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Preface

This is the Proceedings of the 26-th Symposium on Commutative Ring
Theory in Japan, November 24-27, 2004, Kurashiki IVY Square, which
was financially supported by Prof. Kenji Nishida (Shinshu Univ.), Prof.
Yuuji Yoshino (Okayama Univ.) and Prof. Kei-ichi Watanabe (Nihon
Univ.) (Grant-in-Aid for Scientific Research of Japan Society for the
Promotion of Science). We had 65 participants, including a guest speaker
Prof. Bernd Ulrich (Purdue Univ., USA), and there were 26 lectures. The
members of the organizing committee would like to express their hearty
thanks for valuable contribution to the conference of all the participants.

January 10, 2005
Yoichi Aoyama (Shimane Univ.)
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DUALIZING COMPLEX OF THE INCIDENCE ALGEBRA
OF A FINITE REGULAR CELL COMPLEX
ARISING FROM POINCARE-VERDIER DUALITY

KOHJI YANAGAWA

This note is an abridged version of my recent paper [13]. The formal version has
been submitted for publication elsewhere.

ABSTRACT. Let ¥ be a finite regular cell complex with ) € ¥, and regard it as a
poset (i.e., partially ordered set) by inclusion. Let R be the incidence algebra of
the poset & over a field k. Corresponding to the Verdier duality for constructible
sheaves on T, we have a dualizing complex w® € D*(modgre, r) giving a duality
functor from D’(modpg) to itself. w® satisfies the Auslander condition. Our
duality is somewhat analogous to the Serre duality for projective schemes (the
cell ) € ¥ plays a similar role to that of “irrelevant ideals”). If H {(w*) # 0 for
exactly one i, then the underlying topological space of £ is Cohen-Macaulay (in
the sense of the Stanley-Reisner ring theory). The converse also holds when s
is a simplicial complex. R is always a Koszul ring with R' = R°®. The relation
between the Koszul duality for R and the Verdier duality is discussed. This result
is a variant of a theorem of Vybornov.

1. PREPARATION

A finite regular cell complez (c.f. [2, §6.2] and [3]) is a non-empty topological
space X together with a finite set 3 of subsets of X" such that:
i) 0 € T and X = U, 5 0; '
(ii) the subsets o € ¥ are pairwise disjoint;
(i) for each o € £, o # (), there exists a homeomorphism from an i-dimensional
disc Bi = {z € R | ||z]| < 1} onto the closure & of o which maps the open
disc U' = {z € R* | ||z|| < 1} onto 0.

An element o € ¥ is celled a cell. We regard ¥ as a poset by 0 > 7 N ks
If o € ¥ is homeomorphic to U?, set dimo = 4. Here dim@ = —1. We also set
dim X = max{dimo |0 € X }.

A finite simplicial complex is a primary example of finite regular cell complexes.
A convex polytope P can be regarded as a finite regular cell complex. Here cells
are the relative interior of the faces of P. More generally, polyhedral complexes are
regular cell complexes.

Let 0,0’ € T. If dimo =4+ 1, dimo’ =7~ 1 and o' < 0, then there are exactly
two cells 01,09 € & between ¢’ and 0. (Here dimo; = dimo; = i.) A remarkable
property of a regular cell complex is the existence of an incidence function € (c.f.
[3, II. Definition 1.8]). The definition of an incidence function is the following.

(i) To each pair (o,0") of cells, € assigns a number g(o,0') € {0,%1}.



(ii) €(o,0") # 0 if and only if dimo’ = dimo — 1 and o' < 0.

(iii) If dimo = 0, then £(o,0) = 1.

(iv) f dimo =i+ 1, dimo’ =i —1 and ¢’ < 01, 09 < 0, 01 # 09, then we have
g(o,01)e(o1,0") + e(o,03) e(02,0") = 0.

We can compute the (co)homology groups of X using the cell decomposition ¥ and

an incidence function €.

Let P be a finite poset. The incidence algebra R of P over a field k is the k-
vector space with a basis {e, , | ,y € P with 2 > y}. The k-bilinear multiplication
defined by ez 4 €, 4w = 0y, €5, makes R a finite dimensional associative k-algebra.
Set e, := ez, Then 1 =3 _,e, and e, ey = 0,y e,. We have R = D.cp Re, as
a left R-module, and each Re, is indecomposable.

Denote the category of finitely generated left R-modules by modg. If N € modp,
we have N = @, p N, as a k-vector space, where N, := e, N. Note that e, , N, C
N, and e, N, =0 fory # z. If f: N = N'is an R-morphism, then f(N,) C N_.

For each x € P, we can construct an indecomposable injective module Eg(z) €
modg. (When confusion does not occur, we simply denote it by E(z).) Let E(x)
be the k-vector space with basis {e(z), | y < z}. Then we can regard E(x) as a
left R-module by

&) e(r), ify=wandz <z,
e e\T)y =
z,w Y 0 otherwise.

Note that E(z), = ke(z), if y <z, and E(x), = 0 otherwise. An indecomposable
injective in modpg is of the form E(z) for some z € P. Since dimy R < co, modg
has enough projectives and injectives. Note that R has a finite global dimension.

Let ¥ be a finite regular cell complex, and X its underlying topological space.
We make ¥ a poset as above. In the rest of this paper, R is the incidence algebra
of ¥ over k. For M € modg, we have M = P .5 M, as a k-vector space, where
M, :=e,M.

Let Sh(X) be the category of sheaves of finite dimensional k-vector spaces on X.
We say F € Sh(X) is a constructible sheaf with respect to the cell decomposition
¥, if Flo is a constant sheaf for all ) # o € ¥. Here, F|o denotes the inverse image
j*F of F by the embedding map j : 0 — X. Let Sh.(X) be the full subcategory of
Sh(X) consisting of constructible sheaves with respect to ¥. It is well-known that
D"(She(X)) = Dg, (x)(Sh(X)). (See [5, Theorem 8.1.11]. There, it is assumed that
Y is a simplicial complex. But this assumption is irrelevant. In fact, the key lemma
[5, Corollay 8.1.5] also holds for regular cell complexes. See also [8, Lemma 5.2.1].)
So we will freely identify these categories.

There is a functor (=) : modg — Sh.(X) which is well-known to specialists
(see for example [9, Theorem A]). But we give a precise construction here for the
reader’s convenience. See [9, 11] for detail.

For M € modg, consider the set



Let 7 : Spé(M) — X be the projection map which sends (p,m) € o x M, C Spé(M)
top € o C X. For an open subset U C X and a map s : U — Spé(M), we will
consider the following conditions:
() mos =1dy and s, = e, -5, forall p € o, ¢ € 7 with 7 > 0. Here s, (resp.
s4) is the element of M, (resp. M) with s(p) = (p,sp) (resp. s(q) = (q,54))-
(#%) There is an open covering U = [J ¢, Ux such that the restriction of s to U
satisfies (x) for all A € A.
Now we define a sheaf MT € Sh.(X) from M as follows. For an open set U C X,
set
MY U) = {s|s:U— Spé(M) is a map satisfying (+*) }
and the restriction map MT(U) — MT(V) is the natural one. It is easy to see
that M' is a constructible sheaf. For o € X, let U, := |J,», 7 be an open set of
X. Then we have MT(U,) & M,. Moreover, if o < 7, then we have U, D U,
and the restriction map MT(U,) — MT(U,) corresponds to the multiplication map
M, > z — e, o € M,. For a point p € o, the stalk (M1), of M at p is isomorphic
to M,. We have the exact functor (—)": modg — She(X).
For example, we have E(0)! & j.k,, where j is the embedding map from the
closure & of o to X and k is the constant sheaf on &. Similarly, we have (Re, )" =
hiky,_, where h is the embedding map from the open subset U, to X.

Remark 1.1. Let ¥’ := ¥\ 0 be a subposet, and T its incidence algebra over k.
Then we have a functor mody — She(X) defined by the same way as (—)', and it
gives an equivalence mody = She(X) (c.f. [9, Theorem A]). On the other hand, by
virtue of 0 € £, our (=) : modg — Sh(X) is neither full nor faithful. But we will
see that modp have several interesting features which modz does not possess.

For M € modg, set Ty(M) == {z € My | Rz C My}. It is easy to see that
Ty(M) = Hompg(k, M). Here we regard k as a left R-module by e,k =0 for all
esr # €p. Clearly, I'y gives a left exact functor from modp to itself (or vecty). By
the definition, we have (M /Ty(M))! =2 MT. We denote the ith right derived functor
of Ty(—) by Hj(—). In other words, Hj(—) = Exti(k, —).

Theorem 1.2 (c.f. [11, Theorem 3.3]). For M € modg, we have an isomorphism
HY(X,M") = H (M) for all i > 1,
and an ezact sequence
0 — HY(M) — My — H(X,M") — Hy(M) — 0.
Here H*(X, M") stands for the cohomology with coefficients in the sheaf M?.

Proof. Let I* be an injective resolution of M, and consider the exact sequence
(1.1) 0—=Ty(I*) = I*—=I°/Ty(I°) = 0

of cochain complexes. Put J* := I*/Ty(I*). BEach component of J* is a direct sum
of copies of E(c) for various § # o € ¥. Since E(J)T is the constant sheaf on
& which is homeomorphic to a closed disc, we have H'(X, E(0)) = H'(5;k) = 0
for all i > 1. Hence (J*)T (2 (I*)!) gives a I'(X, —)-acyclic resolution of M. Tt
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is easy to see that [J*]y = (X, (J*)T). So the assertions follow from (1.1), since
HO(I*) 2 M and H'(I*) =0 for all i > 1. O

Remark 1.3. (1) We regard a polynomial ring S := k[zo, ... ,x,] as a graded ring
with deg(z;) = 1 for each i. Let I C S be a graded ideal, and set A := S/I.
For a graded A-module M, we have the algebraic quasi-coherent sheaf M on the
projective scheme Y := Proj A. It is well-known that H*(Y, M) = [H%(M)], for
all 2 > 1, and

0 — [HS(M)]o — My — H(Y, M) — [HL(M))o = 0 (exact).

Here H! (M) stands for the local cohomology module with support in the irrelevant
ideal m := (z9,... ,x,), and [HL(M)]o is its degree 0 component (H: (M) has a
natural Z-grading). See also Remark 3.6 (2) below.

(2) Assume that ¥ is a simplicial complex with n vertices. The Stanley-Reisner
ring k[X] of ¥ is the quotient ring of the polynomial ring k[x,...,z,] by the
squarefree monomial ideal Iy, corresponding to ¥. In [10], we defined squarefree
k[¥]-modules which are certain N"-graded k[X]-modules. For example, k[%] itself is
squarefree. The category Sq(X) of squarefree k[¥]-modules is equivalent to modg
of the present paper (see [12]). Let ¥ : modr — Sq(X) be the functor giving this
equivalence. In [11], we defined a functor (—)* : Sq(¥) — Sh.(X). For example,
k[L]" = k. It is easy to see that (=)' = (=)* o W. For M € modpg, we have
Hj(M) = H.(¥(M))o. So the above theorem is a variation of [11, Theorem 3.3].

2. DUALIZING COMPLEXES

Let D’(modpg) be the bounded derived category of modg. For M* € D*(modp)
and 1 € Z, M*[i] denotes the ¢*" translation of M*, that is, M*[s] is the complex
with M'[z]J = M. So, if M € modg, M[z] is the cochain complex -+ — 0 —
M — 0 — ---, where M sits in the (—4)™ position.

In this section, from Verdier’s dualizing complex D%, € D°(Sh,(X)), we construct
a cochain complex w*® of injective left (R®y R)-modules which gives a duality functor
from D°(modg) to itself. Let M be a left (R ®; R)-module. When we regard A
as a left R-module via a ring homomorphism R > 2z — 2 ® 1 € R ®; R (resp.
R>r+—1®z € R® R ), we denote it by rM (resp. Mpop).

For ¢ < 1, the i*" component w? of w* has a k-basis

{elo), lo,7,p€X, dimo =—i,0>7,p},
and its module structure is defined by
e(o)r, ifr'=pando <o,

eo Q1) -e(o) = v -

(6,7 ®1) -elo); {O otherwise,
and
e(o)y if 7' =7and o' <o,
0 otherwise.



Then we have z(w') =2 (W) g = Py oe; B(0)M9), where p(o) == #{r € T |
7 < o}. Note that R®j R is isomorphic to the incidence algebra of the poset ¥ x ¥.
For each o € ¥ with dimo = —i, set I(o) to be the subspace (e(0)] | 7, p < o)
of w*. Then, as a left R ®; R-module, I(0) is isomorphic to the injective module
Fre,r((0,0)), and w' 2 @y, ,__, (o). The differential of w* is given by

W' S e(o r—>z )T € wtt
a'>T1,p

makes w* a complex of (R ®; R)-modules.
Let M € modg. Using the left R-module structure I(o) g, Hompg (M, gI(0)) can
be regarded as a left R-module again. Moreover, we have the following.

Lemma 2.1. For M € modg, we have Homg(M, rI(0)) = E(0) Qk (M,)" as left
R-modules. Here (M,)Y is the dual vector space Homy(M,, k) of M,.

Proof. Set My = @,cx ;> M7 to be a submodule of M. By the short exact
sequence 0 — Ms, — M — M/Ms, — 0, we have

0— HOI’I’IR(M/MZU, RI(O’)) — HomR(]\/[, RI(U)) — HOI’HR(]\([ZU, RI(O’)) — 0.
Since (M/M>,), = 0, we have Hompg(M/M>,, rI(c)) = 0. So we may assume that

M = Ms,. Let {f1,..., fu} be a k-basis of (M,)". Since (rl(0)), = 0 for 7 > o,
Hompg(Ms,, gI(0)) has a k-basis {e(0)]; ® fi | 7 <0, 1<i<n}. O

In the sequel, we simply denote Homp(—, rw’) by Homp(—,w?), etc.

For a bounded complex M*® in modg, set D(M*) := Hom%(M*®,w*®). Since each
rw' is injective, we have D(M*) = R Hompg(M*®,w*®). And D gives a contravariant
functor from D°(modg) to itself.

We can describe D(M*) explicitly. Since w* = @dimg__i I(0), we have
Homgp(M,0') = @ Homp(M,I(0)= € E(o)ek (M)
dimo=—1 dimo=—1
for M € modgr by Lemma 2.1. So we can easily check that D(M) is of the form
D(M):0 — D %M) — D' (M) — --- — D" (M) — 0,
D'(M)= @ Elo)®(M,)".

ocEY
dimo=—1

Here the differential sends e(0), ® f € E(0) ® (My)"
ST oelor)e(r), @ fleam) € D B(r) @ (M),

TEL, T2>p TED
- dim7=dimo—1

For a bounded cochain complex M* in modg, we have
D'(M*) = P D'(M)= P Elo) e (M),

1—j=t c€EL,JEL
—dimo—j=t

_5_



and the differential is given by

DY(M®) D E(0) ®x (M) 22®@y—d(z®y)+ (-1)(z®d"(y)) € D"H(M*),
where 8V : (M) — (MJ~")" is the k-dual of the differential 0 of M*, and d is the
differential of D(M?).

Since the underlying space X of ¥ is locally compact and finite dimensional, it
admits Verdier’s dualizing complex D% € D°(Sh(X)) with the coefficients in k (see
[4, V. §2]).

Theorem 2.2. For M* € D’(modg), we have
D(M*)" = RHom((M*)',D%).

Proof. An explicit description of RHom((M*®)T,D%) is given in the unpublished
thesis [8] of A. Shepard. When ¥ is a simplicial complex, this description is treated
in [9, §2.4], and also follows from the author’s previous paper [11] (and [12]). The
general case can be reduced to the simplicial complex case using the barycentric
subdivision. Shepard’s description of RHom((M*®)", D%) is the same thing as the
above mentioned description of D(M*) under the functor (). O

Lemma 2.3. For each o € ¥, the natural map E(c) — D o D(E(0)) is an iso-
morphism in D°(modpg).

Proof. We may assume that o # (. Put C* := D(E(0)), and let 7<(C*® : -+ —
C~' — 0% = 0 — - be the truncated complex of C*. Note that (1<oC*®)" = (C*)T.
Since E(o)' is the constant sheaf over the closure & which is homeomorphic to
a closed disc, we have (C*)! 2 jik, [dim o] in D®(Sh(XX)) by the Poincaré-Verdier
duality. Here j : ¢ — X is the embedding map. Note that (C*)"is a T'(X, —)-acyclic
resolution of jik,[dim o] and T(X, (C*)1) 2 (740C*)y as cochain complexes of k-
vector spaces. Hence we have H'(1<oC*)y & HTmo(X, 5k ) & HHmo(g )
Hi+dimo (5 k) Here Hi(—) stands for the cohomology with the compact supportb
Therefore H(7<9C*)y = k and H'(7<oC*)y = 0 for all i # 0. Since (C')y =

(C*)g = 0 for all 4 > 1, and the differential map (C°)y — (C')y is non-zero, we th
H'(C*)y = 0 for all i. Hence C* 2 M[dimo] in D’(modg), where M is a simple
module with M = M, = k. So D o D(E(0)) = D(M[dimo]) = E(o). d

Theorem 2.4. (1) w* € D’(modgg,r) s a dualizing complez in the sense of [14
Definition 1.1].

(2) The dualizing compler w*® satisfies the Auslander condition in the sense of
[14, Definition 2.1].

Proof. (1) The conditions (i) and (ii) of [14, Definition 1.1] obviously hold in our
case. So it remains to prove the condition (iii). To prove this, it suffices to show
that the natural morphism R — D o D(R) is an isomorphism. But this follows
from “Lemma on Way-out Functors” and Lemma 2.3.

(2) For a non-zero module M € modg, set j, (M) := min{s | Extiy(M,w*) #0}.
By the description of D(M), we have j,(M) = —max{dimo | 0 € Z, M, # 0},
and Ext%(M,w*), = 0 for 0 € ¥ with dimo > —i. Hence, for any submodule
N C Extb(M,w*), we have j,(N) > i. O



Corollary 2.5. We have Extly(M*, w®)y = H@"‘A“(M’)v for alli € Z and all M* €
DP(modg).

Proof. Since DoD(M?*) is an injective resolution of M*®, we have RI'y(M*) = I'y(Do
D(M?*)). By the structure of D(—), we have T'y(DoD(M*)) = (D(M*)g)Y[-1]. So
we are done. O
Proposition 2.6. For any o € X, D(Re,)! 2 Rj, D}, where j : Uy := U5, 7 —
X is the embedding map. In particular, D(Rey)T = DY . -

Proof. See [13, Proposition 5.2]. O

3. MISCELLANEOUS REMARKS

The former half of this section is closely related to Shepard’s thesis [8].

For M,N € modr and ¢ € %, set Homy(M,N), := Hompg(Msy, N). We
make Homgz(M,N) := @, .5 Homy(M, N), a left R-module as follows: For f €
Homp (M, N), and a cell 7 with 7 > o, set er.of to be the restriction of f into the
submodule M5, of Ms>,.

Lemma 3.1. For M € modg, we have Homp(M, E(0)) = E(0) ®k (M,)".
Proof. Similar to Lemma 2.1. O

If a complex M*® in modp is exact, then so is Homp(M*, E(0)) by Lemma 3.1.
Moreover, if M* is bounded and exact, and I® is a bounded complex such that I
is injective for all i, then Hom}(M?*, I*) is exact.

For cells 0,7 € %, consider the subset {p € ¥ | p > 0,7 }. Assume that this
subset has the minimum element (we denote it by oV 7) for any 0,7 € £. (If S is a
simplicial complex, then this condition is satisfied.) Since Homp(Re,, N); = Ny,
in this case, the complex Hom% (Re,, N*) is exact for an exact complex N°*. Hence if
N* and P* are bounded, N* is exact, and each P* is projective, then Hom$%(P*, N*)
is exact. Thus we have the following lemma.

Lemma 3.2. (1) If I* is an injective resolution of N* € D*(modg), then
RHom ,(M*, N*) = Hom$,(M*, I°).

(2) Assume that, for each 0,7 € I, the subset {pex|p>or} has the
minimum element. Then

RHomy(M*, N*) = Hom%(P®,N°*)
for a projective resolution P* of M*® € Db(modg).

Remark 3.3. The additional assumption on { p € £ | p > 0,7 } in Lemma 3.2 (2) is
really necessary. Without this, there is an easy example with RHompg(M*, N*®) %
Hom$%(P*, N*). See [13, Example 4.3].

By Lemmas 3.1 and 3.2, we have the following. Recall that D(Rep)' = D%.
Proposition 3.4. If M* € D*(Sh.(X)), then D(M?*) = RHompg(M*®,D(Rey)).

_7_



If 7,G € Sh,(X), then it is easy to see that Hom(F,G) € Sh.(X). For M,N €
modg and () # o € %, we have Hom (M, N1)(U,) = Homgyy, (]V[T[UU,NT[U ) =
Homp(M>q, N>,) = Hompg(M>,, N) = Homy(M, N),. Hence

Hompy(M, N)' = Hom (M, N1).

If 7°,G* € D*(Sh.(X)), then RHom(F*,G*) € D*(Sh.(X)) (see [5, Proposi-
tion 8.4.10]). Thus we can use an injective resolution of G* in D*(Sh.(X)) to com-
pute RHom(F*,G*). If I* is an injective resolution of N* € D’(modg), then (1*)f
gives an injective resolution of (N*)! in D?(Sh.(X)). Hence we have the following.

Proposition 3.5 ([8, Theorem 5.2.5]). If M*, N* € D’(mody), then
RHomy(M*, N*)t = RHom((M*), (N*)1).

By Lemma 3.2 (2), if 0 V 7 € ¥ exists for any 0,7 € ¥ (e.g., & is a simplicial
complex), then we can compute R*om/(F*,G*) for F*,G* € D°(Sh.(X)) using a
projective resolution of F* in D°(Sh.(X)).

Remark 3.6. Let mody be the full subcategory of modg consisting of modules M
with M, = 0 for all o # (. In other words, M € mody if and only if j,(M) = 1,
where 7, is the invariant defined in the proof of Theorem 2.4 (2). Then mody is a
dense subcategory of modg. That is, for a short exact sequence 0 — M' — M —
M" — 0 in modg, M is in mody if and only if M’ and M" are in mody. So we
have the quotient category modp /mody by [7, Theorem 4.3.3]. Let m : modp —
modp / mody be the canonical functor. It is easy to see that m(M) = 7(M') if and
only if My = M{,, where My = €D,y M,. Hence Sh.(X) = modg / mody.

Let A = ,5, Ai be a commutative homogeneous k-algebra as in Remark 1.3
(1), Gry the category of graded A-modules, and gr, its full subcategory of all
finitely generated modules. We say M € Grya is a torsion module, if for all z € M
there is some ¢ € N with As; -2 = 0. So, for 0 # M € gr,, M is a torsion
module if and only if Krull-dim A/ = 0. Let Tory (resp. tors) be the full subcat-
egory of Gry (resp. gr,) consisting of torsion modules. These subcategories are
dense, and the category Qco(Y") (resp. Coh(Y)) of quasi-coherent (resp. coherent)
sheaves on the projective scheme Y := Proj A is equivalent to the quotient cat-
egory Gry /Tory (resp. gr,/tors). The Krull dimension of M € gr, equals to
—min{ i | Ext,(M,w%) # 0}, where w% is a normalized dualizing complex of A. In
this sense, Sh.(X) = modg / mody is an imitation of Coh(Y") & gr, / tor.

Let J be the left ideal of R generated by {e, 9 | o # 0}. Then we have that
Hompg(J, M)t =2 M' and Homg(J, M)y = T'(X,M"). It is easy to check that
Hompg(J, —) gives a functor n : modg /mody — modgr with m on = Id. More-
over, 7 is a section functor, in other words, 7 is a right adjoint to 7. See [7, §4.4]
for properties of section functors.

We have the section functor Qco(Y) — Gry given by F — @, , H*(Y, F(i)).
(This idea does not work for Coh(Y") and gr,.) Our Hompg(J, —) is an imitation of
this functor, while objects in modp are finitely generated modules (a key point is
that modg has enough injectives).



For a finite poset P, the order complex A(P) is the set of chains of P. Recall that
a subset C of P is a chain if any two elements of C are comparable. Obviously, A(P)
is an (abstract) simplicial complex. The geometric realization of the order complex
A(Y') of the poset &' := X\ @ is homeomorphic to the underlying space X of X. See,
for example, [3, VI. Definition 3.1]. We say a finite regular cell complex X is Cohen-
Macaulay (resp. Buchsbaum) if A(X') is Cohen-Macaulay (resp. Buchsbaum) over
k. (If & itself is a simplicial complex, we can use ¥ directly instead of A(X').)
These are topological properties of the underlying space X.

Proposition 3.7. Assume that, for each 0,7 € ¥, the subset {p € ¥ | p > 0,7}
has the minimum element (e.g., ¥ is a simplicial complez). Set d := dim ¥. Then
we have the following.

(1) HY(w*) = 0 for all i # —d if and only if & 1s Cohen-Macaulay over k.

(2) H(w*)' =0 for all i # —d if and only if ¥ is Buchsbaum over k.

For the proof, see [13, Proposition 5.5]. We remark that Lemma 3.2 (2) is crucial
for this result. So the assumption on {p € ¥ | p > 0,7 } is really essential.

4. RELATION TO KOSZUL DUALITY

Let A = €D, 4i be an N-graded associative k-algebra with Ay 2 k™ (as algebras)
for some n € N. Then v := €, A; is the graded Jacobson radical. We say A is
Koszul, if a left A-module A/v admits a graded projective resolution

P2 Pt PP Afk—0

such that P~ is generated by its degree ¢ component as an A-module (i.e., P =
AP7Y). If A is Koszul, it is a quadratic ring, and its quadratic dual Ting A (see
1, Deﬁnltlon 2.8.1]) is Koszul again, and isomorphic to the opposite ring of the
Yoneda algebra Ext% (A/t, A/¢).

Note that the incidence algebra R of ¥ is a graded ring with deg(es ) = dim o —
dim¢’. So we can discuss the Koszulity of R.

Proposition 4.1 (c.f. [12, Lemma 4.5]). The incidence algebra R of a finite regu-
lar cell complez ¥ is always Koszul. And we have R' = R°P,

When ¥ is a simplicial complex, the above result was proved by Polishchuk [6]
in much wider context (but, ) ¢ ¥ in his convention). More precisely, he put a new
partial order on the set ¥\ {) associated with a perversity function p, and construct
two rings from this new poset. Then he proved that these two rings are Koszul and
quadratic dual rings of each other. Our R and R°? correspond to the case when p is
a bottom (or top) perversity. In the middle perversity case, ¥ has to be a simplicial
complex to make his rings Koszul.

Proof. Let A be the incidence algebra of a finite poset P over k. It is known that
A is Koszul if and only if the order complex A(J) is Cohen- Macaulay over k for
any open interval I of £. The Koszulity of R follows from this. For R' = R an
incidence function € of ¥ plays a roll. See [13, Proposition 6.1] for detail. O

_9_



Since R' = R°P, Hom,(—, k) gives duality functors Dy : modg — modp: and
D;? : modgz — modg. These functors are exact, and they can be extended to the
duality functors between D’(mody) and D®(modpg).

Let grp (resp. grp) be the category of finitely generated graded left R-modules
(resp. R°P-modules). Let DF : modr — modp and DG : modg — modg be the
functors defined in [1, Theorem 2.12.1]. Since R and R' are artinian, DF and DG
give an equivalence D°(gry) = D*(gry) by the Koszul duality ([1, Theorem 2.12.6]).

If M € modg, then we can regard M as a graded module by deg M, = dimo.
The same thing is true for modp:. In this way, we can make DF and DG functors
between D’(modg) and D’(modp:) giving an equivalence D°(modg) = D*(modg).

Theorem 4.2 (c.f. Vybornov, [9, Corollary 4.3.5]). Under the above situation, we
have DF' = Dy o D and DG = D o D}".

The proof follows from the explicit description of the Koszul duality functors.
See [13, Theorem 6.2]. When X is a simplicial complex (with (} ¢ %), the above
theorem was given by Vybornov [9]. Independently, I also proved a similar result
([12, Theorem 4.7]).
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Arithmetical rank of squarefree monomial ideals of
small arithmetic degree

Naoki Terai (Saga University)

1 Introduction

Let R = k[x1,...,X,] be a polynomial ring with n variables over a field k with degx; =
13 =1,2,...,n). In this article we determine the arithmetical rank of squarefree monomial

ideals in R with small arithmetic degree. More precisely, we prove the following theorem:

Theorem. Let I be a squarefree monomial ideal. Then we have:

0]
arithdegl = reg I = ara I = projdim (R/I).

)
arithdegl = indegl + 1 = ara I = projdim (R/I).

First we fix the terminology we use in this article.
Let I be an ideal of R. We define the arithmetical rank aral of I by

aral : = min{r; 3ay,ay,...,a, € I suchthat v (aj,ay,...,ar =\/f}.

In general, aral > ht I. And I is said to be a set-theoretic complete intersection, if aral = htl.

Let I be a homogeneous ideal in R and
0— @R(-—j)ﬂ"f — e — @R(—j)ﬂw —I1-0
Jj Jj

a graded minimal free resolution of I over R. Here p is called the projective dimension of I
over R and denote it by projdiml. We have projdim (R/I) = projdim/ + 1. Put u() := 2. Bojs



which stands for the minimum number of generators of /. The initial degree indeg I of I and
the relation type rt(I) of I are defined respectively by

indeg/ = min(j : Bo; # 0},
rt/ = max{j : Boj # 0}.

And the (Castelnuovo-Mumford) regularity of I is defined by
regl = max{j—i : B;j # O}.

We say that I has linear resolution if regl = indegl.

For a simplicial complex A on the vertex set V = {1,...,n}, we mean that A is a collection

of subsets of V such that
FeA,GCF=>GeA.

We call
IA =()C,'I cr Xy i <i2<... <ip, {il,...,ip}GA)

the Stanley—Reisner ideal of A.

Put
A*={Fe2: V\Fg¢A),

which is also a simplicial complex, and called the Alexander dual of A. We call I5. the

Alexander dual ideal of I,.

2 Arithmetical rank of squarefree monomial ideals

Let H;(R) be the i-th local cohomology module of R with respect to I. The cohomo-
logical dimension cd I of I is defined to be cd I := max{i; H}'(R) # 0). It is easy to see
aral >cd I.

When [ is a squarefree monomial ideal, the following theorem is known :

Theorem 2.1 (Lyubeznik [Ly1] see also [Te2]). Let I be a squarefree monomial ideal.

Then we have
projdim (R/I) =cd I.

Corollary 2.2. Let I be a squarefree monomial ideal. Then we have




ara I > projdim (R/I).

In particular, if is a set-theoretic complete intersection, then R/I is Cohen-Macaulay.

Problem 2.3.  Let I be a squarefree monomial ideal. Under what conditions do we

have ara I = projdim (R/I)?
We do not always have ara I = projdim (R/I) as the following example shows.

Example 2.4 (Yan [Ya]). Let I be the ideal in R = k[u,v,w,x,y,z] generated by
UVW, UVY, VWX, UWZ, UXY, UXZ, vxzZ,vyz, wxy,wyz. Then I is the Stanley-Reisner ideal of a
triangulation of P?(R) with six vertices. In this case, ara I = 4, which is proved by Yan,

using the étale cohomology. On the other hand projdim (R/I) = 3 if char (k) # 2.
We pick up some classes for whose members the equality holds.

Proposition 2.5 ([Te3]). Let I be a squarefree monomial ideal. If u(I)—projdim (R/I) < 1,

then we have
ara I = projdim (R/I).

For an ideal / in R, we define the deviation d(I) of I by d(I) = u(I) —ht I.

Theorem 2.6 ([Ted]). Let I be a squarefree monomial ideal of deviation 2. Then we have
ara I = projdim (R/I).
Proposition 2.7. Let A be a disconnected simplicial complex. Le., let Iy be a squarefree
monomial ideal with depth R/Iy = 1. Then we have

ara [p = projdimR/I,.

(Proof.) By [Ei-Ev] we have n — 1 = projdimR/Iy < araly <n-1.

Proposition 2.8. Let A be a non-acyclic simplicial complex such that I, has linear resolu-
tion. (E.g., Ip is a non-Cohen-Macaulay Buchsbaum squarefree monomial ideal with linear

resolution.) Then we have
ara Ip = projdimR/I5.

(Proof.) By [Gr] we have n — indeglp + 1 = projdimR/I < ara I, < n— indegl) + 1.



3 Squarefree monomial ideals of small arithmetic degree

We define the arithmetic degree arithdeg I of a squarefree monomial ideal I by
arithdeg I = #§(Ass R/I).
For squarefree monomial ideals, we have the following relations:
Theorem 3.1 (Hoa-Trung[Ho-Tr], Stiickrad, Friibis-Terai[Fr-Te]). Let I be a square-
free monomial ideal. Then we have

indeg I < regl < arithdegl.

The arithmetical rank is known when the arithmetic degree agrees with the initial degree:

Theorem 3.2 (Schenzel-Vogel[Sche-Vo], Schmitt-Vogel[Schm-Vo]). If a squarefree

monomial ideal I satisfies arithdegl = indeg I, then after a suitable change of variables, I is
of the form

1= (xy1, X125+ X1,) N (21, X225 -+ 45 X25) N oo N (Xg1s Xg2, - - - 5 Xgj, )

and projdim(R/I) = $7 ji—q+ 1.
Put ar = Y itysrt=t ¥16.%20,  Xgt, Jor € = g,q + 1,..., 31 ji. Then we have

\/(ag; t=qq+1,...,350 j)=1
Hence ara I = projdim (R/I).

Now we consider the case that the arithmetic degree is equal to regularity:
Theorem 3.3. Let I be a squarefree monomial ideal with arithdegl = reg I. Then we have
ara I = projdim (R/I).

To prove the above theorem we define the size of a monomial ideal Z, which is introduced
by Lyubeznik. Let I = N7_, Q; be an irredundant primary decomposition of /, where the Q;

are monomial primary ideals. Let k be the height of }}"_; Q;, and denote by v the minimum



number ¢ such that there exist ji, ..., j; with Z§=1 Q= 25':1 Q;. Then sizel = v+ (n—
h) — 1. Then we have:

Lemma 3.4 (Lyubeznik[Ly2]). Let I be a (squarefree) monomial ideal in R. Then aral <

n — sizel.
The form is determined for a squarefree monomial ideal / with arithdeg/ = reg I as follows:
Lemma 3.5 (Hoa-Trung[Ho-Tx]). Let I be a squarefree monomial ideal in R such that
arithdegl = reg I. Then after a suitable change of variables, | is of the form
I = (y1,Xiyy» Xy« - - ,xim) N (Y2, Xigys Xiggs - - - ,x,-zjz) Nn...N (yq,x;ql,xiqz, ey xiqjq),

and

projdim(R/1I) = deglcm(x,-",xiu,...,x,-,jl,xin,x,-u,...,xizjz,...,xiq,,xiqz,...,xiqjq) + 1.

Lemma 3.6. Let I be a squarefree monomial ideal in R such that arithdegl = reg I. Then

we have
projdim (R/I) = n — sizel.

(Proof) We may assume that every variable is zero divisor on R/I. Since sizel + 1 =

arithdegl = reg I by the above lemma, it is enough to prove to
projdim (R/I) +regl =n+ 1.
Let J be the Alexander daul ideal of 1. Then we have
J = (V1% Xigg *** Xigjy > Y2 Ki Xigg ** Xigy» -+ > YaKign Xiga iy )+
Since projdim (R/I) = regJ and reg/ = projdim (R/J) (see [Tel]), it is enough to prove
| projdim (R/J) +reg/ =n+1.

Because of the form of the ideal J, the Taylor resolution of J gives a minimal free resolution
of J. Hence the last syzygy determines the regularity. Since every variable is zero divisor on
R/J,regJ = n—projdimJ = n — projdim(R/J) + 1. QED

Now Theorem 3.3 is clear by Lemmas 3.4 and 3.6.



Next we consider a squarefree monomial ideal whose arithmetic degree is one bigger than

its initial degree:

Theorem 3.7. Let I be a squarefree monomial ideal with arithdegl = indegl + 1. Then we

have
ara I = projdim (R/I).

To prove the above theorem we use:

Lemma 3.8. Let I be a squarefree monomial ideal with arithdegl = indegl + 1. Then I is
one of the following forms after a suitable change of the variables:
(1
I'= (X1, %12, -5 X1j,) N (21, X22, -5 X2,) N e 0 (g1, Xg2s - - -5 Xg )
r1('x113 X125+ w05 X1iys X215 X225+« 0 5 X2ipy e o+ ’xplvxp2’~ .. ,xpip)a
whereg 2> p>2,1<i,<je(€=12,...,p), jpt1s---rdg 2 L.
(2
1= (X115 X125 -+, X15,) O (21, X22, 005 X2j,) N N (g1, Xg2, - - 5 Xgj,)
N(Xgs1,15 Xg+125 - - - 3 X+, jgurs K11 X125 o XLigs X215 X225 -+ 05 Xy« + +» Xpls Xp2s -+ + » Xpi, )
where g2 p2 1, 1< iz < je (€= 1,2,..., D) Jprlse - rjoriger = 1.
3
I= (X, %12, X1 V1o e o5 ¥p) N (X210, X225+« 05 X255 Y15+ -5 Yp) N (X315 X32, .., X3j) N -+

n(quvqu, e :xqjq) n (xq+l,1,xq+l,2’ vee 9xq+1.jq+|’xll9x121 ooy X1ipy X215 X225 - - ’x2i2)7

whereq>2,p>1,1<ip<je(t=1,2), j3,...,Jg 2 1, jge1 2 0.

(Proof.) Let I be a squarefree monomial ideal with arithdeg/ = indegl + 1, and J its
Alexander dual ideal. Then J satisfies that 4(J) = htJ + 1, that is J is an almost complete
intersection. Such J are classified in [Te3]. QED

(Proof of Theorem 3.7.) We check the equality for all the cases in the above lemma. Let J
be the Alexander dual ideal of 1.
(1)We may assume that j; — i} = min{j, —i,; £=1,2,..., p}. Then

projdim (R/I) =rteg] =iy + jo + -+ + j—q+ 1.



Puta; = 3 eigertee  XigXoe, -+ X, for €= q,q+1,...,0i + X7, ji. Then we have

£y <iyory<igor..or lpsip

\[(ag; t=q,q+1,...,ii + 7, ji) = 1 by [Schm-Vo, Lemma]. Hence ara/ = projdim (
R/D).

(2)By Theorem 3.3 the equality holds in this case.

(3) (i) The case of jz41 > 0. By Theorem 3.3 the equality holds.

(i) The case of jg+1 = 0 and i¢ < je (£ = 1,2). We may assume that j; — i; < j» —ip. Then

projdim (R/I) =tegJ =i+ jo+ -+ jo—q+1+p.

For simplicity, we mean that x;j,+; = y; and x2j,+; = y; fori = 1,2,...,p

Put a; = 3 cstpeste=t. X1p,X20, -+~ Xge, fOr € = q,q + 1,...,01 + >, Jji+ p. Then we have

£y <ijorfy<iy

\/(ag; £=q,q+1,...,iy + 37, j + p) = I by [Schm-Vo, Lemma. Hence ara I = projdim (
R/D).

(iii) The case of j+1 = 0 and (i} = jj or iz = jp). We may assume that every variable is a
zero divisor on R/I. Then R/J is Cohen-Macaulay with a(R/J) = 0. Hence by Proposition
2.8 the equality holds in this case. QED
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On j-multiplicity

Koji Nishida  (Chiba University)

This is a joint work with B. Ulrich.

The notion of j-multiplicity was introduced by Achilles and Manaresi in
[1] and the theory was developed in [4], [2] and [3]. The j-multiplicity j(1) is
an invariant of an ideal I in a Noetherian local ring (R, m). If I is m-primary,
then j(I) coincides with the usual multiplicity e(f). In this note we give a
length formula of j-multiplicity which enables us to compute j(I) of a given
ideal I.

Let us begin with the definition of j-multiplicity. It can be defined for
a finitely generated module L over a positively graded Noetherian ring T' =
@®n>o0 Ty, such that (Tp, m) is local and T = Ty[T1]. We assume that To/n is
an infinite field. Let d be a positive integer with dimr L < d. We denote the
Krull dimension of L/nL as an T-module by ¢(T, L) and call it the analytic
spread of L. Let W = H%.(L), which is the 0-th local cohomology module of
L with respect to nT. By the Artin-Rees lemma, we see that W N nfL =0
for k> 0. Then W = @50 H%(L,) can be embedded in L/n*L as a graded
T/nw*T-module. Because T/n*T is a standard graded ring over an Artinian
local ring and dimy L/n*L = ¢(T, L) < d, there exists an integer o > 0 such
that

(04

lengthy, Hy (L) = @=1 n?~! 4 (terms of lower degree)

for n > 0. This number « is called the j-multiplicity of the T-module L and
is denoted by jq(T, L).

Lemma 1 (cf. [4]) ja(T,L) # 0 if and only if £(T, L) = d.

Lemma 2 (cf. [4]) Letd > 2 and dimg, L, < dimp L for anyn > 0. We
choose f € Ty generally so that the following two conditions are satisfied;

(1) f is Ty-filter regular for L,



(2) UT,L/fL+W)<d-2.
Then we have dimp L/fL < d—1 and j4(T,L) = ja—1(T,L/fL).

Now we consider a Noetherian local ring (R, m) with |R/m| = oo and
a finitely generated R-module M. We take an ideal I of R and a positive
integer d with dimg M < d. We set ju(I, M) = ja(gr; R,gr; M) and call it
the j-multiplicity of I with respect to M. Let us simply denote jgim r(/, R)
by j(I). By Lemma 1 and Lemma 2, we have the following assertion.

Lemma 3 j(I) # 0 if and only if £(I) = dim R > 0, where ¢(I) denotes
the usual analytic spread of I.

Lemma 4 Let d > 2 and dimg M/IM < dimg M. Then, for a general
element a € I, we have dimg M/aM < d—1 and ja(I, M) =js_1(I, M/aM).

In the case where dimg M/IM = dimg M, we need the following result.

Lemma 5 Let N = M/HY(M). Then N =0 or dimg N/IN < dimg N.
Moreover we have I"M /I""*M =2 I"N/I"™' N for n>> 0, and so jq(I, M) =
ja(I, N).

Applying Lemma 4 and Lemma 5 successively, we get the next result.
Theorem 6 Letay,...,aq_1,aq be sufficiently generic elements of I. Then
i) = er(R/(ay,...,aq-1): 1)
= lengthp R/agR + ((ay,...,a4-1) : I*),
where (ay,...,a4-1) : I = Upso ((a1,...,aq-1) : I").
As an application of the theorem above, we get the following assertion.

Example 7 Let R = K[[X,Y, Z]] be the formal power series ring over an

infinite field K. Let p be the defining ideal of a space monomial curve: X =

th Y =t!, Z = t™, where k, £ and m are positive integers with GCD{k,¢,m} =
1. Then p is generated by the mazimal minors of the matriz

Xe Y8 zv
ye zv o xo >



where o, B8, v, o, B and ' are positive integers. Replacing the variables
X,Y and Z, we may assume

ko = min{ka, 6, my', €6, my, ka'} .
Then we have j(p) = af(y +7').

We give a sketch of proof for this example. We put f = Z7H XY g =
Xota _yBzY and h = YAF — X°Z7. Then p = (f,g,h) and the ideal
generated by general two elements in p can be written in the form (af —
g,bf —h) with 0 # a,b € K. We put { =af —gand n=bf — h. It is easy
to see that

&%) :rp” = (&) f
= (X*+aY? 4027,V +aZ" +bX%).
Therefore, by Theorem 6, we get
i(p) = lengthy R/p+ (X® +aY? + 027, Y? +aZ7 + bX*).

Let A = K[[t*,#¢,t™]]. Then ¢ induces an isomorphism R/p = A, which
implies

j(p) = length,y A/(t"u,t"u)A,
where u = 1+ atf® ~ke ppmv'~ke — 1 4 gm0 4 ptke’ = ¢ K[[t]]. Therefore
we get j(p) = afB(y +7') since

length , A/(t*u, t*u)A

= length, A/(t* t)A

= lengthp R/(X*, YA )R +p

= lengthy R/(X*,Y? Z*)R.
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On the graded rings

whose Veronese subring is a polynomial ring

Masataka Tomari
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Let R = ®x>0Ry be a normal graded ring with Rg an algebraically
closed field. Classification of normal two-dimensional graded U.F.D.
was first done for hypersurface case by K.-i. Watanabe, and finished
by S. Mori[3]. It turn out that normal 2-dimensional graded U.F.D. is
written as a graded complete intersection of Brieskorn-Fermat-Pham
polynomials with certain conditions. In [3], the essential parts are
arguments on Veronese subrings and studies of several ramifications.
Further, for graded 2-dimensional U.F.D. R, there is an integer N such
that the N-th Veronese subring RY) is a polynomial.

In [6], we rediscover the Mori’s structure theorem as a comparison
theorem of cyclic cover of Kummer type and cyclic cover obtained by
the Veronese subring.

In this talk, I want to discuss on the graded rings whose Veronese
subring is a polynomial ring, that is, graded rings where there is an
integer N such that the N-th Veronese subring RW) is a polynomial.

Our result is the following:

Theorem. Let R be a normal graded ring. There is an integer N
such that the N-th Veronese subring R®) is a polynomial if and only
if the following conditions are satisfied; R is written as a complete
intersection over S = RV

R = S[z1, ..., zs]/(x]" —v1, oo LT

where S : polynomial ring and v; € S 1is reduced, 1 < 1 < s, and
v;S,v;S have no common components in the case 1 # j. Further the
numerical conditions (mg,m;) = 1 (i # j) , and (m;,degg(vi)) =1
(=1, ...,s) hold.



The theorem is a corollary of the results of [6].

§1 Some results from [6].

Theorem (3.2) of [6]. Let R be a normal domain. For non-units
V1, ... Up € R and integers my, ... ,my, € Z with m; > 2, we define the
ring S as S = R[Xy, ..., Xn]/(XT" —v1, ... , X —wv,). Then the
following hold:

(1) S is a normal domain if and only if all v; R are reduced and
no pair v; R and v; R with i # j has a common prime component.

(i) S is a cyclic cover of R if and only if (m;,m;) =1 for any
i 5.
Theorem (3.3) of [6]. Let R = R(X,D) be a normal domain as
described in (1.1), let vy, ... v, € R be homogeneous reduced non-units,
and let my, ... ,my, € Z with m; > 2. Here we assume that no pair
v;R and v;R has a common prime component and that (m;,m;) = 1
for any i # j. We define the cyclic my---my-cover S of R by S =
R[X1, ..., X, ]/(XT" —v1, ..., X —wvy). Then the following hold:

(i) S(m=mn) = R if and only if (m;,degg(vi)) =1 for1 <i < n.

(11) Under the conditions stated in of (i), representing v;R =
R(-D(Ey)) by E; = >, q_vi—vi”“ € Div(X,D), 1 <1 < n, and
with S = R(X, D) as given in Theorem (1.3), D can be written

n T ~
b= ZZ mz‘;ka Vit Z I;_ZV,

i=1 k=1 VAV ;

where (ﬁVi,k?mqui,k) =1, and (ﬁV,QV) =1 forV # Vi,k .

§2. Remarks.

In the situation of our Main Theorem, the class group of R is
a finite group and computed by following the arguments of Theorem

(3.6) of [6].

Ezample Let R = k[z,y, 2]/(z® + y® + 2¢) and put the weight of each
variable as wt(z) = L/a,wt(y) = L/b,wt(z) = L/c, where



L = LCM(a,b,c). We can represent as R = k[y, z][z]/(z* + y° +
z¢), and can regard that S = k[y, 2] and v = —yb — 2¢. Now, RWV) =
k[z,y] for some integer N, if and only if, m = a and deg(y® + 2¢) =
LCM (b,c) are coprime. Hence (a,b) = (a,c) = 1. In the above, the
arguments depend on the representation of R.
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Generic fibrations by affine curves over
discrete valuation rings

Teruo Asanuma (Toyama University)
Nobuharu Onoda (University of Fukui)

1. Introduction

Let (R, mR) be a discrete valuation ring (DVR for short) with quotient
field K and residue field &, and let A be an integral domain containing
R. Then, for a given K-algebra D, we say that A is a generic D-fibration
(or a generic fibration by D) over R if the generic fiber A ®x K is K-
isomorphic to D. We are interested in a k-algebraic structure of the
special fibre A ®g k for a generic D-fibration A. In the case where D
is a polynomial ring K[z] or a Laurent polynomial ring K[z, z7!] in one
variable x over K, we have already proved the following

Theorem 1. Suppose that A is a normal and finitely generated generic
D-fibration over R.
(1) If D = K|[z], then

AINTAZ (ky X -+ X ky)[7]

for some finite algebraic extensions k1, ..., k, of k.
(2) If D = K[z,z7!], then A/\/T A is k-isomorphic to one of the follow-

ing

() T := (k1 X« - X kp)[z],
(b) L := k[z,y]/(zy — 1),
()T x L,
(d) U = k[z,y]/(zy),
(e) T xU,
where m is a positive integer, ky,...,ky, are finite algebraic ertensions

of k, and k[z,y] is a polynomial ring in two variables over k (cf.[1]).



Let D := K|z, y]/(f(z,y)) be a normal domain of dimension one, and
let A be a finitely generated normal generic D-fibration over R. Then
there exist DVRs V4, ..., V, of the algebraic function field K (z,y) such
that

A=DnNnVin.---NV,.
For each 7, let P; be the maximal ideal of V;. Then we have
qt(A/VrA) =Vi/P X -+ XV, /Py,

where qt(*) denotes the total quotient ring. From this we know that the
residue fields V;/P; have important meaning to our purpose. We are thus
led to consider the residue field Vi /P, of a valuation ring Vi of K(z,y)
dominating R. In this note we take up the case where f(z,y) = y*— f(z)
with deg f(z) = 3. The main result is as follows.

Theorem 2. Let (V1, P) be a DVR of an algebraic function field K (z,y),
where y?* = f(x) with deg f(z) = 3, and suppose that Vi dominates R.
If chk # 2 and V1 /P, is not algebraic over k, then there exist a finite
extension field ki of k and a polynomial g(t) € ki [t] with deg g(t) < 3 such
that Vi /Py = ky(t,u), where u? = g(t). In particular, if k is algebraically
closed, then V1 /Py is a rational function field in one variable or an elliptic
function field over k.

2. Proof of Theorem 2

We keep the same notation and assumption as in Theorem 2. For
w € V; we denote by @ the residue class of w in V;/P;. Let V, = ViNK(z)
and P, = P,NV,. Then (V,, P;) is a DVR of K(z) dominating R.
Note that V,/P, is transcendental over k, because V;/P; is algebraic
over V,/P,. Hence, by Nagata’s theorem (cf. [1], [2]), we have

Ve/Pr = k1(2)

for some z € V,, where k; is the algebraic closure of k£ in V,/P,. Let
v1: K(z,y) = Gi (resp. v,: K(z) — G,) be the valuation corresponding
to V1 (resp. V;). Then

Vi/Pr: Vo P - |G1/ G| < [K(2,9) - K(2)] = 2,



so that V/P, = V. /P, if |G1/G,| # 1. Hence, for the proof of the
theorem, we may assume G1 = G,. In particular, we have v, = v;|k(s).-

Lemma 3. Let R be the completion of R and let K = qt(R). Then
there exists a DVR (W1, Q1) of K(z,y) such that W; dominates V] and
W1/Q1 = Vi/P; (cf. [1, Lemma 5.3]).

A

Proof. Let £ be a uniformzing parameter of V; and let V] =V} ®g R.
Then

VI/EV] = Vi/EVi ®r R = Vi [€WA,
and hence £ is a prime element of V/. Note that
Vi =Vi®r R C K(z,y) ®r R C K(z,y),

and hence we can identify V' with R[Vi] ¢ K(z,y). In particular V} C V4,
where V) is the completion of Vi, so that

ﬂr>0§1"‘/1' = rl‘>0§rv1 = (0),

which implies ht(§V/) = 1. Thus Wy := V{|,) is a DVR satisfying the
required conditions. O

By Lemma 3, in what follows we assume that R is complete. Hence,
if S is a domain finitely generated over R, then the dimension formula
holds between R and S. Write v,(x) = qugz(m) + r, where ¢,7 € Z and
0 < 7 < vg(m). Then, replacing z by 79z, we assume z € V, with
vz (z) < vg(m).

Now, starting from Sy = R[z], we inductively define a finite sequence
of rings

RcSy,cS c---cS,CV,

such that S; = S;_1[&,m:] and S;/&S; = kinj] = /<c£1], where & € P,
n; € Vz, 1 is the residue class of 7; in S;/&;S;, and «; is a finite algebraic
extension of k. We set & = 7 and 7y = . Suppose that we have defined
S;. f P,NS; = &3S;, then n = ¢ and the sequence ends. If not, we
define Si11 = Si[&i11,mi11] as follows. Since S;/&S; = ki[nj] = mgl], we
have P, N S; = (&,0;)S; for some 6; € S;. We choose 6; = n; when



vg(mi) > 0. If v5(&) < vy(6;), then we set &1 = & and 1,4, = 6;/&;.
If v,(&) > ve(6;), then write v,(&) = M\d; and v,(6;) = p;d;, where
d; = ged(ve(&),v2(0;)), and let a4, §; be nonnegative integers satisfying
Aia; — il = 1. Then we set

Ciy1 = f?i/efi, Nit1 = 9?/55

Note that in this case we have v,(§41) = d; < v.(&), because v, (&) >
vz(0;) implies \; > 2. Moreover we have v,(n;11) = 0 and

A i i i
&= f'+1775+1a 0; = f+177?+1' (1)

We will show that Si 1 /€411 = kU, where riy1 = S;/(&,0,)S:. I
vz(&) < v.(6;), then we have

Sip1 = Sil6:/&] = Si[X]/(&X — 6),

because &;, 0; is a regular sequence in S;. Hence the claim follows. When
’Um(&) > vx(ﬁi), let p: Sz[X, Y] — Si+1 = Si[§i+1,’l71+1] be the natural
S;-algebra homomorphism. Then

(XNYPi—¢, XMY™ —6;) C ker p,
and hence
(X, XNYBi—€, XHY*—6,) = (X,&,6;) C (X)+ kerp.
Since S;y1/&i+15:i41 = Si[X,Y]/((X) + ker p) and
SIX,Y1/(X,6,0) 2 ki [Y] = mlYy,

we know that p induces a surjective S;-algebra homomorphism

p: ”vgi — Sit1/&ir1Sin-
Suppose that ker p # 0, and let @ be a minimal prime ideal of &15;11.
Then S;,1/Q is a surjective image of nle / ker p, so that S;;1/Q is a finite
extension field of k. On the other hand note that & € &.15;+1 by the
equation (1). Hence, inductively, we have §; € §115:41 for every j <1,
and therefore m = & € &415:;41. Thus 7 € @, so that, by the dimension
formula, we have

ht(Q) = ht(7R) + tr.deggSi+1 — tr.deg;Siy1/Q = 2,



which is a contradiction. Hence kerp = 0, and p is an isomorphism, as
desired.

Next we will show that the sequence is of finite length, namely, there
exists n such that P, N S, = £,S,. Recall that v,(§) > v, (&41), where
the equality holds if and only if & = &;,;. Hence it suffices to prove that
it cannot be the case

for some i. Suppose that there exists s satisfying (2), and let B = Uj>iS;.
Then, for g € P, N B, we have g € P, N S; C §;415;41 C &1 B for some
J with j > 14, which implies P, N B = &B because §;;; = &. On the
other hand, we have

ﬂr>0§:B = ﬂr>0P; =0,

and hence ht(§;B) = 1. Thus B, is a DVR dominated by V,, and
therefore B(¢,) = V,. However,

B/&B =, (5i/(&.0:) =J

which is algebraic over k. This is a contradiction.
For the sequence defined above, let £ = &, and 2 = 7,. Then V, =
Sne)- Hence v5(§) = 1 and V;/P, = k,1(2) = /-cfll_)l, so that we have

ky = Kp—1-

.
i 0

Lemma 4. For each ¢ > 0, let I; = v,(&;) and m; = v,(6;). Then
Ehg = a;z%, &b, = bzt
for some a;,b; € k1 \ {0} and s;,t; € Zso.

Proof. It follows from the definition that 1, = 6; or 7; € k; \ {0} for
each 1 < ¢ < n. Thus, using the equation (1), we can easily verify the
assertion by induction on n — i. d

Lemma 5. Let m = v,(f(z)). If Z is transcendental over k, then

£~ f(z) = ah(2)



for some a € ki \ {0} and h(Z) € k;[z] with degh(Z) < 3. If Z is algebraic
over k, then

£ f(z) = az°h(7)
for some a € k; \ {0}, s € Z and h(2) € ki[z] with degh(z) < 1.

Proof. Let v: K(z) — G be the valuation corresponding to the valua-
tion ring R[z](x), so that v is the canonical extension of the valuation of
K corresponding to R. Write

f(z) = azz® + ap2® + a17 + ag

with a; € K. If 7 is transcendental over k, then we have V;, = R[z](n), € =
7,z = z and v(f(z)) = min{v(a;) | 0 < 7 < 3}. Thus the assertion is
obvious in this case.

Suppose that Z is algebraic over k. Then there exists a monic poly-
nomial ¢(z) € R[z] such that P, N V[z] = (7, p(z)), namely ¢(z) = 6.
Write

Ve(m) = Xodo,  Vz(00) = podo

with ged(Xo, o) = 1, as in the definition of the sequence of rings given
above.
Case 1. degy(z) > 4.

Let 7 = min{v(a;) | 0 <4 < 3}. Then m = rv,(m), and 77" f(z) €
ki \ {0}. Thus the assertion follows from Lemma 4.
Case 2. degyp(z) = 3 or 2.

In this case we have

f(z) = bi(z)p(z) + bo(z) = bi(z)b + bo(2),

where b;(z) € K[z] with degb;(z) < degy(z) for i = 0,1. Let r; =
v(b;(z)) and ¢;(z) = 7 "ib;(z) for i = 0,1. Then vy (bi(x)) = ryva(m). If
01 = va(b(2)00) < o 1= a(bo(x)), then

f(z) = cr(@)7"0p(1 + bo () / (b1 ()bo)),

where by(z)/(b1(z)0y) € P, and ¢1(z) € ki \ {0}. Thus the assertion
follows from Lemma 4. The proof is similar in the case ¢; > go. Suppose
that go = ¢;. Then

(Aor1 + po)do = AoTodo,



which implies A\g = 1 and py = r¢ — 71, because ged (Ao, po) = 1. Thus

€M0 = £0 =T, Tu = 90/71-#0’

and hence

f(@) = £ (c1(2)mu0 + co(z)).

Note that if we set 7 = ¢1(z)n,, + co(z), then 7 € &y \ {0} or 7 = 6,,.
Thus the assertion is a consequence of Lemma 4.
Case 3. degp(z) = 1.
We may assume 6y = z. Recall that v,(7) > v,(x), and hence Ay > 2.
Suppose that there exists i such that v,(a;z") < vg(a;z?) for j # i.
Then we have f(z) = a;2°(1 + g) with g € P, and the assertion follows
from Lemma 4.
Suppose that there exist ¢ and j with ¢ < j such that

ve(a;7%) = vz(a;27) = min{v,(ayz') | 0 <1< 3}

Then, setting 7, = v(a;) for each [, we have (Aor;+pot)do = (Ao7j+ 107 )do,
which implies Ao(r; — rj) = po(j — 7), and hence

X=J—1 Mo=T;—Tj (3)

because ged(Ag, o) = 1,Ao > 1l and 1 < j—¢ < 3. Let b = 7 "q; for
each [, so that b, € R*. Since

Xo,.B0 Mo, o
1™, T=61 T

by the equation (1), we have

A l l
all. _ bf oTi+po ﬂoTz-l-ao

for each I. Note that it follows from (3) that
(Bor; + aog) — (Bori + agt) = Aoy — pofo = 1.
Therefore, setting N = \or; + po? and L = Bor; + apt, we have

f(@) = b0l (m — a1 + &ha (&, m)),



where ¢; = —b;/b; € R* and hi(X,Y) € R[X,Y]. If vz(m — 1) = 0,
then we are done by Lemma 4. If v,(n; —¢;) > 0, then 6 = —¢;. In
this case if v,(01) < vz(£1), then

f(z) =b;&Mni01(1+ (&/60)ha(&,m)),

which proves the assertion by Lemma 4. If v,(61) > v5(&1), then & = &
and np = 01/&;, so that n; = &mo + ¢1. From this it follows that

f(z) = b;& Tl (2 — ¢ + Eha(&,m2)),

where ¢; = —h1(0,¢;1) and he(X,Y) = (h(X, XY +¢1)+¢2)/X. We are
done if v.(ny — ¢2) = 0. If not, then 6, = 1, — ¢z, and we can repeat the
above argument. Since the sequence g, 0;,6s, ... is of finite length, the
assertion is verified. a

Now we will prove Theorem 2. Let m = v,(f(z)). Then m is even,
because v, (f(x)) = v1(y?) = 2v1(y). By Lemma 5, we have

£ = az'h(2)

for some a € k1 \ {0},s € Z and h(z) € ki[z]. Write s = 2¢ + r with
g€ Zandr=0or1. Setg(z) =az"h(z) and w = {™?279y € V. Then
K(z,y) = K(z,w) and @2 = g(z). Note that deg g(z) = r +degh(z) < 3
by Lemma 5. First suppose that H(Y) := Y? — g(Z) is an irreducible
polynomial of k1(2)[Y]. Then, setting A = V;[w], we have

AZVY]/(Y? - w?),
which implies
AJEAZ ki (2)[Y]/ (Y - g(2)).

This show that £ A is a maximal ideal of A, and hence PNA = £A. Thus
Vi = A(g), so that

Vi/Pl = kl(t,u)

with u? = g(t). Next suppose that H(Y’) is not an irreducible polynomial.
Since chk # 2, it follows that g(z) = %? for some ¢ = ¢(z) € ki[2].



Choose 7 € V, such that 7 = ¢(z). Then w? —7% = (w—7)(w+7) € P,
and hence we may assume w —7 € P, and w +7 ¢ P;. Let

A=Volw, (w+7)T ]2 V[Y, (Y+7) 7/ (V2 —w?),
which is a subring of A. Then
AEAZ R (A)]Y, (Y+¢) /(Y2 ~*) = ki(2)
and hence {A is a maximal ideal of A. Thus Vi = A(), and
Vi/Pr = ki(2) = k{V

in this case. This completes the proof of Theorem 2.

References

[1] T. Asanuma, S. M. Bhatwadekar and N. Onoda, Generic fibrations by
Al and A* over discrete valuation rings, to appear in Contemporary
Mathematics 369, 2005.

[2] M. Nagata, Kakantairon (in Japanese), New version, Shokabo Book
Store, 1985. ( Theory of commutative fields, Translated from the 1985
Japanese edition by the author, Translations of Mathematical Mono-
graphs, 125, Amer. Math. Soc., 1993.)



AFFINE SURFACES WHICH ARE CLOSE TO THE
AFFINE PLANE

M. MIYANISHI

1. PROBLEMS AND MOTIVATIONS

This talk is based on the works [2], [4] and [6]. The ground field is

assumed to be the complex field C throughout this talk. A classification
of smooth affine varieties is roughly done according to the value of log
Kodaira dimension. In the case dim = 2, this classification works nicely
thanks to the theory of “open algebraic surfaces”. One of the results is
stated as follows.

Theorem 1.1. Let X be a smooth affine surface. Then X has log Ko-
daira dimension —oo if and only if there is an Al-fibration f : X — B,
where B is a smooth curve.

Here we mean by an A'-fibration a surjective morphism whose general
fibers are isomorphic to the affine line Al. If B is affine, there is a G,-
action o : G, x X — X such that f is the associated quotient morphism
X — X/G,. This follows from local triviality of an Al-fibration over a
curve. But if B is complete, there is no such G,-action giving rise to f.

Makar-Limanov introduced an invariant, which we call the Makar-
Limanov invariant and denote by ML(X), for an affine algebraic variety
X = Spec A as (s Kerd, where ¢ ranges over all locally nilpotent deriva-
tions on the coordinate ring A which correspond bijectively to G,-actions
on X. When we try to classify smooth affine surfaces in a more refined
fashion, we have to make use of this Makar-Limanov invariant.

DEFINITION 1.2. A smooth affine surface X is an ML; surface if tr.deg
Q(ML(X)) = 4, where 1 = 0, 1,2, where Q(ML(X)) is the quotient field.

Roughly speaking, an ML surface (resp. ML, surface, or ML, surface)
has two independent (resp. one, or no) G,-actions. In particular, an
MLg-surface is a rational surface. Meanwhile, an ML, surface could have
an Al-fibration over a complete curve.

DEFINITION 1.3. A smooth affine surface X is unruled (resp. simply
ruled, multi-ruled) if X has no Al-fibrations (resp. only one A'-fibration,



two independent Al-fibrations). X is also called 0-ruled, 1-ruled, 2-ruled
if X is unruled, simply-ruled, multi-ruled, respectively.

If X is an ML, surface then it is 2-ruled. But the converse is not
necessarily the case. The base of an Al-fibration for an ML surface is
not necessarily the affine line. If X is an ML surface with Picard number
p(X) positive, there is always an Al-fibration with base isomorphic to
P

Let f : X — B be an Al-fibration as above. A scheme-theoretic fiber
f*(P) over a point P € B is smooth (or singular) if it is isomorphic to
A' (or otherwise). If f*(P) is singular, write it as f*(P) = Y~ m;C;,
where C; is an irreducible curve. Then every C; is isomorphic to A' and
C;inC; =0if i # j. Let m = ged(my,...,my). If m > 1, we say that
f*(P) is a multiple fiber with multiplicity m.

Our intention is to define smooth affine surfaces which are close to the
affine plane A? in various properties and consider whether or not they
still enjoy the same results as A2 does. We have to specify when a smooth
affine surface is close to A? and what king of results we have in mind.

We consider a smooth affine surface X which has an Al-fibration f :
X — B such that (1) B is isomorphic to A! and (2) every fiber of f
is irreducible. In particular, p(X) = 0. Note that multiple fibers are
admitted. More precisely, we say such an X is an affine pseudo-plane if
there is at most one multiple fiber. An affine pseudo-plane is either an
ML, surface or an ML, surface. The results or problems we have in mind
are, for example, those listed below.

1. Let C be a curve on X which is isomorphic to A!. Is it then a
fiber component of a (possibly new) A'-fibration on X? In other
terms, is it true that K(X — C) = —oo? (Analogy of theorem of
Abhyankar-Moh-Suzuki)

2. Suppose X x A! 2 Y x Al. Does this imply that X 2 Y? (Cancel-

- lation Problem)

3. Suppose that X is an ML, surface. Let f : X — Y be a proper
morphism, where Y is a smooth affine surface. Is Y an MLy surface?
(Ascent and descent of ML; property)

4. Let ¢ : X — X be an étale endomorphism. Is ¢ an automorphism
? (Generalized Jacobian problem)

The following criteria of MLy surface and ML, surface turn to be very
useful. The first one is essentially due to M.H. Gizatullin and J. E.
Bertin.



Lemma 1.4. Let X be a smooth affine surface and let V' be a minimal
smooth normal completion of X. Then X is an MLy surface if and only
if rank I'(X,0x)/C* = 0 and the dual graph of the boundary divisor
D =V — X is a linear chain.

Lemma 1.5. Let X be a smooth affine rational surface and let X — V
be a smooth minimal normal completion. Let D :=V — X. Then the
following conditions are equivalent.
(1) X is an MLy surface which is different from Al x C*.
(2) The dual weighted graph I'(D) of D has a non-admissible twig and
it 18 mot a linear chain.

2. ANALOGY OF THEOREM OF ABHYANKAR-MOH-SUZUKI

A result is positive here. The following result (Theorem 2.2) is obtained
in [2] and independently by Kishimoto-Kojima. Let us begin with some
preliminary result on MLg surfaces.

Lemma 2.1. Let X be an MLy surface. Then the following assertions
hold.

(1) rank ['(X, Ox)*/C* = 0.

(2) The torsion part Pic (X)or is isomorphic to m(X) and it is a finite
cyclic group, while Hy(X) 1s the free part of Pic (X).

(3) Any A'-fibration f : X — B has at most two (resp. one) multiple
fibers if B~ P! (resp. B = A').

(4) Suppose that p(X) = 0. Let f : X — B be an Al-fibration, where
B is necessarily isomorphic to A'. Let f*(Py) = dFy be a unique
multiple fiber of f. Let X be the universal covering space of X.
Then X is the normalization of X xp (B',0), where 0 : B' — B
is a cyclic covering of order d totally ramifying at the point Fy and
the point at infinity Ps. The surface X is an affine hypersurface
in A3 defined by zz = y* — 1, where the Galois group G acts as
(z,y,2) = (Cz,("y, (7 2) when G is identified with the group of
d-th roots of unity. (See [3]).

Theorem 2.2. Let X be a Q-homology plane. We suppose that X is an

ML, surface. Let C be a curve isomorphic to the affine line on X. Then
there exists an Al-fibration f : X — B such that B = A and C is a

fiber component of f.

Proof is outlined as follows. For a topological manifold Y, e(Y") denotes
its BEuler-Poincaré characteristic. Since e(X) = e(C) = 1, we have e(X —
C) = 0. Furthermore, (X — C) < 1. If R(X — C) = —oo, the result



follows from Theorem 1.1. So, it suffices to show that (X — C) = 0,1
is impossible, and we will show it by making use of the theory of open
algebraic surfaces.

An affine line C on a smooth affine surface X is called anomalous if
R(X—C) > 0. Even if X is an ML surface, there may exist an anomalous
affine line unless p(X) = 0. Here is an example.

EXAMPLE 2.3. Let %y be the Hirzebruch surface P' x P'. We denote
any fiber of the vertical (resp. the horizontal) P'-fibration by ¢ (resp. M)
and call it a fiber (resp. a section). Take two horizontal sections My, M,
and three fibers £y, ¢1,0s. Let Py := Mo N ¥4y and P, == My N ¢,. Let
A be a smooth irreducible curve such that A ~ M + 2¢ and touches M,
(resp. My) at Py (resp. Py) with order of contact 2. Hence A meets
ls at a point other than My N ly and My N €y. Blow up the point
Py (resp. Py) and its infinitely near point of the first order lying on
My (resp. M) to produce irreducible exceptional curves Ey, Ey (resp.
F1,F), where (E?) = (F\%) = -2 and (Ey?) = (F,%) = —1. Then
the proper transform A’ of A meets Ey and Fy. We blow up these two
intersection points to obtain the exceptional curves E3 and F3. We denote
the proper transforms of E;, F; (i = 1,2) by the same letters. Now we
have (E;%) = (F?) = =2 for i = 1,2 and (Es®) = (F3?) = —1. Let A’
be anew the proper transform of A'. Let o : V — £ be the composite of
these blowing-ups. We have now the following relations

Ky = —0"(2s+ My+ M)+ By + 2B, + 3By + F, + 2F, + 3F,
) = M+ E;+2E; + 2FE;
) = M|+ F|+2F, +2F;

o*(by) = % + Ey+ Ey + E;

o'(ty) = (+F+F+F;
) = A'+FE| +2E,+3E;+ F, +2F, + 3F%

where Mg, M1, £y, 0y, A" signify the proper transforms of My, My, £y, b1, A

onV. Weset X :=V — D, where D := Mj+ M| + 0*(so) + E1 + E; +
Fy+ F, and C := A’ N X. Then the following assertions hold.

(1) X is an MLy surface with p(X) = 1.

(2) ®(X — C) =0 and hence C is an anomalous affine line.

If X is an ML, surface with p(X) = 0, there exists an anomalous affine
line. Namely we have the following examples and result.

EXAMPLE 2.4. Let Vy be a Hirzebruch surface of degree n = 0,1 with
the P'-fibration py : Vo — PY. Let My and £ be respectively the minimal



section and a general fiber. Let Hy be a smooth curve such that Hy ~
2My+¢ (resp. Hy ~2(Mo+¢))ifn=0 (resp. n=1). Let Py, Py, be the
points of the base curve of py over which py |g,: Hy — P! ramifies and
let £y = py ' (Py) and lo = py' (Ps). Let o : V — V; be the blowing-ups
of the point bss N Hy and its infinitely near point on Hy which produce a
(—2) curve By and a (—1) curve Ey. Let H = 0'(Hy),L = 0'({s) and
C=0'(ly). Let X=V — (H+E1+E,+ L) and let C =CNX. Then
the following assertions hold.
(1) (H?) =2. LetT: V' — V be the blowing-ups of the point HNE, and
its infinitely near point on H which produce a (—2) curve Es and
a (—1) curve Ey. Write 7'(E1), 7' (Es) by the same letters Ey, E,
and let H' = 7'(H). Then (H'®) = 0 and |H'| defines a P'-fibration
F:V' = P such that f = f |x: X — Al is an Al-fibration. In the
fibration f, E4 is a cross-section and E3+ L+2(Ey+ Ey+ A) (resp.
Es+E, +2(Ey+ L+ A))is a fier of f if n =0 (resp. n = 1),
where A is a (—=1) curve meeting X.
(2) X is an ML, surface with p(X) = 0 and one multiple fiber of mul-
tiplcity 2.
(3) C is an affine line lying transversally to f and K(X — C) = 0.

EXAMPLE 2.5. Let Vj be a Hirzebruch surface of degree n > 0 with the
P-fibration po : Vo — P! and let My, ¢ be the same as in Example 2.4.
Let M; be a section disjoint from My (hence (My®) = n). Choose three
fibers £y, 01, lse. Let o : V. — Vi be a sequence of blowing-ups which
produce the following degenerate fibers I'; from ¢; for i =0,1:

oo My — (-m) — (<) = (=2) = - = (-2) - M
C Eo E1 Em1—1
Do My—(—a) == (=) = (=1) = (=b) == (=h) = M
Fy

where a; > 2 (1 <4 < s),b; >2 (1 <j<t),C=0() and M =
o' (My) for k = 0,1. Let my be the multiplicity of the component Fy in
the fiber o*(£y) and let D = M} + M| + Loy + (0*(lo)rea — (C + Ep)) +
(0*(€1)rea — Fo) and let X =V — D. Let C = C N X. Suppose that
my > 2 and my > 2. Then the following assertions hold.

(1) X is an ML, surface.

(2) C is an affine line, and it lies transversally to a unique Al-fibration

f:X — Al
(3) ®(X —C) =0 if and only if my = my = 1. R(X —C) =1 otherwise.



(4) If my = my = 2, X is isomorphic to the surface constructed in
Ezxample 2.4.

Theorem 2.6. Let X be a Q-homology plane. Suppose that X is an
ML, surface and not isomorphic to the surface constructed in Examples
2.4 and 2.5. Then any affine line on X is a fiber of the unique A'-
fibration f : X — Al. In other words, there are no affine lines which lie
transversally to the unique A'-fibration f : X — Al

We have the following result, which makes some clear distinction in
the cases p(X) = 0 and p(X) > 0.

Theorem 2.7. Let X be an MLy surface with p(X) > 0. Then there
ezists an A'-fibration g : X — P

In the proof, we use effectively Lemma 2.1, (4) and the Derksen invari-
nat Dk(X') which is defined for an affine variety X = Spec(R) as follows.
Dk(X) is the subalgebra of R over C generated by Ker §, where ¢ ranges
over all locally nilpotent derivations on R.

3. AFFINE PSEUDO-PLANES AND CANCELLATION PROBLEM

The class of affine pseudo-planes is fairly wide, and we have to specify
a subclass to state some results meaningful.

DEFINITION 3.1. An affine pseudo-plane X which has an A'-fibration
f: X — B=A! and a unique multiple fiber dFy has type (d,n,r) if X
has a smooth normal completion (V, D) such that the boundary divisor
D =V — X has the dual graph as shown below, where n > 1 and r > 1
and f is defined by a pencil |¢_|. Furthermore, Fy is the closure of Fy
in'V and S’ is the unique cross-section contained in D.

_ —do Ey
~1o Fy 0o £,
: ~2 -2 -2 -2 -2
—20 ..... O O O———nen O 0 —n
Eitr Eqi By Eq E, 4 S

In the above graph, we can make (5’2) = —1 by applying elementary
transformations with centers on ¢, . We call an affine pseudo-plane of
type (d,1,r) simply an affine pseudo-plane of type (d,7) and denote it
by X (d,r). We can construct X (d,r) in more explicit terms.



Lemma 3.2. The following assertions hold for an affine pseudo-plane
X = X(d,r).
(1) X is an MLg surface (resp. MLy surface) if T =1 (resp. r > 2).
(2) X 1s, in general, isomorphic to the complement of MyUCy if r < d,
and My UCy if r > d in the Hirzebruch surface ¥, with n = |r —d|,
where My 1s the minimal section and where Cyq and M, are specified
as follows. In the case v < d, Cy is an irreducible member of the
linear system | My + dly| which meets My in the point My N £y with
multiplicity v, where £y is a fiber of the P'-fibration of &,. In the
case 7 > d, My is a section of L, with (M,*) = n, and Cy is an
irreducible memeber of the linear system | My +dly| which meets M,
in the point MyNey with multiplicity r. In both cases, LoNX = FNX.
(3) X is isomorphic to P2 — C, where C is a curve on P? defined by
Xo X3t = X4 with d > 2 if and only if X has type (d,d — 1).

Proof. The assertions (1) follows from Lemmas 1.4 and 1.5.For the
proof of the assertion (2), contract S', ¢, Fy, ..., Eq, Egy1,. .., Egyroa
in this order. Then the resulting surface is the Hirzebruch surface 3,
with n = |r — d| and the image of £, provides Cy. The image of F;
provides My or M; according as r —d < 0 or 7 — d > 0, while the image
of F is the fiber £;. The assertion (3) can be proved as in the assertion
(2). Q.E.D.

tom Dieck [1] observed some partial cases of affine pseudo-planes of
type (d,7) as examples of affine surfaces without cancellation property.
The following construction is based on his idea.

Write ¥, = Proj (Op1(—n) ® Opi) as the quotient of (A% \ {0}) x P*
under the relation

(Zo, Zl), [wo, wl] ~ (VZO, VZ1), [Vnwo, ’w1]

for v € G,, = C*. The projection {(z0, 21), [wo, w1]} — [20, z1] induces
a P!-fibration p, : ¥, — P! In the above definition by quotient and
in what follows, the integer n could be negative. If n > 0, the curve
wo = 0 (resp. w, = 0) is a section M; of p, with (M;?) = n (resp. the
minimal section My with (Mg?) = —n). Meanwhile, if n < 0, then the
curve wo = 0 (resp. w; = 0) is the minimal section My (resp. a section
M; with (M;?) = |n|) of Zj,. Let d > 2 and r =d+n > 1. With the
notations of Lemma 3.2, we assume that the fiber ¢; is defined by 2z, = 0.
Let w = wo/w;. Then {z0/z1, w/27} is a system of local coordinates at
the point M; N4y (resp. MoN¥ép) if n > 0 (resp. n < 0). Let A be a linear
subsystem of | M, + dfy| if n > 0 (resp. | My + déy| if n < 0) consisting



of members which meet the curve M; (resp. Mj) at the point M; N 4,
(resp. My N £p) with multiplicity r if n > 0 (resp. n < 0). Then any
member of A is defined by an equation

d—1 d T
w Z| z Z| Z|
—n{ao+a1<—0>+-~+ad_1<—0) +ad<—0> }+ad+1<—0> =0
2] 21 21 21 21

or equivalently by

) d d—1 d—1 d o
Wo (aoz1 +a1202y A+t ago12y 2+ adzo) + agy12pw; =0 (1)

for (ag, a1, ... ,aqs1) € P4 In fact, it is readily computed that dim A =
d+ 1. So, the curve Cy is defined by such an equation with ag # 0 and
aqy1 # 0. Hence it follows that

X(d, 7') - E|n| \ ({wo = O} U Cd)

where n = r — d and Cjy is the curve defined by (1) with ay # 0 and
aq+1 # 0. tom Dieck [1], in fact, considered the case below where X (d, r)
admits a GG,,-action.

Lemma 3.3. Letr > 2 and let X = X(d,r). Let 0 : Gy x X — X be
a non-trivial action of the algebraic torus Gy, = C*. Then the following
assertions hold true.

(1) The action o induces an action o : Gp X Sy — | such that
U(”)Mi - Mz fOT‘i = O, ]., 0(”)0,1 - Cd and "(/‘)éo ~ 20, where 0(”)Mi
denotes the image of M; under the action of u € C*, etc.

(2) The curve Cy ts defined by an equation

2lwy +azjwy =0 for a€C*.

These construction allows us to write down explicitly a defining equa-
tion of the universal covering space X (d,r) of X (d, ).

Lemma 3.4. The universal covering )Z(d, 1) is isomorphic to an affine
hypersurface in A3 = Spec C[z,y, 2] defined by an equation

"z + (Y4 arzy® 4+ ag 13Ty + aga?) = 1.

The Galois group of the covering X’(d,r) — X(d,r) is a cyclic group
H(d) :=Z/dZ of order d and acts as

A (z,y,2) = (Az, Ay, \7"2)
for A € H(d).

The universal covering spaces of the X (d, r) satisfies the following sta-
bility property. They do not have cancellation property as shown by the
assertion (2) below.



Theorem 3.5. Let d > 2 and r,s > d. Let X(d,r) and %(d, s) be the
affine hypersurfaces defined by the equations x"z + (Y + agy®™2 + - +
agz?) = 1 and 2°2 + (y* + ahy?2 + - -+ + ajz?) = 1, respectively. Then
the following assertions hold. ~

(1) For any r and s,
X(d,r) x A= X'(d, s) x AL,

(2) The isomorphism )?(d,r) = Xj(d, s) holds if and only if r = s and
a, = pla; for p € C* and 2 <7 < d.

In order to find counterexamples to the cancellation problem in the
calss of affine pseudo-planes X (d, r), we have to find an H(d)-equivariant
isomorphism in the above assertion (1) with possibly non-trivial actions
on A!. This is much more difficult problem. We say that tom Dieck [1]
pioneered this construction with the X (d,r) admitting G,-actions.

Theorem 3.6. Letd > 2 and let r,s > 1 and r = s = 1 (mod d). Let
X(d,r; f) be the affine hypersurface defined by "z + f(z,y) = 1 where
Fz,y) is of the form y + apz’y®? + - - + agz® with a; € C. Then the
quotient of )?(d,r; f) by the Galois group H(d) is an affine pseudo-plane
X(d,r; f) of type (d,r), and the following assertions hold.

(1) For any r and s,

X(d,r; f1) x A 2 X(d, s; fo) x Al,

where fi and fo are monic homogeneous polynomials of the form
stated above.

(2) The isomorphism X (d,r; f1) = X (d, 5; f2) holds if and only if r = s
and fi(z,y) = fo(pz,y) for p € C*.
4. ASCENT AND DESCENT OF THE ML; PROPERTY

A crucial result is the following.

Lemma 4.1. Let ¢ : X — Y be an étale finite morphism of smooth
affine surfaces. Then any Gq-action on 'Y lifts up to a G4-action on X.
In particular, if Y is MLg then so is X.

A main ingredient of proof is that an A'-fibration is locally trivial in
the Zariski topology and the inverse image of an affine line decomposes
completely under an étale finite morphism.

We ask if the converse holds and obtain the following.



Theorem 4.2. Let ¢ : X — Y be a finite morphism of smooth affine
surfaces with X an MLy surface. Assume that either ¢ is étale or ¢ is a
Galois (possibly ramified) covering. Then'Y is an MLg surface.

Proof. 1If ¢ is étale then m(X) is a subgroup of finite index in m(Y").
Hence by taking a normal subgroup of finite index in 7 (Y) contained in
71 (X) we can find a smooth affine surface Z and an étale finite morphism
Y Z — X such that ¢ -9 : Z = Y is an étale Galois covering. Since
X is MLy, it follows by Lemma 4.1 that Z is also an ML, surface. By
replacing X by Z if necessary, we shall assume that ¢ is a (possibly
ramified) Galois covering with Galois group G.

By the equivariant completion theorem of Sumihiro [7] and G-equivariant
resolution of singularities, we can find a smooth normal G-completion
X — V, where GG acts on the boundary divisor D := V — X. If the
completion is minimal, then D is a linear chain because X is MLj (cf.
Lemma 1.4). We shall show that V' can be so chosen that D is linear.

Assume that D is not minimal. Then D has an irreducible compo-
nent D; such that D; is a (—1) curve and meets at most two other
components. Then all the conjugates of D; in D have the same prop-
erty. Let Dy, D,,...,D, be all the conjugates of D;. If D,ND; = 0
for 1 < i < j <r, then we can contract all of them simultaneously and
obtain a new normal G-completion. Assume that D;N D, # (. Let T'; be
the connected subtree of D containing D; but not Dy, and let I'y be the
connected subtree of D containing Dy but not D;. Then I'; and I'y are
also conjugate. By the assumption, D; meets only one other irreducible
component of I'; and similarly for D,. If I'; contains a branch component
of D then so does I'y. If we contract D; and any subsequent (—1) curves
which meet at most two other irreducible components, then we reach a
minimal divisor with simple normal crossings which is a tree but still has
two branching components. This contradicts the assumption that X is
MLgy. Hence we can assume that D is a G-stable linear chain.

Consider the quotient surface V/G which contains Y as an open set.
Then V/G is normal and D/G is a simply-connected divisor. Further-
more, V/G has at most quotient singular points on D/G which are the
images of intersection points of irreducible components of D.

We shall show that Y has a smooth normal completion W such that
W —Y is a linear chain of smooth rational curves. To see this, we
let H be a subgroup of G which keeps all the irreducible components
stable. Then H has index at most 2 in G. Then V/H has at most cyclic
quotient singularities. By taking a minimal G/H-equivariant resolution
of singularities, we obtain a normal completion X/H < U such that U



is smooth along U — X/H and U — X/H is a linear chain of smooth
rational curves. We note here that X//H may have singular points if ¢
is not étale.

Now we can assume that G = Z /27 and the generator of G permutes
the end components of D which is a linear chain. Then a local analysis at
a possible fixed point on D shows that G-action is given by (z,y) (y,x)
with respect to a suitable system of local coordinates at the fixed point
and hence that U/(Z/2Z) is, in fact, smooth. Let W := U/(Z/2Z). Then
W — VY is a linear chain of smooth rational curves. Hence Y is an MLg
surface by Lemma 1.4 because I'(X, Ox)* = C* implies I'(Y, Oy)* = C*.

Q.E.D.

In the case of étale finite morphism, we have ascent and descent both
ways for ML; surfaces with « = 0,1, 2.

Theorem 4.3. Let ¢ : X — Y be an étale finite morphism. Then'Y is
ML; (i = 1,2) if and only if so 1s X. '

Proof. Consider first the ML;-property. Suppose that Y is ML;. Then
X is ML; or MLg by Lemma 4.1. If X is ML, then Y is MLg by Theorem
4.9. This is a contradiction. Hence X is ML;. Conversely, suppose that
X is ML;. As in the proof of Theorem 4.2, there exists a Galois étale
finite covering @ : Z — X such that ¢ -9 : Z = X is a Galois étale
covering. Since Z is ML; by what we have proved above, we may assume
that ¢ : X — Y is a Galois étale finite covering with group G. Let
f: X — B be an Al-fibration with B = Al. Since this Al-fibration
is unique on X, the G-action preserves f. Namely, the G-translates
of a fiber of F are again fibers of f. Hence f induces an Al-fibration
g:Y — Al. So, Y is ML, or MLo. If Y is MLy then X is MLy by
Theorem 4.2, a contradiction. Hence Y is ML;.

The case of MLo-property follows readily if one uses the ascent and
the descent of the ML;-property for 7 =0, 1. Q.E.D.

We can prove the following result, which generalizes a result that if
f:A%? = Y is a finite morphism to a smooth affine surface Y then Y is
isomorphic to AZ

Theorem 4.4. Let X,Y be smooth affine surfaces such that there is a
proper morphism f : X — Y. Suppose that X is an MLy surface with
p(X) =0. ThenY is also an ML surface with p(Y)=0.
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BRIl E Il HTc b, RTERICHFTR SN TND. 22T, —RICAH#R K
RE AWK, KBFEE D: A— AFEED a,b€ AKX LT D(ab) =
D(a)b+ aD(b) BV SIo & &, AICBITDHO VI K BH~s bz
MV cCcAIHLVP ={acV|D)=0}1xV O K #FHr hLZERE
BN, ESICV N K BRI VP IV o K SR s. D
%, EFED a € AWIZHL D'(a) =0 &5 re NBFETDHEE, RTE
ETHDHEVI. K[X] KB DM DX K(X) B 2WMOITIERETE,
K[X]P = K(X)? n K[X] k0 2o, K(X)” 13 K 28T K(X) O E
ROT, D O K[X])? OFBRERMEDIBEIZ L L~ b O 14 EO—H
THDH. VU AF (19 LY n<3hbIEK[X])” BECHERERTHD Z &
IRED .

1990z m A= [18] X, n =7 OHEITEBRED 6 O LWEROK
Gl 57 “hEKBL, 70450 "—7 [5]1d n =6 TRERENS O
Rfl%, SOIETFATNETaLF "= 213 n =5 TBEKEN 4 DR
FlatER L=, A —Y ORFAOEKTIRL—RIICE, NELETE (6] %
FEOIckrbobdhs. ZhbORENE, K[X] BT 2RAREEKRS O



ELTEHTE D,

EA~UL ROFEI4AREE, ZnET =234 OFAE L, L OBBKREN3
DHETETBRBREOEEHEIN TN, EH [11] ICLVEEMICHRE L
7o, E KX ICBT MO OEOFRAEMMEOREIZN =4 OBET T
fRIRTE o708, EH (10], 12 10X ZTRAEEMICRE Lz, A2k, K[X] I
B2 RTAEMS OEORREFMEOEEIL, n=4 TV ONLOEED
RAER (B 243 3], [7), [15]) 13D b OO, KRR TH 5.

BV D 14 RIBEO KB 2T 570 OEEIC L AT, moi—
Y [18] RN EFET D (2], [5], [6], [9] 7 & EEREICIND DT T L,
A RTEEOF LWRAIZ BTEIZS 2, EsMICoird 5 2 & &mee1 5.
ZOHEFmOMET [14] THH|-72D, KB TIEHFICHMO O L L TERTEE
BREBNCEREZ ST, ZNOHEFARDIZDOFIEIZONTHR~S . Eimois A
ELT, HOEEORIEEMNIIXL, TOEBEREK TRWEZOD+45
FErE5RD. o, £ LIZARERTRWHBS OBEOER R %, BIREID
FhETRDDZDDOTNAITY XA HONTHEBET 5.

2 REBIDOER

UTF, K OFBIIERET D, K[Y] = K[Y,...,Y,] & K[Y*) = K[y, vE
ZENENK EOmBROZERIRE L0 —TF VZHEARET D, 2P O b=
(bry- oy bm) IR LY =YY L&, =T BB =, . Y?
WIZxtL, Z™ OESES

supp(g) = {b € Z" | v, # 0}
g DBEEES ZhbHiE 2 Oxn—T7 CEEAR K[(X*) ookl
THEEET 5. K[Y]IZBIT 55 D icxtL,

supp(D) = (_Jsupp(¥;™ D(7)) (2.1)

Z D DB LS. supp(g) X supp(D) @ R™ (2817 2@ New(g) < New (D)
Z, TN gD OD=a— o ZEELES. {§-6 16,0 € supp(D)} 2
R D Z MBS Mp E35<. & v € ZM/Mp \oxtL, Zm/Mp 15 B
v EFELWDE (Zsg)™ ICxHT D VP £ENERT D K X7 MVER%E K[Y],



ytn. Zokx, KY)P IS Zm/Mp BEAET K[V =@ gn r, (KIV]Y)
MDEED.

K[Y] ® K #5k% B EBEBREBESD (n,m) 1751 Q = (w;)i; BEO
Zr+{Q-b|be Zmy OUSEE M oD =D = (B,Q,M) 252 5.
#seMIZxL, EED besupp(g) B Q- b+se€Z™ #filcd g € B EF
% BY L3, £, KM =@, Ke(s) # M OBRETS. 2L, &
Fe(s) (s€ M) IZxtL, Exe(s)e(s) =e(s+5) (s, € M) ICLVEDD.
ZoEE, BY =@, B®e(s) 1T Bog K[M] ® M R#f>x K #oft
L h. ¥R Op: B — K(X) % (O, wY?)®e(s) = >, p X0 12X
WEFETH. LT, &p(BY) OFEEE K(D) L. ZOLE=2#D %
HELIBEZ LT, BV hOFE 14 BBEICK T 5 EICK 4 26l % K(D)
ELTH/LZENTED.

—fxiz, K[Y] O D &k

(D) EE D 6,0 € supp(D) IR L Q- (6 —0) 1T ZM IZEFEND.
izt L&, £BO ge K[Y], (y € Z™/Mp) IZxf L

(G) FEE®D b1 € supp(g) I L Q- (b—b) 1L ZM IZHFEND.

MR SLD. - T, besupp(g) EEEICED s=—-Q-b LBV LE, ¢
I (K[Y]P), icEEnD.

Fox WERCEED H D =oM%, B 28 (D) &7 K[Y] ORFTREEMRS
ot K[Y)P? 0B&0L0THS. ZorE, K(D) it K[Y] oMo oA
WCEZEINDM, K(D)NK[X] BE&ET D K[X] OWSHEET B &
BRSO 2. F2T, ZFOL I RBOBNFEET 2O D =D OFMEZE
TENMEBELRD. |

YERE 2™ x M 3 (b,s) = Q-b+s€QF BNEFOLE, (Q M) [ZHFH
ThHEND. (Q, M) NESILRDITERE Op IXHEHTEA, HI—MRICE
U< 2, ERE, n=3 IR 5 KA [11] OBEUICIE, (Q, M) IZEHETZ
WS Op [THEFTHDL LI R=2/M D ZHW\D.

%3 [12, Theorem 1.4] DIFHEL L TRDHED .

T 2.1 K[Y] ORFTEEMS D 1354 (D) £ DY) #0(@=1,... , m) &
WL, &I (M) IFEHHTHDLI LTS, Z0LE, (MeZR)NZ" K
M Z&En 52613, K(D)NK[X]=K[X]|” &2z K[X] ¥ E 3577
£ 5.

LL, EHE21ICBWTE 2RAEZETHHLIICEND LIFRLR,
ERE n o= 4 ICBITARE [10] OHE, =ofFE D ITER 2.1 OFRMFEEL



TOTK(D)NK[X] = K[X] L7022 K[X] D5 EIIFETSH. Lave,
KD)NKX] 1T KX IZBIT2FETRVMEEDRITBEEMIIZL > THEILE
Lt EE R, KX] 2B 2 RETEEMS OZICIEe v B,

3 WHEETDROED

UT, AT m<n &L, (Q,M) BIROLX D REFENLRFEOHEEEXD.
TROLLQE, n—m+1<i<n & 1<j<mixL, i+j=n—m+1
fi%&iwz,]:l,z+]7ﬁn—m+l foﬁ%&iwwzo &b\b%ﬁ:%{%flb

M={(ar,...,0,) €Z"+{Q-b| b€ Z"} | ay_pny1 = - a, = 0}

5. Zokx (M) HESHNTHE. REAEEICT 5720 n & man &
WY A, ZHEABE KX] ORbVICKX][Y] = KX, ..., Xa][Y4, ..., Vil
%%7_5 FR2F b2 5% A0 m BORS \%ﬁ?ﬁa% LT, MiE Qo
SEEL BT ZOHE, Q OO n ATICHIST D (n,m) 1751 Qp &,

é&{ﬁt |

(D) FEE®D 6,8 € supp(D) 12/ L Q- (5 —6) 1Z ZM & END.
EZ7-d KY) OREEMS D #5252 87T, =24 D IE—BHICHk
5.

Fill L QOF i 1T% w; LB, ZM OBFREDES SITHL,

Vo (S) = (min{w; -b | b€ S},... ,min{w, -b|be S})

EEDD. B=TFFZEN g =3, .Y’ P (G) 2T LE, £2To
b € supp(y) (ZA L a(b) = Qo - b — vgy(supp(g)) 1L Z" IZEENDH. =2
T, g% = Zbez XYt L3 (D) AT K[Y] O D cxfL,
K[X][Y] o4y D% % DP(X)=0(i=1,...,n) BLW®

DN(Y;) = (V7' D(Y;)™* XY, (1=1,...m)

MOHEDD. ZIT, ¢ —vgo(supp(Y 'D(Y;))) — va,(supp(D)) &+ 5. =
DEE, (Q) 2T ge K[YP \Zx L D%(g%) =0 ApL0 >, £7=, D
MRFTER 21T DY L RTRFICLD.

T 3.1 K|Y] ORFBEEMS D 28 (n,m) 175 Qo 1% L CTE&M (D) &
TS ZolE, K(D)NKX|[Y] = K[X][Y]P™ 2550 3o,



E~UL b0 4 RBIEICET A RBIO D B, (2], [5], [6], [9], [18] TH A5
NELOFETELR D & Q 25T 5 D% oL LTERTES. b
DIEEDOAEL, D %= (K[Y]",Q, M) \5 L TR TH SN
HENZD.

W D% OEDH NS K[X|[YVP™ 1 K[X] 281,

@i 3.2 K[V] O D 55 (n,m) 1781 Qo (2x L TR (D) 2§ & &,
K[X] Bt K(X][Y)P™ 11 {g™ | g € K[Y 12 (y € Z"/Mp)} T &> THERM S
n5.

4 BR=AMH

K[Y] 2B 585 D%, DY) € K[{Y; | jr) BV o & &, $:HFKTH
BHEWH, EFRBZAMS D OREROEIIZERTD. DO K[Y,... Y]
m@ﬂmamﬂ%ﬂww.wthéfémUeﬂﬂﬂGU}\UD%ﬁ
T kel{l,....n} &tkx I b8 FheU_ UL I ITHL,

min {wp', s lw)"! kelUL It mex
O = mm{w,c (v — vps') Wi ke Ih mex
min {wk vy Wl ke I, &
EEDDH. ZDEE, 2TOEICHL o ITERERD.
%1 <1< allxluvgop > Z/Qw,(fl)l (k€ JNI) & vy > w,(f’l)’j
(keJnIl,j=2,3) V7= 58 n%EE JC{l,... ,n} IZXL, &HFE

WS ONEETDH. £F1<j<3&1<I<al ﬂbgj_mmgﬂ”%—|
ke NI} LBE,

U3
&) =lem{vg, v3}el ; + ————&, + & ), (4.1)
V3 — V9S8
fi J V‘fl‘J .
l 3 l ] ]’ -
T, = 7, = —2 (j=2,3) (4.2)
b7 V) — V2fli,J » vy — §§,J



EEDD. TZIZL, JNLE=0DL&ET g, =0LT5. a>10DL%E,

M,J = V4,1T11,J — 1/4,a7'1a,J + V27'11,JTffJ(V4,1 — Via),
M2,J = Vo — Va1 + VQ(V4,a711,J — Vg1T1 ),
M3, = (V3 — 1a8)ny + sna,,
Na,g = V4,17/4,a(711,,] - TlofJ)
LB
{(I2)2 (UD)8 | cg, 05 € Zsg, cova + c3v3 = vy, 1 <1 < o} BERT D K X
7 MNVEREV ETDH. VIFAERKITZDT{New(VP —Y, + f) | f €V}
TEREATHY, AEBERICETLIAEREOR/INTP,... P BNend.
ZDEE, RMBALY L.
EE 4.1 ged{vy,v3} 1 E vy, ... ,vue ZEIVEID, P £0THEETH. &
7, & 1<k<n&je{l,2,3,(41),...,4a)} ICHLw’ TBETHD L
A, CokE, WEEET JC{L,... 0 SEETE KXY])PT 1
FRAERY T7euv.
) F1<I<allHl, vyop > ng,g’l)’l (ke Jnll) BEDvy,0 > w,(f’l)’j
(ke JNnIl,j=23) Y Lo,
(i) & <1 BEVEY <1 DALY LD,
(iil) & k€ JNUL, (LU L) & besupp(PP — V) IZx L, wy-b> wypq B
RV L.
(iv) &2TD (by,...,bs) € supp(D(Yy)) 125 L TRHEL Y 3.
(a) a=1D&&T by — 7 ;00 > 7 ;(1—-1p) — 1.
(b) a>10LXix (bl +1-— 1/2)7}11_] + (bg + 1)772,J + b3ns.g — N4,y > 0.
(V) &1 <i<riRL, wp b <wpy BT ke JnU_ UL LI &
be P, W EHETD.
BV OB 4RI a1 3= [18] 7 A T /3 —7 5,
AT NETaA T N=7 2], £% (9, Theorem 1.4] 72 E1Z X 5 KB,
H 41 ORBFEELTHELNLD.

-
E

5 KIX|[Y?" OERRORDE

5% [9, Section 3] 11, BA—Y ORI (18] #ERT HAMER T2 =
B OB D ERSRARE L. ISR BRI OREERICEE 20



B, FOFEBERET TR B R L CRESIC—RELTES. 0T
3 Dk Q NEE 41 OZEEOMIC, SI1FE—BEEZBRRVETORHE
HAERET LS 2 ud, KXY)P" BERERTRVICHEDLLT, &
DA A GREOFEE TROLNALZ EXTFATL. ZOFELED &,
[2], 5], [9, Theorem 1.4], [18] THZ bz AREM TRV ZAMD DHEDE
RELRDHND. |

F4 ARROREICHVNAREEAHETS. KIX|[Y]© K 851K A &
HIEF < 125 L, WOERIZEI<HOLNLTND.

#58 5.1 ([17, Proposition 1.16]) A OESES S IZxIL, {ins(f) [ f €
S} M K ¥ ing(A) 24T 27201E, S K R A ZERTS.

K[X][Y] OEIEFF < T, EED a,d € (Zx)" & bV € (Zzo)* IZHL
Vb OEARRSNERBIE XY < XYY LRdb0aeEXDL. IO
LEx e AULNOE MBEORBIEERT 2O DEEDOERELED &,
L (K[X]Y]P™) e & EN D EHIER T IS L, ing(F) =T &W#=d F €
KIX][Y]P™ & EBIRTE 5. #oT, A=Y MREng(KX)[Y]")
DA TN TR L, S5 LY KXY OERFRLRESTZ L
272 5.

DITF, a=1&15. &b, THA41OFEHE (1) 76 (v) 8T ={1,...,n}
LTk s, EEO ke J\UL I} 8 o™ >0 (1 =1,2,3) &l
FELRETS. —hEi, TR 41 ORENEILENDLE, n ERE T =
JNUL UL I OEDBERERYER, Q & (Wker LB ELTHAY
EF 41 ORISR, TOLEIORELHILIND.

AEIOFE Y OB T ORED T T, AREIOFHLEITL Y HEFRESE
WOSRLE (P) BV L2HEI, X1 2 2 Xy 2220 BT
K[X][Y] OfFEIER < (BT 51 =Y v AMRE R = inL (K[X][Y)7™) o
RSy, AREOFEE TR T2 HECOVWTHATD.

BANEDsy b 1<k<niZHL, o< wy (1=23) RN PN
0 € Aoy — Zo B ap(N) B ZDEE, FEED b= (by,bs) € (Z20)” I
*xt L

ax(b) = wi2by + wk,3b3 — ay,(bave + bsvs)

= bg&)i’l + bng’l + (bgl/g -+ bgl/g)wa — (L;c(b'zl/g + 531/3)



&i?—fiﬁ’(&)é iff_, CL]C( ) > v (bgwk +b2w ) (] = 1,2,3) 75‘52@1'_[./)

kel =4 j il wp’ & w%ﬂ ZIERRDT, aph) ITIEBEKRTHD
Lo, T,=xm".. -Xﬁ“‘b)sg’ﬂgba IE K[X][Y] ODFEERD.

BHEOZD U, = 0P (i=2,3,4) LB, THE?? LV, RNK[X][Y,Ys, V3]
IR = K[X][{ing(T) |i=1,2,3}] £Z L.

@i 5.2 RICEFNOEEOHRENXTY] (T € K[X]|[V1,Ys,Y3], | € Zsg) (2
U, XTY] 7 RICEEN, T(XT,) " R IZEEND LI 7 c € (Zso)"
Ebe (Zs) BWEET S,

B be (L) LT ={(¢,;1) € (Z5p)" x N| XT)Y} € R} &8,
FE52 LZFDOLEDiELD,

R=R{XTY!|(c,l) € T’ b (Z)*}] (5.1)
R 3L, B = {(by,b3) € (Z50)? | bovy + byvy < lem{wy, 15}} <.
Bl 5.3 [EED be (Z0)? \ B IZx LT 70 = {0} x N 23 0 325,
HbeBIIKL, MPES S"C (Zs0)" & NP CN (ce S »
TP ={(d+¢l)|de (Zs)",l € N ce S (5.2)
AT LTS ok, (5.1) LABES3 LY RIT
(T} |1 € NJb€ (Zs0)* \BYU{XT,Y} |l € N’,ce S be B}

CEoTR FAERREND. 65T, ROEMZEZIZRTAT-DITIE, &b B
’iﬂ, ( 2) %I TEHNES S° C (Zoo)” & N C N (c € 8) &R
LW, BIZAERERZDOT, TN be B ZLIZARRBOFEREE TITAT
QAN

B 0)5'_5 b= (bg,bg) %‘_’{{E%c:& V) /\0 = le/2+b37/3 CEE< % [ eN ﬂ:i“—J-L/,

{\IJEZ\I’? | Co,C3 - Zzo, Col/y + C3lV3 = )\0 -+ ll/4’1}

WAERRT D K X7 FVER% Vi L. £, {\I;bz'*'“/s‘lj? ivy | 0 lvg 1 +1

lem{vy,vs}



1T, EEEFEIC LD BEEMICEETED.

LI T, &

(P){EED P N IZX LT L(cp) ZAMREATHS.
W SNAHEE, (5.2) 2 THOEAS S C (Z))" E NP CN(ce 8
BROABEDOTNT) ALEE 2D, N ITERESLOT (P) ORILITA
REIOFHEE THETE S, B, RE (P) ZSIZE—EMEEZENRDI O TR
<, BlzIE € <1 RO IXEITH Y LD, it,MJM%U&@%é,Qzl
T (P) 3RV Lo, EEE, ZA5OFOBEIIE (P) L0 HiEy

(P EED Pe N ik LT Licp) =0 T&bé.
BELOID. T ={ce Ly | L(c) =0} B<.

el 5.4 To x NC TP C Ty x N 28V,

(P 7= ENHEE T T EE LV, Lo, @BH4 LY TP =TxN
MBS, ZOBEEIL S ={cp | PEN}, NV =N (ce &) LFnidiv.
wio, —ROBEEEZDL. ARES Upey Llcp) PRRITE Iy &L,

H:{ Clyen ,(14) €R4 | cy,Co,c3 > 0,04 > —lg, 1 + covy + C3V3 + 4y :O}

CEENAEMLNZHEESEKE P LB, HIZBERZOT PIIARESTH
5. % PePIlIxL,

dpy = max({aj(\) —wi - | € P}U{0}) (k=1,...,n)

L3 E, dp = (dp,. .. dpy) 1 (Zso)" DTNC2D. S = {dp | P € P}NTy
L. HeeS iR, (URUhwL 4+ Y o= a— b ZEE
L HOZbY R PIZEEND €V, (i=0,... ,min{l,lp}) BEETSH LD
leN &% N &35, 1L, Pldc=dp 2T P OTLTS.

55 FOLIICEDES & N (ce S ixtL, (5.2) 8LV L.

B#ID, & ce St ICH L NP ZHREIOFHE TRENICEETE DI L
%ﬁ%fé.%ZENKWL,ZﬁmeaiM5:&m,ﬁ@@@%@m@
T5 K LodsHEs 1 RFRAVMEFSZ & & FIE ’iﬁé lo LA ED—fi%
D LW TIE K[l] EOES 1 RFEROBOFEORBIZFE T, | 2
Nf_aihé;&il#1(£®%6ﬁﬁﬁ&ﬁ@%f%é_&kﬁﬁmﬁ
5. fEoT, NV IZEBRICHETETHS.

PEOFEICLY, (P) DREDTT KIX|[Y)"™ O =2 v LK R ©
AR RITVDOTHREBTE D,
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EILARIL FDEI4RIEICHT B
7El'f7'//\—’7‘0)fi1§lJL9L\’C

B FE

TaAT N =7 201F, EAL hOBE 4B T A RO L ) A
Bl & tE R LTz,

kZE80DEE L, R:=klx,y,s,tu,v] &k L0 6EZHEARL
T5. RICBITLDREIEEMS D #

, 0 5} 0 9,
D :=ua 8—+y 3§+Jz‘a +FUEEDelk(R)

TEDDH., 20L&, DOMRPIZEREE L CTERERTHA.
ZIT, kOMERE (b, +H) E G, THLDLTZEIZTE. §5&, DI
A5G, D R~DEAG, x R — RH»

D(f)

n!

P%

t- f = ZL” (t S G(m f € R)

Il
=

n

TEED. ZOG,ERICLARERE RO T RP & —FT+ 5 LiZiE
ZELTHL.
KD BN, ROBEICHE 5252 THDH

IRE. R4k RERP OAERRZ TR L.
REDT#T, BROTERXNEHBKL, TNONERRICRDL I L%

KT ZETHSD.
6i L\/&)GZ; RD @jTE .fl?f??f.‘ia.fﬁbe %

fl =,
f? =Y,
fa =223t —

fy = 3% — 3L3J st+ 155
o= 9x5u? — 1823y stu + 6,}“331.1, + 823313 — 3y s%¢t?
Y



EBL vRENODORP OFtid f; (1 <i<5) DEERE L THLLYE
HIENHERFHENDDND.
vIREEMN 1 LLED RP OAEMTTEER T D FR NV ILROBEICH 5.

WE1 K AKOMOERE 1, R - R,y %

Wwf)::iily%f)<_ P2>n

n! x?y

n=0

TEDD. AZBT D8 {by}mso 7%,

() by € A5,
Alby) = 2%%0-y (Ym > 1)

BT, B > 0105 LTy (ba) € RE ARV I, & 51, 1y (b)
B0 RERIZ SV TRET B &,

Ty (bm) = (_,717') boo™ + (v IREUZ DV THERIR DIE)
NE LG,

BB, 1, DEERMOEZITHED. SLBA#R
TROBESEL, TuAF AT 2 BUTOERER L.
2 A:=Fkrystu &BE, A=Dl, B ZDEE, HD
ABT B {0 o TROZM (1), (2), (3) 2T HOBEET 2.

(1) b = fu
(2)  AGW) =22, (Tm>1).
(3) Gead (Ym>2).
LMo T, Em> 11Tk L
Fo™ 4 (v RSV TR R OTE)

DD RP OTEMNIFET D



A GC?SH’Z)@J {bg)}mEO & {bgg)}mgo %
VESE m=0D& X
b2 .= { 2%(3z%u — yPst) m=10&&
1
;(b(lQ)bgi)_l — =10y > 2m e X,

fa m=00¢&x
b3 = ¢ 22y? (3x3su + yPsPt — 423t?) m=10D&x

1, . 4

SN = 1)y > 2 e

T

m—1 " m

B THE, WAL,
W3 Bi=23108 L, {0} 1EHE L OLM (+) BT, L
BoT, £m>1IZxfL,

fofau™ + (v REUS DWW TRR DIE),
Jav™ + (v REUZ SV THEIR D IR)

DD RP OTENEFEET 5.
EZFBA. EH2MOLEFZIZNED. SEBAR

LR TR LT RP O f, fo, o, far for mo(B) (i = 1,2,3, m > 1) ®
L% S LB, ABOETFERIRTHS.

TH4. RP = k[S).

SBVERRIC/IL D I EDRICBNT, ROT7 7y Ty - zyty
\Z X % #iRE [1, Proposition 1.4.15] # AV 5.

RS, A:=klzy,..., 2.5k EOnEHZESRET L. dx AICBT
LRFTREZEWH T, AUTf, .. i TERERTWA LD ET S, a %k
da) 0 2d*(a) =025 ADTLETH. I, A=Ay, ...,y
PALOIEHZERREL, A EOBHBRIEF < %

Y1 <Y < <Yy <Tp] < Ty <+ < Ty



75b0EL, BEADOATTNT = (yi — filicice P SWZET 57
TFEELTEH. Z0LE, ADEED O TRV a 2OV TIRIEFEE
Thh.

(1) a€ A(A).

(2) AP

m o i+1
rn—|-1
Z (i + 1 <d(a)>

=0

KJ:%IE%’E?B ik[yl,...,yg] LE?ZD 71::7‘::\L/, m@i, dnL(CL) ?é
0 #no dH1(a) = 0 72 BB T 5.

LR, EFEA4DA%E2T 5. RP C k[S] %, RP Do v REUZDOWTD
mEE AW TEERTIUE L. f 2 RPIBIERIZE D, deg,(f) =072
5, fi ifl,fz;fd,fufo@ki@%é B E LTERRENDDT, f€k[S]
MASIT 5. deg,(f) > 17b, RMEDREICLY, D g e k[S]H
TEE L deg, (f — g) < deg,(f) 722 Z L amtid L. f 2o KEIZOW
TR L

f:agv€+ag_1vc_l+~-+aoERD, a; €A (0<i<l), a#0

&%Eﬁ:‘“g_é &, %@%%7}/’(@{%\@&@ (2O ay € AA = k[fl,f‘z,fg,f% f5]
BEED L. LimoC, FE2LBEI LY, H5gek[S] T

fog= ( Z apfofS + Z bA,ufg’\ﬂfL) v

((Y,,B)EAl ()‘7/")6/\2
DN TR R )

Xt L

LA ALONREETS. FEL, & () €A EE O\ p) €M T
ZZ T,

aaﬂ,b,\’#Ek&L, =HiZ %‘ﬂ>0 u)d’baog—(]&ﬂ_%)

be = Z Gapfs f) + Z baufs f8

(a,8)€A (A u)EA2

LB E, fogeRP LV a?yh € A(A) BRRILT D, LA~ T,
B Ichb b Adaads LT, BIZAA s 2% ODBEEEZ AN



I, 2%y2bes O BAZ L D IEBL K[y, yo, ys, ya, y5] PTETEH D T & p307
S. 12720, BiE, Alyi, vz, ys, ya, ys) £O

Y1 <Y <Yz <Yy <Ys =T <Yy <s<=t<u.
B TRHENIEF ICE D T = (4 — fi)icics DT VT FEETH Y,

Q=Y 02 = =YoYs = Ui, 43 =~ +
Qu = —Y+Y2, 5= —SYsys — Y, g6 = —Y3 + Sya,
Q7 = —S%Ys — Y3, Qs = —Ouyi + 3t2ys + sys, qo = 3t2ySyy + Buys — ys

TERADZENTED. EEE, 22y%s O BIZL D ERFEA2KRDNIT,

Y1Ys Z aa,ﬁf‘zaféj"" Z baufsfs ] s

(a,8)€M (Mp)EAs

THDHZENBGIZOND. ULEDOZ ENnDb, =0T 5. SERREK

2% 30k
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[2] G. Freudenburg, A counterexample to Hilbert’s fourteenth problem in
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SEFREE 2MERS 2 0 ko
GORENSTEIN B

Rk 17 1 A 12 H

1 Introduction

“D AL NLTED THHEEAERT S 0T Gorenstein i8] #5525
B A\ OMET THRLD.

1. F. S. Macaulay {2 & % (3E B #372)Gorenstein RO D FIL TAFE
BENVEF 9 % Gorenstien B8] Th o7z, ZOFNILITO@EY. ([1]
p.29)

Klz,y, 2/ (2% %, 2% 2y — 2),y(z — 7)) (1)
K = C(E1F, REMAKTLRL) &3, Hilbert ok
(1 3 1) ZFF-> Gorenstein L Z DR D Z EMFERATE 5. 3
TR 2 KGR DOEER A Z D 2 L LIFERL I L o TIOH
1T BB G2\ Gorenstein BB b o & HEHERFII /R > TS,
K =R &THIE, EZOEN, ROLDEHD.

Klz,y, z|/(zy, yz, 2, 2 — 22 — 2?). (2)

F 7= 1970 ERFREICEAR-RILIC L > THRE S 7= Gorenstein
B2 H>OBLREY, SAHEMEALTVWDOILOTH T 2O
FNELL T OB Y .



Klz,y,z]/(z® = y°,y* — 2%, 2y, y2, 22)
Klz,y,z]/(zy — zz, yz — yz,2°, y*, 2°)

2. REGHICB W TIA LWLIEIN S, TRFREENMER S % Gorenstein 32 |
PFFES TNz, o & 2T ORTERI DB L S, DEIEE
ERIZEE, TN, S, DERIRBREFETH D Z L ALIFT B4
BNTVD. ZITED, S, ORFERBLE, KOLDTHS,

K[$1,'",$n]/(61,"‘,€n)

72120, e id, 1 REATFHA. Terasoma-Yamad [3] 1%, Z DEEAY
DROERZ RO T-.

3. BIREA @ Transversal Theory (ZHBWC, IEFRIFEN L ~)LEL
BIZHBIOIIERT00%2E X5 L, Sperner Mt DFERA A B |-
25, (ZOZEFR]IZENTHD. ) —7, Sperner th& iz 720
Gorenstein RO (£I1Z, MAVDTAHARIZE > TERINEZHLONSE
WD) IERFRESER L TR, ZoX ol brEz s L

[SEFREEDE RO ER & L CYEA 3 % Gorenstein 13 Sperner 4% %
o)

EFRULIELSed. (220, TV~ VESEICIEFRR RS HBH
WIERT %) LEOIRKICEESHRDLHOEDFHENLEIZA . )
“This is too good to be true.” (RBETE2) L=SbhZ 720,
Dip < & BEERR E L TUIEREZFFO/EA 9. [Sperner ) 13, 38
V) Lefschetz 4] F721% 59\ Lefschetz ] (CEEH#x T, [FEE
DARFRFEILT D .

4 ROTNFUBREEZEZD.

K[x177$k]/(:r,11)’x2) (3)

ZHUEBA BN, AMEENIER T 5 Gorenstein R TH 5. T,
n RITNT MIVERO LK BT NVERERDZENTEHDT,
Weyl OFBIERIZ RGO EGN D RET 2 LA KD, —5F,
Weyl O EIERIN SENNL D ETORERIE, EHIZIZ O Gorenstein
RIGATE 5.



5. RIFREENVER T 5 0 k7t Gorenstein Brl1E, EEHn &, IHXE-
W2 R f € Klay, -+, o] ZHAWT,

K[x17>$k]/(x711’v33z)f (4)

LETILENTEL. -, AIEE 4 Th~7 Weyl OFREIER])
MHNPOFTH-RIEAEFOLEFETES. 2N TIZ 9&,;
DEITET, né& fR—BEMICREL DT TIERY. Ll nZ
B/AMZ e, E£i, fICANAERONEOREL, mx(n-1)7T
D LEEDEEAFTIE, —BIZRES. Gorenstein 1 7 7 /L
Faur TETELFEHEVMONTORNEIE. W< Oh
FEFTHED. ROFITHE, ALEE, p3ERO I RO~NET,
F70, h 1T ROFEMHR, T7bb, i ROBEKXOKRINTHD.
(a) (z ,y‘ 2zt y+z= (2% 2% ay — 2z, 1Yy — Y2)

(b) (23,13, 2%): 2% + y°2° + 2803 = (zy,yz, 22, 2% — %,y — 27

() (172,572, 742 A = (b By hrga), 7= 1,2,

(d) (x "y BT)' A(h?(r—l))3 = (pr:pr+1apr+2)’ r=1,2--

2 FEXBEXTEXEIRE Weyl DHEE L

PIF, KK OERIITELT 5. R = Koy, 0 Z2HERELT 5.
fe ROFRE LT, EEHIET2REOPORKELERT 5D
L35 Aln k) T, REEDEX (n— 1) DEEKN 425 R OGN
AL AET T EICT D, ROATTATI R = (a?,--+,27) &8
<L, Ny RAZERE LT, KOBYEMICOETD.

R=A(nk @I

Aln, k) k7 MVEROEET Y VERERD 2 EMWTED.
A(n, k) = R/I 72605, A(n, k) &, AHBROBELRFD. 5FT, 7
VY NVZER An k) AFRE L LTHR D 2L, HE VM, LS T
MU, RIITZ#7T VY NVERERDZ Eh ol X OICEZXDS. b
FHLEELL, FrYAEEELTO R/ = Alnk) DRV FHE2IT-E
D EXETEZS. A=Ank) LE. AOEELLT, RRESEX



(n—1) DHEENAZH5:
{3’7? fUZklO <y, i <n—1}

ADITiL,
‘ ZF i1y dg, e )T L}j
EETD. An k) B nikt_7 MVEBKr O EET VAR E BT
HOEMND, —REIEHEGL(n) DT Y VEBR ¢:GL(n) — GL(A) ¥ 8
ICBABND. ThEBERMICELS LRORICED. g = (gug) € GL(n)
ETDEE, glalxp) i,

= Zgllﬂa Zgu[ﬂ

ThD. 1L, 17519 = (gop) PEDDOEE 0, B1E, 075 (n—1) %
TEBH bOET D, RIS, SRS, 25, ZHROBHRE LT AIIER
+5.

Weyl OB AEEANC LAUE, A O GL(n) IEEE L COBERSfEZ R D 5
ZEiE, Sy MMEEE L TCOBERN SRR S IZIERIETHD. I2hb, A%, Sy
Bt L CBER S CE UL, BEWIIZ GL(n) MEEE L CONfEMNRE
HZ LD, ZOBRT S, MEEL L COBEOSARITEREY. LITT
1, (W) nidfEET, k=2, (A) KITEET, n=2, O22O00EEIC
ONWT, ZONRERDTHD. £ LT, TN Introduction DIEE 1
Tak~72, Macaulay REAR-BILOFIE LD X5 ITHEDD L OFEN
T 5.

FOHNS, XREP o TAIi-OVWT, —EEELXZ L.

3 REELOTHOJordan EE

“Jordan ZEJE” & 52 FWVWH TR TIERY. T2 TE 2 EWL, 175
% Jordan fRYEFZ L L TRTTODEED Z &’C&)é J € End(V) &~
XEoERLLEY). AEEIETHLEVDIEA DD, J D Jordan AJE



AT AFIEZROBY. £, RO LD 2HHEHOERDI|ZE
25,

V=ImJ°>ImJDImJ>D - >ImJ’ =0 (5)
A, Ker IZHIFREL T, Ker OEDZEMORAFIZ(ES.

KerJ = KerJNImJ® O KerJNImJ D KerJNImJ? O --- O KerJNImJ? =

(6)

ZOHASERO ) BEVIRLOHDH L DIFRE, ARTEOTRBLT, K
DFEICEL.

KerJ =W, D W1 D---DW; D0 (7)

Fhbb, W, =KerJNImJ? 35 T, Wi, #W;, TH Y, sid, ZOME
EEHOLOD S LOREKRTHDL. (7) THIZELZEELRN L, Ker O
EEZImS. 0, J o Jordan BEO—EHICRD. Thabb, £E
B Zskie~x J @ Jordan £E & UL, By:= BNKerJ BRETEZZ
LR B, ol By ASEEAUS, &b € By KR LT, a€V\ImJ
EROT, all=btTEDH. £H

GIELICED) BWRDAEETHD. EBETOESFT, LEISLTS
FAuZ L.

4 A=An2) $HhbLK D2ETVYVI

k=2 &+ 5E, FHixd Gorenstein B A = Kz, -, 2]/ (2}, 2p) &
KDL INTIeD.

A= Klz,y)/(=",y")
ADOERIFERE x: A — End(A) TRT. T74bbH, a € AITKLT,
xa 1%, xa(z) = az TERSNHBHEBRA - AZRTHOLETD.
l=z+y LEX, xleEnd(A) ® Jordan EJEZ ATEIO A TRDTH
5. morx, A “H Lefschetz B MSREMICER 2 EE 2 RIZT.
“3 Lefschetz 1" 2B T2 LRDLIIZRD.



Theorem 1 A = A(n,k) &L, l =21+ 29+ +x, ET 5. FEIT,
A=@_ A ADRENIRET D, 12150, clf, A.#0LT5EFEK
ETHD. (EBEIX, c=nk—k)ZOLE, xI“% A - AN, £C
D, 727120, 0<i < [¢/2) IEDWTREF LD,

TEY k=2& L, BT, z,yEFES. BIBITHRMNLEZFET, xIO
FIR Jordan FEEZRKOTH LD, ZOdIiE, £, Ker(xl) DEE
ERODHDTH o=,

A @ Hilbert B8%Z, £ (2n —1) OEF

01112+ |n2{n1| n |-1|2n3] 2n-2
1{2{3|--{nl| n |nlf}|--- 2 1

Thd. K (n—1) TE—=JIZEL, £OH D2 LTS, W=
Ker(xl) £i&E< &, 8 Lefschetz 6, ExDi=n—1,n,n+1,---,2n—
21220, dimW; =1, T, TALSADOKRETIEIW, =0 L7252 LM
DML, WITERBEEIZ 1 RITIEN S, Ker(xl) OREETITERE LB
CE—EHIIIRED. (bHAAFRE WD FHFIINLET)

Wop_o =< b> &35 &, 98 Lefschetz N5, Ay DITa HFELT,
KPP 2(a) = b LR BIRTER, A HEKLARODEND, a=1,b=
P2 LEZTEY. RFIEExHE, £i=0,1,2,---,n — 12,
(a,5) € A; X Agns CROWEE b O bORIFHET 5.

1.0 € Ker(xl)
2. XlQn_Q_%(ai) =b;

/)\L/%i%)}:’ bl’ba’bf’"i}‘d-%/lr\it’ if:? bZab4)b67&i5‘E'f—%it¢C&)%)
TERZND. LER-T, HEEF 2OV TT,

a;, xl(ai), XZQ((LL‘), XZB(CL/L'), e
DRI, BEES IOV T,

a;, Xl(ai), X12<ai), xls(ai), cee



RERETHD Z L0305, BLEICED xI® Jordan BEZRD D Z
LRTE. FbIE, MRS, R, i, RRESICR L
LMo, 20 b, MHROEEL

@n-n+wwp4n+@n—m+~-:”m;1) (8)
<H 0, TRAOMEEIE
@n—3y+@n—7y+@n-1n+u-=”m‘1> 9)

THD.

A(n, 2) 1%, nRIL~7 hVER V= K" D 2ET Y NVERW: = (K™)®?
<0, MHERITHBT YL, £, RARIERT Ve b7
W, b5 5A, EEOn(n+1)/2 & n(n—1)/213 T VIV ERNT Y
LA EE L TNDORER, LnbiE, TONE (8) & (9) 13, aHT
DESHS . iU, KOEIICEAShS. ¢:SL(2) — GL(n) = GL(V)
% SL(2) D nkKBAIRBRLE LL ). (Hnil o0 ThEZ—2H2. ) £72,
W=VeVilL, W=W,eW,zxHh7 Y NVERXRT I N~D
SHELTH. kX, W, E W, L, GL(n) MERENG, ¢I28~T,
SL(2)MEkLEXHZ EMTE, SL(2) MEEL L TR DS 5. £ D
SEOWTED, TE, ELROHE (8) & (9)XR>TWnD. NI &,
SL(2) IBED 53 A7 Lie B s0(2) O THOND L 54 mD. xl
% Jordan EBEFICE S = &1E, s0(2) MBED AR D L Z & ERLUE.
Z LT, GL(2) DFEH L SL(2) EBUL, determinant D~ LED
/AN

5 A(2,k) 3%+ H Boolean algebra

Aln, k) 2BV Tn =2 LT, Boolean algebra
A:K[Tl7mk]/(r%v77’i)

BEAH. ZHETHRL, E& 2l 38, ADEEL 2D, —HHIC
i3, ol nd BE (& 200ER A,V ZiAHT) % Boolean algebra



ERESDIEA D, ZZTEH “Boolean algebra” 1%, —iHIZEVET
E2NDHHENR. L=x(x)+a9+-+ 1) &L, FIZ,

0 0
D—a—%-i-""i‘a—xk

LEL. L&Dﬂi%IEitﬁ%R:K[xl,-~,:zk] WIEHLTWA EEX 5.
D#%AWHIRLE D% D[y LB Z L0+ 5. $1=, A(n,k) = R/I &
Z%, LS Aln k) ICBI X3 58% L, LB, #-T, Ll D€
End(4) TH5H. T, H = [L4, D JCIHBT) B, 2120, He
End(A) Tdb 5.

Proposition 2 (a) (L[4, D|a, H) 1%, sly-triple TH 5.
(b) L]+ @ Jordan &K B 2377 LT, B\ ImL # Ker(D|4) DEJE &
5.

Proof. (a) & (b) I, LieBg (£ b sly 7207) ORBRRMN LMD,

ROEBIZEY, Llg ® Jordan BEARD D Z LN TE 5.

Theorem 3 ¢ =0,1,2,---,[n/2[ IZ2\T, (KerD)N A; 1% ik Specht
ZIEATHROND. BUEY L7470 —TEEIND Specht LI
B/ 5.

REBAD 72 D1Z, Specht ZIERXDOEZRL LT LR 5720, Yo 7/ XF
WEEFOLDETEH., A XEDOV U THBIZ, 106 k£ TOEEY
BEELZLDZ, Y72 T7n—btE9. Yoo 7ua—nrh, 47,
BHNEANZHHEFAEMZ > TWD L OPMEEY L X T u—Thd. &
T, TEaYrra7n—bLLd X={n, o) 2EH0ELL L,
X; T OFEFINENDIEHOEE LT L. (HEILE, TOESEHF
DEBOEELEINEE. ) X; ORICET 2 EE LY AX;) TERT L%,
e DEBEETHEHIT L0,

1265 (10)

%, Specht ZIEI & 5.



Theorem 3 DEEEROERE 2k~ 5. £3, WOWEEIZEEL L.

Lemma 4 Ker D = K[{z; — 2|1 <i,5 < k}]

Proof. R = Klxy, -+, 2] £EL. E2FETHEL, Ker DIE, {f €
RIDf =0} DE%RTHDH. T, algebrall/250T, HONVEDICE
FNTWAZ LI T N5, £, ABIE(k—1) KTt ERBRTHD
P36, O Hilbert B3k A E T nIE, MBI —HTDLI LB005.
(FEBA#)

Lemma 5 (Ker D) N A @ Hilbert BT, (") - (151) <h B,

3

Proof. (Ker D) N A{ZKer DjgsA - ADZLTHDL. &9, AD
Hilbert BI%0iE, 2 EfR% () TH A 545, Proposition 2 5 & ##
B D|y A - A TR REBICHREIIERTHS. Lo TEERES
SRS, (GERR)

Lemma 6 (Z¥oHsxkeLTWA., Z0d, Y/ HESEOYAX

ThB) T vy ra27u—bL, TEXTOEEL, S& T hHHHERS
L5 Specht ZIERET5. ZDEE,

1.8 =1 < T OiTHiEl.
2. ScAand S#1 <= TOTHEIT2.
2 S ecALTAHEX, SORMIE, TOE2ITORIIZHFELY

Proof. WL SOEENLHALNTHD.

Proposition 7 ki #3FBEHEL, k—i>i&T 5. T =T(k—1i,9)

EATOES Nk —i,i 02062V TRF LT 2.

(a) T &6 & Loy 7y 7n—ofk (§) - (f) ths.

(a) ki KEET B L&, AT ETHBEY 74T n—LHERS
N5 Specht ZTEKXOEAIT—RMILTH D,



Proof. (a) Y727 ua—TOEIE TTHLHETH., ZOLELEDMNE
L, MTITOEKRTHS. Lod, ITTEOREBICEDPMNET LR, £
DETEFZETHD. LFoTEERSZET, Y8 7n—0% A4 X%
INSLTED, ZNICERLT, kICBET2RMENEL. (BITFEE. )

L) BEBEOREWEHKZ LT HEHERE/ ITNVEFEEZD. &
D & & Specht ZIARDFEIAIX, T OFE2ITICHND (FEEFO) T
DFETHD. BEHEHOELSOELLTSAERINTWD. TNEER
TAHBRIC EMOBEEBEBRXZBRE L TN L, ENTLICRENWESZBS
Tl D. HEETEOEOE RIIZZENI VNI DENA->TWND
TEWERTIERV.) E£72, TEOEINCEY, TORRESRD. (H
H:TEOED R EL, ED O, KEIDOIEICERIZESZ L1274
5. ) oFE0, BieD Spect ZTEAUIR R HBEELZFHFD. L-oT, WA
ADT MhoiRE D Specht ZIEIGEIT, 1 RBZTHD.

Theorem 3 MFERA. Lemma 5 & Lemma 6 & Proposition 7 225 L7243 9.
(FERA )

JEITHRI LI FET, L O Jordan HEZRDDHZEMNMTE S, F77,
GL(2) DRBOBEK 3 #EIL. L @ Jordan g & —5T 5.

Example 8 k=4 % LT, L® Jordan EBEZENCTAHAL S, £, Hilbert
BIEUE, (1, 4, 6, 4, 1) THDH. FOREEKINL (1, 3, 2).

0 %k ® Specht ZTEHT 1,

1R ® Specht ZIERITE, ) — 29,2, — 23,2, — 24 (ZNENEIZ a,b,c & B
<)

2 KD Specht ZTERUL, (z) — T2) (@3 — 24), (x1 — 23) (22 — 24) (ZHEIE
2 f,g EEL).

O, A= A(2,4) ® GL(2) ML L TOBEKIDAEIL,

WEEDOHLONTE: (1,1, L% L3 L*)
KRT3DOHLON3ME:  (a,al,al?) & (b,bL,bL?) & (c,cL,cL?)

KIE1OLONR2ME:  (f) & (g)



THD.

E5FTHhwL, 2 =5x14+3x3+1x2¢%h. FEETHE, L
PENTABICEO ETH L Db “BEDO2IRUEONE" (X0 LT 5.
o T, LNITERIE, EASHK (DBHE) Tho.

Remark 9 Ul tE, ®x TREGHO— K EBAFE D72 I7# CREFA 214
LT, EBICEST=DIE, sly ORBGRIZT (F bl A& L
17510 Jordan FEJE7 ) 2. RIZ, REBEGROBRLZEHEAIME I 25, Bl
DEXZFNRH S T-ITENR.

6 GorensteinIZE~DI: A

FiEiERY, R=Klzy, -, 21), L=x1+ 4z, A=R/(z}, - 13),
l=x,+20+ -2, €A ETAH (LEIIE, RUEIZR-TLESL.
N, By R(22--, 2}) OBRZADTHE Y. AIEEFRENO &5 5o
ETELM, EREELLTHLRWEENZVO TIRELTAE L R2VIET
72.) (A, 1) 1358 Lefschetz £ & #2725, A/0:17 O Hilbert B 505
ZFiud, A D Hilbert B0 FROE S % j BIRVBRNTTE 2831TH
%. xl ® Jordan EENRD NS T=DEMNE, 0:10 OX7 MVZERE LT
DEENRS DT EIZRD. 2120, TOFEMLA T TN E L TORE
INERR RS LD ENT LHEAR I ETIERY. 22T, j=10
BEThDLL, 0:lOAT T/ (18N EEZEEHLTHLD.

T, (VA ATAD IHER 28T, Tiebb, Mc A%HE
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CASTELNUOVO-MUMFORD REGULARITY FOR
DIVISORS ON RATIONAL NORMAL SCROLLS

CHIKASHI MIYAZAKI

Let X be a projective scheme of P¥ over a field K. Let S =
K|zo, - ,zn] be the polynomial ring and m = (zg, - ,zn) be the
irrelevant ideal. Then we put P¥ = Proj(S). We denote by Zx the
ideal sheaf of X. Let m be an integer. Then X is said to be m-regular
if Hi(PY,Zx(m — 1)) = 0 for all 7 > 1. The Castelnuovo-Mumford
regularity of X C PY is the least such integer m and is denoted by
reg(X). The interest in this concept stems partly from the well-known
fact that X is m-regular if and only if for every p > 0 the minimal
generators of the p-th syzygy module of the defining ideal I of X C P¥
occur in degree < m + p, see, e.g., [5].

In what follows, for a rational number £ € Q, we write [£] for the
minimal integer which is larger than or equal to ¢, and [£] for the
maximal integer which is smaller than or equal to L.

The starting point of our research on the Castelnuovo-Mumford reg-
ularity is an inequality reg(X) < [(deg(X) —1)/codim(X)] +1 for the
generic hyperplane section of nondegenerate projective curve X C P%,
which is a consequence of the Uniform Posision Lemma [1] for the
characteristic zero case and Ballico’s corresponding result [2] for the
positive characteristic case. Then the corresponding bound works for
ACM (arithmetically Cohen-Macaulay) nondegenerate projective vari-
ety. Further we have the extremal examples for this bound.

Theorem 1 (See [10, 11]). Let X C P be a generic hyperplane
section of nondegenerate projective curve over an algebraically closed
field K. Then we have reg(X) < [(deg(X) — 1)/codim(X)] + 1. Fur-
ther, assume that deg(X) > N? + 2N + 2. If the equality reg(X) =
[(deg(X) — 1)/codim(X)] + 1 holds, then X is contained in a rational
normal curve in P .

Next let us consider the regularity bounds for non-ACM projective

varieties. From now on, we always assume that X is locally Cohen-
Macaulay and equi-dimensional. In order to evaluate the intermediate



cohomologies, we introduce the notion of the k-Buchsbaum property.
‘Let k be a nonnegative integer. Then X is called k-Buchsbaum if the
graded S-module M*(X) = @yczH (PN, Zx(¢)), called the deficiency
module of X, is annihilated by m* for 1 < i < dim(X). The minimal
nonnegative integer n, if it exists, such that X is n-Buchsbaum, it
denoted by k(X), see, e.g., [8, 9].

Theorem 2 (See [3, 10, 13, 14]). Let X be a nondegenerate irreducible
reduced projective variety in P¥ over an algebraically closed field K.
If X is not ACM, then we have

reg(X) < [%—‘ + k(X) dim(X).

Further, assume that deg(X) > 2codim(X)? + codim(X) + 2. Then
the equality holds only if X is a curve on a rational ruled surface.

The proof for the bounds consists in the study of spectral sequences.
This powerful tool is applied for several interesting results on the reg-
ularity problem, see, e.g., [4]. The extremal varieties are obtained by
dimensional induction, where the characteristic zero case is easier than
the positive characteristic case thanks to the Socle Lemma [7]. This
observation implies that the above bound is sharp for the curve case,
but no extremal examples are found for higher dimensional case. In
order to describe a conjecture towards better bounds, we define k(X)
as the minimal integer k& such that all successive hyperplane sections
of X, that is, X N L with codim(X N L) = codim(X) + codim(L) for
any linear space L of P¥, have the k-Buchsbaum property, see, e.g.,
[6]. Now we state a variation of the Hoa’s conjecture.

Conjecture 3 (See [10]). Let X be a nondegenerate projective variety
in P¥ over an algebraically closed field K. Then we have

reg(X) < {%w + max{k(X),1}.

Furthermore, assume that deg(X) is large enough. Then the equality
holds only if X is a divisor on a rational normal scroll.

The following result shows that his conjecture should be best possi-
ble.

Theorem 4 (See [12]). Let X be a nondegenerate projective variety in
PY of dimension r over an algebraically closed field K. Put k = k(X)




Assume that X is a divisor on a rational normal scroll. Then we have

reg(X) < {%w + max{k, 1}.

Furthermore, there exist extremal varieties for all 7 and k.
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ON SYZYGIES OF THE RESIDUE FIELD

RYO TAKAHASHI

1. INTRODUCTION

Throughout the present paper, we assume that all rings are com-
mutative noetherian local rings and all modules are finitely generated
modules.

Dutta [3] proved the following theorem in his research into the ho-
mological conjectures:

Theorem 1.1 (Dutta). Let (R, m, k) be a local ring. Suppose that the
nth syzygy module of k has a non-zero direct summand of finite projec-
tive dimension for somen > 0. Then R is regular.

Since G-dimension is similar to projective dimension, this theorem
naturally leads us to the following question:

Question 1.2. Let (R,m, k) be a local ring. Suppose that the nth
syzygy module of k£ has a non-zero direct summand of finite G-
dimension for some n > 0. Then is R Gorenstein?

It is obviously seen from the indecomposability of k that this question
is true if n = 0. Hence this question is worth considering just in the
case where n > 1.

We are able to answer in this paper that the above question is true if
n < 2. Furthermore, as the theorems below say, we can even determine
the structure of a ring satisfying the assumption of the above question
forn=1,2.

2. BASIC DEFINITIONS

Throughout this section, let (R, m, k) be a local ring. In this section,
we introduce several notions to explain and prove in the next section
the main theorems of this paper.

We begin by recalling the notions of a (pre)cover and a (pre)envelope
of a module. Let mod R denote the category of finitely generated R-
modules.

Definition 2.1. Let C be a full subcategory of mod R.

The detailed version of this paper has been submitted for publication elsewhere.



(1) Let ¢: X — M be a homomorphism from X € C to M € mod R.

(i) We call ¢ or X a C-precover of M if for any homomorphism

¢ : X' — M with X' € C there exists a homomorphism
f:X"— X such that ¢' = ¢f.

(i) Assume that ¢ is a C-precover of M. We call ¢ or X a C-
cover of M if any endomorphism f of X with ¢ = ¢f is an
automorphism.

(2) Let ¢ : M — X be a homomorphism from M e€modRto X €C.

(i) We call ¢ or X a C-preenvelope of M if for any homomorphism
¢ : M — X' with X' € C there exists a homomorphism
f: X — X' such that ¢' = fé.

(ii) Assume that ¢ is a C-preenvelope of M. We call ¢ or X a
C-envelope of M if any endomorphism f of X with ¢ = f¢ is
an automorphism.

A C-precover (resp. C-cover, C-preenvelope, C-envelope) is also called
a right C-approzimation (resp. right minimal C-approzimation, left C-
approzimation, left minimal C -approzimation).

We denote by F(R) the full subcategory of mod R consisting of all
free R-modules. Recall that a homomorphism f : M — N of R-
modules is said to be minimal if the induced homomorphism f ®g k :
M ®gpk — N ®gk is an isomorphism. Let vr(M) denote the minimal
number of generators of an R-module M, i.e., vg(M) = dimy(M @rk).
An F(R)-cover of an R-module M is nothing but a minimal homomor-
phism from a free module to M.

Let M be an R-module. Take its F(R)-cover 7 : F' — M. The first
syzyqy module QpM = QLM of M is defined to be the kernel of the
homomorphism 7, and the nth syzygy module Qg M of M is defined
inductively: Q3M = Qp(Qy 'M) for n > 2. Dually to this, we can
define the cosyzygy modules of any module.

Definition 2.2. Let M be an R-module.
(1) Take the F(R)-envelope 6 : M — F of M. We set QM =
Coker 0, and call it the first cosyzygy module of M.
(2) Letn > 2. Assume that the (n—1)th cosyzygy module Qg(n_l)M
is defined. Then we set Q"M = Q5 (""" M) and call it the
nth cosyzygy module of M. ‘

A module is said to be stable if it has no non-zero free summand.
Now, we recall the definition of G-dimension.

Definition 2.3. (1) We denote by G(R) the full subcategory of
mod R consisting of all R-modules M satisfying the following three
conditions:



(i) M is reflexive,
(ii) Exth(M,R) = 0 for every i > 0,
(iii) Exth(M*, R) = 0 for every i > 0.
(2) Let M be an R-module. If n is a non-negative integer such that
there is an exact sequence

0=-Gr—=Gp1—> - >G> G—-M—=0

of R-modules with G; € G(R) for every i, then we say that M
has G-dimension at most n, and write G-dimzpM < n. If such
an integer n does not exist, then we say that M has infinite G-
dimension, and write G-dimzrM = oo.

If an R-module M has G-dimension at most n but does not have
G-dimension at most n — 1, then we say that M has G-dimension n,
and write G-dimgrM = n. Note that for an R-module M we have
G-dimpM = 0 if and only if M € G(R), and that all free R-modules
belong to G(R).

We denote by G(R) the full subcategory of G(R) consisting of all
stable modules in G(R). The dual functor (—)* and the syzygy functor
Q(—) make good correspondences between the category G(R) and itself.

3. MAIN RESULTS

In this section, using the results given in the previous section, we
shall state and prove our main theorems.

First of all, we consider an idealization possessing a non-free reflexive
module.

Proposition 3.1. Let (S,n,k) be a local ring, V. # 0 a finite-
dimensional k-vector space, and R = S x V the idealization of V over
S. Let M be a non-free indecomposable reflexive R-module. Then

(1) M=ZSocR>®V =k,
(2) IfdepthS =0, then S =k, hence R = k[[X]]/(X?).

PROOF. (1) Denote by m the unique maximal ideal of R, and set

I = anx0 = {(s,v) eR|senv=0},
J = 0xV = {(s,v) € R|s=0}.

These are ideals of R, and it is easy to see that m = I @ J. We have
isomorphisms

1%

M* HOIIIR(M, m)
Homg(M,I & J)

Hompg (M, I) ® Homg(M, J).

1R



Since M* is also indecomposable, we have either Homg(M,I) = 0 or
Hompg(M,J) = 0. However J is isomorphic to k® as an R-module
where e = dim,V, hence Homg(M, J) = k™ # 0 where n = vg(M). It
follows that Homg(M,I) = 0. Now the assertions of the proposition
immediately follow from this. O

Corollary 3.2. Let (S,n, k) be alocal ring, V # 0 a finite-dimensional
k-vector space, and R = S x V the idealization of V over S. Then the
following conditions are equivalent:

(1) There is a non-free R-module in G(R);

(2) R is Gorenstein,
(3) R = K[[X])/(X?).

The decomposability of the maximal ideal and the existence of a non-
free module of G-dimension zero played essential roles in the achieve-
ment of Corollary 3.2. From now on, we consider a local ring satisfying
these conditions in more general settings.

Proposition 3.3. Let (R,m, k) be a local ring. Suppose that there is
a direct sum decomposition m = [ & J where I, J are non-zero ideals of
R. Let M be a non-free indecomposable module in G(R). Then there
erist elements x,y € m such that

(1) I=(z)andJ=(y),

(2) (0:2)=(y) and (0:y) = (z),

(3) M is isomorphic to either (x) or (y).
Hence the minimal free resolution of k is as follows:

y 0 ] y 0
82, g (89), (82), po R——k — 0.
PrOOF. We see that M* and QM are also non-free indecomposable

modules in G(R). There are isomorphisms

M* = Hompg(M,m)
Hompg(M,I & J)
HOI’IIR(M, I) ©® HOIIIR(.]\/[, J)

The indecomposability of M* implies that either Homg(M,I) = 0 or
Homp (M, J) = 0. We may assume that

(z ),

R 1R

(3.3.1) Hompg(M, J) = 0.
There is an exact sequence
(3.3.2) 0—-QM — R"— M — 0.

Dualizing this by J, we obtain another exact sequence
Hompg (M, J) — J* — Hompg(QM, J).



We have Hompg(Q2M, J) # 0 by (3.3.1). Applying the above argument
to the module QM yields

(3.3.3) Hompg (QM, I) = 0.
Also, dualizing (3.3.2) by I, we get an exact sequence
0 — Hompg(M,I) = I" — Hompg(QM, I),
and hence M* = Hompg(M,I) = I". The indecomposability of M*
implies that n =1 (i.e. M is cyclic), and M* = I.
We also have
M M**
Hompg(M*, m)
Hompg(M*,I) ® Homg(M*, J).
Note that Hompg(M*, I) is isomorphic to Homg(7, I), which contains
the identity map of I. Hence Hompg(M*,I) # 0 and therefore

HOII’IR(M*, J) = 0.

Applying the above argument to the module M* we see that M* is
also cyclic and M = M** = I. Thus, we have shown that M = M* = |
and these modules are cyclic. Noting (3.3.3) and applying the above
argument to the module QM , we see that QM = (QM)* = J and these
modules are cyclic.

Write J = (z) and J = (y). We easily see (0 : (0 : z)) = (z).
Similarly, we also have (0 : (0 : y)) = (y). Since (0 : z) = Q(x)
QM = (y), we have (z) = (0 : y), and therefore (0: z) = (y). Thus we
obtain the minimal free resolutions of (z) and (y):

- 2 R5 R L R 5 () - 0,
5 R 5 R 3 R = (y) - 0.

111 11

Taking the direct sum of these exact sequence, we get
y 0 z 0 y 0
(“)> R? (Oy)> R? (0“”)> R? y m > 0.

Joining this to the natural exact sequence 0 - m — R — k — 0
constructs the minimal free resolution of k£ in the assertion. O

From the above proposition we can get the following theorem.

Theorem 3.4. Let (S,n, k) be a regular local ring, I an ideal of S
contained in n?, and R = S/I a residue class ring. Suppose that there
ezists a non-free R-module in G(R). Then the following conditions are
equivalent:

(1) The mazimal ideal of R is decomposable;



(2) dimS = 2 and I = (zy) for some reqular system of parameter
xz,y of S.

Using Theorem 3.4 and Cohen’s structure theorem, we obtain the
following corollary.

Corollary 3.5. Let (R,m) be a complete local ring. The following
conditions are equivalent:

(1) There is a non-free module in G(R), and m is decomposable;

(2) R is Gorenstein, and m is decomposable;

(3) There are a complete regular local ring S of dimension two and
a reqular system of parameters x,y of S such that R = S/(zy).

Note that the finiteness of G-dimension is independent of comple-
tion. Thus, Corollary 3.5 not only gives birth to a generalization of [4,
Proposition 2.3] but also guarantees that Question 1.2 is true if n = 1.

As far as here, we have observed a local ring whose maximal ideal is
decomposable. From here to the end of this paper, we will observe a
local ring such that the second syzygy module of the residue class field
is decomposable. We begin with the following theorem, which implies
that Question 1.2 is true if n = 2.

Theorem 3.6. Let (R,m, k) be a local ring. Suppose that m is in-
decomposable and that Q%k has a non-zero proper direct summand of
finite G-dimension. Then R is a Gorenstein ring of dimension two.

PRrROOF. Replacing R with its m-adic completion, we may assume that
R is a complete local ring. In particular, note that R is Henselian.

We have O%k = M & N for some non-zero R-modules M and N with
G-dimgM < oo. There is an exact sequence

0—>M@NMRe——>m—>O
of R-modules, where e = edim R. Setting A = Coker f and B =

Coker g, we get exact sequences

(361) 0ML RS A0,
. 0 NSRS B0
It is easily observed that there are exact sequences
(3.6.2) O——)Re&32>A®B——>m—>O.

Here we can prove that Ext%(k, R) # 0.
Fix a non-free indecomposable module X € G(R). Applying the
functor Hompg (X, —) to (3.6.2) gives an exact sequence

0 — (X*)® — Homp(X, A) ® Homg (X, B) — Hompg(X, m) — 0



and an isomorphism
(3.6.3) Extp(X, A) ® Exth(X, B) = ExtL(X,m).
We have (X*)¢ € G(R) and Homg(X,m) € G(R), hence
Hompg(X, A) € G(R).
Take the first syzygy module of X; we have an exact sequence
020X > R"—> X —0.
Dualizing this sequence by A, we obtain an exact sequence
0 — Hompg (X, A) = A™ — Hompg(QX, A) — Exth(X, A) — 0.
Divide this into two short exact sequences

{O — Hompg(X,A) —» A" — C — 0,

3.6.4
(36.4) 0 = C — Hompg(QX, A) — Exth(X,A) =0

of R-modules. Since QX is also a non-free indecomposable module in
G(R), applying the above argument to QX instead of X shows that the
module Hompg (22X, A) also belongs to G(R). We have G-dimg(A™) <
oo by the first sequence in (3.6.1). Hence it follows from (3.6.4) that
G-dimzC < o0, and

(3.6.5) G-dimpg(ExtR(X, A)) < oco.

On the other hand, applying the functor Hompg(X, —) to the natural
exact sequence 0 — m — R — k — 0, we get an exact sequence

0 — Hompg(X, m) = X* — Hompg(X, k) — ExtL(X, m) — 0.

We have Hompg(X, k) = Extp(X, m), hence Exth(X, m) is a k-vector
space. Since Extp(X, A) is contained in Extk (X, m) by (3.6.3),

(3.6.6) Exty(X, A) is a k-vector space.

It follows from (3.6.4) and (3.6.6) that R is Gorenstein. Since the
only number 7 such that Ext%(k, R) # 0 is the Krull dimension of R
if R is Gorenstein, it follows from the above two claims that R is a
Gorenstein local ring of dimension two, which completes the proof of
the theorem. a

The above theorem interests us in the observation of a Gorenstein
local ring of dimension two such that the second syzygy module of the
residue class field is decomposable.

Theorem 3.7. Let (S,n,k) be a regular local ring, I an ideal of S
contained in n?, and R = S/I a residue class ring. Suppose that R
is a Henselian Gorenstein ring of dimension two. Then the following
conditions are equivalent:



(1) Q%k is decomposable;
(2) dimS =3 and I = (zy — zf) for some regular system of param-
eters x,y,z of S and f € n.

PROOF. (2) = (1): We can show this implication by easy calculations.

(1) = (2): First of all, note that the local ring R is not regular.
We denote by m the maximal ideal n/I of R. It suffices to show the
existence of an R-regular element w € m — m? such that m/(w) is
decomposable. Let E denote the fundamental module of R. We can
write E = M @& N for some non-zero R-modules M and N. Hence the
fundamental sequence of R is as follows:

(a) 0 R e Ym0

Take an R-regular element w € m—m?, and set (=) = (—)®rR/(w).
If mR is decomposable, then our aim is attained. Hence let mR be
indecomposable. The sequence (a) induces another exact sequence

O%EQM@N@ﬁ—%O.

The natural surjection
oM — mR
is a split-epimorphism with kernel isomorphic to k. Hence there exists
a split-monomorphism
p:mR—m
such that mp = 1. Then note that the cokernel of p is isomorphic to k.

On the other hand, the homomorphism (f,9) is a G(R)-precover of m.
Therefore there exists a homomorphism

p
such that p = (f,7) (g) = fa +gp. Set e = edim R, m = vg(M), and

n = vr(N).
)

(“) BTN

Claim 1. We have either{m i e-1 } or{m
n = 2 n

On the other hand, we have
l=np=nfa+nrgh

in Endg(mR). Since mR is indecomposable, the endomorphism ring
Endﬁ(mﬁ) is a local ring, and hence either 7 fa or 7gf is a unit of this
ring, in other words, is an automorphism. Put a =Im f and b =Imyg.



Claim 2. If nfa (resp. 7gfB) is an automorphism, then m = a + (w)
(resp. m = b+ (w)) and there is an R-regular element in a —m? (resp.
b—m?).

Claim 3. We have both gradea > 0 and gradeb > 0.

Put z = o(1) and y = 7(1). Then f(z) + g(y) = (f,9)(?)(1) = 0.
Set v = f(z) = —g(y) € anb. Take an element a € aNb. Then
we have a = f(p) = g(q) for some p € M and ¢ € N. Hence (_”q) €
Ker (f,g) = Im (7), and therefore ( _”q) = b(;) for some b € R. Thus
p = bz, and we get a = f(p) = f(bz) = bv € (v). It follows that

anb = (v).

Since grade(v) = grade(a N b) = inf{grade a, grade b} > 0 by Claim 3,
the element v is an R-regular element.

Set (=) = (=) ®r R/(v). Since a+b=m and anb = (v), there is
a natural exact sequence

w:0—3R—R/a®R/b =k —0

of R-modules. Suppose that this exact sequence splits. Then we have
an isomorphism
R/a®R/b~ ROk,
and it is seen from the Krull-Schmidt theorem that k is isomorphic to
either R/a or R/b. Hence we have either m = a or m = b, and the
same argument as the end of the proof of Claim 3 yields a contradiction.
Thus the exact sequence w does not split.
Dualizing the sequence w, we obtain an exact sequence

Homg(k, R) — Homgz(R/a® R/b,R) —— R
— Exth(k,R) — Ext4(R/a®R/b,K) — 0,
where the map ( sends the identity of R to the non-zero element of
Extlﬁ(k,R) corresponding to the non-split exact sequence w. Since
Homz(k, R) = 0 and Extr(k, R) = k, it is observed from the above
exact sequence that
mR Ker( _
Homgz(R/a ® R/b, R) B
Homz(R/a, R) ® Homy(R/b, R)
and Extr(R/a,R) & Extp(R/b,R) = Extr(R/a & R/b,ﬁ) = 0.
Hence Exty(R/a, R) = ExtL(R/b,R) = 0, and thus Ext%(R/a, R) =
Ext%(R/b,R) = 0 for every i > 0 because the self injective dimension
of R is equal to one. It follows that both R/a and R/b belong to

1 1



G(R), hence they are reflexive over R. Therefore the R-dual modules
Homz(R/a, R) and Homg(R/b, R) are non-zero, which proves that mR
is decomposable. This completes the proof of our theorem. O

Combining Theorem 3.6 with Theorem 3.7 gives birth to the follow-
ing corollary. Compare it with Corollary 3.5.

Corollary 3.8. Let (R,m, k) be a complete local ring. Suppose that m
is indecomposable. Then the following conditions are equivalent:

(1) Q%k has a non-zero proper direct summand of finite G-dimension;
(2) R is Gorenstein, and O%k is decomposable;
(3) There are a complete regular local ring (S,n) of dimension three,
a reqular system of parameters x,y,z of S, and f € n such that
R=S/(zy - zf).
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A GENERALIZED HOCHSTER’S FORMULA FOR LOCAL
COHOMOLOGIES OF MONOMIAL IDEALS

YUKIHIDE TAKAYAMA

ABSTRACT. The Hilbert series of local cohomologies for monomial ideals, which
are not necessarily square-free, is established. As applications, we give a sharp
lower bound of the non-vanishing degree of local cohomologies and also a sharp
lower bound of the positive integer k of k-Buchsbaumness for generalized Cohen-
Macaulay monomial ideals.

INTRODUCTION

Let K be afield and let S = K[X},..., X, ] be a polynomial ring with the standard
grading. For a graded ideal I C S we set R = S/I. We denote by z; the image of
X;in Rfori=1,... ,nand set m = (z1,...,x,), the unique graded maximal ideal.
Also H! (R) denotes the local cohomology module of R with regard m.

The aim of this paper is to show a generalization of Hochster’s formula on local
cohomologies for square-free monomial ideals (Stanley-Reisner ideals) [4] to mono-
mial ideals that are not necessarily square-free. The obtained formula, although
its topological meaning is not clear as compared to the original formula, tells much
about the non-vanishing degrees of the local cohomologies H! (R). In particular, we
consider generalized Cohen-Macaulay monomial ideals.

A residue class ring R is called generalized Cohen-Macaulay ring, or simply gen-
eralized CM. if H!(R) has finite length for ¢ # dim R. In this case, we will call
the ideal I C S a generalized CM ideal. For a generalized CM ring R. there exists
an integer k € Z, k > 1, such that m*H! (R) = 0 for 7 # dim R. If this condition
holds, we will also call R, or I C S, k-Buchsbaum. An ideal I is generelized CM
if and only if it is k-Buchsbaum for some k. If I is k-Buchsbaum but not (k — 1)-
Buchsbaum, then we will call I strictly k-Buchsbaum. As a main application of our
formula, we will give a sharp bound of k£ for the k-Buchsbaumness for a generalized
CM monomial ideals.

For a finite set S we denote by | S | the cardinarity of S, and, for sets A and B,
A C B means that A is a subset of B, which may be equal to A.

The author thanks Jiirgen Herzog for valuable discussions and detailed comments
on the early version of the paper.

Date: September 12, 2004.
1991 Mathematics Subject Classification. 13D45, 13F20,13F55.
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1. GENERALIZED HOCHSTER'S FORMULA

We first consider an extension of Hochster’s formula on local cohomologies of
Stanley-Reisner ideals.

Let I C S be a monomial ideal, which is not necessarily square-free. Then we
have

1
H m

(R)= H'(C*)
where C*® is the Cech complex defined as follow:

C*:0—C'——C'— - —C"—0, Ch= @ Ray o,

1< << <n

and the differenctial C* — C**! of this complex is induced by

with {i1, .. i} = {1, - > her et}

where nat is the natural homomorphism to localized rings and Ry, ..a;, , for example,
denotes localization by x;,, ..., Z;,.

We can consider a Z"-grading to H{ (R), C* and R, .., induced by the multi
grading of S. See for example [3] for more detailed information about this complex.

Now we will consider the degree a subcomplex C? of C* for any a € Z". Before
that we will prepare the notation. For a monomial ideal I C S, we denote by G(I)
the minimal set of monomial generators. Let v = X{"--- X" be a monimial with
a; > 0 for all i, then we define v;(u) = a; for all j = 1,... ,n and supp(u) = {i |
a; # 0}. Now for a € Z", we set G, = {i | a; <0} and H, = {7 | a; > 0}.

(=1)nat: Ry, oy, — R

it Tjy T4

Lemma 1.1. Let © = ay, -~ x;, with 4y < - < i, and set F' = supp(z). For all
a € Z" we have dimg (R,), < 1 and the following are equivalent

(i) (R.)o = K

(i) F D G, and for all u € G(I) there exists j ¢ F such that v;(u) > a; > 0.

Notice that the condition a; > 0 in (i7) is redundant because it follows from the
condition F' O G,. But it is written for the readers convenience.

Proof. The proof of dimg(R;), < 1 is verbatim the same as that of Lemma 5.3.6
(a) in [3]. Now we assume (), i.c., (R,)s # 0. This is equivalent to the condition
that there exists a monomial ¢ € R and ¢ € N such that

(a) ™o # 0 for all m € N, and

o

(b) deg =0
where deg denotes the multidegree. We know from (b) that we have F' O G, because
a negative degree a;(< 0) in a must come from the denominator of the fraction o /x*
and F = supp(2f). Now we know that (@) is equivalent to the following condition:
for all uw € G(I) and for all m € N we have u f(X]'---~ ’Z”L)(Xf‘ - X)) where we
set 0 = xljl -~ a% with some integers b; > 0,7 =1,...,n. This is equivalent to the
following: for all u € G(I) there exists 7 ¢ F such that v;(u) > b;. Furthermore,
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we know from the condition F' O G, that we have a; = b; for i ¢ F since by (b)
non-negative degrees in a must come from o. Consequently we obtain (iz).

Now we show the converse. Assume that we have (ii). Set 7 = [],c, 2f" and
p = [licg, z7*. Then since F' O G, there exists ¢ € N and a monomial ¢ (in R)
such that

(1) v’ = po

oT . oT . . .
We show that — # 0in R,;. — # 0 is equivalent to the condition that ™ (o7) # 0
: x
for all m € N; as in the above discussion. This is equivalent to the condition

(2) for all uw € G(I) there exists i ¢ F such that v;(u) > b,

where we set o7 = 2% ... 2 for some integers bj >0,7=1,...,n. But by (1) we
have i ¢ supp(o) for i ¢ F, so that b; = v;(7) = a;(> 0) (i.e., i € H,) or a; = b; = 0
(ie., i ¢ H, UG,). Hence (2) is exactly the condition that for all v € G(I) there
exists j ¢ F such that v;(u) > a; > 0, which is assured by the assumption. Thus

we have O—Z # 0 in R,. Therefore
x

oT oT .
deg — = deg — = deg H i =degz® =a
* po i€ H UG
1 aUlia

as required. O

Let a € Z". By Lemma 1.1 we see that (C*), has a K-linear basis

{br : F D G,, and for all u € G(I) there exists j ¢ F such that v;(u) > a; > 0}.

Restricting the differentation of C* to the ath graded piece we obtain a complex
(C*), of finite dimensional K-vector spaces with differentation 9 : (C*), — (C™*1),
given by 9(br) = 3. (—1)°FF)bp where the sum is taken over all F” such that F' O
F with [F'| = i+1 and for all u € G([) there exists j ¢ F' such that v;(u) > a; > 0.
Also we define o(F, F') = s if F' = {jo,..., 5} and F = {Jjo,... , 7 ... ,7:}. Then
we describe the ath component of the local cohomology in terms of this subcomplex:
Hy(R)e = HY(C%)a = H'(CY).

Now we fix our notation on simplicial complex. A simplicial complex A on a
finite set [n] = {1,...,n} is a collection of subsets of [n] such that F' € A whenever
F C G forsome G € A. Notice that we do not assume the condition that {i} € A for
i=1,...,n. Wedefinedim F =¢if | F |=i¢+1 and dim A = max{dim F | F' € A},
which will be called the dimension of A. If we assume a linear order on [n], say
1 <2< ---<n,then we will call A oriented, and in this case we always denote an
element F' = {iy,... 1} € A with the orderd sequence i, < ... < ;. For a given
oriented simplicial complex of dimension d — 1, we denote by C(A) the augumented
oriented chain complex of A:

C(A):0—Cyy i)Cd_2—>-~-—>Coi>C_1—->O
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where

= @ zF and OF=) (-1)F
FeA dim F=i =0
for all F € A. Here we define F; = {1, ... ,ij, .. ig} for F = {i,... ,ix}. Now
for an abelian group G, we define the ith reduced simplicial homology H’i(A; G) of
A to be the ith homology of the complex C(A) ® G for all 7. Also we define the ith

reduced simplicial cohomology of A H(A;G) to be the ith cohomology of the dual
chain complex Homgz(C(A), G) for all i. Notice that we have

© nn |G A= {0}
H—l(AvG)_{ 0 otherwise

Y

and if A = () then dim A = —1 and H;(A;G) = 0 for all i.
Now we will establish an isomorphism between the complex (C*),, a € Z", and a
dual chain complex. For any a € Z", we define a simplicial complex '

Aa:{F—Ga\FDG“and }

for all u € G(I) there exists j ¢ F such that v;(u) > a; > 0
Notice that we may have A, = () for some a € Z".
Lemma 1.2. For all a € Z" there exists an isomorphism of complezes
a: (C*)y — Homg(C(Au)[—j — 1, ) j =Gl
where C(Ag)[—j — 1] means shifting the homological degree of C(A,) by —j — 1.

Proof. The assignment F' +— F — G, induces an isomorphism a® : (C*)o —
Homgz(C(A,)[—7 — 1], K) of K-vector spaces such that bp — ¢@r_g,, where

” 1 it F'=F
o (F) = {

0 otherwise.
That this is a homomorphism of complexes can be checked in a straightforward
way. -0

Now we come to our main theorem.

Theorem 1.1. Let [ ¢ S = K[X,,...,X,] be a monomial ideal. Then the multi-
graded Hilbert series of the local cohomology modules of R = S/I with respect to the
Z™-grading is given by
Hilb(H, (R). ) = Y > dimg Hi-jpi—1(Aq; K)t°
FeA

where t = t, - - t,, the second sum runs over a € 7" such that G, = F and a; <
pi—1,5=1,...,n, with p; = max{v;(u) | u € G(I)} for j =1,...,n, and A is
the simplicial complex corresponding to the Stanley-Reisner ideal V.
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Proof. By Lemma 1.2 and universal coefficient theorem for simplicial (co)homology,
we have

Hilb(H},(R),t) = > dimg Hj(R),t
a€Zn
= > dimg Hijg, -1 (A K)t°

a€L™

It is clear from the definition that A, = 0 if for all j ¢ G, we have a; > p;. In this
case, we have dimg H;_ |, -1(Aq; K) = 0. Thus we obtain

Hilb(H! (R),t) = > dimg Hijg, -1 (A Kt

a€Z”
aj < p;—1
j=1...,n

Now if A, # 0, we must have (G, — G, =) 0 € A, ie., G, must be a subset of
{1,... ,n} such that for all u € G(I) there exists j ¢ G, such that v;(u) > a; > 0,
and this condition is equivalent to "G, 2 supp(u) for all v € G(I)”, which can
further be refined as "G, is not a non-face of A, ie., G, € A”. Thus we finally
obtain the required formula. O

The original Hochster’s formula is a special case of Theorem 1.1. For a simplicial
complex I' and F € T, we define Ikp F = {G|FUG € I, FNG = 0} and stp F' =
{GIFUG eT}.

Corollary 1.1 (Hochster). Let A be a simplicial complex and let IC[A] be the Stanley-
Reisner ring corresponding to A. Then we have

. _ 7!
Hilb(HL(K[A)]),t) = > dimg Hi_ gy (Tka F; K) [ [ —

—1°
FeA jEF 1 t

Proof. By Theorem 1.1 we have

Hilb(HL(R), 6) =Y Y dimg Hi_jpo1 (Ag; Kt

FeA ez
Go=F

where Z" = {a € Z"|a; <0 for j=1,... ,n} and

A, = dFP-a, F D G,, and for all u € G(I) there exists j ¢ F
@ @1 such that j € supp(u) and j ¢ H, UG,

= {F-G,|F>G,, and for all u € G(I) we have H, U F' ¢ supp(u)} .
{L|LNG, =0, LUG,UH, € A} =lkg, n, Ga-

Then the rest of the proof is exactly as in Theorem 5.3.8 [3]. 0O
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2. APPLICATIONS

In this section, we give some application of Theorem 1.1. We define a,(R) =
max{j|HE (R); # 0} if HL(R) # 0 and a;(R) = —oco if H,(R) = 0. Similarly, we
define and b;(R) = inf{j|H.(R); # 0} if HL(R) # 0 and b;(R) = +o0 if H.(R) = 0.

Recall that p; = max{v;(u) |ue G(I)} for j=1,... ,n.

Corollary 2.1. Let [ ¢ S = K[Xy,...,X,] be a monomial ideal. Then a;(R) <
> j=1pj —n for alli.

Proof. By Theorem 1.1, the terms in Hilb(H! (R),t) with the highest total degree
are at most dimpg H;_p|— (Ay; K)t® with a; = p; —1 for all j. Thus the total degree

is at most ), pj — n. O
From Corollary 2.1, we can recover the following well known -result.

Corollary 2.2. Let I C S be a Stanley-Reisner ideal. Then a;(R) <0 for all i.

Proof. 1f I is square-free, then p; <1for j=1,... n. O

For a Stanley-Reisner generalized Cohen-Macaulay ideal I C S with dim R = d,
it is well known that it is Buchsbaum and b;(R) > 0 for all i(# d). The following
theorem extends this result to monomial ideals in general.

Theorem 2.1. Let I C S = K[X|,...,X,] be a generalized CM monomial ideal.
Then b;(R) > 0 for all i < dim R. ‘

Proof. Let d = dim R. Assume that there exists 4 and j with 0 <7 < dand j <0
such that H.(R); # 0. Then by Theorem 1.1 there exists a € Z" such that
(1) Sh_,ax = j <0, in particular G, # 0, and

(17) dimy ﬁi_|ga|_1(Aa; K) # 0, in particular A, # 0.

Now observe that by the definition of A,, the coditions (i7) is independent of the
values of a; for j € G,. This means that the total degree j = > or_, a, can be
any negative integer so that H} (R) is not of finite length, which contradicts the
assumption. ’ O

Remark 1. Bv Kodaira Vanishing Theorem (Corollary 2.4 [5]), we have b;(R) > 0
for i # dim R if char(&) = 0 and R is a normal domain and has an isolated
singularity at m. Theorem 2.1 is a case that is not covered by Kodaira Vanishing
Theorem.

For a generalized Cohen-Macaulay ideal I C S with d = dim R, there exists some
positive integer k such that m*H’ (R) = 0 for all ¢ # d. Then we refer R as a
k-Buchsbaum ring. Now we consider the question: what is the lower bound of k7

Theorem 2.2. Let I C S = K[X|,...,X,] be a generalized CM monomial ideal.
Then R = S/I is <Z;L:1 pj —n+ 1) -Buchsbaum.
Proof. R is max;zq(a;(R) — b;(R) + 1)-Buchsbaum. The required result follows im-

mediately from Corollary 2.1 and Theorem 2.1. O
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We can immediately recover the following well known result.

Corollary 2.3. Let I C S be a Stanley-Reisner ideal. If R is generalized Cohen-
Macaulay, then R is 1-Buchsbaum.

In fact, it is well-known that a generalized Cohen-Macaulay Stanley-Reisner ideal
is Buchsbaum, which is stronger than 1-Buchsbaumness.

The bound of k-Buchsbaumness given in Theorem 2.2 is best possible. In fact,
we can construct strictly (Z;‘:l pj — n + 1)-Buchsbaum ideals as in the following
example.

Example 2.1. Let I C S be a Stanley-Reisner Buchsbaum ideal. Notice that such
ideals can be constructed with the method presented in [1] and H! (S/I) (i # dim R)
is a K-vector space for ¢ # dim R.

Now consider a K-homomorphism

w: S5 —05, Xi— X" (1=1,...,n)

where a = (ay,...,a,) € Z" with a; > 1 for i = 1,...,n. We define (M) =
M ®¢ ¢S for a S-module M, where a left-right S-module S is equal to S as a
set, it is a right S-module in the ordinary sense and its left S-module structure is
determined by ¢. Then we have

L (S/1) = 5/e(I)S,

2. ¢ is an exact functor.
Thus, for ¢ # dim R, we have Hy,(S/¢(I)S) = o(H(S/I)) and since H}(S/1) is
a direct sum of S/m, H (S/¢(I)S) is a direct sum of S/(XT",..., Xi"). Then we
know that m*H} (S/I) = 0 but m* 'H} (S/I) # 0 with k = Y77 p; —n+1 =

Z;‘lzl a; —n—+1.

Remark 2. Bresinsky and Hoa gave a bound for k-Buchsbaumness for ideals gen-
erated by monomials and binomials (Theorem 4.5 [2]). For monomial ideals our
bound is stronger than that of Bresinsky and Hoa.

Finally, we consider vanishing cohomological dimensions of generalized CM mono-
mial ideals. Recall that Castelnuovo-Mumford regularity of the ring R is defined
by

reg(R) = masc{i + j|H(R); # 0},
Let r = reg(R). Then we have H (R); =0 for j > r —i. Then we have

Corollary 2.4. Let I C S be a generalized CM monomial ideal with d = dim R and
r =reg(R). Then H:(R) =0 forr+1 <1 <d. In particular, if I has a g-linear
resolution, we have H:(R) =0 for ¢ <i < d.

Proof. First part is clear from Theorem 2.1. If R has a g-linear resolution, we have
reg(R) = ¢ — 1. Thus the second statement also follows immediately. O
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LOCAL COHOMOLOGIES OF THE CANONICAL
MODULE

KAWASAKI, TAKESI

1. INTRODUCTION

Let A be a Noetherian local ring with maximal ideal m and A/
a finitely generated A-module of dimension d. A finitely generated
A-module K, is called the canonical module of M if K @ A &
Hom(HE (M), E) where F is the injective envelope of the residue field
A/m. Although the canonical module may not exist if A is not com-
plete, it is unique up to isomorphism if it exists.

Local cohomologies of the canonical module are closely related to
the Cousin complex of M [3]. We would like to compute them. It is
known that Ky, satisfies Serre’s (S,)-condition and that dim K, = d.
Therefore K is Cohen-Macaulay if d < 2 and HX(K),) = H}(Kyy) =
0if d > 2. If M has finite local cohomologies, that is, H? (M) is of

finite length for 0 < p < d, then Schenzel [10] showed that
H, (I{I\/[) = HOIH(H1(111_p+l (‘A‘[)) E)

m

for 2 < p < d. In 1986, Suzuki [11] gave a generalization of isomor-
phisms above by using an unconditioned strong d-sequence. If M has a
system of parameters which is an uncoditioned strong d-sequence, then
Suzuki’s result gives another proof of Schenzel’s isomorphisms. How-
ever, a finitely generated module M has finite local cohomologies if it
has a system of parameters for A/ which is an unconditioned strong
d-sequence on M. Therefore we need a generalized notion of uncondi-
tioned strong d-sequences. We give a notion of p-standard sequence in
Section 2. By using it, we can describe the main theorem.

Theorem 1.1. If A is complete, d > 2 and 2y, ..., x4 a system of
parameters for M which is a p-standard sequence on M of some type,
then
~ 0 d—p+1 [y,
Hﬁ(K}V[) = HOIH(Hl,p_lH( .pp )(]\[>, E)

Tp,y.. Ly

for2 <p<d.

1991 Mathematics Subject Classification. Primary: 13D45.
This is not in final form. The detailed version of this paper will be submitted
for publication elsewhere.
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This theorem will be proven in Section 3.

2. P-STANDARD SEQUENCES
Let A be a commutative ring and M an A-module.

Definition 2.1. A sequence xi, ..., x4 in A issaid to be a d-sequence [6]
on M if
(.’L’l, Ce ,Ilii_l)]\f CLTy = (.’L’l, RN ,.’L‘i_l)]\f “ Ty

whenever 1 < 7 < j < d. The sequence zi, ..., 4 is said to be a
strong d-sequence on M if z7*, ..., 23" is a d-sequence on M for any
integers ni, ..., ng > 0. The sequence xy, ..., 74 is said to be an

unconditioned strong d-sequence [5] on M if it is a strong d-sequence
on M in any order.
We note that the sequence xy, ..., x4 is an unconditioned strong
d-sequence on M if and only if ‘
(@ | A€ MM :aliay? = (a3 [ A € A)M: xy
for any integers ny, ..., ng > 0, any subset A C {1,...,d} and 4,

je{l,...,d}\ A
We give a weaker notion.

Definition 2.2. A sequence xy, ..., 24 10 A is sald to be an uncon-
ditioned p-sequence [1, Definition 2.1} on M if

(W A e A)Mat = (a3 | A € A)M - x;
for any integers ny, ..., ng > 0, any subset A C {1,...,d} and i €
{1,...,d} \ A. Let 0 < s < d be an integer. The sequence x1, ..., Zq
is said to be a p-standard sequence [7] of type s on M if

(@3 | A€ MM afia = (a3 | A € A)M i

for any integes ny, ..., ng > 0, any subset A C {1,...,d} and i,
je{l,....d}\ Asuch that : < jorj>s.

Such sequences fulfilled many good properties. Next two proposi-
tions are firstly proved by Goto and Yamagishi [5, Propositions 2.3
and 2.4] for unconditioned strong d-sequences. However their proofs
still work under weaker assumption.

Proposition 2.3. Letxy, ..., x4 be an unconditioed p-sequence on M,
ny, ..., ng>1integers, NG {1,...,d} andi € {1,...,d} \ A. Then

(3 A€ N)M :z; = Z (H :Eg“_l) [(zx | A€ N)M 1 xy).
A'CA \AeN
Here we set (2 | A € A') = (0) and [[ e Pt =14 N =0,
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Proposition 2.4. Let z1, ..., x4 be a p-standard sequence on M of
any type and ny, ..., ng, my, ..., mg > 0 integers. Then

ni+mi MNd+mg PSR {I3] AT
(x] RN VM att -l
d
- 1 i1 il T AN AT« e ny 2Td\ A
= E (@, w e ayt )Moy 4 (2 alt) M.
i=1
Let € = xy, ..., x4 be a sequence on A. The local cohomology of M
with respect to x is the direct limit of Koszul cohomologies
N . AT PN 2% /
Hy (M) =lim  H? (a7, ... 25 M).

If A is Noetherian, then HP(M) is equal to the local cohomology of M
with respect to the ideal (zy,...,zq).
The next proposition is a generalization of [5, Theorem 3.9].

Proposition 2.5. Let 2y, ..., x4 be a strong d-sequence on M. Then
() P12 I o
(@7, ap) My

PO — i
»(M) = injlim (@<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>