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An example of a local ring R such that the kernel

of the map from Go(R) to Go(R) is not torsion

Kazuhiko Kurano

(Meiji University)

This is a joint work with V. Srinivas from Tata Institute, India.

1 Introduction

For a Noetherian ring R, we set

@  zM]

M: f. g. R-mod.

Go(R) = (L] +[N]-[M][0-L—->M— N —0is exact) ,

that is called the Grothendieck group of finitely generated R-modules.

For a flat ring homomorphism f : R — A, we have the induced map Gy(R) — Go(A)
defined by [M] — [M ®r A].

We are intersted in the following problem:

Problem 1 Let R be a Noetherian local ring. Is the map Go(R)g — Go(ﬁ)Q injective?

Let me explain motivation and applications.

Assume that S is a regular scheme and X is a scheme of finite type over S. Then, by the
singular Riemann-Roch theorem [2], we obtain an isomorphism 7x/s : Go(X)q — A.(X)q,
where Go(X) (resp. A.(X)) is the Grothendieck group of coherent sheaves on X (resp. Chow
group of X). The map 7x,s usually depends on the choice of S. In fact, for a field &, we
have

r2 /1 (Op1 ) [Pi] € Au(Ph)o = QP}] & Q[t]
7p1 sspect) (Op1) = [Pi] + x(Opy)[]
[Pt] + [t] € Au(Pi)o,



where ¢ is a rational closed point of P}. Hence, 7p1/p: (Op1) # Tp1/spec(k)(Op1 ). However,
for a local ring R which is a homomorphic image of a regular local ring T, the map
TSpec(R)/Spec(T) 18 sometimes independent of the choice of T. In fact, if R is a complete local
ring or R is essentially of finite type over either a field or the ring of integers, it is proved
in [5] that the map Tspec(r)/spec(r) i independent of T'.

From now on, we simply denote Tspec(r)/spec(r) DY Tr/r- It is natural to ask;

Problem 2 Is the map 7g/r always independent of T'?

Remark that the diagram
Go(R)g =5 Au(R)g
L
Go(Rg 2 A.(R)qg

is commutative, where the vertical maps are induced by the completion R — R. We want

to emphasise that the bottom map and the vertical maps are independent of the choice of

T. Therefore, if the vertical maps are injective, then the top map is also independent of T'.
Therefore, if Problem 1 is true, then so is Problem 2.

Roberts [7] and Gillet-Soulé [3] proved the vanishing theorem of intersection multiplicity
for local rings which are complete intersection. If a local ring R is complete intersection,
then 7g/r(R) = [Spec(R)) is satisfied. In [7], Roberts proved the vanishing property not
only for complete intersections but also for local rings with 75/7(R) = [Spec(R)]. Inspired
by his work, Kurano [5] started to study a local ring which satisfies 75/r(R) = [Spec(R)],
and call it a Roberts ring. If R is a Roberts ring, then the completion, the henselization
and localizations of it are also Roberts rings [5]. However, the following problem remained
open.

Problem 3 Is R a Roberts ring if so is R?

It is proved in [4] that Problem 1 is equivalent to Problem 3.

The following partial result on Problem 1 was given by [4]:

Theorem 4 (Kamoi-K, 2001 [4]) Let R be a homomorphic image of an excellent reqular
local ring. Assume that R satisfies one of the following three conditions:

(i) R is henselian, .

(ii) R = Sg, , where S is a standard graded ring over a field,

(i11) R has only isolated singularity.

Then, the induced map Go(R) — Go(R) is injective.

The following example was given by Hochster.



Example 5 (Hochster) Let k be a field. We set

T = klz,y,% v)(zyu)

P = (z,y),
f = zy+uz?+vy

Then, Ker(Go(T/fT) — GO(T//ﬁ")) > [T/P) #0. However, 2-[T/P] =0 in this case.

Unfortunately, it.is not a counterexample of Problem 1. The following is the main
theorem. .

Theorem 6 There exists a 2-dimensional local ring B (which is essentially of finite type
over C) that satisfies
Ker(Go(B)q — Go(B)q) # 0

Remark 7 1. By Theorem 6, we know that Problem 1 and Problem 8 are negative.

2. Problem 2 is still open.

3. In [6], we defined the notion of numerical equivalence for Go(R) and A.(R). We set
Go(R) = Go(R)/ ~num.- Then,

(a) Go(R) — Go(ﬁ) is injective for any local ring R.

(b) R is a numerically Roberts ring iff so is R. (The notion of a numerically Roberts
ring is defined in [6].)
(c¢) The induced map TajT - Go(R)g = A«(R)q i independent of T

4. The ring B constructed in the main theorem is not normal. We do not know any
example of a normal local ring that does not satisfy Problem 1.

2 Proof of the main theorem

We give an outline of the proof of the theorem.
The main theorem immediately follows from the following two lemmas.

Lemma 8 Let K be an algebraically closed field, and let S = ®,>0S, be a standard graded

ring over K, that is, a Noetherian graded ring generated by S over Sy = K. We set

X = Proj(S), and assume that dimX > 1 and X is smooth over K. Let h be the very

ample divisor on X of this embedding. Letw : Y — Spec(S) be the blow-up at S; = €Bn>oS
Assume the following two conditions:



1. A1(R)q = A(R)q for R=Ss, .

2. A smooth curve C in'Y intersects with m=2(S;) ~ X at two points transversally.
We denote the two points by oy and ao. Here, they satisfies [aa] — [a] # 0 in
Ao(X)o/h - Air(X)q. '

Then, there ezists a 2-dimensional local ring B (which is essentially of finite type over
K ) such that Ker(Go(B)g — Go(B)g) # 0.

Lemma 9 We set S = Clzg, z1,22]/(f), where f is a homogeneous polynomial of degree
3. Assume that X = Proj(S) is smooth over C.
Then, R satisfies the assumption in Lemma 8.

In the rest of this section, we shall prove the above two Lemmas.

2.1 An outline of the proof of Lemma 8

Here, we shall give an outline of the proof of Lemma 8.

Let P be the prime ideal of S that satisfies Spec(S/P) = n(C). Set R = Ss, .

Then, C is the normalization of Spec(S/P). We denote by v; the normalized valuation
of ;e Clori=1,2. :

By the Riemann-Roch theorem for smooth projective curves, one can show that there
exists s € R/PR such that

1. v1(s) = va(s) > 0,

2. {a1, a2} is just the set of zeros of s.

Then, the composite map K|s];) — R/PR — (R/PR) is finite, where (R/PR) is the
normalization of R/PR. Therefore, R/PR is finite over K[s](s).

Let R -5 R/PR be the natural surjective map. We put B = £7'(K[s](s)). Then,
B < R is finite birational, and B is essentially of finite type over K with dim B = 2. (In
particular, B is a homomorphic image of a regular local ring T'.)

Remark that the diagram

Go(Bla =% A(B)o
L
Go(B)e =5 AuBg
is commutative and the horizontal maps are isomorphisms. Therefore, if Ker(A.(B)g —
A.(B)g) is not 0, then Ker(Go(B)g — Go(B)g) is not 0.
It is sufficient to prove that Ker(A;(B)g — A1(B)g) is not 0.



The diagram

induces the commutative diagram

A (lR)Q —
Ai(B)e —

oy — T

Ai(R)q
L (1)
A1(B)o

where the vertical maps are induced by the finite morphisms B — R and B — R and the
horizontal maps are induced by the completions B — Band R— R.

The map in the left-hand-side in the diagram (1) is an isomorphism since, for each prime
ideal of B, there is only one prime ideal of R lying over it.

The top map in the diagram (1) is also an 1somorphlsm by the assumption 1 of Lemma 8.

Therefore, it is enough to prove that Ker(A;(R)g — A1(B)g) is not 0.

It is well-known that there exists the natural bijective correspondence between the set
of maximal ideals of (R/PR) and the set of minimal prime ideals of R/ PR = R/ PR. Let
p; be the mlmmal pnme ideal of PR corresponding to the maximal ideal a; of (R/ PR).
Since p1 N B= pa N B and v1(8) = v2(s), we have

[Spec(R/p1)] — [Spec(R/p2)] € Ker(A1(R)g —~ A1(B)o)-

It is enough to show

[Spec(R/p1)] — [Spec(R/p2)] # 0

in A;(R)q.

Let 7 : ¥ — Spec(R) be the blow-up at S.R. Since 7 1S, R) ~ X

A (X)e 3 A(P)e B Ai(R)g — 0

is exact and

7. ([Spec(R/p1)] - [Spec(B/pa)])

= [Spec(R/p1)] — [Spec(B/p2)]-

Assume the contrary. Then, there exists § € A;(X)q such that

i,(6) = [Spec(R/p1)] — [Spec(R/pa)].



Here, consider the map A4;(Y)g 4 Ao(X)q, that is taking the intersection with X. Since
i'i,(6) = —h - § and

i'(Spec(R/p)) — Spec(R/pa)]) = o] — laa),

we have [a1] — [ag] = —h- 4. It contradicts to [a1] — [ag] # 0 in Ao(X)g/h - A1(X)e-
We have completed the proof of Lemma 8.

2.2  An outline of the proof of Lemma 9

We shall give a proof of Lemma 9. ,

Assume that S = C[zo, z1,2,]/(f) and X = Proj(S) satisfy the assumption in Lemma 9.
Let Z be the projective cone of X, that is, Z = Proj(C|zo, z1, 2, 73]/ (f)).

We set Xoo = Vi (z3) ~ X. Let W 5 Z be the blow-up at (0;0;0;1), and set X, =
€71((0;0;0;1)) ~ X. Then, W - X is a PL-bundle.

Take any two closed points 81, 5, € X. We set 4 = n~'(5;) for i = 1,2. Consider the
Weil divisor £; + ¢, + X, on W. Here we can prove the following claim.

Claim 10 The complete linear system |61 + £2 + Xoo| is base point free, and the induced
morphism W 5 pn satisfies dim f(W) > 2.

The proof of the claim is omitted here.
For a general element a € HO(W, O(4; + £ + X)), the Weil divisor

div(a) + Zl + 42 + Xoo

is smooth connected by the above claim. We denote it by V. Then, V is linearly equivalent
to £ + €5 + X, and we may assume that V intersects with X, at two points, namely a;
and az, transversally. Furthermore, we may assume that (o) — () is not torsion in the
elliptic curve X, where (a;) — (a2) € X is the difference in the elliptic curve X.

Let Y be the blow-up of Spec(S) at the origin. Then, Y is an open subvariety of W. We
set C=VnNY.

It is well-known that Xq ~ Ao(X)q/h - A1(X)q as a group. Under this isomorphism,
(a1) — (a2) corresponds to [on] — [ap]. Therefore, o] — [ag] # 0 in Ag(X)g/h - A1(X)g,
and {a;, @} satisfies the assumption 2 in Lemma 8.

Since H(X,Ox(n)) = 0 for n > 0, we have CI(R) ~ CI(R) by Danilov’s Theorem [1].
Therefore, R satisfies the assumption 1 in Lemma 8.

We have completed the proof the Lemma 9.
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QUASI-SOCLE IDEALS IN A GORENSTEIN LOCAL RING

SHIRO GOTO, NAOYUKI MATSUOKA, AND RYO TAKAHASHI

ABSTRACT. This paper explores the structure of quasi-socle ideals I = Q : m? in a
Gorenstein local ring A, where Q is a parameter ideal and m is the maximal ideal in
A. The purpose is to answer the problems of when @ is a reduction of I and when
the associated graded ring G(I) = @,,oI"/I™** is Cohen-Macaulay. Wild examples
are explored. B

1. INTRODUCTION
The purpose of this paper is to prove the following theorem.

Theorem 1.1. Let (A, m) be a Gorenstein local ring with dim A > 0 and assume that
e? (A) > 3, where e (A) denotes the multiplicity of A with respect to the mazimal ideal
m. Then for every parameter ideal Q in A, one has the following, where I = Q : m?.
(1) m?I = m?Q and I® = QI*.
(2) The associated graded ring G(I) of I and the fiber cone F(I) of I are both
Cohen-Macaulay rings.

Hence, the Rees algebra R(I) of I is also a Cohen-Macaulay ring, if dim A > 3.

Here we define
R(I) = AlIT] € A[T),
R(I) = AIT, T C AT, T,
G(I) =R'(I)/T7*R'(I), and
F(I) = R(I)/mR(I) (= G(I)/mG(I))
with T' an indeterminate over A.
Our theorem 1.1 is a generalization of the following result of A. Corso, C. Polini, C.
Huneke, W. V. Vasconcelos, and the first author.

Theorem 1.2 ([CHV], [CP], [CPV], [G]). Let (A, m) be a Cohen-Macaulay local ring
withd = dimA > 0. Let Q be a parameter ideal in A and let I = Q : m. Then the
following three conditions are equivalent to each other.

1) *#QI.

(2) @ = Q, that is the parameter ideal Q is integrally closed in A.

(3) A is a regular local ring which contains a regular system z1,%s,---,Zq of pa-

rameters such that Q = (z1,- -+ ,z4-1,25) for some integer ¢ > 0.

Consequently, if (A, m) is a Cohen-Macaulay local ring which is not regular, then I? =
QI for every parameter ideal Q in A, so that G(I) and F(I) are both Cohen-Macaulay



rings, where I = @ : m.. The Rees algebm R(I) is also a Cohen-Macaulay ring, if
d=dimA > 2.

Our present research aims at a natural generalization of Theorem 1.2 but here we
would like to note that there might be other directions of generalization. In fact, the
equality I> = QI in Theorem 1.2 remains true in certain cases, even though the base
local rings A are not Cohen-Macaulay. For example, the first author and H. Sakurai
investigated the case where A is a Buchsbaum local ring and gave the following.

Theorem 1.3 ([GSa2, cf. [GN]). Let (A, m) be a Buchsbaum local ring and assume
that either dimA > 2 or dimA = 1 but €2 (A) > 2. Then there ezists an integer
n > 0 such that for every parameter ideal @ of A which is contained in m", one has the
equality I? = QI, so that the graded rings G(I) and F(I) are Buchsbaum rings, where
I=Q:m

See [GSal, GSa3] for further developments of this direction.

We now explain how this paper is organized. Section 2 is devoted to some preliminary
steps, which we will need later to prove Theorem 1.1. Theorem 1.1 will be proven in
Section 3. Our method of proof is, unfortunately, applicable only to the case where
the local ring A is Gorenstein and the situation seems totally different, unless A is
Gorenstein. In order to show that the non-Gorenstein case of dimension 1 is rather
wild, we shall explore three examples in the last section 4. One of them will show the
quasi-socle ideals I = @ : m? are never integral over parameter ideals () in certain
Cohen-Macaulay local rings A of dimension 1, even though €% (A) > 2. The other two
will show that unless A is a Gorenstein ring, one can not expect that ro(I) < 2, even
if I is integral over (), where

ro(I) = min{n > 0 | I"*' = QI"}
denotes the reduction number of ideals I = @ : m? with respect to Q.

Unless otherwise specified, in what follows, let (4, m) be a Gorenstein local ring with
dimA = d. We denote by €2 (A) the multiplicity of A with respect to the maximal
ideal m. Let Q = (ay,as," - ,aq) be a parameter ideal in A generated by the system
a1,a, - - ,0q of parameters in A. For each finitely generated A-module M we denote
by wa(M) and £4(M), respectively, the number of elements in a minimal system of
generators for M and the length of M. Let v(A) = £4(m/m?) stand for the embedding
dimension of A.

2. PRELIMINARIES

Let A be a Gorenstein local ring with the maximal ideal m. The purpose of this section
is to summarize some preliminaries, which we need in Section 3 to prove Theorem 1.1.
Let us begin with the case where dim A = 0.

Suppose that dim A = 0. Let n = v(A4) > 0 and let z;,z5, - ,z, be a system of
generators for m. We choose a socle element z in A. Hence 0 # z € m and mz = (0).
Let I = (0) : m®. We then have the following.



Lemma 2.1. There ezist elements yi,ys, -+ ,yn € A such that z;y; = 6,z for all
integers 1 < 1,5 < n. We furthermore have the following.

(1) I=(y1,92 - yn), p(d) =mn, and Ly(I) =n+ 1.

(2) Ifn>1, then I C A. v

Proof. The existence of elements y;, 42, - , ¥, is exactly the dual basis lemma. Let us
note a brief proof for the sake of completeness. Let 1 < j < n be an integer. We look
at the following diagram

m - A
I
le | f=7;
p & L v
m/m? A/m (2) A
of A-modules, where € is the canonical epimorphism, p is the projection map such
that p(z;) = d;; for all 1 < ¢ < n where Z; = z; mod m? denotes the image of z; in
m/m? and &;; is Kronecker’s delta, h is the isomorphism of vector spaces over A/m
defined by h(1) = z, and ¢’s denote the embedding maps. Then, since the ring A is
self-injective, we have a homothety map f = 7; : A — A with y; € A such that the
above diagram is commutative. Hence z;y; = d;;z for all integers 1 < 7,5 < n. We put
J = (y1,92,- -+ ,¥n). Then J C I = (0) : m?, because mz = (0) and z;y; = ;2. We
have £4() = n + 1, since

I 2 Homu(A/m? A) and £4(A/m?) =n+1.

Therefore, to see that I = J, we have only to show £4(J) = n + 1, or equivalently
£4(J/(2)) = n. Let {b;}1<j<n be elements in 4 and assume that Y7 b;y; € (z). Then

biz = bi(ziyi) = - Z bjy; = 0.

Jj=1 .
Hence b; € m. Thus the images of {y;}1<j<» in J/(z) form a basis of the vector space
J/(z) over A/m, so that pa(J/(z)) = £a(J/(2)) = n. Hence £4(J) = n+1 and assertion
(1) follows. Assertion (2) is now obvious. a

For the rest of this section we throughout assume that d = dimA > 0. Let
@ = (a1,0az,- -+ ,aq4) be a parameter ideal in A generated by a system a1, a9, - ,aq
of parameters for A and let J = @ : m?. We assume n = v(4/Q) > 0 and write
m = Q4 (21,22, -+ ,2,) with 2, € A. Then mI C Q : m and mI/ € Q (recall that
@ # m, since n > 0). Let us choose z € mI so that z € @, whence

Q:m=Q+ml=0Q+(2).
Then, applying Lemma 2.1 to the Artinian local ring A/Q, we get the elements
Y1, Y2, ", Yn € A such that z;3; = ;2 mod @ for all integers 1 < 4,j < n. Hence
. I=Q+(yl7y2a"' ayn)7 »U'A(I/Q) =n, and EA(I/Q) =n+1;

so that we have ps(J) < n+d.



We now look at the following inclusions

ngd

n+1 ml

I

d mINg

7

and notice that [Q + mI]/Q = mI/[mI N Q). Then £4(mI/[mINQ]) =1 since @ : m =
@ +mlI, so that we have

mQ

pall)=n+d <= mINQ=mQ.
We furthermore have the following.

Proposition 2.2. Suppose that n = v(A/Q) > 1. Then the following four conditions
are equivalent to each other.

HIcq.

(2) mINQ=mQ.

(3) pa(l)=n+d.

(4) m’I =m?Q.
Here Q denotes the integral closure of Q.
Proof. The implication (1) = (2) is clear, since @ is a minimal reduction of I. The
equivalence (2) <= (3) follows from the above observation.

(4) = (1) This is well-known (cf. [NR]). Use the determinantal trick.
(2) = (4) Because z e mI C Q : m = @ + (2), we get

ml = (mINQ)+(2)

= mQ+ (2).
Therefore, in order to see the equality m®2J] = m2(Q, we have only to show that
mz C m2Q.
Since z € mI C m? (recall that I # A; cf. Lemma 2.1 (2)), we get Qz C m2Q. Hence,
because m = Q+(z1,z2,- - - , Zn), it suffices to show that z,2 € m2Q forevery 1 < £ < n.

Choose an integer 1 < i < n so that ¢ # £ and write 2z = z;y; + ¢; with ¢; € Q. Then



zoz = ;(Teys) + Teg;. Because ¢; = z — z;y; € mINQ = mQ and z,y; € mI NQ = m@Q,
we certainly have z,2 € m*Q. Thus m?] = m?Q. O

As a consequence of Proposition 2.2 we have the following.

Corollary 2.3. Suppose that n = v(A/Q) > 1 and that I is integral over Q. Then

(1) @ NI* = QI for all integers i > 1. Hence I? = QI if I C m?.

(2) (al) N 12 = Cll.[

() P=QIifQcm
Proof. (1) The second assertion follows from the first, since 72 C m2I C Q. To see the
first assertion, notice that m2I**! = m?Q**!, since m%J = m2Q by Proposition 2.2. Let
f € @ NI+t and write

f = Z a’llaff . -ai,dfiliz...id
11 +ig4-Hig=i

with f;,..i, € A. Let o € m%. We then have

_ i i i 2 ri+1 i+1
af = E afaf s ad‘*(af.il,-z...,-d) e ml cQ™.
i1+iottig=i
Hence af;,s,..i; € Q because ay, ag,- - -, a4 is an A-regular sequence, so that f; ,..., € I.

Thus f € Q'I, whence Q' N I*t! = Q*I.

(2) Let f € (a;) N I? and write f = a;g with g € A. Then for all @ € m?, we have
af = a;(ag) € m2I? C Q% Hence ag € @ so that g € I, and so f € a;I. Thus
(al) ﬂ]z = all.

(3) Let us prove the assertion by induction on d. Assume that d = 1. Let b € m? be
a non-zerodivisor in A. Then, thanks to the isomorphisms

[(b) : m?]/(b) = Hom4(A/m?, A/(b)) = Ext}(4/m?, A)

of A-modules, we see the length €A([( ) :m?2]/(b)) = EA(ExtA(A/m2 A)) is independent
of the choice of the element b € m?. We put a = a;. Let @' = (a?) and I' = Q' : m?

Let
p: Af(a) = A/(a)
be the monomorphism defined by ¢(Z) = az, where % denote the images of the corre-
sponding elements z and az. Then ¢(I/(a)) = I'/(a?), since ¢(I/(a)) C I'/(a?) and
24(I/(a)) = £a(I'/(a?)) (recall that a € m?). Therefore
(1) I' = al 4 (a®) = al,

whence pa(I') = pa(l) = n + 1, where the last equality follows from Proposition
2.2. Hence I' is also integral over Q' by Proposition 2.2, because v(A4/Q') = v(4) =
v(A/Q) = n > 1. Therefore (I')?2 = a?I' by assertion (1), since I’ C m2. Hence by
equality (f) we get a®I? = (I')? = aI' = @®I, so that I? = al.

Assume now that d > 2 and that our assertion holds true for d — 1. Let A = A/(a,),

m=m/(a1), @ = Q/(a1), and T = I/(a;). Then @ : m> =TI, v(A/Q) = v(4/Q) =



n > 1, and T is integral over Q. Hence the hypothesis of induction on d yields that
7> =Q 1T, since Q C m?. Thus I C QI + (a;). Therefore

P=[QI+(@)]N?=QI+[(a)NI*]=QI +al =QI
by assertion (2). O
Corollary 2.4. Suppose v(A/Q) > 1 and I is integral over @. Then I C m* if Q C m?.

Proof. Suppose @ C m2. Then I? C Q since I2 = QI by Corollary 2.3 (3). On the other
hand we have Q : (Q : m?) = m?, because Q is a parameter ideal in the Gorenstein
local ring A. Hence I C Q : I = Q : (Q : m?) = m? as is claimed. O

Unless Q C m?, the equality 2 = QI does not necessarily hold true. Let us note one
example.

Example 2.5. Let H = (6,7,15) be the numerical semi-group generated by 6,7, 15 and
let A = k[[t5,t7,t1%]] C k[[t]], where k[[t]] denotes the formal power series ring with
one indeterminate t over a field k . Then A is a Gorenstein local ring with dim A = 1.
Let 0 < se H=(6,7,15), @ = (t)) in A, and I = Q : m®>. Then I is integral over Q
and rg(I) < 2. However, I? = QI if and only if s # 7.

Proof. Let n € H. Then it is direct to check that ¢t € I if and only if n = 5,5 +
6,5+ 7,5+ 8, or s+ £ for some 12 < £ € Z. Thanks to this observation, we get
I = (85,578, ¢5+16 ¢s417) if 5 > 12 but s # 15. We also have I = (¢°,¢,1%) if s = 6,
I= (7,11, if s = 7, and I = (#*5,¢%,¢%?) if s = 15. Hence I C t°k[[t]] N A, so that
I is integral over @ = (¢°), in any case. It is routine to check that I? = QI when s # 7.
If s =7, then I3 = QI? but I? = QI + (t*°) and £4(I?/QI) =1, whence I? # QI. O

Here let us note one example to clarify our arguments.

Example 2.6. Let (A,m) be a regular local ring with d = dim A 2 and let
Z1,%a,- -+ ,Zq be a regular system of parameters of A. Let ¢; > 2 (1 < d) be

2
<i
integers and put Q = (2,25, -+ ,z5). Let I = Q : m®. We then have the following.

(1) The following conditions are equivalent.
() I £ Q.
(i) d = 2 and min{c;, o} = 2.

(2) ’=QIifICQ.

Here Q denotes the integral closure of Q.

Proof. Let z = Hle 257t g, = 2%, and y; = a:i foreach1<i:<d Then@Q: m=Q+

(2) and z;y; = 6;jz modulo @ for all integers 1 51 i,j < d. Hence I = Q+(y1,¥2," "+ , Yd)
and ua(I/Q) = d by Lemma 2.1. We put J = (y1, 92, , ¥a)-

Suppose now that I ¢ Q. Then, since v(A4/Q) = d > 1, by Proposition 2.2 we have
pa(I) < 2d. Hence a; € (a; | 1 < j < d,j # i)+ J for some 1 < 1 < d, because



1a(I/Q) = d. We may assume that 4 = 1. Let us write
d d
@ = 0+ )y

with {; and n; € A. Then n; € m for all 1 < j < d, since Z;zl y;n; € @ and
pa(I/Q) =d. Let ¢ = ¢, ¢;. Then

d d | 4
0= Z ;€ = Z yin; € QNme? = Zajmc—<d+cj)_
Hence
d d
a1 =D et = ap;
Jj=2 j=1

for some p; € me=(@+%) 50 that a;(1 — p;) € (a; | 2 < j < d). Therefore p; is a unit of
A, since a; ¢ (a; | 2 < j < d). Thus d = 2 and ¢, = 2, because p; € m(c2test-+ea)—d
and ¢; > 2 forall 2 <j <d.

Conversely, assume that d = 2 and ¢y = 2. We then have

I'=Q+J= (a7, 29 "2y, 23).

Hence p4(I) < 4 = 2d and so I € Q by Proposition 2.2. Thus assertion (1) is proven.
Since @ C m?, the second assertion readily follows from Corollary 2.3 (3). O

The following result is the heart of this paper.

Theorem 2.7. Let n = v(A/Q) > 1 and assume that I is not integral over Q. Then
eQ(A) <2 andn=2.

Proof. Firstly, suppose that d = 1 and let a = a;. Then I = (a) + (y1,%2,- - ,¥») and
m = (a) + (21,22, ,%,). We have pa(I) < n by Proposition 2.2, because I is not
integral over (), while pu4(//Q) = n by Lemma 2.1 (1). Hence I = (y1,ys,--- ,yn) and
a €m-(y1,%2, - ,Yn) C m?. Therefore m'= (7,22, ,z,). We put

J=Q:m=Q+ml=Q+(2)

Then mJ = m@Q (cf. [CP, Proof of Theorem 2.2]; recall that A is not a discrete valuation
ring, because n > 1). Hence ps(J) = 2, because £4(J/mJ) = £,(J/Q)+£4(Q/mQ) = 2.
We have J =m/l = (z;y; | 1 < 4,5 < n), because @ C mI C J.

We divide the proof into two cases.

Case 1. (z;y; ¢ m@Q for some 1 < 4,5 < n such that i # j.) ‘
Without loss of generality we may assume that 1 = 1 and j = 2. Then, because
T1y2 € Q but 71y, ¢ mQ, we have Q = (z,y;). Hence J = (z1y1) + Q = (7191, T192) =
z1:(y1,¥2) C (z1) because z = z,y; mod Q, whence z; is a non-zerodivisor in A. We
have 71y, € mI = J = 21-(y1,y2), so that yo € (y1,9;) for all 1 < ¢ < n. Thus
I = (y1,y2). Hence n = 2. Because mI = z;J and pa(I) = 2, we have m? = z;m,



just thanks to the determinantal trick (cf. [DGH, Proposition 5.1]). Hence €%(A) = 2,
because A is a Gorenstein local ring of maximal embedding dimension.

Case 2. (z;y; € mQ for all 1 < 4,5 < n such that ¢ # j.)
In this case, we have J = (z;y; | 1 < i < n), because J =ml = (z;y; | 1 < 4,7 < n)
and mJ = m@. Since us(J) = 2, without loss of generality, we may assume that
J = (z1Y1, T2y2). Because z1y; — 222 ¢ mJ = mQ and z1y; = 22y, = 2 mod Q, we
have z1y; = Z2y2+ae with a unit € in A, while 2y, = aa and z,y; = af with o, § € m.
Hence

(21 +22) (11 —y2) = ae —a + )

with € — a + 8 a unit of A. We put

_ T1 + Zg (’t=1) - Y1 — Y2 (2=2)
"“{xi Gty 4N {y,- (i # 2).

Then m = (X3, Xo, -+, Xn), I = (Y1,Y2,- -+, Y,), and X1, ¢ mQ clearly. Thus thanks
to Case 1, we have n = €% (4) = 2.

Now assume that d > 2. Then, by Proposition 2.2, we have p4s(I) < n + d. Since
pa(I/Q) = n, we may assume that I = (ag,as, - ,aq) + (y1,Y2," - ,yn). Let L =
(a2,a3, - ,aq4), A= A/L,m=m/L, Q = Q/L, and I = I/L. Then T = Q : m? and
A is a Gorenstein local ring of dimension 1 with v(4/Q) = v(A/Q) = n > 1. We have
p5(I) < n, whence by Proposition 2.2, T is not integral over Q. Therefore, thanks to
the result of the case where d = 1, we have n = eZ(A4) = 2. We see e’ (4) < 2 because
el(A) > €% (A), which completes the proof of Theorem 2.7. a

The following assertion readily follows from Theorem 2.7.

Corollary 2.8. Suppose that €% (A) > 3. Then I is integral over Q, if n = v(A/Q) > 1.

3. PROOF OF THEOREM 1.1

Throughout this section let (A, m) be a Gorenstein local ring with d = dimA4 > 0
and Q = (aj, a9, - ,a4) a parameter ideal in A. We put [ = @ : m2.
The purpose of this section is to prove Theorem 1.1. Let us begin with the following.

Theorem 3.1. Suppose that n =‘V(A/Q) > 1 and I is integral over Q. Then
1) I3 = QI
(2) G(I) and F(I) are Cohen-Macaulay rings.

Hence R(I) is also a Cohen-Macaulay ring, if d > 3.

Proof. The last assertion directly follows from assertions (1) and (2), because the a-
invariant a(G(I)) of G(I) is at most 2 — d (cf. [GS, THEOREM (1.1), REMARK

(3.10))).

We may assume that I? ¢ @, thanks to Corollary 2.3 (1). Choose the element
z € ml so that z € I?. Hence @ : m = Q + 1% = Q + (2) and so I? = QI + (z), because



QNI? = QI by Corollary 2.3 (1). Thus I3 = QI%+ 2] and we get the required equality
I®* = QI? modulo the following claim, because

(@ +2Q)NI=(@*NI)+2Q=QT+2QC QI
by Corollary 2.3 (1).
Claim 1. zI C Q? + 2Q.

Proof of Claim 1. Since I = Q+(y1,¥2,** ,Ya), it suffices to show that zy, € Q*+2Q for
all integers 1 < £ < n. Let 1 <1 < n be an integer such that 1 # £ and write z = z;y;+¢;

with ¢; € mQ. Then 2y, = (z;ye)y; + yegi € (MI)Q. Sincem] C Q : m = Q + (z), we
have zy, € [Q + (2)]-Q = Q® + 2Q. Thus 2 C Q* + 2Q. D

As I¥ = QI? and QN I? = QI by Corollary 2.3 (1), we have QﬁI“’1 QI for every
i € Z, whence G([) is a Cohen-Macaulay ring. To show that F(I) is a Cohen-Macaulay
ring, we need the following. The equality mI? = mQ]I in Claim 2 yields, since I® = QI?,
that the elements a;T, a2T, - - ,a4T € R(I) constitute a regular sequence in F([).
Claim 2. mI? = mQ].

Proof of Claim 2. Let J = (y1,¥2, - ,yn). Hence I? = QI + J? because I = Q + J.
It suffices to show that mJ2 C mQI. Since m = Q + (21, %2, - - ,Z,) and QJ? C mQI,
we have only to show z.y;y; € m@QJ for all integers 1 < Z,i, j < n. Let us write
TeY; = 02 + qo; With g € mQ. Then

Teyiy; = (062 + qu)y; = 0uyjz + quy; € I° + mQI = mQl,
because I® = QI2. Hence mI? = mQI. : O
We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. By Proposition 2.2, Corollary 2.8, and Theorem 3.1 we may
assume that n = v(A/Q) = 1. Hence v(A) = d+1. Let m = Q + (z) with z € m; hence
01,09, ,04,Z 1S @ minimal basis of m. We put

A=A/Q, m=m/Q = (T), I =1/Q, and £ = £4(A),
where T = £ mod Q be the image of z in A. Then, since M = (Z), we have
(—1=max{t€Z|m # (0)} and z‘€ Q.

Hence T = (0) : m? = m*~? so that J = Q+m’™2 = Q+(z*~?). Notice that £ = e} (A) >
en(A) > 3, where e} (A) denotes the multiplicity of A with respect to Q. We then have

21 = [@m+ (2?)}Q + (=*7%)] € W*Q + (),

because m? = @Qm + (z2) and £ > 3. Consequently, in order to see that m?] = m?Q), it
suffices to show the following.

Claim 1. zf € m?Q.



Proof of Claim 1. Let us write z¢ = Zle a;w; with w; € A. Let A be the m-adic
completion of A and take an epimorphism ¢ : B — A, where (B,n) is a regular
local ring of dimension d + 1. Then Ker ¢ is a principal ideal in B generated by
a single element & € n® such that £ ¢ n®*! where e = el (A); hence Ker ¢ C n°.
Choose elements {4;}1<i<a, X, and {Wi}i<ica of B such that they are the preimages
of {a;}1<i<d, T, and {w;}1<i<y, respectively. Then we have n = (A4, Ay; - - -, Ag, X) and
Xt - Zle A;W; € Ker ¢ C n®. Hence ZLI A;W; € n®, because £ > e. Consequently,
since (Ay, Ag, - -+, Ag)Nn® = (Ay, Ay, - -+, Ag)n®"!, we see that Ele AW, = Zle AV,
for some elements V; € n®~!, whence z¢ = ZLI a;v; where v; = @(V;). Thus z° €
Qme~! C Qm? as is wanted, because e > 3. O

Since m2] = m2Q, we have QN I? = QI similarly as in the proof of Corollary 2.3 (1).
Therefore, to finish the proof of Theorem 1.1, we may assume I? € Q. Since z* € Q and
I? = QI+ (z**), we have 2( —4 < £ whence £ = e = 3, so that ] = Q+ (z) = m. Thus
m3 = m?] = Qm? and so G(m) = F(m) is a Cohen-Macaulay ring. As a(G(m)) < 2—d,
R(m) is a Cohen-Macaulay ring if d > 3. This completes the proof of Theorem 1.1. [J

4. EXAMPLES

In this section we explore three examples to show that the non-Gorenstein case is
rather wild.
Example 4.1. Let n > 2 be an integer and let

A= k[[Xl,Xz,' .. ,Xn]]/(szj | 1<i1<j< n)
where k[[X1, X5, -, X,]] denotes the formal power series ring over a field k. Then A
is a one-dimensional reduced local ring with e (4) = n. For every parameter ideal Q
in A, we have .
Q:m’ZQ,

where @ denotes the integral closure of Q.
Proof. Let I = Q : m? and assume that I C Q. We write @ = (a). Thena =Y ., z{'e;
for some units ¢; in A and some integers ¢; > 1. Let 1 <4 < n be an integer. If ¢; > 2,

we then have z%7! € I but z5™" is not integral over Q. Hence ¢; =1forall1<i<n
and so a =) ., z;€;. Therefore m? = Qm so that we have I = A, which is absurd. O

Letting n = 2, this example 4.1 shows the assumption that €2 (A4) > 3 in Theorem
1.1 is not superfluous.

It seems natural and quite interesting to ask what happens in the case where A is a
numerical semi-group ring. Let us explore one example.

Example 4.2. Let H = (4,7,9) be the numerical semi-group generated by 4,7, and 9
and let A = k[[t*,t",¢°]] C k[[t]], where V = k[[t]] denotes the formal power series ring

" with one indeterminate t over a field k. Then A is a one-dimensional non-Gorenstein
Cohen-Macaulay local ring. Let 0 < s € H. We put @ = (¢°) and I = @ : m®. Then
I C Q. We have I C m? if s > 11, whence I? C Q. However



1 if s=09,

(1) ro(I) =< 2 if s=4, 8ors>1l,

3 if s=T.
(1) is a Cohen-Macaulay ring if and only if s = 4,8, or 9.
(I) is a Cohen-Macaulay ring if and only if s =4, 9.
(I) is always a Buchsbaum ring. '
(1) is a Buchsbaum ring if and only if s # 7.
(6) m2I # m2Q if s = 8,11.

Proof. We have n € H for all integers n > 11 but 10 ¢ H. Hence the conductor of H
is 11. Notice that t* € m? for all n € Z such that n > 11, where m = (¢4,¢7,¢°) denotes
the maximal ideal in A. Hence I C Q. In fact, let n € H and assume that ¢t € I but
n < s. Then t*="*1% € m? because s —n+ 10 > 11, so that ¢°+10 = 5" H10 € Q = (¢*)
whence t1° € A, which is impossible. Thus, for every n € H with t* € I, we have
t" € *V N A = Q, whence I C @Q (recall that I is a monomial ideal generated by the
elements {t" | n € H such that t" € I}). In particular we have I C m? if s > 11,
whence I? C Q.
‘We note the following.

(2) G
(3) F
(4 F
(5) G

Claim 1. Let s, > s; > 11 be integers and let ¢ = s — s1. We put Q; = (t%) and
L =Q;:m? fori=1,2. Then we have the following.

(1) 12 = thI.

(2) R(I1) = R(I,) as graded A-algebras.

(3) F(I,) = F(I;) as graded A/m-algebras.

(4) 1, () = 1q,(L2).
Proof of Claim 1. Let ¢ = #9 : V — V be the V-linear map defined by () = t9z for all
z € V. Then, since ¢(Q1) = @2 and ¢(I1) C I, the map ¢ induces a monomorphism

£:5L/Q1— I2/Qy, 7 mod @ = t%r mod @,
of A-modules. As I;/Q; = Ext}(A4/m?, A) (recall that t* € m?), we see £4(I;/Q;) =
24(I2/Q2), whence & : I1/Q1 — I»/Q2 is an isomorphism, so that ¢(I;) = I,. Thus
assertion (1) follows. Notice that
R(Iy) = A[(t1)-T) = AL -4°T) and R(I;) = A[L,T]
with T an indeterminate over A. Then, since 9T is also transcendental over the ring
A, we get an isomorphism £ : R(I;) — R(I2) of graded A-algebras such that £(t1T) =
t°2T. Hence we have assertion (2). Because F(J;) = R(I;)/mR(I;), we readily have an
isomorphism 7 : F(I;) — F(I2) of graded A/m-algebras such that n(t1T) = t*2T, where
tsiT denotes the image of tT in F(I;). Hence assertion (4) also follows, because
rq.(Ii) = max{n € Z | [F(L,)/(&=T) # (0)},

where [F(I;)/(t5T)], denotes the homogeneous component of the graded ring
F(I;)/(#T) of degree n. ' a




We put R = R(I), G = G(I), and F = F(I). Let M = mR + R, be the graded
maximal ideal in R and we denote by H,(x) the 0% local cohomology functor with
respect to M. Let a = t° and f = aT € R = A[IT]. For each graded R-module L, let
[H3/(L)] (n € Z) denote the homogeneous component of Hj, (L) of degree n.

Let I = (J,5o[/™™ : I"] denote the Ratliff-Rush closure of I. The following assertions
readily follow from the equalities that

IT=Ju™*:a" and I"*'=afI"
n>0
for all integers n > r =rg(J) and ¢ > 1, whose detail is left to the reader.

Claim 2. Let r =rg(I). Then
(1) H%(G)]n = (0) for alln >r—1.
(2) M3(F)]n = (0) for alln > r. B
(3) Suppose that r = 2. Then I =1I?:a and [H,(G))o 2 I/I as A-modules.

We now consider the case s = 11. We then have I = (11,112, ¢14,¢17), I3 = QI?, and
IP=QI+ (™) #QI

since 12 ¢ QI = (t%2,1%8,¢%,1%8). Hence ro(I) = 2. Because ] = I : ¢! =T + (£13) £ I
and _

Hy(G) = [HY (G)o = I/1
by Claim 2 (3), we see that G is not a Cohen-Macaulay ring but a Buchsbaum ring
with £4(HY,(G)) = €4(I/I) = 1. Notice that m2I = (£1° 20,22 ¢2) % m2Q =
(19,422,424 125) . Since t1117 = 28 = ¢4 € mI? but ¢V ¢ mI = (£15,¢16, 418, ¢21),
the element f = t!'T € R is a zerodivisor in F, whence F is a Buchsbaum ring by
Claim 2 (2) but not a Cohen-Macaulay ring.
. If s > 11, then thanks to Claim 1 and the assertions in the case where s = 11, we
have rg(f) = 2 and F is a Buchsbaum ring but not Cohen-Macaulay. To see that G is
a Buchsbaum ring, recall that

H3,(G) = HY, (o 2 I/I

since 1g(I) = 2. Let @ = (t!) and I' = @ : m?. Then because I’ = I’ : ¢! and
T =1I?:t (see Claim 1 (4)), it is standard to check that t*~11.]' = T, so that we
have £4(I/1) = £4(I'/I') = 1 (recall that t*~'1.J' = I; ¢f. Claim 1 (1)), whence G is a
Buchsbaum ring with £4(H},(G)) = 1.

Let s = 4. Then J = m. Thering G (= F) is a Cohen-Macaulay ring, since m® = Qm?
and Q@ Nm? = Qm.

Let s = 7, then I = (t',88,¢11,¢1%), I? = (¢",¢¥5,#1%) C @, and t!® ¢ QI =
(t14,41%,¢20).  Hence G is not a Cohen-Macaulay ring. We have I* = QI3 but
B = QI* + (t**) # QI?. Hence rg(I) = 3. Because t"t'® = ¢ = %416 € mJ? but
tB3 ¢ mI = (t11,¢12,¢14,¢17), F is not a Cohen-Macaulay ring. To see that G is not
a Buchsbaum ring, let W = H},(G). Then W = W, + W; by Claim 2 (1). It is



now direct to check that Wy = {¢ | ¢ € (t*)} and W, = {cT | ¢ € (¢!")} where ¥
denotes the image of the corresponding element of R in G. Because t® # 0 in G and
0.1 = ($16,¢17,420,¢22) ¢ I = (t14,¢15,11%), we see MW, # (0), whence G is not a
Buchsbaum ring. Similarly, one can directly check that

Hjy (F) = [Hy (F)ly = {cT | c € (t¥)} = A/m,

so that F' is a Buchsbaum ring but not Cohen-Macaulay.

Let s = 8. Then I = (¢&,1°,¢'},¢!) and I® = QI?. We have m2] = (16,17 419 ¢22) +£
m2Q = (t16,¢1°,¢% ¢??) and £4(m*I/m?Q) = 1. To see that G is a Cohen-Macaulay
ring, we have only to show that @ N 1% = QI. Since I* = QI + (t'?), we have QNI =
QI+[QN (). Let ¢ € @N (t!®) and write p = t8 = '8y with ¢{,n € A. Then
£ = t'%. Because 10 ¢ H = (4,7,9), we have n € m so that ¢ = ¢y € t¥m =
(t%2,1%,127) C QI = (15,¢17,¢1°,¢?%). Hence @ N 12 = QI and G is a Cohen-Macaulay
ring. The ring F' is Buchsbaum by Claim 2 (2) but not a Cohen-Macaulay ring, because
814 = 22 = 14(1%)2 € mI2 but £ ¢ mI = (£12,¢13, 19, £19),

Let s = 9. Then I = (¢°12,¢1,¢¥®) and I?> = QI, whence G and F are both
Cohen-Macaulay rings. This completes the proof of all the assertions. O

Our last example shows that unless A is Gorenstein, the reduction number ro(J) can
be arbitrarily large even if I C @, where I = @ : m? and @ denotes the integral closure

of Q.
Example 4.3. Let n > 2 be an integer and let

LS (i = 1),
T len+1)i-2n-2 (2<i<n).

Let H = (a1, ag, -+ ,a,) be the numerical semi-group generated by a;'s. Let A =
k[[to,t°2,- - ,t**]] C k[[t]] be the semi-group ring of H, where k][[t]] denotes the formal
power series ring with one indeterminate ¢ over a field k. Then A is a one-dimensional
Cohen-Macaulay local ring with the maximal ideal m = (¢%,¢%, ... t*). Let Q =
(t*1) and I = Q : m%. Then I C @ and ro(I) = 2n — 2.
Proof. Let B = k[[X1, X,,---,X,]] (n > 2) be the formal power series ring over the
field k and let

@ : B — k[[t™, %2, ,t%]]
be the homomorphism of k-algebras defined by ¢(X;) = t* for all 1 < ¢ < n. Let I,(M)
be the ideal in B generated by all the 2 x 2 minors of the following matrix

M (KXo Xsooo Xao X
X; X3 X4 -+ Xo XM

We then have Kerp = I,(M), because £p(B/[I2(M) + (X1)]) = 2n — 1 = a;. Let us
identify A = B/I,(M) = k[[t*,t%, - ,t*]]. Let z; = X; mod I;(M) be the image of
X; in B/I(M) for each 1 < i < n; hence m = (21,23, ,3,). With this notation it is



standard and easy to check that m? = (z1,z9)m, I = z;m + (222,), and I* = zim® for
all i > 2. ‘
Recall now that m?»~! = z;m?"~2 because (z;) is a minimal reduction of m and

e (A) = 2n — 1. Hence
I2n—l — .T,'%n_lan_l — w%n—l‘xlm2n—2 — x:{-xf“‘Qm%‘? — x'.{IZn—Z — QI2n-2.

We must show that I2"~2 ;é QI*3. To see this, we explore the following system of

generators of m?"~3;
m2n—3 — (tal, tag, L ,tan)2'n—3
) n
= (219 g >0, Y ¢ =2n-3)
i=1

- (t(2n—i-—3)a1+ia2 | 0 < i < m — 3)

n
+ (t2?=1 %% | ¢; > 0 for some j > 3, Zq =2n — 3).
=1
Notice that {(2n — i — 3)a; +iaz = (4n* — 8n + 3) + i}o<i<2n—3 are continuous integers
and that

n
Zciai > (2n — 4)a; + a3 = 4n* — 6n + 5,
i=1

if ¢; > 0 for some j >3 and ) .-, ¢; = 2n — 3. Hence
m? 3 C (t |4n® —8n+3<i<4n® —6n)+ (t'|i € H, i > 4n® — 6n +5).
Therefore
() 2 Im? 3 C (#|4nP—bn+2<i<4n’ —dn— 1)+ (' |i € H, i > 4n® — dn +4).
Suppose now that I?*~2 = QI**~3. Then m?"~2 = z;m?"% since I' = zim’ for all
i > 2; hence 25”2 € z;m?"%. Recall that z; = ¢*"~! and z, = t?*. Then, because
4n? — 4n — 1 < 4n? — 4n < 4n? — 4n + 4, we get by (f) that
4 e mu(f | 4n? — 6n 42 < < 4n? — 4n — 1),
which is however impossible, since
m-(t | 4n? — 6n + 2 < i < 4n® — 4n — 1) C 4 HE[[H])
(recall that a; + (4n? —6n+2) > a; + (4n®? —6n+2) =4n? —4n+1forall 1 <i < n).

This is the required contradiction and we conclude that I?"~% # QI**3. Thus ro(/) =
2n — 2.

Added in proof

We are very grateful to Alberto Corso and Claudia Polini. During this conference they told us
that N.-J. Wang independently gave some results which are closely related to the topics of this paper.
Among the other things Wang [W] proved the following. Assume that (A4,m) is a Cohen-Macaulay
local ring with dim A > 3 or that (4, m) is a two-dimensional Cohen-Macaulay local ring which is not

O



regular. Let @ be a parameter ideal of A contained in m* with ¢ > 2 and put I = Q : m*. Then I C m',
m'] = m*Q, and I2 = QI. (For more detail see also the report of Corso in this volume.) Wang’s results
however take care of neither the case where Q ¢ m® nor the case where dim A = 1 and his method
of proof is totally different from ours. For these reasons our research could have its own significance,
dealing with arbitrary cases (although we assumed the stronger assumption that the base local ring A
is a Gorenstein ring) and showing the case where A is a one-dimensional Cohen-Macaulay local ring

is very wild.
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CASTELNUOVO-MUMFORD REGULARITY FOR PROJECTIVE
CURVES ON A DEL PEZZO SURFACE

CHIKASHI MIYAZAKI

ABSTRACT. This paper investigates the next extremal case for a Castelnuovo-
type bound reg C < [(deg C—1)/codim C|+max{k(C), 1} for the Castelnuovo-
Mumford regularity for a nondegenerate projective curve C, where k(C) is an
invariant which measures the deficiency of the Hartshorne-Rao module of C.
We decribe a projective curve with next to the maximal regularity lies on
either a Hirzeburch surface or a normal del Pezzo surface. The socle lemma by
Huneke-Ulrich and a result from the Castelnuovo theory by Eisenbud-Harris
plays an important role for the theory. The details of the proof is written in
(18]

1. INTRODUCTION

Let k be an algebraically closed field. Let PY = Proj S be the projective N-space,
where S is the polynomial ring of N + 1 variables over k. For a coherent sheaf F
on Py and an integer m € Z, F is said to be m-regular if H(PY, F(m — 1)) = 0
for all i > 1. For a projective scheme X C P¥, X is said to be m-regular if the
ideal sheaf Ty is m-regular. The Castelnuovo-Mumford regularity of X C PV is the
least such integer m and is denoted by reg X. It is well-known that X is m-regular
if and only if for every p > 0 the minimal generators of the pth syzygy module
of the defining ideal I(C S) of X C PY occur in degree < m + p. In this sense,
the Castelnuovo-Mumford regularity is one of the important invariants measuring
a complexity of the defining ideal of a given projective scheme.

Throughout this paper, a curve is always assumed to be irreducible and reduced.
For a rational number m € Q, we write [m] for the minimal integer which is larger
than or equal to m, and |m| for the maximal integer which is smaller than or equal
to m.

In this paper, we investigate a Castelnuovo-type bound for the Castelnuovo-
Mumford regularity for projective curves. If a nondegenerate projective curve C
is ACM, that is, the coordinate ring of C is Cohen-Macaulay, then there is a well-
known inequality regC' < [(deg C — 1)/codim C] + 1. The inequality follows from
the fact that reg X < [(deg X — 1)/codim X| + 1 for a generic hyperplane section
X of C, which is an easy consequence of the Uniform Position Principle, see, e.g.
(1, page 115] and [3, page 95, for characteristic zero and also works for general
case, see, e.g., [17, (1.1)] from the property (2.1) of the h-vectors of X. The
extremal case is described as a rational normal curve under the assumption deg C
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large enough, see [20]. On the other hand, the extremal curve for the Gruson-
Lazarsfeld-Peskine bound reg C < deg C'— codim C' + 1 are appeared as a rational
curve with certain condition and an elliptic normal curve, see [7]. How about
a Castelnuovo-type bound for the Castelnuovo-Mumford regularity? In order to
extend a result of Castelnuovo-type regularity bound for a (not necessarily ACM)
curve, we introduce, as in [13, 14], an invariant k(C) which measures how far the
coordinate ring of C from the Cohen-Macaulay property. For a projective curve
C C PV, a graded S-module M(C) = H} (Zoyep) = ®eezH (PY,Zo(£)) is called the
Hartshorne-Rao module. Then we define k(C) as the minimal nonnegative integer
v such that m*M(C) = 0. A curve C is ACM if and only if £(C) = 0. On the
other hand, the coordinate ring of C' is a Buchsbaum ring if and only if k(C) = 1.
The extremal bound for the Buchsbaum curve, even for higher dimensional case,
is also described in [21, 23]. For the general case, that is, C is a (not necessarily
smooth) nondegenerate projective curve, we have an inequality reg C < [(degC —
1)/codim C] + max{k(C),1}, see (2.5). Furthermore, the following result (1.1)
describes the extremal curve with the Castelnuovo-type maximal regularity from
[3, (3.2)], or see [15, (1.2)].

Proposition 1.1. Let C C PY be a nondegenerate projective curve over an al-
gebraically closed field k with chark = 0. Assume that C is not ACM. If
deg C > (codim C)? + 2codim C + 2 and regC = [(deg C — 1)/codim C] + k(C),
then C lies on a rational normal surface scroll, that is, a Hirzeburch surface.

The purpose of this paper is to study projective curves with next to sharp bounds
of Castelnuovo-type on the Castelnuovo-Mumford regularity.

Theorem 1.2. Let C be a nondegenerate projective curve over an algebraically
closed field k with chark = 0. Assume that C is not ACM, and degC 2>

max{(codim C)? + 4codim C + 2,13}. If
regC = [degC— 1

codim C
then C lies either on a rational normal surface scroll or a normal del Pezzo surface.

-|+k(C)—1,

Section 2 is devoted to the sketch of the proof of (1.2). The theorem states
that a curve with next to the maximal regularity of Castelnuovo-type corresponds
with a divisor on either a rational normal surface scroll or a del Pezzo surface.
Invariants of the divisor on a rational normal surface scroll concerning the inequality
is calculated to describe the curve with maximal regularity in [15]. On the other
hand, a classical del Pezzo surface is defined to be a smooth surface V(C Py ) with
deg V = codim V+2 such that wy & Oy (—1) is either the blowups of general d(< 6)
points of P2 or the 2-uple embbeding of P} x P to P%, see, e.g. [8, (4.7.1)]. A (not
necessarily smooth) del Pezzo surface is classified by Fujita [4] and [5, (1.9.14)], see,
e.g., [5, (1.6.3)] for the definition. In Section 3, we study some examples of divisors
on a del Pezzo surface satisfying the equality in (1.2).

2. SKETCH OF THE PROOF OF THE MAIN THEOREM

Let us introduce the terminology for the zero-dimensional scheme. Let X C
P! a reduced zero-dimensional scheme such that X spans PY as k-vector space.
Then X is said to be in uniform position if Hz(t) = max{deg Z,Hx ()} for all ¢,
for any subscheme Z of X, where Hz and Hx denote the Hilbert function of Z



and X respectively. Let R be the coordinate ring of a zero-dimensional scheme
X CPY. Let h = h(X) = (ho, - ,hs) be the h-vector of X C PV, where
h; = dimg[R]; — dimg[R];—1 and s is the largest integer such that ks # 0. Note that
s=regX —1.

Remark 2.1. For a generic hyperplane section X of a projective curve, hy +---+
h; > ihy foralli=1,---,s—1Dby [2]. A generic hyperplane section of a nondegen-
erate projective curve is in uniform position if char k = 0, see [1]. If X is in uniform
position, then h; > hy for i =1,--- ,s — 1, see [11, Section 4].

In this section, from now on, let C be a nondegenerate projective curve of ]P’kN +
and H be a generic hyplerplane and X = CNH C H = PY. The following result
(2.2) describes an extremal bound for the Castelnuovo-Mumford regularity of the
generic hyperplane section of a projective curve reg X < [(deg X — 1)/N] + 1.

Lemma 2.2. (See [15, (2.6)]). Let X C P¥ be a generic hyperplane section of a
nondegenerate projective curve. Assume that X is in uniform position and deg X >
N2 4+ 2N +2. If the equalzty reg X = [(deg X — 1)/N] + 1 holds, then X lies on a
rational normal curve in PY

The extremal bound of the Castelnuovo-Mumford regularity for the generic hy-
perplane section of projective curve corresponds with a rational normal curve. The
following lemma, which is obtained from Castelnuovo theory [9, Section 3], yields
that the next extremal one corresponds with a elliptic normal curve. This re-
minds us of an analogy for the extremal and next to the extremal bound for the
Castelnuovo-Mumford regularity towards the Eisenbud-Goto conjecture, see, e.g.,
[12] and the references there.

Lemma 2.3. Let X C PY be a generic hyperplane section of a nondegenerate
projective curve. Assume that X is in uniform position and deg X > N2 +4N +2.
If the equality reg X = [(deg X — 1)/N| holds, then X lies on either a rational
normal curve or an elliptic normal curve in PY.

Remark 2.4. In the statement of (1.1), we may take an assumption that reg X =
[(deg X — 1)/codim X + 1 for a generic hyperplane section X of C in place of the
equality reg C = [(deg C — 1)/codim C] + k(C).

Proposition 2.5 ([22]). Let C(C PY*!) be a nondegenerate projective curve over
_ an algebraically closed field. Assume that C is not ACM. Then

degC -1

Proof of Theorem 1.2. Let C be a nondegenerate projective curve in Py +! =
Proj S, where S be the polynomial ring and m is the irrelevant ideal. Let X = CNH
be a generic hyperplane section. From the last line of the proof of (2.5), the equality
reg C = [(deg C—1)/codim C+k(C) gives either reg X = [(deg X —1)/codim X |+
1 or regX = [(deg X — 1)/codimX|. By (2.2) and (2.3), X lies on either (i)
a rational normal curve, or (ii) an elliptic normal curve. For the case (i), C is
contained in a rational normal surface scroll from (1.1) and (2.4). Thus we have
done in this case. Let us consider the case (ii). We may assume that X is contained
in an elliptic normal curve Z in H(2 PY). Let ¢ = codim C and d = deg C. Then
deg X =d,codimX =c+1and degZ =codimZ+2=c+2. Forc=1,Z isa
plane smooth cubic curve. For ¢ > 2, Z is generated by quadric equations.



In this paper we describe the proof for the case ¢ > 2. First, we will show that
[(Zz/5(2)) = T'(Zx/u(2)) if ¢ > 2. Indeed, if there exists a hyperquadric Q such
that X C Q and Z € @, then X C ZN Q and d < 2(c + 2) by Bezout theorem,
which contradicts the assumption d > ¢? + 4¢ + 2.

Next, we will show that P(IC/P{‘V+1(2)) — T(Zx/u(2)) is surjective if ¢ > 2.

Indeed, let ¢ : HL(Z, sen+1)(—1) 1) 3 HY(Z, spN+1), where h(€ [S]:) is a linear form
defining the hyperplane H. From the exact sequence
F*(Ic/pi"“) = Du(Zx/m)
— H! (Io/lp,’j“)(—l) 4 H (Ic/p,'jﬂ) - H}:(IX/H)a
we need to prove that [Ker ¢l = 0 if ¢ > 2. Then we see that I'(Z, /BN (2)) —»
[(Zx,1(2)) is surjective if ¢ > 2. By Socle Lemmal[10, (3.11)], for a generic linear
form h(€ [S]1) we have a_(Ker ¢) > a_(Coker ¢), where a_ (N) = min{¢|[N], # 0}
for a graded S-module N. Hence we have a_(Ker ¢) > a_(Soc(H3 (Zx/x)))-
Now let us evaluate a_(Soc(HL(Zx,/x))). Since Z is ACM, we have the short
exact sequence

0 — Hy(Zx/g) = Hi(Ix/z) = B2(Zz/m) — 0

from the short exact sequence 0 — Iz/5 — Ix/g — Ix/z — 0. Note that
H2(Zz/6) = HY(Oz) = k. Now we will investigate the structure of Hl +(Ix/z)-
By Serre duality, H}(Zx,z) is isomorphic to the dual of I',(Oz(X)). Hence
Soc(H}(Zx,z)) is isomorphic to the dual of I',(Oz(X))/mI,(Oz(X)). Let F =
Oz(X). Since Z is a smooth elliptic curve, we see that HY(F ® Oz(m — 1)) = 0 if
—d—(m—1)(c+2) <0. In other words, F is m-regular for m > (c—d+3)/(c+2).
Let m = [(c—d+3)/(c+2)]. Then we see that

I(F ® Oz(¢)) ®(0z(1)) - D(F(¢+1))

is surjective for £ > m by [19]. Hence we obtain a_(Soc(H}Zx,z)) > —m.
Therefore, if d > 3c + 7, then a_(Soc(H!(Zx/x))) > 2, and if d > 4c + 9,
a_(Soc(Hi(Zx/x))) > 3. Since d > max{c? + 4c + 2,13}, we obtain [Ker @], = 0.
So, we have a surjective map F(IC/P;V-H 2) - I"(IX/H(2)) =T(Zz/u(2)). Note
that Z is the intersection of the hyperquadrics containing X. Let Y’ be the inter-
section of the hyperquadrics containing C. Since Y'NH = Z, there is an irreducible
component Y of Y’ such that Y N H = Z. Thus there exists a surface Y containing
C such that YN H = Z and degY = codimY + 2. Since a hyperplane section is an
elliptic normal curve, Y is a normal surface. By [5, (1.6.5)], Y must be a normal
del Pezzo surface. O

Remark 2.6. Although I do not have counterexamples for the main theorem with-
out the degree condition, the assumption deg C' >> 0 seems to be indispensable. In
fact, a non-hyperelliptic curve of genus g > 5 with the canonical embedding satisfies
the extremal bound for ACM case, but not in a surface of minimal degree, see [23,
page 160]. Moreover, there is a counterexample for (2.2) without degree condition,
see [15, (2.6)].

3. EXAMPLES

We will study projective curves on some smooth del Pezzo surfaces with next to
the extremal regularity.



Example 3.1. Let V =Pi x PL. Let m; and m, be the first and second projection
respectively. We write Oy (a,b) for 71Oy (a) ® 75 Oy (b). Let Z; and Z; be divisors
corresponding to Oy (1,0) and Oy (0, 1) respectively. We have a 2-uple embedding
of V by H = 2Z; +2Z5. Then V is a del Pezzo surface of degree 8 in P§. Let C
be a divisor on V linearly equivalent to a - Z; + b+ Z5. We may assume a < b. By
calculating the cohomologies H*(Zg v (¢H)) = H(Oy (—a + 24, —b + 20)), i = 1,2,
by Kiinneth formula, we see that [H']; # 0 if and only if a/2 < £ < (b —2)/2, and
[H2), # 0 if and only if £ < (a — 2)/2. Assume that C is not ACM. Then we have
b > a+ 2. In this case, we have k(C) = |b/2] — [a/2], and regC = [b/2] + 1.
Also, we have degC = 2a + 2b. Thus there exists a curve C on V satisfying
regC = [(degC — 1)/7] + k(C) — 1 by choosing a and b such that [(a + 4)/2] =
[(2a + 2b — 1)/7], while there are no such curves for k(C) large enough.

Example 3.2. Let 7 : V = P(£) — P} be a projective bundle, where £ = O]pi ®
O]P;(—l). Let Z be a minimal section of m corresponding to the natural map
€ = Op1(—1) and F be a fibre corresponding to 7. We have an embedding of V' in

P8 by a very ample sheaf corresponding to a divisor H =2-Z +3-F. Then V is
a del Pezzo surface of degree 8 in P8. Let C be a divisor on V linearly equivalent
toa-Z+b-F. From [15, (2.12)], H}(V,Oy (a- Z + 8- F)) # 0 if and only if either
a>0and B<a—2,0ora<—2and 8> a+ 1. Thus H(Zg,y(¢H)) # 0 if and
only if either /2 < ¢ < —a+b—-20r —a+b+1< £ < (a—2)/2. From [15,
(2.14)], H3(V,Oy(a - Z + B - F)) # 0 if and only if @ < -2 and f < —3. Thus
H?(Zc v (£H)) # 0 if and only if —a +2¢ < —2 or —b + 3£ < —3. Hence we have
k(C) =b—[3a/2] —1for b > 3a/2+2, and k(C) = |3a/2] —b+3 for b < 3a/2+2.
On the other hand, we have regC = b—a for b > 3a/2+ 2, regC = |a/2] + 2 for
3a/2 < b<3a/2+2, and regC = |b/3] + 2 for b < 3a/2. Also, we have deg C =
a + 2b. For b < 3a/2, the equality reg C = [(deg C —1)/7] + k(C) — 1 is equivalent
to saying that [4b/3] = [(a + 2b+ 6)/7] + |3a/2] which does not happen for this
case. For 3a/2 < b < 3a/2 + 2, the equality regC = [(degC —1)/7] + k(C) — 1 is
equivalent to saying that [(8a—5b—1)/7] = 0, which does not happen if deg C > 79.
For b > 3a/2 + 2, the equality regC = [(deg C — 1)/7] + k(C) — 1 is equivalent to
saying that [a/2] = [(a + 2b — 15)/7]. In this case, there exists a curve C on V
satisfying reg C = [(deg C —1)/7]+k(C) — 1 by choosing a and b with b > 3a/2+2
such that [a/2] = [(a+2b—15)/7], while there are no such curves with k(C) large
enough.
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A generalization of the Shestakov-Umirbaev inequality

and polynomial automorphisms

Shigeru Kuroda
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1 Introduction

Let k be a field, and k[x] = k[z1,...,z,)] the polynomial ring in n variables over k for
some n € N. For g € k[x] and a polynomial ® = ", ¢T* in a variable T over k[x],
we define ®(g) = 3,5, $ig’, Where Zg is the set of no_nnegative integers, and ¢; € k[x]
for each i € Z>. Then: it follows that

deg? ® := max{deg ¢;g' | i € Z5o} > deg ®(g)

in general. Here, deg f denotes the total degree of f for each f € k[x]. Shestakov-
Umirbaev [10, Theorem 3] proved an inequality which describes the difference between
deg? ® and deg ®(g). Using this, they solved the following famous problem in [11].

Let o : k[x] — k[x] be a homomorphism of k-algebras. Then, ¢ is isomorphic
if and only if k[o(z1),...,0(z,)] = k[x]. For example, o is isomorphic if there exist
(ai;)ij € GLn(k) and (b;); € k™ such that o(z;) = Y7, a;,;7; + b; for each 4. One can
also check that o is isomorphic if there exists | € {1,...,n} such that o(z;) = =z; for
each i # [ and o(z;) = ax; + f for some a € k> and f € k[z1,...,Zi1-1,Zi41, - - -, Zn). AD
automorphism of k[x] of the former form is said to be affine, and one of the latter form
is said to be elementary. By the fact that an invertible matrix is expressed as a product

of elementary matrices, it easily follows that each affine automorphism can be obtained



by the composition of elementary automorphisms. Then, a problem arises whether the
automorphism group Auty k[x] can be generated by elementary automorphisms. If n = 1,
then every automorphism of k[x] is in fact elementary. If n = 2, then Auty k[x] is
generated by elementary automorphisms, which was shown by Jung [2] in 1942 when &
is of characteristic zero, and by van der Kulk [3] in 1953 for any k. We note that this

result is a consequence of the following characterization of automorphisms.

Proposition 1.1 Ifn = 2, then either dego(z1)| deg o(z2) or deg o (z,)| dego(x;) holds
for each o € Auty k[x].

Here, a|b denotes that b is divisible by a for each a,b € N.
When n > 3, the problem becomes extremely difficult. In 1972, Nagata [8] conjec-
tured that the automorphism 7 € Auty k[x] for n = 3 defined by

7(21) = 21 — 2(2173 + 23) 79 — (2173 + 12)2z3, T(23) = To + (7123 + 13) 3, 7(z3) = 73

cannot be obtained by the composition of elementary automorphisms of k[x]. In spite
of being well-known, this conjecture had been open for a long time. However, in 2004,
Shestakov-Umirbaev [11] finally showed that the Nagata conjecture is true when k is of
characteristic zero. The inequality mentioned at the beginning plays a crucial role in
the solution of the conjecture. The problem is thus settled for n = 3, whereas it is still
open for n > 4. We note that the extension 7 € Auty k[x] of the Nagata automorphism
7 for n > 4 defined by 7(z;) = 7(x;) for 1 = 1,2,3 and 7(z;) = z; for i = 4,...,nis a
composite of elementary automorphisms (see [9]).

The argument in [11] is indeed difficult, but employs no advanced facts other than
those in [10]. Therefore, the results in [10] is of great importance. However, its argu-
ment is also difficult, and, consequently, the proof of this landmark work of Shestakov-
Umirbaev is unfortunately not understood widely.

The purpose of the present paper is to generalize the results of [10]. Our proof is
quite simple and elegant, where the underlying concepts are completely clear. It will
help us not only to understand the real meaning of the theory of Shestakov-Umirbaev,

but also to generalize it to higher-dimensions toward the solution of the problem in case



of n > 4. As an application of our result, we also give a generalization of Proposition 1.1
in Theorem 4.3.

Section 2 is devoted to formulating our theory. We give some consequences in Sec-
tion 3, and apply it to characterizations of automorphisms of k[x] in Section 4.

We note that the author was recently working on Hilbert’s Fourteenth Problem on the
basis of an idea similar to that of this paper, and successfully gave several remarkable new
counterexamples (see for example [4], [5], [6], [7]). This can suggest a certain effectivity
of our method in the study of affine algebraic geometry. It should be mentioned that

Makar-Limanov [1] also gave another proof of [10, Theorem 3] in a different way.

2 Machinery

In what follows, we always assume that k is of characteristic zero. First, we define some
terminologies on the grading of a polynomial ring.

Let ' be a totally ordered additive group, and w = (ws,...,w,) an element of I'.
We define the w-weighted grading k[x] = €D, 1 k[x], by setting k[x], to be the k-vector
space generated by zi*---z% for ay,...,a, € Z>o with > ., a;w; = -y for each v € I.
Here, Iy denotes the sum of / copies of 7 for each | € Z> and y € T'. Then, it follows that
k[x],k([x], C k[x]y4, for each v, € T'. Assume that f =3 .. f, is an element of k[x],
where f, € k[x], for each v. If f # 0, then the w;degree deg,, f of f is defined to be the
maximum among v € I' with f, # 0. If f =0, then we set deg,, f = —00, i.e., a symbol
less than any element of I' whose addition is defined by (—00) +v =y + (—00) = —0c0
for each v € ' U {—o00}. The sum of ! copies of —oo is also denoted by I(—o0) for each
l € Z5,. We say that f is w-homogeneous iff = f, for some 7. In case f # 0, we
set f = f;, where 6 = deg,, f. Then, (fif2)” = fI'f3" and deg,,(f — %) < deg,, f
naturally hold for each fi, fa, f € k[x] \ {0}. We denote by T'5y the set of v € T with
v > 0, where 0 is the zero of the additive group I'. We remark that degw‘ f > 0 holds for
each f € k[x]\ {0} whenever w is an element of (I'so)". If I' = Z and w = (1,...,1),

then the w-degree is the same as the total degree.



Now, for ® € k[x][T] and g € k[x], we define
deg?, (®) = max{deg,, (:9°) | i € Z50}, (2.1)

where ¢; € k[x] for each 7 with & = Y, ¢;T". Then, deg,, ®(g) is at most degf, & in
general. The purpose of this section is to give an inequality which describes the difference

between deg,, $(g) and deg?, ®.
Let 8%.® denote the i-th order derivative of @ in T for each i € Zyo. Then, degd, 8% =
deg,, (9-®)(g) if i is at least the degree deg; ® of @ in T'. Hence, there always exists

m3,(®) = min{i € Z5o | degl, 57 = deg,, (979)(9)}- (2.2)
If m§,(®) > 1 and g # 0, then
mé, (@) =mS (03®)+1 and degd ® = deg?, 0 + deg, g, (2.3)

since k is of characteristic zero.
Let Qx)/x be the differential module of k[x] over k, and A Quxj/k the r-th exterior
power of the k[x]-module Qpyx for 7 € {1,...,n}. Then, each w € A" Qg is uniquely

eicpressed as
w= Z fil,.‘.,i,dxil JAREREWAY dCD,",

161 <-<ir <
where f;, i € k[x] for each 4y,...,7,. Here, df denotes the differential of f for each

f € k[x]. We define the w-degree of w by
deg,, w = max{deg,, (fi,.i,) + Wi, +---+w;, |1 <4y <--- <4, <} (2.4)
Since df = 3 ,(0f/dz;)dz; and k is of characteristic zero, it follows that
of :
deg,, df = max q deg,, Er +w;|i=1,...,np =deg, f (2.5)
for each f € k[x]. It is readily verified that deg,, (w + w') < max{deg,, w,deg,, w'},

deg,, (w A 7n) < deg,,w +deg,,n and deg,(fw) =deg, f+deg, w (2.6)

for each f € k[x], and w,w’ € A" Qupxjyk and 1 € A° Qe for r,s € {1,...,n}.

In the notation above, we have the following.



Theorem 2.1 Let fi,..., f, be elements of k[x] for some r € N which are algebraically
independent over k, and set w = df; A--- Adf.. Then, the inequality

deg,, ®(g) > degt, & + m{, () (deg,, (w A dg) — deg,, w — deg,, 9) (2.7)
holds for each ® € k[f1,..., f-][T]\ {0}, g € k[x] \ {0} and w € T"™.

Proof. Recall that, in case k is of characteristic zero, hi,...,hs are algebraically in-
dependent over k if and only if dhy A -+ A dhs # 0 for hy,...,hs € k[x] for s € N.
Therefore, w # 0, while w Adf; = 0 for 1 = 1,...,n. By chain rule, we may write

d(®(g)) = (0%®)(g9)dg + > _i_, ¥:df;, where 9); € k[x] for each 4. Hence, we get

wAd(®(g)) = (672)(g)w A dg + Z Yiw A df; = (0p®)(g)w A dg. (2.8)

i=1

By (2.5), (2.6) and (2.8), we have

deg,, w + deg,, ®(g) = deg,, w + deg,, d(®(g)) > deg,, (w A d(2(9)))

(2.9)
= deg,, ((07®)(9)w A dg) = deg,, (679)(g) + deg,, (w A dg).
Since w # 0, by adding — deg,, w to the both sides of (2.9), we get
deg,, (g) > deg,, (079)(g) + deg,, (w A dg) — deg,, w. (2.10)

Now, we prove (2.7) by induction on m4,(®). If mg,(®) = 0, then deg,, ®(g) = deg?, &
follows from the definition of mg,(®). In this case, (2.7) is clear. Assume that mg,(®) > 1.
Then, mg, (81®) is less than mg, (®) by (2.3). Hence, by induction assumption combined

with (2.3), we get
deg., (079)(g) > degl, 673 +m$, (0r®)M = (degl, @ — deg,, 9) + (m, () —1)M, (2.11)
where M = deg,, (w A dg) — deg,, w — deg,, g. By (2.10) and (2.11), we obtain that

deg,, ®(g) > deg,,(0r2)(g) + deg,,(w A dg) — deg,, w
> (degs, @ — deg,, g) + (m$,(®) — 1)M + deg,,(w A dg) — deg,, w

= deg?, & + mZ,(®)(deg,, (w A dg) — deg,, w — deg,, 9).

w

Therefore, (2.7) holds for any mg,(®) > 0. a



3 Initial algebras

In this section, we give some consequences of Theorem 2.1.

First, we remark that the element degl & of I' defined as in (2.1) is equal to the
(w, deg,, g)-degree of ® for each ® € k[x|[T] \ {0}, g € k[x] \ {0} and w € I, where
we regard ® as a polynomial in the n + 1 variables z,,...,z, and T over k. We denote

P(w.degw 9) by W9, for short.

Lemma 3.1 Let ® € k[x|[T]\ {0}, g € k[x] \ {0} and w € T.
(i) The following conditions are equivalent:
(1) m&,(®) =0.
(2) degj, @ = deg,, 2(g).
(3) B¥3(g") #0.
(4) @(g) # 0 and B(g)™ = ™ *(g™).
(ii) It follows that mS,(®) = min{i € Zxo | (85(D"*9))(g") # 0}.

Proof. (i) The equivalence between (1) and (2) is an immediate consequence of the

definition of mé,(®). We will establish that
degy, (®(g) — @™(g%)) < degi, @ 3.1)
below. Assuming this, we can readily check that (2), (3) and (4) are equivalent, since

®(g) = @™(g™) + (2(g) — 2™*(g")),

and ®*9(g") is contained in k[x]s, where § = deg, . Write ® = Y, $;7" and "¢ =
Y. ¢iT", where ¢;, ¢} € k[x] for each i. Then, deg,(¢;g") < deg?, & for each i by
definition. Note that ¢j = ¢ if deg,, (¢:g') = deg?, @, and ¢, = 0 otherwise for each i.

Hence, we have
$ig' = $i(9%) = 6ig" — 7' (9") = ig" — (ig")”

in the former case, and ¢;g* — ¢}(g™)" = ¢ig" in the latter case. In each case, deg?, & is

greater than the w-degree of ¢;g' — ¢}(g%)", and hence greater than that of

Z(aﬁig" — ¢i(g™)") = B(g) — B™I(g™).

1



Thus, we obtain (3.1), thereby proving that (2), (3) and (4) are equivalent.
(ii) Observe that (8;®)™¢ = 0.(®"9) for each i € Zso. Hence, degl 0:d =
deg,, (07®)(g) if and only if (84(®%9))(g™) # 0 by the equivalence between (2) and

(3) above. Accordingly, the assertion follows from the definition of mg, (®). O

Now, let A be a k-subalgebra of k[x], and K the field of fractions of A. We define
the initial algebra A™ of A for w to be the k-subalgebra of k[x] generated by f“ for
f € A\ {0}. Then, ®" belongs to A¥[T]\ {0} for each ® € A[T]\ {0} for any
g € k[x]\ {0}. We claim that the field of fractions of B is equal to that of A™ whenever
B is a k-subalgebra of k[x] whose field of fractions is equal to K. Indeed, if fg; = g, for
f € A (resp. f € B) and g1, g2 € B (resp. g1, g2 € A), then we have f¥gl" = (fg,)¥ = g,
so f% belongs to the field of fractions of BY (resp. A¥). For this reason, we may denote
the field of fractions of A¥ by K™.

For a domain R and an element s of an over domain S of R, we define I(R, s) to be
the kernel of the substitution map R[T] > f — f(s) € S. When I(R,s) is a principal
ideal of R[T], we denote its generator by P(R,s). We remark that I(R,s) is always
principal if R is a unique factorization domain. If R is a field and s is algebraic over
R, then P(R, s) is equal to the minimal polynomial of s over R up to multiplication by

units.

Proposition 3.2 Let A be a k-subalgebra of k[x], and K the field of fractions of A. For
each ® € A[T]\ {0}, g € k[x]\ {0} and w € T, we have the following:

(1) If g% is transcendental over K™, then m$,(®) = 0 and deg,, ®(g) = deg?, ®.

(i) If g™ is algebraic over K™, then m%,(®) is at most the quotient of degy ™9
divided by [K™(g™) : K™]. If furthermore I(A%,g"%) is a principal ideal, then there
ezists H € A¥[T]\ I(AY,g") such that O™ = P(A%, g")™ (@) H.

Proof. (i) If g% is transcendental over K, then ®¥9(g%) # 0, since ®**9 is a nonzero
element of K™[T']. Hence, m$,(®) = 0 and deg ®(g) = deg® ® due to Lemma 3.1(i).

(i) Set m = m4,(®), Px = P(K¥,g%), Pa = P(A%,g") and I, = I(A",¢%).
By Lemma 3.1(ii), we have (07~ '®"9)(g%) = 0 and (Op®™+9)(g%) # 0. Since k is of

characteristic zero, this implies that ¢ = P H for some H € K™ [T with H(g") # 0.



By the assumption that g% is algebraic over K, it follows that degy P = [KY(g%) :
K™). Thus, we get degy V9 = m[K%(¢g%) : K¥] + degy H. Therefore, m,(®) is at
most the quotient of degy ®%9 divided by [K™(g%) : K™]. Assume that I is a principal
ideal. Write &9 = P,™ H', where m' € Z>o and H' € A"[T]\ I4. Then, m' must be
at most m, since P, belongs to PxK™[T]. On the other hand, P4 does not belong to
Pi?K™[T), for otherwise 8%P4 would belong to PxK™[T) N A™[T| = I, = P4A"[T), a
contradiction. Hence, m’' must be at least m, since H'(g%) # 0. Thus, m' = m. This

proves the latter part. O
The following theorem is considered as a generalization of [10, Theorem 3].

Theorem 3.3 Let fi,..., f; and g be nonzero elements of k(x| for some r with fi,..., fr
algebraically independent over k, and let A = k[f1,...,fr], K = k(f1,...,fr) andw =
dfi A--- ANdf.. For w € T™ such that deg, h > 0 for each h € A\ {0}, put M =
deg,, (w A dg) — deg,, w — deg,, g. Then, the following holds for each ® € A[T]\ {0}:

(i) Assume that g% is algebraic over K%, and a and b are the quotient and residue

of degy @ divided by [K™(g%) : K¥], respectively. Then, it follows that
deg,, ®(g) > (degr ®) deg,, g+ aM =a ([KV(g%) : KV]deg,, g+ M) + bdeg,, 9. (3.2)
(ii) If I(A%, g%) is a principal ideal and deg,, g > 0, then
deg,, @(g) > m, (®)(degt, P(A™,g") + M). (3:3)

Proof. (i) In (3.2), the equality can easily be checked. We only show the inequality. By
Theorem 2.1, we get deg,, ®(g) > deg? @ + m4,(P)M. Hence, it suffices to verify that
deg?, @ > (degr ®) deg,, g and mf,(®)M > gM. Note that degd & > deg,, ¢.g® by the
definition of deg¥, ®, where e = degr ® and ¢, is the coefficient of T in ®. Since ¢,
belongs to A \ {0}, it follows that deg,, #. > 0 by assumption. Thus, we get

deg?, @ > deg,, 4.9° = deg,, ¢ + (degr @) deg,, g > (degy @) deg,, 9.

On the other hand, we obtain M < 0 from (2.5) and (2.6). Moreover, m$,(®) < a by
Proposition 3.2(ii). Therefore, mg,(®)M > aM, proving the inequality in (3.2).



(i) First, we claim that degd ¥ > 0 whenever ¥ is a nonzero element of A[T] or
AY[T). In fact, we may write degd, ¥ = deg,, a+!deg, g, where a € A\ {0} and [ € Z5,.
By assumption, we have deg, a > 0, deg,, g > 0, and thus degy ¥ > 0. Now, assume
that g% is transcendental over K¥. Then, mg (®*¥) = 0 and deg,, ®(g) = deg?, @ by
Proposition 3.2(i). Hence, the right-hand side of (3.3) is zero, while deg,, (®(g)) > 0,
since degd, ® > 0 as claimed. Therefore, (3.3) is true in this case. Next, assume that g*
is algebraic over K. By Proposition 3.2(ii), we get ¢ = P™H for some H € A%[T],

where P = P(AY, ¢g%) and m = m{,(®). Since deg,, H > 0 as claimed, we obtain
deg?, ® = degd, ™Y = mdeg?, P + deg?, H > mdeg$, P.
Then, with the aid of this inequality, (3.3) follows from Theorem 2.1. O
The following fact is well-known. We prove it at the end of this section.

Lemma 3.4 Let f and g be w-homogeneous elements of k[x] with deg,, f > 0 and
deg,, g > 0 for some w € I'". If f and g are algebraically dependent over k, then there
ezist mutually prime natural numbers I(f, g) and l(g, f) as follows:

(i) g"/9) = o fU9:D) for some a € k.

(i) I(k[f), g) = (T"F9) — afteD) K[f][T).

(iif) [k(f)(9) : k()] = U(f,9)-

(iv) U(f, 9) = (degy f) ged(deg,, f,deg,, g)7* i T' = 2.

The inequality {10, Theorem 3] of Shestakov-Umirbaev is obtained as a corollary to

Theorem 3.3.

Corollary 3.5 (Shestakov-Umirbaev) Assume that f, g € k[x]\ k satisfy deg,, f >0
and deg,, g > 0 for some w € Z". Then, for each ® € k[f][T]\ {0}, it follows that

deg,, ®(9) > a(lem(deg,, f,deg,, g) + M) + bdeg,, g (34)

where M = deg,, (df A dg) — deg,, f — degy g, and a and b are the quotient and residue
of degr ® divided by (deg,, f) gcd(deg,, f,degy, g)~*, respectively.



Proof. Note that k[f]¥ = k[f™“] and deg,, h > 0 holds for each h € k[f] \ {0}. In
fact, if h = Y 7 _jce—if', where e € Zso and ¢; € k for i = 0,...,e with ¢o # 0,
then deg, h = edeg, f > 0 and hY = ¢o(f%)¢, since deg,, f > 0 by assumption.
Consequently, we have k(f)™ = k(f%). First, assume that f* and g* are algebraically
dependent over k, and put N = [k(f)"(g") : k(f)"]. Then, Theorem 3.3(i) gives

deg,, ®(g) > a'(N deg,, g+ M) + b’ deg,, g, (3:5)

where o' and b’ are the quotient and residue of degr ® divided by N, respectively. By
Lemma 3.4, we have ' .

_ deg,, f* _ deg,, f _ lem(deg,, f,deg, 9)
ged(deg,, f¥,deg, g%)  ged(deg,, f,deg,, g) deg,, g

Thereby, o’ = a and ¥’ = b, and (3.4) follows from (3.5). If f* and g* are algebraically
independent over k, then deg,, ®(g) = deg¥, ® by Proposition 3.2(i). As in the proof of
Theorem 3.3, we get degd, ® > (degr ®) deg,, 9. Besides, M < 0 and the right-hand side
of (3.4) is equal to (deg; ®) deg,, g + aM. Therefore, (3.4) is true in this case. a

In the original statement of [10, Theorem 3], there appears the so-called “Poisson
bracket” [f, g] instead of df A dg, but their degrees are defined in exactly the same way.

To conclude this section, we prove Lemma 3.4. We may easily deduce (ii), (iii) and
(iv) from (i). So, we only show that there exist mutually prime natural numbers ! and
m such that f~™g! belongs to k. Without loss of generality, we may assume that k is
algebraically closed. In fact, f~™g' necessarily belongs to k if f~™g" is algebraic over k,
since the field of fractions of k[x] is a regular extension of k.

By the assumption that f and g are algebraically dependent over k, we may find a
nontrivial algebraic relation Zi,j Bij fégg = 0, where 3;; € k for each 4,j € Z>o. Let
J be the set of (4,5) € (Z30)? such that f;; # 0, and (i, jo) and (i1, ;) the elements
of J such that ip < i < 4y for each 1 € Zyo with (4,5) € J for some j. Since f and
g are w-homogeneous, we may assume that ideg,, f + jdeg, g are the same for any
(4,7) € J. Then, (i1 — ip)deg,, g = (jo — j1)deg,, f. We note that i; — io must be
positive, for otherwise J = {(o, jo)}, and then 0 = 3, isc; Bi; f'g? = Bigjof 9% # O,

a contradiction. Since deg,, f > 0 and deg,, g > 0 by assumption, we get jo — j; > 0.



Set I' =13 — 19, m' = jo — j1 and | =1'/e, m = m//e, where e = ged(l',m'). Then, J is
contained in the set of (ig, jo) + p(I, —m) for p = 0,...,e. By putting 8, = Bis+1p,jo-mp
for each p, we get
e e
0= Bsf'g =g Y B(f gV = Buf g [/ 9" - o),
(i)eJ p=0 =l

where oq,...,0. € k are the solutions of the algebraic equation ) -_, B,ITP =0in T.
Hence, f~™g' = a,, for some p. Therefore, f~™g' is contained in k. This completes the

proof of Lemma 3.4.

4 Characterizations of polynomial automorphisms

As an application of our result, we study features of elements of Aut, k[x]. Namely, we
characterize n-tuples f = (f1,..., f,) of elements of k[x] such that k[fi,..., fn] = k[x].

First, we prove the following lemma.

Lemma 4.1 Let g1,...,9, be elements of k[x] for somer. If gy,...,g¥ are algebraically

independent over k for w € T'™, then k(g1,...,9.)" = k[g¥,...,9¥].

Proof. Clearly, k{gi,...,g-]" contains k[g)¥,...,g"]. We show the reverse inclusion
by induction on r. The assertion is obvious for r = 0; assume that » > 1. It suf-
fices to verify that A" belongs to k[gY,...,gy] for each h € k[g1,...,9,] \ {0}. Take
H € A[T] such that h = H(g,), where A = k[g1,...,9r—1]. Then, H¥9" belongs to
AY[T], while A¥ = k[gY",..., g ] by induction assumption. Hence, H"9 (g") belongs
to k[gY,...,gY]. Since g)¥,...,gY are algebraically independent over k by assumption,
it follows that gy is transcendental over k(gy",..., gy ). Hence, H¥¥ (g¥) # 0, and so
H(g,)" = H™¥ (g") by Lemma 3.1(i). Thus, h" belongs to k[g}", ..., gY]. Therefore,
k[g1,. .., 0.]" = k[gY, ..., "] holds for any . . O

As an immediate consequence of Lemma 4.1, we have the following.

Proposition 4.2 Let fi1,..., fn be elements of k[x] such that k[f, ..., fu] = k[x]. Then,
.. fY are algebraically independent over k if and only if k[fY, ..., f¥] = k[x] for

w el



Proof. The “if” part is clear, for k[x] has transcendence degree n over k. Assume that
¥, ..., f¥ are algebraically independent over k. Then, k[f",..., f3'] = k[f1,..., fa]”
by Lemma 4.1. Since k[fy, ..., fa] = k[x], we have k[f1,..., fa]¥ = k[x]¥ = k[x]. Thus,
k[fY,..., f¥] = k[x]. This proves the “only if” part. O

Next, we consider the case where k(fYY,..., f¥) is of transcendence degree n— 1 over
k for some w € I'". We define an element A} of I" as follows: Let Ay : k[x] = k[x]
be the homomorphism defined by A(z;) = f¥ for i = 1,...,n. Since k[x] is a unique
factorization domain, and kery ) is a prime ideal of k[x] of hight one, there exists Q €

k[x]\ {0} such that ker A = Qk[x]. Then, we define A}’ to be the wg-degree of @Q, where

Wg = (degw f17 .. 'adegw f'n)

Note that A is uniquely determined by f and w, since @ is unique up to multiplication
by elements in & \ {0}.

In the notation above, we have the following.

Theorem 4.3 Let fi,..., f, be elements of k[x] such that k[fi,..., fa] = k[x], and
w = (wi,...,wy) an element of (Uso)". If the transcendence degree of k(f",..., f¥')
over k isn — 1, then
ZdegwfiZA}”+Zw,~—max{'w,~|z'=1,...,n}, (4.1)
i=1 i=1

where £ = (f1,..-, fn)-

Proof. Since k(f}",..., fY) is of transcendence degree n — 1 over k, we may find [ such
that z; is not contained in k[fY,..., f¥']. Moreover, we may assume that f¥,..., f¥
are algebraically independent over k by changing the indices of fi,..., f, if necessary.
Set A = k[f1,..., fa_1) and g = f,. Then, there exists ® € A[T] such that ®(g) = =z,
since A[g] = k[x] by assumption. Furthermore, A% = k[f",..., fv,] by Lemma 4.1,
and so AV is a polynomial ring over k. Accordingly, the ideal I(AY,g") of A¥[T] is
principal. Since w; > 0 for ¢ = 1,...,n by assumption, deg,, h > 0 holds for each

h € k[x] \ {0} as mentioned in Section 2. Thus, fi,...,fn-1, ¢ and w satisfy the



assumptions of Theorem 3.3(ii). Therefore, we obtain
max{w; | i = 1,...,n} > w, = deg,, z; = deg,, (g9) > mi,(®)(degd, P+ M). (4.2)
Here, P = P(AY,¢%) and
M = deg,,(w A dg) — deg,, w — deg,, g  with  w=dfi A---Adfp_s.

Note that w Adg = dfy A+ - - Adf, = Ddzy A-- - Adz,, where D is the determinant of the
n by n matrix (8f;/0z;); ;. The assumption k[f1, ..., fa] = k[x] implies that D belongs
to k \ {0}. Hence, we have deg,, (w A dg) = deg,, D+ Y1, w; = 3, w;. By (2.5) and
(2.6), it follows that deg,, w < Y"1~ deg,, dfi = S 7~ deg,, f;- Thus, we obtain that

M > iwi - zn:degw fi- (4.3)
i=1

i=1
Due to (4.2) and (4.3), it remains only to show that mg,(®) > 1 and degf, P = A}.
First, suppose to the contrary that mg(®) = 0. Then, from Lemma 3.1, we get
P¥9(g%) = ®(g9)¥ = ¥ = z;. Recall that z; does not belong to k[f,..., f'], and
that k[fY,..., f¥] = A%[g"]. Nevertheless, ®*9(g%) belongs to A" [g"], since ¢ be-
longs to A¥[T]. This is a contradiction, and thus mg,(®) > 1. Let ¢ : k[x] = A™[T] be
the homomorphism defined by ¢(z;) = f* fori =1,...,n — 1 and ¢(z,) =T, and Q an
element of k[x| such that ker \} = Qk[x]. Then, ¢ is isomorphic, since we are assuming
that fY,..., f¥ , are algebraically independent over k. Besides, the we-degree of @ is
equal to the (w,degd)-degree of (@), which equals deg?, :(Q) as mentioned. Conse-
quently, we get AY = degd, +(Q). Since AY is the composite of « and the substitution
map A¥[T] 3 ¢ — 9(g*) € k[x], we have

1(Qk[x]) = v(ker \Y) = I(AY, ¢g%) = PA™[T].

Thus, ¢(Q) = aP for some a € k\ {0}. Therefore, we obtain degj P = A}, thereby

completing the proof. a

Theorem 4.3 is considered as a generalization of Proposition 1.1. In fact, we have the

following corollary in case n = 2.



Corollary 4.4 Assume that fi, fo € k[z1, %3] satisfy k[f1, fo] = klz1,z2). If £ and f3¥
are algebraically dependent over k for an element w = (wy,w,) of (Zs0)?, then it follows

that deg,, f1 > 0, deg,, fo > 0, and
deg,, fi + deg,, fo > lem(deg,, f1,deg,, f2) + min{w;, w,}. (4.4)
In particular, deg,, f1|deg,, f2 or deg,, f2|deg,, f1.

Proof. Since w; > 0 for 7 = 1,2 by assumption, we have deg,, f; > 0 for ¢ = 1,2
as mentioned in Section 2. We show that deg,, f; # 0 for i = 1,2 by contradiction.
Suppose the contrary, say deg,, fi = 0. Then, w; = 0 for some i € {1,2}, since f;
cannot be contained in k. We claim that w # 0. In fact, if w = 0, then f = f;
for 1 = 1,2. Nevertheless, f and f}' are algebraically dependent over k, whereas the
assumption k[fi, fo] = k[z1, 2] implies that f, and f, are algebraically independent over
k, a contradiction. Hence, we have w; > 0 for j € {1,2} \ {i}. Since we suppose that
deg,, f1 = 0, this implies that f belongs to k[z;], and besides f* = f,. Then, f}* also
belongs to k[z;], since f}¥ and f;” are algebraically dependent over k. Consequently, f,
belongs to k[z;] due to the conditions w; = 0 and w; > 0. Thus, k[f,, f2] is contained in
k[z:], a contradiction. Therefore, we conclude that deg,, f; > 0 for i = 1, 2.

Put P = P(k[f"], f3') and f = (f1, f2). Then, we get A} = deg/2 P as in the proof
of Theorem 4.3. By Lemma 3.4, we may write P = § (T'Un/2) — a(fl‘”)’(}z'fl)), where
a,ﬁ € k\ {0}. Then, it is readily checked that deg/? P = lem(deg,, fi, deg,, f2). Thus,
AY =lem(deg,, f1, deg,, f2)- By Theorem 4.3, we obtain

.degw fl + degw f2 2 A:, + wy + wp — ma'x{wl: ’Ll)z} = A;V + min{wla w2}1 (45)

which yields (4.4). The last statement is a consequence of (4.4), since a + b < lem(a, b)

holds for each a,b € N with a{ b and b1 a. O
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1 Introduction

DeConcini and Procesi [DP] considered the ring of absolute invariants of various
classical groups including the symplectic group. Let X = (X;;) be the n x n
alternating matrix of indeterminates, T' the 2m x n matrix of indeterminates. They
showed that the ring of absolute symplectic invariants is the algebra generated by
the entries of ‘T'JT (see §2 for notation). They also showed that this ring is
isomorphic to the quotient ring of the polynomial ring with variables {X;;} by the
ideal generated by (2m + 2)-Pfaffians of X.

T is the 2m x n matrix of full universal property. And the algebra generated by
its minors is the homogeneous coordinate ring of a Grassmannian. On the other
hand, there are universal matrices under certain conditions of minors. Maximal
minors of these matrices generate the homogeneous coordinate ring of the Schubert
subvarieties of a Grassmannian.

In this article, we consider the action of the symplectic group to such matrices.
And show that the ring of absolute invariants is the algebra generated by the
entries of an alternating matrix with certain universal property. We also show
that this ring is a normal Cohen-Macaulay ring and give a combinatorial criterion
of the Gorenstein property of this ring.

2 Preliminaries

All rings and algebras considered in this article are commutative with identity
element.

Let k be a field. For an m x n matrix M = (m;;) with entries in a k algebra
S, we denote by I,(M) the ideal generated by all the t-minors of M, by M(<9 the
i X n matrix consisting of first i-rows of M, by M<; the m x j matrix consisting
of first j-columns of M, by I'(M) the set of maximal minors of M and by k[M]
the k-algebra generated by the entries of M.

For a positive integer I, we set H(l) := {[c1,...,¢] |1 <1 <+ < ¢ £,
c; € Zfori=1,...,r} and define the order relation on H(l) by

ey yer) < da, ..., ds]
PN r>s, ¢ <difori=12,...,s.

We also define the size of an element [ci,...,c,] to be 7 and denote
size([c1, . . .,¢r]) = r. Note that H(l) is a distributive lattice.



We define P(l) := {a € H(l) | sizea = 0 (mod 2)}. It is clear that P(l)
is a sublattice of H(l). We also define A(m x n) := {[e|f] | @ € H(m),[
H(n),sizea = size} and the order relation on A(m x n) by

[o]] < [&/]F]

&L o <o in H(m) and < B in H(n).

Note also that A(m X n) is a distributive lattice.

For an m x n matrix M = (my;) and [a1,...,ar|b1,...,br] € A(m x n), we set
[a1,.--,ar|b1y ..., O] = det(mas,;)-

If «y is an element of H(I), we set H(l;y) := {6 € H(l) | 6 > v}. P(l;7) and
A(m x n;d) are defined similarly.

Now we recall the following

Fact 2.1 If T = (t;;) is an n X n alternating matriz, then

_ [ Pfaff(T)? n=0 (mod2),
detT—{ 0 n=1 (mod 2).
Where
Plaff(T) = > (=1)7te()o(2) " ta(n-1)a(n)
c€Sn/H
and

H={reS,|vidjr({2i-1,2i}) = {2 - 1,2j}}.

Pfaff(T) is called the Pfaffian of T. Note that (=1)%to(1)e(2) * *  to(n—1)o(n) 18
independent of the choice of a representative o of the left coset of S,/H.

For [ci,-..,car] € P(n), we define (c1,. .., car)1 to be the Pfaffian of the sub-
matrix of T consisting of rows and columns indexed by ci, ..., C2r.

Now we fix integers m and n such that 0 < 2m < n and v = (b1, ..., bom] €
P(n). We set

W11 W12 o W1,2m
W21 W22 e W2,2m
W = . . . . )
Wom1 Wamz -+ Wamom
o --- 0 Ulln - Ulbg e . Ulem - Ul'n
U e 0 - 0 0 - Upy - - Uy -+ Unm
0o --- 0 0 - 0 -+ 0 Umbyn - Uzmm

where W;;, U;; are independent indeterminates, and
Zy =WU,.

Then



Lemma 2.2 ([Miyl]) Z, is the universal 2mxn matriz with I;((Zy)<p,—1) = (0)
fori=1,...,2m. ie.,
(1) Ii((Zy)<bi-1) = (0) fori=1, ..., 2m.

(2) If Ii(M<p,—1) = (0) fori =1, ..., 2m, then there is a unique k-algebra
homomorphism k[Z,] — k[M] sending Z to M.

It is also known that k[I'(Z,)] is the homogeneous coordinate ring of the Schubert
subvariety, corresponding to -, of a Grassmannian.

We set
0 --- 001
0 - 010
J:= . (m x m matrix),
1 .- 0 0
= o J
= ( —J 0 )
and _
T, =122,

Theorem 2.3 ([DP, Theorem 6.5]) Let X = (X;) be the nXn alternating ma- -
triz of indeterminates, i.e., {Xi;}1<i<j<n are independent indeterminates, X;; = 0
and X;; = —X;;. Then k[X] is an ASL on P(n).

We set T(X;7) := k[X]/(P(n) \ P(n;7))k[X]. Then, by the general theory of
ASL, we see .

Corollary 2.4 T(X;v) is an ASL on P(n;~).

Note that the image X of X in T'(X;~) is the universal n xn alternating matrix
with (8)% = 0 for any 6 € P(n) \ P(n;v).

Example 2.5 If y=[1,2,...,2t — 2], then (P(n) \ P(n;~v))k[X] is the ideal gen-
erated by all 2¢t Pfaffians of X. In particular, if n is odd and v =[1,2,...,n — 3],
then (P(n)\ P(n;~))k[X] is the Buchsbaum-Eisenbud type ideal of k[X].

3 Properties of T(X;~)

In this section, we show that T'(X ;) is isomorphic to a subalgebra of a polynomial
ring over k whose initial algebra is normal.

We begin with a lemma which can be proved by a direct computation. To
state this lemma, we define the following notation. For § = [ay,...,as] € H(n)
andl€ Z,wesetl—0:=[l—as,...,l —a1].

Lemma 3.1 If M is a 2m X 2r matriz with v < m, then

PlaffCMJIM) = > [5,2m+1-6[1,2,...,2r].

S€H(m)
sizeb=r



Note that if [c1,...,¢cor] 2 7, then [6,2m + 1 — dlc1,...,cor)z, = O for any
§ € H(m) with size§ = r. Therefore (ci,...,car)7, = 0 by the above lemma. So
the k-algebra homomorphism ¢: k[X] — k[T,] sending X to T, factors through
T(X;7). We denote the induced map T'(X;~) — k[T;,] by @.

We introduce the degree lexicographic monomial order on k[W, U, ] by W1, >
Wiz > - > Wigm > Way > oo > Womom > Uiy > Urpy41 > -0 > Uip >
Uz, > -+ > Uzm,n. Note that this is a diagonal monomial order, i.e., the leading
monomial of any minor of W (resp. U,) is the product of entries of its main
diagonal.

Lemma 3.2 (1) If[di,...,dr] >, then
Im([cy, ..., crldy, - - ,dr]z.,) =We,1Wepo -+ WerUra, Usd, -+ - Up, -

(2) If [c1, ..., cor] > 7, then

lm((cl, ey CZT)T-,)
= WiuWa - WeWom—ry1r+1Wom—rs2r42 *** Wom 2: Ui, Uac, + Uzr ey, -

proof (1) follows from the following formula of linear algebra.

ler, .o erldy, - deldwo, = Y len, e l8lwldld, s drlu,
§eH(2m)

And (2) follows from (1) and Lemma 3.1. I

Now let p = [c11,.--,C1,2m][C215- -+, C2,2r5) - - [Cs15- - -, Cs,2r,] De & standard
monomial on the poset P(n;~). Then one can reconstruct u from the leading
monomial Im(ur, ) = [1;-;1m({ci1, - .., ci2r;)1,) Of pz,. In praticular, if 4 and u’'
are different standard monomials on P(n;<), then Im(ur, ) # Im(uz, ). Therefore
{im(pz,) | p is a standard monomial on P(n;)} is linearly independent over k.
So we have the following

Theorem 3.3 {lm(ur,) | 1 is a standard monomial on P(n;~)} is a k-free basis
of ink[T,]. In particular, @ is an isomorphism and {(0)T, | 6 € P(n;v)} is a sagbi
basts of k[T].

Corollary 3.4 T, is the universal n x n alternating matriz with (§)r, = 0 for
any 6 € P(n)\ P(n;7).

Since Im({6)r, )lm({¢")z,) = Im((6Ad’)7,,) = Im({6Vd')r, ), we see the fdllovﬁng

Proposition 3.5 ink[T,] is the Hibi ring on P(n;7). In particular, ink[T,] is
normal and Cohen-Macaulay.

So by the result of Conca-Herzog-Valla [CHV, Corollary 2.3],

Theorem 3.6 T'(X;v) ~ k[T,] is a normal Cohen-Macaulay ring and has rational
singularities if chark = 0 and is F-rational if chark > 0.



4 Gorenstein property

In this section, we state a combinatorial criterion when T'(X;~v) ~ k[T,] is Goren-

stein.
First we recall the following result of Stanley.

Theorem 4.1 ([Sta, 4.4 Theorem]) Let A = ®,>9A, be a Cohen-Macaulay
graded domain such that Ay is a field. Then A is Gorenstein if and only if
Hilb(4,A71) = (=1)?)\PHilb(4,)\) for some d, p € Z, where Hilb(A, —) is the
Hilbert series of A.

Since the Hilbert function of an ASL depends only on the generationg poset, we
see

Corollary 4.2 Assume that A and A’ are Cohen-Macaulay ASL domains on the
same poset P. Then A is Gorenstein if and only if so is A’.

Now let D be a finite distributive lattice. We say = € D is join-irreducible if
z = aV (@ implies x = a or z = §. Note that we regard the minimal element of D
to be join-irreducible. We denote the set of all join-irreducible elements of D by

P.
We recall here the criterion of Gorenstein property of a Hibi ring by Hibi.

Theorem 4.3 ([Hib]) The Hibi ring Ry (D) is Gorenstein if and only if P is

pure.

By this result and Corollary 4.2, we see that T'(X;~y) ~ k[T’,] is Gorenstein if and
only if the set of all join-irreducible elements of P(n;+) is pure. By analyzing the
poset structure of P(n;y), we see the following

Proposition 4.4 Set P, := {[b1,...,by,n —2s+u+1,...,n] | s <m}, P, :=
{[b1,...,bu,n =25 +u,...,n—1] | s <m} and Ps := {[c1,...,Com] | ;¢c; > b;,
¢ > ci—1 + 1} (here we set cg = 0). Then the set of all join-irreducible elements
of P(n;7y) is PLU P, U P3U{v}.

It is known that Pj is anti-isomorphic to a finite poset ideal of N x IN, where
the order of N x IN is defined by componetwise [Miy2)].

Now set {u | by +1 < byq1} = {u1,...,us} with uy <--- < ug, where bgpq :=
n+ 1. Then the minimal elements of P; are [by,...,by,—1,by; + 1,by,41,- - -, bom]
(i=1,2,...,1).

Example 4.5 (1) Let m = 4, n = 16 and v = [1,5,6,7,9,12,13,14].
[1,5,6,11,12,13,14,15] is an element of P; with i = 4.
Minimal elements of P3; are v, = [1,5,6,7,9,12,13,15], o =
[1,5,6,7,10,12,13,14], 73 = [1,5,6,8,9,12,13,14] and v, = [2,5,6,7,9,12,13, 14].
The Hasse diagram of Pj is



9,10,11,12,13,14, 15, 16]

71

Since P; and P; are lined on upper left of Ps, the Hasse diagram of P, UP, U P is

[1,16]

(1, 5]
11,12,13,14,15,16]

10,11,12,13, 14,15

[1,5,6,16)
9,10,11,12,13,14, 15, 16]

1,5,6,7]
(1,5,6,7,9,16]

[1,5,6,7,9,12]

71

(2) Let m =4, n=14 and v = [1,5,6,7,9,12,13,14].

Minimal elements of P3; are v, = [1,5,6,7,10,12,13,14], v =
[1,5,6,8,9,12,13,14] and 3 = [2,5,6,7,9,12,13, 14].

The Hasse diagram of Pj is

7,8,9,10,11,12,13, 14]

7"
and the Hasse diagram of P, U P, U Pj is



[1,14]

(1,5]

1,5,6,14]
7,8,9,10,11,12,13, 14]

(1,5,6,7]
[1,5,6,7,9,14]

1,5,6,7,9,12]

We set xo := {1,2,...,b1 — 1}, By := {b1,b2,...,bu, }, x1 := {bu, + 1,by, +
2,... ;bu1+1 — 1}, By = {bu1+17 bu1+2, ce )buz}) X2 = {bu2 +1,bu2 +2,... ,bu2+1 —
1}7 B3 = {b'u,2+l’ bu2+27 s 7b‘u,3}a sy Bt = {b’ll,g_l-l-la b’u.t_1+27 ) but}, Xt =
{bug +1, but +2,... ,but+1 - 1} and Bt+1 = {but+l)bu¢+2a ce ,bgm}.

Then by the above observation, we see the following

Theorem 4.6 (1) If by, < n then T(X;7) ~ k[T,] is Gorenstein if and only if
IB,, = |Xi—1| fOT‘ 1= 2, ey t.

(2) If by, = n and m > 2, then T(X;7) =~ k[T}] is Gorenstein if and only if
|Bi| = |xi—1| fori=2, ..., t and |Bey1| — 1 = |xz]-

(3) If m =1 and by = n, then T(X;~y) ~ k[T,] is isomorphic to the polynomial
Ting k[Xin | b <i< ’fl]
5 Invariants

In this section, we consider the action of the symplectic group on k[Z,] and prove
that the ring of absolute invariants is k[T,].
First we recall definitions.

Definition 5.1 Sp(2m, k) := {4 € GL(2m, k) | tAJA = J} is called the symplec-
tic group.

Let A be an element of Sp(2m, k). Since
Ii(('AZ’Y)Sbi*l) =(0) fori=1,2,...,2m,

we see that there is a k-algebra automorphism of k[Z.] mapping Z, to AZ,. So
Sp(2m, k) acts on k[Z,,].

Definition 5.2 f € k[Z,] is called an absolute Sp(2m)-invariant if for any k-
algebra B, the image of f in B[Z,,] is an Sp(2m, B)-invariant. The ring of absolute
Sp(2m)-invariants is denoted by k[Z.,]5P(2™=).

Now we state the following



Theorem 5.3 k[Z,)5P(?™~) = k[T,].

For the proof of Theorem 5.3, we make some preparation. First we recall the
following result.

Theorem 5.4 ([DP, Theorem 6.6]) Let Y = (Y;;) be a 2m X u matriz of in-
determinates. Then k[Y]SPC™—) = k[tY JY].

Now let W’ = (W;) be a new 2m x 2m matrix of indeterminates. Then it is
well known that the k-algebra homomorphism k[W] — k[WW’] mapping W to
WW' is an isomorphism. So it follows from Theorem 5.4

Corollary 5.5 k[WW']|SP@m=) = k[H(WW')J(WW')].

Now set Z, := WW'U, and T, := tZ,’Yj Z,. We introduce the degree lexico-

graphic monomial order on k[W, W', U,] by Wiy > Wiz > -+ > Wy opy > Wo; >

> Wamam > Wiy > Wiy > oo > Wigp, > Wy >0 > Wy 0 > Uy, >
U17b1+1 > > Uy > U2b2 >0 > U2m,n- Then

Theorem 5.6 {(d)r; | 6 € P(n;7)} is a sagbi basis of k[t(WW’)j(WW'),‘UP,] N
k[Z.]. In particular, kEWW)JWW'),U,] N k[Z)] = k[T;).

proof Setd:=[1,2,...,2m|y] € A(2mxn). First note that k[Z!] is an ASL over
k generated by A(2m x n;8) and k[{(WW')J(WW'),U,] is an ASL over k[U,]
generated by P(2m).

For [c1,...,¢r|d1,...,dr] € A(2m X n;6),

m([er, ..., crldr, -, drlzs) = Wegr -+ We e Wiy -+ Wi Uta, -+ Ura,,

and therefore, if v is a standard monomial (in the sense of ASL) on A(2m x n;¢),
then we can reconstruct v from Im(vz; ). In particular, if v and v/ are different
standard monomials, then Im(vz; ) # lm(uz, )-

Now assume that [c],...,c,] € P(2m). Then

/ /
lm((cl, . ,Czr)WW’)
Wi, W- W... W- 177 W. Hr/ ”r/ ”r/
= 11VV22 " VWrrVV2m—r+4+1,r4+1Y¥V2m—r42,r42 """ V¥V2m,2r 1c) YV 2c), e 2r,ch,.

and therefore, if u is a standard monomial on P(2m), then we can reconstruct u
from Im(puww-). In-particular, if u and p’ are different standard monomials, then

Im(uww) # Im(uyw)- N _
Now let f be an arbitrary non-zero element of k[*(WW')J(WW'),U,]Nk[Z.)].

f=ZbVI/

is the standard representation of f in the ASL k[Z!], then there is a unique v such
that lm(f) = lm(v). So the leading monomial of f is of the following form.

H H WC:JJW, jdij

i=1j=1

If



On the other hand, by considering the ASL k[t(WW')J(WW"), U,] over k[U,],
we see that the leading monomial of f is of the following form.

2r;

S Ti
TIAI Wi Wems1-s2re-)(] Wi, ) X (a monomial of U,,)
i=1 j=1 J=1
Therefore, we see that t = s, u; =2r; fori=1,..., s, cgj =jforj=1,...,2r,

cj=gforj=1,...,rpand ¢ =2m—2r; +jfor j=r; +1,..., 2r;.

This means that Im(f) = Im({v)r;) for some standard monomial v on P(n;7).
The theorem follows. 1

By Theorem 5.6 and Corollary 5.5, we see the following

Corollary 5.7 k[Z!]SPCm=) = k[TV].

Since k[Z,] ~ k[Z], Theorem 5.3 follows.
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1. INTRODUCTION

In this report, we survey some recent results on the SLP Problem (see [6] and (7] for
details).

A standard graded Artinian K-algebra A = @®_,A;, where A; # (0), has the Weak
Lefschetz Property (WLP) if there exists a linear form g € A, such that the multiplication
xg: A — Aip
is either injective or surjective for every 1 =0,1,...,c — 1. An algebra A has the Strong
Lefschetz Property (SLP) if there exists a linear form g € A; such that the multiplication
xg= % Ay — Ay

is bijective for all ¢ =0,1,...,[c/2].
We conjecture the following:

Conjecture 1.1. ALL complete intersections have the SLP.

A motivation to study the SLP Problem: There is a close relation between the SLP
Problem and a problem on the classification of generic initial ideals. Here we use the
reverse lexicographic order with z; > z3 > -+ - > x,,. Wiebe’s result is very important.

Proposition 1.2 ([10]). Let R = K[z1,Z, ..., 2] be the polynomial ring in n variables
over a field K of characteristic zero, and let I be an Artinian homogeneous ideal of R.
Then the following are equivalent.

(1) R/I has the SLP.
(2) R/Gin(I) has the SLP.

In this case, the last variable z,, is a strong Lefschetz element of R/Gin([).

We proved the following proposition a few years ago, but it is unpublished.



Proposition 1.3. For any SI-sequence h = (1,3, hy,. .., he—9,3,1), there is only one
Borel fized ideal I such that R/I has the Hilbert function h and the SLP.

Recently Cimpoeas [1] showed the same result as Proposition 1.3 for Hilbert functions
of complete intersections of embedding dimension three .

Remark and Example 1.4. Proposition 1.3 does not hold in the case of embedding
dimension grater than three. We would like to give such an example. Consider two Borel
fixed ideals I and J of R = K|[z1, 22,3, 4] as follows:

— 2 2 2 2 .3 2 3 3 3 .5
I= (ilfl,1151.'1’2,.’112,211.’173,.’1?2.’23,.’133,$1$3$4,$2$3IE4,$3$4,$1(E4,$2$4,.’1?3.'134,.’134),

— 2 3 .2 2 .3 2 2 3 3 3 .5
-] - (.’131,1121:1:2,1221?3, :l:z,.'1?213,1172.'173,.T3,:Z?2.’134,CL‘QI3£E4, .’1,‘3134,1‘1.'1,'4,:1,‘21?4, :L‘3$4,:E4).

Then it is easy to show that R/I and R/J have the same Hilbert function 1,4,7,4,1 and
also have the SLP.

Noting that monomial complete intersections have the SLP ([9]), the following is an
immediate consequence of Propositions 1.2 and 1.3.

Proposition 1.5. Let fi, fa, f3 be a homogeneous regular sequence of R = K|[z1,z2,z3),
where d; = deg(f;) fori=1,2,3. Suppose that R/(f1, f2, f3) has the SLP. Then

Gin((f1, fa, f3)) = Gin((z", 25°, 25%)).

Conjecture 1.6. Let {fi, f2, f3} and {g1,92,93} be homogeneous regular sequences of
R = K[z, z3, z3] with the same degrees, i.e., deg(f;) = deg(g;) for i =1,2,3. Then

Gin((f1, fo, f3)) = Gin((g1, 2, 93))-

Remark 1.7. The following are equivalent.
(1) The conjectutre 1.6 is true.

(2) The conjecture 1.1 is true in the case of embedding dimension three.
2. RECENT RESULTS

Let A = @¢_,A; be a standard graded Artinian K-algebra. For a linear form z € A,
consider the associated graded ring

Grpy(4) = A/(2) ® (2)/(2) ® (27)/ () & ... @ ("71)/(2P),

where p is the least integer such that 2P = 0. As is well known Gry,)(A) is endowed with
a commutative ring structure. The multiplication in Gr(,)(A) is given by

(a+ (")) b+ (271)) = ab+ (z474),
where a € (2*) and b € (2%).

For any homogeneous form f € R = K]z, ..., )], it is possible to write uniquely
f = f0+f1$n+f2x721+ +fk$fn
where f; is a homogeneous form in K(z1,...,zn_1]. Denote by In'(f) the term f;zJ for

the minimal j such that f; # 0. Furthermore we define In(I) to be the homogeneous ideal
of R generated by the set {In'(f)}, where f runs over homogeneous forms of I. Suppose



that n = 2. Then one notices that In'(J) coincides with the initial ideal In(7) of I with
respect to the reverse lexicographic order with z; > z,. .

Let z be the image of z, in A = R/I. Then it is easy to show that Gr(,)(A) = R/In’(I).
So we consider that Gr(;)(A4) inherits a standard grading from R. Let In(I) be the initial
ideal of I with respect to the reverse lexicographic order with z; > --- > z,,. Noting that
In(In'(I)) = In(I), we have that all of Gr(;)(4), R/In(I) and A = R/I have the same
Hilbert function.

Theorem 2.1. Let K be a field of characteristic zero and let A be a standard graded
Artinian K-algebra. Then A has the WLP (resp. SLP) if and only if Gr(,)(A) has the
WLP (resp. SLP) for some linear form z € A;.

Remark 2.2. Let In(J) be the initial ideal of a homogeneous ideal I of R = K|zy,...,z,)
with respect to the reverse lexicographic order with z; > --- > z,. Using a result of [2],
it can be proved that if R/In(I) has the the SLP then so does R/ ([10], Proposition 2.9).
The following example shows that Wiebe’s result does not imply Theorem 2.1.

Let R = K[z,y,2) and I = (2, (z + y)?,(z + y + 2)?). Put A= R/I. Then

Gr.(A) & R/(2%, 22y + v*, 22 + y2,9°,°2, 2°)
has the SLP, but
R/In(I) = R/(2*, 2y, 22,9°,y%2, 2°)
does not have the SLP (this can be checked, for instance, with the computer program
Macaulay).
Let z be a linear form of A. The Jordan canonical matrix J of xz : A — A is of the
following form,

J(O, nl)
J(O, ’I’Lg) O

0 T o)

wheren; > ng > --- > n, and J(0,m) is the Jordan block of size mxm. Let (f1, fa, - .., fs)
be the finest subsequence of (ny,ny,...,n,) such that f; > fo > --- > f,. We rewrite the
same sequence (ng,...,n,) as

(nl,...,n,)=(fl,.‘.fl,fz,...,f2,...,fs,...,fs).

my m2 ms

Definition 2.3. We call the graded A-module
_ (0: 25) + (2)
(0 )+ (2)

the i-th central simple module of (A, z), where 1 < i < s and f,4; = 0. Note these are
defined for a pair of the algebra A and a linear form z € A;.

Ui



Remark 2.4. By the definition, it is easy to see that the modules U, Us,...,Us are
non-zero terms of the successive quotients of the descending chain of ideals
A=(0:2)42)D0: 2" +(z) DD (0:2)+ () D (2).

The Hilbert function of a graded vector space V = @?_,V; is the map i — dim V;. If V

has finite dimension, then its Hilbert series is the polynomial
b
hv(g) =) (dimV;)g"

Let h(q) be a polynomial with coefficients of integers. We say that h(q) is symmetric if
h(q) = ¢®h(g™') for some integer d. Then we call the half integer d/2 the reflecting degree
of the symmetric polynomial h(q).
Proposition 2.5. Suppose that A is an Artinian Gorenstein K-algebra and let z be a
linear form of A. Let Uy, ..., U be the central simple modules of (A, z). Put

U, =U; ®x K[t]/(t")
for 1 <14 < s. Then we have the following.
(1) hg,(q) = hu,(Q)(1 + g+ ¢+ -+ 7).
(2) halg) = 3251 by, (9)-
(3) hu,(q) is symmetric for alli=1,2,...,s.
(4) hy,(q) s symmetric for alli=1,2,...,s with the same reflecting degree as that of

ha(q)-
(5) If all hyz (q) are unimodal, then the Sperner number of A is the sum of the Sperner

numbers of U;.
Definition 2.6. Let A = @,50A; be any graded K-algebra. Suppose that
V=6V
is a graded Artinian A-module with V, # (0) and V} # (0).
(i) The A-module V has the WLP if there is a linear form g € A; such that the
multiplication xg : V; — V4, is either injective or surjective for all ¢ = a,a +
(i) ’lfz}.lé.}ltimo{i.ule V has the SLP if there is a linear form g € A; such that the
multiplication xg?=%=% : V,,; — Vj,_; is bijective for all i = 0,1,...,[(b —a)/2].
We state the main theorem in this report.

Theorem 2.7. Let K be a field of characteristic zero and let A be a standard graded
Artinian Gorenstein K-algebra. Then the following conditions are equivalent.

(i) A has the SLP.
(ii) There ezists a linear form z of A; such that all the central simple modules of (A, z)
have the SLP.

The following is an extension of Theorem 2.7.

Theorem 2.8. Let K be a field of characteristic zero and let A be a standard graded
Artinian K -algebra. Then the following conditions are equivalent.



(i) A has the SLP.
(ii) There ezists a linear form z of A such that all the central simple modules U; of

(A, 2) have the SLP and the reflecting degree of Hilbert function of U; coincides
with that of A for everyi=1,2,...,s.
Theorem 2.9 is the main result in [4]. We can now give another simple proof using
Theorem 2.8.

Theorem 2.9. Let K be a field of characteristic zero, let B be a standard graded Artinian
K-algebra and let A be a finite flat algebra over B such that the algebra map B — A
preserves grading. Assume that both B and A/mA have the SLP, where m is the mazimal
ideal of B. Then A has the SLP.

To prove Theorem 2.9, we need a lemma.

Lemma 2.10. We use the same notation as Theorem 2.9. Let 2’ be any linear form of B
and put z = p(2'). Let U} and U; be the i-th central simple modules of (B, 2') and (A, z),
respectively. Then U] @ p A = U;.

In the latest paper [7], we proved that the above theorems can be extended to Artinian
algebras with non-standard grading.

3. EXAMPLES

Here are some examples of complete intersections which we can prove to have the SLP
using Main Theorem 2.7.

Lemma 3.1. Let R = K|zy, ...,z be the polynomial ring over a field K and let J be a
homogeneous ideal of R such that R/J is a one dimensional Cohen-Macaulay K -algebra.
Let g be a linear form of R which is not a zero divisor on R/J. Let d be a positive integer,
and put I = (J,g%) and A= R/I. Let z be the image of g in A. Then (A, z) has only one
central simple module which is isomorphic to A/(z).

Proof. It is easy to see that I : ¢ = (J,g%77) for all j = 0,1,...,d. Hence, since
(0:27) = (2% ) forall j =0,1,...,d, we have (0 : 27)+(z) = (2) forall j = 0,1,...,d—-1.
Thus (A4, z) has only one central simple module
0:29+(2) A
(0:z )+ (@
O

Example 3.2. Let R = K|z, ...,z,] be the polynomial ring over a field K of character-
istic 0. Let 7, s be positive integers. Put f; =z —z],, fori=1,2,...,n — 1. Let I be
the ideal of R as follows:

I = (fl’ DR f’n—l) (ZZ;)

Then R/I has the strong Lefschetz property.

Proof. We have the isomorphism:
R/(fla e afn—la .’L'n) = K[zla ot )xn—ll/(zl’l.’ cee 7:1;:1-1)‘



This shows that R/(f1,..., fn-1) is a one-dimensional Cohen-Macaulay K-algebra and
that the image of the element z,, is a non-zero-divisor. Moreover it is well known that the

monomial complete intersection K[z1,...,%n-1]/(27,...,2],_;) has the strong Lefschetz
property. Hence Lemma 3.1 immediately applies. a
Example 3.3. As in the previous example, let R = K[z, -, z,] be the polynomial ring

over a field K of characteristic 0. We consider a complete intersection ideal as follows,
I= (fl)fZ)gga’g?) L) ;iln)a
where gs, ..., g, are linear forms. Then A = R/I has the SLP.

Proof. If n < 2, this is proved in Proposition 4.4 of [3]. Now we induct on n. Let n > 3.
We may assume that g, = z,. Put R = R/z,R. Then

A/an = R/(I) ‘Tn) = R/(ﬁ’.ﬁaﬁdav cee ;mdﬂ-l))

where f; and g; are the images of f; and g; in R. By the assumption of induction,
we have that A/z,A has the SLP. Hence, our assertion follows from Lemma 3.1 and

Theorem 2.7. a
Let e; = e;(z1,...,2,) be the elementary symmetric polynomial of degree 7 in the
variables z,...,z,, i.e.,

ei(xla---axn) = z TjiTjy * Ty

J1<j2<-<Ji
foralli=1,2,...,n. Let r and s be two positive integers. Put
fi=e(z],...,z0), fori=1,...,n—1,
fn=€n(Ii’~'-)x;)' _
It is easy to see that the ideals (ey, ez, ...,€e,) and (f1, f2,..., fn) are complete intersec-

tions.

Example 3.4. With the same notation as above, let R = K|z, ..., z,] be the polynomial
ring over a field K of characteristic 0. Put I = (fi,..., f,) and A = R/I. Suppose s is a
multiple of 7. Then the complete intersection A has the SLP.

Proof. Noting
(3.1) (=)™ e + (—1)"zTpen—1 + (-1)" '22en_a + - - + (=1)%2" e, = 27,
there exist polynomials Py, ..., P, € R such that
z)' =Pfi+- 4 Po1foo1 + Poal -z,
Hence, since
@) = (Pufi+ -+ + Pacafao1 + Pagl -2,
it follows that zi* € I = (fi,..., fa—1, fn). Thus we obtain that
(fl) ce ,fn_l,:l:f.‘") C I.

On the other hand, noting that R/(fi,..., fa-1,25") and A = R/I are two complete
intersections with the same Hilbert function, we have

I = (fl) - ,fn—l;z'in)'



Let z be the image of z,, in A. Then we see that

A/ K[xl’ . 71"77/—1]/(6/1(1:;7 te 7$;—1)7 e ,6,:1_1(1311‘, cee aI;—lv)),
where €(z1,...,Z,-1) is the elementary symmetric function of degree i in the variables
Ty, -, T for all 1 <4 < n—1. Here, inductively we may assume that A/(z) has the

SLP. Hence the SLP of A follows from Lemma 3.1 and Theorem 2.7.

Example 3.5. With the same notation as Example 3.4, suppose s < r. Then A has the
SLP. In this case, taking the image z of z,, in A, it follows that (A, z) has only two central
simple modules U; and Us,
Ur 2 Klzy, - 2oa]/(f1, s Facas (@1 - 2001)°),
U2 = I{[xh e azn—l]/(?h e )-fn—Z) (1:1 e xn-l)r—s)v

where 7j is the image of f; in K[z, -+, Zn-1].
Proof. First we show that

(1) I:zk=(f, ..., fa1, 75 :zzfz 1257k) for all 0 < k < s,

) I:ak=(f1,..., faca, a9 s g Vioralls<k < (n—1)r+s,

(3) I:zk=Rforall k> (n—l)r+s
(1) is easy. So we give a proof of (2). Using the equation (3.1) we get the following
relation

(=)™l an + (=12 oy + (Z1) 7 fama -+ (<1220 fy = 2

Hence we have
(32) (=127 -2l + (=1) faor + (1)) famz + - 4 (- 1)22TI fy = gl
and

Iiay=(fi, s fa1s @ psy) = (frr0 s fam, 20707 2825 ).
Therefore, for all s < k < (n — 1)r + s, it follows that
Iizh=(I:28): 2k =(f1,..., faop,a(P"Vr—(k=9) o ceZh )

Also, (3) is easy. ‘
Next we calculate the central simple modules of (A4, z). From (1), (2) and (3), we have

(f1y-- s fam1,Zn) k=0,1,...,s—1,
(I 254 () = (fr,o oo oo 2i 25 _1,20) k=35,
(fi, - s fomgy@s 25 1 20) k=s+1,8+2,...,(n—1)r+s—1,
R k=n-1r+s,....
Here, noting the equality (3.2), it follows that
(frse oo famrs @y -2, 20) = (f1, - -, 2, T3 - Th_y, Tn).
Hence we have
(2) k=0,1,...,s-1,
0: 25+ ()=¢ @ F_1,2) k=s5+1,...,(n—1r+s—1,
A k=(n-1r+s,...,



where T; is the image of z; in A. Thus we obtain that
Ur=A/@ - Tnr,2) 2 Koy, ol /(F o faa (@100 20m1)%)

and _ _
Uy = (T3-Z5-1,2)/(2)

~ A/(2)

0:7---751) + (2)/(2)

R/I+ (zg) 2§ 254

K[Zli T ’x’n—l]/(-fla e 7771—2’ (xl e xn—l)r_s)'

IR

Il

O
Finally we would like to give one more example. But we omit the proof.

Example 3.6. Let py = 78 + 8 + - - - + z¢ be the power sum of degree d in the variables
Z1,%g, ..., Zn. Then A = R/(pa,Pa+1,---»>Patn—1) i & complete intersection and has the
SLP, for all positive integers a.
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Gorenstein property of a certain approximately
Gorenstein local ring

Hideto Sakurai

(Meiji University)

1 Introduction

This is a joint work with Thomas Marley and Mark W. Rogers.

It is well-known that a commutative Noetherian local ring (A, m) is Gorenstein if
and only if A is Cohen-Macaulay and some ideal generated by a system of parameters
(s.o.p.) is irreducible. Perhaps less widely known is a result of Northcott and
Rees which states that if every ideal generated by an s.o.p. (henceforth called a
parameter ideal) is irreducible then A is Cohen-Macaulay [NR, Theorem 1]. Thus, A
is Gorenstein if and only if every parameter ideal is irreducible. There are, however,
easy examples of non-Gorenstein rings possessing irreducible parameter ideals: (y)A
is irreducible in the local ring A = K[[z,y]]/(2?, zy), while (y")A is reducible for
all n > 2, where K is a field. In 1982, S. Goto showed that if there exists an s.o.p.
ai,...,aq for A such that (af,...,a}) is irreducible for all sufficiently large n then A
is Gorenstein |G, Proposition 3.4]. Rephrasing Goto’s result, if A is not Gorenstein
then for every s.0.p. ai,...,ay of A there exists an integer n (depending on the
s.0.p.) such that (af,...,a]) is reducible. In light of this, given a non-Gorenstein
local ring A it is natural to ask whether there exists a uniform exponent n such
that (af,...,a?) is reducible for all s.0.p.’s a1, ...,a4 of A. Our main result gives
an affirmative answer to this question.

Theorem 1.1. Let (A, m) be a Noetherian local ring, let M be a finitely generated
A-module of dimension d. Then there exists an integer ¢ such that M is Cohen-
Macaulay with Cohen-Macaulay type (M) = 1 if and only if some parameter ideal
Q for M contained in m® has the property that QM is irreducible.

Therefore when M = A we have the following.

Corollary 1.2. Let (A, m) be a Noetherian local ring. Then there ezists an integer
¢ such that A is Gorenstein if and only if some parameter ideal contained in m® s

irreducible.



Corollary 1.3. A local ring A is Gorenstein if and only if every power of the
mazimal ideal contains an irreducible parameter ideal.

A condition weaker than what is studied here was investigated by Hochster:
A is called approzimately Gorenstein if every power of m contains an irreducible
m-primary ideal. While approximately Gorenstein rings must have positive depth,
they need not be Cohen-Macaulay. In fact, every complete Noetherian domain is
approximately Gorenstein [Ho, Theorem 1.6].

2 Proof of Theorem 1.1.

Throughout let A be a Noetherian local ring with the maximal ideal m and M be a
finitely generated A-module with d = dim4 M.

Let aj,a9,- -+ ,a; € m be a system of parameters for M. We denote by a" the
sequence af, a3, -+ ,al. Let K,(a") be the Koszul complex of A generated by the
sequence a” and let

H*(a™; M) = H*(Hom4 (K. (a"), M))

be the Koszul cohomology module of M. Then for every p € Z the family {HP(a"; M)},>1
naturally forms an inductive system of A-modules, whose limit

HE(M) = lim HP(a™; M)

= n—00

is isomorphic to the local cohomology module
HE (M) = li*m Extf, (A/m", M).

For each n > 1 and p € Z let ¢}, : H?(a™; M) — li_)m HP(M) denote the canonical
g, o 8
homomorphism into the limit. With this notation we have the following.

Lemma 2.1 ([GSa2], Corollary 2.15). There ezists an integer ¢ > 0 such that for
all systems ay, as, -+ ,aq € m® of parameters for M and for all p € Z we have the
canonical homomorphism

@hy  HP(a; M) — HE(M) = lim HP(a"; M)

n—00

into the inductive limit is surjective on the socles, that is, the induced homomorphism
(wﬁ:}w)* : Soca(H?(a; M)) — Soca(HE(M))
is an epimorphism, where Soc4(x) denotes the socle Homa(A/m,*) = (0) :, m.

Now we define ¢(M) to be the least integer ¢ with this property.



Proof. Passing to A/ Anng M, where Anny M denote the annihilator of M in A, we
may assume that dim A = dim4 M. Then the assertion follows from [GSal, Lemma

(3.12)). . O
We need one more Lemma to prove Theorem 1.1.

Lemma 2.2 ([St], Corollary 5.2.5). Let ay,as, -+ ,a, € m (r > 0). Assume that
(aF*t, a3 arM iy ([T, ai)™ = (a1, 02, -+ ,a:.)M for every integer n > 0.

Then ay,ag, -+ ,ar 18 an M-regular sequence.

Proof. Take an integer 1 < ¢ < r and fix it. It is enough to show the following.

Claim 1. (a1, .ai-1)M :pr a; C (ai, -+ ,ai-1)M + (ai, -+, 0,)" M for every inte-
ger n > 0.

Proof of Claim 1. It is easy to show

(H a;)[(a1, -+ -aim1)M ipr as) € (a2, a2 )M C (a2, ,a2) M.

Hence we have
. 2 H
(al,--- .ai_l)M ‘M aig (al,‘-- , Q. a] 0,1, .. ,a,.)M

by our assumption. Now assume that n > 2 and our assertion holds true for n — 1.
Then
(a1, -@i-)M :pr 0; € (a1, -+ am1)M + (a3, - ,0,)" ' M.

Take an element z € (ay,- - .a;—1)M :u a; and write
[+ 5 d'-
T = E a;x; + E a; -
j=1 a€A

where A = {a = (&,...,0) |+ -+, =n—-1, o;,...,0, > 0} and 1,7, € M
(1<j<i-1, a €A). We want to show zo € (a1,...,0,)M (o € A). By the
above equation we have

Q.
T = E a;a:z; + E aagitt -+ a2 3.
a€A

On the other hand by the choice of z we can write

i—1
Gz =y 05y;
j=1



where y; € M (1 < j <i—1). Now take o € A and fix it. Then we have

-1
aj+1 aiy1 ;- Bi+1 ﬁ:+1 . ,B
Q;" Gy E : :7;) 2 : a;’ Gy "Zg.

Set b= (a;---ai_1)"a} Vgl 2 .. .qrmer. For 1 < j < — 1 we have

b(a;(y; — aiz;)) € e}t M.

Take o # 8 € A. Then there is an integer ¢+ < k < r such that fx > ax + 1, and

therefore we have
b(aﬂt+1 ﬁt+1 . afr:vﬂ) € a;:‘i’lM'

i a’1+1
Hence
(a1--0) "z = b(af et - 0l 2a)
i—1
i 1 ﬂi 2
= Zb(aj(yj—ai% > b(af el - afrap)
j aFPEA
€ (a"*l,... am™M
and therefore z, € (a7™,a3*!, -+, aM )M 1 (IT02; @)™ = (a1,02,- -+ ,a,)M by

our assumption. Then we have

x—ZaJx]+Za°“- a2 T4 € (a1, ,ai-1)M + (ai, -+ ,a,)"M

a€cA

and proof is complete. O
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let ¢ = ¢(M). It is enough to show that if there exists a
system of parameter ai, a, ..., a4 for M contained in m® such that (ay,...,as)M is
irreducible in M, then M is Cohen-Macaulay.

Thanks to Lemma 2.1 and our assumption, the canonical homomorphism

()OZZ}VI :Ha; M) — HZ(M) = lim H%a™; M)

n—00

into the inductive limit is surjective on the socles. Then we have
dima/m Soca(M/QM) = dim a/m Soc4(HE (M)) + dima/m Soc (Ker go )

where @ = (ai,...,aq). Since H%(M) is nonzero Artinian, it has a nonzero socle.
Since QM is irreducible in M, M/QM has a one-dimensional socle. Then we have
dim 4/m Soc4 (Ker ‘ng\l) = 0. Hence Ker <pi:}\,, = (0) since Ker cpg;}w is Artinian. Then
we have

n+l1 +1 n+1
(a' a‘g y Tt M -M Haz 0/1,(12, aad)M



for every integer n > 0 and therefore a;,as,...,aq is an M-regular sequence by
Lemma 2.2. Hence M is Cohen-Macaulay and r(M) = dim,m Soca(M/QM) =
1. O
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1 Introduction.

Let (A, m) be a Noetherian local ring and d = dim A. Let I(C A) be an ideal
of A. Assume that A is a homomorphic image of a Gorenstein local ring and
that the field A/m is infinite. In this paper we will discuss the Gorenstein
Rees algebra R(I) := @,,, I". First of all, we state the following result that
is concerned with the existence of Gorenstein Rees algebras of A.

Proposition 1.1. Assume that A has finite local cohomology modules. Then
there exists an ideal of A whose Rees algebra is Gorenstein if the ring A is
quasi- Gorenstein.

We say that the ring A has finite local cohomology modules when the ith
local cohomology module of A with respect to m is finitely generated for all
integers ¢ < d and that the ring A is quasi-Gorenstein when the canonical
module of A is a free A-module of rank 1. '

For the existence of Cohen-Macaulay Rees algebras, we fortunately have
Kawasaki’s theorem on an arithmetic Cohen-Macaulayfication. In this paper
we will show that a certain ideal of Kawasaki gives the Gorenstein Rees
algebra under the conditions in Proposition 1.1. It will be proved in the last
section 4 (see Theorem 4.1).

If an ideal @ is generated by a standard system of parameters, then the
Rees algebra R(Q*) is Cohen-Macaulay whenever k > d —1 and depth A > 0
(cf. [B2, GY, S1]). The following result whose proof will be given in the
section 3 is concerned with such an ideal Q.

Proposition 1.2. Let dim A > 2 and let k be an integer with k > d — 1.
Assume that A is a quasi-Gorenstein ring has finite local cohomology modules.
Let Q be an ideal generated by a standard system of parameters. Then the
following two conditions are equivalent if the ring A satisfies Serre’s condition

(Ss).



(1) R(QF) is a Gorenstein ring.
(2) A is a Gorenstein ring and k =d — 1.

Now we consider a question of when the ring A is Gorenstein in case so is
the Rees algebra R(J). In what follows let J be a minimal reduction of I. We
denote the reduction number of I with respect to J by r;(I). The analytic
spread of I is £(I) := dimA/m ®4 R(I). We put r = r;(I) and ¢ = £(I).
With this notation the third result of this paper can be stated as follows.

Theorem 1.3. Assume that R(I) is a Gorenstein ring and gradel > 2.
Then the following two conditions are equivalent.

(1) A is a Gorenstein ring.
(2) A satisfies Serre’s condition (S;) and r < £ — 2.

In general, if R(I) is a Cohen-Macaulay ring, then the inequality r < £—1
holds true. Therefore the result above means that if a non-Cohen-Macaulay
ring A satisfies Serre’s condition (S;), then R([/) is not a Gorenstein ring
unless r = ¢ — 1.

Our proof of the theorem above is based on a discussion of a -1nvar1ant
formulas. To state our result of a*-invariant formulas of the associated graded
ring G(I) = @501 t/I'*1, let us set up a further notation. Set G = G(I)
and M = mG + G,. We denote by Hi;(G) the ith graded local cohomol-
ogy module of G with respect to 9. Let [Hiy(G)]. be the homogeneous
component of the graded module Hi,(G) of degree n. We define that

a;(G) := max{n € Z | [Hi(G)]. # (0)} and a*(G) := max{a;(G) | i € Z},

and call them the ith a-invariant and the a*-invariant of G, respectively.
We denote agim4(G) simply by a(G). For each ideal L in A, let r(L) :=
min{rg(L) | K is a minimal reduction of L}. Let V(I) be a set of prime
ideals in A containing I. We put A(I) := {p € V(I) | A\(J;) = dim A4,} that
is a finite set. The following fourth result is a generalization of a theorem
due to [U].

Proposition 1.4. Assume that depth G(J,) > min{dim Ay, £} for all p €
V(I). For each p € V(I), let J(p) be a minimal reduction of I, and let
1,(I) :=150)(I;). Then the following equalities hold true.

a*(G) = max{r,(I) —£(1,) | p € A(I),dim A, < £} U {r — £}
= max{ry(I) - &(L) | p € V(I)}
= max{r(l,) —£(L,) | p € A(I),dim A, < £} U {r — £}
— max{x(l,) - £(1,) | p € V(I)}.
Moreover when the ring A 1s quasi-unmized, we have the equality

a*(@) = max{a(G), r - {}.



Notice that even though depth G(I;) > min{dim A,, £} for all p € V(J),
the equality a*(G) = max{r(J;) — £(I;) | p € A(J)} does not hold true in
general (see the example below). If the Rees algebra R(I) is Cohen-Macaulay
and if the base ring A satisfies Serre’s condition (S;), then the assumption
that depth G(I,) > min{dim A, £} for all p € V(I) always holds true.

We will prove Theorem 1.3 by using the proposition above in the next
section. We remark the condition that r < £ — 2 cannot be removed in
Theorem 1.3. There exists an example that the Rees algebra R(I) whose
base ring A satisfies Serre’s condition (S,) is Gorenstein but then A is not a
Gorenstein ring. Let us close this section with such a example as follows.

Example 1.5. Let k be a field of char(k) = 2 and let X1, X5, X3,Y1,Y2, Y3, Y,
be indeterminates over k. We consider the local ring A = k[[ X1, X2, X3, Y1, Ya,
Y3, Y4])/L where L is an ideal generated by elements X1Y1+X,Yo+X3Y3, Y Yo —
XYy, VYs — X1Ye, ViYs — XoY, Y2, Y2, Y2, Y2, V1Y, VoY,  YaYs. Let m de-
note the mazimal ideal of A. Then R(m) is Gorenstein, but A is not Cohen-
Macaulay, see [I]. Thus A is a non-Gorenstein ring satisfies Serre’s con-
dition (S2). Let z; denote a reduction of X;. Then we can find an ideal
I = (z9,73) : 21 of A such that R(I) is a Gorenstein ring (see Theorem
4.1). And then ¢(I) = gradel = 2. Moreover we have a*(G(I)) = —1 and
max{r(L,) - £(1,) | p € A(D)} = =2, so that a*(G(I)) # max{1(};) — €(I,)
pe A}

2 A note on *-invariant formulas.

The purpose of this section is to prove Theorem 1.3. We should discuss a*-
invariant formulas here. Let S = €,,,S; be a Noetherian graded algebra
over the local ring (Sy,n) with infinite residue field, generated by elements
of degree 1. Let S, := €P,,,S: and put 9 = nS + S,. For each graded
ideal N in S and for each graded S-module M, we denote the sth graded local
cohomology module of M with respect to N by Hi (M) and the homogeneous
component of the graded module Hi (S) of degree n by [Hiy (S)].. We define

a;(S) := max{n € Z | [H;(9)]» # (0)} and
a*(S) := max{a;(9S) | : € Z},

and call them respectively the ith a-invariant and the a*-invariant of S. Write
a(S) := agims(S). Let r(S) := min{r;(S;) | L is a minimal reduction of S
generated by elements of degree 1} and let £(S) := dimS/nS. We put
A(S) := {p € SpecSy | £(S,) = dimS,} that is a finite set. With this
notation, we can state the following result that is a generalization of a theo-
rem due to [U].

Proposition 2.1. For each p € Spec Sy, let Z(p) be a minimal reduction
of [Sp]+ generated by elements of degree 1 and let 1,(S) := 17¢,)([S;]+). Put



Z = Z(n). Assume that depth S, > min{dim Sy, £(S)} for all p € Spec Sy.

Then the following equalities hold true.

2(S) = max{s,(S) - €(S,) | p € A(S),dim S, < £(S)} U {z2(S,) — £(5)}
= max{r,(S) — £(S;) | p € Spec Sp}
= max{x(S,) — £(S,) | p € A(S),dim S, < £(S)} U {x2(5,) - (S))
= max{r(Sy) — £(S,) | p € Spec Sp}.

Moreover when the ring S is quasi-unmized, we have the equality
a'($) = max{a(S),rz(5+) — £(S)}.

To prove the proposition above, we begin by setting the following nota-
tion. For each 1 € Z, we put

a,(S) := max{n € Z | [Hy, (S)]. # (0},

which we call the ith a-invariant of S. The next lemma, which is an extension
of results given by [JK] and [U] will play a key role in a proof of Proposition
2.1.

(=}

Lemma 2.2. Assume that depth S, > min{dim Sy, £(S)} for all p € Spec S,.
Let j be an integer with j > a,(S). If [Hds’."if’ (Sp)]; = (0) for all p € Spec S,
then [HY(S)]; = (0) whenever a graded ideal N € V(S;) and i € Z with
i>£(S).

Proof. Fix an integer j > a,(S). Suppose that depth S, > min{dim Sy, £(S)}

and [H?Sl:]f’ (Sp)l; = (0) whenever p € Spec Sp. Then we have the following

Claim 2.3. j > gys,)(Sp) for all p € Spec Sp.

Proof of Claim 2.3. Let p € Spec Sy. We want to show [Hféf]"z(s,,)]J = (0).
Notice that £(S) > £(S,). When £(S) = £(S,), this is clear because local
cohomology commutes with localization. Let £(S) > £(S,). By [U], 1.3 (a),

it is enough to show that [Hsfgs';)_ L (89)]; = (0) for all q € Spec Sp with q C p.

When dim S; > #(S), this is clear because we have inequalities depth S; >

¢(S) and E(S) > £(Sy). Let dimS; < £(S). Then the ring S; is Cohen-
Macaulay, so that we may assume £(S,) = dim S;. We have [H?Slm]S "(Sp)); =

(0) for all p' € Spec S’o with p’ C q by our standard assumption and thus

obtain that [H‘:lsmf[“s Sy)l; = (0) from [U], 1.3 (b). So the proof of Claim
2.3 is completed. O

Now, we take any graded ideal N € V(S;) and i € Z with 1 > £(S). We
put Ny = NN S, and @ = p(Ny), which denote the number of generator of
the ideal Ny in S;. We will show that [H%(S)]; = (0) by induction on o



When a = 0, we have N = S, so that we may assume i = £(S). Then since
J > a,y(S), there is nothing to prove. Let o > 0 and assume that it holds
ture for o — 1. Then we may assume the ideal Ny is not nilpotent. Take
¢ € Ny such that ¢ ¢ \/—(0—) UnNp. We can find an ideal X of Sy such that
No = X +c¢Sp and pu(X) < a. Set L = XS+ S,. By [B1], 3.9, there exists
an exact sequence

— [HE'(So); = [Hy (S)]; = [HL(S)]; —

of graded S-modules. We have [H}(S)]; = (0) by the inductive hypothesis
on . We want to show that [H} 1(S )l; = (0). Take any p € Spec Sy with
¢ ¢ p. It suffices to prove that [H} 7./ (Sp)l; = (0). When i — 1 > £(S), since
u(Xp) < a, it is true by the hypothesis of induction on o (recall that Claim
2.3). We must show [H;;(S)_I(S,,)]j = (0). By [U], 1.3 (a), it is enough to prove
that [Hﬁ(SS)_FIS 1, (S9)]; = (0) for all q € Spec Sy with g C p. When dim S; >
£(S), there is nothing to prove because depth S, > £(S) by our standard

assumption. Let dimS; < £(S). Then the ring S; is Cohen-Macaulay, so
that we may assume £(S) — 1 = dim S;. We have [HF;m]s (Sp)]; = (0) for all
p' € Spec Sy with p’ C q by our standard assumption, so that the result of

[U], 1.3 (b) completes the proof of Lemma 2.2. O

Proof of Proposition 2.1. Lemma 2.2 implies an inequality

a"(5) < max{ays,)(Sy) | b € A(S)} U{a,(S)}.

Since local cohomology commutes with localization, we get an inequality
y(5)(Sp) < ays)(S) for all p € Spec Sp. By [T1], 3.2, a g5y (S) < 1(8) — £(S).
Therefore we obtain inequalities

max{aqs,)(Sy) | p € A} U{a,(5))
< max{x(S,) - £(S,) | p € A(S), dim 5, < £(S)} U{r(S4) — £(S)}
< max{r,(S) — £(S,) | p € A(S),dim S, < £(S)} U {rz(S;) — £(S)}.

In general, we have a*(S,) < a*(S) for all p € Spec Sy. By [T2], 2.2, r1,(S,) —
£(S) < a*(S) for all minimal reductions L of S, generated by elements of
degree 1. Therefore an inequality

max{1,(S) — £(S,) | p € A(S),dim S, < £(S)} U {rz(Sy) — £(S)} < a*(9)

holds true. These inequalities above imply the first and the third equalities
in the proposition. Since we have inequalities g, )(Sp) < 1(S,) — £(S,) <
1,(S) — £(S,) < a*(S,) < a*(9) for all p € Spec Sy, the second and the forth
equalities similarly follow from the first inequality in this proof.

Let us prove the last equality in the proposition. Take any p € Spec S,
with dim S, < £(S). Then the ring S, is Cohen-Macaulay by our standard



assumption and thus r,(S) — £(S,) < a(S;) by the a-invariant formula (see
[U]). Therefore we have

max{r,(5) — £(S,) | p € A(S),dim .S, < £(S)} U {rz(S;) — £(S)}
< max{a(S,) | p € A(S),dim S, < £(S)} U {rz(Sy) — £(S)}.

Since the ring S is quasi-unmixed, a(S,) < a(S) by [HHK], 2.3. Therefore

max{a(Sy) | p € A(S),dim S, < £(S)} U {rz(S4+) — £(S)}
< max{a(S),12(S4+) — £(S)}-

By [T2], 2.2, we have 1z(S;) — £(S) < a*(S), so that max{a(S),rz(S;) —
£(S)} < a*(S). These inequalities imply the last equality in the proposition.
. O

Now, let us prove Theorem 1.3 by applying Proposition 2.1. We will use
the last equality only. We note that in the case where S = G(I), an ideal
Z that is generated by the initial forms of generators for J is a minimal
reduction of S, such that 7 =1z(S,) and £ = £(S).

Proof of Theorem 1.3. We set S = G(I). Suppose that the ring A satisfies
Serre’s condition (S;) and 7 < £ — 2. Since the Rees algebra R(I) is Cohen-
Macaulay, S is quasi-unmixed (see, e.g., [HIO], 18.23 and 18.24). Take any
p € V(I). Since the ring R(I;) is Cohen-Macaulay, if ¢ < dim Ay, then
Hic(1,)+6(1,). (G(Ip)) & Hig, (Ap) by [TI] and thus depth G(I,) = depth A,.
Since A satisfles Serre’s condition (S;), we get depthA, > min{dim A, ¢}.
Therefore depthS, > min{dim Sy, ¢} because S, = G(I,) and dimS, =
dim A,. Then thanks to Proposition 2.1, we get a*(S) = max{a(S),r — £}.
We obtain that a(S) = —2 from R(I) is a Gorenstein ring (see [I]). And
we have r < £ — 2, so that a*(S) = —2 by our formula. If i < dim A, then
3;(S) = —1 or —oo by [TI] and thus we get a;(S) = —oo, as a*(S) = —2.
Therefore S is a Cohen-Macaulay ring, and then so is A. Since A is quasi-
Gorenstein by [I], we get A is Gorenstein. Conversely, when A is Gorenstein,
we have S is Gorenstein and a(S) = —2 by [I], so that r — £ < —2 (recall
that the a-invariant formula in [U]). O

3 Proof of Proposition 1.2.

The goal of this section is to prove Proposition 1.2. In what follows let
t be an indeterminate over A. We define R'(I) := A[lt,t7!] C Alt,t7Y),
which we call the extended Rees algebra. Then G(I) & R/(I)/t™'R'({) as
graded rings. By our standard assumption, the ring R'(I) is a homomorphic
image of a Gorenstein graded ring S = P, Si over a local ring Sp. We
may assume dim S = dim R'(J). Let K4, Kg(1), Kr/(1), and Kg(;y denote
the graded canonical modules of A, R(I), R'(I), and G(I), respectively. We



denote R/(I) simply by R'. Let M = ¢t"'R'+ mR'+ ItR'. Let Hiz( ) (: € Z)
denote the graded ith local cohomology functor of R’ with respect to 90t. We
put R = R(I), G = G(I), and a = a(G). We always assume that K, = 4
and dim A > 2. To begin with, we note

Lemma 3.1. Let k be an integer and let b = a(G(I*)). Assume that v/T = m.
Then (b+ 1)k =a+1 if Kgey = R'(I¥) (b + 1) as graded R'(I)-modules.

Proof. It is routine to check the inequality (b+ 1)k < a + 1 (cf., e.g., [GI],
Proof of 4.1). Since /I = m, we have the equality a(G(I*)) = [a(G(I))/k]
where [ ] denotes the smallest integral part. Hence (b+ 1)k >a+1. 0O

Lemma 3.2. Assume that the ring A satisfies Serre’s condition (S3) and
that the ring R is Cohen-Macaulay. Then Kg = K /t7'Kg/(—1) as graded
G-modules, and hence K¢ = G(a) if and only if Kp = R'(a + 1).

Proof. Look at the canonical exact sequence
0 RS R 5G-0 ()

of graded R'-modules. We apply the graded local cohomology functors
Hiy(*) (i € Z) to the exact sequences (f). Then we have the resulting exact
sequence

H& 1 (G) = Ho(R)(1) 5 HR(R)

of graded R'-modules. By [TI], Hi'(G) = HZ'(A). Since the quasi-
Gorenstein ring A satisfies Serre’s condition (S;), we get H%(4) = (0)

by [S2], and hence Hi;'(G) = (0). Thus we have an injection Hg,(R') LN
HE,(R'), so that H;(R') must be the zero module. Taking the S-dual of the
exact sequence () of graded R'-modules, we get the resulting exact sequence

0— Kp 25 Kp(—1) —» Kg — Exty(R, )

of graded R'-modules. Since H&,(R') = (0), Exty (R, S) = (0) by the local
duality theorem. Therefore Kg & Kp /t ' Kx/(1) as graded G-modules.

We will show the last assertion. Assume Kg = G(a) as graded G-
modules. Then Kg/ /t ' Kg/(—1) & G(a). Let {w;}icz stand for the canonical
I-filtration of A (see [GI], 1.1 and notice that the canonical filtration ex-
ists if the base ring A satisfies Serre’s condition (S;)). Then we have an
isomorphism ;5 _, wi—1/w; = G(a) as graded G-modules.

By induction on 4, we will see that w;_,_; = I* for all integers i > 1.
Since the equality w_,_; = A always holds, an isomorphism A/w_, = A/I
follows from the graded isomorphism above, and hence we get w_, = I. Let
i > 1 and assume w;_, = I*~1. We note that w;_,_; O I*. From the graded
isomorphism above we obtain that I*™!/I* &2 w;_,/w;_q—1 = I*"!Jw;_4_1, and
hence the natural surjective map I*~!/I* — I*"!/w;_,_, is bijective. Thus
we get wi_q—; = I* for all 7 > 1. This means that Kp = R'(a + 1) as graded
R’-modules. d



We now come to the proof of Proposition 1.2.

Proof of Proposition 1.2. Thanks to [O] 4.3, the implication (2) = (1) holds
true. Conversely, suppose R(Q*) is a Gorenstein ring. Then a(G(Q¥)) = —2
and Kggr) = G(Q*)(—2) as graded G-modules by [I]. From Lemma 3.2 we
obtain the isomorphism K (gr) & R/ (@%)(~1) as graded R'(Q*)-modules, so
that the equality (=2 + 1)k = a(G(Q)) + 1 holds true by Lemma 3.1. We
have a(G(Q)) = —d, and hence k =d — 1. :

Let {w;}icz stand for the canonical @-filtration of A (see [GI], 1.1 and
notice that the canonical filtration exists if the base ring A satisfies Serre’s
condition (S;)). We note that w; 2 Q*~%*! for all 4 € Z, as wy—, = A. Since
Kr(g) & Djczw: as graded R/(Q)-modules, Kg(qge-1) = P;czwid-1) 38
graded R'(Q%~1)-modules, so that {w;(a—1) }iez is the canonical Q*~'-filtration
of A. The uniqueness of the canonical filtration implies that equalities
witg—1) = (Q¥ 1) for all i € Z because Kp/(ga-1y) 2 R'(Q**)(—1) as graded
R/(Q%!)-modules. Therefore we get equalities w; = Q*~**" for all integers
i >> 0 because {w;}icz is a stable Q-filtration (cf. [GI], 2.2 (1)).

Look at the canonical homomorphisms

G(Q)(~d) b P wir/wi = Kri@/t Kr@(~1) = Keqg)

i1€Z

of graded G(Q)-modules, where f is induced by the inclusions Q4 C w;.
Then ker f is finitely graded, as w; = Qi~4*1 for all integers ¢ >> 0. Therefore
ker f = (0) because z;t is a G(Q)-regular element, and hence we get an em-
bedding G(Q)(—d) — Kg(g) of graded G(Q)-modules. Consider it’s homoge-
neous component of degree d that is an injection A/Q < [Kg(g)ls- We have
[Ke(gyla = Homa/q([H&(G(Q))] -4, Eaje(A/m)), and hence length,(A/Q) <
length , ((H&(G(Q))]-a). From [GY], 4.1, it follows that [Hg(G(Q))]-a =
A/M(Q) where M(Q) := X0, [(z1,- . - Zi-1, Tis1, - - - Ta) 14 Ti] +Q, and hence
length,(4/Q) < length,(A/M(Q)). But we have @ C M(Q), and then
the equality @ = M(Q) holds true. This implies that the ring A is Cohen-
Macaulay by [GY], 3.15. ' O

4 Certain Gorenstein Rees algebras.

In this section we consider the existence of an ideal I in A such that the
Rees algebra R(I) is Gorenstein. In what follows we always assume that
d = dim A > 3 and that A = K,, which is the canonical module of A. To
state our result, we set up some notation. Put a(A4) = II3=3(0) :x H5(A)
and NCM(A) = {p € SpecA | 4, is not a Cohen-Macaulay ring}. Then
NCM(A) = V(a(A)). Suppose that dimNCM(A) < 1. Then there is a
system of parameters 1,2y, ...,Zq of A such that z,%3...,24 € a(A). Set
J = (29, %3,...,T4). Taking enough large power of the element z;, we may



assume J : 73 = J : z2. Set ] = J : z;. Then the Rees algebra R(I*) is
Cohen-Macaulay for all integers k > d — 2 by [K2]. With this notation the
main result in this section can be stated as follows.

Theorem 4.1. Assume that dim NCM(A) < 1. Let k be an integer with
k > d— 2. Consider the following two conditions.

(1) R(I*) is a Gorenstein ring.
(2) dimNCM(A) <0 andk=d-2.

Then one has the implication (2) = (1). Furthermore if the ring A satisfies
Serre’s condition (S3), then the above two conditions are equivalent to each
other.

Proof. (2) = (1). R(I%?) is a Cohen-Macaulay ring by [K2]. Thus it is
enough to show that Kp(a-2y = R(J%?)(—1) as graded R(I%~2)-modules.
Put A = Assy G(I%7%). The ring G(I¢72%) is quasi-unmixed because so is
A (see [HIO], 18.24). And G(I%?) fulfills Serre’s condition (S;) because
the Rees algebra R(I¢°2) is Cohen-Macaulay and the ring A fulfills Serre’s
condition (Sz) (see [V], 3.53). So G(I4°?) is unmixed (i.e. all associated
prime ideals of G(I%~2) have same codimension), and hence A = {p € V(I) |
dim A, = £(I,)} by [M], 4.1 (recall that £(I) = £(I¢°?)). Since the ideal
J = (22,23, ...,2q) is a reduction of I by [K1], (3.2.1), we have £(I) =
Therefore m ¢ A because £(1,) < £(1).

Take any p € A. Since p # m, we have hty4p = d — 1, and hence
I, = (J : 11), = Jp. Therefore I, is a parameter ideal of the ring A,,
which is Gorenstein because K4 = A and dim NCM(A) < 0. Thus the rings
R(I#%) and G(I$~2) are Gorenstein, and then a(G(I#=2)) = —2 (cf. [0], 4.3).
By [HHK] we have the equality a(G(I‘i %)) = max{a(G(IF"?) | p € A}.
Therefore a(G(I%72%)) = —

Thanks to a theorem given by [TVZ], there exists an I¢~2-filtration {Ki}izo
of A such that Kg(ja-2) = €P,,5; kn and Kg(re-2) = ,,51 kn—1/Kn as graded
R(I%-?)-modules because R(I9~2) is a Cohen-Macaulay ring. By the equality
a(G(I%2)) = —2, we have ko/k; = [Kg(re-2]1 = (0) and hence 4 = kg = ;.
So it follows that (I972)i=1 C k; for all integers 4, which imply the natural
graded embedding

©: R(I‘H’)(—l) < Kpré-2)

and then we have cokery = B>, 77777 G 2)1 -. We want to show that cokerp =

(0). Take any p € A. It is enough to prove (I%"2)i"! = (x;), for all inte-
gers i > 2 because A = (J;5; Assq A/(I%?)". Since Kpe-2) = Dy (5n)y
and Kgja-2 = @y (kn-1)p/(kn)p as graded R(I}?)-modules, the filtra-

tion {(nz) }icz (where (k;), = A, for all integers ¢ < 0) is the canonical
I—2-filtration of A, (cf. [GI], Proof of 2.5). From G(I?-?) is a Gorenstein



ring with a(G(I;~?)) = —2, we obtain the required equality (x;), = (J¢~2)"~}
because the canonical I~2-filtration of A, is uniquely determined by [GI],
1.1. :
(1) = (2). Assume the ring A satisfies Serre’s condition (S;). Take any
p € Spec A with p # m. Then A, is a quasi-Gorenstein ring has finite local
cohomology modules. Recall that ht4] = d — 1. Let p € V(I). Then
ht4p = d — 1. Since R(Jf) is a Gorenstein ring, it follows that the ring A,
is Gorenstein and that k£ = d — 2 from Proposition 1.2. Let p ¢ V(I). Then
the Gorenstein ring R(IF) is isomorphic to the polynomial ring A,[t], and
therefore A, is a Gorenstein ring. Thus dim NCM(4) < 0. 0O
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Quasi-socle ideals in
Gorenstein numerical semi-group rings

Satoru Kimura

(Meiji University)
T OMEIFFAERZEORBURER L MAEZ S A L ORAMRICL 56D TT,

1 ([ZCHIC

M. ARAHRE [C ALFTIVET 3, BETICE->T, A 77V O%EA
REIBICTS, QERADATTIVTEQ C I T 3K, QH I DEiE (reduction)
THBLIF, BAEEr >0 LUERI = QI KR DIIDT L2 NS, & LIR
AD Noether B2 51X, I CQ THBEL QM I Dreduction THAEIFXFMETH 5,
AF T IV QM I D reduction DEF, r1g(I) = min{r € Z | ' = QI"} LEE, IDQ
B89 % reduction number &R, AT 7V IIKFH LT

G(I) — @ In/In+1

n>0
LEBE, ATTIVIOHERBIREFES, BAZEKRA 77 )V mZ2RDRARE L
Tz hF
F(I) = @Pr/mr

n>0
LEE, ] DFiber IREFER,
AWEOENL, ROBWERITT 3T Licdh b,

R%E 1.1. AZMKA T 7 )V m%ZEHD Cohen-Macaulay BFiERE L, Q C AEREED
ADERAFTVELT, [=Q:md (AL, ¢ > 1 W) LT3, O

(1) WD Q& I D reducticn IC/X5H ?

(2) &L QM I D reduction TH57%%5E, ZD reduction number EDH?



(3) WO mII =mIQ XKD ILDMN?
(4) WD G(I), F(I) i& Cohen-Macaulay IR TH % D ?

CTORWVIE, T TIRESHSNTVERDERZ—MRILTH L ZHNE LB D
TH%,

EH 1.2 ([CP], [CHV], [CPV], [G]). AZfAA 77 )L m %FD Cohen-Macaulay
RFFREL, QCAZ ADERATTNVELT, I=Q mkT 3, TORRDIE
HZRETH %,

1) I? # QI THh 3.
(2) Q =QHHEHiLD,

(3) AIXIERIRFIRT, pa(m/Q) < 1M DILD, BL, pa(x) ic &K O INEFKZD
£,

KHC, RFTIR A A Cohen-Macaulay TH 2 UM LIERITHEWET B L, FED ADE
RATTIVQICKH LT I?=QI B iIbH, £oTG(I) & F(I) i3 Cohen-Macaulay
RTH%, BL,I=Q:m&T 3,

e, ROBEDHREH 5,

EIE 1.3 ([GMT]). AZIAKA 77 )V m ZHED Gorenstein BFTE Tl (4) >3 &7
Bo L, Q(A) IKEoTHADMICHT 3 EMERET, QC A% ADERAF
TIWELT, I=Q:m? B, TORIDKILT %,

(1) m?I =m?Q DK DILD,

(2) I*=QI? B DD,

(3) G(I) i& Cohen-Macaulay TR TH %,
(4) F(I) IZ Cohen-Macaulay IR T %,

LML, IR A D Gorenstein T\ & Z XA IEEICRETH B,

AFTIE, IR A 5 numerical semi-group ring DEFICFEE LIS EZBN LIz, F
DERRIZ, EE 13ICTERICEENTV S S, ULH LFENIELITELY, semi-group
DEETIIAEZEZ TWVW3, £z, B AM Gorenstein TRV & X DT OREE X 1ICE
frn 7w,



T TT, AROBRICNTEL, B2EIZ2DDENEMD, F1EHTIE, Q : m?
IKDWTEZ %, FFICIR A D Gorenstein D& XL F 5 TRWVWEZDEWEESL MIC
T3, B28iTldq=3&LIBAIIIRAD Gorenstein TH-> THLEIEIEH LT
LR Y, BEIETIX, IR A% hypersurface & L7ZIBAIC, B 1.1ICDVWTERT
Bo LUT, A-DBEM IS LT LML T M DANMBELELTOEERRTC &
L9 %,

2 numerical semi-group ring F COEHE
2.1 I=Q:m*DBs

FE2ERBLTC, UTORLBEAVS, (>08BHETS, 0<a1<ay < - <ay
% ng(a'l)O'?: e )aﬂ) =1 &%gﬁ%ﬂyo

14
H=<01,G2,"‘ ,ae> = {ZC:LG/ZIOSC«,EZ}
i=1

(‘_’.E%, a3, a2, ,0y Ti}ﬁéh%ﬁﬁﬁsz\o gcd(al,ag,--‘ ,ag) =1 &@T,
c=c(H)=min{c€ Z | BHnIIHLT,n>chbidn e H}

NEE%, TN7Z HIZEIF S conductor EFELR, T T T, k21K, k[[t]] (t13 k EDOFR
TETT) ZERBIRE L,

A= k[[H]] = K[t 2% -, t%]] C K[[t]]

CELE, Aldm = (19,192, 1%) ZHE— DKL T 7 IVICE D 1 KITD Cohen-
Macaulay RFTIR TH %, £z, mICBIF2EEE L (A4) 130 EFLLY,

B H HYsymmetric TH 5 L, FREOBEHnICOWVWT,ne HE (c-1)-n¢ H
DEETH BT LEE D, ] A = k[[H]] D Gorenstein I DV TITRDEEMN &
Mo5nT»a,

Fact 2.1. 8t H /' symmetric THZFE &, A D Gorenstein RFfIRTH 3 FIIEHE
Ths,

HEE H b symmetric THBEIE, ROWEAICL > THIEEI NS,

i 22. 0a=0, >389 %, Bla>aT, TEDEHI<n<allNMLTne H
ta-n¢g HOWEHELZRLDWEET S LTS, CORF, a=c—1TH%3,



SEFR. AEDEH 1 <m<a<aZHNEm ¢ HEDT,IREELD a—m € H TH %,
->T,a-1,a-2, -+ ,a—(a—1) e HTHY, &>Ta+(a—1),a+(a—2), -+ ,a+l €
HTH%. —AT, fENSba=0a-0¢ HTHBDT,a+ae HZREEZRL,
CCTC,a—a+1e HICEHT %, a—a+1=ag+r(BL,¢>0,0<r<ald
BY) LRI, COLEi=min{n|an+rec H} LB, £BAA0<i1<q¢ThH
5, 6Li> 045 iOB/IMENS ali—1)+7r ¢ HTH%, £iz,a>1&0,
0<a(i-1)+r<ag+r=a—-a+1<aTHBH05,a—(a(i—1)+r)e H LD,
ata=(a—(a(i—1)+7))+(ai+7) € HHDMNB, R, i=0FB&reHLk
B, LML, Sa>rTHaN5,r=087%%%, >T,a=ag+(a—1)ThHhH,q>1
Noh%, a—1=ag+(a-2),a-2=ag+(a—3),---,a—(a—1)=ag € H TH»>
e, a>3IKERETSLag+1€ HTHB, TTT,j=min{n|an+1€ H} L&
o jOBRNMEDND, a(j—1)+1¢ HTHB, £7/2,0<a(j—-1)+1<ag+(a—1)=«a
TH5h5,a—(a(j—1)+1)=a(g—(j—-1))+a—2€ H&7xY,a+a=ag+2a—-1=
(aj+1)+(alg—(j—1)+a—2) € H x5, O

T, EFEDT0<se HZERD, Q=) LBEZ, I=Q - m? L LTRE1.1IcD
WTEZ%, ROFEIZ, WDOICQ, DFH QMIDreduction E/xBHEWVS R
WL T 2EZATH 5,

R 2.3. IHAELL,
(1) FEOEE > clcH LT, " em® KDDL T B, TOBFICQTH5,

(2) Al Gorenstein AFFIRE T %, TDHfa; >3 THEEL, FEDOEH n > clC
FUT, t" e m® BRDILDENEETH 3,

¥ A D Gorenstein BFIERT, 0, >3 83521 CQ Thb,

BEER. () I = (t"e At eI, n> s BEREERBV. BN T IIBEXTE
KENTWVAREICFELTE, tt" € IBEL, n € H) ZE%, 3L n < sk
Sic—14+(s—n) > cTHBDT, REKD t-Hem) ¢ m2 i3, o7,
prrel —gnge1t6-n) c Q LD, c— 1€ HEH>TLESDTFETH %,

(2) HiZar, a0, -, a i o> THUNTERENTWVS LIREL TX. 2 TOEH
n>cllUTt" e m? B DILDOKE, a1 >3 THBFIIEATH %, a1 >3 LT 5,
Ko U>2THAEILEET S, H2BEn>cT,t"¢m? THhBE3Tb0N
FHEITBELIRET S, 58, H3BH1<i<I{T,n=q £LXE?,

K ={ci01 +ca+ -+ cic18i1 + Ciy10i41 + -+ coap | 0 < ¢ € Z}



LB, HMay, a9, ,a i X THUNCERETNTNE T D Da; ¢ K Thd, X
T, ged(ay, ag, -, 81,8511, ,a0) = LERE 90 BHI1 <m <o ZENUL, n>c
EDn+me HTH5B, >T,n+m=o0qa;+agag+-+ogay (1,0, ,ap >
0) eFkE%, &L, > 045, m=n+m—-a € HTH%, LHLINI,
1<m<a&hPm¢HTHIEIRTS, >, =0&%HD, n4+meK
LB, TOEND, a > 3 THIZEREFETSE, n+1,n+2€ K LiX3DT,
ged(ay, ag, -, Gi1, Gigr, -, 00) = 1 755, RICHERE 2.2 21> T, K D conductor
Nel—HIBEERE) FEICEH1I<j<c-12ZWM%, je KCHLT
%, H3symmetrick VD, (c~-1)-j¢ HTHB05,(c-1)-j¢ KTHB, &
K(e-1)—j¢ KDOB, &L (c—-1)—-je HEDWE, c-1)-j<n=a&D,
(c—1)—jEK LTV FE, #>T,(c-1)-j¢ HTHBN5,jc HTHY, EH
Kj<c—l<n=a;&V,j€e K tix3, >, iR 2205 K D conductor & ¢
—ET 3, o, n>cTH3hMbn=q € K %3N, ThIFHE, ]

ARBOTHERIIRDED ThH %,
EIE 2.4. BB A X Gorenstein £ L, a; >33 %, TORERMBKIIT 5,
(1) m?] = m2Q T3,

2 PNQ =QIL B = QI NMDILD, [>T, ro(I) < 2THH, G(I) i&
Cohen-Macaulay IR TH %,

(3) 2TDEH 2> LI LT, mI" =mQI" BHILT %o - T, F(I) 1& Cohen-
Macaulay IRCTdH %,

SEEA. BASMT ttel € [Q - m]\ Q TH D, 5 Ald Gorenstein WATERTH 5 DT,
Q:m=Q+ ) ThHb, £/2a; >3THBDT, HE23LDICQ TH%,
DT ehD, I=(t"cAltnel, n>s) THEEDES,

(1) T RBEERTERINTVWBDT, t"e I, t%t% em? (1 <14,j < LIIKHLT,
et € m2Q ZEA BTN TH %, St4t"eml CQ -m=Q+ () TH 5
DT, t%t" € QhEfFt%t" € (57 ) Ths., bL,t%t" e Q%H, HBue H
T, t%t" = t5t* LR B, o T, ai+n=5+uTH3, £, n—s>0&D
u=a;+Mn—3)>0THBEDT, t* € mThHhb, Lo Tt5t%t" = t°1*1% € Qm?
MR D ILD, R, t%t" € (5t ) &5, HBu € H T, t5t" = ¥l L RE
Bo 5T, a5 +u+(c—1) > cTHBEND, tvT D e m2 THD, XoT
eitaign = gaitute-Dps € m2Q THB, &Ko T, FRm? = m?Q BV LD,



2) ¥, °NQ = QI BRT, £F, m2] = mQ THBT kb, LEDEL
n 2> 1IENLUTERmM] = m"Q AWV ILDT LICHEET %, 7Tz € 12N Q 2
%o Mo T, HByec AT,z =tybRE3, CCTT, FEDa e mICHLT,
oz € m*I? = m?Q? TH 53, H>oT,ay € Q TH 5B, WZIL, z € QI THBDT,
I’NQ=QI THBENME-T, RIT, IP = QI*%ZIRT, I’NQ = QI THo7=D
T, IPZQELTBY, 2T, QCQ+I’CQ:-m=Q+ (st Y TH B, 5,
A1X Gorenstein RFIIRED T UL ([Q : m)/Q) =1 THBN, Q#Q+ 12 THBDT
L(IP+Q)/Q) =12Q+P=Q:m=Q+ (t ) bbb, )NQ=QIT
BBDT, 1= L% +Q)/Q) = LaI*/QI) THY, t°+-1 € I2 BH DD, o T,
P =QI+ (7 1) L5BDT, IP = QI* + (") 2755, 65T, Its+e1 C QI?
ZTREIERV, Tt € IZW B, n>s L LTREV, TT T, h=n+s+c—1-2s=
(n—s)+c—1,L9%, EBAAAL>cTHBDThe HTH5B, the I BTZ5,
ERICTTa e m? ZEB, §5&, at"t*t ! e m’P = m?>Q? THBDT, ath € Q T
HB, RoTthelblsd, BRIt =tth € QAT C QIt 753, £oT
P=QI*Th%, >T, FEDEHnICHLT, I NQ = QI"HBEHIIDON S,
G(I) i& Cohen-Macaulay TR T %,

(3) I* = QI2 DT, mI? = mQI BRVETDTH B, 2 ¢ Q L LTEN, o
TP =QI+ (") Ths, I, mI*> =mQI +m(t+ ) THBDT, mtc! Cml
ZREREBRV. 5, 7 e PRDT,s4+¢c—-1>2sThHD, XoTe > shbh
Bo TTC, mtl Cm’ 2P =m?Q? kD, m* ! CQTH5B, Mo, mt 1 CQ:
m=Q+ (1) TH B, 7Lt%tlemt ! CQ+ () 1<i<P) W3, &L
it € QLI HBue HT, tht =5t LREB, Mo, ai+c—1=s+u
TH%, TTTHLu=0%5,s=a+c—1>ctBAOFETHB, toT,
u>0THBIENEY, t5t! =t e mQ Cml &ixB, K, thtc! g (¢t 1) Ix
5, (Fre ) CIPCml &0, %t e mI B IID. U EXD, mts=! C mI AR
TNl O

R, TR A D Gorenstein [FFFIR T/HVEHIIZEE 24 DO STz k0K S w2
F%, ZDX 5763 [GMT] T EZSENTWVB D, FnEIZFIOFIEBNT 3,

Bl 2.5. A = k[[t5,15,t1%]] £ 9B, T DR, A Gorenstein RFFER TV, HEDTT
0<s€H:=(5613)IKHLTQ=©)LEBZ,I=Q :m?>LT3LRIHENDS
ns,

(1) ICQTH3,

(2) M =m?’Q < 5=6,13 TH 5,



(3) G(I) A Cohen-Macaulay IR <= s = 6,13 TdhH %,
(4) F(I) 5 Cohen-Macaulay IR < s = 6,13 Tdh %,

(5) 1o(I) = 4 <> s £ 6,13 TH 5,

2.2 I=Q:mIDIFE

AFOBENE, 72 & ZFBHR A D Gorenstein TH o7z LTH, Biig> 31cxfL
TR I=Q m!ZfHTATLRIWLNENVSI T ERTILILH D, ARETIIE
WK qg=3DHREDHEZEZS, £F, ROFIF mIT = m9Q M—MZICIZEL D L7720
TERRLTWVS,

Bl 2.6. A=FK[[t7,¢0,¢18,¢22]) £ 9B, TDEE IR AL Gorenstein FFIRTH %, £
HDL0<s€e H:=(7,10,18,22) ICHLTQ=(t*) LBZ, I=Q:m} LT 3L
DL DS NB,

(1) IC QDD

2) 1) < 3 TH 3.

(3) m*I = m?Q <= s =7 TH 5,

(4) G(I) A Cohen-Macaulay IR <= s = 7,14,21,22,29 TH %,

FNTR, VWOm I =m3Q BV IUDHOZEEZ, BONKERVIRDEDTH B,
IR 2.7, YBR A 1S Gorenstein BATELE L, R0 2 RHZRET 5.

(i) EEDOEHn > it L Tt" e mIBKDIID,

(i) ne HICHLT, t"¢mi! Zbldn<a(¢g—1) TH3,
5L, RBVELV,

1) ICQTH%,

(2) mII =miQ TH%,

(3) s> &b, HEXI?=QIMKDILD, > T, G(I) I& Cohen-Macaulay IR T
H5,



SEBR. (1) ##RE 2.3 (1) LERICRE NS,

(2) EEICEBEL < iy,ip,-,1, <L &, FRDTL" € [ 2L B, u = a; +a;, +
cota, EBL. TRE M emTIICQ im=Q+ (1) THBIH D, tU" € Q
THEHEI, t“" € (1)) Th B, t“t" € Q DB, HB7Th € H T, t“™ = t5¢h
EEIIS, o T, h=u+(n—3s)>a(g—1) X0, RKEG) S themi~ 1 TH3B
Mo, 4" e mITIQ TH B, &oT, t%t™" € mIQ WA DILD, JUT, t4™ € (t+e)
DR, HBTCh € HT, 4 =5t 1th LEIFZDT, (ag+h) +c— 1> cliciEET 3
EARGE (1) D5 taathtel e mI TH B, Ko T, thathth = tloathitelps e maQ i
%5, UEXD, miI =mIQ HRE iz,

B)miI =miQ £V, I’NQ = QI HEH 2.4(2) L AN D ENB, TLtH™ € I?
ZEBE, nm>s>cThb, oT,n+m—s=n+(m-35)>cTH3Hh5,
n+m—s€HERED tMmeQlixd, o7, 2 C QIHRENELS, I’ =QI
TH5, O

INETORITIE, 2T mII = mQ & 51X G(I) 1& Cohen-Macaulay B & 725 T\
Feo LidL, CAUR—HBNC AR D Y70, AEIOBHIC mi] = mIQ T % 5 G(I)
7 Cohen-Macaulay IRICIZ7R 572 WWl%Z ¢ = 3 DIFFICEIT 3,

B 2.8. A =EK[[¢!0,113,¢26 417 ¢19)) 9B, T DR A IE Gorenstein RFFIRTH - T,
TEHR 2.7 DFMF (1)(11) ZHTzd. EEDIL0 < s € H = (10,13,16,17,19) I LT
Q=) BE, I=Q m LT BLEHE2TICLD m] = m3Q TH3, LHL,
s = 16 DRFICFE D G(I) I& Cohen-Macaulay BRTH% <, TDFfro(l) =5 TH 3,

3 hypersurface F COHE

ARETIX, H 5P hypersurface ZER D _EIF, ZOTWICOWTRIE 1.1 2£E X 3,
UTF,a>128HE LT, H=(a,a+1) :={ca+c(a+1)]|0<c,c, €Z} B
&, TDcoductorZc &5, TDELE, c=ala—1) ThHb, k[t]] 2k _LDEMR
BEL L, A= k[H) = ke, ] C K[]] LT 3. ERICTTO < s € HERST
Q=) LBE I=Q:m/(EL, ¢ > 0B LT3, RIICRDOHERTT,

R 3.1. RHELVY,
(1) EEOEEL>0IIHLT,
ml= (" 0<i<l i€Z)=(t"|n€H n>al)

B D LD,



(2) BHO0<qi<a—-1ICHLT,ag+i € HTHRELi<qTHIEIRAMET
b5,

SERR. (1) EEICEH L > 02D, RO < i < LWL T,al+i=a(l-
)+ (a+1)ie HTHBNE, mt = (1o, o) = (144 | 0<i< L i€ Z) L5 Do R
WK,ml=@t"|ne H,n>al) RS, Ttn € HTn > al’32LD%EED, n=ag+r
(>20,0<r<a)bEL, T5L,9>(THIENRD, —A, H5EHa >0,
B>0T,n=aa+(a+1)3, £E IS, #>T,6=r mod aZZDT, HE2EBHm T
B=am+r LEIFZ, T5L,m>0LE2BLMB, LS n=qala+f+m)+r
LEBDT,g=a+f+m=a+(a+1l)m+r>rTHs, £o7T,

t" e (t"("‘+ﬁ+m)+i |0<i<(a+B+m),i€Z)=mFm =mICmt

Lix5,

(2) aqg+i € HZRET %, T, H2EH e >0,5> 0T, ag+i=aa+(a+1)8 L
Zi35h5,8=i mod a TH%, K> T, H3BHmTh=am+i LEIFIT,m>0
ThHHENRD, BT, ag+i = a(a+f+m)+i KD, ¢ = a+f+m = a+(a+1)m+i > ¢
THb, W, i< qZRETHL,ag+i=alg—1)+(a+1)i€ H TH 5, a

ROFEHNAEDRLIEZDERTDHD, QA I D reduction £75% T & ZFEITIF
5LDTH%,

EH 3.2. RD3IFMEHEWVICRETH %,
1) ICQTH%,
2) R mII = mIQ HHELD 11D,
(3) ¢<aTH%Bo

ERR. (1) = Q) IRELDI=(t"eA|trel, n>s) Thb, JLt" € I, t9" € m?
KR LT, tu%in e QL D,ag+i+(n—s) € HTHB, iz, ag+i+(n—s) > ag
XD, #HRE 3.1 (1) h 5 teatitln=s) ¢ ma Lz b, t9+" € mIQ DR DI D, M- T,
mi] =miQ TdH 5,

(2) = (1) determinantal trick Ik %,

B)=1)I=@tcA|trel n>s) ZrEEEV, Tt" € I W3, &
Ln<sibid,c—1+(s—n) >ct’%3DT,c—1+(s—n) € HTHY,
te-1+(s—n) — pa(a—1)+((s—n)-1) ¢ o-1 CmiI ki3, ?I)»E‘DT, pste=1 — gnye-1+(s—n) ¢ Q
LD, c—1eHERES>TLESDTFETH %,



(1) =>@B)¢g>2atTB, §5>aThd, bls—-acHiEXH, n>a%k?
FEDTTn e HIELMLT, (n+s—a)—-s=n—-a>ag—a>a*—a=c&b,
(n+s—a)—s € HTH D, t"t5¢ = tnts=a)=sps c QTH B, W T, 5 °€ICQ L
B, LAMLs—a<s&kD, TNEIFETHS, £&oT,s—a¢ HTH%, TTT,
s=al+r (£>0,0<r<a)bELL, 8BAAL>0THYD, s—a=a(l-1)+r¢ H
THb, —H,s—a¢ HED, s—a<c=ala-1)THBh15,f-1<a-2<a-1
D, 31 (2 &K, r>L-1¢BBDT,r>0,k3, £, 0<a-1,
s=al+r € HE-/DT, #E 31 2) k0, r <L&&23h5, r=08%%
ENRED, s = (a+ 1) %%, TTT,n> aqxBEEDTn € HITHLT,
al+n—-—s>al+g)—(a+1) =ag-L>a’~(a—1)=c+1THBDT,
al+n—s€ HTHD, tM¥ =tbtnr—sps c QLB 5, t% eI CQ &b, o
T,al>s=(a+ 1)l 2205, (=0&%D, THIFL>0ICKRT 3, a

UTF, g<aZIRET %,

8 3.3. s > ag A HIFEHFENXI? = QI HBRILT %, #>T, G() iX Cohen-Macaulay
BTH5,

FEER. ¢ <a DB, Ml =mIQ THZDT, I’NQ=QI L/x%, CTTT,tt"el®
M5E,n>5>aqg THBDT,t"emI ThHB, IS, I CmI THBEIRS, o
TPCmil=mIQCQ&Edh5, I?=QI TH3, O

ZTT,E0lKs<agZRET B, UF,s=al+7r (£>0,0<r<a) ELL,
1<{<q<a—-1THO, #E31(2) &kDr<lTH%, CTT,p=(a—1-¢)+L =
(a=1)+(l-q) &BLEL,1<l<p<a-1THY,0<r<p—-L+r<pThH5,
INEDESDTTEA T 7 IV I DEZRET HENRDEDTH %,

Rl 3.4. IHIE LV,
(1) K

I = Q+mP 4+ (¢ |p—L+r<i<p, i€Z)
= Q+m 4+ (P | r <i<p, i €Z)

AR D 1D,
@) r=0%5E1=Q+m Th5,



FEEA. (1) m? = (¢4 | 0 < i< g, i € Z) THo%DT, 5tn € HIKDWVT,
t" e ITHEEL, TEDOEH0<i < qlitDWVTag+i+(n—s)-€c HTH3
ERFETHS, >T,n>alp+1) &%%BTn € HIZDWT, n—s+ag >
alp+1)—s+ag=c+(a—71)>cEDT,t"e I &ixb, Tz, B r <i<plDV
Cni=apti=c—aqg+s—r+i>c—ag+s&bD,aqg+(n-5)>cHDT,t"eclk
%0 Mo T, I D2Q+mPH 4+ (1% | r <i<p i€Z):=KTdHb3, BDEASHERE
Yo ERICTT € IZBID, n=aq+7(p1 >0,0< 7 <a) LEL, n>ap+r DB,
Q>2pTHBEN, bLq=piS,r<rn<aTH?, £l7,1<q1=p<a-1Tdh>
DT, ME3L(2) &0, n<q=plidhb,t"e (P |r<i<picZ)CK
Thd, bl >phEb,n=an+mn>an >2ap+1) &0, " emP! CKT
HBo R, n<ap+r D, 1" € QZRTI 0<n—s<ap+r—s5=alp-1Y)
£D,0<l<pTHB, TTT,n—s=ag+7(g>20,0< 1 <a)bEL,
0Laga+ra=n—-s<ap+r—-s=ap-£0) &b, 0<p—-Ll—q=a-1-¢q—q¢ T
5505, q+qp<a—-1TH5%,

Claim 3.5. r, < ¢ Th 5,

SERH. B L, rptq < a-17251F, 51" € I XD, a(g+g)+(ra+q) = ag+g+(n—s) € H
THo7eDT,0< g+go < a—1ICERT D&, #WifE3.1 (2) D5, ro4q < g+qp 755D
5,10 <o &75%e RIT, ra+q>a—1DRZEEZ S, i=a-1-1, LB E,0<i<q
THY, St eI THBN5,a(g+q)+(@—1)=a(g+q)+((a—1=1r)+7r) =
alg+q)+(r2+14) =ag+i+(n—s) € HThb, >7T, #E 3.1 (2 &b,
a-1<qg+@<a-1,R0FETHZ, o T, nn+q<a—-18, < TH
%o O

o T, fiE31 (2) kD n—-se HERBDT, t"eQbixb, Ub&D, ICK
LBBDT, I=KThd, RREIC, BHr <i<p—L+r<pikDVT,ap+i=
s+alp—O+(i—7)THY, HE3102) &V, alp-0)+(i—-r)e HTHBHDH,
P e Q THB, MoT,Q+mPH + (194 |p—L+r<i<p icZ)=KTh?
RSN,

(2) (1) & 48RE 3.1 (1) Icfk B, O

$36.g=a-10D,%E r=0, £7251XG(I) i& Cohen-Macaulay B8 TH 5,

FEER. r=089%L,QCm &D, I=Q+ml=mt L5, EoT, MAE31(1) &
D, ETOBHKnITONTI™INQ = QI" B D IIDDT, G(I) I& Cohen-Macaulay
RTH5,



LT, r=L&F %,

I = Q+mi?
(o DE galt+1) qalthDH1 L ga(t+1)+(E-D) ga(t4D)+e ylatD)(ErD))
= Q4 (oD gl L et +H(E-))

0, FEICEH > 1 2B L, IM = QM+ (1D + | 0 <4 < (0—1)(n+1))
TH%,
Claim 3.7. I™*! = QI™ + (¢4 1 0 <4 <0 — 1) TH B,

BB, AEOBHIL<i<(U-Dh+D)ICHLT,0<i—L<({-1)(n+1)—{L=
nl—1)-1<n(l-1)&D,i—l+1<n(l-1)THb, (al+1)(n+1)+1)—s=
a((€+1)(n+1)—i)+(a+1)(i—€) € HTHY, a(l+1)(n+1)+i)—s = a(f+1)n+(i—€+1)
THBENH, teEDn)+)-s ¢ [n Lirz, it T, s+ e QI THB, O

FEICERO0 < i <L-1ZED,u=a(l+1)(n+1)+i £ T3, X7, ((+1)(n+1)—i >
a+1DEEEEZ B, 5, i+a>LED, (i+a)—jL > 0, (i+a)—(j+1)¢ < 0 &K1z T EE
J > 0DEET %o £oTC, u—js = a((¢+1)(n+1)—(i+a+1))+(a+1)((i+a)—jt) € H
THY, ((€+1)(n+1)—(i+a+1))+((i+a)—jl) = nl+L—jl+n > nl+L—jl+n+(1—
7) = (n+1—-7)(£+1) TH B, I, j < n+17&5IE, tv7* € m(+D=DE+D) ¢ Jr+1)-
THBEHH, tr € PIMNT CQI"THB, j>n+1%56E t* € QP C QI"TH
50 KT, (n+1)(l+1)—i<a+1DB, u—s={l+1)(n+1)+i—(al +0) <
(i+a+1)+i—(al+0)<(f-1+a+1)+L—-1—(al+{)=(a—1)(1-€) <O0fE>
T,u=shERF, u-5<0THb, u=skbiXi=0THD, Fllt=1L%5D
T,s=a+1TH%, LHL,n>1IcFEETR L, M =ttemlCm? LixbhF
ETHb, o T, u—s<0THBND5,u—s¢ HLEXEBDT,t*¢Q L7x%, L
IS, FEOBEBAIICHLT, I NQ = QI" KD I DENRENZDT, G(I)
& Cohen-Macaulay R CTH %, O

ARRDRZIC, —fRICIE G(I) A Cohen-Macaulay IR & 752 LIRS\ T LIl
Nz, B, ROEEDHKD LD,

I 38.0>2,a>l+3LT3, TOK, r=0-1,9g=a-1TH3%5IE, G(I)
I& Cohen-Macaulay JR T/x\ Y,

SEBE. AEE34D (1) &b,



I = Q+m£+l+(ta£+l)
(t“”_l, ta(t’+1)’ ta(ﬂ+1)+1’ - ta(£+1)+€+l, tal+£)

— (ta£+€—1 ta£+£ ta£+a t(a£+a)+1 . t(al+a)+(l+1))

THb. g =al+l—10p =al+Llaz=al+a0a = (al+a)+1, - 0, =
(al+a)+(L+1) (HU, n=£+4) LB 3BBA, 0< oy <y <oy <ag<---<ay
TH5,

Claim 3.9. (t¢9)*t e [*tNQ =Th b, (14t ¢ QI Th %,

SEEH. £ > 2, a > L+ 3ICEETRE, (l+0@—-0) —-5s)—c= (£— 1) -
(@ —1)a-P—t+1>0THEDT, (al+0a—8—s € HTHb, o7,
(tat+e)a—£ c Ia—!mQ-F&%o Z (-:-(\s, (ta£+£)a—l c QI(a—l)—l Ld3 &’ t(a€+l)(a—£)—s €
Jo-t-1 — (tmﬂxtazﬂz...tanﬁn |031317132’... ,Bn €L, ﬂ1+,32+--‘+ﬂn=a—f—l)
IEBDT, i+ Pt +Pn=a—L—1LEDBH0L 61,6, 6 &, BB
TThe HT(d+a—-0) —s=afit b+ - +afBy +h &EF B, o
T,u=(@l+0a-0—-s=a¥—al’ - —0+12>>" fi THB, =7,
oa—€-1) = (@+f—-1a—-¢-1)=ad4—-al’ - —a+1<uTHY,
O<a—-fl<atfLu—aa—£€—-1)=a—-LC¢ HTHBH"H5,p <a-€-1T
BB, HoT, HBAEHM1<i<nT 21TH%, Ko, u> Y 6 =
(i @iBi) + 0l > Tiyjonfs) + il = (Lo anfy) + (@i —on)fi = aa(a—£—1) +
(i —0)Bi > ar(a—£L—1)+ (o — o) 2755, 1=2TH%, KK, 123275,
u > og(a—f—1)+(a—0ay) > a¥l—al?—?—a+1+(az—a1) = a®l—all—L—L+2 = u+1
LIRDFETH B, HoT, /21 THD, fs=01 == fn=0TH%B, KT,
onfitogfy=0a—all -2 —L—F EED, h=u—(ubr+af)=1+peHL
7B, LBAL,0< B <a—L-1THoiDT,1<1+/<a-L(<aTHBEM5,

1+ 6 ¢ HTHBDTFETH %, O
€5 T, G(I) i& Cohen-Macaulay IR T\ a
SE 3k
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m-primary ideals
with the small first Hilbert coefﬁments

KE—F (AKX - BITEHFRER)

1 Introduction

LLF, (A, m)i% Cohen-Macaulay FAfE&R & LIRJtidd =dimA >0 ¢35, BA
DRIRE A/m IZERETHILEET D, IZRADOMERATTNLEL, QEA
TTNIOR/NEITRE T 5, BIREA/ m BERETHELOT, AFT7ALQITBAD
BRATTNVTHD, LT,

R = =P
n>0

T = RQ) =P,
n>0

G = a)=pr/um+

n>0

LBE, REATTVIDRees Y, TE#AFT L QO Rees k¥, GEAFT NI
DREHERET L 5,

B =T/mT (= (A/m)[Xy1, Xy, -+, Xd])

LB AL, (A/M)[X, Xe, -, X XEA/m LOZERBZ 2+, N=mT+T,
% Rees " T OBRKKREAEA T TNV EBL, &)5%%’(%(1) (O <i< d) MIEETEL
T, +HREWVEH L > 0IZHLT,

eata/ ) = eo(n) (" : Deam ("5 s ot

LREDZENMONTEY, Tk A7 7V I O Hilbert ZIEA &S, EL, A-
TEEMITHL, Ly(M)IZE->TAMBEE LTOMDRESERT, ZDLE, &Ke()
AT TN D& B O Hilbert {725 & /L5,

ARFFED BE#JIE, Cohen-Macaulay RFTRAND m-#ERA T TN TIZONWT, D
Hilbert f2% e;(I) & FEMEREUR G(I) DREBEDBEREZRI Z LIH D, HiZ, KK
& TIXE 1 & H O Hilbert (28 e, (1) IOV TE X2V, DL THEEERFENND
LRDBERIIRDOLDTH B,



i 1 (cf.[N], [H]). ROREXDBELL, .
0<ps(l)—d< eo(I)‘— La(A)T) < er(1).
EBIT, KROSEME (1), (2), (3) B3RV L2,
(1) pall) —d=0=1=Q,
(2) eo() —La(A/T) = pa(l) —d <= mI C Q,
(3) eo(l) — La(A/T) = es(I) = I* = Q1.

(BL, ADIEEM I3t L pa(M) 12 £ >C ADBEE LCD M OR/NERT OB E %
+r LT a,

COMRBIZEY, () =02biX[=Q Thd, £oT, ATTNVIIFERAT
FATHY, TOREREE G(I) OBEEEHEEIC L bhd, SbiT, () =1
RoIXI?=QI BV 2Z &b, FEMAKREER G(I) 1% Cohen-Macaulay R Th %
ZEWRbhnd, 7L, BRIZROMWEEZRZSRDTHA I,

FIRE 2. e; (1) B+2/hEVmM-HERA T TV IIZONWT, ZOMEKREER GI) OBRE
xR K

ZIT, ABTIRIOMWIXL, T e(l)=20L T E2BITLIEREZHEL
7=\, BL, ETHHR7ZEY, %_tIz QI MY L2722 b1, FEfEREER G(I)
23 Cohen-Macaulay BRiZ722 &V H Z L, B<HONEEETHIEWVWIELEE
LTBEREY, - T, KFETI iIZ#QIT%5477/PI%ﬁ§EJ‘T%<‘: L7,

FHEREPBRARDENC, VEERIBFZERLIL, CEAMER, JERCDAT
TN, M% C-HEEL Lté:%, BHO0<i<dITHLT,

HY(M) = lim ExtL,(C/J", M)
WES>TC-IMEMDATTNVIIZET S i BEBORFTaAEr —MEEEERT, 7z,
S =1IR/IT

EED, AT T7/NIDQIZET B Sally INEE L M5, Z @ Sally MBEIIATE DERIZ
BOWCHEICEEREE 2R3, Sally MEE S IIROKREMTITL T, k&
T-MEEOHEE % RO,

P _{ I"™QrT (n>1)

"0 (n <0).

Sally JIBEIZ DWW TIE, ROFEXR L MBI TVD,



EE 3 KRHPELLV,
(1) §=(0) = I"=QI
(2) S=TS, + I3 = QI
(3) mS = (0) "2 HiEmI* C QI B3V 3L,
(4) EEOEH > 01 LT, KOFEXDBHY L2,

3

aiar) = eon (57 = ol = talaim) (V1) - ea(s

(5) Assp S C {mT} 3E Y 32,

(6) e1(1) = eo(l) — La(A/T) + br, (Sp) BRD T2, BL, P =mT Th3,
CRbOEEOTI, AROEHRELENETROBY Th3,

EE 4. ROEHETHERAETH 5,

(1) ERe (1) =2 > 2ORENI? # QI B’V XL,

(2) Felicht = T-MBEE LCORES = B(—1) B0 5, 20, HREL(1/Q) =1

D3RR Y LD,
(3) BRI = QI?, £a(I/Q) = 1 4+ depth G(I) = d — 1 #FRY 32,

Xl m ok x, WMEKEEGU) OREE, %2 Buchusbaum HEIZ OV TROHE
BEngond,

FE 5 e(I)=24L, P#QITHDHLET D, ZDLEROFMHEIIRETH 2.
(1) G(I) X Buchsbaum BT %,
(2) By H(G() = [HY H(G()h-a TH D,
7, TOEE L(HEHGUI) o) = 1BV ID, EBIT, d>20L XRO%MN
HLEETH D,
(3) R(I) ¥X Buchsbaum R T %,
BL, REFHEMBEMIZHL M IZE>TM O iEBOEREDEZRT,
ZDEDIT, ei(I) =2 DBAIITDOVWTH, AT 701 OHEE L BEHREER G(I) ©
BRI B BREVEREB A ENTER, LaL, e(l) > 30HAITON
Tik, TOBERHETHEHERSD L ZAHRDMP2 TRV,
T I TAROBRERAL TR, FoHCBVWTER4DHAZEX, THE5D
SEIIE 3 TE XD, B4 TIE, TE5 OFRMFEMI TN,



2 TEHE40DIH
AEITIE, EE4OMALE 2D, UTF, ro() = min{r > 0[I"*! = QI'} £8<,
EH 4 DFRERITROEERAENTH D,
THE 6 (RE-EH). d=2L75, Z0LE, ROLHIIRETHS,
(1) mS = (0) 2> >rankz S = 1.
(2) KEATET-MNBEE LTORAE S 2 B(—1) »Xid S = B, RFEET 3,
COFEE 4D (2) DRENT Sally MNEE S OB/DEEABER LTV, #iZ, K
fTE T-MEEL LTORE S = B, &L 5%£5
0—B(-2)—»>B(-1)®B(-1)—=S—0
IRERDOEEZR LTV B,
TNTRER4ADFERAE S5 2 L5,
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Uniform test exponent for ideal-adic tight
closures of parameter ideals

Graduate School of Mathematics, Nagoya University
HEBRE - RERSTHERFHER
EH #— (Ken-ichi YOSHIDA)

This work is motivated by a joint work with Shunsuke TAKAGI.

INTRODUCTION

In 1980’s, Hochster and Huneke [8] introduced the notion of tight closure in
positive characteristic. The tight closure gives a powerful tool in the theory of
Commutative rings. For example, this gives a short proof of Briangon—Skoda
theorem, the Cohen—Macaulay property of a pure subring of a regular domain.
However, many problems (localization, completion, etc.) remain still open.
see e.g. [8, 11].

In 2003, Hara and the author [6] introduced the notion of ideal-adic tight
closure and defined the gemeralized test ideal, which is an analogue of the
multiplier ideals in Algebraic Geometry (in equi-characteristic zero). Roughly
speaking, the modulo p reduction of a multiplier ideal (p > 0) coincides the
generalized test ideal; see [6, Theorem 6.8].

In this talk, we consider some fundamental problems (localization etc.) with
respect to ideal-adic tight closures and generalized test ideals.

1. PRELIMINARIES

Throughout this talk, let R be a Noetherian ring containing Z/pZ with the
Frobenius map F: R — R (a — a®). The ring R viewed as an R-module via
the e-times iterated Frobenius map F* is denoted by ¢R. For an R-module M
and e € N, we put F%4(M) = *R ®g M and regard it as an R-module by the
action of R = ®R from the left. The induced e-times iterated Frobenius map
on M defined by F¢: M — F¢(M) (m— mF* := F¢(m):=1®m). For an
R-submodule N of M and g = p¢, we put N9 = Ker(F%,(M) — F4(M/N)).
For an ideal I of R, I'd = I'¥ is the ideal generated by all elements a? for
a€l.

Let R° denote the complement of the union of all minimal prime ideals of
R. A collection of ideals a, = {a,}nen of R is called a graded family of ideals
in R if the following conditions are satisfied:

(@) amayn C amyq for all m, n €N; (b) a; N R° # 0.

Let a be an ideal of R such that a N R° # (), and let ¢ > 0 be a real number.
Then a, = R, a, = a®l, or a, = a™ (the symbolic power of a™) are those
examples.

1The 28th symposium on Commutative Ring Theory; Nov.13-16, 2006; at Tama
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For any graded family {a.} of ideals in R, we define the notion of a,-tight
closure.

Definition 1.1 (Ideal-adic tight closure [4, 6]). Let a, be a graded family
of ideals in R, and let N C M be R-modules. For z € M,

z € N3 &L 3¢ € R° such that czlag C N[Q] for all ¢ =% e > 0.

The R-module N,;* is called the a,-tight closure of N in M. For an ideal I of
R, we define I*% = Ip*.

Remark 1.2. In case of a, = {R}, N;i* = Ny, is the tight closure introduced

by Hochster and Huneke [8]. Moreover, in case of a, = {a*"1}, N;% = Nif' is
the a'-tight closure introduced by Hara and the author [6].

The test ideal 7(R) = ();cz{: I* plays an important role in the theory of
tight closure. In [6], Hara and the author generalized this notion. The test
ideal is generated by “test elements”, but the generalized test ideal 7(a.) is
not necessarily generated by a,-test elements. An existence of a,-test element
will be discussed in Section 2.

Definition 1.3 (Generalized test ideal [4, 6]). Put £ = @memaxr) Er(R/m).
Let a, be a graded family of ideals in R. Then we define

r(o) = (Y Amoa03 (= Annn(0)*),

where M runs through all finitely generated A-modules (in E). We call this
ideal the (generalized) test ideal with respect to a, or simply the a,-test ideal.
We also define 7(a,) = Anng(0)5".

Definition 1.4 (a.-test element). An element ¢ € R° is called an a,-test
element of R if cz%a, C I'9 holds whenever I is an ideal of R and z € I*® and
q=p°

For example, if R is an excellent reduced local ring, then 7(a,) = (), 1: I**,
where I runs through all ideals in R. Moreover, if R is Gorenstein and

z1,...,xq forms a system of paramters, then
oo
7(a.) = m(zf L) (o, z)
=1

The main purpose of this talk is to prove the following theorem:

Theorem 1.5 (Uniform test exponent for s.s.o.p). Let (R, m) be an excel-
lent, equidimensional, reduced local ring of characteristic p > 0. Let a, = {a,}
be a graded family of ideals. Then for any element c € R°, there exists ey € N
for which the following property holds: For any ideal I which is genemted by
subsystem of parameters,

(#) c2la, C 19 for some g =p°, e > eg => z € I*°.
If c is an a,.-test element, then the converse is also true.
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For an ideal I, a positive integer ey which satisfies the condition (#) is
called a test exponent of I (when a, = {R}); see [10]. Therefore the above
theorem means that there ezists an uniform a,-test exponent for ideals which is
generated by subsystem of parameters. Note that ey depends on a, and ¢ € R°.

”

Roughly speaking, “the exsitence of (a,-)test exponent” if and only if “(a,-
Jtight closure commutes with localization”. In particular we have: Let (R, m)
and a, = {a,} be as in Theorem 1.5. Let I be an ideal which is generated
by subsystem of parameters in R. Then for any multiplicatively closed subset
W C R, we have

I*G.RW — (IRW)*aW‘.,
where ay,. denotes the graded family {anRw} of ideals in Ry. We can sim-
ilarly show that an existence of an uniform test exponent for ideals in an
excellent regular local ring; see Section 4.

Moreover, as its application, we can prove the following proposition without
F-finiteness of the ring:

Proposition 1.6 (Localization of generalized test ideals). Let (R, m)
be a complete, Gorenstein, reduced local ring of characteristic p > 0. Let
a, = {an} be a graded family of ideals. Then for any multiplicatively closed
subset W C R, we have

7(ae)Rw = T(aw.).

Remark 1.7. The inclusion C follows from (a weak version of) Corollary 3.3.
The proof of the converse requires an analogy of F-ideal which is introduced
by Smith [15]. In the F-finite normal Q-Gorenstein case, the result is already
known; see Hara and Takagi [5].

2. PROOF OF EXISTENCE OF a,-TEST ELEMENTS

In this section, we prove an existence theorem of a,-test elements for graded
family of ideals a,, which plays a key role in the proof of our main theorem.
Before stating the theorem, let us recall the following lemma.

Lemma 2.1 ([7, Remark 3.2]). Let R be an F-finite reduced Noetherian ring
of characteristic p > 0. If the localization R. of R at an element c € R° is
strongly F-regular, then there exists an integer n > 0, depending only on R
and ¢, satisfying the following property:

For any d € R°, there exists a power ¢' of p and an R-linear map ¢: RYY —
R sending dV/9 to c".

The following theorem has been proved in the case a, = {al™1} in [6]. In
fact, it is an analogy of the main theorems in [8].

Theorem 2.2 (cf. [6, Theorem 1.7]). Let R be a Noetherian reduced ring
of characteristic p > 0 and let ¢ € R°. Assume that one of the following
conditions holds:

(1) R is F-finite and the localized ring R, 1s strongly F-regular.
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(2) R is an algebra of finite type over an excellent local ring B, and the
localized ring R, is Gorenstein and F-regular.
Then some power c™ of ¢ is an a,-test element for all graded family of ideals
a, on R and for all integers k > 1.

Proof. The case (1): Take ¢" which satisfies the condition of the above lemma.
Let I be an ideal of R, z € I** and q a power of p. Since z € I* there exists
d € R° such that dz%ag C I [@ for every power @ of p. By the above lemma,
there exists a power ¢' of p and ¢ € Homg(RY?, R) such that ¢(dV/?) = c".
Since dz%(a,)91 C d29a,, C 11991, one has d*/9' 2%a,RY9 C TWIRYY. Apply-
ing ¢ to both sides gives c"z%a, C I [4. Hence ¢* is an a,-test element.

The case (2): Assume that R is of finite type over an excellent local ring B

and R, is Gorenstein F-regular. Put R’ = R ®p B. Since B is excellent, the
canonical ring homomorphism R — R’ is faithfully flat with regular fibers. In
particular, R’ is reduced and R, is Gorenstein, F-regular by [9, Theorem 7.3
(c)]. Now suppose that d = ¢® € R° C (R')° is an a,R-test element. Let I be
an ideal of R, z € I** and a power q of p. By assumption, c"2%a,R’' C IWR'.
Then c"2%, C I @R N R = 1'% because R’ is faithfully flat over R. Hence c"
is an a,-test element. Thus we may assume that B is complete.

Let k be a coefficient field of R, and let A be a p-base for k. For any cofinite
subset T' of A, if we put kI = k[AY?" : X € T, then R' = U.»ok![[R]] is
F-finite and is faithfully flat over R with Gorenstein fibers. Moreover, by
[9, Lemmas 6.13, 6.19], we can take I' for which RF is reduced and (RF), is
Gorenstein, F-regular, and thus strongly F-regular. See [9, Section 6] for more
details.

As R is F-finite, there exists a power c® € R° C (RF)° which is an a,RF-
test element by (1). Let I be an ideal of R, z € I*® and a power ¢ of p. Then
c”zqaqRF C IWRT N R = Il9 by the choice of ¢*. Therefore ¢” is an a.-test
element. O

3. UNIFORM TEST EXPONENT FOR SUBSYSTEM OF PARAMETERS

In this section, we prove the main theorem in this talk, which states an
existence of an uniform test exponent for subsystem of parameters. Recently,
R. Y. Sharp proved a similar result for original tight closures. Moreover, as
an application, we show that ideal-adic tight closures of ideals generated by
subsystem of parameters commute with localization in the case of excellent
Gorenstein reduced local rings.

Theorem 3.1 (Uniform test exponent for s.s.o.p). Let (R, m) be an excel-
lent, equidimensional, reduced local ring of characteristicp > 0. Let a, = {a,}
be a graded family of ideals. Then for any element ¢ € R°, there exists eg € N
for which the following property holds: For any ideal I which is generated by
subsystem of parameters,

(#) c2%a, C 19 for some g = p°, e > eg => z € I**.
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If c is an a,-test element, then the converse is also true.
Before starting our proof, we need the following lemma.

Lemma 3.2 (cf. [10, Proposition 2.6]). Assume that R has a test element. Let
c € R°, and let a, be a graded family of ideals on R. Let N C M be R-modules
such that

(1) M/N is Artinian.

* _ *fg
@ Oy = Orcianmg
Then there exists an integer ey such that for any € € M, & € Ny holds
whenever c€%, C N,[\‘f,] for some q = p¢, e > eg.

holds for every integer e > 1.

Proof. This proof is essentially due to Hochster and Huneke; see [10]. Put
N,={¢eM : ct”a, C (NEHFY

where Ni; = {¢ e M : €9 € N, ][\q,,,] for some power ¢’ of p} denotes the Frobe-
nius closure of N in M.

First we show that Nei; C N.. Let & € Ngyi. If we put ¢ = p®, then
c&Pla,, C (N ALZQ])F . By definition, there exists ¢’ = p such that c? &P a2} C
(NE) = N99T Hence po'gpad g7 C o ¢red' g[8 ¢ (N19)Pa). This implies
that c&%, C (NP that is, £ € N,.

Since M/N is Artinian and each N, contains N, a descending sequence
Ny D Ny D --- stabilizes. Hence there exists ey € N such that N, = N,, for
all e > eg.

To see the lemma, it is enough to show the following claim.

Claim: Fix ey which satisfies the condition above. Then N, C N;/*.

For any ¢ € N,, and for g = p°, e > ey, we have c£%a, C (NI9)F C (N19)*.
Take a test element d € R° and fix it. Then dc{%, C N 15] in F¢(M) because

the tight closure of (0) coincides the finitistic tight closure of (0) in F¢(M)/N. ,‘@1
by the assumption (2). This yields that £ € Ny/*. d

Proof of Theorem 38.1. Since R is excellent and reduced, R has an b,-test
element d for any graded family b, of ideals in R. Note that Hi(R) is Ar-
tinian and Fe(H4(R)) & HE(R). As R is excellent equidimensional, we have
(O);;é " = (0)%¢(r)- Applying the above lemma to N = (0) € M = Hi(R),
we can take an integer ey such that

(##) §€ Ht(ri\(R)) ngaq =0 for some ¢ = pe, e>e = € (O);{a;(R)
Let z = 21, ..., x4 be asystem of parameters in R, and put I = (z1,...,z4)R.
Then we prove the following claim:
Claim 1: If cz%a, C I for some g = p°, e > e, then z € I*%.
Put £ = 2+ (21,...,24) € Ha(R) = lim R/(a1,...,25). Then €%, =0 by
assumption. Hence & € (0)7 R) from (#+#). Since d is an a,-test element, for
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all powers @ of p, d¢9ag = 0. That is, there exists an integer £ = £(Q) > 0
depending on @ such that dz%ag(z; - - - z5)¢ C (z479,. .. ,2579). By the colon-
capturing property for tight closure, we get
d2%g C (2579 .. 289 (zy - zg)" C (119",
Hence d?2%ag C I'9 for all powers Q. This means that z € I*® as required.
More generally, we prove the following claim:

Claim 2: A similar result as Claim 1 holds for any subsystem of parameters.

Let I be an ideal generated by a subsystem of parameters z;,...,z;, and
suppose that cz%a, C Il9 for some ¢ = p°, e > ey. We may assume that
Z1,...,%q i a system of parameters. Then for all integers £ > 1, we have
cz%a, C (21,...,Zh,Thyq,...25)9. Applying Claim 1, we obtain that z €
(Z1,. - Thy ZEy gy ..., x5)*™. Since d € R° is an a,-test element, dz%ay C
(x?, - ,z,?,xﬁl, . ,:cf;Q) for all powers @ of p. Hence

o0
‘ ¢
dz%ag C ﬂ(x?, e ,xf,xhﬁl, . ,:ch) = I,
£=1
Therefore z € I*°, as required. O

As an application, we prove that any d,-adic tight closure commutes with
localization for ideals generated by subsystem of parameters.

Corollary 3.3 (Localization of ideal-adic tight closures). Let (R, m)
and a, = {a,} be as in Theorem 3.1. Let I be an ideal which is generated by
subsystem of parameters in R. Then for multiplicatively closed subset W C R,

we have
I Ry = (IRw)*uW" .

Proof. 1t is enough to show that (IRy)**We C I**Ry,. Suppose that o €
(IRw)**w=. By definition, there exist ¢ € (Ry)° N R and an integer e; such
that cala,Rw C I @Ry for all q =p° e > e;. We may assume that ¢ € R° by
prime avoidance. Take a positive integer e; such that z € I** holds whenever
cza, C Ild for some ¢ = p®, e > e,. Fix e > ¢y := max{e;,ep}. Take u € W
such that ucata, C I'9. Then c(ua)la, C 19 and thus ua € I**. That is,
a € I** Ry,. We have finished the proof of the proposition. a

In the proof of Theorem 3.1, we use the following theorem. So we need to
assume that “R is equidimensional”.

Theorem 3.4 (Colon—Capturing for TC, [8]). Let (R, m) be an excellent,
equidimensional local ring of characteristic p > 0. Then for any subsystem of
parameters T, . ..,Th,

(1., Zic1) 12 C (21,0, Tim1)*
holds for eachi=1,...,h.

One cannot relax the assumption that “R is equdimensional”.
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Example 3.5. Let R = k[[z,y, z]]/(z) N (y,2). Put ay = 2" +y, a2 = 2" + 2.
Then (a;) : a3 = (z,y) and (a1)* = (z",y). Thus the Colon-Capturing does
not hold in general.

4. LOCALIZATION PROBLEM FOR TEST IDEALS

In this section, we show that any a,-test ideal commutes with localization
for complete Gorenstein reduced local rings. One implication follows from
Theorem 3.1. The other implication follows from Smith’ argument; see [15, 16].

We emphasize that this problem was settled for 7(a*) in F-finite local rings;
see [5] for more details. Our attempt is to remove the assumption that “R is
F-finite”.

Proposition 4.1 (cf. [5, Proposition 3.1]). Let (R,m) be a complete Goren-

stein reduced local ring of characteristic p > 0, and let a, be a graded family
of ideals on R. Let W denote a multiplicatively closed subset of R. Then

7(aw,e) = 7(as)Rw.

We first show that 7(aw,.) C 7(a.)Rw, which is easy to prove.

Lemma 4.2. Assume that (R, m) is an excellent Gorenstein reduced local ring
of characteristic p > 0. Let a, be a graded family of ideals on R. Let W denote
a multiplicatively closed subset of R. Then

7(ae)Rw C T(aw,s).

Proof. Let ¢ € 7(a,) and z € (IRw)**W+* N R, where I is any given ideal
of R such that TRw # Rw. Let p € Spec R such that p N W = 0. If we
prove 7(a.)R, C 7(ap.) for such any prime p, then % = - % € IR,
since z € (IRp)*®* N R. It follows that £ € IRy . Namely, we obtain that
¢ € 7(aw,), as required.

Let p € Spec R such that p "W = . Then it suffices to show 7(a.)R, C
7(ap.). Take an R-sequence z, ..., Ty in p whose images in R, forms a system
of parameters, and put I = (zf,...,2%). Then (J¥)**R, = (IVR,)*>* by
the proposition. Since R is Gorenstein, we get

T(ap,.) — n I[e]R I[KJR *0p e

[e0]

= () 1"R,: (I")*R,
(=1

= ﬂ _ﬂﬂ] (I[l])*a
=1
> (ﬂf” (1) )R > 7(a)Ry
=1
as required. a
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Proof of Proposition 4.1. It suffices to show that 7(aw.) C 7(a.)Rw. We
ﬁrst consider the case W = R\ p for some p € Spec R. Put h = height(p),
(0)’"" and U = Anng N. Then

7(ape) = Anng, (O);;g:};p (&)

by definition. On the other hand, since R is complete and N is Artinian,
7(a.)R, = (Anng N)R, = Anng, NV,

where NV=V» = Hompg(Homg(N, E), Er(R/p)) C Er(R/p) by [15, Lemma

3.1(i1)]. So it is enough to prove the following claim:

Claim: NV~ C (0)*“” * (5, D Er(R/p) = H} (R,).

To see this claim, we w1ll show that agF¢(NV»¥») C NVVr for all ¢ = p°.
Take a system of parameters z,, ..., g for which Z,....2* forms a system of
parameters in R,. Assume that

N z Th VmVp
e D)o

To see that a;n? C NV»V» for all ¢ = p®, e > 1, we may assume that ¢t = 1
without loss of generality. Since NVmVr = AnnH;lR (ry) Up by [16, Lemma 2.1
P

(iv)], we have
z1

z iL’h)

Lyuc(X ... YR

U C (1 TV
Take an element a € R\ p such that azU C (z1,...,zx) and put

Ne = [az + (21, - .. ,xh,xﬁﬂ, . ,mﬁ)] € H,‘,il(R),
for every integer £ > 1. Then 7, € Anngysp U = (0)}: )’ It follows that
agng € Anngg g U by a similar argument as in the proof of [6, Proposition
1.15]. That is,
(az)%a,U C (z9,.. :ch,a:,H_l, . )
for every £ > 1. In particular,
q

Z\4 2 2
T Cl—,...,—=
(1) aqu—(l’ ’1>RP
and thus a,F*(n) C NV»Vr.
Since there exists § € 7(a.)Ry N (R,)° C 7(ape) N (Rp)° by the previous
lemma, we obtain tha,t NV=Ve C (0)*“" . (R

Next, we consider the general case. Suppose that ¢ € 7(aw.) N R. To see
¢ € 7(a,)RwNR, it suffices to show that ¢ € 7(a.)R,NR for all p € Spec R such

ZTh

that p N W = (). Take a system of parameters z,..., T4 such that Z,..., %
forms a system of parameters in R,. Then

%(I[e]Rp)*up,. _ %(I[e])*a.Rp C IR,
for every £ > 1. Hence ¢ € 7(ay,.) = 7(a.) R, O
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5. UNIFORM TEST EXPONENTS FOR IDEALS IN AN RLR

This section is devoted to prove the following theorem, which implies an
existence of an uniform test exponent for ideals in an regular local ring.

Theorem 5.1 (Uniform test exponent for ideals in an RLR). Let (R, m)
be an excellent regular local ring of characteristic p > 0. Let ay = {a,} be a
graded family of ideals. Then for any element ¢ € R°, there ezists ey € N for
which the following property holds: For any ideal I,

czla, C I for some g =p°, e > eg => 2 € I*.
If ¢ is an a,.-test element, then the converse is also true.

Proof. Applying Lemma 3.2 to the case N = (0) C M = HZ(R), we can find
an integer ey = ep(c, a.) > 1 such that

(h) €€E, ct%,=0inF(E) for some g =p°, e >eg = £ € (0)5".

For the above integer ey and for any ideal I of R, it suffices to prove the
following claim:
Claim: z € E, cz%, C Il9 for some ¢ = p°, e > ey == z € I*%.

First suppose that I is an m-primary ideal of R. Then Er(R/I) is isomorphic
to a direct sum of finite copies of E = Er(R/m). Let ¢: R/I — Eg(R/I) =
E*. Put p(z+1) = (&,...,&,). The assumption cz?a, C Il9 implies that
c€la; = 0 foreach j = 1,...,u. By (§), & € (0)5*. Thatis, p(z+1) €
(0)*“’( R/I)" On the other hand, since Frobenius map is flat, the induced map

E
]Fe(}g/l) — F¢(Egr(R/I)) is injective. Therefore

z+1€ (O)E:(R/I) NR/I= (0)3‘2“/'1 =I""/I

Thus z € I*%.

Next we consider the general case. Suppose that cz?a, C [ [ for some
q = p°, e > ep. Then cz%, C (I +m™)ld for every integer n > 1. By the above
argument, we have z € (I + m™)*®. Since 1 is an a.-test element, we get

oo o0
Hap C (I +mm) = ( 79 4 (m[q'])n> — Jla
n=1 n=1

for all powers ¢’ of p. Thus z € I*%. d

This theorem implies that any a,-tight closure commutes with localization
for any ideal in an excellent regular local ring. In fact, this is valid without
excellence. See [17].

6. COMPLETION

In order to replace “complete” with “excellent” in Proposition 1.6, we must

prove that generalized test ideal commutes with regular base change. But we
do not have any satisfactory answer to this problem. In fact, we can show that
the following conjecture is true for ideal-adic filtrations a, = {a*"} only.
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Conjecture 6.1. Let R be an excellent reduced local ring, and I an m-primary
ideal. Then for any graded family a, of ideals, we have I** R = (I R)*®.

Remark 6.2. There exists a non-excellent local ring for which the above propo-
sition does not hold; see Loepp and Rotthaus [14].
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GENERALIZED COMPLETE INTERSECTIONS

SHIRO GOTO, YUKIHIDE TAKAYAMA AND MUNETAKA OKUDAIRA

INTRODUCTION

Let S = K[X;,...,X,] be a polynomial ring over the field K and
consider a monomial ideal I C §. Then we consider the graded local
cohomology modules H: (S/I) with regard to the graded maximal ideal
m = (Xi,... ,X,). Wesay that S/I has FLC (finite local cohomology),
if H:(S/I) has finite length for all 4 < dim S/I. We have many ex-
amples of the residue class rings S/I with FLC property. Namely, the
projective coordinate rings of any Cohen-Macaulay projective schemes
have FLC property. For Stanley-Reisner rings, i.e., the case that I
is generated by square free monomial ideals, FLC property for S/I is
equivalent to Buchsbaumness of S/I, and Buchsbaum Stanley-Reisner
rings are well understood through topological characterization of the
corresponding sinmplicial compliexes. However, for monomial ideals
that are not necessarily generated by square free monomials, FCL prop-
erty is not well understood. In [7], the second author gave combina-
torial characterizations of FLC monomial ideals for d < 3. But the
problem to find fairly large classes of FLC monimial ideals has been
open.

The aim of this paper is to give a partial answer to this problem.
We introduce the notion of generalized complete intersection (gCI),
which is a Stanley-Reisner ideal I C S whose powers I" (n =1,2,...)
all have FLC property. We give a ring theoretic (Theorem 1.2) and
combinatorial (Theorem 2.1) characterizations of gCI. Moreover, as a
special class of gCI, we consider the gCI I C S whose powers I™ (n =
1,2,...) all have linear resolutions. We give the complete classification
of the simplicial complexes corresponding to such ideals (Theorem 3.1).

1. GENERALIZED COMPLETE INTERSECTION

Let A be a simplicial complex over the vertex set [n] = {1,... ,n}.
We will always assume that {i} € A for all ¢ € [n]. For a face F' €
A, we define the link by Ika(F) = {G | GUF € A,GNF = {}.
We will denote by K[A] the Stanley-Reisner ring corresponding to the
simplicial complex A.
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Definition 1.1. A Stanley-Reisner ring K[A] is called a generalized
complete intersection (gCI) if A is pure and K[lka({i})] is complete
intersection for all 7 € [n]. We also call A to be gCI if K[A] is gCI.

If K[A] is a complete intersection, then it is also a gCI.
Now we give a ring theoretic characterization of gC1.

Theorem 1.2 (cf. Theorem 2.5 [4]). Let n > 1 be an integer and let
A be a simplicial complez over the vertex set [n]. Then the following
conditions are equivalent.

(1) K[A] is a gCL

(2) S/IA"* has FLC for arbitrary integer £ > 0.

(3) The set {£>0] the ring S/In*** has FLC} is infinite.
If one of these conditions holds, K[A] is Buchsbaum.

Proof. If I is a generically complete intersection of a Cohen-Macaulay
local ring S, the follwing conditions are equivalent ([2, 1, 5, 10]):

1. I is generated by an S-regular sequence,

2. S§/I*"! is Cohen-Macaulay for arbitrary integer £ > 0,

3. A={¢>0] S/I*" is Cohen-Macaulay} is an infinite set.

Since Stanley-Reisner ideals are generically complete intersection, by
considering a localized version of this, we obtain the required result. O

2. COMBINATORIAL CHARACTERIZATION OF gCI

For F' € A, we define stara(F) = {G | GUF € A}. We also define
core[n] = {i € [n] | stara(¢) # A}. Then the core of A is defined by
core A = {F Ncore[n] | F € A}.

We characterize a generalized complete intersection ideal In C S
in terms of combinatorics of simplicial complex Fa generated by the
supports of the minimal set of monomial generators.

Theorem 2.1 (cf. Theorem 3.16 [4]). Let K[A] be a Stanley-Reisner

ring with A = core A. Let G(Ia) = {u1, ... ,us} and Fa = {supp(y;) | j =

1,...,¢}. Assume that K[A] is not a complete intersection. Then
K[A] is a gCI if and only if the following conditions hold:
1. for every S € Fa with §S > 3, there exists a non-empty set
C(S)(C [n]) such that
(a) C(S)NS =0,
(b) for every i € C(S), we have E;; := {i,j} € Fa forallj € S.
Moreover if SNT # 0 for T € Fa, then T = Ey; for some
ij.
(c) for every k ¢ C(S)U S, we have {i,k} € Fa for all i € C(S).
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2. Any two elements i, j € [n] are linked with a path P = {{ix, ix+1} | k =
1,...,r}, with edges {ix,tk+1} € Fa for k =1,... 1 such that
1=1 and J = tpq1.

3. If there exists a length 4 path P = {{ip,ip11} € Fa | p=1,2,3,4},
then there must be an edge {i1,1,} € Fa with ¢ =3,4 or5.

4. A is pure.

Moreover, if A # core A, K[A] is a gCI if and only if it is a complete
intersection.

Proof. The proof is carried out by a purely combinatorial discussion on
finite sets. O

We show a few examples of gCI Stanley-Reisner ideals.

Example 2.2. Examples of non Cohen-Macaulay edge ideals:

L In = (X1 X3, X1 Xy, X5 X5, X2 X4) = (X1, X2)N(X5, Xa) C k[X, ..., X4
and A = ({1,2},{3,4}) (two disjoint edges).

2. IA = (XIXZ)X2X3)X1X37X3X47X4X5>X1X5) = (XZ)X37X5) N
(Xl,Xg,X5) n (Xl,Xg,X4) N (Xl,Xg,X4) C k[Xl, e ,X5] and
A = ({1,4},{4,2},{2,5}, {5, 3}) (a path of length 4).

3. In = (X1X2, X2 X3, X1 X3, X3 Xy, X4 X5, X1 X5, XoX5) = (X2, X3, X5)N
(Xl) X37 XS)O(X1>X27X4) - k[le fee )X5] and A = <{1,4}a {47 2}7 {5a 3})
(disjoint union a path of length 2 and an edge).

4. In = (X1 X9, X1 X5, X2 X3, X2 X5, X3 Xy) = (X2, X4, X5)N(X2, X3, X5)N
(Xl,Xz,X4) N (Xl,Xg,X;;) N (Xl,Xg,X5) C k[Xl, .. ,X5] and
A = ({1,3},{3,5}, {5,4}, {4,1}{4,2}) (an edge attached to a cir-
cle).

5. Ip = (Xl, . ,Xn) N (Xn+1, c.. ,Xgn) C k[Xl, ce ,in]. Notice
that G(I,) is a bipartite graph. ‘

Example 2.3. Examples of Cohen-Macaulay edge ideals:

L In = (X1X2, X2 X3, X3X4) = (X3, X4) N (X2, X3) N (X1, X5) C
k[X1,...,X4 and A = ({1,3},{1,4}, {4, 2}) (a path of length 3)

2. In = (X1X3, Xo X3, X3 X4, X4 X5, X5X1) = (X2, X4, X5)N(X1, X2, Xg)N
(Xl,X3,X4) N (Xl,Xg,X5) N (XQ,X3,X5) C k[Xl, c. ,X5] and
A= (1,3}, 3,5}, {5, 2}, (2,4}, {4,1}) (a circle)

For Cohen-Macaulay edge ideals, see [9].

Example 2.4. Ideals whose generators contain degree > 3 monomials:
L In = (X1 X0 X3)+ (X1, Xo, X3)*(Xy, X, X6)+ (X X7, X5 X7, X6 X7) C
k[X1,...,X7] and

A =({1,2,7},{1,3,7},{2,3,7}, {4,5,6}),

which is a not Cohen-Macaulay complex since it is not connected.
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2. IA = (X1X2X3X4) + (Xl,XQ,X3,X4) * (X5,X6,X7) and
A =({1,2,3},{1,2,4},{1,3,4},{2,3,4}, {5,6,7}),

which is a not Cohen-Macaulay complex since it is not connected.

3. gCI WITH LINEAR RESOLUTIONS

By Theorem 2.1, we know that if o C S is a generalized complete
intersection with a linear resolution, then it must be generated in de-
gree 2. In this case, Fp is a chordal graph ([3]). Also by Theorem 3.2
in [6], I* have also linear resolutions (and FLC) for all £ > 1. The fol-
lowing result characterizes the simplicial complexes A corresponding
to generalized complete intersections /o with linear resolutions.

Theorem 3.1 (cf. Theorem 2.3 [8]). Let K[A] be a gCI with dim K[A] =
d+1 and coreA = A. Then I§ has a linear resolution for all £ > 1 if
and only if A is a finite set of points,i.e. d =0, or otherwise A is as
follows:
case (dim A =1): A is the disjoint union of paths I'y,... ,Ts of
arbitrary lengths.
case (dim A > 2): A is the disjoint union of the following types of
subcomplezes:
type 1: (F,G), where F and G are d-simplezes such that F' N
G#0 and |[F\G|=|G\ F| =1,
type 2: (H), where H is a d-simplez.
Notice that, since coreA = A, we exclude the case that A itself is
of type 1 or type 2.

Proof. The proof is carried out by a purely combinatorial discussion
to determine the pure simplicial complexes A satisfying the following
conditions:

1. The 1-skeleton A; is chordal,
2. The conditions 2. and 3. in Theorem 2.1.
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ON VANISHING AND NON-VANISHING DEGREES OF
LOCAL COHOMOLOGIES OF GRADED ISOLATED
NON F-RATIONAL SINGULARITIES

YUKIHIDE TAKAYAMA

INTRODUCTION

Let K be a field of characteristic char K = p > 0. Let (R, m) be a
finitely generated N-graded K-algebra with d =dim R, R = €, Rx,
m = P,., R, and Ry = K. We assume that R is reduced, equidimen-
sional and Rp is F-rational for all primes P(# m), namely R is an N-
graded isolated non F-rational singularity. Since R is Cohen-Macaulay
on the punctured spectrum, it is a generalized Cohen-Macaulay ring,
i.e., Lp(H:(R)) < oo for all i < d, where H! (R) is the ith local coho-
mology module and £g(—) denotes the length as a R-module. In this
paper, we are interested in the structure of local cohomologies H (R),
in particular vanishing/non-vanishing degrees of them.

A distinguished property of N-graded isolated non F'-rational singu-
larity is Kodaira type vanishing of cohomologies, which, in terms of
local cohomologies, can be stated that lower local cohomologies vanish
for negative degrees [10, 11]: [H%(R)], = 0 for alli < d and all n < 0.
If R is a generic mod p reduction of an isolated non-rational singularity
(over the field of characteristic 0), Kodaira vanishing holds. This result
has been established by Huneke, Smith, Hara and Watanabe [6, 11, 7].
This is in fact the case of liftable to the second Witt vectors in the sence
of Deligne-Illusie [1]. Notice that an isolated non F-rational singularity
is not necessary a mod p reduction of an isolated non-rational singu-
larity and Kodaira vanishing for positive characteristic is in general
false, eg. [16]. This means that vanishing/non-vanishing of local coho-
mologies for isolated non F'-rational singularities in general is widely
open.

In this papaer, we first show that lower local cohomologies HE (R),
t < d, of an N-graded isolated non F'-rational singularity R can be
described as quotient modules of the tight closures by the limit closures
of suitable parameter ideals (see Theorem 17). This is a refinement of
the results by Schenzel [12] and Smith [14]. With this representation,
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Huneke-Smiths interpretation of Kodaira vanishing in terms of tight
closure [11] can be recovered immediately in a slightly general form.
A Noetherian local ring (R, m) is an isolated non F-rational sin-
gularity if and only if R is generalized Cohen-Macaulay and the tight
closure of zero in the highest local cohomology (0)’;{#‘ (R)’ d = dim R, has

finite length (cf. [4]). This suggests that vanishing/non-vanishing of
lower local cohomologies may be controlled by (0)}{% (R) to some extent.
In fact, the above mensioned Kodaira vanishing theorem by Huneke-
Smith-Hara-Watanabe has been proved by investigating the structure
of (0);{#. (R In this paper, we will consider isolated singularities and
show that [(0)}4 (R)]n # 0 for some n € Z implies non-vanishing of

HZ-1(R) for certain degree, under some subtle conditions (see Theo-
rem 24).

In section 1 we will summerize the known results on isolated non
F-rational singularities that are necessary in this paper. In section 2,
after preparing some definitions and facts on standard sequence, limit
closure and germ closure, we give a representation of lower local co-
homologies in terms of tight closure and limit closure. We also give
some direct consequences from this representation. N-graded isolated
singularities are considered in section 3. After giving a graded version
of Goto-Nakamura’s representation of tight closure of zero (O)}{#‘ (R)’

we investigate non-vanishing of (0)%. ®) and a generic hypersurface
intersection R of R. Here we use the characteristic p version of Flen-

ner’s Bertini theorem. Then finally we consider the non-vanishing of
HZ"1(R) in terms of non-vanishing of (0)%, R)°

1. GRADED ISOLATED NON F-RATIONAL SINGULARITIES

This section summerizes the basic definitions and results concerning
isolated non F-rational singularities. See, for example, [10, 9, 14] for
the detail.

Definition 1. A sequence zi,...,z; in a ring R is called parameters if
for every P € Spec R containing the sequnece, the image of the sequence
in Rp forms a part of sop. In other words, ht((zy,...,xz;)) = i. An
vdeal generated by a set of parameters is called a parameter ideal.

Definition 2. For an ideal I of a ring R, the tight closure I* of I
is defined by I* = {r € R | there exists c € R° such that cz? €
19 for all ¢ = p® > 0}, where R° is the set of elements outside the
union of mininal primes of R and I = (r¢ | r € I).
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Definition 3. A Noetherian ring R of prime characteristic is said to
be F-rational if every parameter ideal of R s tightly closed.

We recall the basic properties of F'-rational rings needed in this pa-
per.

Proposition 1 (cf. [9]). Let R be a Noetherian ring that is the homo-
morphic image of a Cohen-Macaulay ring. We have the following:

1. If R is F-rational, then R is Cohen-Macaulay.
2. A localization of an F-rational ring is F-rational.
3. If R is regular, then R is F-rational.

Definition 4. Let K be a field. Then a finitely generated N-graded
K -algebra (R, m) is said to be a generalized Cohen-Macaulay if one of
the following equivalent conditions holds:
1. Proj(R) is an equidimensional Cohen-Macaulay projective scheme,
2. Rp is an equidimensional Cohen-Macaulay local ring for every
P € Spec R — {m},
3. H:(R) is a finite length module for all 1 < dim R. In particular,
there ezists N; € Z such that [H: (R)], =0 for alln < N;.

Definition 5. Let (R, m) be a finitely generated N-graded K -algebra
or a Noetherian local ring with the mazimal ideal m. Then we say that
R s an isolated non F'-rational singularity if Rp is F'-rational for all
primes P(# m).

In this paper, when we consider an isolated non F-rational singular-
ity, we always assume that it is equidimensional.

Definition 6. An element ¢ € R° is called a parameter test element
if, for arbitrary ideal I generated by an sop and arbitrary x € I*, we
have cz? € 19 for all ¢ = p°.

In this definition, we can replace the ideal I by any parameter ideal,
including I = (0), because of the following result, which is a special
case of Exercise 2.12 [9].

Proposition 2. Let (R, m) be a local ring and assume that ¢ € R° is
a test element for parameter ideals generated by sops. Then c is a test
element for arbitrary parameter ideal I = (zy,...,2;), 1 < d =dim R,
including the case of 1 =0, i.e., I = 0.

Every isolated non F'-rational singularity has an m-primary param-
eter test ideal. Namely,

Proposition 3. Let (R,m) be a reduced isolated non-F-rational sin-
gularity of char R = p > 0. Then there exists an m-primary parameter
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test ideal J C R, i.e., every element a € J is a test element for any
parameter ideal in R.

Proof. This follows immediately from (3.9) [17]. See also Exer. 2.12
[9]. O

By Proposition 1, we know that an isolated non F-rational singular-
ity is generalized Cohen-Macaulay. Also, in view of Proposition 3, we
will always consider reduced rings.

2. LOWER LOCAL COHOMOLOGIES OF ISOLATED NON F-RATIONAL
SINGULARITIES

This section gives a representation of lower local cohomologies of
isolated non F-rational singularities in terms of tight closure and limit
closure of unconditioned strong d-sequences (USD-sequences), which
is a refinement of the representation given by P. Schenzel and K. E.
Smith.

2.1. equidimensional hull, limit closure and germ closure. In
this subsection, we summerize some of the definitions and results needed
to give our representation of lower local cohomologies.

Definition 7. A sequence of elements zq,...,Z, in a commutative
ring is said to be a d-sequence if for every 0 <1 <n—1andk > 1 we
have

(.'El, e ,l‘i) LT Tk = (171, e ,x,—) L Tk
A sequence 1, ... ,T, is said to be a strong d-sequence if z7*, ..., zm
is a d-sequence for every arbitrary m; > 1,1 = 1,... ,n. Finally, a
sequence Ti;. .. ,Tn 1s said to be a USD-sequence (unconditioned strong

d-sequence) if every permutation of it is a strong d-sequence.

Definition 8. Let (R,m) be a Noetherian local ring with d = dim R.
A system of parameters zy,... ,%q 1S called standard if

(z1,...,50)HI(R/(z1,... ,7i-1)) =0  forall0<i+j<d, i>1
where we set (z1,...,%—1) =014ifi=1.
Notice that for a standard sop we have
(z1,...,29)HL(R) =0 foralli<d.

We also note that the empty sequence is trivially a USD and standard
sequence. The notions of USD-sequence and standard sequence are
actually equivalent: :
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Proposition 4 (cf. (3.8) [12]). For an sop z1,... ,z4 in a Noetherian
local ring (R, m), the following are equivalent:

(1) z1,...,2q 18 a standard system of parameters,
(1) z1,... ,%4 is an unconditioned strong d-sequence (USD-sequence).

The USD or standad property of the sequences is preserved by hy-
persurface intersection. Namely,

Proposition 5 (cf. (3.2) [12]). Let z1,... ,z; be a standard sequence
in a Noetherian local ring (R,m). Then the image of z1,...,%;i—y in
R := R/z;R is again a standard sequence of R.

For the existence of USD-sequence, we have

Proposition 6 ((6.19) [5]). Let (R, m) be a generalized Cohen-Macaulay
local ring. Then there exists t € N such that any system of parameters
in m! is a USD-sequence.

This implies that we can always obtain a USD-sequence by taking
hight enough power of an sop:

Corollary 7. Let (R, m) be a generalized Cohen-Macaulay local ring
and let z,,...,24, d = dim R, be any system of parameters. Then
xy,... 2y s a USD-sequence for n > 0.

Proposition 8 (cf. (5.11) [10]). Letzy,...,z; € R be parameters which
are also parameter test elements. Then xy,... ,z; are a USD-sequence.

Definition 9. Let R be a Noetherian ring. For an ideal I C R, con-
sider the minimal primary decomposition I = (), Q;. Then we define
"™ = N @i, where Q; runs over the primary components such that
dimR/Q; = dim R/+/Q; = dim R/I. We call I*™ the unmixed hull
of I.

Definition 10. For a parameter ideal I = (z1,... ,z;) of a ring R, we
define the limit closure of I as follows. Ifi > 0, we define
'™ = {zeR|x*'2€ (z3,25,...,25) for some s € N}
{z e R|x*"'z € (z5,25,...,25) for all s >> 0}
o0
= G, 1) x!
s=1

where X = 1 -+ - ;. For i =0, we define (0)"™ = 0.

Proposition 9 (cf. (2.5) [11]). Let (R, m) be a Noetherian local ring
and I = (z1,...,z;) (i > 0) be a parameter ideal. Then the following
are equivalent:
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(1) z € ['m

(i1) an element n = [

xl...x'l:

] € HiY(R) is 0.

Proof. Clear from the Cech complex representation of local cohomol-
0gy. (]

Proposition 10 ((5.4) [10]). Let R be equidimensional and the homo-
morphic image of a Cohen-Macaulay ring. If I C R s a parameter
ideal, then we have I'"™ C I*.

Proposition 11 ((5.8) [10]). Let (R, m) be an equidimensional graded
Noetherian ring over a field with an m-primary parameter test ideal.
Then for a parameter ideal I C R such that ht I < dim R, we have
Iumn — I*'

Corollary 12. Let (R, m) be an N-graded isolated non F'-rational sin-
gularity and let I = (z1, ..., ;) be a parameter ideal such that ht(I) <
dim R. Then we have I*™™ = I*.

Proof. Immediate from Proposition 3 and Proposition 11. O

Definition 11. Let I = (z,...,z;) be a parameter ideal. Then we
define the germ closure of I as follows. Fori > 1, we define
196 = Z(CL‘l, ce ,f?j, yoee ,33,')*.
j=1
Also, we define (0)9™ = 0.

In the above definition, we note that I9¢"™ = (0)* if ¢ = 1 and we
have I C I9¢™ for ¢ # 1. Also we always have I9¢"™ C I*.

The following proposition is a slight modification of Theorem 5.12
[10]. The only difference is that, for I = (z1,...,%;) for i < d, only
the case of 1 = d is considered in [10]. But with almost the same proof
we have the following extension.

Proposition 13 (cf. (5.12) [10]). Let (R, m) be an equidimensional lo-
cal ring that is the homomorphic image of a Cohen-Macaulay local ring.
Let I = (z1,... ,z;), where 0 < i < d and z1,... ,24 1S an sop which
are parameter test elements Then we have I9™+1 = '™ in particular
if i # 1 we have I96™ = Jim,

Proof. See (5.12) [10] in the case of ¢ > 2. The case of i = 0,1 can also
be proved easily. O
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2.2. representation of lower local cohomologies.

Proposition 14 (cf. (6.8) and (6.9) [14]). Let (R, m) be a Noetherian
local ring that is equidimensional, the homomorphic image of a Cohen-
Macaulay local ring and Rp is Cohen-Macaulay for all primes P # m.
Then there exists an sop zi,... ,zq, (d = dim R) such that for 0 <1 <
d we have

Hi(R) = — (T1,...,z;)%"™
m Zz.=1(x1,... ,.’i?j,. . ,xi)unm+ (1171,... ,LZI,‘)
j
Moreover if © # 1 we have
; Ty, .. ,2;)*"™
. M
Zj:l(ml"" ,.’L‘j,... ,.Z‘i)

In fact, any sop x1,... ,z4 inm? for N > 0 has such a property.

Proof. By Schenzel’s formula (3.3) [12] together with Lemma 15 below.

O
Lemma 15 (6.9 [14]). In ths situation of Proposition 14, we have (z1, . . .
Tiv1 = (Z1,...,2)""™ for 0 < 1 < d, by replacing the sequence
Z1,...,%q by high powers, if necessary.

Notice that the equidimensional hull of a graded ideal is again graded.
Then, by considering a graded version of Proposition 3.3 in [12], which
Proposition 14 bases on, we easily deduce the following.

Corollary 16. Assume that (R, m) is generalized Cohen-Macaulay. Then

there exists a homogeneous sop zy,... ,Zq, (d = dim R) such that for
0 <1< d we have

(@1, ... ,z;)wnm

Z;zl(xl,... gy, ) (2, T)

where §; = Z§'=1 deg(z;). Moreover if i # 1 we have
(@1, ...y y)mm™

S (@1, By @) em

Theorem 17. Let (R, m) be an N-graded Noetherian K -algebra of di-

- mension d = dim R and char K = p > 0. Assume that R is an equidi-
mensional isolated non F'-rational singularity. Then for any homoge-

H(R) = (4:)

(65).

H! (R) =

neous $o0p Ti,...,Tq € mY with N > 0, we have
~ Tiyen s L)t (xF,...,20)*
Hi(R) = _(5;) = L (ns,
m(R) (xl,...,xi)hm( ) (z},. .. ,a:?)hm( i)

fori=0,...,d—1 and n € N, where we define §; = Z;zl deg z;.
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Proof. By a straightforward calculation using Corollaries. 7, 16, 12 and
Proposition 13. O

As an immediate application of this representation, we recover some
of the known results in a slightly general way.

Corollary 18 (cf. (2.7) [11]). Let (R,m) be an equidimensional iso-
lated nmon F'-rational singularity and let I = (z1,...,13;), it < d =
dim R, be a homogeneous parameter ideal such that with I C m? for
2> 0. Then for an integer N; the following are equivalent

(¢) [HL(R)], =0 for all n < N;.

(#6) I* C I"™ + Ry, where & = )5_, deg(z;).

In a special case, we can give a lower bound of the vanishing degree
N;. For an N-graded module M, we set b(M) = min{i | M; # 0}. If
(R, m) is a generalized Cohen-Macaulay local ring, we have

[H.(R)],=0 for n<—it, i<dimR, .
if there exists a homogeneous sop zi,...,z4 as in Theorem 17 with

t = min{degzi,...,degzq} ((2.4)[8]). The following result gives a
refinement for isolated non F-rational singularities.

Corollary 19. Let K be an algebraically closed field of char K =p > 0
and let (R, m) be a Noetherian standard N-graded domain with Ry =
K and m = @, ., Rn. Assume that R is an isolated non F-rational
singularity and let

t=min{N € N|x=uzy,...,35 € m" where x is as in Theorem 17}.

Then for all i < d = dimR and for all n < —(i — 1)t we have
[Ho(R)]n = 0.

For another application, we can consider, under the condition of The-
orem 17, the natural map p; : H: (R) — HY(R) fori=0,... ,d—2
defined by pi(r + (z1,...,2:)"™) = r + (z1,...,741)"™ with 7 €
(%1,...,z;)*. For the degree preserving homomorphism, we can also
consider ¢;(r + (z1,...,2:)"™) = rzi4q + (21, .., T41)™. Unfortu-
nately, they are all trivial.

Corollary 20. The maps p; and 1; are trivial.

3. TiIGHT CLOSURE OF ZEROS AND ISOLATED SINGULARITIES

In this section, we consider the question of how the tight closure of
zero in the highest local cohomology H%(R) controls the vanishing of
the lower local cohomologies of isolated singularities.
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Definition 12. For a R-module M, we define

O)y=4z€M| there ezists c € R° such that cz? =0 in M
M= forq=p*>0

and call it tight closure of 0 in M.

We are particularly interested in the tight closure of zero in the
highest local cohomology HE(R), d = dim R. We give a graded version
of the result by Goto and Nakamura.

Proposition 21. Let (R,m) be an N-graded isolated non F-rational
singularity. Suppose that a homogeneous sop X = z1,...,Zq forms a
USD-sequence. Then, by replacing x by a higher power xY (N > 0) if
necessary, we have

(27, ..., z0)*

(27, ..., zg)im’

(O);qg‘(R) = U Zy(nd) where Z, =

n>0

where § = Z;Ll deg(z;).

Proof. Consider a graded version of Proposition 2.1 [4], and apply
Corollary. 12, Proposition. 13 and Lemma 15. O

Notice that, for ¢ < d = dim R, we have a natural map

PG PP CAEALEL.) My S SN G TELEE L) WP S W RSp 210 )

(1, ... ,z;)lim (1, .. ,zq)lim
by sending 7 + (%1,... , ;)" to r + (z1,... ,74)"™ or as a degree pre-
serving map rx;y1 - - - Tg+(21,. .. ,1q4)"™. But they are actually 0-maps,
which can be proved similarly to Cor. 20.

Now we consider relation between the tight closures of zero of HZ(R)
and H2"1(R), where R is a hypersurface intersetion of R. It is well
known that Flenner’s Bertini theorem also holds for positive charac-
teristics, which is, as far as the author is concerned, not stated in the
literature. We give the statement for the readers convenience.

Proposition 22 (cf. Satz (4.1) [3]). Letk be an infinite field and (R, m)
be a Noetherian local k-algebra, whose residue class ring K := R/m is
separable over k. Let zq,... ,x4 € m be such that I = (z1,... ,14) is an
m-primary ideal. Assume that Rp is regular for all P € Spec R — {m}.
Then for a general linear form z, = Zf_:l a;z; with a € k% and any
P € Spec R/z,—{m'} where m' =m/z,R, (R/z,R)p is again regular.
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Let (R,m) be an isolated singularity with d = dim R. Then, by
Proposition 5, 22 and 21 together with Cor. 7, we can choose a homo-
geneous sop 1, . .. , T4, which is a USD-sequence, such that R = R/z4R
is also an isolated singularity and

ey =g my)t
0 g (m = U (F,...,z0)im (ndq)

n>0

and

(0)*d _ U (-3_7711) 733—1) (’I’I;(Sd 1)

-1,y — f —

HE *(R) o (fil, L ,fg_l)hm

where §; = 32J_, deg(z;) and T; is the image of z; in R. Now we can
prove

Proposition 23. Let (R,m) be an N-graded isolated non F-rational
singularity over the field K of charK = p > 0 with Ry = K. Let
d =dim R. Assume that zi,... ,Zq is a homogeneous sop and consider
the natural surjection

¢:R— R= R/z4R,

whose image (r) will be denoted by T. Then,
(i) For any n € Z we have

. (1‘1,... ,l‘d)* :| |: (fl,... )Td—l)* ]
i : 0, then — — - 0,
f [(-’Ifl;'" 7xd)hm n;'é (.’L']_,.-. ’xd_l)hm 1‘t?é

(i4) Assume also that xy, ... , T4 is a USD-sequence and that R/z4R is
a non F-rational singularity for all £ € N. If [(0)}4 (R)]n # 0 for
n € Z, then there exists £ € N such that [(O)Eg‘_l(R/zéR)]nﬂ # 0,
where a = ¢ - deg(zq).

Proof. We first show (2). By persistence of tight closure, ¢ induces the
homomorphism

— * (Tla' . 7Td—l)*

2 (xh 7$d) (Tl,... ,Td—l)hm
Since Ker @ C (21, ... ,74)"™, we have the following diagram:
(1) (.’L’l,... ,:cd)* nat (.’L‘l,... ,a:d)* i} (Tl,... ;Td—l)*
(331, . ,xd)“m Kerp (Tl, . ,Td_l)lim

where nat is the natural surjection and ¢ is the induced embedding.
Taking the degree n fraction of this diagram, we immediately know
that (7) holds.
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Now we show (1i). Assume that [(0)74 (R)] # 0. Then by Proposi-
tion 21 there exists £ € N such that

(zf,...,zb)* (zf,... 28l
0 # [ _(0-59)| = .
(zf,. .., z4)lm " (zf,... , ob)lim Y
Thus by (i) with z1,... ,z, replaced by z£,... 2%, we have

(xl’ xd Dk Liy---5Tgq

Then we obtain the required result by Proposition 21. O

A e e I e )
n+£:04

n+{-deg(zq)

Proposition 23 assumes that hypersurface intersections of isolated
non F-rational singularities are again isolated non F'-rational singular-
ities. However, F-rationality behaves rather badly with hypersurface
intersections, since an F-rational local ring has negative a-invariant
(see [2]) but hypersurface intersection increases a-invariant. But for
isolated singularity, which is a special case of isolated non F-rational
singularity, hypersurface intersections behave well thanks to Bertini
type theorems.

Now we come to the main result of this section.

Theorem 24. Let (R, m) be a reduced N-graded equidimensional iso-
lated singularity over the field K of char K = p > 0 with Ry = K,
d=dimR and K = oo. Assume that [(0)*11#,(12)]” # 0 for somen € Z
and consider a homogeneous regular element x, a = deg(z), that is also
a part of a USD-sequence. Then

(1) If the multiplication [HE(R)], —= [HE(R)]nta is injective, then
we have
[HE"Y(R)]nieq # O for some £ € N.

(it) Otherwise, if there is a USD sequence 1, . .. , x4 with £ = x4 such
that the degree n+dq fragment of (x1,. .. ,24)"™—p~1((ZT1, ... ,Ta_1)"™)
is nonempty, where ¢ : R — R/z4R 1is the natural surjec-
tion whose tmage of r € R is denoted by T. Then we have

[Ha ™ (B)]nta # 0.

Proof. Let z1,...,14 € m be a USD-sequence with z, general enough.
Consider the short exact sequence:

0— R(—a) =5 R-5R-—0, a:=deg(zy)

where we set R := R/(z4)R and ¢ : R — R/(zq)R is the natural
map. R is again an isolated singularity by Proposition 22.

— 126 —



Since z,4 is standard, we have z,H%1(R) = 0. Thus, from the above
short exact sequence, we obtain the degree n + a fragment long exact
sequence:

0= [Hy (R)lnsa = [H (B)lnve 2 [HAR)w =5 [H(R)]nsa — 0.

Now we show (7). Assume that the multiplcation by z, is injective,
we have an isomorphism [HZY(R)]e & [HE Y (R)]nse. By Proposi-
tion 21 we have the inclusion

T, ... Tas)* ) s
(@12 Tard)” 5y (O) s € HEAR)
(l‘],... ,.’Ed_l) m (R)

so that, if

(fl, e ,Td—l)*
— (04— 0,
(Tl, A ,Td—l)hm( 4 1) n+a ;é
then we have [HE 1 (R)|nya & [HE Y (R)]nta # 0. Then (4) follows by
Proposition 23(ii) by replacing, if necessary, z4 by z4 for some £ € N.

Next we show (i1). If z; € m¥ for N >> 0, z, is a parameter test el-
ement by Proposition 3. By Prop 4.4 [13] we know J C Anng((0)} ( R))

where J is the parameter test ideal. Thus 4 : [H%(R)], =% [HE(R)]nta
is not injective if [(0)3;4 p)ln # 0. Thus we have the exact sequence

0 — [HE (R)]nta — [HEH(R)]nta = Imgp — 0

where 0 # [(0)}, (R)]n C Im+. By considering the Cech complex rep-

resentation of local cohomology, we know that, for
n= [:_r___} € Hi '(R)
X1 Tg-1

we have

.
W) = [ 7| enin).
Also we know that

Rery = {77= [Tl‘ F_d~1] | B ]inn Hi(R)}

e -:L'l.‘.xd

T lim
=f— € (z1,...,2
{77 [_1"'—d 1] IT' ( 1 d) }

by Proposition 9. Now we can show that Ker+ # 0. Thus we must
have [HE Y (R)]n4q # 0 as required. O
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Remark 1. As we saw in the proof, the condition (i) of Theorem 24
is satisfied only when deg(x) is small large enough. On the other hand,
Proposition 6 tells that, generally speaking, in order to obtain a part
of USD-sequence we need to choose elements of high degree. Thus (4)
could be satisfied in relatively few cases.

Also, since [H%'R], = 0 for k > 0, Theorem 24 means that
(21,...,24)"™ is the preimage of (Z1, ... ,Z4—1)"™ via the natural map
¢ when deg(zy) is large enough.

The following result describes the injectivity of the morphism nat in
the diagram (1).

Corollary 25. Let (R, m) be a reduced N-graded equidimensional iso-
lated singularity over the field K of charK = p > 0 with Ry = K,
d=dim R and §K = co. For an sop z1,... ,z4 € m" with N > 0 and
for every n € Z with [(O);I,‘,“(R)]n # 0, we have

(:L‘l,... ,:z:d)* (Tl,... ,'fd_l)*
lim c 7. 7 lim
(.’17]_,... ,IL'd) n+6g ((L'l,... ,.’L‘d_l) n+é,

where T; is the image of z; in R := R/z4R.
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. TAYLOR RESOLUTIONS OF MONOMIAL IDEALS
WITH LINEAR QUOTIENTS

MUNETAKA OKUDAIRA AND YUKIHIDE TAKAYAMA

INTRODUCTION

Let R = K[X3,...,X,) be a polynomial ring over a field K and
consider a monomial ideal I C S. It is well known that the Taylor
complex (T, d,) gives an R-free resolution of I, but it is in general far
from minimal. The aim of this paper is to determine some of the cases
in which 7, is minimal.

In particular, we consider the case that I is an ideal with linear
quotients. It is known that stable ideal, squarefree stable ideals and
(poly)matroidal ideals are all ideals with linear quotients and they have
Eliahou-Kervaire type minimal resolutions [2].

We first characterize when a monomial ideal I with linear quotients
has the minimal Taylor resolution (Theorem 2.1). Then, as a special
case, we give a complete description of stable ideals with minimal Tay-
lor resolutions (Theorem 2.3). Finally, we determine monomial ideals
with linear resolutions whose Taylor resolutions are minimal (Theo-
rem 3.1).

1. PREPARATION

In this section, we give definitions and known results that are needed
to describe out results. For a monomial ideal I, we denote a minimal
set of monomial generators of I by G(I).

Definition 1. Let I be a monomial ideal of R. Then :

(i) Iis stableif, for an arbitrary monomial w € I, we have X;w/X,, €
I for all i < m := max(w). Here, we set max(w) = max{i | a; >
0} withw =X ----- Xon,

(i) I is said to have linear quotients if, for some order wui,...,u,
of the elements of G(I) and all 5 = 1,...,r, the colon ideals
(u1,...,uj-1) : u; are generated by a subset of {Xi,...,X,},

namely (u,...,uj—1) 1 u; = (X;,, ..., X;,) for some {41, ... ,4} C
{1,2,...,n}. For an ideal I with linear quotients, we consider the
order of generators uy, . .. ,u, when we denote G(I) = {uy, ... ,u}.
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We also set set(u;) = {1 | X; € G((u1,...,uj-1) ru;)} = {i1,... ,1s}
forj=1,...,r.

Remark . Let I C R be a stable ideal, then I has linear quotients
in the following order: For G(I) = {us,...,u,}, we have degu; <
degus < ---degu, and if degu; = degu;4; we have u; > u;4; with
reverse lexicographic order with regard to X; > X5 > --- > X,,. In the
following, we always assume that G(I) = {u1,...,u,} is arranged by
this order when I is stable.

Theorem 1.1 (cf. lemma 1.5 [2]). Let I be a monomial ideal with lin-
ear quotients, and G(I) = {uy,...,u,}. Ifdegu; < --- < degu, then
we have

) in =3 (F0)).

j=1
Remark . Let I be a stable ideal, G(I) = {u1,...,u,} whose order of

elements is as in the above remark, and 3, the ¢g-th Betti number of I.
Then theorem 1.1 and the fact fiset(u) = max(u) — 1 (see [2]) implies,

®  am-y ("0 =§mi@“))(i;1>

ueG(I)

where m;(G(I)) def- #{u € G(I)| max(u) = ¢}. This is the same resolu-
tion as in [1]. ‘

We recall the definition of Taylor resolution.

Definition 2. Let I be a monomial ideal of R with G(I) = {uy,...,u,}.
We define the complex

(3) T°:0_>Tr—1d—r_—l’Tr—zdr__z""—*T1i>ToL>I——>O

called the Taylor resolution of I as follows: Let L be the R-free module
with free basis {ey, - -, e,} and set T, = A?"" L, the (g+1)-th exterior
product. We define d: T, — Ty, and €: Ty — I by
dq(ei0 VANERRIAY ez-q)
g
lem (uiy, -5 Ui .
—_—Z(_l)S. cm (Ui, i Ui ceig A NEL A A,
pors lem(ugg, . .., Uy, - -0, Usy)
withl1 <9< <4<, g>1

ele;)) =uw  (i=1,...,7) ‘

Remark . As is well known, a Taylor resolution is not generally mini-

mal. Notice that rank(Ty) = (_},)-
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2. MONOMIAL IDEAL WITH LINEAR QUOTIENTS

The goal of this section is to give the complete description of stable
ideals with minimal Taylor resolutions. Before that we give a general
result for monomial ideals with linear quotients.

We can show

Lemma 1. Let I = (uy,...,u,) be a monomial ideal with linear quo-
tients in this order. Then, ﬂset(uz) i—1 fori=1,...,q.

Theorem 2.1. Let I be a monomial ideal with linear quotients with
G = {uy,...,u}. Ifdegus < --- < degu, withr < n, then the
Taylor resolutzon T, of I is mzmmal if and only if fset(u;) =17 —1 for
1=1,.
Proof. By Theorem 1.1 and Lemma 1 together with the remark after
Definition 2. O

Now we consider the special case of stable ideals.
Proposition 2.2. Let I be a stable ideal of R. Then the following
conditions are equivalent :

(i) The Taylor resolution T, of I is minimal;

(ii) #G(J) = max{max(u)|u € G(I)};

1 for1<i<{G()

J(G(I)) =

(i) m:(G(D)) 0 foriG(I)<i<n.
Proof. By the remarks after Theorem 1.1 and Definition 2. O

Using the above proposition we can determine the form of the stable
ideals whose Taylor resolutions are minmal.

Theorem 2.3. Let I be a stable monomial ideal of R and T(I). the
Taylor resolution of I. Then the following conditions are equivalent :

(i) The Taylor resolution T, of I is minimal;

(i) I = (u,...,ur) with r < n and there ezist positive integers
S1,...,5 such that uy = X3*, ujp1 = X7 -1 --ij_l Jsrll for
j=1,...,r—1L

3. EQUIGENERATED CASE

As a special case of Theorem 2.3, we can consider a stable monomial
ideal I C R generated by monomials with the same degree. In this
case, I has a linear resolution. But it turns out that this case is very
special even if we do not assume the stableness. Namely,
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Theorem 3.1. Let I C R be a monomial ideal with a linear resolution.
Then the following conditions are equivalent:
(i) The Taylor resolution T, of I is minimal;
(i) I =u- (Xi,...,Xi) forsome1 <4y < - <4, <nanduisa
monomial.
In this case, I is an ideal with linear quotients.

Proof. We use the induction on G () and the fact that the ideal which
is generated by the subset of G(/) also has the minimal Taylor reso-
lution and a linear resolution when I has a linear resolution and its
Taylor resolution is minimal. O
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LINEARITY DEFECTS OF FACE RINGS

RYOTA OKAZAKI AND KOHJI YANAGAWA

1. INTRODUCTION

Let S = K[z, ...,Zs) be a polynomial ring over a field K, and E := A (y1,...,%,) an
exterior algebra. We regard them as graded rings with degz; = degy; = 1. As usual, for
a graded S (or E)-module M = @, M; and j € Z, M(j) denotes the shifted module
of M with M(j); = Mjy;.

Let A = @,;5 Ai, Ao = K, be a Koszul algebra (e.g. A= S or E), and *mod 4 the
category of finitely generated graded left A-modules. For a minimal free resolution P, of
M € *mod A, Eisenbud et al. [3] defined the linear part lin(P,) of P,, which is the chain
complex obtained by erasing all terms of degree > 2 from the matrices representing the
differential maps of P, (hence lin(P,); = P; for all ¢). Following Herzog and Iyengar [7],
we call

lda(M) := sup{i | H;(lin(P.)) #0}
the linearity defect of M.

For M € *mod A and i € Z, M ;y denotes the submodule of M generated by its degree
i part M;. We say M is componetwise linear ([6]), if each M;, has a linear free resolution,
in other words, the minimal free resolution is of the form

oo AP (—f— g) = A®P2(—j - 2) o ABP (i — 1) - ABPo(—j) o My — 0.
If M is componentwise linear, so is its i*! syzygy Q;(M) for all ¢ > 0. Moreover, we have
ld4(M) = inf{ ¢ | Q;(M) is componentwise linear }.

Clearly, 1d4(M) < proj.dim 4(M). Hence 1dg(M) < oo for all M € *mod S. But even if
A is a Koszul commutative algebra, it might occur that 1d4(M) = oo (c.f. [7]). But we
have the following.

Theorem 1.1. We have the following.

(1) (Eisenbud et. al. [3]) We have ldg(M) < oo for all M € *mod E.
(2) (Y. [16]) If n > 2, then sup{ldg(M) | M € *mod E } = co. But we have

ldE(M) < wn!z(n-—l)!,

where w := max{dimg M; |1 € Z}.
(8) (Herzog-Romer [10]) If J is a monomial ideal of E = K(y1,...,Yn), then

dp(E/J) < n—1.

The parts (1) and (2) of the theorem are closely related to Bernstein-Gel’fand- Gel’fand
correspondence (BGG correspondence), which gives a derived equivalence D?(*mod §) =
D*(*mod E). The main results of this paper improve/refine the part (3).

This note is based on our paper [9] which has been submitted to a journal.
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Set [n] := {1,...,n}, and let A C 2"l be a simplicial complex (i.e., F C G € A implies
F e A). To A, we assign monomial ideals of S and E as follows:

In=([[=Fch,F¢ga)cs, Ja=([JulFch,Fga)cE.
i€F i€F
Any monomial ideal of E is of the form Ja for some A. We call K[A] := S/Ia the
Stanley-Reisner ring of A, and K(A) := E/Ja the exterior face ming of A. Both are
important in combinatorial commutative algebra. The following theorem follows from
BGG correspondence for K[A] and K(A).

Theorem 1.2. Let A # () be a simplicial complex on [n]. Then;
(1) lds(K[A]) =1dg(K(A)). (So we denote this value by 1d(A).)
(2) If A # 2T for any T C [n], then 1d(A) is a topological invariant of the geometric
realization |AV| of the dual complez AV :={F C[n]|[n]—-F €A} of A.
(3) Forn > 4,1d(A) =n—2 (this is the largest possible value) if and only if A is an
n-gon.

2. BGG CORRESPONDENCE AND LINEARITY DEFECT

We use the same notation as the previous section. _

Let Py :--- = P; = Py — 0 be a graded minimal S-free resolution of M € *mod S.
For i € Nand j € Z, we have natural numbers f3;,;(M) such that P, & P, S(—75)Pui (M),
The (Castelnuovo-Mumford) regularity

regg(M) == max{j—i|Gi;(M) # 0}

of M is an important invariant introduced in [4]. For the conveniense, we set the
regularity of the 0 module to be —co. For N € *mod E, we can define §;;(N) by the
same way.

For a cochain complex (N*®,8%) in *mod E, we can make L(N*®) ;= S®g N*® a cochain
complex of graded free S-modules as follows. Set L(N*)™ = @, ,;_,, S ®k N}, and the
degree of an element in S; @k N; to be [ — j. Finally, the differential defined by

LN > S@k N;31®z— Y m®uz+(-1)"(1®8'(2) € L(N*)™
) 1<i<n
This operation gives the functor £ : D*(*mod E) — D®(*mod S).
Similarly, for a cochain complex M*® in *mod S, we can make R(M*®) = Homg (E, M*)
a cochain complex of graded free E-modules. If M* is a module M, then R™(M) =
Homg (E, M,,) & E®dmxMm(n 4 m) and the differential is given by

R™(M) = Homg (B, Mn) > f = [e— > if (yie)] € Homg (E, Min41) = R™1(M).
1<i<d

This operation induces the functor R : D®(*mod S) — D®(*mod E). See [3] for details.

Theorem 2.1 (BGG correspondence, c.f.[3]). The functors L and R give a category
equivalence D®(*mod S) = D*(*mod E).

BGG correspondence is a special case of Koszul duality. That is, the fact that S
and E are Koszul algebras and they are the Kosuzl dual of each other (ie., S & E' :=
Exty(K,K) and E = §' := Ext}(K, K)) is essential.
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Since §; j(M) = dimg[Exts(M, K)]—; and R(K) = E, we have the equality
B;,;(M) = dimy H'~*(R(M))—;.
Hence we have the following.
Theorem 2.2 (Eisenbud et al. [3]). For M € *mod S, we have
vegs(M) = max{i | H'(R(M)) #0}.

The “linear part” of the free resolution of a graded module (over S or E) has been
introduced by Eisenbud and his coworkers. In the previous section, we mentioned this
notion. But we give a precise description here. Let P, be a minimal E-free resolution
of N € *mod E. Consider the decomposition P; := D¢z Fi,j such that P;; = E®™(—j)
for some m. For an integer I, we define the I-linear strand lin;(P,) of P, is the complex
defined as follows: The term lin;(P,); of homological degree i is P;;,; and the differential
P;1+i = Pi_14i-1 is the corresponding component of the differential P, — P;_; of P,. So
the differential of lin; (P, ) is represented by matrices whose entries arein By = (y1,. .., Yn)-
We call lin(P,) := @;czliny(P.) the linear part of the minimal free resolution P, of N.
lin(P,) is not acyclic in general. It is acyclic if and only if N is componentwise linear.

To state the next result, we have to introduce a few operations. For a complex M®,
set H(M*) to be the complex such that H(M*®)* = H*(M) for all i and the differential
maps are zero. It is easy to see that (—)V := Homg (—, K) gives an exact duality functor
from *mod E to itself. (One might think NV is a right E-module. But, for graded E-
modules, we do not have to distinguish left modules form right ones.) Clearly, (—) can
be extended to a operation on complexes.

Proposition 2.3 ([15]). Let P, be a minimal free resolution of N € *mod E. Then we
have

lin(P.) = (R oH o L(NY))V.

For a minimal free resolution P, of M € *mod S, we can also define lin(P,) by the
same way. In this case, lin(P,) = Lo o R(M).

Definition 2.4 (Herzog-Iyengar [7]). Let N € *mod E, and P, its minimal free resolu-
tion. We call Idg(N) = sup{ i | H;(lin(P,)) # 0} the linearity defect of N. We can also
define 1ds(M) for M € *mod S.

Clearly, 1ds(M) < proj.dimg(M) < n. While proj.dimg(N) = oo unless N is free,
Eisenbud et al. [3] showed that ldg(IN) < oo for all N € *mod E. (The second author
showed that this result can be generalized as follows: If A is a Koszul complete intersection
commutative algebra, then 1d 4:(N) < oo for all N € *mod 4'.)

The next result follows form Theorem 2.2 and Proposition 2.3.

Theorem 2.5. If N € *mod E, then we have
1dg(N) = max{regg(H*(L(NY)) +i|i€ Z}.

Remark 2.6. Eisenbud et al [3] gives a similar description of ldg(/N). But we believe that
the above one is more practical. For example, Theorem 1.1 (2) follows from the above
description. Moreover, it is not so difficult to write a Macaulay2 script which construct
L(NV) for N € *mod E (cf [2]). Soldg(IN) can be computed actually.
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3. LINEARITY DEFECT OF FACE RINGS

For a simplicial complex A C 207, let In := ([licp2i | F C [n],F ¢ A) be a
monomial ideal of S, and Ja := ([L;cr¥i | F C [n), F ¢ A) a monomial ideal of E. Set
K[A] = S/Ia and E := E/Ja.

Theorem 3.1. For a simplicial complex A C 2l"l | we have
ldg(K(A)) =1ds(K[A]) and ldg(Ja) =1ds(Ia).

Remark 3.2. If 1dg(K[A]) > 1, then we have ldg(K[A]) = 1ds(Ja) + 1. On the other
hand, we have ldg(K[A]) = 0 <= A = 27 for some T C [n] = 1ds(Ia) = 0.

Idea of the proof. There might exists a direct proof. But, in [9], we use the fact that
BGG correspondence has special meaning for K[A] and K(A) (c.f. [14]). From this, we
can show that both 1dg(K (A)) and ldg(K (A)) equal

max{ i — depthS(Extg_"(IAv,S)) [0<i<n}. (3.1)

Here
AV:={FcCln]|[n]\F¢gA}

is the Alezander dual of A.
We remark that the number in (3.1) is closely related to the notion of sequentially
Cohen-Macaulay modules (c.f. [11, Theorem 2.11]).

Theorem 3.1 suggests that we may set
1d(A) = lds(K[A]) = lde(K((A)))-

A simplicial complex A gives the topological space |A| which is called the geometric
realization of A. In other words, A is a “triangulation” of |A|. It is well-known that many
homological/ring theoretical invariants of K[A] only depend on the topological space |A|
(and char(K)). But, for 1d(A), the Alexander dual AV is essential.

Theorem 3.3 ([9)). If A # 2", then 1ds(Ia) (= 1dg(Ja)) is a topological invariant of
the geometric realization |AV| of the Alezander dual AY. If A # 2T for any T C [n],
1d(A) is a topological invariant of |AV|.

The above result follows from the fact that 1d(A) equals the number given in (3.1) and
“sheaf method in the Stanley-Reisner ring theory” introduced in [13].

Remark 3.4. (1) For the first statement of Theorem 3.3, the assumption that A 7 ol is
necessary. In fact, if A = 27l then I = 0 and AV = . On the other hand, if we set
I := 2"\ [n], then TV = {0} and |TV| =0 = |AY|. In view of (3.1), it might be natural
to set 1dg(Ia) = 1ds(0) = —oo. But, Ir & S(—n) and hence lds(Ir) = 0. One might
think it is better to set 1ds(0) = 0 to avoid the problem. But this convention does not
help so much, if we consider K[A] and K[T]. In fact, lds(K[A]) = 0 and lds(K[I]) = 1.

(2) 14(A) depends on the characteristic char(K). In fact, when |A"| is homeomorphic
to a real projective plane P?R, we have

3 if char(K) =2
1 otherwise.

1d(A) = {
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4. AN UPPER BOUND OF LINEARITY DEFECTS.

In the previous section, we have seen that ldg(K(A)) = ldg(K[A]) (=: 1d(A)) for a
simplicial complex A. In this section, we will give an upper bound of them, and see that
the bound is sharp.

Let N € *mod E. We call indegg(N) := min{¢ | NV; # 0} minimal the initial degree
of N, and indegg(M) is similarly defined as indegg(M) := min{7 | M; # 0} for M €
*mod S. Note that for a simplicial complex A on [n] we have indegg(Ia) = indegg(Ja) =
min{ §F | F C [n],F ¢ A}, where §F denotes the cardinal number of F. (Recall that
dim F = §F — 1.) So we set

indeg(A) := indegg(Ia) = indegg(Ja).

Let P, be a minimal free resolution of M € *mod S. Recall that, for [ € Z, the I-linear
strand lin;(P,) is a direct summand of lin(P,) with lin;(P.); = S(—=1 — 4)Put+(M) We
often make use of the following facts:

Lemma 4.1. Let M € *mod S and let P, be a minimal free resolution of M. Then
(1) ling(P.) = 0 for all i < indegg(M);
(2) linjngegg(ar)(Fe) s a subcomplez of Pu;
(3) if M = K[A), then lin(P.) = Py, liny(Ps), and liny(P,); = 0 for alli >n—1
and all 0 < I < n, where the subscript i is a homological degree.

Proposition 4.2 ([9]). For a simplicial complez A on [n], we have
1d(A) < max{1,n — indeg(A)}.
Proof. By Lemma 4.1, we have
1d(A) = 1dg(K[A]) < proj.dimg(K[A]) < n — indeg(A) + 1.

As a bound for 1d(A), this is weaker than the required one. But, checking the “tail” of
the minimal free resolution P, of K[A] carefully, we can improve it. See [9] for detail. O

Let A,T" be simplicial complexes on [n]. We denote A *I' for the join { FUG | F €
A,G €T} of A and T, and for our convenience, set ver(A) :={ v € [n] | {v} € A }.

Lemma 4.3. Let A be a simplicial complez on [n]. Assume that indeg(A) = 1, or
equivalently ver(A) # [n]. Then we have 1d(A) = 1d(A * {v}) for v € [n] \ ver(A).
Proof. We may assume that v = 1. Let P, be a minimal free resolution of K[A * {1}]
and K(z;) the Koszul complex with respect to z;. Then P, ®¢ K(z1) is a minimal
free resolution of K[A], and moreover, we can easily verify that lLin(P, ®¢ K(z1)) =
lin(P,) ®¢ K(z1). This yields the required assertion. O

We can infer the following from the above lemma:
Proposition 4.4 ([9]. See also. [15, Proposition 4.15]). Let A be a simplicial complex
on [n]. If indeg A = 1, then we have 1d(A) < max{1,n — 3}. Hence, for any A, we have
1d(A) < max{1l,n — 2}.

Given a simplicial complex A on [n], we denote A®) for the ith skeleton of A, which is
defined as A®) .= {Fe A |dimF <i}. Weset Ap:={GeA|GCF}.

We sometimes use the following well-known result due to Hochster; there is an isomor-
phism

[Tork(K[A], K)|F = H¥~"Y(Ap; K) (4.1)
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as K-vector spaces.

Example 4.5 ([9]). Here we show that the inequality of Proposition 4.2 is optimal, if
indeg(A) > 2.

Set © := 2[" and let T be a simplicial complex on [n] whose geometric realization |T'|
is homeomorphic to the (d — 1)-dimensional sphere S9! with 2 < d < n—1. (For m > d,
there exists a triangulation of S%~! with m vertices. See, for example, [1, Proposition
5.2.10].) Set A :=T U x(@-2),

Since £(4-2) has no faces of dimension > d — 1, we have C;_1(Ap; K) = C4_1(Tp; K)
and hence ﬁd_l(AF; K)= fId_l(FF;K). On the other hand, our assumption that || ~
S9-1 implies that

Bran(K1A)) = dimg Haoa (T K) = 14 0;

Br-a1na(K[A) = Y dimg Hy 1 (Tr; K) =0,
FCn),iF=n-1

from which it follows that 1d(A) > n —d. On the other hand, we have indeg(A) > d
by the construction. Hence 1d(A) = n — indeg(A) by Proposition 4.2, and A attains the
inequality of Proposition 4.2.

5. A SIMPLICIAL COMPLEX A WITH ld(A) =n — 2 IS AN n-GON

We say that a simplicial complex on [n] is an n-gon if its facets are {1,2},--- ,{n—1,n},
and {n,1} after a suitable permutation of vertices. Consider the simplicial complex A
on [n] given in Example 4.5. If we set d = 2, then A is an n-gon. Thus if a simplicial
complex A on [n] is an n-gon, we have 1d(A) = n — 2. Actually, the inverse holds:

Theorem 5.1. Let A be a simplicial complez on [n] with n > 4. Then 1d(A) =n— 2 if
and only if A is an n-gon.

Lemma 5.2. Let A be a simplicial complez on [n] with indeg(A) > 2, and P, a min-
imal free resolution of K[A]. We denote Qo for the subcomplez of P. such that Q; :=
Bj<ii15(=5)P C Bjeg S(—j)Pui = Bi. Assumen > 4. Then the following are equiv-

alent.

(1) 1d(A) = n —
(2) Hn—2(linz(P. ))#0
(3) Hn-3(Q.) #

It is noteworthy that in the case n > 5 the condition (3) is equivalent to say that
H,_3(lin1(R,)) # 0.

Proof. The assertion follows from the exact sequence of complexes:
0_)Q.—)P.“—)ﬁ. :=P0/Q.__)0,

See [9] for details. O
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The sketch of the proof of Theorem 5.1. First, we need some observation. Set V := 51 =
(z1,...,Tn), and let P, be a minimal free resolution of K[A]. We can define two differ-
ential map 9, & on the chain complex K[A] ®x AV ®, S as follows:

9(f® "NCx®g) =D (-1)*¢C)(z;f @ N9\ x ® g);
i€G
o(f ® N°x® g) = > _(-1)*®(f @ A9\Ix ® zig).
i€G
By a routine, it is easy to see that 9+98 = 0, and that P; = H;((K[A]@ AV ®g S, 9))
for all 3. Since, moreover, the differential maps of lin(P,) is induced by 8 due to Eisenbud-
Goto [4] and Herzog-Simis-Vasconcelos (8], lin;(P,); — lin;(P, );—1 can be identified with

B  [TorfKALKrex S-S @D [Tl (KAL) @ S,
FCn)§F=i+l FC[n) §F=i—1+1

where 8 is induced by 8, and hence by (4.1) with

P HHARK)®xS— P H"Y(Ap; K) ®k S.
FCln) jF=i+l FC[n) jF=i—1+1

Let A be a 1-dimensional simplicial complex on [n] (i.e., A is essentially a simple
graph). A cycle C in A of length t (> 3) is a sequence of edges of A of the form (v,
va), (vg, v3),...,(vs, v1) joining distinct vertices vy,...v;. We say C has a chord if there
exists an edge (v;, vj) of G such that j # i+ 1 (mod t), and C is said to be minimal
if it has no chord. It is easy to see that the 15t homology of A is generated by those of
minimal cycles contained in A, that is, we have the surjective map:

P  H(C;K) — Hi(AK). (5.1)
cca
C':minimal cycle
Now we are ready to prove. The implication “«<” has been already done in the begin-
ning of this section. So we shall show the inverse. By Proposition 4.4, we may assume
that indeg(A) > 2. Let P, be a minimal free resolution of K[A] and Q, as in Lemma
5.2. Note that @, is determined only by [Ia]2 and that it follows [Ialz = [Iam]2. If the
1-skeleton A1) of A is an n-gon, then so is A itself. Thus by Lemma 5.2, we may assume
that dim A = 1. Since 1d(A) = n — 2, by Lemma 5.2 we have

Hi (A K) 2 HY(A; K) 2 [Tors_y(K[A], K] # 0,

and hence A contains at least one cycle as a subcomplex. So it suffices to show that A
has no cycles of length < n—1. Suppose not, i.e., A has some cycles of length < n—1. To
give a contradiction, we shall show 0 — ling(Ps)n—2 — ling(P,)n—3 is exact; in fact then it
follows Hp,—2(ling(Ps)) = 0, which contradicts to Lemma 5.2. By the above observation,
this is equivalent to say that

0— HY(AK) ®x S — @D B (A_(3; K) @k S. (5.2)
1€[n]

is exact. Here —{i} denotes the subset [n] \ {i} of [n].
Now by our assumption that A contains a cycle of length <n —1 (thgt is, A itself is

not a minimal cycle), and by (5.1), we have the surjective map 7 : EBiE[n] Hi(A_gy; K) =
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H,(A; K) where 7 is induced by the chain map 7 : @é.(A_{i};K) — Cu(A;K), and
7 is the sum of 7; : é.(A_{i};K) 3 eg — (—1)®4Peg € C,(A; K). Here eg is the basis
element of Co(A_y;3; K) (and Co(A; K)) corresponding to G € A_y;3. Taking the K-
dual of 7, we have the injective map 7* : H(A; K) — Dicpm) HY(A_g3y; K), which is
composed by the K-dual 7* : H(A;K) — fIl(A_{i};K) of 7;. Then we see that the
second morphism in (5.2) is given by

n
2@y Y 7 (2) B oy

i=1
for z€ H(A;K) and y € S, and hence (5.2) is injective. O

Remark 5.3. (1) If A is an n-gon, then AV is an (n — 3)-dimensional Buchsbaum complex
with ﬁn_4(AV;K ) =K. If n =5, then AV is a triangulation of the Mobius band. But,
for n > 6, AV is not a homology manifold. In fact, let {1,2},{2,3},--- ,{n—1,n},{n,1}
be the facets of A, for F := [n] \ {1, 3,5}, easy computation shows that lkav F' is a
0-dimensional complex with 3 vertices, and hence ﬁo(lkAv F;K)= K2

(2) If indeg A > 3, then the simplicial complexes given in Example 4.5 are not the only
examples which attain the equality 1d(A) = n — indeg(A). We shall give two examples
of such complexes.

Let A be the triangulation of the real projective plane P?R with 6 vertices which is
given in [1, figure 5.8, p.236]. Since P?R is a manifold, K[A] is Buchsbaum. Hence
we have H2(K[A]) = [HA(K[AD]o = Hi(A;K). So, if char(K) = 2, then we have
depthg(Exté(K[A],ws)) = 0. Note that we have A = AV in this case. Therefore, easy
computation shows that 1d(AY) =1d(A) = 3 =6 — 3 = 6 — indeg(A).

Next let A be a triangulation of a cylinder with 6 vefti~ces. A cylinder is a manifold,
and so as above we have H2(K[A]) = [HZ(K[A])]o & Hi(A;K) = 1 # 0, since it is
homotopic to a circle. Thus we deduce that 1d(AY) = 3 = 6 — indeg(A"). Here we use
the fact that in general indeg(AY) = n — dim A — 1 holds for a simplicial complex A on
[n]. However AV is not a simplicial complex in Example 4.5; otherwise the dimension of
AV must be indeg(AY) — 1 =2, but dimAY =6 — indeg A — 1= 3.

In our talk, we said that for a 1-dimensional simplicial complex A, 1d(A) = max{ {F —
2 | Ap itself is a minimal cycle } holds for 1d(A) > 2, but to our regret we found this
assertion false. So we correct and apologies. The assertion was “proved” after submission
of our paper [9], and so this error make no influence on it. We give a counterexample as
follows:
Example 5.4. Let A be the simplicial complex as follows:

1

6

Then max{fF — 2 | A itself is a minimal cycle} = 3, while we see 1d(A) = 4, by
computation with the software system Macaulay 2 ([5]).
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Since an inequality of one side holds (in more general condition), we shall introduce it.

Proposition 5.5. For a simplicial complex A, we have
1d(A) > max{§F —dimAr — 1| F C [n], AF is Gorenstein}.
In particular, if dimA =1,
1d(A) > max{§F — 2| Af itself is a minimal cycle}.

Proof. Here we use the same notation as the sketch of the proof of Theorem 5.1. Since
HF —dimAp — 1= fcore F — dim Acore 7 — 1, we may assume that Ap is a Gorenstein*
complez (see [11]) on F. Set d := dimAp + 1. Then we have H4 1(Ap; K) # 0,
whence ling(P,)jr—a D fId_l(Ap;K) ®x S # 0. Now take a base z of the free S-
module H%~1(Ap; K) ®x S. Then by minimality of P., z is not in (@ (ling(Pa)jr—d+1)-
On the other hand, though 8% (z) € Decric=1r-1 A4 1(Ag; K) ®k S holds, we have
H 4-1(Ag; K) = 0 for all such G, for Ar is Gorenstein*, and so ' (z) = 0. Therefore
we conclude Hyp_g(ling(P,)) # 0. O
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Abstract

Let R be a noetherian commutative ring, and
F:---—=F—-Fh—=F—>0

a flat R-complex. We prove that if k(p) g F is acyclic for any p €
Spec R, then F is acyclic, and Hy(F) is R-flat. It follows that if F is
a (possibly unbounded) complex of flat R-modules and x(p) Qg F is
exact for any p € Spec R, then G ®g F is exact for any R-complex
G. If, moreover, F is a complex of projective R-modules, then it is
null-homotopic (follows from Neeman’s theorem).

Introduction

Throughout this paper, R denotes a noetherian commutative ring. The sym-
bol ® without any subscript means ®g. For p € Spec R, let 7(p) denote the
functor k(p)®?, where x(p) is the field R,/pR,. An R-complex of the form

]Fii—z-*Flﬂ')Fo—)O

is said to be acyclic if H;(F) = 0 for any ¢ > 0.
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It has been known that, for an R-linear map of R-flat modules ¢ : F1 —
Fy, if o(p) is injective for any p € Spec R, then ¢ is injective and Coker ¢ is
R-flat (see [1, Lemma 1.2.1.4] and Corollary 6).

In this paper, we prove:

Theorem 1. Let
F: o 2% F—0

be an R-flat complex. If F(p) is acyclic for any p € Spec R, then F s acyclic,
and Hy(F) is R-flat. In particular, M ® F is acyclic for any R-module M.

The case of a map ¢ : F; — Fy is a special case of the theorem such that
F; =0 for any 7 > 1.

By the theorem, it follows immediately that if F is an (unbounded) R-flat
complex and F(p) is exact for any p, then F is K-flat and exact. Combining
this and Neeman'’s result, we can also prove that an (unbounded) projective
R-complex P is null-homotopic if P(p) is exact for any p € Spec R.

The author is grateful to H. Brenner for a valuable discussion. Special
thanks are also due to A. Neeman for sending his preprint [2] to the author.

2. Acyclicity of flat complexes

We give a proof of Theorem 1.

Proof of Theorem 1. It suffices to prove that R/I @ is acyclic for any ideal
I of R. Indeed, if so, then considering the case that I = 0, we have that F
is acyclic so that it is a flat resolution of Ho(F). Since R/I ® F is acyclic for
any ideal I, we have that Torf (R/I, Ho(F)) = 0 for any ¢ > 0. Thus Hy(F) is
R-flat. So Tor®(M, Hy(F)) = 0 for any ¢ > 0, and the last assertion follows.
Assume the contrary, and let I be maximal among the ideals J such that
R/J ®T is not acyclic. Then replacing R by R/I and F by R/I ®F, we may
assume that R/I ® FF is acyclic for any nonzero ideal I of R, but F itself is
not acyclic. ‘
Assume that R is not a domain. There exists some filtration

O=MycM,C---CM,=R

such that for each i, M;/M;_1 = R/P; for some P; € Spec R. Since each F;
is a nonzero ideal, R/P, ® F is acyclic. So M; ® F is acyclic for any 7. In
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particular, F = M, ®F is acyclic, and this is a contradiction. So R must be
a domain.
For each x € R\ 0, there is an exact sequence

0-F%F—R/Rz®F — 0.

Since R/Rz ®F is acyclic, we have that z : Hy(F) — H;(F) is an isomorphism
for any ¢ > 0. In particular, H;(F) is a K-vector space, where K = x(0) is
the field of fractions of R. So

H;(F) = K ® H,(F) @ H;(K ®F) = Hi(F(0))=0 (i >0),

and this is a contradiction. O
Let A be aring. A complex F of left A-modules is said to be K-flat if the
tensor product G ®% I is exact for any exact sequence G of right A-modules,
see [3].
For a chain complex

d; i
H:-. — i+1‘_+1"Hid_’ e
of left or right A-modules, we denote the complex
e i+1—>Kerd,~—+O

by 7>;H or 7<7*H. Since G = lim 7="G, F is K-flat if and only if G ®} F
is exact for any exact sequence G of right A-modules bounded above (i.e.,
G_; =G* =0 for i > 0). A flat complex F of left A-modules is K-flat if it is
bounded above, as can be seen easily from the spectral sequence argument.
A null-homotopic complex F is K-flat, since G ®4 F is null-homotopic for
any complex G.

Lemma 2. Let A be a ring, and
F:oom P S RS F S
a complez of flat left A-modules. Then the following are equivalent.

1 M ®4F is ezxact for any right A-module M.

2 [ is ezact, and Imd; is flat for any 1.
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3 F is K-flat and ezact.
Proof. 1=-2 Obviously, F =2 A ®4 F is exact. Thus
F': o > Fp—F—0
is a flat resolution of Imd;, where F,.; has the homological degree n in [F’.
For any i € Z,
Tor{ (M, Imd;) & Hy(M @4 F) = H; 1 (M ®4F) =0

for any right A-module M. Thus Imd; is A-flat.
2=-1 For any i € Z,

Hiy(M ®aF) = H (M ®4F) = Torf (M, Imd;) = 0,

where ' is as above.

1,2= 3 We prove that G ®4 F is exact for any bounded above complex
G of right A-modules. Since F = lim 7="F and 7="F satisfies 2 (and hence
1), we may assume that F is also bounded above. Then by an easy spectral
sequence argument, G ®4 F is exact.

3=-1 Let P be a projective resolution of M. Since PP is a bounded above
flat complex of left A°°-modules and F is an exact complex of right A°P-
modules, P ®4 F is exact. Let Q be the mapping cone of P — M. Then
Q ®4F is also exact, since Q is exact and F is K-flat. By the exact sequence
of homology groups

H(PQaF) —» Hi(M®4F) > Hi(Q®4F),
we have that M ®4 F is also exact. O
Corollary 3. Let
F: o F, "N p S p

be a (possibly unbounded) flat complezx of R-modules. If F(p) is exact for any
p € Spec R, then F is K-flat and ezact.

Proof. By Lemma 2, it suffices to show that for any n € Z and any R-module
M, H,(M ®F) = 0. But this is trivial by Theorem 1 applied to the complex

dnt1 d
i n+1_n'—)Fn'l)Fn—1_>O-

The following was proved by A. Neeman [2, Corollary 6.10].
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Theorem 4. Let A be a ring, and P a complex of projective left A-modules.
If P is K-flat and ezact, then P is null-homotopic.

By Corollary 3 and Theorem 4, we have

Corollary 5. Let P be a complex of R-projective modules. If P(p) is ezact
for any p € Spec R, then P is null-homotopic.

The following also follows.

Corollary 6 (cf. [1, Lemma 1.2.1.4]). Let ¢ : F; — Fy be an R-linear
map between R-flat modules. Then the following are equivalent.

1 o is injective and Coker ¢ is R-flat.

2 ¢ is pure.

3 ©(p) is injective for any p € Spec R.

Proof. 1=>2=-3 is obvious. 3=-1 is a special case of Theorem 1. O

Corollary 7 ([1, Corollary 1.2.1.6]). Let F' be a flat R-module. If F(p) =
0 for any p € Spec R, then F' = 0.

Proof. Consider the zero map F' — 0, and apply Corollary 6. We have that
this map is injective, and hence F' = 0. O

Corollary 8. Let ¢ : F} — Fy be an R-linear map between R-flat modules.
If p(p) is an isomorphism for any p € Spec R, then ¢ is an isomorphism.

Proof. By Corollary 6, ¢ is injective and C := Coker ¢ is R-flat. Since
C(p) = Coker(p(p)) = 0 for any p € SpecR, we have that C = 0 by
Corollary 7. 0

Corollary 9. Let M be an R-module. If Tor®(k(p), M) = 0 for anyi > 0,
then M is R-flat. If Tor?(x(p), M) =0 for any i > 0, then M = 0.

Proof. For the first assertion, Let F be a projective resolution of M, and
apply Theorem 1. The second assertion follows from the first assertion and

Corollary 7. O

Corollary 10. Let M be an R-module. If Exto(M,k(p)) =0 for any i > 0
(resp. 1 > 0), then M is R-flat (resp. M = 0).

Proof. This is trivial by Corollary 9 and the fact
Exth (M, k(p)) & Hom,{(p)(TorzR(n(p), M), k(p)). O
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3. Some examples

Example 11. There is an acyclic projective complex
P:....>P—-F—0

over a noetherian commutative ring R such that Hy(P) is R-flat and ho(p) :=
dim, ) Ho(P(p)) is finite and constant, but Ho(P) is neither R-finite nor R-

projective.

Proof. Set R=17Z, M = }_ (1/p)Z, and P to be a projective resolution of M.
Then M is R-torsion free, and is R-flat. Since My = (1/p)Zy), ho(p) = 1
for any p € SpecZ. A finitely generated nonzero torsion-free Z-submodule of
@ must be rank-one free, but M is not a cyclic module, and is not rank-one
free. This shows that M is not R-finite. As R is a principal ideal domain,
any R-projective module is free. If M is projective, then it is free of rank
ho((0)) = 1. But M is not finitely generated, so M is not projective. O

Remark 12. Let (R, m) be a noetherian local ring, F' a flat R-module, and c
a non-negative integer. If dim,,) F(p) = c for any p € Spec R, then F' = R°,
see [1, Corollary I11.2.1.10].
Remark 13. Let

P:0—p & pt L pr &
be an R-flat complex such that P° is R-projective. Assume that P(p) is
acyclic (i.e., H(P(p)) = 0 for any ¢ > 0) and hQ(p) := dim,) H°(P(p)) is
finite for any p € Spec R. If hQ is a locally constant function on Spec R,
then H°(P) is R-finite R-projective, and M ® PP is acyclic and the canonical
map M @ H°(P) — H°(M ®P) is an isomorphism for any R-module M, see
[1, Proposition 111.2.1.14]. If, moreover, P is an R-projective complex, then
Im d* is R-projective for any ¢ > 0, as can be seen easily from Theorem 4.

Example 14. Let M be an R-module. Even if M(p) = 0 for any p € Spec R,
M may not be zero. Even if Torf(k(p), M) = 0 for any p € Spec R, M may
not be R-flat.

Indeed, let (R, m, k) be a d-dimensional regular local ring, and F the
injective hull of k. Then

Torf(x(p), B) = {

F' is not R-flat unless d = 0.

k (i=dandp=m)
0 (otherwise)
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Proof. Since supp E = {m}, TorF(x(p), E) = 0 unless p = m.

Let * = (z1,...,74) be a regular system of parameters of R, and K
the Koszul complex K (x; R), which is a minimal free resolution of k. Note
that K is self-dual. That is, K* = K[—d], where K* = Hom%(K, R), and
K[—d]* = K™% So

Torf(k,E) = H (K ® E) 2 H/(K™ ® E) = H*(Homy(K[-d], E))
k (i=d)
0 (i#d) -

O

~ H~*(Homy(kd), E)) {

Example 15. There is a projective complex PP over a noetherian commuta-
tive ring R such that for each m € Max(R), P(m) is exact, but IP is not exact,
where Max(R) denotes the set of maximal ideals of R.

Proof. Let R be a DVR with its field of fractions K, and P a projective
resolution of K. O
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On squarefree monomial ideals whose projective
dimension is close to the number of generators

Naoki Terai (Saga University)

This is a joint work with K. Kimura and K. Yoshida in Nagoya University.

§1. Hypergraphs and the main theorem

In [Te2] and [Te3] we gave a classification of almost complete intersection monomial ide-
als I (u(I) = height + 1) and equidimensional squarefree monomial ideals / with deviation 2
(u(I) = heightl + 2) to determine their arithmetical rank. In this short article we give a com-
binatorial characterization for the condition (I) = projdimsS /I + 1 for squarefree monomial
ideals I using hypergraphs. . |

By a hypergraph H on a vertex set V, we mean H is a family of subsets of V such that

UrenF = V.

We define the dimension of F by dim F = §(F) — 1. For a hypergraph H, V(H) stands for its
vertex set. _

Let I be a squarefree monomial ideal in the polynomial ring S = k[x;, xo,..., x,] over a
field k. Put I = (my,my, ..., m,), where {m;, my, ..., m,} is the minimal monomial generators.

We define the hypergraph H(I) on the vertex set V = [u] := {1, 2, ..., u} by the following way:

F e H(I) & thereexists i (1 <i < n)suchthat forall jeV,
m; is divisible by x; if j € F
and m; is not divisible by x; if j€ V \ F.

Since {m;,my,...,m,} is a minimal set of generators, the hypergraph H = H(J) satisfies

the following condition:

Foralli, j € V(i # j), there exist F,G € Hsuchthatie FN(V\G)and je GN(V\ F).
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Conversely, a hypergraph H with the above condition can be written as H = H(I) for a
squarefree monomial ideal / in a polynomial ring with enough variables.

For a hypergraph H on a vertex set V, we define thé i-subhypergraph of H by H' = {F €
H;dim F = i}. We can consider that H° ¢ V, and put B(H) = H° and W(H) = V \ B(H).

For a squarefree monomial ideal /, by Taylor-resolution we have bight!/ < projdimS /I <
u(I), where bight I = max{heightP; P € Min(S/I)}. And the next proposition is easy and

well known:

Proposition. The following conditions are equivalent for a squarefree monomial ideal I:
(I1)bight I = u(l).
(2)projdim S /I = u(l).
(3)For the hypergraph H := H(I) we have B(H) = V(H).

Now we consider the condition bight I = u(I) - 1.
A subset C of a hypergraph H on a vertex set V is called a cover of H if UpecF = V. A

cover C of H is called minimal if no proper subset of C is a cover of H.

Proposition. The following conditions are equivalent for a squarefree monomial ideal I:
(1)The ideal I has a prime component of height h.
(2)The hypergraph H(I) has a minimal cover of cardinality h.

Corollary. The following conditions are equivalent for a squarefree monomial ideal I:
(I)bight I = u(l) - 1.
(2)The hypergraph H := H(I) satisfies B(H) # V(H) and contains the following hypergraph

H,_i_\;for some 1 < i.< u~1as aspanning subhypergraph:

PV e

i
uy—i—1

where a “black vertex” belongs to B(H) and a “white vertex” belongs to W(H).

Next we give a combinatoriél characterization for the condition projdim S/I = pu(I) - 1.
For U c V(H), we define the restriction of a hypergraph H to U by Hy = {F € H; F c U}.
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Theorem. The following conditions are equivalent fbr a squarefree monomial ideal 1:
(1)projdimS/I = u(I) - 1.
(2)The hypergraph H := H(I) satisfies B(H) # V(H) and either one of the following condi-
tions:
(i)The graph (W(H), H‘I,V( H)) contains a complete bipartite graph as a spanning subgraph.
(ii)There exists i € B(H) such that {i, j} € H for all j € W(H).

Corollary. Let I = (my,my,...,m,) be a squarefree monomial ideal in S, where p =
u(l) > 3. Let3 < j < ubeaninteger. Put S’ = S[xn41], where xp41 is a new indeterminate
and let J be the monomial ideal (M Xy+1,MaXn41, .« ., MjXnel, Mjsl, ..., Mys1) in S’. Then
projdimg S /I = u(I) — 1 if and only if projdimg,S’/J = u(J) — 1.

Corollary. The condition projdim S/I = u(I) - 1 is independent of the base field k for a

monomial ideal I.

Remark. The condition projdim S/ = u(I)—-2 depends on the base field k for a monomial

ideal I as the following examples shows:
Example. Let I be the monomial ideal defined by

I = (X1X2X8X9X10, X2X3X4X5X10, X5X6X7 X8 X10, X1X4X5X6X9, X1 X2 X3 X6 X7, X3X4X7XgX9).-

Here H(I) is the set of facets of the six-vertex triangulation of P2(R). Then projdimS /I = 4
if char k = 2, while projdimS /I = 3 if char k # 2.

§2. Proof of the main theorem

Let S = k[x;, x2,...,x,] be the polynomial ring in n-variables over a field k. We fix
a squarefree monomial ideal I = (my,my,...,m,), where {m;,my,...,m,} is the minimal
generating set of monomials for 1.

By Lyubeznik[Ly] we have projdimS/I = cdl := max{i;H}'(S) # 0}. Assuming that
projdimS /I < p(I) — 1, we have projdimS /I = p(I) — 1 if and only if H;’ "I(S ) # 0. We give
a combinatorial interpretation for the condition Hj"l (8) # 0. (See [Tel] for the cohomology

with monomial ideal support.)
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Consider the following Cech complex;

o
' =(XO0—5 — S, — 0)

i=1
! & & &
=0— S5 — @.S;n; - @ Am,-mj e Smlmz-nm,, — 0.
1<i<p 1<i<j<pu
We describe §"+! as follows; Put R := qumfz-"'mr and {ji, jo,---5Js} = {1,2,---,u} \
{i1,i2,..., 0/}, where j1 < jp <...<...jsandr+s=p. Lety; : R — Ry, be a natural

map. For u € R, we have
N s . . x .
5 w) = Z(_l)llq;tq<]pllep(u) = Z(_l)lp_pwjp(u).
p=1 p=1

For F € 2", we define x* := [];cr x;. We define a simplicial complex A(F) on the vertex

set [u] by
AF) = {liv, i, iy A1 ] myb
JE(L2,p\linsi2,ee i)
For @ € Z", there is a uniqile decomposition @ = @, — @- such that a,,e- € N" and

supp @4 N supp @- = 0. Then we have supp a- = {i; a; < 0}.

Lemma(cf. [St, Lemma 2.5 ]). For a € Z" give an orientation for A(supp a-) by 1 <2 <
-+« < . Then we have the following isomorphism of complexes: C, = C.(A(supp a_)) such
that C}, = Cy_r_1(A(supp a.)).

Now we have the following isomorphisms:

H 7 (8)e = HFH(C)e
= Ho(A(supp a_); k)
= Hy(A(supp a_)V; k),

where A(supp @_)V := {F € A(supp a-);dim F < 1} is the 1-skeleton of A(supp a-). Hence
HY ~1(8)q = 0 if and only if A(supp )" is connected.

We claim that A(supp a_)") is connected for all € Z" if and only if the graph (U, (‘2’) \H})
is connected for all W(H) ¢ U ¢ V(H), where (3) = {{i,j} € U; i # j). Let U be the
vertex set of A(supp @_)V) for @ € Z". Then U > W(H) and (‘2’) \ H}, ¢ A(supp a-)V.
Hence if (U, (g) \ H},) is connected, then so is A(supp @)D, On the other hand, fix U
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such that W(H) ¢ U c V(H). Put U = W(H) U B’, where B C B(H). By a suit-
able change of variables, we may assume that B’ = {1,2,...,p}. For 1 < j < p, set
{xi; xilmj, x; ¥ mgfor€ # j} = {x,-ﬂ,...,x;j,j}. Take @ € Z" such that suppa_ = [n] \
{11,515y 215y i2gg -+ Bp1s 5 ips, ). Then we have (U, (5) \ H}) = A(supp o).
Hence we have the claim. ‘

The graph (U, (g) \H }j) is connected for all U such that W(H) c U ¢ V(H) if and only if
the following conditions (I) and (II) are satisfied:
()The graph (W(H), (W(H)) \ H‘lv( 1) is connected.
(Il)For i € B(H) set U; = W(H).U {i}. The graph (U;, (U') \ H 1 ) is connected for all i € B(H).
Hence the condition projdim S /I = u(I)—1 holds if and only if one of the following conditions
(i)’ or (ii)’ is satisfied:
(i)’ The graph (W(H), (V§P) \ ;) is disconnected.
(i)’ The graph (U;, (%') \ H}, ) is disconnected for some i € B(H).
The condition (i)’ ((ii)’, respectively) is equivalent to the condition (i) ((ii), respectively).

Hence we are done. ' QED
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AB modules and weakly AB rings

TOKUJI ARAYA (Nara University of Education)

1 AB-rings

Let (R, m, k) be a commutative Noetherian local ring. We denote by modR the category
of finitely generated R-modules.

Definition 1.1 (1) For non-zero R-modules M and N, we define Pg(M, N) as follows:

PR(MaN) =Sl1p{ n l EXtT}LZ(M)N) 7&0}

(2) We say R an AB-ring if the following condition holds:
sup{ Pr(M,N) | Pr(M,N) < 0o (M,N € modR) } < oo

An AB-ring was introduced by C.Huneke and D.A.Jorgensen in [2]. They consider the
following question.

Question 1.2 Are Gorenstein rings AB-rings?

The answer is No. D.A.Jorgensen and L.M.Sega showed that there exist Gorenstein
rings which are not AB-rings. On the other hand, we can see that there exist AB-rings
which are not Gorenstein rings.

Propositon 1.3 Let R be a Cohen-Macaulay ring with a minimal multiplicity. Sup-
pose Pr(M, N) < oo, then we have pd M < oo or id N < co. In particular, we have
Pr(M,N) = depth R — depth M and R is an AB-ring.

PROOF. Since projective dimension of M is finite if and only if projective dimension
of QM is finite, we may assume that M is a maximal Cohen-Macaulay module. Let
0 Y — X - N — 0 be a Cohen-Macaulay approximation of N. (Here, Cohen-
Macaulay approximation of N is an exact sequence such that injective dimension of N
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is finite and X is a maximal Cohen-Macaulay module.) We can easily see that injective
dimension of N is finite if and only if injective dimension of X is finite. Thus we may also
assume that N is a maximal Cohen-Macaulay module. Let z be a maximal M-, N-, and
R-regular sequence. Take — ® R/(z), we may assume that R is artinian and m? = 0. We
suppose that pd M = oo. In this case, we can check that Pg(Q2M, N) < co. On the other
hand, since m? = 0, we have QM is a k-vector space. Thus we have Pg(k, N) < oo and
this implies id N < co. O )

2 Main results

In this section, we introduce the definition of AB-modules and weakly AB-rings, and give
some properties about them. We consider the full subcategory A of modR as follows:

A={M € modR | 3N € modR s.t. Pg(M,N) < oo}
Lemma 2.1 The following conditions are equivalent.
(1) A=modR
(2) R is Cohen-Macaulay.
PROOF. We can check that the following implications hold:

A=modR = ke A
= 3IN € modR s.t. Pg(k,N) < o0
= 3JN € modR s.t.idN < o0
= 3IN € modR s.t. Pp(M,N) < 0o (VM € modR)
= A=modR

On the other hand, It is known that R admits a finitely generated module of finite
injective dimension if and only if R is Cohen-Macaulay (c.f. [4]). Thus we get A = modR
if and only if R is Cohen-Macaulay. O

Definition 2.2 (1) For M € A,
(i) We define Pr(M) as follows:
Pr(M) = sup{ Pr(M,N) | N € modR with Pr(M,N) < oo}

(i) We say M an AB-module if Pr(M) < oo.

(2) We say R a weakly AB-ring if every module in A is an AB-module.
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Now we give a main theorem in this lecture.

Theorem 2.3 Let M and N be R-modules. We assume that M is an AB-module and
G-dim M < oo. Suppose Pr(M,N) < oo, then we have Pr(M, N) = depth R—depth M.
In particular, we have Pr(M) = depth R — depth M.

PrOOF. Case 1. We assume G-dim M (= depth R — depth M) = 0. In this case, note
that Pr(M, R) = 0 by the definition of G-dimension 0. To show Pr(M, N) = 0, we assume
0 < Pr(M,N) =: p < co. We take the first syzygy of N : 0 = QN — F — N — 0. Take
Hom(M, —), we get a long exact sequence

—  Exth(M,QN) — Exth(M,F) — Exth(M,N) -
— Ext%'(M,QN) — Ext%'(M,F) — Ext%'(M,N) —
— Bxt2*(M,QN) — Ext%*(M,F) — Ext%*(M,N) — ...

It comes from Pr(M, F) = 0 and Pgr(M,N) = p > 0, we have Pg(M,QN) =p+ 1. By
repeating this operation, we have Pr(M,Q"N) = p+n (Vn > 0). But this contradicts
that M is an AB-module. Therefore we have Pr(M, N) = 0.

Case 2. We assume G-dim M (= depth R — depth M) =: p > 0. We take a finite
projective hullof M : 0 - M — Y — X — 0 (here, finite projective hull is an exact
sequence such that pdY < oo and X is a maximal Cohen-Macaulay module). Since
depth R > depth M and X is maximal Cohen-Macaulay, we have depthY = depth M.
Thus we have pd Y = depth R—depthY = depth R—depth M = pand Pg(Y,N) =p > 0.
It comes from case 1, we have Pgr(X, N) = 0. Take Hom(—, N) to a finite projective hull
of M, we get a long exact sequence

—  Exth(X,N) — Exth(Y,N) — Exth(M,N) —
— Ext4(X,N) — Ext3''(Y;N) — Ext%'(M,N) —

Therefore we have Pg(M, N) = p = depth R — depth M. O
It comes from Theorem 2.3, we can get following corollary.
Corollary 2.4 Suppose R be Gorenstein, then the following conditions are equivalent.
(1) R is an AB-ring.
(2) R is a weakly AB-ring.
PROOF. (1) = (2): We can check that the following implications hold:

R is an AB-ring. = sup{ Pp(M)| M €A} <
= Pr(M) < oo (VM € A)
= R is a weakly AB-ring.
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(2) = (1): Since R is Gorenstein, we have A = modR by Lemma 2.1 and every
module has finite G-dimension. For any pair M, N € modR with Pr(M, N) < oo, we
have Pgr(M,N) = depth R — depth M < depth R by Theorem 2.3. Therefore R is an
AB-ring. O

We can see that the following implications hold: “R is a Gorenstein AB ring.” & “A=

modR and Pr(M) = depth R — depth M (VM € modR)” @ gisa Cohen-Macaulay
AB ring.” In general, the opposite of (1) is not hold (c.f. Proposition 1.3). We do not
know if the opposite of (2) is hold. But I conjecture that the opposite of (2) is hold.
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Module categories and ring spectra
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Throughout this note, let R be a commutative Noetherian ring. We
denote by Mod R the category of R-modules, and by mod R the full
subcategory of Mod R consisting of finitely generated R-modules. A
perfect R-complex is defined as a finite complex of finitely generated
projective R-modules. Let D(R) denote the derived category of Mod R,
and Dpere(R) the full subcategory of D(R) consisting of R-complexes
isomorphic to perfect R-complexes. A thick subcategory of a trian-
gulated category is defined as a triangulated full subcategory which
is closed under direct summands. For an R-complex X, we denote
by H(X) the homology module of X, that is, H(X) = @, Hi(X).
Around 1990, Hopkins [1] and Neeman [3] proved the following classi-
fication theorem.

Theorem 1 (Hopkins-Neeman). One has a one-to-one correspondence
{ thick subcategories } EiN { subsets of Spec R }
Of Dperf(R)

which are gien by fi(X) = Uxexr Supp H(X) and g:(S) = {X €
Dyert(R) | Supp H(X) C S}

‘5 | closed under specialization

A Serre subcategory of mod R is defined as a full subcategory which
is closed under submodules, quotient modules and extensions. In other
- words, a Serre subcategory is defined to be a full subcategory M of
mod R such that for any exact sequence 0 -+ A - B - C — 0 in
mod R, B € M if and only if A,C € M. A coherent subcategory of
mod R is defined as a full subcategory which is closed under kernels,
cokernels and extensions. In other words, a coherent subcategory is
defined to be a full subcategory M of mod R such that for any exact
sequence A -+ B —-C —- D — EinmodR, if A,B,D,E € M then
C € M. Note that every Serre subcategory is coherent. The following
classification of Serre subcategories is well-known to experts.
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Proposition 2. One has a one-to-one correspondence

Serre subcategories f2 subsets of Spec R
{ of mod R } ‘o { closed under specialization

which are given by fo(M) = Upyep Supp M and go(S) = {M €
mod R | SuppM C S}

This proposition especially says that one has the following relation-
ships between two modules whose supports have inclusion relation.

Corollary 3. Let M, N be finitely generated R-modules with Supp M C
Supp N. Then M is in the Serre subcategory of mod R generated by
N, i.e. the smallest Serre subcategory containing N.

Taking advantage of the Hopkins-Neeman theorem and the above
proposition, Hovey [2] proved the following.

Theorem 4 (Hovey). Let R be a quotient of a reqular Noetherian ring.
Then the following hold.

(1) One has a one-to-one correspondence :
coherent subcategories fa thick subcategories
{ of mod R } ‘% { of Dpert(R) }
which are given by f3(M) = { X € Dpert(R) | H(X) € M} and
g3(X) = (the coherent subcategory generated by { H(X) | X €
x}).

(2) Every coherent subcategory of mod R is a Serre subcategory.

The first main result of this note is the following, which says that
the assumption on R in Hovey’s theorem can be removed.

Theorem 5. Let R be a commutative Noetherian ring. Then every
coherent subcategory of mod R is a Serre subcategory. Consequently,
one has the following commutative diagram of bijections:

{ thick subcategories } " { subsets of Spec R }
—2

of Dpert(R) closed under specialization

dl e ]l

coherent subcategories Serre subcategories
{ } { of mod R }

91

of mod R
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Proof. Let M be a coherent subcategory of mod R. We want to show
that M is a Serre subcategory. For this, it is enough to check that M is
closed under submodules. Assume that M is not closed under submod-
ules. Then there exist an R-module M in M and an R-submodule N
of M such that N does not belong to M. Since R is Noetherian and M
is a finitely generated R-module, M is a Noetherian R-module. Hence
we can choose N to be a maximal element, with respect to inclusion
relation, of the set of R-submodules N’ of M such that N’ does not
belong to M. Since N does not coincide with M, there is an element
z € M — N. Set L =N + Rz. Note that L is an R-submodule of M
strictly containing N. By the maximality of N, the module L is in M.
Put I = {a € R|az € N}. This is an ideal of R, and we easily see
that the quotient R-module L/N is isomorphic to R/I. There is an
exact sequence

0>N—=L3R/I->0

of R-modules. Since N ¢ M and L € M and M is closed under
kernels, we see from this exact sequence that R/I must not be in M.

On the other hand, the map 7 in the exact sequence induces a sur-
jective homomorphism

7: L/IL — R/I

of R/I-modules, which sends the residue class of y € L in L/IL to
7(y). Of course R/I is a projective R/I-module, so T is a split epi-
morphism. Therefore R/I is isomorphic to a direct summand of L/IL.
The Noetherian property of R implies that the ideal [ is finitely gener-
ated; write I = (a1, ay,...,a,)R for some elements ay,as,...,a, € R.
There is an exact sequence

Ren @ p LRI —— 0

of R-modules. Tensoring the R-module L with this exact sequence
yields another exact sequence of R-modules:

por L), s LJIL — 0.

Note that M is closed under finite direct sums, cokernels, and direct
summands. Hence the direct sum L®" belongs to M, and so does
the module L/IL, and therfore so does R/I. This is a contradiction,
which says that M is closed under submodules. Thus the proof of the
theorem is completed. O

- 162 -



A localizing subcategory of D(R) is defined as a triangulated full sub-
category which is closed under arbitrary direct sums, and a smashing
subcategory of D(R) is defined as a localizing subcategory such that
Bousfield localization commutes with arbitrary direct sums. Neeman
[3] showed the following theorem.

Theorem 6 (Neeman). One has two one-to-one correspondences

localizing subcategories fa :
¢ i subsets of Spec R
{ of D(R) } o { }
QT g QT
smashing subcategories fs subsets of Spec R
of Dpert(R) 95 closed under specialization

where fy,gs are given by fy(X) = {p € SpecR | k(p) % X #
0 for some X € X'}, g4(S) = (the localizing subcategory generated by
{k(p) | p € S}), and f5,gs are the restrictions of fs, gs Tespectively.

The second main result of this note is the following, which is a module
version of Neeman'’s theorem.

Theorem 7. Let R be a commutative Noetherian ring. Then there is
a commutative diagram:
full subcategories of mod R

closed under submodules _)é { subsets of Spec R }
and eztensions
QT g QT
Serre subcategories f2 subsets of Spec R
—
{ of mod R }

The maps fg and gs make a one-to-one correspondence, which are given
by fo(M) = Uprep Ass M and gg(S) = {M € modR | AssM C S}.
The maps fo and g induce fo and go, respectively.

92 closed under specialization

To prove this theorem, we prepare two lemmas.

Lemma 8. Let M be a full subcategory of mod R which is closed under
submodules and extensions, and let M be a finitely generated R-module.
Suppose that M has a unique associated prime p. If R/p is in M, then
so is M.
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Proof. Assume that M is not in M. Set My = M, and let ho1, ..., hos
be a system of generators of the R-module Hompg(Mo, R/p). There is

an exact sequence
( . )
ho,s
0 > M, y My —2%% (R/p)®%

of R-modules. Since My = M is not in M and (R/p)®® is in M and
M is closed under submodules and extensions, it is easily seen that M,
must not be in M. In particular, M; # 0 and hence p is the unique
associated prime of M;. Letting Ay 1, ..., hy1 s, be a system of generators
of the R-module Homg (M, R/p), we have an exact sequence

(h)
0 — My —— My —22% (R/p)®.

Since M is not in M and (R/p)®** is in M, we see that M, is not
in M, and that p is the unique associated prime of M,. Iterating this
procedure, for each integer ¢ > 0 we obtain an exact sequence

)
0 — Mipx > M; LA (R/p)®s,
where h;1,...,h;s, is a system of generators of the R-module
Hompg(M;, R/p) and p is the unique associated prime of M;. Local-
izing the descending chain M = My 2 M; O My D --- at p yields a
descending chain

Mp = (Mo)p 2 (Ml)p 2 (M2)p 2

of Ry-modules. Since the R,-module (M;), has finite length for every
i, there exists an integer ¢ such that (M), = (Myy1)p = (Miy2)p = -+ -

The exact sequence
( (ht,1)p )
= (ht,st)v

0 — (M), —— (M), K(p)®e,
shows that Hompg, (M), 5(p)) = Rp(hen)p + -+ + Rplhes)p = 0.
Therefore (M;), = 0. This is a contradiction since p € AssM; C
Supp M;. Thus we conclude that M is in M. O
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Lemma 9. Let M be a full subcategory of mod R which is closed under
submodules and extensions. Let M be a finitely generated R-module.
Suppose that R/p belongs to M for every p € AssM. Then M also
belongs to M.

Proof. Let py, ..., ps be the associated primes of M, and let
0=NN---NN;,

be an irredundant primary decomposition of the zero submodule 0 of
M, where N; is a p;-primary submodule of M for 1 < ¢ < s. Then the
natural homomorphism

M=M/NlﬂﬂNs—>M/N1€9@M/Ns

is injective. Since p; is the unique associated prime of the R-module
M/N;, Lemma 8 implies that M/N; belongs to M for 1 < i < s. Hence
M/N; @ --- & M/N; belongs to M, and so does M. a

Now we can prove our theorem.

Proof of Theorem 7. Let S be a subset of Spec R. The set fsgg(S) is the
union of Ass M where M runs through finitely generated R-modules
all of whose associated primes are in S. It is trivial that this set is
contained in S. For a prime ideal p € S, we have Assg R/p = {p} C S.
Hence p belongs to fsge(S), and therefore fsg6(S) = S. Let M be
a subcategory of mod R which is closed under submodules and exten-
sions. We have that ge fo(M) is the subcategory of mod R consisting of
all finitely generated R-modules N with Ass N C (J,;cr Ass M, and
it is obvious that gefe(M) contains M. Let N be a finitely generated
R-module with Ass N C (J,;c0 Ass M. Fix a prime ideal p € Ass N.
Then there exists an R-module M € M with p € Ass M. There is an
injective homomorphism R/p — M, and R/p belongs to M since M
is closed under submodules. It follows from Lemma 9 that N is in M.
Hence ggfs(M) = M. Thus we conclude that fg is a bijection whose
inverse map is gs.

On the other hand, let S be a subset of Spec R which is closed
under specialization. Let M be a finitely generated R-module such
that Ass M is contained in S, and take p € Supp M. Then there is a
prime ideal g € Min M C Ass M that is contained in p. Since q is in
S and S is closed under specialization, p is also in S. Thus g¢(S) =
{M € modR | AssM C S} coincides with g3(S) = { M € mod R |
Supp M C S}. Let M be a Serre subcategory of mod R. Let N € M
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and p € Supp N. Choose a prime ideal ¢ € Min N which is contained
in p. Then q is an associated prime of N, so there is an injective
homomorphism R/q — N. Since M is closed under submodules, the
module R/q is in M. Noting that there is a surjective homomorphism
R/q — R/p and that M is closed under quotient modules, R/p is also
in M. Hence we get p € AssR/p C (Jyscpq Ass M. Therefore the set
f2(M) = Uprer Supp M is contained in fo(M) = Upzep Ass M, and
we see that fo(M) = fo(M). It follows that f, and g, are induced
from f¢ and ge, respectively. ]

Here, let us check that an analogous result to Corollary 3 holds. This
actually follows from Lemma 9.

Corollary 10. Let M and N be finitely generated R-modules with
Ass M C AssN. Then M is in the full subcategory of mod R closed
under submodules and extensions which is generated by N.

Proof. Let € be the full subcategory of mod R closed under submodules
and extensions which is generated by N. According to Lemma 9, we
have only to show that the R-module R/p is in & for every p € Ass M.
Let p be a prime ideal in Ass M. The assumption says that p is in
Ass N. Hence there exists an injective homomorphism R/p — N of
R-modules. Since N is in £ and & is closed under submodules, R/p is
also in &, as required. g

In the following example, we will give several correspondences be-
tween full subcategories of mod R which are closed under submodules
and extensions and subsets of Spec R, which are made by the isomor-
phisms fg and g¢. Before that, we need to prepare some notation.
Let I be an ideal of R, and let M, N be R-modules. We denote by
(M) the I-torsion submodule of M, namely, the set of elements
of M which are annihilated by some power of I. Recall that M is
called I-torsion if I'r(M) = M, and that M is called I-torsionfree if
I';(M) = 0. It is well-known and easy to see that M is I-torsion if
and only if Ass M C V(I), and that M is I-torsionfree if and only if
AssM NV (I) = 0. We set grade(N, M) = inf{i|Extiz(N, M) # 0},
grade(I, M) = grade(R/I, M), grade I = grade(I, R) and grade M =
grade(Ann M, R).

Example 11. The bijections fs and g¢ make the following correspon-
dences. Let n be a nonnegative integer, I an ideal of R and X a finitely
generated R-module.
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(1) {M €mod R | M is I-torsion } +» V(I).
(2) {M €modR | grade(X,M) >0} <> SpecR\ Supp X.
(3) {M € mod R | M is I-torsionfree }
= {M €modR | grade(I,M) >0} < D(I).
(4) {M € modR | grade(M,X) > n} <+ {p € SpecR |
grade(p, X) > n}.
(5) {M €modR |rankM =0} = {M € modR | grade M >0}
< {p € SpecR |gradep > 0}.
(6) { M € mod R | every X-regular element is M-regular }
< {p € SpecR | grade(p,X) =0}.
(7) {M € mod R | M is torsionfree } <+ {p € SpecR | gradep =
0}.
(8) {MemodR|ht Ann M >n} < {p € SpecR | htp > n}.
(9) {MecemodR|dimM <n} + {peSpecR|dimR/p<n}.
(10) {M €modR | {(M) < 00} «» MaxR.

Note that in the correspondences (1), (4), (5), (8), (9) and (10)
in the above example, the left-hand subcategories of mod R are Serre
subcategories and the right-hand subsets of Spec R are closed under
specializations, hence those correspondences are in fact obtained by
the bijections f, and gs.
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On the universal family of deformations
of modules

Yuji Yoshino (Okayama University)

Let k be an algebraically closed field and let R be an associative k-algebra. Fixing
a left R-module M, we assume that Exth(M, M) is of finite dimension over k. Under
such circumstances, it is known by an ancient theorem of Schlessinger that there exist
the universal family of deformations of M and its parameter space. To be more precise,
let C be the category of commutative artinian local k-algebra A with A/my4 = k and
k-algebra maps as morphisms. Now we consider a covariant functor F : C — (Sets)
defined as

F(A) := {the isomorphism class of (R, A)-bimodule X
which is flat as right A-module and X ®4 k = M as left R-module},

for each A € C. Then the pro-representability theorem of Schlessinger says that there
exists a noetherian complete local k-algebra @ with Q/mg = k with the isomorphism

of functors
F = Homy.ae(Q, )

This isomorphism is realized by the universal (or miniversal) family U which is an
(R, Q)-bimodule and Q-flat. More precisely, for A € C, the isomorphism

Homk-alg(QaA) _¢(A;)') F(A)

is given by ¢(A)(f) = UQq A where §A denotes the Q-algebra A through the k-algebra
map f: Q@ — A.

We call @) the parameter space of universal family of deformations of M. From the
view point of representation theory, it seems to be important to know the properties
of the parameter spaces. It is known by the obstruction theory that the embedding di-
mension of Q equals dim;ExtR(M, M) and that the obstruction for Q being nonsingular
lies in Ext%(M, M).

EXAMPLE 0.1 (DEFORMATIONS OF JORDAN CANONICAL FORMS) Let R = k[z] be a
polynomial ring with one variable and let M be an R-module R/(z™) for some integer n.
In this case, we have that Q = k[[to, - - ., tn—1]] and U = Q[z]/(z" +tp_12™ 1+ - +1p).

ExAMPLE 0.2 Let R be a complete local k-algebra such that R/mg = k and let M
be an R-module R/mg. In this case, we have that @ = R and U = R (as an (R, R)-
bimodule). Hence, every complete local ring can be a parameter space of a module.
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Besides the obstruction theory, we consider it more rlng—theoretlcally The idea is
to consider the functor between the derived categories

U®Q_ : D(Q) _')D(R))
which induces the morphism between Yoneda algebras
¢ 1 Exty(k, k) — Extz(M, M).

¢° : k — Endgr(M) is always an injection. On the other hand, ¢! : Exty(k,k) —
Exth(M, M) is an isomorphism by the construction.
Of the greatest interest is the map

©*: Ext)(k, k) — Ext%(M, M).
Our main result is the following inequality.

Theorem 0.3 _ .
dimy Ker(¢?) < (d‘mkE"t;(M M >> |

This theorem contains all the results obtained by the obstruction theory. In fact,

let us denote @ by S/I, where S = k[[ty,...,t]] (r = dimExty(M, M)) and I is an
ideal of S minimally generated by {fi,..., fe} contained in (t1,...,t,)%S. Write

fi= Zaf'ijtj (aij € (t1,...,t)S).
j=1

Considering the second syzygy of the @-module & ;
0 — Q3 — P, Qe Q > k 0,

it is well-known that Qék is generated by the set
T
{’Uz =Zaijej | 1= 1,2,...,€}U{tiej—tjei , 1S2<]S'I‘}

Therefore, ExtzQ(k, k) is generated as a k-vector space by the set
{’U:' 1= 1,2,..,,€}U{(ti6j—tj6i)* | 1 S’L<]ST‘}

Note that {v}|i=1,2,...,£} gives a k-base of (I /mgl)*. Hence we have the following
result as a corollary of the theorem.

Corollary 0.4
¢ < dimExt%(M, M).
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It follows that Ext%(M, M) = 0 implies the regularity of Q.

As to the proof of the theorem, we need enlarging the base category C to the
category of associative (not necessarily commutative) local artinian k-algebras. Instead
of writing @) = S/I, we need to describe @ as the residue ring of the noncommutative
complete local ring T' = k < t1,...,t, > with the Jacobson radical J = (t1,...,t.)T ;

Q:T/T{fl’-"afla [tiatj] (1 SZ(]ST)}T,

where  means the closure in J-adic topology.

A nontrivial (noncommutative) small extension P of @ is a (not necessarily com-
mutative) local k-algebra with a socle element o € J2 such that the two-sided ideal
generated by o is one-dimensional as a k-vector space and that Q@ = P/(c). Let
a=T{fi,..., fe[ti,tj] (1 <i<j<r)}T. Then it is easy to see that the set of non-
trivial small extensions bijectively corresponds to the set of subspaces of codimension
one in a/Jra + aJr that is spanned by {f1,..., fi, [ti,t;] (1 < i< j <r)}. Identifying
fi with v} and [t;, t;] with (t;e; —t;e;)*, we can regard the set of pairs (P, o) of nontrivial
small extensions of @ and its socle element as Ext}(k, k) \ {0}.

[Outline of the proof of the theorem.]
Let 7#0 € Exté(k, k) be a nontrivial element. Take a corresponding nontrivial

small extension P of Q. Suppose ¢?(7) = 0 in Ext%(M, M). Then we can show that
there is an (R, P)-bimodule V which is flat over P and V®pQ = U as left R-module. It
then follows from the universality of U that P must be a noncommutative ring. Let 7 be
the projection from Ext}(k, k) onto the subspace generated by {(t:e; —tje;)* | 1 < i <
j <r}, and we have that 7(7) # 0 because of the noncommutativity of P. This shows

that the restriction of 7 to Ker(¢?) is an injection, and thus dim; Ker(¢?) < <;> O
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THE CORE OF AN IDEAL

CLAUDIA POLINI

To Professor Shiro Goto on the occasion of his sixtieth birthday

1. INTRODUCTION

This is a report on joint work with Alberto Corso, and Bernd Ulrich on the core of an ideal that
has appeared in [1, 2, 11].

Let I be an ideal in a Noetherian local ring (R,m). Among the closure operations on I, the
integral closure plays a central role. An ideal / is said to be integral over an ideal J C I if the
inclusion of Rees algebras R[J¢] — R[It] is module finite. The integral closure I of I is then defined
to be the largest ideal integral over I and the ideal [ is integrally closed if I = I. A reduction of I
is a subideal of I with the same integral closure as /, i.e. a subideal over which I is integral. One
can think of reductions as simplifications of the ideal, which carry most of the information about /
itself but, in general, with fewer generators. This notion, introduced by Northcott and Rees [10], has
played a crucial role in the study of Rees algebras. Minimal reductions, reductions minimal with
respect to inclusion, are the counterpart of the integral closure. However, unlike the integral closure,
minimal reductions are not unique. For this reason one considers their intersection, called the core
of I and denoted core(I). The core was introduced by Rees and Sally in the eighties to study mixed
multiplicities and Briangon-Skoda type theorems. Indeed this object appears naturally in the context
of the Briangon—Skoda theorem [8]. As shown first by Huneke and Swanson the core is related to
adjoint and multiplier ideals [3, 7]. Furthermore a better understanding of the core could lead to a
solution of Kawamata’s conjecture on the non-vanishing of sections of certain line bundles [5, 6].

In this report we will describe algebraic properties of the core (see [1] for more details), and we
will give explicit closed formulas (see [2, 11] for more details).

2. ALGEBRAIC PROPERTIES OF THE CORE

Let (R, m) be a local Cohen-Macaulay ring with infinite residue field and / = (fi,..., f;) an R-
ideal with grade g. The core of [ is difficult to compute since a priori it is the intersection of an
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infinite number of ideals. Thus we first address the following issues: Is the core a finite intersection
of minimal reductions of /? Can these minimal reductions taken to be general?

Recall that if the residue field of the ring R is infinite all minimal reductions have the same
number of generators, namely the analytic spread £ = £(I) of I. By a general minimal reduction
we mean an ideal generated by £ general elements in /. We give an affirmative answer to the above
questions for the class of weakly (£ — 1)-residually S, ideals satisfying G;.

This class is fairly large: it includes m-primary ideals and more generally equimultiple ideals
(ideals with £ = g) as trivial cases, one-dimensional generic complete intersections and more gen-
erally generic complete intersection Cohen-Macaulay ideals with £ < g+ 1, and strongly Cohen-
Macaulay ideals satisfying G,. Examples of strongly Cohen-Macaulay ideals are quite common in
the literature: Cohen-Macaulay almost complete intersections, Cohen-Macaulay ideals of Goren-
stein rings that can be generated by g + 2 elements, perfect ideals of codimension two as well as
perfect Gorenstein ideals of codimension three are all strongly Cohen-Macaulay ideals. In general
licci ideals (i.e. ideals in the linkage class of a complete intersection) are automatically strongly
Cohen-Macaulay.

Theorem 2.1. Let R be a local Cohen-Macaulay ring with infinite residue field and I an R-ideal
of analytic spread . Assume that I is Gy and weakly (£ — 1)-residually S,, then core(I) is a finite
intersection of general minimal reductions of L.

The difficult part to prove is the fact that core(I) can be obtained by intersecting general minimal
reductions of I. To show this we compare the multiplicities of modules defined by intersecting
reduction ideals, generic ideals, and general ideals, respectively. In particular, we prove that under
suitable assumptions, the multiplicity of I/J is independent of the choice of a minimal reduction J
of I. :
Notice that Theorem 2.1 gives an algorithm to compute the core of an ideal because if J1,...J;1|
are general minimal reductions with J; N...NJ;41 =JyN...NJ; then core(I) =J1N...NJ;.

Writing the core as intersection of a finite number of general minimal reductions allows us to
prove that the core behaves well under flat extensions provided the map is local.

Theorem 2.2. Let R — R’ be a flat local extension of local rings with infinite residue fields. Assume
R’ is Cohen-Macaulay. Let I be an R-ideal of analytic spread £ such that IR' is G; and weakly
(€ —1)-residually Sy. Then core(IR') = (core(I))R'.

Let x;; be £ x n variables and let S be the localized polynomial ring R({x;;}), 1 <i<{,1<j <
m. The S-ideal A4 generated by the £ generic linear combinations Y x;;f; is called a universal {-
generated ideal in IS. Rees and Sally [12] have shown that if I is m-primary, then ANR C core(I).
We can prove that this containment is actually an equality and that the equality holds for the much
broader class of universally weakly (£ — 1)-residually S, ideals satisfying Gy.
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Theorem 2.3. Let R be a local Cohen-Macaulay ring with infinite residue field and I an R-ideal
of analytic spread £. Assume that I is G¢ and universally weakly (£ — 1)-residually S,. Let A be a
universal {-generated ideal in 1S. Then core(I) = ANR.

Theorem 2.3 expresses the core in terms of a single minimal reduction (of the ideal /S)!! From
the above equality we are able to write the core as a colon ideal in a polynomial ring over R, which
provides a method for computing the core of a broad class of ideals generated by homogeneous
elements not necessarily of the same degree. Furthermore, Theorem 2.3 leads to proving in general

that the core behaves well under flat extensions.

Theorem 2.4. Let R — R’ be a flat map of local Cohen-Macaulay rings with infinite residue
fields. Let I be an R-ideal of analytic spread £ such that I and IR are Gy and universally weakly
(£ — 1)-residually S,. Then core(IR') = (core(I))R'.

3. FORMULAS FOR THE CORE

Huneke and Swanson [3] provided the first work in the literature with a ‘closed formula’ for
the core of an ideal. More precisely, they showed that the core of integrally closed ideals in two
dimensional regular local rings is still integrally closed and it is given by a formula that involves an
ideal of minors of any presentation matrix of the ideal. They also relate the core to the adjoint of an
ideal, denoted adj(/), introduced by Lipman in [7].

Theorem 3.1. [Huneke and Swanson, [3]] Let R be a two dimensional regular local ring and I be
an integrally closed R-ideal. Then core(I) = I -Fitty(I) = I -adj(I) = adj (I%). In particular, core(l)
is integrally closed.

Our goal is to generalize this results to a broader class of ideals and rings. To arrive at our more
general formula we observe that residual intersections are the correct objects to replace the Fitting
ideals occurring in Theorem 3.1. More precisely, in any Cohen-Macaulay ring we describe the core
of ideals I that are balanced and in any Gorenstein ring we describe the core of ideals that have the
expected reduction number <{—g+1.

An ideal I is called balanced if J : I does not depend on the minimal reduction J of 1. The
notion of balancedness was introduced in [13] as a tool for understanding reduction numbers. The
reduction number is a key invariant in the study of blowup algebras and it measures how closely the
ideal and its reductions are related. It is defined as r(I) = min{r;(I)|J a minimal reduction of I},
where ry(I) is the least integer r such that I"*! = JI".

For any universally weakly (£ — 1)-residually S ideal satisfying G, we prove that if / is balanced
then core(I) = (J: I)J = (J : I)I with J any minimal reduction of I. Not only the converse holds
as well, in fact balancedness is implied by the containment (J : I)I C core(I) for some minimal

reduction J of 1.
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Theorem 3.2. Let R be a local Cohen—Macaulay ring with infinite residue field. Let I be an R-ideal
of height g and analytic spread £. Suppose that I satisfies G¢ and is universally weakly (£ — 1)-
residually So. Then the following conditions are equivalent:

(a) (J: I)I C core(I) for some minimal reduction J of I;

(b) (J: I)J = (J: I)I =core(I) for every minimal reduction J of I;

(¢) J: I does not depend on the minimal reduction J of 1.

If in addition R is Gorenstein and depth R/I/ > dimR/I — j+1for 1 < j < £ — g, we can relate
the core to the the reduction number. Indeed, in [13] Ulrich proved that balancedness is equivalent
to I having the expected reduction number r(I) < £—g+1.

Theorem 3.3. Let R be a local Gorenstein ring with infinite residue field. Let I be an R-ideal of
height g and analytic spread {. Suppose that I satisfies Gy and depth R/I/ > dimR/I — j+ 1 for
1 < j < £—g. Then the following conditions are equivalent:

(a) (J: I)I C core(I) for some minimal reduction J of I;

(b) (J: I)J = (J: I)I = core(l) for every minimal reduction J of I;

(¢) J: I does not depend on the minimal reduction J of I;

(d) the reduction number of I is at most £ — g + 1.

In the case of perfect ideals of height two or perfect Gorenstein ideals of height three one can
compute the core explicitly from a matrix presenting I.

Corollary 3.4. Let R be a local Gorenstein ring with infinite residue field. Let I be a perfect R-ideal
of height two and analytic spread ¢, satisfying Gy. Let @ be a matrix with n rows presenting 1. Then
the following conditions are equivalent:

(a) the reduction number of I is at most £ — 1;

(b) core(I) =I,—¢(®) 1.
If any of these conditions hold and if R and I are normal, then I,_y(®) and core(I) are integrally
closed.

In the assumption of Theorem 3.1, the ideal I has reduction number at most one by [9] and is
normal according to [14]. Thus Corollary 3.4 recovers Theorem 3.1.

Corollary 3.5. Let R be a local Gorenstein ring with infinite residue field. Let I be a perfect
Gorenstein R-ideal of height three, analytic spread £ and minimal number of generators n, satisfying
Gy. Let @ be a matrix with n rows presenting I. Then the following conditions are equivalent:

(@) the reduction number of I is £ —2;

(b) core(I) =5(9)-1
If any of these conditions hold and if R and I are normal, then I,(¢) and core(I) are integrally

closed.
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4. THE CONJECTURE

We are now facing the following issue: How does the core look like if the ideal [ is not balanced?
In [2] we conjectured the formula below for the core of ideals of arbitrary reduction number.

Conjecture 4.1. Ler R be a local Cohen—Macaulay ring with infinite residue field. Let I be an R-
ideal of analytic spread ¢ that satisfies Gy and is weakly (£ — 1)-residually S,. Let J be a minimal
reduction of I and let r denote the reduction number of I with respect to J. Then

core(l) =J 1. I".

Hyry and Smith in [5] verified the above conjecture for equimultiple ideals in a Cohen-Macaulay
ring of characteristic zero having Cohen-Macaulay Rees algebras. The role of the characteristic
zero assumption on the residue field was a big surprise to us.

Subsequently (at the same time as in [11]), Huneke and Trung verified the conjecture without
assuming the Cohen-Macaulayness of the Rees algebra [4]. In [11] we establish the conjecture for
a broader class of ideals, which includes equimultiple ideals as first special case.

Theorem 4.2. Let R be a local Gorenstein ring with infinite residue field k. Let I be an R-ideal of
height g > 0 and analytic spread ¢, and let J be a minimal reduction of I with r = ry(I). Assume I
satisfies Gy, depthR/I/ > dimR/I — j+1for 1 < j <{—g, and either chark =0 or chark > r—{+g.
Then ’

core(l) = J"H . I
for every n > max{r—£+g,0}.

To prove the Theorem 4.2 we identify the core with a graded component of a canonical module
of the extended Rees algebra R[It,t~!] C Rt,t™}] of I.

Theorem 4.3. Let R be a local Gorenstein ring with infinite residue field k. Let I be an R-ideal
of height g > 0 and analytic spread £. Assume I satisfies Gy, depthR/I’ > dimR/I — j+ 1 for
1< j<{£—g Then [@gy g C core(l). If in addition, chark =0 or chark > r — £+ g then
core(!) = [@gpy-1]g-

Theorem 4.3 is very useful in determining instances when the core is the adjoint or multiplier
ideal of a power of I, or more generally, when the core is integrally closed. Indeed, Huneke and
Swanson showed in [3] that the core of integrally closed ideals in a two dimensional regular local
ring is adj(I?), hence integrally closed. Unfortunately, this is false in general. However viewing
the core as a component of a canonical module of R[It,+~!], we show that if Proj (R[If]) satisfies
Serre’s condition Ry, then core(I) is integrally closed. We also identify the core with the adjoint of
I8 provided R is a regular local ring essentially of finite type over a field of characteristic zero and

Proj (R[It]) has only rational singularities.

Corollary 4.4. If in addition to the assumptions of Theorem 4.2,Proj (R[It]) satisfies Serre’s condi-
tion Ry, then core(l) is integrally closed.
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Corollary 4.5. If in addition to the assumptions of Theorem 4.2, R is a regular local ring essentially
of finite type over a field of characteristic zero and Proj (R[It]) has only rational singularities, then
core(/) = adj(I8).

Without the assumption on the characteristic of the residue field in Theorem 4.2, we can still

show that:

Theorem 4.6. Let R be a local Gorenstein ring with infinite residue field, let I be an R-ideal with
g =htl and £ = £(I), and let J be a minimal reduction of I. Assume I satisfies G; and depthR/I/ >
dimR/I—j+1 for1 < j<{—g. Then

JH ccore(l) c I Y (4,y)"
yel

for n > max{r—£+g,0}. In particular if u(I) < £+1 then

core(l) = J"1: 1.

The second inclusion follows by lifting the formula for the core of any ideal of analytic spread
one and positive height in a Cohen-Macaulay local ring:

Theorem 4.7. Let R be a local Cohen-Macaulay ring with infinite residue field k, let I be an R-ideal
with £(I) =htl = 1 and r = r(I), and let J be a minimal reduction of I. Let (y1),...,(y:) be minimal
reductions of I so that core(I) = (y1)N---N () and write s = max{r((J,y;)) |1 <i<t}.

(@) core(f) = JFL: Y (Lyy=J(": Y ()"
};El yfl

= Y (L) =T Z(J,yi)")

i=1 i=1

foreveryn > s.
(b) Ifchark = 0 or chark > r, then

core(I) =J" " =J(J": 17)
foreveryn >r.

We end this report by showing the failure of the formula of Theorem 4.2 if any of our assumptions

is dropped.

Example 4.8. Let k be an infinite field of characteristic p > 0, let ¢ > p be an integer not divisible
by p, consider the numerical semigroup ring R = k[t”,74,tP7+4] C k[[t], and let I = m be the
maximal ideal of R. Now R is a one-dimensional local Gorenstein domain, and one has the proper
containment core(I) 2 J"+!: I" for any minimal reduction J of I and any n > r(I). In fact core(I) =
(t7’ , m?-1), whereas J**1: " =m?-1,

In the next example we show that the Gy condition cannot be removed from Theorem 4.2.
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Example 4.9. Let k be an infinite field, write R = k[X,Y,Z,W]/(X?>+ Y+ Z2,ZW), let x,y,z,w
denote the images of X,¥,Z,W in R, and consider the R-ideal I = (x,y,z). Notice that R is a local
Gorenstein ring, htI = 1, £(I) = 2, R/I is Cohen-Macaulay, but I does not satisfy G,. Let J = (x,y).
The ideal J is a minimal reduction of / with r;(I) = 1. One has core(I) = I> ¢ J?: 1. The same
holds if one replaces J by a general minimal reduction of /.

Indeed, the special fiber ring gr;(R) ®g k is defined by a single quadric. Hence £(I) = 2, and
rk(I) = 1 for every minimal reduction K of /, which gives I? C core(I). On the other hand, (x,y),
(x,z) and (y,z) are minimal reductions of I, thus core(l) C (x,y) N (x,2) N (y,2) = I?. Therefore
core(I) = I2. To conclude notice that I G (12,xw,yw) = J*: I.

Finally, the formula of Theorem 4.2 does not hold for g = 0 even if £ > 0:

Example 4.10. Let k be an infinite field, let A; € k[X,Y, Z]) be the maximal minor of the matrix

XY 0 Z
Y 0 Z X
0 Z XY

obtained by deleting the i column, set R = k[X,Y,Z]/(A1,Az) and define J = A3R, [ = (A3, Ag)R.
Then R is a local Gorenstein ring, htI = 0, £(I) = 1, I satisfies G1, R/I is Cohen-Macaulay, and
J is a minimal reduction of I with r = r;(I) = 2. However, core(I) C J"*!: I" for every n > 1 =
max{r—£¢+g,0}.

Indeed, [13] show that J is a minimal reduction of / with r = 2. Writing m = (X,Y,Z)R one has
J:I=m. Asr=2={—g+1, Theorem 3.3 then gives core(/) = mJ = ml. On the other hand,
a computation shows that mJ G J2: I = J3: I%. The assertion now follows since J**': I" form an

increasing sequence of ideals for n > r = 2.
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RECENT RESULTS ON THE CORE OF AN IDEAL

CLAUDIA POLINI

To Professor Shiro Goto on the occasion of his sixtieth birthday

1. INTRODUCTION

This is a report on joint work with Bernd Ulrich and Marie Vitulli, that will be published in [12],
and on joint work with Louiza Fouli and Bernd Ulrich that will appear on [3].

The core of an ideal /, introduced and first studied by Rees and Sally [13], is a mysterious subideal
of I that encodes information about the possible reductions of I. A reduction of  is a subideal of /
over which [ is integral. One reason to study the core is the fact that this object encodes information
about reductions and reduction numbers. Another motivation is that a better understanding of cores
would lead to improved versions of the celebrated Briancon-Skoda theorem and solve a conjecture
of Kawamata on the non-vanishing of sections of line bundles.

Being the intersection of an a priori infinite number of ideals, the core is difficult to compute and
the problem of finding algorithms and formulas to determine it was addressed in the work of Corso,
Huneke, Hyry, Smith, Swanson, Trung, Ulrich, and myself [1, 2, 5, 6, 7, 8, 11]. These formulas
unfortunately require the assumption that the characteristic of the residue field is zero. In the first
section of this report (which describes work that will appear in [3]) we study cores of ideals in

arbitrary characteristic.

Let R = k[x1,...,x4] be a polynomial ring over an infinite field k, write m = (xy,...,x4), and
let I be a monomial ideal, that is, an R-ideal generated by monomials. Even though there may
not exist any proper reduction of / which is monomial (or even homogeneous), the intersection
of all reductions, the core, is again a monomial ideal. Lipman and Huneke-Swanson related the
core to the adjoint ideal [5, 9]. The integral closure and the adjoint of a monomial ideal are again
monomial ideals and can be described in terms of the Newton polyhedron of I [4]. Such a description
cannot exist for the core, since the Newton polyhedron only recovers the integral closure of the
ideal, whereas the core may change when passing from I to 1. When attempting to derive any
kind of combinatorial description for the core of a monomial ideal from the known colon formulas
(see Theorem 2.1 below), one faces the problem that the colon formula involves non-monomial
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ideals, unless / has a reduction J generated by a monomial regular sequence. Instead, we exploit
the existence of such non-monomial reductions to devise an interpretation of the core in terms of

monomial operations.

2. THE CORE IN ARBITRARY CHARACTERISTIC

Let I be an ideal in a Noetherian local ring (R, m). Recall that a subideal J of / is a reduction
of 1, or equivalently, I is integral over J, if I't! = JI" for some non-negative integer r. If J is a
reduction of an R-ideal I, then the reduction number rj(I) of I with respect to J is the smallest
nonnegative integer r with I'*! = JI". Minimal reductions are reductions which are minimal with
respect to inclusion. If the residue field of R is infinite, all minimal reductions have the same number
of generators, called the analytic spread £ of I.

In [11] we prove a formula, previously conjectured in [3], for the core of ideals satisfying G,
and depthR/I’ > dimR/I — j+1 for 1 < j < £— g. Recall that an ideal [ satisfies property G, if
the minimal number of generators u(1y) of I, is at most dimR,, for every prime ideal p € V(I) with
dimR, < {—1. Since £ < dimR, the G, property is a weak requirement, not imposing any restriction
on the global number of generators of /.

Theorem 2.1. Let R be a local Gorenstein ring with infinite residue field k. Let I be an R-ideal of
height g > 0 and analytic spread £, and let J be a minimal reduction of I with r = rj(I). Assume I
satisfies Gy, depthR /1) > dimR/I — j+1for 1 < j < £—g, and either chark =0 or chark > r—£+g.
Then

core(l) = J"H . I
for every n > max{r — £ +g,0}.

Unfortunately our formula requires the assumption that the characteristic of the residue field is
zero or large enough. The following example, which we will explain in Section 4, shows that the
formula of Theorem 2.1 fails to hold in arbitrary characteristic even for 0-dimensional monomial

ideals:

Example 2.2. Let R = k[x,y] be a polynomial ring over an infinite field k, consider the ideal I =
(x8,x°y3,x*y*, x2y8,5°), and write J = (x%,)°). One has r;(I) = 2. If chark # 2 then the formula of
Theorem 2.1 gives core(I) = J3: I? = J(x*,x3y,x*y?,xy°,¥%). On the other hand, if chark = 2 then
core(I) = (x10,x8y,xTy5, %855, x%y2 x3y10, x2y11 xyl4 y15) 2 . 2.

The next theorem describes conditions on the ideal I for when the above formula is valid in
arbitrary characteristic.

Theorem 2.3. [Fouli-Polini-Ulrich] Let R be a local Gorenstein ring with infinite perfect residue
field. Let I be an R-ideal of height g > 0 and analytic spread {, and let J be a minimal reduction of
I with r =r;(I). Assume I satisfies Gg, depthR/I/ > dimR/I — j+1for 1 < j < £ — g, and that the
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special fiber ring F (I) of I has embedding dimension at most 1 locally at every minimal prime of
dimension £. Then

core(l) =J"1 . I
for every n > max{r—£+g,0}.

If  is equimultiple (in particular, if I is 0-dimensional) we do not need to assume that the ambient

ring is Gorenstein:

Theorem 2.4. [Fouli-Polini-Ulrich] Let R be a local Cohen-Macaulay ring with infinite perfect
residue field. Let I be an R-ideal of height g > 0 and analytic spread g, and let J be a minimal
reduction of I with r = r;(I). Assume that the special fiber ring F (I) of I has embedding dimension
at most 1 locally at every minimal prime of dimension g. Then

core(l) =J" . I
foreveryn>r.

The assumption on the fiber ring is automatically satisfied if the fiber ring of / is reduced, in
particular if I is an ideal generated by forms of the same degree in a positively graded reduced
algebra over a perfect field. This result generalizes work by Hyry and Smith, who had treated the
case of the maximal ideal in a standard graded ring, but with completely different methods.

We end this section by demonstrate the failure of the formula of Theorem 2.4 if the fiber ring
F (I) of I has embedding dimension two locally at every minimal prime of dimension g.

Example 2.5. Let R = k[x,y] (xy) e a localized polynomial ring over a field of characteristic 2 and
1= (x8,y°,x°y3,x*y* x?y®) be an R-ideal. Notice that
a. F(I) ~k[a,b,c,d,e]/(d* — ae,c?,e?,de,ce)
b. Min(F (1)) = {p = (c,d,e)}
c. emdim (F (I)p) =2
Let J = (x5,°). As we have seen in Example 2.2, we have that core(l) 2 J3: I? = J"*! : I" for
every n>ry(l) =2.

3. CORES AND ADJOINTS FOR ZERO-DIMENSIONAL MONOMIAL IDEALS

In this section we consider the relationship between cores and adjoints as defined in [9]. Howald
has shown that if I is a monomial ideal then its adjoint (or multiplier ideal) adj() is the monomial
ideal with exponent set {& € Z< | a+1 € NP°(I)}, where 1 = (1,1,...,1) € 74, and NP°(I)
denotes the interior of the N ewton polyhedron of I [4]. Thus whenever the core of a monomial ideal
is an adjoint one has a combinatorial description of the former in terms of a Newton polyhedron.

In [11] Ulrich and myself had shown that:
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Theorem 3.1. If in addition to the assumptions of Theorem 2.1, R is a regular local ring essentially
of finite type over a field of characteristic zero and Proj (R[It]) has only rational singularities, then
core(l) = adj(I8).

Now we can apply this result to asymptotically normal 0-dimensional monomial ideals:

Corollary 3.2. Let R = k[x1,...,xq] be a polynomial ring over a field k of characteristic 0. Let I be
a 0-dimensional monomial ideal and let 0. be a regular sequence generating a reduction of I. Then

adj(19) = ()" : T C (o) ! : I' = core()

for everyt > max{r(q)(I), d — 1}, and equality holds if 19 = I for some t > max{r(q)(l),d —1}.

Even if neither I or any power of [ is integrally closed the core may still be an adjoint as shown
by Corollary 3.4. In Theorem 3.3 we compute the core of any ideal generated by monomials of the
same degree in a polynomial ring in two variables.

Theorem 3.3. Let R = k[x,y] be a polynomial ring over an infinite field k and write m for the
homogeneous maximal ideal of R. Let I be an R-ideal generated by monomials of the same degree.
Write I = p(x",y", x"fiyk1 .. x"=*syk) with u a monomial and 0 < ky < --- < ks < n, and set
& =gcd(ky,. .., ks,n). Then

core(l) = u(x%,y%) 281,

Corollary 3.4. In addition to the assumptions of Theorem3.3 suppose that p =1, and 8 = 1. Then
core(I) = adj(I?) = adj(m?") = m?"~ 1.

4. AN ALGORITHM FOR THE CORE OF ZERO-DIMENSIONAL MONOMIAL IDEALS

In this section using linkage theory we give an algorithm to compute the core of zero-dimensional
monomial ideals. This algorithm provides a new interpretation of the core as the largest monomial
ideal contained in a general locally minimal reduction of /. Furthermore this algorithm is more
efficient in general than the formula of Theorem 2.1 and does not require any restriction on the

characteristic.

Let R = k(xi,...,x4] be a polynomial ring over an infinite field k. Write m = (x;,...,x4) for the
homogeneous maximal ideal of R. For an R-ideal L we let mono(L) denote the largest monomial
ideal contained in L and Mono(L) the smallest monomial ideal containing L. Note that Mono(L)
is easy to compute, being the ideal generated by the monomial supports of generators of L. The
computation of mono(L) is also accessible; the algorithm provided in [14, 4.4.2] computes mono(L)
by multi-homogenizing L with respect to d new variables and then contracting back to the ring R.
The ideal mono(L) can be computed in CoCoA with the built-in command MonsInldeal.

We first use linkage theory to express moho(L) in terms of Mono(L) for a class of ideals including

m-primary ideals.
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Theorem 4.1. Let L be an unmixed R-ideal of height g and E C L a regular sequence consisting of

g monomials. Then
mono(L) = (B) : Mono((B) : L).

Now let I denote an m-primary monomial ideal. For each i let n; be a power of x; in I; such n;
exists since I is m-primary. Write o = x‘li"' Yoo ,xZ”" and let J be an ideal generated by d general k-
linear combinations of minimal monomial generators of /. If the ideal / is generated by forms of the
same degree, J is a general minimal reduction of I [10]. In general however, I and J may not even
have the same radical. Nevertheless, Ji, is a general minimal reduction of I, by [10]. Consider the
ideal K = (J, ). Observe that the m-primary ideal K is a reduction of I. Thus core(/) C mono(K)
since the core is a monomial ideal. The Briangon-Skoda theorem implies (0)m C core(Im). Hence
K = Jm, and whenever I is generated by forms of the same degree then K = J. We call X a general
locally minimal reduction of 1.

In order to prove the other inclusion core(/) D mono(K) we need to show that mono(K) does
not depend on the general locally minimal reduction K. We do this by proving that the ideal
Mono((a) : K) does not depend on the general locally minimal reduction K and then using The-
orem 4.1. Now by [1] the core is a finite intersection of general minimal reductions core(/) = K1 N
.--NK; D mono(K;)N---Nmono(K;) = mono(K), where the last equality follows since mono(K)
does not depend on the general locally minimal reduction K. Thus we obtain:

Theorem 4.2. Let I denote an m-primary monomial ideal, then
core(I) = mono(K)
for any general locally minimal reduction K of 1.

Now we can finally give a proof for Example 2.2:

Remark 4.3. The formula of Theorem 2.1 does not hold in arbitrary characteristic. However, if J
and I are monomial ideals, J"*! : I" is obviously independent of the characteristic. On the other
hand, the algorithm based on Theorem 4.2 works in any characteristic, but its output, mono(K),
is characteristic dependent. In fact Example 2.2 is a zero-dimensional monomial ideal I for which
core(I) = mono(K) varies with the characteristic. As I has a reduction J generated by a monomial
regular sequence this shows that the formula of Theorem 2.1 fails to hold in arbitrary characteristic

even for 0-dimensional monomial ideals.

Example 4.4. Let R = k[x,y] be a polynomial ring over an infinite field k, consider the ideal I =
(x8, x5y, x*y* x?y8,5°), and write J = (x5,)°). One has r;(I) = 2. If chark # 2 then the formula of
Theorem 2.1 as well as the algorithm of Theorem 4.2 give core(I) = J3: I? = J (x*, 23y, x2y?,xy°, )=
(x19,x%y, x8y2, x7y", x8y6, x4y° x3y10 x?y!! xy!4, y1%). On the other hand, if chark = 2 then Theo-
rem 4.2 shows that core(I) = (x0,x8y,x7y%, x0y0, x4y® x3y10 x2y1} xy14 y15) D J3: 2.
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ALBERTO CORSO

To Professor Shiro Goto on the occasion of his siztieth birthday

1. INTRODUCTION

This article is an expanded version of a talk I gave during the 28-th Symposium on Commutative Ring
Theory held in November 2006, in Japan. The Symposium was marked by the celebration of the sixtieth
birthday of Professor Shiro Goto as well as his lasting contributions to Commutative Algebra. The topic of
this paper relates to the computation (of part) of the integral closure of an ideal, an area where Professor
Goto has been very influential. The format of this paper is highly colloquial as it reflects the nature of
the original talk. It draws its material from the papers listed in the bibliography, to which we refer the
interested reader for motivations, more accurate statements and additional references.

Throughout the paper, let R be a Noetherian ring and I an R-ideal. The integral closure of I is the
ideal T of all elements of R that satisfy an equation of the form
X"+ pX™ 4 4 ppo1 X +pm =0, p €l
In particular, one has the containments I C I C VI, where /T is the radical of I. An ideal J C I
is a reduction of I if J = I or, equivalently, if I"™*! = JI", for some non-negative integer 7. Finally, I is
integrally closed (resp. normal) if I =T (resp. I™ = I™ for all m).
Given an R-ideal I, we would like to address the following issues:
o Design ‘efficient’ (and ‘global’) criteria do detect integrally closed ideals. The criteria should involve
natural objects associated with I: eg, the powers of I, the radical of I, modules of syzygies, etc.
o If I fails the ‘above’ tests, find (relatively ‘cheap’) methods to compute (part of) the integral closure
of I.

Example 1.1. It is not an easy task to compute the integral closure. For example, if R is a polynomial
ring over a field and I is a monomial ideal, T is then the monomial ideal defined by the integral convex

hull of the exponent vectors of I.

Example 1.2. However, if I is a binomial ideal then, unlike its radical V1, we have that T need not be a
binomial ideal. Let R = k[z,y, z, w] with char(k) = 0. The ideal
I=(2?-zy,—zy + 42,22 — 2w, —2w + w?)
The author would like to thank the entire Japanese Commutative Algebra community for the warm atmosphere provided

during the 28-th Symposium on Commutative Ring Theory. A special thank goes to Professor Koji Nishida for his tireless
help and assistance.
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has integral closure (see [5])

1= (2 - zy, —zy + °, 2% — 2w, —2w + w?, 72 — Yz — 2w + yw).

The two issues outlined earlier are rather difficult and not much is known. A simple consequence of the
determinant trick is that for every finitely generated R-module M then I C IM: M C I. In particular, if
I is integrally closed, for any such M, IM: M = I. Thus, we need to find appropriate ‘test modules’ for
any ideal. An alternate approach is through the Rees Algebra R(I) of the ideal I, namely :

RUI)=R+It+ 1?24 41"+ .

One then looks for its integral closure inside R[t]:

R(I)=R+Tt+ 1%+ ...+ T"t" + ... C R[t].
This is obviously wasteful of resources since the integral closure of all powers of I will be computed. An
‘expensive’ algorithm due to Vasconcelos works as follows. If I = (a1,...,a,) one then can represent its
Rees algebra as R(I) = R[Th,...,T,]/Q, where Q is the kernel of the map ¢ : R[Ty,... \Tn] — R(),
T; — a;t. If, in addition, R(I) is an affine domain over a field of characteristic zero and Jac denotes its
Jacobian ideal, then Vasconcelos guarantees that the ring

HomR(])(Jac‘l,Ja/c‘l) =...=(JacJac™})7!,

is larger than and integral over R([), if the ring is not already normal. This process can be iterated until
R(I) has been obtained.

Example 1.3. Let k be a field of characteristic zero and let I C R = [z, 9] (z,y) be the codimension two
complete intersection ideal
I=(*+4% 2 - )
Iterating three times the method outlined before one can compute I. To be precise
I = (28 + 48, 2° — 1°,48)
I = (2° + 9%, 2y® — o*, %% — o, 9")
L= I= (wys - y57 yG,-’Eaa $2y2)-

For the records, we used 18 additional variables for our calculations (see [5]).

The above example brings up the issue of using methods and techniques inside the original ring in order
to find integral elements over the given ideal. This is the line of investigation that we will follow in the rest
of the paper. We conclude the introduction by recalling two older results, which are very inspirational.
One is a "local’ criterion by Goto, whereas the second one by Burch shows that socle elements often provide

integral elements.

Theorem 1.4 (Goto, 1987). Let I be an ideal in a Noetherian ring R and assume that pg(I) = heightg(I) =
g. Then the following conditions are equivalent:

o I=1, i.e. I is integrally closed;
e " =1I" foralln, ie. I is normal.
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o for each p € Assp(R/I), the local Ting Ry is regular and
IR, +p°R,
bl LIS lde 5 PN
* ( p2Ry z9-1
When this is the case, Assp(R/I) = Ming(R/I) and I is generated by an R-regular sequence.

Theorem 1.5 (Burch, 1968). Let (R,m) be a Noetherian local ring that is not reqular and let I be an ideal
of finite projective dimension. Then:
m(l: m) =ml.

In particular, I: m C T.

2. LINKAGE AND REDUCTION NUMBER OF IDEALS

A global criterion and direct links. The only known criterion for integral closedness is stated in the
following result. It involves the determination of the radical of an ideal, which is made possible by the

seminal work of Eisenbud, Huneke and Vasconcelos [7].

Theorem 2.1 (Corso-Huneke-Vasconcelos, 1998). Let I be an height unmized ideal in a Cohen-Macaulay
ring R. Suppose that I is generically a complete intersection. Then the following conditions are equivalent:

o [ is integrally closed;
e I=IL:L, whereL=1I:+/T.

An earlier version of the above criterion had the condition I = IL: L replaced by v/T = IL: L2. The proof
is based on the previous local result of Goto and on a result of myself, Polini and Vasconcelos on direct
links of ideals. It greatly generalizes the result of Burch as it includes the case of regular rings.

Theorem 2.2 (Corso-Polini-Vasconcelos, 1994; Corso-Polini, 1995). Let (R, m) be a Cohen-Macaulay local
ring and let J = (21, ...,2,) be an ideal generated by a regular sequence inside a prime ideal p of height g.
If we set I = J: p then I? = JI if one of the following two conditions holds:

(L1) Ry is not a regular local ring;

(L2) Ry is a regular local ring with dimension at least 2 and two of the z;'s are in p®.

For simplicity, let us give an idea of the proof in the case of [2]. This proof brings up another player that we
will consider later on: The Koszul homology module of an ideal. In the case of [2], the ring R is assumed to
be Gorenstein; the general result for a Cohen-Macaulay ring is dealt with in [3] with completely different
(ideal theoretic versus homological) methods. The first step in the proof is to use localization and reduce
to the case I = J: m and J = (21,...,24). We then anaiyze the first Koszul homology module of I. In
particular, we observe that if R is Gorenstein and p(I) = d+ 1 then

MI/J) = MI?/JI) 4+ M6(D)),

where §(I) is the kernel of the map from the second symmetric power of I onto I2 and A(-) denotes length.
Finally, in our specific case, namely I = J: m, we have that A(I/J) = 1. Thus, in order to conclude that

I? = JI we need to argue that §(I) # 0.
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The work of Goto-Sakurai. Goto and Sakurai have greatly generalized the previous result, by relaxing
the Cohen-Macaulay assumption on the ring R. Two of my favorite results of theirs are listed below. One
of the surprising issues is that the multiplicity of the ring R plays a role.

Theorem 2.3 (Goto-Sakurai). Let (R,m) be a Buchsbaum local ring and assume that either dim(R) > 2
or dim(R) = 1 but e(R) > 2. Then there ezists an integer n > 0 such that for every parameter ideal J of
R which is contained in m™, one has the equality I? = JI, where I = J: m. :

Theorem 2.4 (Goto-Sakurai). Let (R, m) be a Buchsbaum local ring with dim(R) > 1 and e(R) > 1. Let
J = (x1,...,74) be a parameter ideal in R and assume that 4 = ab mod 0: m for some a,b € m. Then
= JI, where I = J: m.

Links of powers. The case in which the prime ideal p is replaced by a power p*, for some s > 1, was first
studied in [4] and, subsequently, in [13]. A simplified version of those results is stated below in the case of

a power of the maximal ideal.

Theorem 2.5 (Corso-Polini, 1997; Polini-Ulrich, 1998). If J is an m-primary complete intersection of a
Gorenstein local ring (R,m) and J C m® but J ¢ m®+1 then one has an increasing sequence of ideals

Iy =J:mk
satisfying It = JIi for k=1,...,s if dim(R) > 3 or for k = 1,...5 1 if R is a regular local ring and
dim(R) = 2.

This says that the ideals Ij’s are contained in the integral closure of I. Hence, instead of computing the
integral closure of R[Jt] one may start d1rectly from R[It] (or R[Is_;t] if R is a regular local ring and
dim(R) = 2).
Example 2.6. Let us consider the localized polynomial ring R = k[z,y](sy) and set m = (z,y) and
J = (z*,y"). Then the ideals It, with k = 1,2, 3, listed below are all integral over J:
L =J:m=(z4y",2%p°) and 2=Jn

Iz—Jm—(zy:z:y z2y) and I2=JI

Iz = J: m8 = (24,97, 2%, %45, 1) and 2= JI,.
However 1 = (x4 97,2%2% 2%y, 2y%) and T* = JT. The pictures below illustrate graphically the

situation.

3 4 T 1 2 3 4 T 1 23 4 T

I

— 188 —



HOW (PART OF) THE INTEGRAL CLOSURE OF IDEALS ARISES

A conjecture of Polini-Ulrich. The most general version of the linkage result that was proved by Polini
and Ulrich essentially followed from their investigation of when an ideal is the unique maximal element of
its linkage class, in the sense that it contains every ideal of the class:

Conjecture 2.7 (Polini-Ulrich, 1998). Let (R,m) be a Cohen-Macaulay ring of dimension d > 2, with
d > 3 if R is reqular. Let s > 2 be a positive integer. If {21,...,24} is a regular sequence contained in m*,
then

(21,...,24): m* Cm®

The conjecture has been recently proved in full generality by H.-J. Wang [14]. From the proof of the
previous conjecture, Wang could also settle in the affirmative the following conjecture of myself and Polini:

Theorem 2.8. Let R be a Noetherian ring. Let p be a prime ideal of height g > 2, J = (21,...,%) an
ideal generated by a regular sequence inside p¥), where k > 2 is a positive integer. Set Iy = J: p(E). Then

IZ=JI
if one of the following holds:
e Ry is not a regular local ring;

e R, is a regular local ring and g > 3;
e R, is a regular local ring, g = 2, and J C p*+1).

In a very recent work, Goto, Matsuoka and Takahashi [12] analyzed the case of ideals of the form J: m2,
where J is not necessarily contained in m2. Their results are quite surprising as they show that the ideals
are still integral over the complete intersection but the reduction number might go up! More precisely they

show:

Theorem 2.9 (Goto-Matsuoka-Takahashi, 2006). Let (R,m) be a Gorenstein local ring with dim(R) >0
and assume that e(R) > 3. Then for every parameter ideal J in R one has that m2] =m2J and I3 = JI?,
where I = J: m2,

Linkage and Gorenstein linkage. The original result by Burch that we quoted in the introduction dealt
with the integrality of elements of more general links. Thus, it is natural to inquire about the integrality
of quotients where the complete intersection ideal J is replaced by a more general ideal. Two ideals I; and
I, of height g are linked (G-linked, resp.) if there exists a complete intersection (perfect Gorenstein, resp.)
ideal I of height g and with I C I; N I3 such that

L =11 Iy=1:1.

The notion of linkage goes back to M. Noether, Apery and Gaeta. It was formulated in precise algebraic
terms by Peskine and Szpiro. The notion of G-linkage was introduced by Schenzel and recently has been
further developed by Kleppe, Migliore, Miro-Roig, Nagel, and Peterson.

Question 2.10. Let (R,m) be a regular local ring of dimension d > 3. Let I ¢ mt, where t > 2, be an
m-primary Gorenstein ideal. Set L = I': m*~1. Is it true that

L?=1IL?
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In particular, L would be inside T.
Thus far, the only known case is the following one.

Theorem 2.11 (Corso-Huneke-Vasconcelos, 1998). Let (R,m) be a regular local ring of dimension d > 2.
Suppose that I C m? is an m-primary ideal such that R/I is Gorenstein. Letting L = I: m then

L*=1IL.
Idea of the Proof: As L = (I,A) one only needs to show that A% € IL. Now the key point is to observe
that if we let m = (z1,...,z4), we can find ¥1,...,yq so that
TiY; = éijA mod I.
Thus, for ¢ = 1,...,d we have that A = z;y; + a; for some a; € I. As d > 2, we can write:
A? = (z1y1 + a1) (292 + 02) = T1Y1Z2Y2 + T1y102 + 122y + arag =
= (z1y2)(z2y1) + (z191)a2 + (T2y2)a1 + @102 € I(I,A) = IL.
as claimed. O
3. ANNIHILATORS OF KOSZUL HOMOLOGY MODULES

Let H; = Hi(I) denote the homology modules of a Koszul complez K. built on a minimal generating
set a1,...,a, of an ideal I of height g. It is well known that all the Koszul homology modules H; are
annihilated by I, but in general their annihilators tend to be larger.

Question 3.1. Let R be a Cohen-Macaulay local ring and let I be an unmixed R-ideal:
? -
Ann(H;) C I?

7 -
In particular, one may want to look at the question “Ann(H;) C I” as a non-traditional way to find part
of T. Notice also the unmixedness hypothesis on I.

Example 3.2. Let R = k(z,y, 2, W)(5,,,w) With chark = 0. The ideal
I= (2% -2y, —zy + 1% 2% — 2w, —2w + w?)
is a height two mixed ideal with
Amn(H)) =T = (I,zz — yz — zw + yw)
Amnn(Hp) = I = (z - y,z — w).
A first validation of the question is provided by the following result about integrally closed ideals.

Theorem 3.3 (Corso-Huneke-Katz-Vasconcelos, 2006). Let I be an m-primary integrally closed ideal that
is not a complete intersection. Then Ann(H,;)=1.

The proof of the above result is based on two facts:

e Let J; and J, be m-primary ideals with J; C J,. Then
J1=J & J1=J20(J1:m).
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e Let I be an m-primary ideal. If ¢ € R is such that cH; =0and c€ I: m, then c € I

A sketch of the proof of the second fact goes as follows. Suppose that I = (a1,...,a5). Notice that the
condition ¢ H; = 0 implies that

(a1,---,an-1): an € (a1,...,8n-1): C. (%)

n

For if r, € (a1,...,an-1): an then we can find r1,...,7p—1 € R so that Zriai =0. Thus c(r1,...,7) is
=0

a Koszul relation and therefore

c(r1,y... o) = Zsij(O,... N N ()R
i<j
with a; and —a; in the 4-th and j-th places respectively. Thus, cry € (a1,.--,@n-1)-
On the other hand, ¢ € I: m. If cm C Im then we have that ¢ € T, by the determinant trick. Otherwise,
cm ¢ I'm so that we can choose a minimal generator for I of the form a, = cz for some x € m. So we have
I=(ay,...,an-1,cx) with (a3,...,a,—1) an m-primary ideal. Since we clearly have that

(a1,---,8n-1): ¢ C(a,...,8n-1): ¢ = (@1,...,8n-1): Gn

we conclude that

(a1,---,8n-1): c=(a1,-..,an-1): cx = ((a1,...,8n-1): €): T,
as the reverse inclusion is given by equation (x). As R/(a1,...,an-1) is an Artinian ring and z € m, the
above equation forces ¢ € (a1,...,an-1), which is impossible. O

H; and the conormal module. The close relationship between H; and the conormal module I/1 2 is

encoded in the following exact sequence of Simis and Vasconcelos
0— 6(I) — Hy — (R/I)* — I/I? =0,

where 6(I) denotes the kernel of the natural map from the second symmetric power Sym,(I) of I onto I2.

The trouble would resolve if Ann(H;) C Ann(I/I?). But this is not the case, in general. For example,
let R = k[z,y,2](zy,,). The ideal I = (27,y",27,2%y2?,2%y*2) is such that I?: I = I while Ann(H1) =
(I,25%5,452%). Notice that (Ann(H,))? = I - Ann(H,), which implies that Ann(H,) C T.

Ideals with a structure. The general case of Question 3.1 is rather complicated, thus in the sequel we
will only deal with ideals that possess some specific structures. We first start presenting a ‘loose’ bound.

Proposition 3.4. For any R-ideal I minimally presented by a matriz ¢ then Ann(Hip) C I:Ii(p).
If, in addition, I is syzygetic (that is §(I) = 0) then Ann(H,) =1: I1(yp).

Proof: Indeed, if £ € Ann(H;) one has that for z € Z; the condition xz € B; means that each coordinate
of z is conducted into I by 2. Thus z € I : I;(p). The converse holds if I is syzygetic. In fact, in this
situation one actually has that H; — (I1(¢)/I)™. Thus I: I1(p) C Ann(H)). a

Remark 3.5. In general, the ideal I : I1(p) may be larger than T. For example, the integrally closed
R-ideal I = (z,y)?, where R = k[z,y](5,), is such that I: I1(¢) = (z,).
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Next, in the case of height two perfect ideals in local Cohen-Macaulay rings, however, the Cohen-Macaulayness

of the H;’s gets into the way.
Theorem 3.6. Let I be a height two perfect R-ideal. Then for all i (with H; # 0) one has Ann(H;) = 1.

Finally, for a height three perfect Gorenstein ideal I we still expect that (Ann(H;))? = I-Ann(H;), which
would imply that I C Ann(H;) C T. Thus far, we can prove a weaker result.

Theorem 3.7. Suppose that char(R) # 2 and let I be a height three perfect Gorenstein ideal minimally
generated by n > 5 elements. Then (Ann(H;))?cT.

Proof: Let V be any of the valuation overrings of R with valuation v. Let Z; and B; be the modules of
cycles and boundaries, respectively, and let ¢ € R such that ¢Z; C By. Then
" tdet(Z,V) = det(cZ;V) = det(B1 V).
On the other hand, we also have that
det(Z;V)=1*V  and  det(B,V)=I""'V.

So that ¢*~ 112V = I™"'V implies that ¢*~! € I"~3V. Now, we have that (n — 1)v(c) = v(c""!) >
v(I"3V) = (n — 3)v(IV) which yields

o(?) 2 22 i’ W(IV) > v(IV).
Therefore, ¢® € T. O
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MONOMIAL AND TORIC IDEALS
ASSOCIATED TO FERRERS GRAPHS

ALBERTO CORSO

To Professor Shiro Goto on the occasion of his siztieth birthday

This article is an expanded version of a talk I gave during the 28-th Symposium on Commutative Ring
Theory held in November 2006, in Japan. The Symposium was marked by the celebration of the sixtieth
birthday of Professor Shiro Goto as well as his lasting contributions to Commutative Algebra. The format
of this paper is highly colloquial as it reflects the nature of original talk. It draws its material from a joint
work with Uwe Nagel [13], to which I refer the interested reader for motivations, more accurate statements
and additional references.

A Ferrers graph is a bipartite graph on two distinct vertex sets X = {z1,...,zo} and Y = {y1,...,ym}
such that if (z;,y;) is an edge of G, then so is (zp,9g) for 1 < p <iand 1 < g < j. In addition, (z1,Ym)
and (zn,y1) are required to be edges of G. For any Ferrers graph G there is an associated sequence of
non-negative integers A = (A1, A2, ..., An), where \; is the degree of the vertex z;. Notice that the defining
properties of a Ferrers graph imply that Ay =m > Ag > -+- > Ap > 1; thus X is a partition. Alternatively,
we can associate to a Ferrers graph a diagram T, dubbed Ferrers tableau, consisting of an array of n rows
of cells with ); adjacent cells, left justified, in the i-th row.

Ferrers graphs/tableaux have a prominent place in the literature as they have been studied in relation
to chromatic polynomials [2, 20], Schubert varieties [18, 17}, hypergeometric series [31], permutation
statistics [9, 20], quantum mechanical operators [51], inverse rook problems [25, 18, 17, 44]. More
generally, algebraic and combinatorial aspects of bipartite graphs have been studied in depth (see, e.g.,
[47, 32] and the comprehensive monograph [52]). In this paper, which is the first of a series (14, 15], we
are interested in the algebraic properties of the edge ideal I = I(G) and the toric ring K[G] associated to a
Ferrers graph G. The edge ideal is the monomial ideal of the polynomial ring R = K[z1,...,Zn, ¥1,-- -  Ym)
over the field K that is generated by the monomials of the form z;y;, whenever the pair (z;,y;) is an edge
of G. K[G] is instead the monomial subalgebra generated by the elements z;y;. An example is illustrated
in Figure 1:

The author would like to thank the entire Japanese Commutative Algebra community for the warm atmosphere provided
during the 28-th Symposium on Commutative Ring Theory. A special thank goes to Professor Koji Nishida for his tireless
help and assistance.
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Y1 Y2 Y3 Y4 Ys Y6

= | |

T2

3

T4

s

Ferrers graph Ferrers tableau with partition X = (6,4,4,2,1)

I = (z1y1, T1Y2, T1Y3, T1Y4, T1Ys5, T1Y6, T2Y1, T2Y2, T2Y3, T2Y4, T3Y1, T3Y2, T3Y3, T3Y4, T4Y1, T4Y2, T5Y1)
Figure 1: Ferrers graph, tableau and ideal

Throughout this article, A = (X1,...,A,) will always denote a fixed partition associated to a Ferrers
graph G, with corresponding Ferrers ideal I). In Section 2 of [13] we describe several fine numerical
invariants attached to the ideal I). In [13, Theorem 2.1] we show that each Ferrers ideal defines a small
subscheme in the sense of Eisenbud, Green, Hulek, and Popescu [22], i.e. the free resolution of I} is 2-linear.
More precisely, we give an explicit — but at the same time surprisingly simple — formula for the Betti

numbers of the ideal I); namely, we show that:

Bi(R/1y) = (A‘) + (”ZL 1) + (Aafz) et (A" T l) B (i-tl)

for 1 < i < max{)\; + i — 1}. Furthermore, the Hilbert series is:

n

. 1 ¢ »
ZdlmK[R/Iz\]k th= 1-om + 1 —gymintt Z(l — )t
k>0 j=t

Notice that the formula for the Betti numbers involves a minus sign: This is quite an unusual phenomenon
for Betti numbers, as they tend, in general, to have an enumerative interpretation. In order to determine
the Betti numbers it is essential to find a (not necessarily irredundant) primary decomposition of . We
refine this decomposition into an irredundant one in [13, Corollary 2.5], where we observe, in particular,
that the number of prime components is related to the outer corners of the Ferrers tableau. For instance,
in the case of the ideal I, described in Figure 1 we have that it is the intersection of 5 (= 4 outer corners

+1) components:
I)\ = (yla s vyﬁ) n (xl,ylay2yy31y4) n (11,152,-’133,1417!/2) n (931,132:133,-’547'!!1) N (Ih . ,1?5)-

We conclude Section 2 of [13] by identifying, in terms of the shape of the tableau, the unmixed ([13,
Corollary 2.6]) and Cohen-Macaulay ([13, Corollary 2.7]) members in the family of Ferrers ideals. The
latter result also follows from recent work of Herzog and Hibi [32].

There are relatively few general classes of ideals for which an explicit minimal free resolution is known:
The most noteworthy such families include the Koszul complex, the Eagon-Northcott complex [19], and
the resolution of generic monomial ideals [3] (see also [4]). In Section 3 of [13] we analyze even further the
minimal free resolution of a Ferrers ideal I, and obtain a surprisingly elegant description of the differentials
in the resolution in [13, Theorem 3.2]. In some sense, this is a prototypical result as it provides the minimal
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free resolution of several classes of ideals obtained from Ferrers ideals by appropriate specializations of the
variables (see [14] for further details). Our description of the free resolution of a Ferrers ideal relies on the
theory of ccllular resolutions as developed by Bayer and Sturmfels in [3] (see also [43]). More precisely, let
Ap_1 X A1 denote the product of two simplices of dimensions n — 1 and m — 1, respectively. Given a
Ferrers ideal Iy, we associate to it the polyhedral cell complex X, consisting of the faces of Ap_3 X Ap—1
whose vertices are labeled by generators of I. By the theory of Bayer and Sturmfels, X, determines a
complex of free modules. Using an inductive argument we show in [13, Theorem 3.2] that this complex
is in fact the multigraded minimal free resolution of the ideal J. While leaving the details to [13], we
illustrate the situation in the case of the partition A = (4,3,2,1), which is the largest we can draw. In
this case the polyhedral cell complex X can actually be identified with the subdivision of the simplex A3
pictured below (see [14] for additional details):

T1Ya

Y1 Y2 Y3 Y4

T

zzl
3

Zq

T3Y2

Figure 2: Ferrers tableau and associated polyhedral cell complex

In particular, we observe that X has four 3-dimensional cells: Two of them are isomorphic to Az whereas
the remaining two are isomorphic to either A; x Ag or Ay x A;. A grey shading in the picture above also
indicates how the polyhedral cell complex corresponding to the partition (3,2,1) sits inside X .

In Section 4 of [13] we prove the converse of [13, Theorem 2.1]. Namely, we show that any edge ideal of
a bipartite graph with a 2-linear resolution necessarily arises from a Ferrers graph (see [13, Theorem 4.2]).
One of the ingredients of the proof is a well-known characterization of edge ideals of graphs with a 2-linear
resolution in terms of complementary graphs, due to Froberg [23] (see also [21]).

The starting point of Section 5 of [13] is the observation that the toric ring of a Ferrers graph can be
identified with a special ladder determinantal ring. We then proceed to recover/establish formulee for the
Hilbert series and other invariants associated with these rings. We remark that this is a highly investigated
part of mathematics that has been the subject of the work of many researchers. Among the extensive,
impressive and relevant literature we single out [1, 8, 10, 11, 12, 28, 34, 36, 37, 38, 39, 40, 45, 46, 53|.
While most of these works involve — to a different extent — path counting arguments, we offer here a
new and self-contained approach that yields easy proofs of explicit formulee for the Hilbert series, the
Castelnuovo-Mumford regularity, and the multiplicity of the toric rings of Ferrers graphs. This method,
which is based on results from Gorenstein liaison theory (see [41] for a comprehensive introduction), has
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been pioneered in [35), where it was proved that every standard determinantal ideal is glicci, i.e. it is in the
Gorenstein liaison class of a complete intersection (see also [42]). Recently, Gorla [26] has considerably
refined these arguments to show that all ladder determinantal ideals are glicci. This result can be used to
establish first a simple recursive formula, which we then turn into an explicit formula that involves only

positive summands.
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(20]
[21]
(22]
(23]

(24]
[25]

[26]
27]

(28]
[29]

(30]
31]
[32]

(33]
(34]

REFERENCES

S.S. Abhyankar, Enumerative combinatorics of Young tableauz, Marcel Dekker, New York, Basel 1988.

F. Brenti, G. Royle and D. Wagner, Location of zeros of chromatic and related polynomials of graphs, Canad. J. Math.
46 (1994), 55-80.

D. Bayer and B. Sturmfels, Cellular resolutions of monomial modules, J. Reine Angew. Math. 502 (1998), 123-140.

D. Bayer, I. Peeva and B. Sturmfels, Monomial resolutions, Math. Res. Lett. 5 (1998), 31-46.

R. Biagioli, S. Faridi and M. Rosas, Resolutions of De Concini-Procesi ideals indexed by hooks, preprint 2005.

W. Bruns and A. Guerrieri, The Dedekind-Mertens formula and determinantal rings, Proc. Amer. Math. Soc. 127
(1999), 657-663.

W. Bruns and J. Herzog, On the computation of a-invariants, Manuscripta Math. 77 (1992), 201-213.

W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University
Press, Cambridge, 1993.

F. Butler, Rook theory and cycle-counting permutation statistics, Adv. in Appl. Math. 33 (2004), 655-675.

A. Conca, Ladder determinantal rings, J. Pure Appl. Algebra 98 (1995), 119-134.

A. Conca, Straightening law and powers of determinantal ideals of Hankel matrices, Adv. Math. 138 (1998), 263-292.
A. Conca, J. Herzog, On the Hilbert function of determinantal rings and their canonical module, Proc. Amer. Math.
Soc. 112 (1994), 677-681.

A. Corso and U. Nagel, Monomial and toric ideals associated to Ferrers graphs, preprint 2006.

A. Corso and U. Nagel, Specializations of Ferrers ideals, forthcoming.

A. Corso and U. Nagel, Generalized Ferrers ideals, forthcoming.

A. Corso, W.V. Vasconcelos and R. Villarreal, Generic Gaussian ideals, J. Pure Appl. Algebra 125 (1998), 117-127.
M. Develin, Rook poset equivalence of Ferrers boards, preprint 2005.

K. Ding, Rook placements and cellular decomposition of partition varieties, Discrete Mathematics 170 (1997), 107-151
J.A. Eagon and D.G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc.
Ser. A 269 (1962), 188-204.

R. Ehrenborg and S. van Willigenburg, Enumerative properties of Ferrers graphs, Discrete Comput. Geom. 32 (2004),
481-492.

D. Eisenbud, M. Green, K. Hulek and S. Popescu, Restricting linear syzygies: algebra and geometry, Compositio Math.
141 (2005), 1460-1478.

D. Eisenbud, M. Green, K. Hulek and S. Popescu, Small schemes and varieties of minimal degree, to appear in Amer.
J. Math.

R. Fréberg, On Stanley-Reisner rings, in Topics in algebra, Part 2 (Warsaw, 1988), pp. 57-70, Banach Center Publ. 26,
PWN, Warsaw, 1990.

1. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. Math. 58 (1985), 300-321.

J. Goldman, J.T. Joichi and D. White, Rook Theory I. Rook equivalence of Ferrers boards, Proc. Amer. Math. Soc. 52
(1975), 485-492.

E. Gorla, Mixed ladder determinantal varieties from two-sided ladders, preprint 2005.

H.W. Gould, Combinatorial identities: A standardized set of tables listing 500 binomial coefficient summations (rev.
ed.), Morgantown, West Virginia, 1972.

S.R. Ghorpade, Hilbert functions of ladder determinantal varieties, Discrete Math. 246 (2002), 131-175.

D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableau de Young, in “Combinatoire Enumerative (Montreal 1985)”,
pp. 112-125, Lect. Notes Math. 1234, 1986.

H.T. Ha and A. Van Tuyl, Splittable ideals and the resolutions of monomial ideals, preprint 2005.

J. Haglund, Rook theory and hypergeometric series, Adv. in Appl. Math. 17 (1996), 408-459.

J. Herzog and T. Hibi, Distributive lattices, bipartite graphs and Alexander duality, J. Algebraic Combin. 22 (2005),
289-302.

J. Herzog, T. Hibi and X. Zheng, Monomial ideals whose powers have a linear resolution, Math. Scand. 95 (2004), 23-32.
J. Herzog and N.V. Trung, Grobner bases and multiplicity of determinantal and pfaffian ideals, Adv. Math. 96 (1992),
1-37.

— 196 —



(35]

(36]
(37]

(38]
(39]
[40]
[41]
[42]
(43]
[44]
(45]
(46]

[47]
48]

[49]
[50]
[51]
[52]

(53]

(54]
(55]

MONOMIAL AND TORIC IDEALS ASSOCIATED TO FERRERS GRAPHS

J. Kleppe, J. Migliore, R.M. Miré-Roig, U. Nagel, and C. Peterson, Gorenstein liaison, complete intersection liaison
invariants and unobstructedness, Mem. Amer. Math. Soc. 154 (2001), no. 732.

C. Krattenthaler, Non-crossing two-rowed arrays and summations for Schur functions, preprint 1992.

C. Krattenthaler and S.G. Mohanty, On lattice path counting by major and descents, Europ. J. Combin. 14 (1993),
43-51.

C. Krattenthaler and M. Prohaska, A remarkable formula for counting non-intersecting lattice paths in a ladder with
respect to turns, Trans. Amer. Math. Soc. 351 (1999), 1015-1042.

C. Krattenthaler and M. Rubey, A determinantal formula for the Hilbert series of one-sided ladder determinantal rings,
in Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000), pp. 525-551, Springer, Berlin, 2004.
D.M. Kulkarni, Counting of paths and coeflicients of Hilbert polynomial of a determinantal ideal, Discrete Math. 154
(1996), 141-151.

J. Migliore, Introduction to Liaison theory and deficiency modules, Progress in Mathematics 165, Birkhauser, 1998.

J. Migliore, U. Nagel, T. Rémer, Extensions of the multiplicity conjecture, to appear in Trans. Amer. Math. Soc.

E. Miller and B. Sturmfels, Combinatorial c tative algebra, Graduate Texts in Mathematics 227, Springer-Verlag,
New York, 2005.

A. Mitchell, The inverse rook problem on Ferrers boards, preprint 2004.

H. Narasimhan, The irreducibility of ladder determinantal varieties, J. Algebra 102 (1986), 162-185.

M. Rubey, The h-vector of a ladder determinantal ring cogenerated by 2 x 2 minors is log-concave, J. Algebra 292
(2005), 303-323.

A. Simis, W.V. Vasconcelos and R. Villarreal, On the ideal theory of graphs, J. Algebra 167 (1994), 389-416.

R.P. Stanley, E: rative combinatorics Vol. 2, Cambridge Studies in Advanced Mathematics 62, Cambridge University
Press, Cambridge, 1999.

R.P. Stanley, Catalan addendum, (URL: www-math.mit.edu/"rstan/ec/catadd.pdf).

C. Valencia and R. Villarreal, Canonical modules of certain edge subrings, European J. Combin. 24 (2003), 471-487.
A. Varvak, Rook numbers and the normal ordering problem, J. Combin. Theory Ser. A 112 (2005), 292-307.

R. Villarreal, Monomial algebras, Monographs and Textbooks in Pure and Applied Mathematics 238, Marcel Dekker,
Inc., New York, 2001.

H.-J. Wang, A determinantal formula for the Hilbert series of determinantal rings of one-sided ladder, J. Algebra 265
(2003), 79-99.

H.-J. Wang, Counting of paths and the multiplicity of determinantal rings, preprint 2002.

H.-J. Wang, A conjecture of Herzog and Conca on counting of paths, preprint 2002.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KENTUCKY 40506
E-mail address: corso@ms.uky.edu

— 197 —





