x£ : A; — Aiys (f — £f) is full-rank for every i > 0 and s > 0 (resp. s = 1). In this
case, £ is called a Lefschetz element, and we also say that (A, £) has the strong (resp. weak)
Lefschetz property. We abbreviate these properties as the SLP (resp. WLP, ) for short.

Tt is clear that if (A, £) has the SLP, then (A, £) has the WLP. It is also clear that Hilbert
functions of graded algebras with the SLP or the WLP are unimodal. Namely there exists a
non-negative integer ¢ such that ho, Ra,...,h; is an increasing sequence and hi, hiy1,... 15 @
weakly decreasing sequence, where h; = dimy Aj.

Suppose that the Hilbert function of the graded Artinian algebra A is symmetric, that
is, A = @ Ai (Ac # (0)) and dimg A; = dimg Ac—; fori =0,1,...,|c/2]). In this case,
it is clear that A has the SLP if and only if there exists £ € A; and X2 A — A, is
bijective for every i =0,1,...,|c/2].

For a graded algebra A, we denote its Hilbert function by H4. Namely H4(t) denotes the
linear dimension of the graded component A; of degree t. We often identify H4 with a finite
sequence h = (ho,h1,. .., hc). A sequence h = (ho,ha,- -, he) is called an O-sequence if h is
a Hilbert function of some graded K-algebra. There is a classification of Hilbert functions
of graded Artinian algebras with the SLP or the WLP.

Proposition 2 ((HMNWO03, Corollary 4.6]). Let h = (ho,h1,...,hc) be a sequence of
positive integers. The following three conditions are equivalent.

(i) h is a Hilbert function of some graded algebra with the SLP,
(ii) h is a Hilbert function of some graded algebra with the WLP,

(iii) h is a unimodal O-sequence, and the sequence Ah is an O-sequence.
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2.2 Almost revlex ideals and the SLP
We first recall a result of Wiebe [Wie04].

Lemma 3 (Wiebe, [Wie04, Lemma 2.7]). If I is an Artinian stable ideal of R =
K|z, z,...,2,], then the following two conditions are equivalent:

(i) R/I has the SLP (resp. WLP),
(i) z, is a strong (resp. weak) Lefschetz element on R/I.

We define the notion of almost revlex ideals (almost revlex-segment ideals). Let R =
K|z, z,,...,z,)] be the polynomial ring over a field of characteristic zero. Let >yeyiex denote
the graded reverse lexicographic order.

Definition 4. (i) A monomial ideal I is called a revlez ideal, if the following condition holds:

for each monomial u € I, every monomial v with degv = degu and v >reviex U
belongs to 1.

(ii) A monomial ideal I is called an almost revlez ideal, if the following condition holds:

for each monomial u in the minimal generating set of I, every monomial v with
degv = degu and v >reviex u belongs to 1.

Remark 5. First it is clear that
(i) revlex ideals are almost revlex ideals.
Second,
(it) if two almost revlex ideals have the same Hilbert function, then they are equal,

since one can determine the minimal generators from low degrees using a given Hilbert
function. Finally,

(iii) almost revlex ideals are Borel-fixed,
since it is easy to see that the generating set of any almost revlex ideal is Borel-fixed.

Using the definition of almost revlex ideals (Definition 4) and combinatrics on monomials,
we have the following proposition.

Proposition 6. Let I C R = K|y, %, ...,2,] be an Artinian almost revler ideal. Then
(R/I,z,) has the SLP.

- 110 -



2.3 Uniqueness of Borel-fixed ideals and generic initial ideals in
K [IL' 1, T2, $3]

For a given O-sequence, it is known that a Borel-fixed ideal of K|z, z,], whose quotient ring
has the O-sequence as the Hilbert function, is unique. It is the unique lex-segment ideal
determined by the Hilbert function. Moreover we have the following theorem, which gives
the uniqueness of Borel-fixed ideals for n = 3, where the quotient rings have the SLP.

Theorem 7. Let R = K|z, %), 3] be the polynomial ring over a field of characteristic zero,
and I an Artinian Borel-fized ideal of R where R/I has the SLP. Then the ideal I 1s the
unique almost revlez ideal for the Hilbert function. In particular, the ideal I is uniguely
determined only by the Hilbert function.

Note that Theorem 7 does not hold, if the number of variables is more than three. See
Example 21 for a counterexample in the case of four variables.

The following is an immediate corollary to Proposition 2, Proposition 6 , Theorem 7 and
Lemma 9 below.

Corollary 8. Let R = K|[z,,%3,23] and h = (1,3, ho, hs, ..., h.) an O-sequence. The fol-
lowing three conditions are equivalent:

(i) h is a Hilbert function of R/I for some almost reviez ideal I of R,
(i) h is a Hilbert function of some graded algebra with the SLP,
(iii) h is a Hilbert function of some graded algebra with the WLP,
(i) h is a unimodal O-sequence, and Ah is an O-sequence.

In the rest of this section, we study generic initial ideals in K([z;,Z2,23]. We recall
the definition of generic initial ideals. Fix any term order o on the polynomial ring R =
K|z, %2, . . ., T,) over a field of characteristic zero. For a graded ideal I of R, there exists a
Zariski open subset U C GL(n; K) such that the initial ideals of g(I) are equal to each other
for any g € U. This initial ideal is uniquely determined, called the generic initial ideal of I,
and denoted by gin, (I). It is known that generic initial ideals are Borel-fixed with respect
to any term order (see [Eis95, 15.9], e.g.).

Thus we have results on generic initial ideals of ideals whose quotient rings have the SLP,
as an easy consequence of Theorem 7. We first recall another result of Wiebe. We write
simply by gin(J) the generic initial ideal of I with respect to the graded reverse lexicographic
order from now on.

Lemma 9 (Wiebe, [Wie04, Proposition 2.8]). Take the graded reverse lezicographic

order on the polynomial ring R = K|z1,T,. .. ,In) over a field K of characteristic zero. Let

I be a graded Artinian ideal of R. Then R/I has the SLP if and only if R/ gin(I) has the
SLP.

We thus have the following theorem by Lemma 3, Theorem 7 and Lemma 9.
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Theorem 10. Let R = K|z, 5, 23] be the polynomial ring over a field of characteristic zero,
and consider the graded reverse lezicographic order on R. Let I be a graded Artinian ideal
of R, and suppose that R/I has the SLP. Then the generic initial ideal gin(I) is the unique
almost revlez ideal for the same Hilbert function as R/I. In particular, gin(l) is uniquely
determined by the Hilbert function.

Cimpoeas [Cim06] shows that the generic initial ideals of complete intersections of height
three whose quotient rings have the SLP are almost revlex ideals. Theorem 10 is an im-
provement of this result. In addition, Theorem 10 is an improvement of a result of Ahn, Cho
and Park [ACPO06]. They prove that the generic initial ideals of ideals in K|z, Z5, 3] whose
quotient rings have the SLP are determined by their graded Betti numbers.

Example 11. We give four examples of complete intersection in R = K[z, Zs, T3] whose
quotient rings have the SLP. The generic initial ideals of these ideals are the unique almost
revlex ideals with corresponding Hilbert functions by Theorem 10.

(i) Let I = (f,9,¢") C R, where f and g are any homogeneous polynomials of R, and ¢
is any homogeneous polynomial of degree one. In this case, if  is a complete intersection,
then R/I has the SLP ([HWO07a, Example 6.2]).

(ii) Let e;, e, and e3 be the elementary symmetric functions in three variables, where
deg(e;) = i. Let r and s be positive integers, where r divides s. Then, the quotient ring of
the ideal I = (e (z], 25, 73), e2(z}, 75, 75), e3(x$, 25, 23)) of R has the SLP ([HW07a, Example
6.4]).

(iii) Let p; be the power sum symmetric function of degree 7 in three variables, and a be
a positive integer. Then, the quotient ring of the ideal I = (pa, Po+1, Pat2) Of R has the SLP
([HWO07b, Proposition 7.1]).

(vi) Let I = (ez, €3, f) C R, where f is any homogeneous polynomial of R. In this case,
if I is a complete intersection, then R/I has the SLP ([HWO07b, Proposition 3.1]).

3 Generic initial ideals in K[z, 22, . .., Z,] and the k-SLP

Suppose that a graded Artinian algebra A has the SLP (resp. WLP), and £ € A is a
Lefschetz element. If the graded algebra A/(¢) again has the SLP (resp. WLP), then we say
that A has the 2-SLP (resp. 2-WLP). We define the notion of the k-SLP and the k-WLP
recursively (Definition 12). A characterization of the Hilbert functions of graded Artinian
algebras having the k-SLP or the k-WLP is given in Proposition 16. Moreover, the Hilbert
functions of quotient rings by almost revlex ideals are determined in terms of the n-SLP in
Proposition 17.

The main goal of this section is Theorem 22: Let I C K[zy,Zs,...,Z,) be a graded
Artinian ideal whose quotient ring has the n-SLP, and every k-th difference of the Hilbert
function is quasi-symmetric. The generic initial ideal of I with respect to the graded re-
verse lexicographic order is the unique almost revlex ideal for the same Hilbert function as

Klzy, 13, ..., z4]/1.
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3.1 k-SLP and k-WLP

The first author heard from J. Watanabe that the following notion, the ‘k-SLP’ and the
‘k-WLP”, has been introduced by A. Iarrobino in a private conversation with J. Watanabe
in 1995.

Definition 12. Let A = @;_, A be a graded Artinian K-algebra, and k a positive integer.
We say that A has the k-SLP (resp. k- WLP) if there exist linear elements g1, 92, .-, gk € A1
satisfying the following two conditions.

(i) (A, g1) has the SLP (resp. WLP),
(ii) (A/(g1,---+9i-1), g:) has the SLP (resp. WLP) for all ¢t = 2,3,...,k.

In this case, we say that (4,91, ...,9x) has the k-SLP (resp. k-WLP). Note that a graded
algebra with the k-SLP (resp. k-WLP) has the (k — 1)-SLP (resp. (k- 1)-WLP).

Remark 13. From Theorem 4.4 in [HMNWO3], one knows that all graded K-algebras
Klz1)/I and K|z1,1,]/I have the SLP. Hence the following conditions are equivalent for
a graded Artinian algebra A = K[z1,Z3,. .., z,)/I, where I C (z1,...,Za)%

(i) A has the n-WLP (resp. the n-SLP),
(i) A has the (n — 1)-WLP (resp. the (n — 1)-SLP),
(iii) A has the (n — 2)-WLP (resp. the (n — 2)-SLP).

In particular, graded algebras K|[z1,z2,73]/] with the SLP (resp. WLP) has the 3-SLP
(resp. 3-WLP) automatically.

Example 14. For every Artinian almost revlex ideal I of R = K|[z1,zs,...,Z,) Where
I C (z1,...,Tn)? the quotient ring R/ has the n-SLP. In particular, for every revlex ideal
I of R where I C (z1,...,Zs)?, the quotient ring R/I has the n-SLP.

Example 14 shows that the class of Hilbert functions for almost revlex ideals is a subset of
that for ideals with the n-SLP. In fact, Proposition 17 shows that these two classes coincide.
We also determine the class of Hilbert functions for ideals with the k-SLP in Proposition 16.

Let gin(I) denote the generic initial ideal of I with respect to the graded reverse lexico-
graphic order. The following proposition is an analogue of Wiebe’s result (Lemma 9) [Wie04,
Proposition 2.8].

Proposition 15. Let I be a graded Artinian ideal of R=K]z1,...,Z,), and let 1 <k < n.
The following two conditions are equivalent:

(i) R/I has the k-WLP (resp. the k-SLP),
(ii) (R/gin(I),Tn, Tn-1,-- ., Tn_k41) has the k-WLP (resp. the k-SLP).
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3.2 Hilbert functions of graded algebras with the k-SLP

We give a characterization of the Hilbert functions that can occur for graded K-algebras
having the k-SLP or the k-WLP. Their characterizations are equal as in the case of the SLP
and the WLP (Proposition 2). For a sequence h = (hg, hy, . . ., h) of positive integers, define
a sequence of the t-th difference Ath by

Ath = A(A(---A(h)---))  (apply t times),
for a positive integer t.

Proposition 16. Let R = K]z,%s,...,2,) and k be an integer with 1 < k < n. Let
h = (1,n, hy, hs,...,h.) be an O-sequence. The following three conditions are equivalent:

(i) h is a Hilbert function of some graded algebra with the k-SLP,
(i) h is a Hilbert function of some graded algebra with the k-WLP,

(iii) h is a unimodal O-sequence, Ath is a unimodal O-sequence for every integer t with
1<t <k, and A*h is an O-sequence.

In addition, we have a characterization of the Hilbert functions of quotient rings R/I
for Artinian almost revlex ideals I. The characterization is the same as ideals with the n-
WLP. This result is an analogue of the result of Deery [Dee96] or Marinari-Ramella [MR99,
Proposition 2.13], which gives the characterization of the Hilbert functions for revlex ideals.

Proposition 17. Let R = K[z,,Zs,...,Z,) and h = (1,n,hy, hs,..., h;) an O-sequence.
The following four conditions are equivalent: ,

(i) h is a Hilbert function of R/I for some almost revlez ideal I of R,
(ii) h is a Hilbert function of some graded algebra with the n-SLP,
(iii) h is a Hilbert function of some graded algebra with the n-WLP, -

(i) h is a unimodal O-sequence, and A¥h is a unimodal O-sequence for every integer k
withl <k <n.

3.3 Uniqueness of Borel-fixed ideals and generic initial ideals in
Kz, z2,. .., Ty

When n < 3, we already know that Borel-fixed ideals of K|z1, Z5, . . . , £,] whose quotient rings

have the n-SLP are the unique almost revlex ideals for given Hilbert functions. Moreover,

we have the following Theorem 19 for any n. For a sequence h, we use a convention that the
0-th difference A°h is h itself. We need the following definition to state Theorem 19.

Definition 18. A unimodal sequence h = (hg, hy, .- -, he) of positive integers is said to be
quasi-symmetric, if the following condition holds:
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Let h; be the maximum of {ho, h1, ..., hc}. Then every integer h; (j > 1) is equal
to one of {ho, b1, ..., hi}.

In particular, unimodal symmetric sequences are quasi-symmetric.

Theorem 19. Let I C R = K|[z1,22,...,Tn) be an Artinian Borel-fized ideal whose quotient
ring R/I has the n-SLP, and let h be the Hilbert function of R/I. Suppose that the k-th
difference A¥h is quasi-symmetric for every integer Ewith0<k<n-—4. ThenlI is the
unique almost revlez ideal for which the Hilbert function of R/I is equal to h. In particular,
I is determined only by the Hilbert function.

In particular, we have the following uniqueness for Borel-fixed ideals in the case of four
variables.

Corollary 20. Let I C K|z,,%2,23,24) be a Borel-fized ideal, for which K|z1,Z2,Z3,24]/1
has a quasi-symmetric Hilbert function h , and has the 2-SLP. Then I is the unique almost
revlez ideal for the Hilbert function h.

In Theorem 19, if we drop the condition for AFh to be quasi-symmetric, then the unique-
ness does not necessarily hold as follows.

Example 21. (i) There exist two different Borel-fixed ideals with the 4-SLP in R =
K|z, 3,23, 24, and their quotient rings have the same non-quasi-symmetric Hilbert func-
tion. Define the following ideals:

(2 3,2 2 2 .3 .2 4
I= ($1,1‘11?2,I2,$2$3,11I3,$2$3,23,12174) + (131,12,333,-’34) )

2 3,2 2 2,3 4
J= (I1)1112,$21 IyZ3, T1Z3, T2T3, $3,Z1$3I4) + (Il’zZ) $3,I4) -

We can easily check that both I and J are Borel-fixed, have the 4-SLP, and R/I and R/J
have the same Hilbert function h = (1,4,8,7).

In the rest of this section, we study generic initial ideals in the polynomial ring R =
K[z1,%,...,na] over a field of characteristic zero. The following theorem, which gives a
uniqueness of generic initial ideals, follows from Theorem 19 and Proposition 15.

Theorem 22. Let I C R = K[z1,Za, . ..,Zn) be a graded Artinian ideal whose quotient ring
R/I has the n-SLP, and let h be the Hilbert function of R/I. Suppose that the k-th difference
AR is quasi-symmetric for every integer k with0 < k <n—4. Then the generic initial ideal
gin(I) with respect to the graded reverse lezicographic order is the unique almost revlez ideal
for the Hilbert function h. In particular, gin(I) is determined only by the Hilbert function.

In particular, we have the following corollary, which corresponds to Corollary 20.

Corollary 23. Let I C K|[z1,%3, 23, Z4] be a graded Artinian ideal whose quotient ring has
the 2-SLP. Suppose that the Hilbert function h of K(z1,Z2,%3,%4]/1 is quasi-symmetric.
Then the generic initial ideal gin(I) with respect to the graded reverse lezicographic order is
the unique almost revlez ideal for the Hilbert function h. In particular, gin(I) is determined
only by the Hilbert function.
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Example 24. Let R = K|[z;, 2, ..., Z,) be the polynomial ring over a field K of character-
istic zero. We consider complete intersections as follows.

(a) Let f; and f, be homogeneous polynomials of degree d; (i=1,2), and let g3,...,gn be

linear forms. Set I = (fl: f2) f3 = gga’ ] f'n = g{‘;”) Suppose that {fb f2ag3) e -agn}
is a regular sequence. Example 6.2 in [HWO07a] shows that R/I has the SLP.

(b) For i = 1,2,...,n, f; € Klz;,...,z,] be a homogeneous polynomial of degree d;
which is a monic in z;, and set I = (f1, fa,..-, fn). Then R/I is always a complete
intersection. Corollary 29 in [HWO03] and Corollary 2.1 in [HP05] show that R/I has
the SLP.

Now, let k be an integer satisfying 1 < k < n — 2 and suppose that
d; Zd1+d2+--~+dj_1~(j-1)+1
forallj=n—k+1,n—k+2,...,n. Then we have the following.
(i) A= R/I has the k-SLP.
(i) In particular, when k = n — 2, A has the n-SLP.

(iii) The generic initial ideal of I coincides with the unique almost revlex ideal determined
by the Hilbert function of A.

(iv) gin(z®,z2,...,z%) = gin(I).

We conclude this section by an additional relation of initial ideals with the k-WLP or
the k-SLP. Although this result is not used in the rest of this article, it is an analogue of
Wiebe’s result [Wie04, Proposition 2.9).

Proposition 25. Let I be a graded Artinian ideal of R = K|[z1,...,z,], let in(I) be the
initial ideal of I with respect to the graded reverse lezicographic order and let 1 < k < n. If
R/in(I) has the k-WLP (resp. the k-SLP), then the same holds for R/I.

4 An extremal property of graded Betti numbers and
the k-WLP

In the rest of this article, we study graded Betti numbers for monomial ideals. The goal is
Theorem 31 on the maximality of graded Betti numbers. We give a sharp upper bound on
the graded Betti numbers of graded Artinian algebras with the &-WLP and a fixed Hilbert
function. The upper bounds are achieved by the quotient rings by Borel-fixed ideals having
the k-SLP. In particular, when k = n, almost revlex ideals give the upper bounds.
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4.1 Graded Betti numbers of stable ideals and the k-WLP

Let R = K[z1,%,...,Zn) be the polynomial ring over a field of characteristic zero.

Proposition 26. Let I C R be an Artinian stable ideal, for which R/I has the Hilbert
function h = (ho,h1, - - -, he), and (R/I,z,) have the WLP. Let R= K|z1,T2,...,Tn-1) and
T =INR. We have the following.

(i) The graded Betti numbers Biv;(R/I) of R/I is given as follows:
Buss BRI = Besrs @+ (P21 ) X (2520)
¢; = max{h;_1 — h;,0},
where we use the convention that h—; = 0.
(ii) By the same c;, the last graded Betti numbers Bnn+i(R/I) is given as follows:
Ban+i(R/I) =cinn (5 20).
In particular, they are determined only by the Hilbert function.
* We easily generalize Proposition 26 to the case of the k-WLP.
Notation 27. For a unimodal O-sequence h = (ho, ha; - - -, h¢), we define
c_,(,.h) = max{h;_1 — h;,0}
forall j=0,1,...,c, where h_, =0.

Proposition 28. Let I be an Artinian Borel-fized ideal of R = K|z1, %o, ..., Zs] and suppose
that R/I has the k-WLP.

(i) Let k <n. Set R’ = K[z1, %3, . .. Znk) and I'=INR'. Then
ﬂi,i+j(R/I) = ,Bi,i+j(R,/I’) + (?:f) ' Cﬁ:_lh) +- (?——12) 'C.g‘ﬂ) + (?:11) ) c.y-lf-)l'
(4) Let k =mn. Then we have
Buns(RIT) = () - €877+ (1) - 3™ 4+ (D) 3 + (G2) - o
In particular, Bi;;(R/I) is determined only by the Hilbert function.

Corollary 29. Let I be a graded Artinian ideal of R = K[z1,22,...,z,) and suppose that
R/I has the k-WLP.

(i) Let k <n. Set R' = K[z1,%2,...,Znk| and I' = gin(I)NR'. Then
. e k-1 — e
Biivi(R/ gin(l)) = ﬂi»iﬂ'(Rl/I,) + (i—f) -cﬁl Mot (i—lz) 'cﬁ’ll) + (i—ll) 'cg‘}:-)l-
(ii) Let k =mn. Then we have

. aAn-1h AR n— Ak) | (n-
Bii+i(R/ gin(l)) = (i—ol) : c§+1 )+ (i-l-l) : C§+1 4t (i—12) ’ c§.+1) + (i—ll) ’ Cyi)l-
In particular, Bii+;(R/ gin(I)) is determined only by the Hilbert function.
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4.2 Maximality of graded Betti numbers and the k-WLP

Notation and Remark 30. Let h be the Hilbert function of a graded Artinian K-algebra
R/I. Then there is the uniquely determined lex-segment ideal J C R such that R/J has h
as its Hilbert function. We define

Bii+i(h, R) = Biiv;(R/J).

The numbers f;;+;(h, R) can be computed numerically without considering lex-segment ide-
als. Explicit formulas can be found in [EK90].

We give a sharp upper bound on the Betti numbers among graded Artinian K-algebras
having the k-WLP. Moreover the upper bound is achieved by a graded Artinian K-algebra
with the k-SLP. For k = 1, this theorem was first proved by [HMNWO03, Theorem 3.20].

Theorem 31. (i) Let A= R/I be a graded Artinian K -algebra with the k-WLP and put
= K|z, ...,Znk). Then the graded Betti numbers of A satisfy

k-1
,Bi,i+.7( ) < :Bt t+J(Akh R’) + (: f) gﬁl Y +-

+(072) - A 4 (L ) ifk<n,

(1)

and

Biiri(A) < (%) 3T + (1) BT P+

(2)
n— h .
+ (i) gﬁl) +(75) - y-?l fk=n
(1i) Let h be an O-sequence such that there is a graded Artinian K -algebra R/J having the
k-WLP and h as Hilbert function. Then there is a Borel-fized ideal I of R such that
R/I has the k-SLP, the Hilbert function of R/I is h and the equality holds in (i) for
all integers 1, 7.

The following are immediate consequences of Theorem 31.

Corollary 32. Let h be the Hilbert function of a graded Artinian K-algebra R/J having
the n-WLP (resp. n-SLP). Let I be the unique almost revlez ideal of R whose quotient ring
has the same Hilbert function h. Then R/I has the mazimal Betti numbers among graded
Artinian K -algebras with the same Hilbert function h and the n-WLP (resp. n-SLP).

Corollary 33. Let I be a graded Artinian ideal of R = K|z,,%,...,Z,) and suppose that
R/I has the n-WLP (resp. n-SLP). Then R/ gin(I) has the mazimal Betti numbers among
graded Artinian K-algebras with the same Hilbert function R/I and the n-WLP (resp. n-
SLP).
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The differential module of the polynomial ring
with .
the action of the symmetric group
Nagoya, 20, November, 2007
H. Morita, A. Wachi, J. Watanabe

Let R = K|z1,- - - , i be the polynomial ring over K|, a field of characteristic 0. Let
Q be the module of differentials:

Q:= Rdz; @ --- ® Rdzy

Let G := S, be the symmetric group in k letters. Let G act on R by permutation of the

variables. Extend the action to )
NQ

for
j=0,1,"' ak'

We consider the following problems:

Problem 1. | Decompose A’ into irreducible Sx-modules.
Problem 2.| Determine the Hilbert series of the isotypic components of
ANQ.

Recall that the irreducible modules of Sy are parametrized by the partitions of k. Thus
we write W for the irreducible Si-module corresponding to A - k.

Let Y*(—) be the functor from the category of Sy-modules to itself
“to extract the isotypic component”

belonging to A. Note that it is an exact functor.

For a graded vector space M,
h(M,q)

denotes the Hilbert series of M. (This is a power series in ¢ with positive integers as
coefficients.)
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lExa.mple 1: The case where k = 2. J

2,

11, e

Assume k = 2. Then R = K|z,y]. There are only two partitions: A = {

want to determine .
h(YX(NQ),q)

for j=0,1,2.
For j =0, it is easy to determine the Hilbert series since

Y®(A'Q) = R® = K[z + y, 3]
YD(A’Q) = (z — y)RC

and since R is the direct sum:
R=R®@® (z—vy)RC.

For j = 2, we have
A*Q = R(dz A dy).

Thus we have

h(Y®(A%Q), ) = (Y UD(R), ),
{ h(Y 0D(A%Q),q) = h(Y D(R), g).

For j = 1, we have to decompose the module
Q = Rdz & Rdy.

As is easily seen, symmetric 1-forms are of the form either sdz + sdy with s € RS or
adz — ady with a € (z —y)R®, and alternating 1-forms are either sdz — sdy or adz + ady.
Thus we have obtained the following table for A(Y*(AIQ2), q).

7=0 j=1 T=2
_ 1 1 q
*=0 |l agn=a e e
_ q
i Keereeral Koy I ey
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[Exa.mple 2: The case where j = 0|

Fix j = 0. So A’Q = R. If A\ = (k), the trivial partition, then Y*(R) is R®, the ring
of invariants. So we have
1
1-91-¢)---Q-¢)
since RC is generated by the elementary symmetric functions.
Put R:= R/(RS). Then it is easy to see that

h(RC,q) =

h(Y*(R),q) = R(R% qh(Y*(R),q)
h(Y*(R),q)
(1-g)1—¢%---(1—gF)

By a result of Terasoma-Yamada. the numerator (which is a polynomial)

h(Y*(R),q)

is known to be the g-analog of the hook length formula multiplied by the dimension of .
W* with a certain shift of degree determined by .

[Main result: The general case

Write
Q(-n) = Rdz, & - - - @ Rdz,,

when we give dz; degree n. We have been considering
Q= Q(0).

Similarly R(—n) denotes the free module of rank 1 generated by a generator of degree n.
Thus

RG)(~jn)
(A9Q) (=in)

N (Q(-n))

R R

Also put
: A(n) = R/(z7,-- -, z§)-

For simplicity put F' = Q(—n). We would like to construct a minimal free resolution of

A(n) as an R-module such that the boundary maps are compatible with the action of Si.
For this the usual minimal free resolution suffices:

— AF - A2F— AF— AF— Aln)— 0 )
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We want to know ‘
& = h(YX(NQ),q).

Assume that we know

hn == R(Y*(A(n)), q),
for n = 0,1,2,---. Fix A  k and apply the functor Y*(—) to the sequence (1) above.
Then we have . '

— Y}A3F) = YMA2F) > YAMAIF) = Y}AF)— Y*(A(n)) — O.

Since the sequence is exact it gives us:

k

hn =Y (~1Yg"¢; (2)

j=0
This means that we have an infinite set of linear equations relating {¢;} and {h;}. For
example if k = 3, we have

1 -1 1 -1 ho
1 —¢ @& -¢| (& hy
1 —¢ ¢ -¢¢||¢g ha
1 -¢ ¢ - |la|T |hs
1 q8 _q12 £3 h4

— q4

Note that any maximal minor of the matrix {(—¢")’} is non-zero. Thus we have
proved the following theorem.

With A F k fixed, the set of Hilbert series
505{175% o 7£k-

in consideration are determined by any (k + 1) terms of

hOvhl)hQ)'“ .

Consequenctly the infinite sequece

ho,hlah27"' -

is determined by any k + 1 terms.

Actually hy and h; are known for all A F k. (This is trivial.) Hence the above theorem
is rephrased as follows:
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With A F k fixed, any k — 1 terms in the infinite series
ha, hs,- - -
determine
56761752)" o )gk
and they determine all
ha, ha, -

As is easily conceived we have the duality
YA AIQ) = YX(ARIQ)
Thus we have the following

Any [(k + 1)/2] terms in the infinite series
hO) hla h2) T

for all A\ F k£ determine
£0> €1=§2a v )gk‘

A result of Morita-Wachi-Watanabe says that
hn
is the g-analog of the Weyl dimension formula. It means that we have determined
h(YA(NQ),q)

Ak,
for all { =01,k

[g-analog of the hook length formula|

For A F k let W be the irreducibe Sx-module corresponding to A. Then dim W?* is given
by
k!
dim W* = — 3
Tha 3)
where hy; is the hook length at the (i,)-th position. The following is an example which
shows the matrix {h;;} for the Young diagram A = (5,3,1).
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574]2]1]

IHA\I
]
—

In (3) replace integer a by‘ the polynomial

[a] : =
= l4+q+---+¢*!

It is the “g-analog of the hook length formula.”
Since there are same number of integers in the denominator and enumerator of (3), it
is the same if we replace a by
a

1-q¢%

[q-analog of the Weyl dimension formula]

Let A F k. Let n > 0 be any integer. Let V> be the irreducible GL(n)-module. Then
dim V* is given by

1T T |
dim V* = (n— 1)!5; 522)! . fffj?!l! IR
where
2\ = ()\1,)‘2’... ’,\n)
and
po= (pas 2y i)
is defined by

p=A+(n-1n-2,---,1,0).

If A has more than n parts, we let dim V* = 0.
The Hilbert series h,, of the module

Y*(A(n))

is given by the g-analog of the Weyl dimension formula multiplied by dim W* with a
certain shift of degrees.
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Koszul algebras and Grébner bases of quadrics

Aldo Conca
Dipartimento di Matematica, Universitd di Genova
Via Dodecaneso 35, I-16146 Genova, Italia

Abstract: We present results that appear in the papers [C, CTV, CRV] joint with

M.E.Rossi, N.V.Trung and G.Valla and also some new results contained in [C1].
These results concern Koszul and G-quadratic properties of algebras associated
with points, curves, cubics and spaces of quadrics of low codimension.

1. INTRODUCTION

Let R be a standard graded K-algebra, that is, an algebra of the form R =
Klz1,...,25)/] where K[z, ...,Zn] is a polynomial ring over the field K and I is
a homogeneous ideal with respect to the grading deg(z;) = 1. Let M be a finitely
generated graded R-module. Consider the (essentially unique) minimal graded R-
free resolution of M

---—-)RB*—»Rﬁ"-‘—»-u—)Rﬂ‘—)Rﬁo——vM—M)

The rank B; of the i-th module in the minimal free resolution of M is called the
i-th Betti number of M. One can also keep track of the graded structure of the
resolution. It follows that the free modules in the resolution are indeed direct sums
of “shifted” copies of R:
R = @;R(~j)"

where R(—a) denotes the free module with the generator in degree a and that the
matrices representing the maps between free modules have homogeneous entries.
The number £;; is called the (i, j)-th graded Betti number of M. The resolution is
finite if 8; = 0 for ¢ > 0.

For which algebras R does every module M has a finite minimal free resolution?
The answer is given by (the graded version of) the Auslander-Buchsbaum-Serre
theorem:

Theorem 1.1. (Auslander-Buchsbaum-Serre) Let R be a standard graded K -algebra.
The following are equivalent:

(1) Buery finitely generated graded R-module M has a finite minimal free res-
olution as an R-module.

(2) The field K, regarded as an R-module via the identification K = R/®i>oR;,
has a finite minimal free resolution as an R-module.

(3) R is regular, i.e. R is (isomorphic to) a polynomial ring.

If R is not regular then the resolution of K is infinite. The Poincaré series Pr(z)
of R is the formal power series whose coefficients are the Betti numbers of K, i.e.

Pp(z) =) _BF(K)Z'
420
where 87 (K) is the i-th Betti number of K as an R-module.

Serre asked in [S] whether the Poincaré series Pr(z) is a rational series, that is
whether there exist polynomials a(z), b(z) € Q[z] such that Pr(z) = a(z)/b(z). The
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positive answer to Serre’s question became well-known under the name of Serre’s
conjecture. This conjecture has been proved for several classes of algebras. For
instance it holds for complete intersections (Tate, Assmus) and for algebras defined
by monomials (Backelin). But in 1981 Anick [A] discovered algebras with irrational
Poincaré series, such as:

2
Qlz1, 72, .. ., z5)/(2%, 23,22, 22, 7122, Tazs, 2123 + T3T4 + ToT5) + M1

More recently Roos and Sturmfels have shown that irrational Poincaré series
arise also in the realm of toric rings, see[RS].

The Poincaré series of R takes into account the rank of the free modules in the
minimal free resolution of K. One can also consider the degrees of the generators
of the free modules. This leads to the introduction of estimates for the growth of
the degrees of the syzygies (like for instance Backelin’s rate) and to the definition
of Koszul algebras:

Definition 1.2. (Priddy) A standard graded K-algebra R is Koszul if for all  the
generators of the i-th free module in the minimal free resolution of K have degree
i. Equivalently, R is Koszul if the entries of matrices representing the maps in the
minimal free resolution of K are homogeneous of degree 1.

Example 1.3. Let R = K[z]/(z™) with n > 1. Then the resolution of K as an
R-module is
n—1 n—1
"+ R5R" - RER-K -0
Hence R is Koszul iff n = 2.

The algebra R is said to be:

(1) quadratic if its defining ideal I is generated by quadrics (i.e. homogeneous
elements of degree 2). '

(2) G-quadratic if I has a Grobner basis of quadrics with respect to some
system of coordinates and some term order.

(3) LG-quadratic (the L stands for lifting) if there exist a G-quadratic algebra

S and a S-regular sequence y1, . . ., ys of elements of degree 1 in S such that
S/(y1,---,¥s) =~ R.
One has:

(2) = (3) = Koszul = (1)

Implications (2) = (3) and Koszul = (1) cannot be reversed in general. We
do not know examples of Koszul algebras which are not LG-quadratic.

By a theorem of Tate (see [F]) every quadratic complete intersection is Koszul,
but not all of them are G-quadratic. Non-G-quadratic complete intersection of
quadrics are given in [ERT]. The easiest example of non-G-quadratic and quadratic
complete intersection is given by 3 general quadrics in 3 variables. But every
complete intersection of quadrics is LG-quadratic as the following argument of
G.Caviglia shows.

Example 1.4. If R = K|z1,...,2,)/(g1,...,gm) is a complete intersection of
quadrics then R = S/(y1,...,Ym) where

S=K[$1,---’$n,y1,-~-yym]/(ylz+01,~-~,y,2n+Qm)-
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That y? + q1, - - - ; Y2, + gm is a Grobner basis is an easy consequence of Buchberger
criterion. That y1,...,¥m form a S-regular sequence follows by an Hilbert function
computation.

The Koszul property can be characterized in terms of the Poincaré series. Denote
by Hg(z) the Hilbert series of R. Then one has:

Ris Koszul & Pr(z)Hgr(-z)=1

In particular, Koszul algebras have rational Poincaré series.

2. FILTRATIONS, POINTS AND CURVES

Given an algebra R it can be very difficult to detect whether R is Koszul or not.
One can compute the first few matrices in the resolution and check whether they
are linear. If they are not, then R is not Koszul. If instead they are linear, one can
then compute few more matrices. But the growth of the size of the matrices (i-e.
the growth of the Betti numbers) is in general very fast. And it is known that the
first non-linear syzygy can appear in arbitrarily high homological degree even for
algebras with a given Hilbert function.

A quite efficient method to prove that an algebra is Koszul is that given by
filtration arguments of various kinds. These notions have been used by various
authors. Inspired by the work of Eisenbud, Reeves and Totaro [ERT], Bruns, Herzog
and Vetter [BHV) and of Herzog, Hibi and Restuccia [HHR], we have defined:

Definition 2.1. Let R be a standard graded algebra and let F be a family of ideals
of R. Then F is said to be a Koszul filtration of R if the following conditions hold:
(1) Every ideal in F is generated by linear forms,
(2) The ideal (0) and the maximal homogeneous ideal ®i>oR; are in F,
(3) For every non-zero I in F there exists J in F' such that J C I, I /J is cyclic
and J: I is alsoin F.

Definition 2.2. Let R be a standard graded algebra. A Grobner flag of R is a
Koszul fltration F of R which consists of a single complete flag. In other words,
a Grobner flag is a set of ideals F = {(0), (V1),(V2),...,(Va) = (R1)} where V;
is a i-dimensional subspace of Ry, Vi C Vi41 and (Vi) : (Viq1) = (Vj) for some j
depending on .

As the names suggest, we have:

Theorem 2.3. (1) Let F be a Koszul filtration of R. Then Tor(R/I,K); =0
for alli # 7 and for all I € F. In particular, R is Koszul.
(2) If R has a Grébner flag then R is G-quadratic.

Example 2.4. Let R = K|[z1,...,Z,]/I with I a quadratic monomial ideal. Then
the set F' of the ideals of R generated by subsets of {z1, ..., Zn} is a Koszul filtration
of R. To check it, one has only to observe that I : (z;) is generated by variables
mod I.

The property of having a Koszul filtration is stronger than just being Koszul as
the following example shows:

Example 2.5. Let R be a complete intersection of 5 generic quadrics in 5. As
said already above, R is Koszul. But it does not have a Koszul filtration since its
defining ideal does not contain quadrics of rank < 3. '
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As well, to have a Grobner flag is more than G-quadratic. For instance the
algebra R = K|z,y, z]/(z?,y?, 7z, yz) is obviously G-quadratic but one can easily
see that R does not have a Grobner flag.

However many classes of algebras which are known to be Koszul have indeed a
Koszul filtration or even a Grobner flag. For instance:

Theorem 2.6. (Kempf) Let X be a set of s (distinct) points of the projective space
P" and let R(X) denote the coordinate ring of X. If s < 2n and the points are in
general linear position then the ring R(X) is Koszul, see [K].

We have shown that:

- Theorem 2.7. With the assumption of Kempf’s theorem, the ring R(X) has a
Grébner flag.

One may ask whether Kempf’s theorem holds also for a larger number of points.
This is not the case.

Example 2.8. There exists a set of 9 points in P4 which are in general linear
position and whose coordinate ring is quadratic but non-Koszul. It is obtained via
Grébner-lifting form the ideal number (55) in Roos’ list [R].

On the other hand for “generic points” (indeterminates coordinates) we have the
following:

Theorem 2.9. Let X be a set of “generic points” in P™. Then R(X) is Koszul if
and only if | X| < 1+ n+ (n?/4).

Let C be a smooth algebraic curve of genus g over an algebraically closed field of
characteristic zero. If C is not hyperelliptic, then the canonical sheaf on C gives a
canonical embedding C — P9~! and the coordinate ring R¢ of C in this embedding
is the canonical ring of C. It is known that Rc¢ is quadratic unless C is a trigonal
curve of genus g > 5 or a plane quintic. Another important application of the
filtration arguments is the following theorem.

Theorem 2.10. Let R¢ be the coordinate Ting of a curve C in its canonical em-
bedding. Assume that Rc is quadratic. Then Rc is Koszul.

This is due to Vishik and Finkelberg [VF]; other proofs are given by Polishchuk
[P], and by Pareschi and Purnaprajna [PP]. We are able to show that:

Theorem 2.11. Let R be as in the Theorem 2.10. Then Rc has a Grébner flag.

For integers n, d, s the “pinched Veronese” PV(n,d, s) is the K-algebra generated
by the monomials of degree d in n variables and with at most s non-zero exponents,
that is,

PV(n,d,s)=K[z3 ---z8": > a;j=d and #{j:a;>0}<s]
It is an open question whether PV(n, d, s) is Koszul (it is not even clear whether it

is quadratic). G.Caviglia shown in [Ca] that the first not trivial pinched Veronese
PV(3,3,2) is Koszul by using a combination of filtrations and ad hoc arguments.
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3. ARTINIAN GORENSTEIN ALGEBRAS OF CUBICS

The algebras R¢ are 2-dimensional Gorenstein domains with h-vector 1 + nz +
nz2 + z3 and Theorem 2.10 asserts that they are Koszul as soon as they are qua-
dratic. One might ask:

Question 3.1. Let R be a quadratic Gorenstein algebra with h-vector 1 +nz +
nz? + z3. Is R Koszul?

Without loss of generality, one can assume that the algebra is Artinian. Artinian
Gorenstein algebras are described via Macaulay inverse system. Let us recall how.
Let S = K|z1,.-.,Zn) be a polynomial ring over a field K of characteristic 0. Let
f be a non-zero polynomial of S which is homogeneous of degree, say, s. Let Iy be
the ideal of S of the polynomials g(z1,....Zn) such that

9(8/08z1,...,8/0z,)f = 0.

Set R; = S/Iy. Tt is known that Ry is a Gorenstein Artinian algebra with socle
in degree s and that every such an algebra arises in this way. In particular, in the
case s = 3 the Hilbert series of Ry is equal to 1 +nz + nz? 4 z3 (provided f is not
a cone). So Question 3.1 is about algebras Ry with f a cubic form. We are able to
show the following: :

Theorem 3.2. (1) Let f be a cubic in S. Assume there exist linear forms y, z
such that 8f/8yz = 0 and 8f /8y and 8f/9z are quadrics of rank n — 1.
Then Ry has a Koszul filtration.
(2) If f is smooth then Ry is not G-quadratic.
(3) For the generic cubic f, the ring Ry is Koszul and not G-quadratic.

Furthermore:
Theorem 3.3. (1) Let f be a cubic in S. Assume there ezists linear form y
such that 8f/8y? = 0 and 8f /8y is quadric of rank n— 1. Then Ry has a
Grébner flag.

(2) For the generic singular cubic f, the ring Ry is G-quadratic.

We are not able to answer Question 3.1 in general. But in [CRV] we have
shown that Question 3.1 has an affermative answer n = 3,4. In both cases the
characterization of the f such that Ry quadratic (or Koszul) is very elegant:

Theorem 3.4. For n =3 or 4, the following are equivalent:
(1) Ry is quadratic.
(2) Ry is Koszul.
(3) The ideal of 2-minors of the Hessian matriz (8f/0ziz;) of f has codimen-
sion n.
Furthermore for n = 3 these conditions are equivalent also to:

(4) f is not in the closure of the GL3(K)-orbit of the Fermat cubic z3+z3 +23.

G.Caviglia shown in his unpublished master thesis that property (1),(2) and (3)
of 3.4 are equivalent also in the case of n = 5.

Another interesting question is whether the assumption of 3.2(1) indeed char-
acterize Koszul property for Ry. In this case the answer is no, as the following
example shows.
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Example 3.5. Let f be the Veronese cubic, that is the determinant of a 3 x 3
symmetric matrix filled with 6 distinct variables z1,. ...z and let H be its Hessian
matrix. The cubic f has a remarkable property: det H is f2 up to scalar and the
ideal of 5-minors of H is (z1,...,Ze)2f. These facts imply that f does not satisfy
the assumption of 3.2(1), nevertheless Ry is Koszul (even G-quadratic).

Also, one could also ask whether Ry is LG-quadratic provided it is quadratic.
We have reasons to believe that the answer to this question might be positive.

4. SPACE OF QUADRICS OF LOW CODIMENSION

Another point of view we have taken is the following. Let V be a vector space
of quadrics of dimension d in n variables. Set ¢ = ("}') — d the codimension of
V in the space of quadrics. Let Ry be the quadratic algebra defined by the ideal
generated by V. A theorem of Backelin [B] asserts that if ¢ < 2 then Rv is Koszul.

We have proved in [C] that:

Theorem 4.1. (1) Ifc < n then the ring Ry is G-quadratic for a generic V.
(2) If ¢ < 2 then Ry is G-quadratic with, essentially, one ezception given by
V = (22, zy,y* — zz,yz) in K[z,y, 2).

The “exceptional” algebra K|z, y, z]/(z>, Ty, y* + £z,yz) has Hilbert series

14324222 +28 424 +25+ ...
and is LG-quadratic since we may deform it to

Klz,y, z,t)/(z® + ot, Ty + yt,yz + zt, ¥ + 2)

which is G-quadratic in the given coordinate system and with respect to revlex
t>c>y>z.

It follows from 4.1 that every quadratic Artinian algebra R with dim R, < 2 is
G-quadratic.

A recent conjecture of Polishchuk [P2] on Koszul configurations of points, sug-
gests that Artinian quadratic algebras R with dim Rz = 3 should be Koszul. This
is what we have proved in [C1]:

Theorem 4.2. Let R be an Artinian quadratic algebras with dim Ry = 3. Then:

(1) R is Koszul.
(2) R is G-quadratic unless it is (up to trivial eztenswn ) a complete intersection
of 3 general quadrics in 3 variables.
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Symbolic Rees rings of space monomial curves in
characteristic p and existence of negative curves in
characteristic 0

Kazuhiko Kurano

Meiji University

This is a joint work with Naoyuki Matsuoka from Meiji University.

We refer the reader to [7] for detail and proofs.

Our aim is to study finite generation of symbolic Rees rings of the defining ideal of the
space monomial curves (t,t’,t¢) for pairwise coprime integers a, b, ¢ such that (a,b,c) #
(1,1,1). If such aring is not finitely generated over a base field, then it is a counterexample
to the Hilbert’s fourteenth problem. Finite generation of such rings is deeply related to
existence of negative curves on certain normal projective surfaces. We prove that, in the
case of (a+ b+ c)? > abc, a negative curve exists. Using a computer, we shall show that a
negative curve exists if all of a, b, c are at most 300. As a corollary, the symbolic Rees rings
of space monomial curves are shown to be finitely generated if a base field is of positive |
characteristic and all of a, b, ¢ are less than or equal to 300.

1 Symbolic Rees rings of monomial curves and Hilbert’s
fourteenth problem

Throughout of this note, we assume that rings are commutative with unit.
For a prime ideal P of a ring A, P() denotes the r-th symbolic power of P, ie.,

P =P ApNA.

By definition, it is easily seen that PO P c Pr+m) for any r, ' > 0, therefore,

@ P(r)Tr

>0
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is a subring of the polynomial ring A[T]. This subring is.called the symbolic Rees ring of
P, and denoted by R,(P).

Let k be a field and m be a positive integer. Let a,, ..., an, be positive integers. Consider
the k-algebra homomorphism

&k : k[z1,. .. Tm] — K[t]

given by ¢r(z;) =t% for i = 1,...,m, where z,, ..., Tn, t are indeterminates over k. Let
pr(ai,...,am) be the kernel of ¢,. We sometimes denote pi(ay, ..., ar) simply by p or px
if no confusion is possible.

Theorem 1.1 Let k be a field and m be a positive integer. Let ay, ..., an, be positive
integers. Consider the prime ideal pi(ay, ..., am) of the polynomial ring k[z,,. .., Zm].
Let a1, ag, B1, ---, Bm, t, T be indeterminates over k. Consider the following injective
k-homomorphism
€ : k[.’l?l,... ,:z:m,T] — k(alaa21,31:‘ . ~,ﬂm:t)
given by £(T) = az/ay and £(z;) = a1 fB; +t% fori=1,...,m.
Then,

k(a1f1+t%, a18o+1%, ..., 01 B+t o/ )Nk[as, a2, Bry - - -, By t] = E(Rs(pr(as, - - - ,am)))
holds true.

Remark 1.2 Let k£ be a field. Let R be a polynomial ring over k with finitely many
variables. For a field L satisfying k C L C Q(R), Hilbert asked in 1900 whether the ring
LN R is finitely generated as a k-algebra or not. It is called the Hilbert’s fourteenth problem.

The first counterexample to this problem was discovered by Nagata [10] in 1958. An
easier counterexample was found by Paul C. Roberts [11] in 1990. Further counterexamples
were given by Kuroda, Mukai, etc.

On the other hand, Goto, Nishida and Watanabe [2] proved that Ry(px(7n — 3, (5n —
2)n,8n — 3)) is not finitely generated over k if the characteristic of k is zero, n > 4 and
n # 0 (3). By Theorem 1.1, we know that they are new counterexamples to the Hilbert’s
fourteenth problem.

Remark 1.3 With notation as in Theorem 1.1, we set

g 0 0 0

Di = erge+onge ~Pigg ~ = Pngg
0 g 0

— a1—1 . am—-1_~ 2

D2 = a;t —aﬂl + +ant 6ﬂm (631 5t .

Assume that the characteristic of & is zero.
Then, one can prove that £(Rs(pe(ai,-..,am))) is equal to the kernel of the derivations
D, and D, ie.,

E(Rs(pe(a,--.,am))) = {f € klar, 2,51, - . ., Bm, t} | D1(f) = Da(f) = 0}.
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2 Symbolic Rees rings of space monomial curves

In the rest of this paper, we restrict ourselves to the case m = 3. For the simplicity of

notation, we write z, y, 2, a, b, ¢ for i, T3, Z3, a1, as, as, respectively. We regard the

polynomial ring k[z,y, z] as a Z-graded ring by deg(z) = a, deg(y) = b and deg(z) = c.
pk(a, b, c) is the kernel of the k-algebra homomorphism

¢k : k[I,y, z] — k[t]

given by ¢u(z) = 12, duly) = £, di(z) = £

By a result of Herzog [3], we know that pi(a, b, c) is generated by at most three elements.

We are interested in the symbolic powers of px(a, b, c). If p(a,b, c) is generated by two
elements, then the symbolic powers always coincide with ordinary powers because p x(a,b,c)
is a complete intersection. However, it is known that, if pi(a,b,c) is minimally generated
by three elements, the second symbolic power is strictly bigger than the second ordinary
power.

We are interested in finite generation of the symbolic Rees ring R,(pk(a,b,c)). It is
known that this problem is reduced to the case where a, b and c are pairwise coprime, i.e.,

(a,b) = (b,c) = (c,a) = 1.

In the rest of this paper, we always assume that a, b and c are pairwise coprime.
Let Py(a, b, c) be the weighted projective space Proj(k[z,y, z]). Then

]P’k(a,b,c)\{V_,.(:z:,y), V+(y,z)a V+(Z,$)}

is a regular scheme. In particular, Px(a,b,c) is smooth at the point V. (px(a,b,c)). Let
7 : Xx(a,b,c) — Pi(a,b,c) be the blow-up at V,(pk(a,b,c)). Let E be the exceptional
divisor, i.e.,

E =" (Vi(p(a,b,c)))-

We sometimes denote px(a, b, c) (resp. Px(a,b,c), Xi(a,b,c) ) simply by p or pi (resp. P
or P;, X or X}) if no confusion is possible.

It is easy to see that

Cl(P)=ZH ~ Z,

where H is the Weil divisor corresponding to the reflexive sheaf Op(1). Set H = >, m;D;,
where D;’s are subvarieties of P of codimension one. We may choose D;’s such that D; 3
V. (p) for any i. Then, set A =Y, myw~'(Dy).

One can prove that

Cl(X) = ZA+ZE ~ 72

-137-



Since all Weil divisor on X are Q-Cartier, we have the intersection pairing
Cl(X) x CI(X) — Q,

that satisfies ]
A= —
abc’

Here, we have the following natural identification:

E?=-1, AE=0.

() T
H°(X,0x(nA - rE)) = { 4 S,]," Er i 83

Therefore, the total coordinate ring (or Coz ring)

TC(X) = P H(X,0x(nA—rE))

n,r€Z
is isomorphic to the extended symbolic Rees ring
R(p)T Y =---0ST?0ST'0oSepT0p?T?*a---.
It is well-known that R,(p)[T~!] is Noetherian if and only if so is R(p).

Remark 2.1 By Huneke’s criterion [5] and a result of Cutkosky [1], the following four
conditions are equivalent:

(1) Rs(p) is a Noetherian ring, or equivalently, finitely generated over k.
(2) TC(X) is a Noetherian ring, or equivalently, finitely generated over k.
(3) There exist positive integers 7, s, f € p™, g € p*), and h € (z,y,z) \ p such that
€5y (Sua/(fr9,h) =78 Ls, .\ (Sey2)/(p, h),
where £s, ., is the length as an S(; ;)-module.
(4) There exist curves C and D on X such that

C+#D, C#E, D#E, C.D=0.

Here, a curve means a closed irreducible reduced subvariety of dimension one.
The condition (4) as above is equivalent to that just one of the following two conditions
is satisfied:
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(4-1) There exist curves C and D on X such that
C#E, D#E, C?*<0, D*>0, C.D=0.

(4-2) There exist curves C and D on X such that
C#E, D#E, C#D, C*=D*=0.

Definition 2.2 A curve C on X is called a negative curve if
C+#EFE and C?<0.

It is proved that two distinct negative curves never exist.

In the case where the characteristic of k is positive, Cutokosky [1] proved that R,(p) is
finitely generated over k if there exists a negative curve on X.

‘We remark that there exists a negative curve on X if and only if there exists positive
integers n and r such that

% < Vabe and [p™], #0.

We are interested in existence of a negative curve. Let a, b and c be pairwise coprime
positive integers. By the following lemma, if there exists a negative curve on X; ko (@, b, C)
for a field ko of characteristic 0, then there exists a negative curve on Xj(a,b,c) for any
field k.

Lemma 2.3 Let a, b and c be pairwise coprime positive integers.
1. LetK /k be a field eztension. Then, for any integers n and r,
[pe(a,b,0) 7] @ K = [px(a,b,¢) 7.
2. For any integers n, r and any prime number p,
dime, [pF, (a, b, ¢)"]n > dimg[po(a,b,¢)]n

holds, where Q is the field of rational numbers, and F,, is the prime field of character-
istic p. Here, dimg, (resp. dimg) denotes the dimension as an Fp-vector space (resp.
Q-vector space).

Remark 2.4 Let a, b, c be pairwise coprime positive integers. Assume that there exists a
negative curve on Xj,(a,b,c) for a field ko of characteristic zero.

By Lemma 2.3, we know that there exists a negative curve on Xx(a, b, c) for any field k.
Therefore, if k is a field of characteristic positive, then the symbolic Rees ring R,(px) is
finitely generated over k by a result of Cutkosky [1]. However, if k is a field of characteristic
zero, then R,(py) is not necessary Noetherian. In fact, assume that k is of characteristic
zero and (a,b,c) = (Tn—3,(5n—2)n,8n—3) with n # 0 (3) and n > 4 as in Goto-Nishida-
Watanabe [2]. Then there exists a negative curve, but R,(px) is not Noetherian.
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Definition 2.5 Let a, b, ¢ be pairwise coprime positive integers. Let k be a field.
We define the following three conditions:

(C1) There exists a negative curve on X(a,b,¢), i.e., [pk(a,b, c)(r)]n # 0 for some positive
integers n, r satisfying n/r < vabe.
(C2) There exist positive integers n,  satisfying n/r < vabc and dim; S,, > r(r +1)/2.

(C3) There exist positive integers g, r satisfying abeg/r < vabc and dimy, Sapeg > 7(r+1)/2.
Here, dim; denotes the dimension as a k-vector space.
By the following lemma, we know the implications
(C3) = (C2) = (C1)
since dimg[p™)], = dimy S, — dimi[S/p™],..

Lemma 2.6 Let a, b, c be pairwise coprime positive integers. Let r and n be non-negative
integers. Then,

dimg[S/p™), < r(r +1)/2
holds true for any field k.

Remark 2.7 It is easy to see that [px(a, b, c)], # 0 if and only if dimj S, > 2. Therefore,
if we restrict ourselves to r = 1, then (C1) and (C2) are equivalent.

On can prove that, if (C1) is satisfied with r < 2 for a field k of characteristic zero, then
(C2) is satisfied.

Assume that & is a field of characteristic zero. Let a, b and ¢ be pairwise coprime integers
such that 1 < a,b,c < 300. As we shall see in Theorem 5.1, a negative curve exists unless
(a,b,¢) = (1,1,1). In these cases, calculations by a computer show that (C2) is satisfied if
(C1) holds with r < 5.

We shall discuss the difference between (C1) and (C2) in Section 5.1.

Remark 2.8 Let a, b and c be pairwise coprime positive integers. Assume that pi(a,b,c)
is a complete intersection, i.e., generated by two elements.
Permuting a, b and ¢, we may assume that

pe(a,byc) = (2° — y°, 2z — %)
for some a, § > 0 satisfying aa + b = c. If ab < ¢, then
deg(zb — y°) = ab < Vabe.

If ab > ¢, then
deg(z — z°yP) = ¢ < Vabe.

If ab = ¢, then (a, b, ¢) must be equal to (1,1,1). Ultimately, there exists a negative curve
if (a,b,¢) # (1,1,1).
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3 The case where (a +b+c)? > abc

In the rest of this paper, we set & = abc and 7 = a + b + ¢ for pairwise coprime positive
integers a, b and c.
Forv=0,1,...,§— 1, we set

S(E,v) = @qZOSEq+'v~
This is a module over S = @505,
Lemma 3.1

dimg[S%V), = dimy Segro = = {£¢° + (1 + 2v)g + 2dim; S, }

| =

holds for any g > 0.

Lemma 3.2 Assume that a, b and c are pairwise coprime positive integers such that
(a‘7 b; C) # (11 1, 1) Then7 n- \/E 74 Oa 15 2.

Theorem 3.3 Let a, b and c be pairwise coprime integers such that (a,b,c) # (1,1,1).
Then, we have the following:

1. Assume that Vabc € Z. Then, (C3) holds if and only if (a + b+ c)® > abe.
2. Assume that Vabc € Z. Then, (C3) holds if and only if (a + b+ c)? > 9abe.

8. If (a+ b+ c)? > abe, then, (C2) holds. In particular, a negative curve ezists in this
case.

Remark 3.4 If (a + b+ c)? > abc, then Ry(p) is Noetherian by a result of Cutkosky [1].

If (a+b+c)® > abc and Vabc € Q, then the existence of a negative curve follows
from Nakai’s criterion for ampleness, Kleimann’s theorem and the cone theorem (e.g. The-
orem 1.2.23 and Theorem 1.4.23 in [8], Theorem 4-2-1 in [6]).

The condition (a+b+c)? > abe is equivalent to (—Kx)? > 0. If —Kx is ample, then the
finite generation of the total coordinate ring follows from Proposition 2.9 and Corollary 2.16
in Hu-Keel [4].

If (a,b,c) = (5,6,7), then the negative curve C is the proper transform of the curve
defined by y? — zz. Therefore, C is linearly equivalent to 124 — E. Since (a+b+c)? > abc,
(—=Kx)?> 0. Since

—Kx.C=(184—-FE).(12A-E)=0.028--- >0,

—Kx is ample by Nakai’s criterion.
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If (a,b,¢) = (7,8,9), then the negative curve C is the proper transform of the curve
defined by y? — zz. Therefore, C is linearly equivalent to 164 — E. Since (a+b+c)? > abe,
(=Kx)? > 0. Since

—Kx.C=(24A— E).(16A— E) = —0.23--- < 0,

—Kx is not ample by Nakai’s criterion.

4 Degree of a negative curve

Proposition 4.1 Let a, b and ¢ be pairwise coprime integers, and k be a field of charac-
teristic zero. Suppose that a negative curve ezists, i.e., there exist positive integers n and
T satisfying [px(a, b, )™, # 0 and n/r < Vabe.

Set ng and ro to be

ne = min{n € N|3r > 0 such that n/r < V€ and [p"], # 0}
n

] +1,

7

where |_7"=J is the mazimum integer which is less than or equal to Z.
Then, the negative curve C is linearly equivalent to noA — rok.

To

Remark 4.2 Let a, b and ¢ be pairwise coprime integers, and k be a field of characteristic
zero. Assume that the negative curve C exists, and C is linearly equivalent to ngA — roE.
Then, by Proposition 4.1, we obtain

ny = min{n € N| [p(L%JH)]n # 0}

= |2
To = I'\/EJ-'_I

Proposition 4.3 Let a, b and c be pairwise coprime positive integers such that /€ > 1.
Assume that (C2) is satisfied, i.e., there exist positive integers ny and ry such that ny/r; <
V& and dimy S,, > r1(r1 +1)/2. Suppose ny = £g1 + v1, where g, and vy are integers such
that 0 < v < g

Then, q; < d%’i :” holds.

In particular,

e
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5 Calculation by computer

5.1 Examples that do not satisfy (C2)

Suppose that (C2) is satisfied, i.e., there exist positive integers n, and r; such that n, /r1 <
V€ and dimg Sp, > 71 (r1 +1)/2. Put ny = {g1 + vy, where g; and v, are integers such that
0< v <& If/E>n, theng < E’;&—"?l holds by Proposxtlon 4.3.

By a following programming on MATHEMATICA ([7]), we can check whether (C2) is
satisfied or not in the case where /€ > 1.

Calculations by a computer show that (C2) is not satisfied in some cases, for example,
(a,b,c) = (9,10,13), (13, 14,17).

The examples due to Goto-Nishida-Watanabe [2] have negative curves with r = 1. There—
fore, by Remark 2.7, they satisfy the condition (C2).

In the case where (a,b,c) = (9,10,13),(13,14,17), the authors do not know whether
R,(pk) is Noetherian or not in the case where the characteristic of k is zero, however the
negative curve do exists as in Theorem 5.1 below.

If we input (a,b,c) = (5,26,43), then the output is (n,r) = (1196, 16). Therefore, (C2)
is satisfied with (n,r) = (1196, 16). However, the negative curve on Xc(5,26,43) is linearly
equivalent to 5154 — 7E by a calculation in the next subsection.

5.2 Existence of a negative curve

Theorem 5.1 Let a, b and c be pairwise coprime positive integers such that (a,b,c) #
(1,1,1). Assume that the characteristic of k is zero.
If all of a, b and c are at most 300, then there ezists a negative curve on X.

Let a, b and ¢ be pairwise coprime positive integers such that (a,b,¢) # (1,1,1) and
1 < a,b,c < 300. Then, by Theorem 5.1, there exists a negative curve in the case where
k is of characteristic zero. Then, by Remark 2.4, Ry(pk(a,b,c)) is Noetherian in the case
where k is of positive characteristic. Thus, we obtain the following corollary immediately.

Corollary 5.2 Let a, b and c be pairwise coprime positive integers such that all of a, b
and c are at most 300. Assume that the characteristic of k is positive.
Then the symbolic Rees ring Ry(px(a,b,c)) is Noetherian.

Remark 5.3 Assume that the characteristic of k is zero. Let a, b and c be pairwise coprime
positive integers such that a +b+c¢ < Vabe, (a,b,¢) # (1,1,1) and 1 < a < b < ¢ < 300.
More than 90% in these cases satisfy (C2).
Using this program, it is possible to know ng and ro such that the negative curve is
linearly equivalent to ngA — roE (cf. Remark 4.2).
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Calculations show the following.
The maximal value of 7y is nine.
In the case where ry < 5, (C2) is satisfied, i.e.,

dimy, Sp, > o(r0 + 1)/2.

Suppose (a,b,c) = (9,10,13). In the case where the characteristic of k is zero, the
negative curve is linearly equivalent to 3054 — 9E. We know that the negative curve is
also linearly equivalent to 305A — 9F if the characteristic of k is sufficiently large. On the
other hand, the negative curve is linearly equivalent to 100A — 3E if the characteristic of
k is three as in Morimoto-Goto [9]. Therefore, the linear equivalent class that contains the
negative curve depends on the characteristic of a base field. Assume that the characteristic
is a sufficiently large prime number. Let C be the negative curve and D be a curve that
satisfies (4-1) in Remark 2.1. Suppose that D is linearly equivalent to n;A — r E. Since
C.D = 0, we know ‘

ny _ 92-10-13
i 305
Therefore, 7 must be a multiple of 305.
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LINEARITY DEFECT AND REGULARITY
OVER A KOSZUL ALGEBRA

KOHJI YANAGAWA

ABSTRACT. Let A = @,n4i be a Koszul algebra over a field K = Ao, and
*mod A the category of finitely generated graded left A-modules. The linearity
defect1d (M) of M € *mod A is an invariant defined by Herzog and Iyengar. An
exterior algebra E is a Koszul algebra which is the Koszul dual of a polynomial
ring. Eisenbud et al. showed that 1d (M) < oo for all M € *mod E. Improving
their result, we show that the Koszul dual A' of a Koszul commutative algebra
A satisfies the following.
e Let M € *mod A'. If {dimg M; | i € Z} is bounded, then 1d 41 (M) < oo0.
o If A is complete intersection, then reg,: (M) < oo and ld 4 (M) < oo for all
M € *mod A"
e« fE = Ay,...,yn) is an exterior algebra, then ldp(M) < c2(n=1)! for
M € *mod E with ¢ := max{dimgx M; | i € Z}.

1. INTRODUCTION

Let A = @D,y Ai be a (not necessarily commutative) graded algebra over a field
K := A, with dimg A; < oo for all ¢ € N, and *mod A the category of finitely
generated graded left A-modules. Throughout this paper, we assume that A is
Koszul, that is, K = A/ @,>, A: has a graded free resolution of the form

o A(=)PE) s A(=2)P) — A-1)AE) s A — K — 0.

Koszul duality is a certain derived equivalence between A and its Koszul dual
algebra A' := Ext}(K, K).

For M € *mod A, we have its minimal graded free resolution - -+ — P, — By —
M — 0, and natural numbers §; j(M) such that F; = GajezA(—j)ﬁ"'J‘(M). We call

reg,(M) =sup{j—i|i€EN,] € Z with B; ;(M) # 0}

the regularity of M. When A is a polynomial ring, reg 4 (M) has been deeply studied.
Even for a general Koszul algebra A, reg (M) is still an interesting invariant closely
related to Koszul duality (see Theorem 3.5 below).

Let P, be a minimal graded free resolution of M € *mod A. The linear part
lin(P,) of P. is the chain complex such that lin(R,); = P for all ¢ and its differ-
ential maps are given by erasing all the entries of degree > 2 from the matrices
representing the differentials of Fi. According to Herzog-Iyengar [8], we call

1da(M) :=sup{i | Hi(lin(P.)) # 0}

the linearity defect of M. This invariant is related to the regularity via Koszul
duality (see Theorem 3.8 below).
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In §4, we mainly treat a Koszul commutative algebra A or its dual A'. Even in
this case, it can occur that ld4(M) = oo for some M € *mod A (c.f. [8]), while
Avramov-Eisenbud [1] showed that reg,(M) < oo for all M € *mod A. On the
other hand, Herzog-lyengar [8] proved that if A is complete intersection or Golod
then Id4(M) < oo for all M € *mod A. Initiated by these results, we will show the
following.

Theorem A. Let A be a Koszul commutative algebra (more generally, a Koszul
algebra with reg (M) < oo for all M € *mod A). Then we have;
(1) Let N € *mod A'. Ifreg(N) < 0o (e.g. dimg N < 00), then 1d 4(N) < oo.
(2) The following conditions are equivalent.

(a) 1da(M) < oo for all M € *mod A.
(a’) 1da(M) < oo for all M € *mod A with M = @D,_,; M;.
(b) If N € *mod A' has a finite presentation, then reg(N) < co.

In Theorem A (2), the implications (a) = (a’) < (b) hold for a general Koszul
algebra.

If A is a complete intersection, then the Koszul dual A' is left (and right) noe-
therian and admits a balanced dualizing complez, hence we have reg 4 (N) < oo for
all N € *mod A' by [9]. So ld4(M) < oo for all M € *mod A by Theorem A (2).
This is a special case of the above mentioned result of [8], but the proof is different.

Let *fp A' be the full subcategory of *mod A' consisting of finitely presented
modules.

Theorem B. If A is a Koszul algebra such that1d4(M) < oo for all M € *mod A,
then A' is left coherent (in the graded contert), and *fp A' is an abelian category.
If further A is commutative, then Koszul duality gives D®(*mod A) = DP(*fp A')°P.
In particular, if A is a Koszul complete intersection, then we have

D*(*mod A) = D*(*mod A')°P.

We remark that the last statement of Theorem B also follows from the existence
of a balanced dualizing complex and [10, Proposition 4.5].

Let E := A (y1,-..,yn) be an exterior algebra. Eisenbud et al. [6] showed that
1dg(N) < oo for all N € *mod F (now this is a special case of Theorem A, since

E is the Koszul dual of a polynomial ring). If n > 2, then sup{ldg(N) | N €
*mod E' } = co. On the other hand, we will see that

(1) dg(N) < ™2V (¢ .= max{dimg N; | i € Z})

for N € *mod E. But a computer experiment suggests that the bound could be
very far from sharp. R. Okazaki and the author found a graded ideal I C E with
n =6 and ldg(E/I) = 9. This is our “best record”, but still much lower than the
value given in (1).
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2. KoszuL ALGEBRAS AND K0OSZUL DUALITY

Let A = @;cn Ai be a graded algebra over a field K := Ay with dimg A; < 00
for all i € N, *Mod A the category of graded left A-modules, and *mod A the
full subcategory of *Mod A consisting of finitely generated modules. We say M =
@D;cz Mi € *Mod A is quasi-finite, if dimg M; < oo for all 4 and M; = 0 for ¢ < 0.
If M € *mod A, then it is clearly quasi-finite. We denote the full subcategory of
*Mod A consisting of quasi-finite modules by qf A. (In this paper, we mainly treat
a Koszul commutative algebra A and its dual A' := Ext} (K, K). Even in this case,
A''is not left noetherian in general. In fact, it is known that A' is left noetherian if
and only if A is complete intersection. So *mod A'is not necessarily abelian, and we
have to treat qf A'.) Clearly, qf A is an abelian category with enough projectives.
For M € *Mod A and j € Z, M(j) denotes the shifted module of M with M(j); =
M;,;. For M,N € *Mod A, set Hom 4(M, N) := P,z Homeyoa 4 (M, N (i) to be
a graded K-vector space with Hom 4(M, N); = Homsmoa (M, N(7)). Similarly, we
also define Ext’ (M, N).

Let C(qf A) be the homotopy category of cochain complexes in qf A, and C~ (qf A)
its full subcategory consisting of complexes which are bounded above (ie, X* €
C(qf A) with X = 0 for i > 0). We say P* € C (qf A) is a free resolution
of X* € C~(af A), if each P is a free module and there is a quasi-isomorphism
P* — X*. We say a free resolution P* is minimal, if 8(P*) C mP**! for all i. Here
8 denotes the differential map, and m := @, A; is the graded maximal ideal. Any
X* € C~(qf A) has a minimal free resolution, which is unique up to isomorphism.

Regard K = A/m as a graded left A-module, and set

Bi(X*) := dimg Ext3 (X", K)-; and F'(X°):= > Bi(X")
. j€z
for X* € C~(qf A) and i,j € Z. In this situation, if P* € C™(qf 4) is a minimal
free resolution of X*, then we have P* = @jezA(fj)ﬁ§(x') foreachi € Z. Itis
easy to see that §;(X*) < oo for each ¢, j.
Following the usual convention, we often describe (the invariants of) a free res-

olution of a module M € of A in the homological manner. So we have §; ;(M) =
B;*(M), and a minimal free resolution of M is of the form

Po: - — P A — P A=) — M —0.
JEZ j€Z
We say A is Koszul, if f; j(K) # 0 implies ¢ = j, in other words, K has a graded
free resolution of the form .
Ce A=) A(=2)PH) — A(-1)AE) s A K — 0.

Even if we regard K as a right A-module, we get the equivalent definition.

The polynomial ring K|[z1,...,z,] and the exterior algebra A (y1,...,yn) are
primary examples of Koszul algebras. Of course, there are many other impor-
tant examples. In the noncommutative case, many of them are not left (or right)
noetherian. In the rest of the paper, we assume that A is Koszul.

- 149 -



Koszul duality is a derived equivalence between a Koszul algebra A and its dual
A'. A standard reference of this subject is Beilinson et al. [3]. But, in the present
paper, we follow the convention of Mori [10].

Recall that Yoneda product makes A' := @,y ExtY, (K, K) a graded K-algebra.
(In the convention of [3], A' denotes the opposite algebra of our A'. So the reader
should be careful.) If A is Koszul, then so is A' and we have (A')' & A. The
Koszul dual of the polynomial ring S := K|z, ..., T, is the exterior algebra F :=
A {y1,---,yn). In this case, since S is regular and noetherian, Koszul duality is
very simple. It gives an equivalence D?(*mod S) & Db(*mod E) of the bounded
derived categories. In the general case, the deseription of Koszul duality is slightly
technical. For example, if A is not left noetherian, then *mod A is not an abelian
category. So we have to treat qf A.

Let C'(qf A) be the full subcategory of C(gf A) (and C~(qf A)) consisting of
complexes X* satisfying

XJ':=O fori>»0ori+j<0.

And let D'(qf A) be the localization of CT(qf A) at quasi-isomorphisms. By the
usual argument, we see that DT(qf A) is equivalent to the full subcategory of the
derived category D(qf A) (and D~ (qf A)) consisting of the complex X* such that

H(X®*);=0 fori>0ori+j<0.

It is easy to see that DT(qf A) is a triangulated subcategory of D(qf A).

We write V* for the dual space of a K-vector space V. Note that if M € *Mod A
then M* := @,.;(M_;)* is a graded right A-module. And we fix a basis {5} of 4,
and its dual basis {yx} of (4;)* (= (4");). Let (X*,8) € C'(qf A). In this notation,
we define the contravariant functor Fjs : CT(qf A) — CT(qf A') as follows.

Fa(X*) @Aq+_1 ®x (XJ"P)
with the differential d = d’ + d” given by
d': Agy; ®x (Xi;p) 3a@m—( Zay,\ ®mzs € Ay, ®k (X] 2
and
d": Agy; ®x (X’_”) Sa®@mr— a®8*(m) € 4, ®k (Xi;p—l)..

The contravariant functor Fy : CT(qf A') — C'(qf A) is given by a similar way.
(More precisely, the construction is different, but the result is similar. See the
remark below.) They induce the contravariant functors F4 : D'(qf A) — D(qf A')
and F, : D(qf A') — D'(qf A).

Remark 2.1. In [10], two Koszul duality functors are defined individually. The
func_tor denoted by E4 is the same as our F4. The other one which is denoted
by E, is defined using the operations Hom (A', —) and Homy(—, K). But, in our
case, it coincides with F4 except the convention of the sign £1. So we do not give
the precise definition of E4 here.
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Theorem 2.2 (Koszul duality. c.f. [3, 10]). The contravariant functors F 4 and
F 4 give an equivalence
D'(af A) = D'(qf A')®.

The next result easily follows from Theorem 2.2 and the fact that F4(K) = Al
Lemma 2.3 (cf. [10, Lemma 2.8]). For X* € D'(qf A), we have
B3(X*) = dim H 7 (Fa(X"));-
3. REGULARITY AND LINEARITY DEFECT
Throughout this section, A = @,y 4i is a Koszul algebra.

Definition 3.1. For X* € D'(qf A), we call
reg (X*) := sup{i +j | 4,j € Z with F;(X*) #0}
the reqularity of X®. We set the regularity of the 0 module to be —oo.

We say A is left graded coherent, if any finitely generated graded left ideal of A
has a finite presentation. Let *fp A be the full subcategory of *mod A consisting of
finitely presented modules. As is well-known, A is left graded coherent if and only
if *fp A is an abelian subcategory of *mod A.

Lemma 3.2. If reg,(M) < oo for all M € *mod A then A is left noetherian.
Similarly, if reg (M) < oo for all M € *fp A then A is left graded coherent.

Proof. Assume that A is not left noetherian. Then there is a graded left ideal I
which is not finitely generated. Clearly, A/I € *mod A, but 8, ;(A/I) = Bo,;(I) #
0 for arbitrary large j and reg,(A/I) = oo.

Assume that A is not left graded coherent. Then there is a graded left ideal I
which is finitely generated but not finitely presented. Clearly, A/I € *fp A, but
Ba,;(A/I) = B, ;(I) # 0 for arbitrary large j and reg4(A/I) = oo. O0

Remark 3.3. The author does not know any example of a Koszul algebra A which
admits M € *mod A with reg,(M) = oo but f;(M) = 3,5 5, (M) < oo for all
i. In particular, he does not know a left noetherian (resp. graded coherent) Koszul
algebra A such that reg (M) = oo for some M € *mod A (resp. M € *fp A).

Lemma 3.4. (1) For M € of A, we have
reg (M) < oo = B;(M) < oo for alli = M has a finite presentation.
(2) If X* = Y*® — Z* — X°[1] is a triangle in D'(qf A), then we have
reg,(Y*) < max{reg,(X"), rega(2) }-

Ifrego(X*) # reg4(Z°) + 1, then equality holds.
(3) If M € *mod A has finite length, then reg,(M) < max{1 | M; # 0}.
(4) For X* € D'(qf A), we have

reg(X*) < sup{reg,(H'(X"))+i|i€Z}.

The next result directly follows from Lemma 2.3.
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Theorem 3.5 (Eisenbud et al [6], Mori [10]). For X* € D'(qf A), we have
reg(X*®) = —inf{i | H'(Fa(X*)) #0}.

We say a complex X* € D'(qf A) is strongly bounded, if X* is bounded (i.e.,
Hi(X*) =0 for i > 0 or i < 0) and reg,4(X*) < oo. Let D®(gf A) be the full
subcategory of DT(qf A) consisting of strongly bounded complexes. By Lemma 3.4
(2), D*(qf A) is a triangulated subcategory of D(qf A).

The next result follows from Theorem 3.5.

Proposition 3.6. The (restriction of) functors F4 and F,: give an egquivalence
D®(qf A) = D (gf A')>.

Let (P*,8) € C'(qf A) be a complex of free A-modules such that 8(P?) C mP+!,
in other words, P* is a minimal free resolution of some X* € CT(qgf A). According
to [6], we define the linear part lin(P*) of P* as follows:

(1) lin(P*) is a complex with lin(P*)* = P*.

(2) The matrices representing the differentials of lin(P*) are given by “erasing”
all the entries of degree > 2 (i.e., replacing them by 0) from the matrices
representing the differentials of P*.

It is easy to check that lin(P*) is actually a complex. But, even if P, is a minimal
free resolution of M € gf A, lin(P.) is not acyclic (i.e., H;(lin(R,)) # 0 for some
i > 0) in general.

Definition 3.7 (Herzog-Iyengar [8]). Let M € qf A and P, its minimal graded free
resolution. We call

1d4(M) := sup{: | H;(lin(P.)) #0}
the linearity defect of M.

We say M € *mod A has a linear (free) resolution if there is some ! € Z such
that f; ;(M) # 0 implies that j — ¢ = [. In this case, the minimal free resolution
P, of M coincides with lin(P.), and ld4(M) = 0. As shown in {10, Theorem 5.4],
we have

reg (M) =inf{i | M>; == @Mj has a linear resolution}.
j2i
For i € Z and M € qf A, My;y denotes the submodule of M generated by the degree
i component M;. We say M € qf A is componentwise linear, if M(; has a linear

resolution for all 7 € Z.
As shown in [11, 12], for M € qf A, we have

1d4(M) = inf{i | Q:(M) is componentwise linear },

where (M) is the i*® syzygy of M.

Clearly, we have 1d4(M) < proj.dim4(M). The inequality is strict quite often.
For example, we have proj.dim,(M) = oo and 1d4(M) < oo for many M. On the
other hand, we sometimes have 1d4(M) = oo.

-152-



The next result connects the linearity defect with the regularity via Koszul du-
ality. For a complex X*, H(X*) denotes the complex such that H(X*)' = H'(X*)
for all i and all differentials are 0.

Theorem 3.8 (cf. [6, Theorem 3.1)). Let X* € D'(qf A), and P* a minimal free
resolution of F4(X*) € D'(qf A'). Then we have

lin(P*) = F4 0 H(X").
Hence, for M € of A,
1d4(M) = sup{ reg . (H'(Fa(M))) +1i | i € Z}.

4. Koszul. COMMUTATIVE ALGEBRAS AND THEIR DUAL

If Ais a Koszul commutative algebra and S := Symj A; is the polynomial ring,
then we have A = S/I for a graded ideal I of S. In this situation, A is Golod
if and only if J has a 2-linear resolution as an S-module (i.e., §;;() # 0 implies
j = i+2), see [8, Proposition 5.8]. We say A comes from a complete intersection by
a Golod map (see [2, 8]), if there is an intermediate graded ring R with S - R — A
satisfying the following conditions:

(1) R is a complete intersection.
(2) Let J be the graded ideal of R such that A = R/J. Then J has a 2-linear
resolution as an R-module.
If this is the case, R is automatically Koszul. Clearly, if A itself is complete inter-
section or Golod, then it comes from a complete intersection by a Golod map.

Example 4.1. Set S = K|[s,t,u,v,w] and A = S/(st,uv,sw). Then A is neither
Golod nor complete intersection, but comes from a complete intersection by a Golod
map (as an intermediate ring, take S/(st,uv)).

The next result plays a key role in this section.

Theorem 4.2 (Avramov-Eisenbud [1]). Let A be a Koszul commutative algebra,
and S := Symy A; the polynomial ring. Then we have reg,(M) < regg(M) < oo
for all M € *mod A.

On the other hand, even if A is Koszul and commutative, Id4(M) can be infinite
for some M € *mod A, as pointed out in [8]. But we have the following.

Theorem 4.3 (Herzog-Iyengar [8]). Let A be a Koszul commutative algebra. If
A comes from a complete intersection by a Golod map (e.g., A itself is complete
intersection or Golod), then 1d4(M) < oo for all M € *mod A.

Now we are interested in reg 4 (/N) and 1d 4:(N) for a Koszul commutative algebra
A. First, we recall that a graded left A'-module has a natural graded right A'-
module structure in this case, and vice versa (c.f. [8, §3]). In particular, A' is left
noetherian (resp. graded coherent) if and only if it is right noetherian (resp. graded
coherent).

Theorem 4.4. If A is a Koszul commutative algebra, we have the following.
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(1) Let N € *mod A'. Ifreg,(N) < 0o, then 1d 4 (N) < oo.
(2) The following conditions are equivalent.
(a) 1da(M) < oo for all M € *mod A.
(') 1d4(M) < oo for all M € *mod A with M = ,_,; M;.
(b) reg,:(N) < oo for all N € *fp A".
(3) Let N € of A'. If there is some ¢ € N such that dimg N; < ¢ for alli € Z,
then 1d 41 (N) < o0.

Proof. (1) The complex Fj4:(N) is always bounded above. Hence if reg ,(N) < oo
then H'(F4(N)) # 0 for only finitely many ¢ by Theorem 3.5. Thus the assertion
follows from Theorems 3.8 and 4.2.

(2) The implication (a) = (a') is clear.

(a') = (b): First assume that N € *fp A' has a presentation of the form
A'(~1)%" — A'®% — N — 0. Then there is M € *mod A with M = @,_o, M;
such that F4(M) gives this presentation. Since 1d4(M) < oo, we have reg 4 (N) <
oo by Theorem 3.8.

Next take an arbitrary N € *fp A'. For a sufficiently large s, N», := €, NV; has
a presentation of the form A'(—s — 1)® — A'(—s)®% — N5, — 0. (To see this,
consider the short exact sequence 0 — N>; — N — N/N>, — 0, and use the fact
that reg,(N/N>;) < s.) We have shown that reg 4 (N>;) < 00. So reg,(N) < oo
by the above short exact sequence.

(b) = (a): By Lemma 3.2, A' is left graded coherent. So *fp A' is an abelian
category. Each term of F4(M) is a finite free A'-module, in particular, F4(M) €
C-(*fp A'). Hence we have H'(F4(M)) € *fp A' for all i. By the assumption,
reg 41 (H!(Fa(M))) < o0o. On the other hand, H*(F4(M)) # 0 for finitely many 4
by Theorems 3.5 and 4.2. So the assertion follows from Theorem 3.8.

(3) Let S be the set of all graded submodules of A®¢ which are generated by
elements of degree 1. By Brodmann [4], there is some C € N such that reg, (M) <
regg(M) < C for all M € S. Here S denotes the polynomial ring Symy A;. To
prove the assertion, it suffices to show that reg,(H*(F4(N)))+i < C for all i. We
may ‘assume that i = 0. Note that H°(F,:(N)) is the cohomology of the sequence

Aok (M) I Ak (No)* L Aok (N-y)".

Since Im(8°)(—1) is a submodule of A®d4mkx N-1 generated by elements of degree 1
and dimg N_; < ¢, we have reg,(Im(8°)) < C. Consider the short exact sequence

0 — Ker(8°) — A ®x (Np)* — Im(8°) — 0.

Since reg,(A ®x (Np)*) = 0, we have reg,(Ker(8°)) < C. Similarly, we have
reg,(Im(87!)) < C. By the short exact sequence

0 — Im(07') — Kelj(ﬁo) — Ho(]:A!(N)) — 0,
we are done. O

Remark 4.5. In Theorem 4.4 (2), the implications (a) = (a’) < (b) hold for a
general Koszul algebra.
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If A is a (not necessarily commutative) Koszul algebra satisfying reg (M ) < o0
for all M € *mod A, then Theorem 4.4 (1) and (2) hold for A.

By the above remark and Lemma 3.2, we have the following.

Corollary 4.6. Let A be a Koszul algebra. If1da(M) < oo for all M € *mod 4,
then A' is left graded coherent.

In [2, Corollary 3], Backelin and Roos showed that if A is a Koszul commutative
algebra which comes from a complete intersection by a Golod map then A' is
left graded coherent. Moreover, they actually proved that reg,(N) < oo for all
N € *p A' (see [2, Corollary 2] and [8, Lemma 5.1]). So we have 1d4(M) < oo for
all M € *mod A by Theorem 4.4, that is, we get a result of Herzog and Iyengar
(Theorem 4.3). Their original proof is essentially based on this line too. While, in
the case when A is complete intersection, we have another proof using the notion
of balanced dualizing complez as stated in the introduction.

Lemma 4.7. Assume that teg i (N) < 0o for all N € *fp A'. Let X* € D*(qf A')
be a bounded compler. Then X* is strongly bounded if and only if H(X*) € *fp A'
for all i.

Proof. (Sufficiency): If H¥(X*) € *fp A', then reg,(H*(X*)) < oco. Since X* is
bounded, we have reg,(X*®) < oo by Lemma 3.4 (4).

(Necessity): Assume that X* is strongly bounded (more generally, Bi(X®) < ©
for all i). Let P* be a minimal free resolution of X*. Clearly, P* € C~(*fp Ah.
By Corollary 4.6, *fp A' is an abelian category. Hence each H'(P*) (= H'(X"))
belongs to *fp A" m]

Theorem 4.8. Let A be a Koszul commutative algebra such that 1d4(M) < oo for
all M € *mod A (e.g. A comes from a complete intersection by a Golod map).
Then Koszul duality gives an equivalence D(*mod A) = Db(*fp A')°P.

Proof. By Proposition 3.6, it suffices to show that D*(*mod A) = D (qf A) and
Db(*p A') = D*(of 4).

Let us consider the first equality (this holds for a general Koszul commutative
algebra). If X* € D*(*mod A), then reg,(X*®) < co by Lemma 3.4 (4) and The-
orem 4.2. Hence we have X* € D®(qf A). Conversely, if Y* € D®(qf A), then
Bi(Y*) < oo for all 4, and the minimal free resolution of Y* is a complex of finite
free modules. So we have Y* € Db(*mod A). Hence Db(*mod A) = D**(gf A).

Next we will show that Db(*fp A') = D*(qf A'). By Corollary 4.6, *fp A' is an
abelian category, and closed under extensions in gf A'. Since a free A'-module of
finite rank belongs to *fp A', this category has enough projectives. So we have
Dh(*p A') = Db ,(af A) = D*(qf A'). Here the first equality follows from [7,
Exercise I11.2.2] and the second one follows from Lemma 4.7. d

Corollary 4.9. If A is a Koszul complete intersection, then Koszul duality gives
DP(*mod A) = Db(*mod A')°.

In the rest of the paper, we study the linearity defect over the exterior algebra
E = A{y,...,yn). Eisenbud et al. [6] showed that ldg(N) < oo for all N €
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*mod E. Now this is a special case of Theorem 4.4. But the behavior of ldg(N) is
still mysterious.

If n > 2, then we have sup{ldg(N) | N € *modE} = oo. In fact, N :=
E/soc(E) satisfies 1dg(N) > 1. And the i*® cosyzygy Q_;(N) of N (since E is
selfinjective, we can consider cosyzygies) satisfies ldg(Q2—;(N)) > i. But we have an
upper bound of 1dg(N) depending only on max{dimg N; | i € Z} and n. Before
stating this, we recall a result on regg(M) for M € *mod S.

Theorem 4.10 (Brodmann and Lashgari, [5, Theorem 2.6]). Let S = k[z1,...,Zy)
be the polynomial ring. Assume that a graded submodule M C S®° is generated by
elements whose degrees are at most d. Then we have regg(M) < c™(2d)™~ ",

When ¢ = 1 (i.e., when M is an ideal), the above bound is a classical result,
and there is a well-known example which shows the bound is rather sharp. For our
study on ldg(N), the case when d =1 (but c is general) is essential.

Proposition 4.11. Let E = A (y1,...,Ya) be an ezterior algebra, and N € *mod E.
Set ¢ := max{dimg N; | i € Z}. Thenldg(N) £ cM2(r-1!,

Proof. Similar to the proof of Theorem 4.4 (3). a
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GOTZMANN IDEALS OF THE POLYNOMIAL RING

SATOSHI MURAI

ABSTRACT. Let A denote the polynomial ring in n variables over a field. All the
Gotzmann ideals of A with at most n generators will be classified. This is a joint
work with Takayuki Hibi.

1. INTRODUCTION

Let A = K|[zy,...,Tn) denote the polynomial ring in n variables over a field K
with each degz; = 1. Let <ix be the lexicographic order on A induced by the
ordering z; > T3 > -+ > Zn. Recall that a lezsegment ideal of A is a monomial
ideal I of A such that, for monomials u and v of A with u € I, degu = degv and
U <jex U, one has v € I. Let I be a homogeneous ideal of A and I'** the (unique)
lexsegment ideal ([2] and [11]) with the same Hilbert function as I. A homogeneous
ideal I of A is said to be Gotzmann if the number of minimal generators of I is
equal to that of I'"™*. Gotzmann ideals were introduced by Herzog and Hibi [9] in
the study of maximal Betti numbers of ideals for a given Hilbert function. Indeed,
Herzgo and Hibi proved that a homogeneous ideal I is Gotzmann if and only if the
graded Betti numbers of I are equal to those of I'**. Our goal is to classify all the
Gotzmann ideals of A generated by at most n homogeneous polynomials.

A homogeneous ideal I of A is said to have a critical function if '™ is generated
by at most n monomials. Let 1 < s <n and fi,..., f, homogeneous polynomials
with

fi € K[Zi, Tis1y - - -, Tn)
for each 1 < i < s and with deg f, > 0. In [7] the ideal (s, ,) of A defined by

(1) Ity = (h21, fifoza, s fifar o fo1 T, fifar- fs)

was introduced. A homogeneous ideal I of A is called canonical critical if I =
If,,..f,) for some homogeneous polynomials fi,..., fs with f; € K (T3, Tig1s - - - 2 Tn)
for each 1 < i < s and with deg f; > 0, where 1 < s < n.

Theorem 1.1. Given a homogeneous ideal I of A = K|z,...,Zy], the following
conditions are equivalent:
(i) I has a critical Hilbert function;
(ii) there ezists a linear transformation ¢ on A such that o(I) is a canonical
critical ideal;
(iii) I is a Gotzmann ideal generated by at most n_homogeneous polynomials.

The author is supported by JSPS Research Fellowships for Young Scientists.
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2. UNIVERSAL LEXSEGMENT IDEALS AND CANONICAL CRITICAL IDEALS

In this section we study universal lexsegment ideals and canonical critical ideals.
A monomial ideal I of A = K|z;,...,z,] is said to be universal lezsegment if for all
integers m > 0 the ideal I- K[z, . .., Znim] is a lexsegment ideal of K[z1,. .., Znim)-
Universal lexsegment ideals were introduced by Babson, Novik and Thomas [1]. We
recall the following easy fact.

Lemma 2.1. Let I be a monomial ideal of A. The following conditions are equiva-
lent:

(1) I 1is universal lexsegment;
(1) I is a lexsegment ideal generated by at most n monomials;
(ili) there ezist integers by,...,bs € Zyo with 1 < s < n such that

(2) ‘ I= (:L.li"1+l 8 :L_lz)z+1, ,z8 l.zz . bs—llxbs'l'l)
Proof. First, we will show that (ii) implies (iii). Let I = (us,...,us) be a lexsegment
ideal with s < n. Suppose degu; < --- < u; and u; >jex Uiy if degu; = deguyyg.

Since u; = z:‘lieg"‘ one has u; = a:'l’l“ Let 1 < k < min{n, ¢} and suppose that

Ug_y = zl{ zgz xi" 11+1 Since the monomial ideal (uy,...,ux-1) is lexsegment, it
follows that the smallest monomial with respect to <jex of degree deg uy, belonging to
(u1,---,uk-1) s uk_lsz. Since uy is the biggest monomial with respect to <jx which
satisfies deg uy = deg(ux—12%) and uy <iex ug—17%, we have ug = (ug—1/Tp-1)zo .
Thus ug = 2222 - - 247128+ as desired.

The implication (iii) = (i) is easy. We will show that (i) implies (ii). Suppose
that I is universal lexsegment with |G(I)] > n + 1. What we must prove is |
is not universal lexsegment. Since I’ = I - K[z1,...,Zn41] is a lexsegment ideal
with |G(I')] > n + 1, there exists a lexsegment ideal J of K|z, ..., Zn41] such that
G(J) € G(I') and |G(J)| = n+ 1. Then, by the implication (ii) = (iii), J must
contains a generator which is divisible by z,4;. Since G(J) C G(I') = G(I) C A,
this is a contradiction. g

Example 2.2. (a) The lexsegment ideal (z2, z,72) of K|[z1,z] is universal lexseg-
ment. In fact, the ideal (2%, z,22) of K|z1,...,Z.x) is lexsegment for all m > 2.

(b) The lexsegment ideal (23, r2z,, 7,1%) of K|z1, -] is not universal lexsegment.
Indeed, since 2173 <iex Z2z3 in K21, T, 73], the ideal (23, 2225, £,23) of K [z1, T3, 23]
is not lexsegment.

By using Lemma 2.1, it is easy to characterize critical Hilbert functions. Indeed,
it was shown in [12] that the Hilbert function H(I,t) of the universal lexsegment
ideal (2) is given by

3) H(I)t)z(t—a1+n—1')+m+(t—a3+n—s>,

n-—1 n—s
where the sequence (a1, ay, . .. ,as) is defined by setting
s =degzh - zhabt 1<i<s.

- 158 -



Since a lexsegment ideal with a given Hilbert function is uniquely determined,
it follows that a homogeneous ideal I of A is critical if and only if there exists a
sequence (ag,. .. ,as) of integers with 0 < a; <apg < --- < a,, where 1 < s < n, such
that the Hilbert function of I is of the form (3).

Definition 2.3. A homogeneous ideal I of A with the Hilbert function (3) will be
called a critical ideal of type (ay,as,. .. ,as).

Next, we study the property of canonical critical ideals. We require the following
obvious facts.

Lemma 2.4. Let 1 < s < n. Fiz homogeneous polynomials fi,..., fs—1 with each
fi € K[zi,...,2n). Let g € K|zs,...,Tn) be a homogeneous polynomial with deg g >
0. Then

oo+ forg @ (121, ffazar s fufo - foaZoms).

Corollary 2.5. As a vector space over K the ideal (1) is the direct sum

The above facts implies that canonical critical ideals are critical and Gotzmann.

Proposition 2.6. Let I;,, .s,) denote the ideal (1).
(a) Iisy,...z,) 18 a critical ideal of type (ay,...,as), where a; = deg fifa- - fizi,
i=1,...,s—1,andas;=deg fifo - fs-
(b) Is,,...5,) s minimally generated by

(5) {flzla-“afle"'fs—lxs—l,fle"'fs}~

(¢) Iis,..ss) 18 Gotzmann.

Proof. The direct sum decomposition (4) says that the Hilbert function of I(,,...z,)
is of the form (3) and, in addition, that I,,.s,) is minimally generated by (5).
Thus (a) and (b) follow. Since the lexsegment ideal with the Hilbert function (3) is
the universal lexsegment ideal (2), one has |G((I(y,,....s.))'™)| = s. Hence I(5,,.s,) is
Gotzmann, as required. O

3. PROOF OF THEOREM 1.1

In the previous section, we already see that canonical critical ideals are Gotzmann
ideals having at most n homogeneous generators. On the other hand, it is clear from
the definition that Gotzmann ideals generated by at most n homogeneous generators
have a critical Hilbert function. Thus, to complete the proof of Theorem 1.1, what
we must prove is any critical ideal can be transformed into canonical critical ideals
by a linear transformation of A.

For a monomial u of A, we write m(u) for the largest integer j for which z; divides
u. A monomial ideal I of A is called stable if, for each monomial u belonging to
G(I) and for each 1 < i < m(u), one has (z;u)/Tm(w) € I.
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Lemma 3.1. A monomial ideal I of A which is both critical and stable is universal
lezsegment.

Proof. (Sketch.) Suppose |G(I'**)| = s. It follows from [12] that the projective
dimension of S/I is equal to s. Thus, by the Eliahou-Kervaire resolution [6], it
follows that there exists a monomial u, € G(I) such that m(u;) = s. Then, by
using the definition of stable ideals, a straightforward computation implies that
there are monomials uy, . ..,us—1 € G(I) such that m(ux) =kfork=1,2,...,s—1
and degu; < --- < degu, (e.g., [10, Lemma 1.3]). Since |G(I)| < |G(I'**)| = s, we
have G(I) = {u1, ..., us}-

Clearly, u; = :cll"’"l for some b; > 0. Then, by arguing inductively, a routine
computation implies that I = (uy,...,u,) is an ideal of the form (2). ]

Let I be an ideal of A. When K is infinite, given a monomial order o on A, we
write gin, (I) for the generic initial ideal ([5] and [8]) of I with respect to o.

Lemma 3.2. Let I be a critical ideal of A. Then, for an arbitrary monomial order
o on A induced by the ordering T; > -+ > Zn, the generic initial ideal gin,(I) is
stable. Thus in particular gin, (I) is universal lezsegment.

Proof. Since gin, (/) is a critical monomial ideal, it follows from [12, Corollary 1.8]
that gin,(I) is Gotzmann. Thus in particular gin,(I) is componentwise linear [9].
Hence [3, Lemma 1.4] says that gin__ (gin,(I)) = gin, (/) is stable. Here < is
the reverse lexicographic order on A induced by the ordering z; > --- > z,. Since
gin, (1) is both critical and stable, it follows from Lemma 3.1 that gin, (I) is universal
lexsegment. O

Note that the above lemma is obvious in characteristic 0, since generic initial
ideals are stable in characteristic 0.

Lemma 3.3. Suppose that a homogeneous ideal I of A is a critical ideal of type

(a1,--.,as), where 2 < s < n. Then there erists a homogeneous polynomial f of A
with deg f = a; — 1 together with a homogeneous ideal J of A such that
I=f-J

Proof. (Sketch.) By considering an extension field, we may assume that K is infinite.
Then there is a linear transformation ¢ with inc,, (¢(I)) = gin,,_(1). Considering
¢(I) instead of I, one may assume that ine, (I) = gin.,_ (/). Lemma 3.2 says that
- ing, (1) is universal lexsegment. Hence

g (1) = (B3, 2l gt aliiated),

where b; = a; —a;_1, 1 <i<s, with gp = 1.

To simplify the notation, let u; = z% ---z% fori =1,...,s. Let G = {g1,...,9:}
be a Grobner basis of I, where g; is a homogeneous polynomial of A withine,_ (g:) =
u;z; foreach 1 <:<s,and G' = {gz,...,gs}. We show that G’ is a Grobner basis

with respect to <jex. For 2 < ¢ < j < s, consider the S-polynomial
S(9i,95) = (us/ui)z;9: — Tig;-
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Then, since ing,, (g1) >1ex in<,, (S(gi,g;)) and since G is a Grobner basis, a remain-
der of the S-polynomial of g; and g; with respect to G’ can be 0. Hence G isa
Grobner basis with respect to <je, as desired.
Now, we prove Lemma 3.3 by using induction on s. Suppose s > 2 (the proof for
= 2 is similar). Let J be the ideal of A generated by G'. Since

H — _ bif b2+l b2 b3+l b2 bs—1,_ bs+1
m<,ex(J)---(ug:rg,...,ut,:t:,;)--:c1 (z2 2222,z T T Y

and since
(1:324'1’ zgz:rga'l'l’ ce 7132 T zgfllzls,s+l)
is universal lexsegment in K|zs,...,Zns,Z1], the ideal J is a critical ideal of type
(ag,...,as). The induction hypothesis guarantees the existence of a homogeneous
polynomial fo of A with deg(fo) = a» — 1 which divides each of gs,...,g,. Since
ine, (fo) divides inc,, (g;) = w;z; for each 1 <1 < s, one has ing,, (fo) = ug. Let
g, = gi/fo for i = 2,...,s. Thus in particular in,,(g3) = u2Z2/uz = Z2. '
Now, divide the S-polynomial of g; and g» by G, say,

122+191 - z1(fogs) = Qg1 + g2(fogs) + - + 9s(fo3s),

where qy, ..., qs are homogeneous polynomials of A with

ing, (q101) Siex ity (252 91 — 21(fog2))

and with
iy, (0k(fogh)) Stex ey (2527191 — Z1(f092))
for each 2 < k < s. Let

foh = q2(fogs) + -+ + as(fogs)- -

Thus

(=2 — q1)g1 = fo(z195 + R).-
Since ine, (222! — @) = 7", ing (1) = 2% and ing, (7195 + B) = Z173,
it follows that z1g} + h can divide neither z3**! — gy nor g1. Thus z:9; + h is a

product (z; + hy)(z2+ hs), where by and h, are homogeneous polynomials of A with
deg hy = deg hy = 1, such that z, + h; divides g and z, + hy divides :t:';?"'1 —qp- Let
f =g1/(z1+ h1). Then deg f = a; — 1 and f divides both g; and fo. O

We are now in the position to give a proof of Theorem 1.1.

Proof of Theorem 1.1. What we must prove is (i) implies (ii). This will be achieved
by induction on s. Let I C A be a critical ideal of type (a1,... ,as). If s =1, then
the statement is obvious.

Let s > 1. Lemma 3.3 guarantees that I = f - J, where f is a homogeneous
polynomial of A with deg f = a; — 1 and where J is a homogeneous ideal of A.
The Hilbert function of J is H(J,t) = H(I,t+ a1 — 1). Hence J is a critical ideal
of type(l,a; — a; + 1,...,a, — a1 + 1). Since H(J,1) # 0, there exists a linear
transformation ¢ on A with z, € ¢(J). Let J' be the ideal

J =p(J)NKlzs,...,Zn)
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of K[zs,...,Z,). Then

o(J) = z:1K|z4, . .. ,1:,1]@.]'.

A straightforward computation implies that the ideal J' of K[z,,.. ., z,) is a critical
ideal of type (ag—a; +1,...,a;—a; +1). The induction hypothesis then guarantees
the existence of a linear transformation v on K]z, ...,z,] such that ¢(J') is a
canonical critical ideal of K|z,,...,z,], say

P(J') = (faza,. .-, f2-* fsm1Tem1, f2 -+ f),
where f; € K|z, Tis1,-..,Tn) for each 2 < i < s and where deg f; > 0. Now,
regarding 9 to be a linear transformation on A by setting %(z1) = z;, one has

(Wop)I) = ((Wop)(f) (Yop)(J))
' (Yo () W@ AP T)
= Wou)(f) (mADv()).
Let fi = (¥ o )(f). Then it follows that
(W o)) = (hzy, fifaTa,. s fifer  fs1Zsor, fifar - fo)

as desired. O
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Grobner bases for the polynomial ring
with infinite variables and their
applications

Kei-ichiro Iima and Yuji Yoshino
(Okayama University)

1 Introduction

Recall that a sequence A = (A1, A2,...,A,) of positive integers is called a

partition of a non-negative integer n if the equality A\ + A2 +--- + A=n

holds and A; > Ay > --- > A > 1. In such a case we denote it by A - n.
We are concerned with the following sets of partitions:

A(n) ={ AFn | x=%£1 (mod 6) },
() ={ Abn | =21 (mod3), A >X>-->X\}

(n) ={ Ak n | each ) is odd, and
any number appears in A;’s at most two times }.

It is known by famous Schur’s equalities that all these sets A(n), B(n) and
C(n) have the same cardinality for all n € N. It is also known that the
one-to-one correspondences among these three sets are realized in some com-
binatorial way using 2-adic or 3-adic expansions of integers. In this article we
reconstruct such one-to-one correspondences by using the theory of Grébner
bases. For this, we need to extend the theory of Grobner bases to a polyno-
mial ring with infinitely many variables.

2 | Grobner bases

Throughout this article, let k be any field and let S = k[d:l,l'z, ] be a
polynomial ring with countably infinite variables. We denote by Z >0 ) the set
of all sequences a = (a1, az,...) of integers where a; = 0 for all : “but finite
number of integers. Also we denote by Mon(S) the set of all monomials
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"in S. Since any monomial is described uniquely as z* = [], z* for some
a = (a,a,...) € Z(;g), we can identify these sets:

Mon(S) = Z(;g).

If we attach degree on S by degz; = d;, then a monomial z° has degree
degz® = Y 2, a;d;. In the rest of the paper, we assume that the degrees d;’s
are chosen in such a way that there are only a finite number of monomials of
degree d for each d € N. For example, the simplest way of attaching degree
is that degz; =i for all i € N.

Definition 2.1. A total order > on Mon(S) is called a monomial or-
der if (Mon(S), >) is a well-ordered set, and it is compatible with the
multiplication of monomials, i.e. z® > zP implies z°z% > z°z for all
z°, %, ¢ € Mon(S).

Note that the ordering £, > 75 > z3 > - - - is not acceptable for monomial
order, since it violates the well-ordering condition. On the other hand, if we
are given any monomial order >, then, renumbering the variables, we may
assume that z; < zZp <zZ3 < ---.

The following are examples of monomial orders on Mon(S).

Example 2.2. Let a = (a1, a»,...) and b= (b1, bs,...) be elements in Zg’g).
(1) The pure lexicographic order > is defined in such a way that z° >, z°
if and only if a; > b; for the last index ¢ with a; # b;.

(2) The degree (resp. anti-) lexicographic order >4 (resp. >4u) is defined
in such a way that z° >4 z° (resp. z° >4, 7°) if and only if either
degz® > deg z° or degz® = deg z® and a; > b; for the last (resp. first)
index ¢ with a; 7—‘- bi-

(3) The degree (resp. anti-) reverse lexicographic order >4, (resp. >gari)
is defined as follows: z° >4 b (resp. T° >4 7°) if and only if either
deg z® > deg z® or deg z° = deg z® and a; < b; for the first (resp. last)
index 7 with a; # b;.

These monomial orders are all distinct as shown in the following example

in which degz; =i fori € N:
2 2 4
Ty >a I1T3 >4 I3 >a IiTy >4 7,

2 2
>dal T1T2 >dal  T1T3 >dal T3 >dal T4,

2 2 4
T4 >drl I3 >art T1T3 >dnl TiT2 >drl I,

2 2
>darl T1Z2 >darl T3  >darl T1T3 >darl T4
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Now suppose that a monomial order > on Mon(S) is given and we fix it.
Then, any non-zero polynomial f € S is expressed as

= 1z 4 0z 4 - + ¢z,

where ¢; # 0 € k and z°®) > z¢@ > .. > z¢M. In such a case, the
leading term, the leading monomial and the leading coefficient of f are given
respectively as £t(f) = aiz®®, em(f) = z%1) and £e(f) = ¢;. For an ideal
I(# (0)) € S, the initial ideal in(I) of I is defined to be the ideal generated
by all the leading terms £¢(f) of non-zero polynomials f € I. The Grobner
base of I is defined similarly to the ordinary case.

Definition 2.3. A subset G of an ideal I is called a Grobner base for I if
{¢t(g) | g € G} generates the initial ideal in(I).

Since S is not a Noetherian ring, one cannot expect that there always ex-
ists a finite Grobner base G for a given ideal J. But any argument concerning
Grobner bases for an ideal of S can be reduced to the ordinary case for the
polynomial rings with finite variables by the following theorem.

Theorem 2.4. Let I be an ideal of S. For a positive integer n, we set S =
k|z1,Za, . .., Tn] which is a polynomial subring of S and set I n =1n8SM.
Now let G be a subset of I.

(1) Suppose that each G N S™ is a Grébner base for I'™ for alln € N,
then G is a Grobner base for I.

(2) The converse holds when the monomial order is the pure lezicographic
order.

The following division algorithm is proved using Theorem 2.4.

Theorem 2.5 (Division algorithm). Let G be a subset of S. Then any
non-zero polynomial f € S has an ezpression

f=ho+fage+-+ fogs + [
with g; € G and f;, f' € S such that the following conditions hold:
(1) If we write f' = Yt c;z®® with ¢ # 0 € k, then 220 ¢ {in(g) | g €
G}S for eachi=1,2,...,t.
(2) If figi # O, then fm(figi) < &m(f).

Any such f' is called a remainder of f with respect to G. Note that a
remainder is in general not necessarily unique. But if G is a Grébner base
for I = GS, then a remainder of f with respect to G is uniquely determined.
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3 Applications

Let S = k[z,,z,,...] be a polynomial ring with countably infinite variables
as before. We regard S as a graded k-algebra by defining deg(z;) = ¢ for
each i € N, and denote by S,, the part of degree n of S for n € N. Note that
there is a bijective mapping between the set of partitions of n and the set
of monomials of degree n. In fact, the correspondence is given by mapping
a partition A = (A1, )z,...,A;) F n to the monomial z* = z,_---T,,Ty, of
degree n.

Let W be any subset of N satisfying pW C W for an integer p > 2,
where pW = {pw | w € W}. In this case, we consider a polynomial subring
R = k[z; | i € W] of S. We are interested in the following two subsets of
partitions of n:

X(n) ={AFn | \; € W\ pW for each i },

Y(n) ={AFn | A\ €W for each i, and
any number appears among A;’s at most p — 1 times}.

Theorem 3.1. Under the circumstances above, consider the set of polyno-
mials G = {zf — 2, | i € W} in R. We adopt the degree anti-reverse lezi-
cographic order on the set of monomials in R. Then G is a reduced Grébner
base for the ideal GS.

Furthermore, define a mapping ¢ : X(n) — Y(n) so that z#® is a re-
mainder of £* with respect to G for any A € X(n). Then ¢ is a well-defined
bijective mapping.

In particular we have that | X (n)| = [Y'(n)| in the case above. Therefore,
just considering the generating functions of |X(n)| and |Y(n)|, we see that
the following functional equality holds;

1 _ 2 (>-1)
T = [T+t +8m+ .. 4 4-m),
meW \pW meW

Example 3.2. Recall that A(n), B(n) and C(n) are the sets of partitions
given in Introduction.

) EW={neN|n==1 (mod3)}andp 2, then X(n) = A(n) and

Y(n) = B(n).
(2) W ={neN|n=1 (mod2)} and p = 3, then X(n) = A(n) and
Y(n) = C(n).
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As a consequence of all the above, we obtain one-to-one correspondences
among A(n), B(n) and C(n) by using the theory of Grobner bases.

For another example, let
Pn) = {AFn | X=%£1 (mod5?)},
Q(n) ={A|"TL | /\,'—Ai+122}.
By Rogers-Ramanujan equality, it is known that the sets P(n) and Q(n)
have the same cardinality for each n € N. If we can find an ideal I as in the

following question, then we will obtain a one-to-one correspondence between
P(n) and Q(n) by using division algorithm.

Question 3.3. Find an ideal I of S and a monomial order > on Mon(S)
satisfying S/I = k[{z; | i = £1 (mod 5)}] and in(I) = (22, z:Ti11 | i € N).
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Remarks on equivalences of additive
subcategories ‘

Naoya Hiramatsu and Yuji Yoshino
(Okayama University)

Abstract
We study category equivalences between some additive subcategories
of module categories. As its application, we show that the group of aut-
ofunctors of the category of reflexive modules over a normal domain is
isomorphic to the divisor class group.

1 A necessary condition for equivalences of
additive subcategories

Let R be a commutative ring. We denote the category of all finitely generated R-
modules by R-mod, and the full subcategory of R-mod consisting of all reflexive
modules by ref(R). If R is a Cohen-Macaulay local ring, we denote the category
of maximal Cohen-Macaulay modules by CM(R) as a full subcategory of R-mod.
By an additive subcategory we always mean a full subcategory which is closed
under finite direct sums and direct summands.

Theorem 1. Let A and B be commutative rings. Let € (resp. D) be an additive
full subcategory of A-mod (resp. B-mod) which contains a nontrivial free module.
If there is a category equivalence between € and D, then A = B as a ring.
Moreover, if F and G are the functors which give the equivalences above, then
F and G are of the forms F(X) = Hom4(G(B), X) and G(Y) = Homp(F(A4), Y)
foreach X €€, Y €D.
proof. Let F: € — D and G: © — € be functors satisfying F' - G & 1p and
G- F = 1, We denote the B-module F(A) by M and the A-module G(B) by
N. Since F and G are fully faithful functors, there exist isomorphisms as rings
Endg(M) = End4(A) = A and Ends(N) = Endp(B) = B. Thus there are
natural maps as follows:

o

B — Endg(M) —=—> A —— Ends(N) — B (L1)
b — by — a — an — ¥V,

where by (resp. an) denotes the multiplication map on M (resp. N ) by b (resp.
a). ‘

The title of the talk had been changed.
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First of all, we claim that b — b’ € AnngM for such b and b’ as above. Since
M is finitely generated B-module, we can take a finite free cover of M and get
the following diagram.

B — M

b L
B®" —— M
Applying the functor G to this diagram, we have a diagram

N — A

lw lcu

Nén — A

which is commutative. Since G is an equivalence, this implies that the first
diagram is also commutative. Hence we have b — b € AnngM as desired.

We denote AnngM by b and AnnsN by a. Note that the map A = End4(N) =
B induces an injective mapping q : A/a — B. We define the map p: B — A/a
as the composition of B 2, End B(M) = A with the natural projection A — A/a.

Secondly, we claim that Ker p = b. Since 8(b) = 0, it is clear that Ker p D b.
To prove the converse let b € Ker p. Then, since 3(b) € a, we have b’ = 0 as in the
notation as in (1.1). Since we have shown that b — ' € b, we have b € b and the
equality Ker p = b is proved. Therefore the mapping p induces an isomorphism
Afa = B/b.

Thirdly we note that any object Y € © has structure of a (B, A)-bimodule.
In fact, the category D is a full subcategory of B-mod, therefore Y is naturally
equipped with left B-module structure. Since F' is a dense functor, there exists
an object X € € such that F(X) =Y and there is a natural ring homomorphism

A — Endy(X) = Endp(Y),

which maps a to F(ax). Now, for any a € A and y € Y, we define yoa :=
F(ax)(y). Since A is a commutative ring, it yields right A-module structure for
Y € D. Since the equality (boy)oa = F(ax)(by) =bF(ax)(y) = bo(yoa) holds
fora € A,b€ Band y € Y, we see that Y has structure of a (B, A)-bimodule.
Similarly any object X € € has structure of an (A, B)-bimodule.

Since F is an equivalence, there exists an isomorphism as A-modules for any
object X € C:

aX = Homy (44, 4X) = Homp (g My, sF(X)).

The second part of the theorem follows from this isomorphism.
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To complete the proof, we need to show a =b = (0). For this, we note from
the definition of bimodule structure that N is isomorphic to Homp (8Ma, B) as
an (A, B)-bimodule. In particular, there are isomorphisms of B-modules;

B =~ EndsN = End(Homp(sMa, B)).

Since any element b € b acts as a zero map on Homp (sMa, B), it must be zero as
an element of End4(Homp (3 My, B)). Consequently we have b = 0. Thus b = 0,
and a = 0 as well. O

Corollary 2. Let A and B be Cohen-Macaulay local rings. Then CM(A) and
CM(B) are equivalent as additive categories if and only if A is isomorphic to B
as a ring. .

Our theorem is somehow a generalization of Morita equivalence theorem which
deals with abelian categories over non-commutative rings. See [3]. The difference
is that, assuming rings are commutative, we are concerned with additive sub-
categories which are not necessarily abelian and our functors are not necessarily
exact.

2 Groups of autofunctors over additive sub-
categories

Let R be a commutative ring and let € be an additive subcategory of R-mod. By
an autofunctor F on €, we mean a covariant functor F : € — € which gives rise to
an equivalence of categories. We denote by Aut(€) the group of all isomorphism
classes of autofunctors over €. By an easy observation using Morita equivalence,
it is known that Aut(R-mod) is isomorphic to the Picard group Pic(R). As an
application of Theorem 1 we can show the following theorem.

Theorem 3. Let A be a Noetherian normal domain. Then there is an isomor-
phism of groups

Aut(ref(A4)) = CL(A),
where C£(A) denotes the divisor class group of A.

proof. It follows from Theorem 1 that any F' € Aut(ref(A)) has a description
F = Homa(M, ) for some reflexive A-module M. Since F is an autofunctor,
there exists a functor G of the form Homp (N, ) for some N € ref(A) satisfying
F-G = G- F = l,g4). Hence we have a sequence of isomorphisms of A-modules

A= G- F(A) = Homu(N,Homu (M, A)) = Homs(M ®4 N, A), '

which forces rankM = 1. Thus M defines the divisor class [M] in C{(A). We
define a homomorphism « : Aut(ref(A)) — C£(A) by mapping an autofunctor
F = Homg(M, ) to [M].
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We should remark that o is a well-defined mapping. But it is clear from
Yoneda’s lemma which claims that if Homg(M, ) =2 Homg(M’, ) as functors on
ref(A) for M, M’ € ref(A), then M = M’ as A-modules. It is also not difficult
to verify that o is a homomorphism of groups. In fact this follows from the
isomorphism of functors on ref(A);

Hom,(M, )-Homu(N, )= Homu((M ®4N)™, ).

We only have to show that o is an isomorphism. It is obvious from the
definition that « is injective. In the rest we shall show that « is surjective. For
this let [I] € C4(A) be an arbitrary element, where I is a divisorial fractional
ideal of A. It is enough to see that Hom,4(/, ) is a well-defined autofunctor on
ref(A).

First we remark from Bourbaki [2, Chapter VII, §2] that an A-lattice M is
reflexive if and only if the equality M = () cp s M, holds, where H(A) is the
set of all prime ideal of height one. Secondly we note that that the equality

Homyu(X,Y) = ﬂ Homy(X,,Y;)
pEH(R)

holds for X,Y € ref(A). In fact, any f € (,cp(r) Homa(X;,Y;) maps X to ¥,
for all p € H(A), hence f(X) C Npemr) Ye =Y, and thus f € Homs(X,Y).
Combining the above two claims we see that Hom,4(/, X) is a reflexive lattice
for any X € ref(A). Hence Homy4(/, ) yields a functor from ref(A) to itself.
Since I is a divisorial ideal, there exists an ideal J with [J] = —[I] in C¢(A4),
ie. (I®4J)™ = A where ( )* denotes Homy( , A).
Therefore there are isomorphisms of functors on ref(A);

Homy(J,Homa(I, )) = Homsa(I®4J, )= Homu((I®4J)*, )
= HOII]A(A, ) = lresa)-

This shows that Hom(Z, ) is an autofunctor over ref(A) as desired, and the proof
is completed. O

Corollary 4. Let A be a normal domain of dimension at most two. Then
Aut(CM(A)) & CY(A).

proof. In fact, the equality CM(A) = ref(A) holds in this case. O

Compared with the corollary, the groups of autofunctors of CM(A) are ex-
pected to be rather small for higher dimensional rings A. In fact we can prove
the following theorem.
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Theorem 5. Let A be a Cohen-Macaulay local ring. Suppose that A has only
an isolated singularity with dimA4 > 3. Then Aut(CM(A)) is a trivial group.
proof. Let F be an autofunctor over CM(A). By virtue of Theorem 1, there
exists a maximal Cohen-Macaulay module M with F = Homg4(M, ). Assume
that M is not free, and we shall show a contradiction. For this, take a free cover
F of M and we obtain an exact sequence

0— QM) —F—M—0.

Recall that Q(M) is also a maximal Cohen-Macaulay module. Apply Homa(M, )
to the sequence, and we get an exact sequence

0 — Hom(M, Q(M)) — Hom(M, F) — Hom(M, M) L. Ext'(M,(M)) .
Note that f # 0 holds, since M is not free. Because A is an isolated singu-
larity, we see that M, is free for any p € Spec(R) except the maximal ideal of
A. This implies that the image Im(f) is a nontrivial A-module of finite length.
On the other hand, we notice that the modules Hom(M, M) and Hom(M, F)
have depth at least two. (Actually this follows from a general fact that if
depthY > 2 and if Homu(X,Y) # 0, then depth Homu(X,Y) > 2 for X,Y €
A-mod.) Hence we conclude from the depth argument [1, Proposition 1.2.9] that
depth(Hom(M, Q(M))) = 2. This is a contradiction, because Hom(M, (M) =
F(Q(M)) is a maximal Cohen-Macaulay over A and depth(A) > 3. 0O
Example 6. Let k be a field and set A = k[[z,y, 2]]/(z* — yz). Let p be a prime
ideal of A generated by {z,y}. It is known that A is a normal Gorenstein domain
of dimension two and p is a unique indecomposable non-free maximal Cohen-
Macaulay module over A. The class group C£(A) is generated by the class of p
and it is isomorphic to Z/2Z. Hence we have Aut(ref(A)) = Z/2Z. In fact, the
functor F = Homy(p, ) is a unique nontrivial autofunctor over ref(4).
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RING EXTENSIONS OF AB RINGS

SAEED NASSEH AND YUJI YOSHINO

1. Introduction

This is a report of our recent work. For any detail of this article, see the preprint
[6]. Throughout the article, R denotes a commutative Noetherian ring with unity and

dim(R) < oo.

Definition 1.1. We define
Ext-index(R) := sup{ n | Extg(M,N) =0 for i > n and Extz(M,N) #0

for some finitely generated R-modules M and N }.
And the ring R is said to be an AB ring if it satisfies Ext-index(R) < oo.

In this paper we are interested in the AB property for some ring extensions. Note that
any rings of the following types are known to be AB rings.
(1) Complete intersections [3].
(2) Cohen-Macaulay local rings with minimal multiplicity [3] [5].
(3) Gorenstein local rings with codimension at most 47
(4) Golod rings [5].
(5) Artinian local rings (R, m) with any of the following conditions:
(a) m® =0 and p(m) =3 [5].
(b) m3 = 0 and 2p(m) > £r(R) + 1 [4].

2. Trivial extension of a local ring by its residue class field
Let M be an R-module. Then the direct sum R & M is equipped with the product:
(r,m).(r',m) = (rr',rm’ + r'm).

This makes R® M aring which is called the trivial extension of R by M and denoted
by R(M). There is a ring homomorphism 7 : R(M) — R with m(r,m) = r and any
R-module can be regarded as an R(M)-module through .

This work was done during the visit of the first author to Department of Mathematics of Okayama
University. The first author would like to thank Okayama University for their hospitality and facilities.
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Lemma 2.1. Let (R, m, k) be an arbitrary local ring. Then for R-modules M and N and
for n > 1, we have an isomorphism
Tor2® (M, N) = ToR(M,N)® [] Torf™®(M,k) ® Tork(k, N).
i+j=n~1
Remark 2.2. Let S be a local ring with residue class field £ and let M, N be S-modules
such that £5(TorS(M, N)) < oo for all n. Then we can consider the generating function
Py n(t) defined by the equality
Py n(t) = £s(Tors (M, N))t".
n>0
Recall that the Poincaré series Py;(t) of M is defined to be P;),(t) and the Poincaré series
P7(t) of S is denoted simply by Ps(t). Remark that the following is known.

A theorem of Gulliksen: Let (R,m) be a local ring and let M be a finitely generated R-
module. Then the equality Pry(t) = Pr(t)(1 — PE(t) t)™ holds.

Note that by the previous lemma we can show the equality
Pan(t) = Py v(t) + Pag ™ (8) PR(D) ¢,
for finitely generated modules M and N over an Artinian local ring R. Applying this to
M = N =k, we have
Pr(t) = Pr(t)(1 — Pr(t) t)77,

which is a special case of the above mentioned theorem of Gulliksen.

Theorem 2.3. Let (R,m, k) be an arbitrary local ring and let M and N be nonzero
non-free finitely generated R(k)-modules. Then Tor®® (M, N) # 0 for alln > 3:

Proof. Set A = R(k) and suppose Tor(M, N) = 0 for some n > 3. Let n be the maximal
ideal of A and £ = (0,1) € A. Notice that n = (0:4 z) holds and R = A/Az as a ring.
Replacing M and N with their first syzygies, we may assume that Torz (M, N) = 0 for
some n > 1 and that zM = 0 and zN = 0. Thus we may assume M and N are modules
over R through the identification R = A/Az. Then by the previous lemma, the equality
Tor_,(M, k) ® (N ®g k) = 0 holds. Since N ®g k # 0, we see TorA_,(M, k) = 0. This
implies that M has finite projective dimension as an A-module. But depth(A) = 0 and
by Auslander-Buchsbaum formula, M is a free A-module. This is a contradiction. |

As applications of the theorem we can prove the following corollaries.
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Corollary 2.4. For an Artinian local ring (R, m, k), the trivial eztension R(k) is an AB
ring with Ext-index(R(k)) = 0.
Corollary 2.5. Let (R,m,k) be an Artinian local ring. Suppose that M is a finitely

generated R(k)-module such that Extpy (M, M) = 0 for alli > 0. Then M is either a
free or an injective R(k)-module.

Corollary 2.6. Let (R,m, k) be an Artinian local ring. And let E = Egpu)(k) be the
injective envelope of the R(k)-module k. Then Ext}t(k) (E, R(k)) # 0 for some i > 0.

Corollary 2.7 (Auslander-Reiten conjecture). Let (R, m, k) be an Artinian local ring
and let M be a finitely generated R(k)-module such that Extk(k)(M ,M & R(k)) =0 for
alli> 0. Then M is a free R(k)-module.

3. More ring extensions

Let R be an algebra over a field k. And let M be a module over the polynomial ring
Rlz). The specialization of M to an element € k is defined by

Mo = M @y (klz]/(z — a)k[z]).

Remark that if M is a finitely generated R[r]-module, then M, is a finitely generated
R-module.

Lemma 3.1. Let R be a k-algebra and let a € k. Assume that £ — a is a nonzero dwvisor
on R|z]-modules M and N. Then we have the ezact sequence ’

0 — Extlypy(M, N)a — Exth(Ma, No) — Tory ™ (Extiz (M, V), k[z]/(z — @) — 0,
for each i > 0.

Theorem 3.2. Suppose that k is an uncountable field and R is a finite dimensional k-
algebra which is AB. Then R ®j k(z) is AB with Ext-index(R ® k(z)) < Ext-index(R).

Proof. Set b := Ext-index(R) and let M’ and N’ be finitely generated R ®x k(z)-modules
with Exthe, (z)(M’, N') = 0 for i > 0. We have to show that Exthg, ko) (M', N') = 0 for
i>b. '

Note that R ®; k(z) is just a localization of R[z] by a multiplicatively closed subset
k[z]\{0}. Hence we can choose a finitely generated R[z]-submodule M of M" (resp. N of
N') so that M ®xjz) k(z) = M’ (resp. N ®xjz) k(z) = N'). Notice that £ — a acts on M
and N as a non-zero divisor.
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Since we have an isomorphism Exthg, x()(M', N') = iR[::](M V) ®kiz) k(z), we see
that Ext}},[z](M, N) ®kjz k(z) = 0 for i > 0.

On the other hand, since R is a finite dimensional k-algebra, each module Extg,; (M, N) (i >

0) is a finitely generated k[z]-module. Hence it has a decomposition as a k[z]-module as
follows: N
Exthys (M, N) = €D Klz]/(f15(2)) © kla]™,
j=1
where f;;(z) # 0 € k[z].

Since Extizm(M, N) ®xjz) k(z) are vanishing for 7 > 0, we have r; = 0 for 7 > 0.
Since there are only countably many equations fi;(z), we can find an element o €
k with the property fij(a) # 0 for all 4,5. Then, since £ — o acts bijectively on
k[z]/(fij(z)), we see that Torllzl(Extgi;](M, N), klz]/(z — @)) = 0 for all i. And we
see as well that ExtRiz](M, N), = 0 for i > 0. Therefore the previous lemma im-
plies that Exth(Ma, Ny) = 0 for ¢ > 0. Thus, by the definition of Ext-index, we have-
Exth(Mg, Na) = 0 for all i > b. Since Exthy, (M, N), is a submodule of Exty(M,, Na),
we have Extjém (M,N), = 0 for all # > b. This implies that r; = 0 for < > b, which is
equivalent to the vanishing Exti, (M, N) ®xjz) k(z) = 0 for i > b. O

Remark 3.3. Let R be a Gorenstein local ring. Suppose there is an integer n > 0 such
that Exth(M,N) =0forn+1<i< n+tand Exth(M,N)#0for j=n,n+t+1. In
such a case we say that Extg(M, N) has a gap of length . Set

Ext-gap(R) := sup{t € N| Extg(M, N) has a gap of length t},

where "sup” is taken over all pairs (M, N) of finitely generated R-modules. R is called
Ext-bounded if it has finite Ext-gap. Furthermore we should remark from [3] that it is
known that Ext-gap(R) < oo => Ris AB.

Keeping in mind this remark, we can prove the following statement completely in a
same way as in the proof of Theorem 3.2:

Let R be a finite dimensional k-algebra where k is an infinite field. If R is Ext-bounded,
then so is R @k k(z).

We can also prove the following theorem in a similar way to the proof of Theorem 3.2.

Theorem 3.4. Let (R,m, k) be a Cohen-Macaulay AB local ring with dualizing module.
Suppose that R contains an uncountable coefficient field k. Then R[x]mR[z] is also a Cohen-
Macaulay AB local ring.
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We finish this report by adding the following result.

Theorem 3.5. Let (R,m, k) be an Artinian Gorenstein AB local ring. Assume that the
residue class field k is algebraically closed. Then the polynomial ring R[z:, <y Ty 18 also
AB.

Proof. It is enough to prove that R[zi,...,Ts)m is AB for every maximal ideal 90t of
R|z1, ..., zn). Since R is Artinian, we see that MNR = m. Therefore, by Hilbert’s Nullstel-
lensatz, there are elements ry,...,7, € R with M = (m,z1 —71,...,Tn — o) R|Z1,. .., Zn).
Since R & R|z1, ..., Zo)m/(T1—T1, - Zn—7n)R[Z1, ..., Tn)m is AB and since {21 -1, ..., Tn—
Tn} is a regular sequence contained in the radical of R[z1, ..., Zn)m, it is easy to see that
R[z1, ..., Zn)m is also AB. : [
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Auslander-Reiten conjecture on Gorenstein rings *
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Nara University of Education
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1. INTRODUCTION

The generalized Nakayama conjecture which was given by M. Auslander and I. Reiten
is as follows [3] : Let A be an artin algebra. Any indecomposable injective A-module
appears as a direct summand in the minimal injective resolution of A.

They showed that above conjecture holds for all artin algebras if and only if the following
conjecture holds for all artin algebras.

Let A be an Artin algebra and M be a finitely generated A-module. If Ext} (M, M&A) =0
(Vi > 0), then M is projective.

M. Auslander, S. Ding, and @. Solberg widened the context to algebras over commutative
local rings [2].

(ARC) Let R be a commutative Noetherian local ring and M be a finitely generated
R-module. If Exth(M, M & R) = 0 (Vi > 0), then M is free.

They showed in [2] that if R is a complete intersection, then R satisfies (ARC). We
shall show the following main theorem.

Theorem 1. Let R be a Gorenstein ring. If R, satisfies (ARC) for all p € SpecR with
htp < 1, then R, satisfies (ARC) for all p € SpecR.

2. MAIN RESULTS

Through in this paper, we denote by R the d-dimensional commutative Gorenstein
local ring with the unique maximal ideal m. We also denote by mod R the category of
finitely generated R-modules and by CM R the full subcategory of mod R consisting of
all maximal Cohen-Macaulay modules.

We give a following condition to consider the Auslander-Reiten conjecture.

(ARC) For M € mod R, suppose Exth(M, M @ R) =0 (i > 0), then M is free.

The main theorem of this paper is following;

Theorem 1. If R, satisfies (ARC) for all p € SpecR with htp < 1, then R, satisfies
(ARC) for all p € SpecR.

It is difficult to check the freeness of modules in general. We give a following theorem
to check the freeness of vector bundles.

Theorem 2. We assume dimR =d > 2. Let M € CM R be a vector bundle. Suppose
Ext& (M, M) =0, then M is free.

1The detailed version of this paper will be submitted for publication elsewhere.
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We say M is a vector bundle if M, is a free R,-module for all prime ideal p which is
not maximal ideal m. We want to omit the assumption M is a vector bundle in Theorem
2. But there is a counterexample if M is not a vector bundle.

Example 3. Let k be a field. We set R = k[z,y, 2]/(zy) be a 2-dimensional hypersurface
and M = R/(z). In this case, we can check that Extp(M, M) =0 if and only if ¢ is odd.
In particular, we see that Ext% (M, M) = 0 even if M is not free.

‘We prepare a lemma to show Theorem 2.

Lemma 4. [9, Lemma 3.10.] Let R be a d-dimensional Cohen-Macaulay local ring and w
be a canonical module. We denote by (—)V the canonical dual Hom g(—,w). For vector
bundles M and N € CM R, we have a following isomorphism;

Extd(Hom (N, M),w) 2 Ext&™ (M, (tr N)V)
Here, Hom (N, M) is the set of stable homomorphisms.

Proof of Theorem 2. Let M € CM R be a vector bundle and we assume Ext%‘l(M ,M)=0.
We take a minimal free resolution of M;

Fo: - —-FR—->M-0.
Apply (-)* := Hom g(—, R), we get exact sequence;

0> M —-F; - F —-trtM —0.

Since R is Gorenstein and M is maximal Cohen-Macaulay, we have Q2M = (tr M)*(=
(tr M)V). Therefore, we have

Ext& (M, (tr N)V) = Extd (M, (tr N)*)
> Exti(M,Q02M)
~ Extd (M, M) =0.

Since M is vector bundle,

Hom p(M, M), = Hom p (Mp, M) = 0 (Vp # m).
Thus we have Hom »(M, M) has finite length and we have

Hom (M, M) = Ext%(Ext:(Hom p(M,M),R),R)
~ Extd(Ext& (M, (tr M)Y),R) =0
Thus we get M is free. O

Proof of Theorem 1. We put P := { p € SpecR | R, does not satisfy (ARC) } and assume
B # ¢. Let ¢ be a minimal element in ‘B and replace R with R,. By the minimalty, R is
a d(> 2)-dimrnsional Gorenstein local ring which does not satisfy (ARC) but R, satisfy
(ARC) for all prime p # m. There exists M € mod R s.t. Exty(M,M & R) =0 (Vi > 0)
but M is not free. Since Exth(M,R) = 0 (i > 0), M is maximal Cohen-Macaulay. For
any p # m, Extjép(]\lp, M,®R,) =0 (Vi > 0) and R, satisfies (ARC), we have M, is a free
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R,-module. Thus we get M is vector bundle. Furthermore, Ext% (M, M) = 0 implies
M is free. (. Theorem 2.) Therefore we get contradiction and we have P = ¢. O

Finally, we remark that normal domain satisfies Serre’s (R;)-condition and regular local
ring satisfies (ARC), we get the following as a corollay of Theorem 1.

Corollary 5. Gorenstein normal domain satisfies (ARC).
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Quotient categories of homotopy categories

Osamu lyama, Kiriko Kato and Jun-ichi Miyachi

Abstract

We introduce the homotopy category of unbounded complexes with
bounded homologies. We study a recollement of its a quotient ‘by the
homotopy category of bounded complexes. This leads to the existence of
guotient categories which are equivalent to a homotopy category of acyclic
comlipexes, that is a stable derived category. In the case of a coherent ring
R of self-injective dimension both sides, we show that the above recolle-
ment are triangulated equivalent to a recollement of the stable module
category of Cohen-Macaulay R-modules.

1 Introduction

We study two types of triangulated categories in this paper. One is

the categories of homotopy classes of chain complexes, equipped with

triangles induced by chain maps and mapping cones. The other is

stable module categories that are module categories mod projective

modules. A stable module category is not triangulated in general. If
the module category is Frobenius, then it’s projective stabilization is

triangulated. This type of triangulates categories are called algebraic’
triangulated categories. The well-known example is a stable module

category of Cohen-Macaulay modules over Gorenstein rings.

Let R be a two-sided noetherian ring. The catogories of right
R-modules, of finitely generated right R-modules and of finitely gen-
erated projective right R-modules are denoted by ModR and modR,
and proj R respectively. Let K = K(projR) be the category of ho-
motopy classes of complexes of finitely generated R-projective com-
plexes. The following triangulated subcategories of K are of our
concern.

K®? = {C € K| H*(C) = 0 (except for finite i’s)}
K= = {C € K®* | C* = 0 (for sufficiently large i)}
K= ={C e K=* |H(C) =0 (i€ 2)}

K® = {C € K| C* = 0 (except for finite ’s)}

Those triangulated categories are all épaisse, so the quotient cate-
gories are again triangulated.
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Definition 1.1 ([lw]) A two-sided noetherian ring is called lwanaga-
Gorenstein if idgR < 0o and idrer R < o0.

If R is an Iwanaga-Gorenstein ring, we define a subcategory
CM(R) of modR as CM(R) = {X € modR | Extkz(X,R)=0 (i>
0)}.

Theorem 1.2 (Buchweitz [Bu]) Assume R is Iwanaga-Gorenstein.
The guotient category K—**/K® is triangle equivalent to the stable
module category CM(R).

On the other hand, we observe the following.

Theorem 1.3 If R is Iwanaga-Gorenstein. The quotient category
K>® /K~ is equivalent to the stable module category CM(R).

Naturally, the question arises: What is K™ /K?? Is it realizable
as a stable module category?

2 Operations and functors on K®?

For an object A of K=, define objects X 4 and T4 of K>? as follows.
Let I'be the smallest integer such that H;(A*) # 0. Then Cok df{l
is a maximal Cohen-Macaulay module. Define X4 € K®? as

TSIXA = TSZA

and
s XY 5 X5 5 (Cokd)T = 0
is exact. Then X4 is totally acyclic and id,, 4'-1+ induces a canon-

ical chain map £4: X4 — Aas &y =id (i <1).

Similarly, let = be the largest integer such that H"(A) # 0. Then
Kerd7, is a maximal Cohen-Macaulay module. Define T,y € K*=®
as

T Z"X A= TZ.,-A

and
o T 5 TG — (Kerdy) =0

is exact. Then T4 is totally acyclic and id ger a, induces a canonical
chainmap (4 : A—> Taas ¢y =id (i>r).
Set a chain maps Iy : Ly -+ Aand rp, : Ly — Rp, as follows:

T<ola = T<0 X4, T>1L4 = 7514,

TSOIA = TSOEA:TZIIA = TZlidA,
T<oBr, = 7<0La,™>1Rr, = 7>1T1,,

T_<_OTLA = TSOidLA,Tzl"'LA = TZch
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Obviously C(l4) and C(rz,) belongs to K®, hence as an object of
Koo:® /K®, A is isomorphic to the complex

Rp,: = Xa ' 5 X' 5 Ta' 9 Ta%> >+

We may assume A4 = H(1<o€als) : Cokdy' — Kerdp, to be
surjective by adding some split exact sequence of projective modules
if necessary.

3 The category of morphisms

We define category Mor(R) as follows: objects of Mor(R) are the
morphisms « : X, — T, of Mod(R). For a, 8 € mor(R), we define

Mor(R)(a,ﬂ) = {(fx, fT) € HomR(XQ,Xﬁ) X HomR(Ta,Tﬁ) | fTa = ﬁfx}

And the subcategory mor$™ (R) of Mor(R) consists of the objects a :
Xo — T, of CM(R) that are surjective. The structure of mor{™ (R)
is obtained by the next lemma.

Lemma 3.1 Let T5(R) be the category of 2 x 2 upper triangular ma-
trices with entries in R. Then Mod(T%(R)) is equivalent to Mor(R).
And morS™ (R) is equivalent to the category CM(T»(R)).

proof. An object f : Xy — Ty of Mor(R) corresponds to an
T»(R)-module My = X x Ty where (z t) <Z g = (za f(z)b+ tc).

This correspondence gives an equivalence between CM(T>(R)) and
morPM (R) consisting of injective maps a : X, — T, with X4, T, Cokf €
CM(R). Obviously morf™ (R) is equivalent to mor™(R). (g.e.d.)

Thus morS™ (R) is a Frobenius category together with projective-
injective objects consisting of p € mor$™(R) that X, and T}, are
projective modules. Hence the stable category morSM(R) is triangu-
lated. We shall construct a functor between K*/K® and mor$™ (R).

Let a : Xo — T, be an object of morS™(R) and let Fx_ and
Fr_ be acyclic projective complexes such that H%(7<oFx.) = Xa
and H°(7<oFr,) = Ta. Set natural maps p : F_ — X, and ¢ :
T — Fr_. Make a projective complex F,, as

TSOFa = TSoan, Tlea = TZIFTQ: dpa = €ap.

Lemma 3.2 1) A morphism f € mor$™ (R)(a,3) induces a chain
map Fy : Fy = Fp.

2) For morphisms f € mor’™(R)(a,B) and g € morS™ (R)(8,7),
Fyy = F,Fy.

3) An exact sequence 0 — a 4 8% v — 0 in morSM(R) induces
an exact sequence 0 — Fy ¢ Fp i F, — 0 in C=?,
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4) An object p of mor®™(R) is projective if and only if Fp is a
bounded complex.

Lemma 3.3 The operation F gives a functor morS™ (R) — Kb,
And F induces a functor F : morSM™ (R) — K= /Kb,

Proposition 3.4 The functor F : morS™(R) — K™ /K? is trian-
gulated.

proof Let
g_—é_ﬂ_il—% Ya

be a triangle in mor®™(R). That is, the injective hull a - ¢ of
@ and f make a push-out diagram which implies a commutative
diagram in CM(A*) with exact rows:

0 5 a 5 ¢ 55 Ta - 0

| A P

O—}ﬂ—g)'y—h)):}a-—)o.

This induces a commutative diagram in C®** with exact rows:

0 » F 5 F B Ry » 0
R
F, F
OﬂFﬁ—iFy—nga—)O

It remains to show that there is a functorial isomorphism Fy, = TF,
in Kb /K?.

0 > Fo F‘%Fq——p"—+F;;a————>O

Il ]
0 > Fp > F, ¥ Fya — 0

induces a morphism between triangles in K®:

Fp

Fs —2 F, y Foo —= TF,

L
Fp » F, — Fyo y TF,

Since Fy € K?, it is easy to see that 7, is a functorial isomorphism
in K*®®/K?, and we have a triangle in K>-?/K?:

Fo 2R, B F FelogF,
(q.e.d.)
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Theorem 3.5 The category K®? /Kb is triangle equivalent to morS™ (R).

We shall show that F is a category equivalence. We have already
seen that F' is dense from the previous section. For proving F is
fully faithful, we use the notion of t-strucrture.

4 Stable t-structures

Definition 4.1 ([Mil}) For full subcategories U and V of a trian-
gulate category C, (U, V) is called a stable t-structure in C provided
that

e U and V are stable for translations.

e Hom¢(U,V) = 0.

e For every X € C, there exists a triangle U — X — V — XU
withU el and V € V.

Proposition 4.2 ([BBD], [Mil]) LetC be a triangulated category.
The following hold.
1 Let (U,V) be a stable t-structure in C, iy : U — C and j. : V —
C the canonical embeddings. Then there are a right adjoint
i' : C - U of iy and a left adjoint j* : C — V of j. which
satisfy the following.
(a) j*ix =0, i'j. =0.
(b) The adjunction arrows i,i' — 1c and 1¢ — j.j* imply a
triangle i,i'X — X — j,j*X — Li,i'X for any X €C.
In this case, j*(resp., i') implies the triangulated eguivalence
C/U=~=V (resp.,C/V ~U).
2 If {C,C";j*,jx} (resp., {C,C";j1,5*}) is a localization (resp.,
a colocalization) of C, thai is, j. (Tesp., is) is a fully faith-
ful Tight (resp., left) adjoint of i', then (Kerj*,Imj,) (resp.,
(Imji, Kerj*)) is a stable t-structure. In this case, the adjunc-
tion arrow 1¢ — j«j* (resp., jij* — 1lc) implies triangles

U—X—jj*X ->3XU
(resp., 717X = X =V = 5" X)
with U € Kerj*, j.j*X € Imj. (resp., jij*X € Imj, V €
Kerj*) for all X € C.

Proposition 4.3 Let R be a coherent ring. Then we have the fol-
lowing.

o (K= K=?) is a stable t-structure of K®. Hence (K=t /K?, Koo0)
is a stable t-structure of K™ /K®.

o (KHb/Kb K=0/Kb) is a stable t-structure of K™t /KP.
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o If R is Iwanaga-Gorenstein, then (K®0 /Kb K+/Kb) is a sta-
ble t-structure of K™ /K®.
Let R be an Iwanaga-Gorenstein ring. Let CM, (resp., CM,,
CM,,) be the full subcategory of morS™ (R) consisting of objects of
the form X — 0 (resp., S > S, P — T, with P being projective).

Proposition 4.4 The following are stable t-structures of mor™ (R).

(CM,,CM,), (M, CM,), (CM,,CM,).

Proposition 4.5 The triangulated functor F induces equivalences
Elem,: CMy — KT /K®,
F loa,: CMy — K=,
and E |%P: CMP — K+'b/Kb.
Now we focus on the stable t-structures (K—* /Kb, K®:?) of Ko:b /K?,

and (CMy,CM;) of morSM(R). For a given object A of K™ /K®?,
there uniquely exists a triangle

A - A— A - XA

with A_ € K"b/Kb and A, € K°°’0/Kb. And for each object o of
morS™ (R), there uniquely exists a triangle

Q@ —a—a; — g

with o € CMgp and a; € CM;. From Proposition 4.5, we have
(EQ)_ gEQO and (Eg)ac ~ ‘

=a,;"

Lemma 4.6 For objects a and (3 of morSM(R), F induces an iso-
morphism

Hommﬂf’“(ﬂ) (gl,go) = HOmKao,b/Kb((Eg)ac, (E[_i)_)

The proof of Theorem 3.5. We have only to show that F is
fully faithful. Let o and 3 be objects of morSM(R). The triangles

Q) — a—a; — Xay,
8,— B~ 8, — 55,
induce a diagram of abelian groups with exact rows and columns

mor§™(R)(a1,80) —— morSM(R)(e1,8) —— morCM(R)(eu, f1)

| ! !

mor™ (R)(e, fo) —— mord™(R)(e, ) —— moar™(R)(a, f1)

! ! !

mor M (R) (e, Bo) —— mord™ (R)(eo. ) —— mor{™ (R)(ao, 51)
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From Proposition 4.5, mor§™ (R)(ao, Bo) = K™= /K¥((Fy) -, (Fj)-)
and mor$™ (R) (a1, A1) = Kb /K ((Fy)acs (Eg)ac)- By Lemma 4.6,
morSM (R) (a1, Bo) =& K= /KP((Eg)acs (Eﬂ)_)_ These together give
us

mor®™ (R) (a1, B) = K /K ((Eg)ac, Eg) and mord™ (R) (o, o) =
Koot /Kb (Ey, (Eg)o). Since (CMo,CM,) and (K=/K? K>?) are
stable t-structures of morSM(R) and K>/ Kb respectively, both
mor®™ (R)(ao, B1) and K®®/KP((E,)—, (Fg)ac) vanish. Therefore
mor® (R)(a, 1) & mor$™ (R)(a1,61) = K=*/K*((Eg)ac, (Eg)ac) =
Ko /K (E g, (Eg)ec)- Similarly morS™ (R)(ao, 6) & K*=*/K¥((E,)-, Eg).
Now mor&™ (R)_(a, B) = Kb /Kb((F,), F ) comes from Five lemma.
(q.ed.)

Together with Theorem 3.1, we obtain Buchweitz-type theorem:

Theorem 4.7 If R is Iwanaga-Gorenstein, then K™ /K? is triangle
equivalent to CM (T2 (R)).

5 Recollements

Let U, V and W be triangulated subcategories of a triangulated
category C. Suppose (U, V) and (V, W) are both stable t-structures
of C. From Prop 4.2, the canonical embedding j. : V — C and
the quotient s* : C — C/V have right adjoints j'*:C = V and
s* : C/V — C since (U,V) is a stable t-structure. And a stable
t-structure (V, W) produeces left adjoints j* : C — V of j, and
s1: C/V — C of s* : C/V — C respectively.

Definition 5.1 ([BBD]) A nine-tuple {C',C,C"; j*, j«,J', 51, 8%, 54}
consisting of triangulated categories and functors

x

J S

o * "
¢ ¢ ¢

i

j S

is called a recollement if it satisfies the following:
® j., 51, and s. are fully faithful.
o (§*,7+), (Ger 3", (s1,8%), and (s*,s.) are adjoint pairs.
e j*sy =0, s*j. =0, and j's. = 0.
e For each object C of C has triangles

§4j'C = C — 515*°C — X3.5'C,
548*C = C — 7,J*C — Ls.s*C.
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Proposition 5.2 ([BBD], [Mil]) 1) If (U,V) and (V,W) are sta-
ble t-structures of C, then the canonical embedding j. : V — C pro-
duces a recollement

- x

J St

— —
viI,c =, ey
g

2) If{C',C,C"; j*, jx, 3", 81, 8%, 84} is a recollement, then (Imj,,Ims,)
and (Imsy, Imj,) are stable t-structures.

Remember that if R is Iwanaga-Gorenstein, three triangulated
subcategories K™ /K®, K and K*+®/K® form three stable t-structures
in Kob: (K=b/Kb Ko:0) (K0 K+:b/Kb) and (K+/Kb, K=t /Kb).
This implies there are three recollements with respect to the canon-
ical embeddings of each subcategories to K™,

Definition 5.3 Let Uy, Uz, Us be triangulated subcategories of a tri-
angulated category C. We call (Uy,U2,Us) a triangle of recollements
in C if Ur,Uz, (Ua2,Us, and (Uz,Us are stable t-structures of C. In
this case, there are recollements

-
Z’II

jn!
— —
U, I~ ¢ I, C/U,

n nw

—

for any n mod 3 such that the essential image Imjy, is Up_1, and
that the essential image Imjn. is Upy1. Therefore, Uy,Us and Us
are triangulated equivalent.

Theorem 5.4 If R is Jwanaga-Gorenstein, then (K=%/K® K0 K+ /Kb)

is a triangle of recollements in K /Kb, There is a triangulated
equivalence between morS™ (R) = CM(T»(R)) and K>®®/K® that in-

duces the correspondence between a triangle of recollements (CM,,CM,, CM,,)
and (K=%/K®, K8 K+b/KP).
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Shestakov-Umirbaev reductions and Nagata’s

conjecture on a polynomial automorphism

Shigeru Kuroda

Abstract

In 2003, Shestakov-Umirbaev solved Nagata’s conjecture on an au-
tomorphism of a polynomial ring. In the present paper, we reconstruct
their theory by using the “generalized Shestakov-Umirbaev inequal-
ity”, which was recently given by the author. As a consequence, we ob-
tain a more precise tameness criterion for polynomial automorphisms.
In particular, we show that no tame automorphism of a polynomial
ring admits a reduction of type IV.

1 Introduction

Let k be a field, n a natural number, and k[x] = k[z1, . . ., Z,] the polynomial
ring in n variables over k. In the present paper, we discuss the structure
of the automorphism group Autyk[x] of k[x] over k. Let F' : k[x] — k[x]
be an endomorphism over k. We identify F' with the n-tuple (f1y---sfn) of
elements of k[x], where f; = F(z;) for each i. Then, Fis an automorphism if
and only if the k-algebra k[x] is generated by fi,. .., frn- Note that the sum
deg F := Y ., deg f; of the total degrees of fi,..., fn is at least n whenever
Fis an automorphism. An automorphism F is said to be affine if deg F' = n.
If this is the case, then there exist (ai;)i; € GLa(k) and (b;); € k™ such that

fi= 2;;1 a; ;T + b; for each i. We say that F is elementary if there exist

2000 Mathematical Subject Classification. Primary 14R10; Secondary 13F20.
Partly supported by the Grant-in-Aid for Young Scientists (Start-up) 19840041, The

Ministry of Education, Culture, Sports, Science and Technology, Japan.
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le{1,...,n} and ¢ € k[z1,...,Z1-1,T141,- - - , Tn] Such that f; = 7; + ¢ and
fi = z; for each i # l. The subgroup T k[x] of Auty k[x] generated by affine
automorphisms and elementary automorphisms is called the tame subgroup.
An automorphism is said to be tame if it belongs to Ty k[x].

It is a fundamental question in polynomial ring theory whether T k[x] =
Aut,, k[x] holds for each n, which is called the tame generators problem. The
equality is obvious if n = 1. This also holds true if n = 2. It was shown
by Jung [4] in 1942 when k is of characteristic zero, and by van der Kulk [5]
in 1953 when k is an arbitrary field. These results are consequences of the
fact that each automorphism of k[x] but an affine automorphism admits an
elementary reduction if n = 2. Here, we say that F' admits an elementary
reduction if deg(F o E) < deg F for some elementary automorphism E, that
is, there exist I € {1,...,n} and ¢ € k[fi,..., fi-1, fi+1,- .-, fn] such that
deg(f; — ¢) < deg fi. By the Jung-van der Kulk theorem, in case n = 2, we
may find elementary automorphisms E, ..., E, for some r € N such that

deg F > deg(FoE;)>--->deg(FoFE,0---0E)=2

for each F € Auty k[x] with deg F > 2. This implies that F is tame.
When n = 3, the structure of Aut k[x] becomes far more difficult. In
1972, Nagata [9] conjectured that the automorphism

F = (z; — 2(2123 + 22) T2 — (7173 + 1:%)2:1:3, Zy + (123 + xg)xa,:ca) (1.1)

is not tame. This famous conjecture was finally solved in the affirmative by
Shestakov-Umirbaev [11] in 2003 for a field k of characteristic zero. There-
fore, Tk k[x] # Auty k[x] if n = 3. However, the question remains open for
n > 4.

Shestakov-Umirbaev [11] showed that, if F' does not admit an elementary
reduction for F € Ty k[x] with deg ' > 3, then there exists a sequence
of elementary automorphisms Ey,..., E,, where r € {2,3,4}, with certain
conditions such that deg(F o F; o --- 0 E,) < degF. If this is the case,
then F is said to admit a reduction of type I, II, III or IV according to
the conditions on F' and Ej,..., E,. Nagata’s automorphism is not affine,
and does not admit neither an elementary reduction nor reductions of these
four types. Therefore, Nagata’s automorphism is not tame. We note that
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there exist tame automorphisms which admit reductions of type I (see [1], [7]
and [11]), but it is not known whether there exist automorphisms admitting
reductions of the other types.

Shestakov-Umirbaev [11] used an inequality [10, Theorem 3] concerning
the total degrees of polynomials as a crucial tool. This result was recently
generalized by the author in [6]. The purpose of this paper is to recon-
struct the Shestakov-Umirbaev theory using the generalized inequality. As
a consequence, we obtain a more precise tameness criterion for polynomial
automorphisms. In particular, we show that no tame automorphism of k[x]
admits a reduction of type IV.

This report consists of the first two sections of [8], which is available at

http://arxiv.org/PS_cache/arxiv/pdf/0801/0801.0117v1.pdf

Although the full version of [8] is 48 pages long, the details are carefully
explained. It is said that the theory of Shestakov and Umirbaev is difficult
and still not widely understood. I hope that our article will be helpful in
understanding how the tame generators problem was solved.

2 Main result

In what follows, we assume that the field k is of characteristic zero. Let T’
be a totally ordered Z-module, and w = (wy, . . .,wn) an n-tuple of elements
of I with w; > 0 for i = 1,...,n. We define the w-weighted grading k[x] =
@D, cr k[x]y by setting k[x], to be the k-vector subspace generated by the
monomials 7% - - - z% of kfx] with Y% aw; = 7 for each v € T. For f €
k[x] \ {0}, we define the w-weighted degree deg,, f of f to be the maximum
among 7 € I with f, # 0, where f, € k[x], for each v such that f = > er fr-
We define f* = f5, where § = deg,, f. In case f = 0, we set deg, f = —o0,
i.e., a symbol which is less than any element of I'. For example, f I' = Z
and w; = 1 for i = 1,...,n, then the w-weighted degree is the same as the
total degree. For each k-vector subspace V of k[x], we define V* to be the k-
vector subspace of k[x] generated by {f“ | f € V\{0}}. For each l-tuple F' =
(fi,. .-, fi) of elements of k[x] for I € N, we define deg, F" = ., deg, fi.
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For each 0 € G, we define F, = (f,(1),- - -, fo)), Where &, is the symmetric
group of {1,...,1} for each I € N.

The degree of a differential form defined in [6] is important in our theory.
Let Q) be the module of differentials of k[x] over k, and /\l Qkjx/k the I-th
exterior power of the k[x]-module Qx/x for [ € N. Then, we may uniquely
express each 0 € /\l Qijx)/k a8

0= > fo.adzy A Adzg,
1<i)<--<ij<n
where f;, _; € k[x] for each i1,...,i. Here, df denotes the differential of f
for each f € k[x]. We define

deg,, 0 = max{deg,(fi,,.iiTi; - Zy;) |1 <0 <--- < <n}.

.....

If 6 # 0, then it follows that
deg, 8 > min{w;, +---+w;, |1 <41 <--- <y <n} >0 (2.1)

We remark that f1,..., f; are algebraically independent over k if and only if
dfy A---ANdfi #0 for fi,..., fi € k[x]. Actually, this condition is equivalent
to the condition that the rank of the I by n matrix ((fi)s,):; is equal to [
(cf. [3, Proposition 1.2.9]). Here, f,, denotes the partial derivative of f in z;
for each f € k[x] and i € {1,...,n}. By definition, it follows that

l
> " deg,, dfi > deg,(dfy A+ Adf). (2.2)

i=1
In (2.2), the equality holds if and only if f¢,..., f’ are algebraically inde-
pendent over k. Actually, we may write df; A--- Adfi =dff’ A--- Adff + 1,
where 7 € A\! Qix)/k with deg,n < ZLI deg,, fi. For each f € k[x] \ k, we
have
deg, df = max{deg,(fz,z:) |1 =1,...,n} =deg, f, (2.3)
since df = > i, fzdzi. If fi,..., fn € Kk[x] are algebraically independent
over k, then

idegw fi= Xn:degw df; > deg,(dfy A--- Adf,) > Zn:wi =:|w| (24)

=1 i=1 1=1
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by (2.1), (2.3) and (2.4). As will be shown in Lemma 6.1(i), if deg, F = |w|
for F € Auty k[x], then F is tame.

Now, consider the set 7 of triples F' = (f1, f2, f3) of elements of k[x]
such that f, f, and f3 are algebraically independent over k. We identify
each F € T with the injective homomorphism F : kly] — k[x] defined by
F(y) = fi for i = 1,2,3, where k[y] = k[y1,y2, y3) is the polynomial ring in
three variables over k. Let & denote the set of elementary automorphisms E
of k[y] such that E(yj)l= y; for each j # i for i € {1,2,3}, and £ = UL, &
We say that F' = (fi, f2, f3) admits an elementary reduction for the weight
w if deg (F o E) < deg, F for some E € £, and call Fo E an elementary
reduction of F for the weight w.

Let F = (f1, f2, f3) and G = (g1, g2,93) be elements of 7. We say that
the pair (F,G) satisfies the Shestakov-Umirbaev condition for the weight w
if the following conditions hold:

(SU1) gy = fi +af? +cfs and go = fo + bfs for some a,b,c € k, and
gs — f3 belongs to k[g1, g2};

(SU2) deg,, f1 < deg,, g1 and deg, fo = deg, 92;

(SU3) (¢¥)? = (g§)° for some odd number s > 3;

(SU4) deg,, f3 < deg,, g1, and f§’ does not belong to k[g¥, 5];

(SU5) deg,, g3 < deg,, f3;

(SU6) deg,, gs < deg,, g1 — deg,, g2 + deg,,(dg: A dg2).

Here, hy ~ hy (resp. h1 # h;) denotes that h; and h, are linearly de-
pendent (resp. linearly independent) over k for each hy, hs € k[x] \ {0}. We
say that F € T admits a Shestakov-Umirbaev reduction for the weight w if
there exist G € T and ¢ € &3 such that (F,,G,) satisfies the Shestakov-
Umirbaev condition, and call this G a Shestakov-Umirbaev reduction of F for
the weight w. As will be shown in Theorem 4.1(P6), deg, G < deg, F if G
is a Shestakov-Umirbaev reduction of F.

Note that (SU1) implies that there exist F; € & for i = 1,2,3 such that
FoE, = (f1,92,f3), FoE10 E = (91,92, f3) and Fo Ey 0 Ey0 B3 = G.
Furthermore, § := (1/2) deg, g belongs to " by (SU3).

Here is our main result.
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Theorem 2.1 Assume that n = 3, and w = (w;,ws,ws3) is an element of
I'® such that w; > 0 for each i. Then, each F € Ty k[x] with deg, F > |w|
admits an elementary reduction or a Shestakov-Umirbaev reduction for the

weight w.

Note that F' admits an elementary reduction for the weight w if and
only if f¥ belongs to k(f;, fi]“ for some i € {1,2,3}, where j,l € N\ {i}
with 1 < j <1 < 3. In case deg, fi, deg,, f» and deg,, f; are pairwise linearly
independent, this condition is equivalent to the condition that deg,, f; belongs
to the subsemigroup of I' generated by deg, f; and deg, f; for some ¢ €
{1,2,3}. Indeed, for each ¢ € k[f;, fi] \ {0}, there exist p, g € Zx¢ such that
deg,, ¢ = deg,, f7 f]', since ¢ is a linear combination of f7 £} for (p, q) € (Zxo)?
over k, in which deg,, 7 f;! # deg,, f} ' ffl whenever (p,q) # (p',¢'). Here, Zxo
denotes the set of nonnegative integers.

Using Theorem 2.1, we can verify that Nagata’s automorphism is not
tame. Let I' = Z3 equipped with the lexicographic order, i.e., a < b if the first
nonzero component of b — a is positive for a,b € Z3, and let w = (e;, ez, €3),
where e; is the i-th standard unit vector of R3 for each i. Then, we have

deg,, h= (21 0, 3)a degw fa= (I’Oa 2), deg, fa= (O’ 0, 1)'

Hence, deg, F = (3,0,6) > (1,1,1) = |w|. On the other hand, the three

vectors above are pairwise linearly independent, while any one of them is

not contained in the subsemigroup of Z3 generated by the other two vectors.

Hence, F' does not admit an elementary reduction for the weight w. Since

(1/2) deg,, f; does not belong to I' = Z3 for each i € {1,2,3}, we know that

F does not admit a Shestakov-Umirbaev reduction for the weight w.
Therefore, we have the following corollary to Theorem 2.1.

Corollary 2.2 Nagata’s automorphism is not tame.

We may also check that Nagata’s automorphism does not admit a Shestakov-
Umirbaev reduction in a different way as follows. By Theorem 4.1(P7), we
know that 0 < 6 < deg, f; < sé holds each ¢ € {1,2,3} if F admits a
Shestakov-Umirbaev reduction for the weight w. Hence, sdeg,, f; > deg, f;
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for each i,j € {1,2,3}. On the other hand, in the case of Nagata’s auto-
morphism, I deg,, f3 = (0,0,1) is less than deg, fifori=1,2foranyl € N
by the definition of the lexicographic order. Therefore, F' does not admit a
Shestakov-Umirbaev reduction for the weight w.

We define the rank of w as the rank of the Z-submodule of T’ generated
by wy,...,w,. If w has maximal rank n, then the k-vector space k[x], is of
dimension at most one for each . Consequently, it follows that deg, f =
deg, g if and only if f* ~ g for each f,g € k[x] \ {0}. In such a case,
the assertion of Theorem 2.1 can be proved more easily than the general
case. Actually, we may omit a few lemmas and propositions needed to prove
Theorem 2.1. We note that w = (61,82,83) has maximal rank three, and so
it suffices to show the assertion of Theorem 2.1 in this special case to verify
that Nagata’s automorphism is not tame.
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An algorithm for computing generators of
G,-invariant rings

Ryuji Tanimoto
1. Introduction

Let k be an infinite field of arbitrary characteristic p > 0 and let G, be its additive
group. For a G,-action on an affine variety SpecA, we have the corresponding k-algebra
homomorphism ¢ : A — A ®; k[t], where ¢ is an indeterminate over the field k. Write

o(f) =Y Da(£)t",

n>0

where D,,(f) € A for all n > 0. Clearly, each Dy, is a k-linear endomorphism of A and
the set {D, }ns0 satisfies the following conditions (1), (2), (3) and (4):

(1) Dy is the identity map of A;
(2) Da(ab)= Y Di(a)D;(b) for all n > 0 and for all a,b € 4;
i+j=n

(3) For all a € A, there exists n > 0 such that Dp,(a) =0 for all m > n;
(4) D;o D; = (z-;-]) D;yj for all 4,5 > 0.

Let G, act on A by
t-f=Y Da(f)t"

n>0
for all t € k and f € A. Denote by AGe the invariant ring for the G,-action on A. So,
we have the equality
ACs = {a € A| Dp(a) =0 for all n > 1}.
An element o of A is said to be a local slice of the G,-action on A if o satisfies the
following conditions (1) and (2):
(1) o ¢ A

(2) deg,(t- o) = min{deg,(t- f) | f € A\A®}.

An element s of A is said to be a slice of the G,-action if s is a local slice of the
G,-action and the leading coefficient of ¢ - s € Alt] is 1.
In this report, we solve the following problem:

Problem. Assume that the finitely generated k-algebra A is a domain and the Gg-
action on A has a slice s. Give an algorithm for computing generators of the G,-
invariant ring ASe.

-203 -



2. Dixmier operator and answer

We know from Miyanishi’s theorem [2, 1.5.] that
A= AC[s]

and s can be considered as an indeterminate over A®. So, we have a natural surjective
k-algebra homomorphism &, : A — A®s by substituting 0 for s. We call this surjection
the Dirzmier operator.

The following theorem gives another description of the Dixmier operator. Let
P(t):=t-s € Alt).

Theorem. For any f € A, expresst- f as

t-f = Pu(t) - Qs(t) + R4(2),
where Qs(t), Rs(t) € A[t] and deg,(Rs(t)) < deg,(Ps(t)). Then R;(0) € A and
es(f) = R4(0).

Now, we give an answer to the Problem. Let A = k[ay,...,a,). Calculate ,(a;)
for all 1 <7 < n by using the above Theorem. Thus we have an answer.

3. Proof of the Theorem

Let D := {Dp}n>0. We denote t- f by pp:(f), wheret € G, and f € A.. We define
the D-degree of f € A by degp(f) := deg,(vp.(f)). By substituting ¢t + ¢’ for ¢ of the
equality wp(f) = ¢p.(s) - Qs(t) + Ry(t), we have

opa+e(f) = epgre(s) - Qs (t +1') + Ry (t + t).

The left hand side p4¢(f) can be written as

wpere(f) = (pptowpwr)(f)
epi(ppw(s) - Qs (t') + Ry(t))
= ppur(s) - ppa(Qs()) + pps(Rs(t)).

Thus we have
Ppa+t(8) - (Qf(t + 1) — wpa(Qs(t)) = wpa(Ry(t)) — Rs(t +1).

Let d := degy (ppy(s)). I Qs(t+1') — ops(Qf(t')) # 0, the left hand side is of degree
> din t’' (note that ¢p 1+ (s) is a monic polynomial of degree d in t’ over Aft]). On
the other hand, the right hand side is of degree < d in t'. Hence, we know

Q(t+1) = ppQs(t))  and  @p(Ry(t)) = Rylt+1).

Substituting 0 for ¢’ in the above two equalities, we have

Qs(t) = vps(Qs(0))  and  p.(Rs(0)) = Ry(t).
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We know from the latter of the above two equalities that degp(Rs(0)) < degp(s).
Since s is a slice of the G,-action, we have R;(0) € A®. Evaluating the equality

ep4(f) = ppa(s) - Qs(t) + Ry ()
at t = 0, we have the equality
f=s-Qs(0)+ Rs(0)
. in A. Evaluating this equality at s = 0, we have e,(f) = Ry(0). This completes the
proof of the Theorem.

4. Dixmier operator in characteristic 0

In the following, assume that the characteristic of k is zero. The Dixmier operator
g, : A — AGe has the following simple form. This means that €, coincides with ¢_,
defined in [1, Page 26].

Corollary. The Dizmier operator €, can be written as

es(f) = zﬁ;('—f)(—s)" for all f € A.
n>0 :

Proof. Since k is a field of characteristic zero, we have
Di(f)
wps(f)=) —=—t" forallfe A
nZZO n!
and ¢p.(s) = s +t. Express pps(f) as
epa(f) = (t+5) - Qs(t) + Ry,
where Ry € A. By substituting —s for ¢ of the above equality, we have
Dn(f) n’
Y=o (=s)" =Ry
n>0

We know from the above Theorem that £,(f) = R;. Hence, we have the desired
expression of €;. Q.E.D.
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1 Diagrams of schemes and modules over
them

Let I be a small category, Sch denote the category of schemes. We
think a contravariant functor X, : I — Sch. It can be thought as a
diagram of schemes and morphisms. For each i € I, denote the scheme
X.(i) by X;. And for a morphism ¢ in I, denote the morphism X.(¢) by
X4. We can define a category Zar(X,) as follows :

ob(Zar(X.)) := {(i,U) | i € ob(), U € Zar(Xi)},
Hom((i,U), (j, V)) :={(¢,h) | ¢ : i < j is a morphism in ILh:U=V
is a morphism such that it is the restriction of X4 : X; — X i}

In the definiton, for a scheme S, Zar(S) denote the category consisting
of open subschemes of S and inclusion morphisms.

And we can define a Grothendieck topology on Zar(X.,). A class of
morphisms {(hx,$x) © (6x,Ux) — (i,U)} is a covering of (i,U) if the
following hold :

(1) ix = i and ¢» = id for any A, @) U = U

So we can think sheaves over Zar(X.).
Moreover, we define the sheaf of commutative rings Ox, on Zar(X.)
by
F(("’ U)a OX-) = F(U’ OX;'),
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where Oy, is the structure sheaf of X;. So Zar(X,) is a ringed site, and
we can think Ox,-module sheaves. Denote the category of Ox,-modules
Mod(Zar(X.)) by Mod(X.), simply.

For i € I, we can define a functor [—]; : Mod(X,) — Mod(X;) by

(U, M;) = T((, U), M).

This functor [—]; is called the restriction functor. The restriction functor
[—]); has both a left adjoint and a right adjoint, so [—]; preserves limits
and colimits, and it is exact (Hashimoto [3], (4.4)).

Let ¢ : ¢ — j be a morphism in I. For (i,U) € Zar(X,) and an
Ox,-module M, a morphism S4(M) : M; — (Xp). M, is defined by the
following diagram of the sets of sections over U :

F(UaMl) — F(Xgan MJ) _ P(U’ (X¢)*M‘l)

I((i,U), M) —L= T((j, X;'U), M)

where f is the restrction with respect to the morphism (¢, Xl XJIU).
And we can define a morphism @ : X;[~]; — [~]; to be the composite
Xol=)i Po, Xo(Xo)e[~li —— [-];
where e is the counit of the adjoint pair (X3, (X4).)-

Definition 1. Let M be an Ox,-module.

(1) M is equivariant if ay is an isomorphism for each morphism ¢ in I.
(2) M is locally coherent (resp. locally quasi-coherent) if each M;
is a coherent (resp. quasi-coherent) Ox,-module for any i € I.

(3) M is coherent (resp. quasi-coherent) if M is locally coherent
(resp. locally quasi-coherent) and equivariant.

2 The diagram BY(X) and G-local G-scheme

Denote the set of natural numbers {0,1,--- ,n} by [n]. Let A be the
category defined as follows :

Ob(A) = {[0]’ [1]’ [2]},

Hom([z], [5]) = the set of order-preserving injective maps [i] — [5].
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A is represented by the following diagram (without identity maps) :

a=lEl W

where i, is the order-preserving injection whose image does not contain
s.

From now on, let S be a Noetherian scheme, G be an S-group scheme
flat of finite type and X be a Noetherian G-scheme. G-scheme is an
S-scheme with G-action. We define a diagram of schemes B¥ (X) €
Func(A°P, Sch) by

idxa

BY(X)=|GxsGxsX w38, GxsX ~,~ X

P23
—_

where a : G x X — X is the action, g : G x G — G is the product, and
po3 and p, are projections.

We call a module over this diagram B¥(X) a (G, Ox)-module, and
denote the category of (G,Ox)-modules Mod(Bg (X)) by Mod(G, X).
And denote the fullsubcategory of locally quasi-coherent (G, Ox)-modules,
of quasi-coherent (G, Ox )-modules and of coherent (G, Ox)-modules by
Lqc(G, X), Qch(G, X) and Coh(G, X), respectively.

Let Z be a closed subscheme of X. Denote the scheme theoritic image
of the action a : G x Z — X by Z*. This subscheme Z* has the following
properties :

1. Z* is the smallest G-stable (i.e. the action a : G x Z* — X factors
through the inclusion Z* — X) closed subscheme which contains
Z. So if Z is G-stable, then Z* = Z.

9. Assume that G is an S-smooth group scheme with connected geo-
metric fibers. If Z is irreducible (resp. reduced), then so is Z*. So
if Z is integral, then Z* is integral, too.

Definition 2. A quasi-compact G-scheme X is G-local if X is has a
unique minimal non-empty G-stable closed subscheme Y of X. In this
case, we say that (X,Y) is G-local.

There are some examples of G-local G-schemes.
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Example 3. (1) If G is trivial, a G-local G-scheme X is of the form
Spec A where A is a local ring.
(2) Let S = SpecZ, G = G, (multiplicative group) and A be a G-algebra.
Let w be the coaction A — A ® Z|G] and X(G) the charactor group of
G. Now it holds X(G) ~ Z as groups. For a character A € X(G), set
Ay ={a € A|w(e) = a®A}. Then A = P)cx(s A4 hold. And
for \, p € X(G), AyAx = {ara, | ax € Ay, a, € AL} C Ay So
the equation A = @ A, means that G,,-algebras are Z-graded algebras
and that an ideal I of Gp,-algebra A is G,-stable if and only if it is
homogeneous.

So affine G,,-scheme X = Spec A is Gp,-local if and only if A is an
H-local Z-graded ring in the sense of Goto and Watanabe [1].
(3) If S = Speck with k an algebraically closed field, G is an linear
algebraic group and B is a Borel subgroup of G, then (G/B,G/B) is
G-local and (G/B, B/B) is B-local. But it is not affine unless G = B So
a G-local G-scheme is not neccesarily affine even if S and G are affine.
(4) Let k be a field, G a reductive group, C a k-algebra of finite type
with G-action, A := C® and P € SpecA. Then X = SpecCp is a
G-local G-scheme.

Until the end of this article, let G be an S-smooth group scheme with
connected geometric fibers. For example, a connected algebraic group
over an algebraically closed field k has this property. And let (X,Y) be
a Noetherian G-local G-scheme.

Under the assumption, the unique minimal non-empty G-stable closed
subscheme Y of X is integral. In fact, each irreducible component of Y
and the reduction Yieg of Y is G-stable, so Y is irreducible and reduced
because of minimality of Y. So Y has the generic point. Let 1 be the
generic point of Y, 7 the defining ideal of Y and f : Y — X the inclusion.

The localization at 7 is very important and useful.

Lemma 4. The localization functor [—], : Qch(G,X) — Mod Ox, is
faithful and ezact.

Proof. A localization functor is exact in general, so it is enough to prove
that [}, is faithful, i.e. M, # 0 for any quasi-coherent (G, Ox )-module
M # 0. A quasi-coherent (G, Ox)-module is represented as an inductive
limit of coherent (G, Ox)-modules, so we may assume that M # 0 is
coherent. Then Hom,,, (M, M)) is coherent, and Ann M := ker(Ox —
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Hom,,, (M, M)) is a coherent G-ideal, so Supp M is a non-empty G-
stable closed subscheme. Since Y is minimal, n € Y C Supp M. Then
M, # 0. |

By the lemma, we can prove a G-analogue of Nakayama’s Lemma.

Theorem 5 (G-Nakayama’s lemma). For a coherent (G, Ox)-module
M, if f*M =0 then M =0.

Proof. K(n)®ox, My = (f*M), =0, s0o M, = 0 by the usual Nakayama's
lemma for the local ring Ox,,. And [-]y, is faithful, so M =0. |

By localization at 7, we also have criteria for coherentness and length-
finiteness of quasi-coherent (G, Ox)-modules.

Proposition 6. (1) For M € Qch(G, X), the following are equivalent :
(a) M is a Noetherian object of Qch(G, X).
(b) Myq) is a coherent Ox-module.
(c) M is a coherent (G, Ox)-module.
(d) M,, is a Noetherian Ox qn-module.
(2) For M € Qch(G, X), the following are equivalent :
(a) M is of finite length in Qch(G, X).
(b) M is a coherent (G,Ox)-module, and I"M =0 for some n.
(c) M, is Oxn-module of finite length.

Proof. (1) (a)&(b). Hashimoto [3], Lemma 12.8. (b)=>(c)=>(d) are triv-
ial. (d)=>(a). Since [~], is faithful and exact, then an ascending chain
Ny CNiC N C--- of (G,Ox)-submodules of M is stable if and only if
an ascending chain [Np], C [M]n C [Na]y- -+ of Ox,q-submodules of M,
is stable.

(2) (a)=>(b). M is a coherent by (1). A descending chain M > I'M >
T2M D --- is stable by (a). If "M = I"*'M, then I;M, = I3 M,
So IpM, = 0 by usual Nakayama’s lemma, and then I"M = 0 by
faithfulness of [],. (b)=>(c) is trivial. (c)=>(a) is similar to (1) (d)=(a)
for a descending chain of (G, Ox)-submodules of M. |

3 (G-dualizing complex

For a Noetherian G-scheme Z, a complex F € D(Mod(G, 2)) is G-
dualizing if F has equivariant cohomology sheaves and if Fio) € D(Mod Z)

-211-



is a dualizing complex of Z. Since A is a finite ordered category, F is G-
dualizing if and only if F has finite injective dimension, has coherent
cohomology sheaves, and the natural map Opy (z) — RHom"(F, F)isa
quasi-isomorphism, see [3] Lemma 31.6.

For example, if Z is Gorenstein of finite Krull dimension, then Oy itself
is a G-dualizing complex of Z. :

From now on, assume that X has a fixed G-dualizing complex I.

4 The local cohomology

Let g: X \' Y — X be the open immersion. u : Id — g,g* denote the
unit of the adjoint pair (g.,g*). Then we think a functor I’y = keru :
Mod(G, X) — Mod(G, X).

The functor Iy is a left exact functor preserving Lqc(G, X) and Qch(G, X),
see [4] Lemma 3.2. For M € Lqc(G, X), I'y (M) is computed as follows :

Ly(M) = lim Hom,, (Ox/I", M),

see [4] Lemma 3.21.

And the derived functor RLy : D(Mod(G, X)) — D(Mod(G, X)) pre-
serves Dqa,(Mod(G, X)), see [4] Lemma 4.11. For M € D(Mod(G, X)),
R'Ty(M) is denoted by Hi (M).

Lemma 7. For a G-dualizing complez F of X, the local cohomology
sheaves Hy, (F) vanish except for only one i.

Proof. Over a Noetherian scheme S, A € Qch S is an injective object
of Mod S if and only if it is an injective object of QchS. So we can
assume that each term of a dualizing complex Fs of S is quasi-coherent
and injective. As this, we can assume that F is a K-injective complex
whose terms are locally quasi-coherent.

Then the following diagram commutes :

x\z -, x
4 d
SpecOx,y \ {n} <, SpecOx 5
We calculate the functor f*Iy = f*ker(/d — g.g*) by the commu-
tative diagram :
f'Lz = f*ker(ld = g.g") = ker(f* — f*g.g")
2, ker(f* — g,9"f") = ker(ld — g,¢")f* =Tz, f".
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Each term of F is locally quasi-coherent, so ¢ is isomorphic. So it holds
[L(F)), ~ Tz, (F,). By definition, F, is a dualizing complex of Oxq-

In general, for a local ring (A, m), local cohomology groups Hj,(F) of
a dualizing complex F of A with support {m} vanish except for only
one 1, see Hartshorne [2] V.6. The functor ], is faithful and exact, so
cohomology _Ii;, (F) vanish except for only one 4. |

Let F be a G-dualizing complex of X. If it holds H}(F) # 0, a G-
dualizing complex F is called G-normalized. Assume that our G-dualizing
complex I is G-normalized.

Definition 8. For a G-normalized G-dualizing complex I, the non-vanishing
local cohomology HY(I) with support Y is denoted by £x, and we call it
a G-sheaf of Matlis.

For a local ring (4, m), the non-vanishing local cohomology group
H: (F) of a dualizing complex F of A with support {m} is the injective
envelope E4(A/m) of the residue field A/m. So we get an isomprphism
[Ex)n = Eoy,(k(n)) where k(n) is the residue field of the local ring Ox 5.

A G-sheaf of Matlis £x corresponds to the injective envelope E4(A/m)
of the residue field A/m for a local ring (A, m). But it is not necesarily
an injective (G, Ox)-module.

Example 9. Let k be a field of characteristic 2, V = k? and G = GL(V).
Let X = SpecA where A = SymV*. Then £x is a (G,Ox)-module
which is defined by A" (A! denote the graded dual module of A). It is
not injective as a G-module, so £x is not injective in Qch(G, X).

Moreover, G-sheaf of Matlis £x = HY(I) depends on G-normalized
G-dualizing complex I, so it is not necesarily unique.

5 Main theorems

Theorem 10 (G-Matlis duality). Let T' be the functor Homo, (—,€x)
Mod(G, X) — Mod(G, X), F denote the category of (G, Ox)-modules of
finite length. Then the followings hold :
(1) T is an ezact functor on Coh(G, X).
(2) If M € F, then TM € F and the canonical map M — TTM is an
isomorphism.

So the functor T : F — F is an anti-equivalence.
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Proof. (1) If N € Coh(G, X) then N, is a finitely generated Ox ,-module,
see Lemma 6. So it holds

[.IEQ.OX (N, 5x)],7 = Homox.n (Mn [gx]fl)' (ﬂ)

[Ex]n is an injective Ox ,-module, so the functor Home,  ([~]n, [Ex.1)) is
exact. Then T = Hom,, (—,€x) is exact because [-], is faithful and
exact.

(2) By Lemma 6, M, is an Ox,-module of finite length for M € F.
Because of the isomorphism (}f) and usual Matlis duality for the local
ring Ox 5, [TM], is an Ox ,-module of finite length. By Lemma 6 again,
TM is of finite length.

M and T M are both coherent, then

[TT M], ~ Homo, , (Homoy , (M, [Ex]s), [Ex]s)-

By usual Matlis duality, it is isomorphic to M,,. So it holds TTM ~ M
because of faithfulness of [—],. |

Finally, we state a G-analogue of local duality theorem.

Theorem 11 (G-local duality). Let E be a bounded below complez in
Mod(G, X) with coherent cohomology. Then there is an isomorphism in
Qch(G,X) :

H} (E) ~ Hom,, (Ext5) (E,I), £x).

SEHE

[1] S.Goto, K.-i.Watanabe, On graded rings, I. J.Math.Soc.Japan, 30
(1978), 179-213.

[2] R.Hartshorne, Residues and Duality, Lect.Notes Math. 20, Springer,
1966.

[3] M.Hashimoto, Equivariant twisted inverses, preprint.

[4] M.Hashimoto, M.Ohtani, Local cohomology on diagrams of schemes,
preprint.

214 -



CLASSIFICATION OF 2-DIMENSIONAL GRADED NORMAL
HYPERSURFACES WITH a(R) =1.

KEIL-ICHI WATANABE (BAKE - TEFE - HEH)

INTRODUCTION

Inspired by the talk of Kyoji Saito at the Toyama Conference, Aug. 2007, I tried
the classification of 2-dimensional graded normal hypersurfaces with a(R) = 1 using
Demazure’s construction of normal graded rings. Since the classificaion is so simple
and nearly automatic, I want to introduce it.

Although this classification is “known” in the literature (cf. [S], [P1)), it seems
that the systematic method of classification is not known. So, I think this is worth-
while to be published in some form.

Also, I present here the classification of normal two-dimensional hypersurfaces
with a(R) = 2 and normal graded complete intersections with a(R) = 1 and
Proj (R) = P

1. PRELIMINARIES

Let R = k[u,v,w]/(f) be a 2-dimensional graded normal hypersurface, where k
is an algebraically closed field of any characteristic. We put X = Proj (R). Since
dimR = 2 and R is normal, X is a smooth curve. Then by the construction of
Zariski and Demazure ([1], [5]), there is an ample Q-Cartier divisor D (that is, ND
is an ample divisor on X for some positive integer N ), such that

R = R(X,D) = ®u50H(X,0x(nD)).T" C k(X)[T],
where T is a variable over k(X ) and
H°(X,0x(nD)) = {f € k(X) | divx(f) +nD > 0} U {0}.
Now, let us begin the classification. In the following, X is a smooth curve of genus
g and D is a fractional divisor on X such that ND is an ample integral (Cartier)

divisor for some N > 0.
‘We denote

D=Do+3 TP (i, (pug) = 1)
' i=1

where Dy is an integral divisor; a divisor with integer coefficients. In this case, we
denote
,
D = %—-1 P.
i=1 % z X
At the same time, by our assumption R = kfu,v,w]/(f). If deg(u,v,w;f) =
(a,b,¢;h), then by [2],
a(R)=h—-(a+b+c).
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We always assume deg(u, v, w; f) = (a,b,c; h) and also that a < b < c.

Proposition 1.1. (Fundamental formulas) Assume that R = R(X, D)
= klu,v,w]/(f) with deg(u,v,w; f) = (a,b,¢;h) and a(R) = h—(a+b+c) = 1.
Then we have the following equalities.

(1) [W] Since R is Gorenstein with a(R) = 1, we have

g —1

i

D~Kx+D =Kx+), P,

i=1
where, in general, Dy ~ D, means that Dy — D, = divx(f) for some f € k(X).
(2) [Tomari’s formula] If P(R,t) = }_, ., dimR,t",
lim(1 — t)’P(R,t) = degD.

1—th
(1=1t2)(1—¢t*)(1—te)
h 1 1 1 1

degD = =t a T e

, we have

(8) Since P(R,t) =

Nofe that the latter expression is a decreasing function of a, b, c.

2. THE CLASSIFICATION OF THE HYPERSURFACES WITH a(R) = 1.
g—1

Henceforce, we put D = Kx + > ;_, F,. We always use the letter 7 in

this meaning. From 1.1 (3), the maximal value of degD is taken when a = b =
¢ =1 and degD = 4 in that case.

Case A. The case g > 0.

Assume that g > 1. Since deg(D) < 4, and degD > degKx =29 — 2, g < 3 and
if g =3, D = Kx. We list the cases by giving the form of D and (a, b, c; h). We can
easily deduce the general form of the equation f from this data. Also, if f with the
given weight has an isolated singularity, then k[u,v,w]/(f) & R(X, D), where D is
a divisor of given form.

(A-1) g¢g=3,D=Kx; (1,1,1;4)
Next, consider the case g = 2. Note that dimR; = dimH°(Kx) = g = 2, we have
a=>b=1 and degD = 1+% < -;— (c > 2). Since, either degD = 2,D = Kx or

degD > g, we have 2 cases.

(A-2) g=2,D=Kx; (1,1,3;6).

1
(A-3) g=2,D=Kx+ —2~P; (1,1,2;5).
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Next, assume g = 1. In this case, a = 1,2 < b < ¢ and the maximal value
of degD is g Since on the other hand, degD > —;— and thus r < 3 and if r = 3,

1
D= E(Pl + PQ + P3)
1
(A—4) g=1,D=§(P1+P2+P3), (1,2,2,6)

Also, since dimRy = r,if r =2, then a =1,b=2,c¢ > 3, deg(D) <

[ ]

1
(A-5) g=1,D= §(P1 +P); (1,2,48).
1 2
Ifg=1land D = q—;—lP, we have ¢ — 1 new generators in degrees 1,3,...,q.

Hence q < 4.

a=1,3<b,cand degD < g

1
(A-7) g=1,D= §P; (1,4,6;12).
(A-8) ¢g=1,D= zP; (1,3,5;10).

(A-9) g=1,D= ZP; (1,3,4;9).
We have 9 types when g > 1.

Case B. The case g =0 and r > 4.

In the following, we always assume g = 0. Since deg(Kx) = —2 and degD >
0, we have r > 3. On the other hand, since R; = HKx) =0, a > 2 and

7
degD < 3 < 1. Since degD > —2+1/2, we have r < 5.

In this subsection, we treat the cases where 7 = 4,5.
Now, since deg[2D] = r — 4, dimR, = 2,1, respectively, if 7 = 5, 4.
2
Thus if 7 = 5, then a = b =2 and ¢ > 3. Hence degD < 3 Since 3.-;—+2.—§——2 =
2
> 3 the only possible cases for (g, ...,gs) are (2,2,2,2,2) and (2,2,2,2,3).

(=20 ]

1
(B-1) D=Kx+3(Pi+P+ ..+ P5);  (2,2,5;10).
1 2
(B-Z) D=Kx+ §(P1 + P+ P+ P4) + §P5; (2, 2,3;8).
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Henceforce we assume r = 4 and express D by (qi,¢2,33,94) and we always
1
assume ¢; < g2 < g3 < g4 In this case, a = 2 and 3 < b < ¢. Hence degD < 7

2
Since4.——2>—;-,q1=2a.ndq423.

Let s be the number of ¢; > 2 (1 < s < 3). Then since deg[3D] = —6 + 8 — s,
dimR3 = 0,1,2 when s = 1, 2, 3, respectively.
If s =3, dimR; + dimR; = 3 and we must have (a,b,c;h) = (2,3, 3;9).

1 2
(B-3) D=Kx+§P1+ §(P2+P3+P4); (2, 3,3;9).

Ifs =2 a =2b=3and c> 4 and degD = %+% < 1—52 ‘Also, since
1 1 2 3 5
—2+(§+§+§+Z—1—2,Wehave2types.

1 2
(B-4) D=Kx+ a(Pl + Pz) + §(P3 + P4); (2, 3,6; 12).
2
3

Now we trat the case (2,2,2,q), ¢ > 3. In this case, R3 = 0 and dimR; = 1 or 2
according to ¢ = 3 or ¢ > 4. In the latter case, dimRs; = 0 or 1 according to g = 4
or ¢ > 5. Hence, if ¢ > 5, we have already 3 generators of R.

1 3
(B-5) D=Kx+ E(Pl +P)+ P+ ZP4; (2,3,4;10).

1 4
(B-6) D=Kx+ E(Pl + P+ Ps) + 3P4; (2, 4,5; 12).

1 3
(B-7) D=Kx+§(P1+P2+P3)+ZP4; (2,4,7;14).

1 2
(B-S) D=Kx+§(P1+P2+P3)+§P4; (2,6,9,18)

We have 8 types in this case.

Case C. The case g=0 and r = 3.

We have to determine (g1, g2, ¢3). In this case, R; = R; = 0 and dimR3 =1 or 0
according to g; = 2 or ¢; > 3.

Case 1. ¢; > 3.
In this case, a = 3 and 4 < b < c¢. Hence degD <
n=q@=qg=4"

3
(C-1) D=Kx+ '4'(P1 + P+ Ps);  (3,4,4;12).

Hence either ¢; = 3 or

S| =

Henceforce we assume ¢; = 3.
Ry # 0 if and only zi;f g2 > 4. In this case, a = 3,b = 4 and ¢ > 5. Hence

13
< 2=Z2424.2_9 nlv 2
degD < -3 + 1 + z 2. Hence we have only 2 possibilities;
3

2 4
(C-Z) D=Kx+ '3-P1 + Z.Pz + ng; (3,4, 5; 13)
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2

(C3) D=Kx+3

3
P+ Z(Pz + P3); (3,4,8;16).

- 2
QSq ! -3 On the other hand, since
3

R4=O,a=3,b25a.ndc_>_6anddegD§%. This implies g3 < 6.

Next, assume ¢q; = go = 3. Hence degD =

2 5
(0-4) D=Kx+—(P1+P2)+6P3; (3,5,6; 15).

4
(C-S) D=Kx+ g(Pl + PQ) + gP;;; (3, 5,9; 18).

(C-6) D=Kx+ %(P1 +P)+ Zpa; (3,8,12; 24).

This completes the case g = 3.
Case 2. ¢; = 2.
In this case, a > 4 and R4 # 0 if and only if g, > 4.

First, we consider the case g; =2 and g, = 3 (g3 > 7).
In this case, deg[4D] = —1 = deg[5D] = deg[7D], deg[6D] = 0. Hence a = 6 and

. 1
b > 8. Hence degD < = This shows that 7 < g3 < 9 and actually these

©| oo

cases gives the hypersurfaces. 6
(C-7) D=Kx+ %Pl + §P2 + gps; (6,14, 21; 42).
(C-8) D=Kx+3R+ §P2 + gpa; (6,8, 15: 30).
(C-9) D=Kx+3P+ gpz + -3-133; (6,8, 9;24).
Next, we consider the case ¢; = 2 and ¢; > 4.
In this case, deg[dD] = 0 and a = 4,b > 5,c > 6. Hence degD < ng =

(% + % + %) — 2. Hence g, < 5 and if go = 5, the possibility is the following 2 cases.
4 5
(C-10) D=Kx+ %Pl + ng + EP;;; (4,5, 6; 16).
1 4
(C-ll) D= Kx+ §P1 + g(P2+P3); (4,5, 10; 20)

The remaining case is ¢; = 2,¢go = 4 (g3 > 5)-
Since dimR, = 1 and Rs = 0 and hence a = 4,b > 6,c > 7 and degD =

-1 3
B :-3- < —. Hence 5 < g3 < 7 and actually these cases give hypersurfaces.

Q3 4 — 28

This finishes the classification !

(C-12) D= Kx+ %Pl +3p+ %a; (4,10, 15; 30).
(C-13) D=Kx+ %Pl + ZPg + %P3; (4,6,11;22).
(C-14) D=Kx+3 P+ %Pg + gps; (4,6,7;18).
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3. THE CLASSIFICATION OF HYPERSURFACES WITH a(R) = 2.

In this section, we classify normal graded hypersurfaces of dimension 2 with
a(R) = 2.
We may assume that R = R(X, D) = k[u,v,w]/(f) with

deg(u,v,w; f) = (a,b,c;h); h=a+b+c+2.

We always assume (a,b,c) = 1. Since R is Gorenstein with a(R) = 2, 2D is
linearly equivalent to Kx + D’. Hence we may assume that

g1
D=E+)_ % P,
=1

where 2F ~ Kx and every g¢; is odd.

h b 2
SincedegD=EE=%-—— <5, 29—2 < 2degD < 10 and we have g < 6.

First, we divide the cases according to (1)a > 2, (2)a=1,>2,0or 3)a=b=1.
Case 1. a > 2.

This is equivalent to say that B; = H°(X,Ox (D)) = 0. If this is the case, we
have
9 3
< = — .
degD__2.2.3 4<1
Since degD > g— 1, g = 0 or 1 in this case.
For a while, we assume that g = 0.

Now, we can write

T L 1
D=-Q+3 % —F
i=1 :

;i — 1 1
Hence R; = Ry = 0 and dimR; = r — 2 since g z > 3 for every g;. Hence
12 b
a = 3 and degD < 334 = 31- This implies that r < 4 and if r = 4, then

1
D=-Q+ E?:l §Pi'

1
(2-1) g=0,D="Q+§(P1+P2+P3+P4), (3,3,4;12).

Now, we assume 7 = 3 and ¢; < g2 < ¢3. Then since dimR3 = 1, we have a = 3
and b > 5. Also, dimRs = 0 and dimRs = 2 (resp. 1, resp. 0) if g3 > 5 (resp.
q1=3,¢; > 5, resp. gz = 3).

If g >5,degD < 3 _155_ = % Hence we must have D = —Q + %(Pl + P, + P3).

2
(2-2) g=0,D=‘Q+g(P1+P2+P3), (3,5,5,15)
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Next, consider the case ¢; = 3 and g, > 5. In this case,a =3,b=5and c > 7

and then degD <
2 cases.

S35 773 + 3 + 7~ 1. Hence we are restricted to the following

1 2
(2—3) g=0,D=-Q+ §P1+ '5-P2+§P3, (3, 5, 7;17).

7
2 2 3 )
Actually, if we put D = —g(oo) + 3(0) + 7(—1), then R = k[F,G, H] with
1 s 1 5 . .
S — - 7 ¢
$($+1)T G == (z+1)2T H 1) with the relation

F'G = FH? + G°H.
Hence R = k[X,Y, Z)/(X 2% + Y2Z — X*Y).

1 2
(2-4) g=0,D= —Q+§P1+3(P2+P3), (3, 5, 10; 20)

1 1
If g = 3, then a = 3 and b > 7. Hence degD < 3 27 9—2§+g—1. Hence in
this case, g3 = 5,7 or 9.
1 4
(2-5) g=0,D= —Q+§(P1+P2)+§P3, (3,7,9;21).

3p, (3,7,15;30).

1
(2-6) 9=0,D=—Q+§(P1+P2)+7

1 2
(27) 9=0D=-Q+3z(P+P)+ch, (310,1530).

Now we have finished the case a > 2 and g = 0. Next, we treat the case a > 2
and g = 1. In this case, we put

D= E+Z:q’_1 3

i=1
where E € Div(X) with E # 0 and 2E ~ 0. Since [2D] = 0 and deg[3D] = r > 0,
we have a = 2 and b = 3. Hence degD <

< 1 and actually, we have r =1

2-3-3
or 2.
If r = 2, then deg[4D] = 2 and we must have (a,b,c) = (2,3,4) and degD = oYR
-1
But since —— L —1 + L = 1 is impossible, this case does not occur. Hence we
2 q1 2Q2 24

must have r = 1.
Since a = 2,b = 3,c = 4 is impossible as we have seen before, we must have

- 12
D=E+ q—z—q—lP with E+ P > 0 and degD < 535 We have 2 possibilities;

D=FE+ gP and D = E + %P. But the in latter case, we must have a = 2,b =

3,c =9, which contradicts the fact degD = ~
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Hence we are reduced to the case.

(2-8) g= 1,D=E+§Pwith 2E~0and E#0, (2,3,512).
" This finishes the case a > 2.

Case 2. a=1and b> 2.

< 2. Hence we have ¢ = 1 or 2 in this case.

7
1-2-2
Moreover, if g = 1, since {2D] = 0, we have b > 3 and degD S

In this case, degD <

9
<L
3S

F1rst we assume g = l and D = > ;_; P Since [2D] = 0 in this case,

2q

= 1. Hence r < 3 in this case and if r = 3,

> <
b 3andwehavedegD_ 133

D= (P1+P2+P3)
1
(2-9) g= ].,D = g(P] +P2+P3), (1,3,3,9)

Next, we assume r = 2. Then b = 3 and ¢ > 5. We have degD < = l+2
Hence we have 2 possibilities;

(2-10) g=1,D= —P1+ Pg, (1,3,5;11).

There is a linear relatlon between T GT® HT®, G*T°, GHT?,G3T?, H*T,G*H,
where degl’ = 1, degG 3 and degH = 5.

(2-11) g=1,D= (P1+P2) (1,3,6;12).

Next, we assume D = q—;q—lP. In this case, b > 5 and degD <
Hence we have 3 possibilities; ¢ = 3,5, 7.

(2-12) g=1,D= %P, (1,5,7;15).

2
(2-13) ¢=1,D=:F, (L5816).

(2-14) g=1,D=3P, (1,69]18).

Next, we treat the case g =2,a=1,b>2and D=E+ ) _, q R,mth
2E ~ Kx. Since [2D] ~ Kx in this case, we have a = 1,b=2 and ¢ > 3. Thuswe

ha,vedegD<1 7 3—1+%. HencerSland1fr=1,thenD=D=E+§P.

(2-15) g=2,D=E with 2E ~ Kx, (1,2,5;10).
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(2-16) g=2,D= %P, (1,2,3:8).
This finishes the case a =1,b > 2.
. Case 3. a=b=1.
In this case, degD = —C—JE% Since g > 3 in this case, degD > 2 and we have
c<4.
(2-17) g¢=6,D = E with 2E ~ Kx, (1,1,1;5).
(2-18) g¢=25,D = E with 2E ~ Kx, (1,1,2;6).
(2-19) g=3,D=E+1Pwith2E~ Ky, (1,1,37).
(2-20) g¢g=3,D=Ewith2E~Kx, (L1,4% 8).

4. COMPLETE INTERSECTIONS WITH a(R) = 1.

In my talk at the conference, I talked about classification of normal graded com-
plete intersections of dimension 2 with a(R) = 1. Until now, I can not find a
satisfactory way to classify them. Here, I will show the results when the genus of
the curve is 0.

Proposition 4.1. Let R = @nxoRn be a normal graded complete intersection Of
dimension 2 with Ry = k, a field, a(R) = 1 and Ry = 0. Then the embedded
dimension of R is at most 4.

This follows from the fact mH(X, Ox) = 0, where m is the graded maximal ideal
of R and X — Spec (R) is a resolution of singularities of R. By the Briancon-Skoda
type argument, we can assert that m3 C J, where J is a minimal reduction of m.
Then by the argument as in [NW], §2, we can deduce that the embedded dimension
of R is at most 4. Conversely, if R is Gorenstein with the embedded dimension 4,
then R is a complete intersection by the famous result of J .-P. Serre.

Until now, I can not find a satisfactory method of classification for this case. Actu-
ally, what I do is only to restrict the embedding dimension. So, I list only the results
in this case. We list the divisor D on X = P! with R(X,D) = k[u,v,w, 2]/(f, 9)-
We also put deg(u, v, w, z; f,g) = (a, b, ¢, d;g,h) with g+ h=a+b+c+d+1 with
a<b<c<dand g < h in the following table.

(31) D=Kx+i(P+..+F), (222346)

1 3
(3-2) D=Kx+§(P1++P4)+ZP5, (2,2,3,4,6,6)
2
3
(3-4) D=KX+§-(P1+...+P4), (2,3,3,3;6,6).

. 1
(3-3) D=Kx+ §(P1 + P+ P3) + (P4 + P5), (2, 2,3,3;5, 6).
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2
(34) D=Kx+3z(P+...+PF), (233306,6).

1 2 3
(3-5) D= KX + —Pl + ‘3‘(P2 + P3) + ZP4, (2, 3, 3, 4; 6, 7)

2
1 2 3

(3-5) D=Kx+5P1+§(P2+P3)+ZP4, (2,3,3,4;6,7).
1 3

(3-6) D= KX + '2‘(P1 + PQ) + -(P3 + P4), (2, 3,4, 4; 6, 8)

(37) D=Kx+y(R+B)+; P3 + P4, (2,3,4,5:7, 8).
(3-8) D=Kx+ §(P1 + P+ P+ 6P4, (2,4,5,6:8, 10).
(39) D=Kx+3(R+P+P)+ 2P, (2,456810)
(310) D= Kx+ 3(P1 +P)+ Pg,, (3,4,4,5;8,9).

(3-11) D= KX'{'ZPI +5(P2+P3), (3,4,5,5;8, 10)

3
2 3 5

(3-12) D=Kx+ ’3'P1 + ZPQ + 6P3, (3, 4,5,6;9, 10)
2

(3813) D=Kx+2(Pi+P)+ §P3, (3,5,6,7:10,12).
1 5

(3-14) D=Kx+ §P1 +—(P2+P3), (4,5,6,6;10,12).
1

(3-15) D=Kx+ §P1 + 5.P2 + P3, (4,5,6,7;11,12).
1 3

(3-16) D=Kx+ —2‘P1 + 4P2 + P3, (4, 6,7,8;12, 14)
1 2

(3—17) D=Kx+ §P1 + 3P2 + 9 P3, (6, 8,9,10;16, 18)
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