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Algebras generated by idempotents
and group rings

Hideyasu KAWAI
Department of General Education
Ishikawa National College of Technology
Tsubata, Ishikawa 929-0392 Japan
kawai@ishikawa-nct.ac.jp

In the following, all rings and algebras are commutative with
identity and all groups are abelian with operation written multi-
plicatively.

Notation. Let R be a ring and let G be a group.
(i) RG = the group ring of G over R.
(ii) If A is an R-algebra,
Ag(A) = the R-subalgebra of A generated by all the idempo-
tents.
(iii) U(R) = the units of R.
(iv) ¢n(X) = the n-th cyclotomic polynomial.

The following theorem motivates this report.

Theorem ([1, Chap.6, Theorem 4.1 and Corollary 4.2], [3]). Let
K be an algebraically closed field and let A be a K-algebra. As-
sume that the following conditions hold.

(1) Ag(A) = A.

(2) A contains no primitive idempotents.

(3) A is countably infinite dimensional over K.



Then, A = KG as K-algebras for any countably infinite torsion
group G having no element whose order is equal to charK, the
characteristic of K.

We are concerned with the condition (1) of the preceding theo-
rem. The relationship between an algebra generated by idempo-
tents over an algebraically closed field and group rings is given by
the following.

Theorem 1. Let K be an algebraically closed field and let A be
a K-algebra. Then the following are equivalent :

(1) Ax(4) = 4;

(2) there exists a surjective K -algebra homomorphism KG — A
for a torsion group G having no element whose order is equal to

char K.

Proof. See [2, Section 2]. O

If we cinsider the above conditions (1) and (2) without the as-
sumption that K is algebraically closed, then neither ‘(1)=-(2)’
nor ‘(2)=(1)’ necessarily holds.

Example 1 ((1)#(2), [5, the last Remark]). Let F; be the field
of two elements and let A = Fy x Fy. Suppose ¢ : FoG — A is a
IFy-algebra homomorphism for a group G. Then, ¢(G) C U(A) =
{(1,1) }. Hence o(F,G) C A.

Example 2 ((1)#(2)). Let K = Fy(X), the field of rational
functions over Fy. Let A = K x K. Suppose ¢ : KG — A
is a K-algebra homomorphism for a torsion group G. Then,
¢©(G) = { (1,1) } since U(A) is torsion-free. Therefore we have
p(KG) € A



Example 3 ((2)#-(1)). Let G be the cyclic group of order 3 with
a generator g. Let A = FoG. We can take the identity map of A
as a [Fy-algebra homomorphism required in (2). However, the set
of idempotents of A is {0, 1, g+ g% 1+ g+ ¢ }. So, it follows
that

Ar,(A) = Falg + ¢°] = F2 + Fa(g + ¢°).
Hence g ¢ Ap,(A), and Af,(A) C A.

Example 4 ((2)#-(1)). Let G be the cyclic group of order 3 and
let Q be the rational numbers. Let A = QG and let { be a
primitive 3-rd root of 1. Then, as Example 3, (2) holds. However,

we have A = Q x Q[¢] as Q-algebras. So, Ag(A) C A.
For algebras over rings, we have the following.

Theorem 2. Let R be a ring and let A be an R-algebra. Suppose
that a prime number p is a unit of R and that ¢,(X) = 0 has a
root in R. Then the following are equivalent :

(1) Ar(A) = 4

(2) there exists a surjective R-algebra homomorphism RG — A
for a group G satisfying G? = 1.

Proof. For (1)=>(2), let ¢ be an element of R satisfying ¢,(¢) =
0 and let {ex}rea be a set of idempotents of A satisfying A =
R[{ex}ren]- For each A € A, define

(2.1) ay=(1-{)ex+¢.
We have

(2.2) A ={ex+¢(1—-e)}=1



since (P = 1. Let G be the subgroup of U(A) generated by
{ax}rea.- Then G? = 1 from (2.2). By [2, Lemma 2.1], we
know [[22(1 — ¢') = p. Hence our assumption p € U(R) im-
plies 1 — ¢ € U(R). So we can rewrite (2.1) as follows :

er=(1-0Oar=C) (AeA).
Therefore A is an image of RG.

For (2)=-(1), we have Agr(RG) = RG by [4]. Hence the equality
Ag(A) = A holds. O

In the three theorems above, every group ring that appears in
the statements is generated by idempotents. For the study of
group rings generated by idempotents, some results are given by
Professor Onoda and the author in [4].
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On maps of Grothendieck groups
induced by completion

Kazuhiko Kurano

Tokyo Metropolitan University
This is a joint work with Yuji Kamoi (Meiji University).

1 Introduction

For a scheme X that is of finite type over a regular scheme S, we have an isomorphism
of Q-vector spaces
7x/5 : Go(X)g = Ax(X)q

by the singular Riemann-Roch theorem (Chapter 18 and 20 in Fulton [1]), where Go(X)
(resp. A.(X)) denotes the Grothendieck group of coherent Ox-modules (resp. Chow group
of X). It is the natural generalization of Grothendieck-Riemann-Roch theorem to singular
schemes. The construction of the map 7x/s depend not only on X but also on S (see
Section 4).

Here, let T be a regular local ring and let A be a homomorphic image of 7. Since A is
of finite type over T', we have an isomorphism of Q-vector spaces

TSpec A/SpecT * GO(SpeC A)Q — A (Spec A)Q

by the singular Riemann-Roch theorem as above. We denote Tgpec 4/specT; Go(Spec A) and
A.(Spec A) simply by 74,7, Go(A) and A.(A), respectively. In 1985, P. Roberts (9] proved
that the vanishing theorem holds for a local ring A that satisfies 74/7([A]) € Adim4(A)g,
where we say that the vanishing theorem holds for A if _,(—1)*2 A(Tor(M,N)) =0 is
satisfied for two finitely generated A-modules M and N that satify; (1) both of them have
finite projective dimension, (2) dim M +dim N < dim A, (3) M ®4 N is of finite length.
(It contains an affirmative answer to a conjecture proposed by Serre [11]. The conjecture
was independently solved by Roberts, Gillet and Soulé [2].)

Inspired by the result of Roberts, the author defined the notion of Roberts rings as
below and studied them in [3].

Definition 1.1 A local ring A is said to be a Roberts ring if there exists a regular local
ring T such that A is a homomorphic image of T and 74/r([4]) € Adim a(A)g Is satisfied.

The category of Roberts rings contains complete intersections, quotient singularities, Ga-
lois extensions of regular local rings. Normal Roberts rings are Q-Gorenstein. T here are
examples of Gorenstein normal non-Roberts rings. If A is a Roberts ring, then so is the
completion A.

Here, it seems to be natural to consider the following conjecture and ask the following
question.




Conjecture 1.2 Let A be a local ring that is a homomorphic image of a regular local
ring T'. Then, the Riemann-Roch map 74,7 as above is independent of the choice of T

Question 1.3 Let A be a local ring that is a homomorphic image of a regular local ring.
Assume that the completion A is a Roberts ring. Then, is A a Roberts ring, too?

Conjecture 1.2 is affirmatively solved [3] if A is a complete local ring or A is essentially
of finite type over either a field or the ring of integers.

There is a deep connection between the conjecture and the question. As we shall see in
Section 4, Question 1.3 is true for any A if and only if Question 1.4 as below is true for
any A. Furthermore, if Question 1.4 is true for a local ring A, then Conjecture 1.2 is true
for the local ring A.

Question 1.4 Let A be a local ring that is a homomorphic image of a regular local ring.
Then, is the map Go(4)g LN Go(A)g (induced by the natural map A SN A) injective?

As we shall see in Proposition 4.1, Question 1.4 is equvalent to that the induced map
Go(A)g 2> Go(B)g is injective for any étale local homomorphism A —%+ B that is
essentially of finite type.

In section 3, we shall prove the following theorem:

Theorem 1.5 Let A be a homomorphic image of an excellent regular local ring. If A

satisfies one of the following three conditions, then the natual map Go(A) LN Go(A) is
wnjective.

(1) A is a henselian local ring.

(2) A= Sy, where S = ®n>0Sn is a Noetherian positively graded ring over a henselian
local ring (S, mo), and M = mySy + S4. (Here Sy = @n>05n.)

(8) A has at most isolated singularity.

In the proof of Claim 4.3 in [3], the injectivity was proved in the case (1) as above. Note
that the category of rings in (1) is contained in that in (2). In a proof in the case (1),
Popescue-Ogoma’s approximation theorem ([6], [7]) is used. In the case of (2), we use a
method similar to ”deformation to normal cones” in Chapter 5 in Fulton [1]. We use the
localization sequence in K-theory due to Thomason and Trobaugh [13] in the case of (3).
We shall give some applications of Theorem 1.5 in Section 4.
The next section is devoted to preliminaries.

2 Preliminaries

Throughout the article, a local ring is always assumed to be a homomorphic image of a

regular local ring.
. First of all, let us define the Grothendieck group and the Chow group of a ring A.



Definition 2.1 For a ring A, let Go(A) be the Grothendieck group of finitely generated
A-modules, i.e.,

z-[M]
M : a finitely generated A-molule

Go(4) = (IM] - [L] - [N] |0+ L— M — N —0is exact)’

Let A;(A) be the i-th Chow group of 4, i.e.,
Z - [Spec A/ P]

PeSpec A, dim A=i

A = E(Q.0) [Q e Specd, dm A/ =i+ 1,5 € A\ Q)

where

div(@az)= >, Lap(Ap/(Q,z)Ap)[Spec A/P).
PeMing A/(Q,z)
The Chow group of A is defined to be A.(A) = ®IFA4;(A).
For an abelian group M, Mg denotes M ®z Q.

Definition 2.2 (1) Let g : A — B be a flat ring homomorphism. Then, we have the
induced homomorphism g, : Go(A4) = Go(B) by g.([M]) = [M ®4 BJ.

(2) Let (A4, m) be alocal ring. For each i, the natural map A ANy} (A is the completion

of A in the m-adic topology) induces the natural map A;(A) LN Ai(A) by
f.(1Spec A/P]) = 3 £4,(A/PAy)[Spec A/,

where the sum is taken over all minimal prime ideals of A/ PA as an A-module. Here,
note that A/PA is equi-dimensional since A is universally catenary (Theorem 31.7
in Matsumura [5]).

Remark 2.3 Assume that (A,m) is a d-dimensional excellent normal local ring. Then

A is also normal and the natural map Cl(A) — CI(A) is injective, where CI(A) is the

divisor class group of A.
On the other hand, it is well known that A4-1(A) coincides with C1(A). Thus, we know
that fi : Aa—1(A) = Ag—1(A) is injective if A is normal.

Then, we have

Proposition 2.4 Let (A,m) be a local ring. Then, the following conditions are equiva-
lent:

1. Go(A)g RN Go(A)q is injective.
2. Ai(A)o LN As(A)g is injective for all i.

Proof. Take a regular local ring T such that A is a homomorphic image of T. Then,
by the singular Riemann-Roch theorem, we have isomorphisms of Q-vector spaces T4/t :



Go(A)o = As«(A)g and 747 : : Go(A)g = A.(A)g such that the following diagram is
commutative (Lemma 4.1 (c) in [3]): '

Go(4)e 25 A.(A)g
U Ay (1)
- TiP "
Add)g 25 Ad(A)g
Here f. : A«(A)g — A«(A)g is the direct sum of {f, : Ai(A)g — AiA)g | i =
0,1,...,dim A}. Therefore we know immediately that the two conditions in the proposi-
tion are equivalent. q.e.d.

By the proposition, we know that Question 1.4 is a natural generalization of the injec-
tivity of divisor class groups (Remark 2.3) in a sense.

3 ‘The proof of Theorem 1.5

We shall give a proof to Theorem 1.5 in the section.

First, assume that A is an excellent henselian local ring. In the case, the result was
found in [3]. Here, we shall give an outline of the proof.

Take o € Go(A) such that f.(a) = 0. We want to show @ = 0 in Go(4). By the
assumption, we have short exact sequences of A-modules that make f+(c) vanish. Thanks
to Popescue-Ogoma’s approximation theorem ([6], [7]), we can find short exact sequences
of A-modules that make o vanish.

Next put A = Sy, where S = @05, is a Noetherian positively graded ring over a
henselian local ring (Sp, mo), and M = mpSy + S

Put B =[], S It is the S} A-adic completion of A. Therefore, B is flat over A and
A = B is satisfied. Let g : A — B be the natural map. Since A is an excellent local ring,
so is B by Theorem 3 in Rotthaus [10]. Furthermore, since Sy is a henselian local ring,
so is B. Thus, B is an excellent henselian local ring. By (1) in Theorem 1.5, we know
that Go(B) — Go(B) = Go(A) is injective. Therefore, in order to show the injectivity of
Go(A) = Go(A), we have only to prove that of Go(A4) = Go(B).

Put
b [ (©xiSw)A ifi>0
Tl A if ¢ < 0.
Then, F = {F;}icz is a filtration of ideals of A, that is, it satisfies; (1) F; D Fj41 for any
1€ Z, (2) Fy = A, (3) F;F; C Fyy; for any 4,j € Z. Similarly put
5 [ TlasiSn ifi20
‘"1 B if i <0.

Then, F = {Fi}z’ez is a filtration of ideals of B. Note that E} coincides with F,B = F;®4 B
for each 7. Put

R(F) = @zFit' C Aft,t7]
G(F) = R(F)/(tT)R(F) = ®ix0Fi/Fina
R(F) = @gFit CB[t,t 1]
G(F) = R(F)/(t)R(F) = E'/F_“m,

_8_



where t is an indeterminate. Note that R(F) ®4 B = R(F), G(F) ®4 B = G(F) and
S =G(F)=G(F).

Flat homomorphisms A -5 A[t,t"}] and R(F) - R(F)[(t"1)7!] = Alt,t™] in-
duce the natural maps Go(A) - Go(A[t,t™Y)) and Go(R(F)) 2 Go(A[t,t7]), re-
spectively (see Definition 2.2). Since R(F) — G(F) is finite, we have the induced map

Go(G(F)) AN Go(R(F)) by v([M]) = [M] for each finitely generated G(F')-module M.
Thus we have the following diagram:

Go(4A)
Lo
Go(G(F) 5 Go(R(F)) 22 Go(Alt,t™]) — 0

It is known that the horizontal sequence in the above diagram is exact. We refer the basic
facts on algebraic K-theory to Quillen [8] or Srinivas [12]. (The horizontal exact sequence
is called the localization sequence induced by a localization of a category.)

On the other hand, we have the map 7. : Go(R(F)) — Go(G(F)) by 7.([N]) =
[N/(t™1)N] — [0 :n t7}] for each finitely generated R(F')-module N. It is easy to see
v.v* = 0. Hence, we obtain the induced map 7 : Go(A[t,t7']) = Go(G(F)) that satisfies
7.5« = 7. because of the exactness of the localization sequence.

Similarly we have the diagram

Go(B)
) 3 @
GGE) 5 GoR(F) 5 Go(BIt]) — 0
and the induced map 4. : Go(B[t, t7']) = Go(G(F)).
Let & : S — A be the localization. Put g; = g®1: Aft,t™}] — A[t,t7!|®4B = Blt, 17

and g, =g®1:G(F) > GF)®4B= G(F). Here, g, is an isomorphism.

Then we have the following commutative diagram:

Go(S) 2% Go(4) =5 Go(Alt,t™]) T Go(G(F))
do o _ } g2.
Go(B) 2% Go(Blt,t™Y)) — Go(G(F)) = Go(S5)

We denote by ¢ : Go(S) — Go(S) the composite map as above.

Here, we need to show the following claim:
Claim 3.1 ¢ is the identity map.

We shall give an outline of a proof of the claim later.
[s is easy to see that h, is surjective since h is a localization. Then, by the claim, we

know that h, is an isomorphism and g. : Go(A) — Go(B) is injective.
Proof of Claim 8.1. 1t is easily verified that Go(S) is generated by

{[S/P] | P is a homogeneous prime ideal of S}.

Therefore, we have only to show ¢([S/P]) = [S/P] for a homogeneous prime ideal P of
S. We leave it to the reader.
We have completed the proof in the case (2).

Next, we shall prove the following Claim:

—9—



Claim 3.2 Let A be an ezcellent local ring and let I be an ideal of A such that Spec A\
Spec A/I is a regular scheme. Let B be the I-adic completion of A. Then, the induced
map Go(A) = Go(B) is injective.

Note that, when I is the maximal ideal of A, the claim is equivalent to the case (3) in
Theorem 1.5.

Now we start to prove Claim 3.2.

We put X = SpecA, Y = SpecA/I, U = X \Y, X = SpecB, Y = Spec B/IB,
U=X \ Y. Then the natural map Y — Y is an isomorphism and we have the fibre
squares:

Y — X «— U
I \ 4

Y — X «— U

Since the map X — X is regular, so is U — U. Therefore, since U is a regular scheme,
sois U.

If U is empty, the assertion is obvious. Suppose that U is not empty.

Here we have the following commutative diagram:

Gi(X) B GiU) — Go(Y) — Go(X) — Go(U) — 0
{ 4r 4s e du

Here, for a scheme W, G;(W) denotes the i-th K-group of the exact category of coherent
Ow-modules. Horizontal sequences are exact (see Quillen [8] or Srinivas [12]). Vertical
maps are induced by flat morphisms.

We denote by C (resp. C) the cokernel of p (resp. q). Let v : C — C be the induced
map by 7. In order to prove the injectivity of ¢ : Go(X) — Go(X), we have only to show
the following:

o u: Go(U) = Go(U) is injective.
e v:C — C is surjective.

(Remember that s : Go(Y) — Go(Y") is an isomorphism.)
On the other hand, thanks to Thomason and Trobaugh [13], we have the localization
sequence in K-theory, that is, we have the following commutative diagram:

/

Ki(X) & Ki(U) = Ko(XonY) = Ko(X) 3 Ko(U) - K_i(X onY)
1 b bs \ ARV {w
K(X) 4 K0 - KXonY) o K(X) & Ko@) —» K (Xon?)

Here, for a scheme W, K;(W) denotes the i-th K-group of the category of locally free
Ow-modules of finite rank. We denotes by K;(X on Y') the i-th K-group of the derived
category of perfect Ox-complexes with support in ¥ (see Thomason and Trobaugh [13]).

Let W be a scheme. Then, by definition, we have the natural map &w : K;(W) — G;(W)
for each i. Furthermore, they are isomorphisms if W is a regular scheme (see 27p in
Quillen [8]). Therefore, we have the following commutative diagram:

Ko(U & GO(U)
J, u! J, u



Since both of U and U are regular schemes, both of {y and £ are isomorphisms. Thus,
we know that u is injective if and only if so is u'.

On the other hand, since X — X is flat and Y = Y, we know that the natural map
K;(X on Y) — K;(X on Y) is isomorphism for each i € Z by Theorem 7.1 in Thomason
and Trobaugh [13]. In particular, s’ and w' are isomorphisms. Furthermore, since A and
B are local rings, we have Ko(A) = Ko(B) = Z and t' is an isomorphism. Since U and U
are not empty, o and J are injective. Therefore, v’ is injective.

Since both a and 3 are injective and s is an isomorphism, we obtain that the cokernel
of p' is isomorphic to that of ¢'. Therefore we have

Ky(U) = Im(q") + Im(r"). (2)

On the other hand, we have the following commutative diagram:

K. (U)
L N éu
K&X) L K@) G.(U)
N\ éx Nt b

CGX) B G

Since U is a regular scheme, &y is an isomorphism. By the equation (2), we immediately

obtain R
G, (U) = Im(g) + Im(r).

Therefore, the map v : C — C is surjective. We have completed the proof of Theorem 1.5.

Remark 3.3 If a local ring satisfies one of (1), (2) and (3) in Theorem 1.5, we know, by
Proposition 2.4, that A;(A)g LN Ai(A)q is injective for all i.
ft

If a local ring satisfies one of (1) and (2) in Theorem 1.5, we can prove that A;(A) —
A;i(A) is injective for all ¢ by the same method as in the proof of Theorem 1.5.

4 Motivation and Application

Here, we shall see motivation (or application) of Question 1.4.
(I) Let X be a scheme of finite type over a regular scheme S. Then, the singular
Riemann-Roch theorem says that there exists an isomorphism of Q-vector spaces

x5 Go(X)e — Ax(X)e

satisfying several good properties (Chapter 18 in Fulton [1]). Remember that the con-
struction of the map 7x,s depends not only on X but also on S.

In fact, there are examples that the map 7x/s actually depends on the choice of a
regular base scheme S. Let k be an arbitrary field. Put X = P} and S = Speck. Then,



we have 7x/x(Ox) = [X] by the construction of 7x,x. On the other hand, by Hirzebruch-
Riemann-Roch theorem, we obtain 7x,5(Ox) = [X]+x(Ox)[t], where ¢ is a rational point
of X. It is well known that x(Ox) =1 and [t] # 0 in A.(P})o-

Let T be a regular local ring and let A be a homomorphic image of T. Then, by the
singular Riemann-Roch theorem as above, we have an isomorphism of Q-vector spaces

Ta/r : Go(A)g — A«(4)g

determined by both of A and T.

Here, it seems to be natural to consider Conjecture 1.2. In fact, for many important
local rings, the conjecture is true. (Conjecture 1.2 is affirmatively solved [3] if A is a
complete local ring or A is essentially of finite type over either a field or the ring of
integers.)

Here, look at the diagram (1). The bottom of the diagram (1) is independent of the
choice of T since A is complete. Therefore if vertical maps in the diagram (1) are injective,
Ta/r is independent of the choice of T'. Hence, we know that if Question 1.4 is true for a
local Ting A, then Conjecture 1.2 is true for the local ring A.

(II) Let A and T be rings as above and put d = dim A. Put

Ta([A]) = g+ Tar + -+ 70, (T € Ai(A)g)-
These 7;’s enjoy interesting properties as follows (see Proposition 3.1 in [4]):
(a) If A is a Cohen-Macaulay ring, then

Ta(lwa)) =Ta = Tar +Tag — -+ (=1)'Tgi + - -
is satisfied, where w4 denotes the canonical module of A.

(b) If A is a Gorenstein ring, then we have 7,_; = 0 for each odd i.
(c) If Ais a complete intersection, then we have 7; = 0 for 7 < d.

(d) 74 is equal to [Spec Ay, where

[SpecAla= Y £a,(Ap)[Spec A/P] € A(A)g.
PeSpec A
dim A/P=d

In particular, we have 74 # 0.

(e) Assume that A is normal. Let cl(wyq) € CI(A) be the isomorphism class containing
wy. Then, we have 74_; = cl(wa)/2 in Ag-1(A4)g = Cl(A)q.

Here, we define the notion of Roberts rings as in Definition 1.1.

The category of Roberts rings contains complete intersections (see (c) as above), quo-
tient singularities and Galois extensions of regular local rings. There are examples of
Gorenstein non-Roberts rings. (It is proved that

klzij |i=1,...,m; j=1,...,0)@y)
Iy(zi;)




is a Roberts ring if and only if it is a complete intersection.) In 1985, P. Roberts [9] proved
that the vanishing property of intersection multiplicity is satisfied for Roberts rings. We
refer the reader to basic facts and examples of Roberts rings to [3] and [4].

By the diagram (1), we immediately obtain that, if A is a Roberts ring, then so is the
completion A. (By the commutativity of diagram (1), we have 74 /T([A]) = fu(tayr([A])).

Note that the map A.(A)g Ly A, (A)g in the diagram (1) is graded.) Furthermore, if A
is a Roberts ring and f, is injective, then we know that A is a Roberts ring.
Furthermore, we can prove the following:

Proposition 4.1 The following conditions are equivalent:

(1) The induced map Go(A)g — GO(A)Q is injective for any local ring A, that is, Ques-
tion 1.4 s true.

(11) The induced map Adima—1(A)g = Adim A_l(A)Q is injective for any local ring A.

(iii) The following is satisfied for any local ring A; if A is a Roberts ring, then so is A.
(That is to say, Question 1.8 is true.)

() For any étale local homomorphism A 25 B that is essentially of finite type, the
induced map Go(A)g 2 Go(B)q is injective.

(v) For any étale local homomorphism A -5 B that is essentially of finite type, the
induced map Agima-1(A)o = Adima—1(B)g 1 injective.

(vi) For any étale local homomorphism A %5 B that is essentially of finite type, A is a
Roberts ring if and only if so is B.

(vii) For any reduced equi-dimensional local ring (A, m), the following is satisdied: Let n
be a positive integer and let ay, ..., a, be elements in A. Assume that a, € m and
An-1 &€ m. Put B = Alz|mg)/(a" + 012" + --- +a,). (Note that B is étale over
A.) Then, the induced map Go(A)g = Go(B)g is injective.

(viii) Let A and B be rings that satisfy the same assumptions as in (vzz) Then, the
induced map Adima-1(A)g = Adima—1(B)g i injective.

(iz) Let A and B be rings that satisfy the same assumptions as in (vii). Then, A is a
Roberts ring if and only if so is B.

By Theorem 1.5, we can prove that some of assertions in Proposition 4.1 are true if A
has at most isolated singularity. For example, we have the folloing theorem:

Theorem 4.2 Let (A,m) — (B,n) be an étale local homomorphism that is essentially of
finite type. Assume that A is an excellent local ring that has at most 1solated singularity.
Then, we obtain the following:

1. The natural map Go(A)g — Go(B)g is injective.

2. A is a Roberts ring if and only if so is B.



Remark 4.3 Here assume that Question 1.4 is true for all local rings. Then, the follow-
ing is satisfied:

Let (A,m) = (B,n) be a flat local homomorphism with closed fibre complete intersec-
tion. Suppose that the extension of the residue class fields is finitely generated (as a field)
separable. Then, we have the following:

1. The natural map Go(A4)g — Go(B)g is injective.

2. Ais a Roberts ring if and only if so is B.
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THE CONDUCTOR OF A k-CONFIGURATION IN P*

TADAHITO HARIMA
(SHIKOKU UNIVERSITY)

This is a part of a joint work [4] with Professors A. V. Geramita and
Y. S. Shin.

In [1], we gave an easily describable family of sets of points in
P with a given Hilbert function, and called the sets of this fam-
ily k-configurations in P". Moreover, from [1, 2, 3], we see that k-
configurations (among all sets of points with a fixed Hilbert function)
have some extremal properties concerning the graded Betti numbers
of their coordinate rings, the Hilbert functions of hyperplane sections
of the sets and the graded Betti numbers of artinian Gorenstein rings
associated to the sets, etc.. In this note, we show that k-configurations
have a new extremal property with respect to the conductors of their
coordinate rings. This answers (in the affirmative) a question raised
by A. V. Geramita, P. Maroscia and L. Roberts in [5] for points in P".

1. PRELIMINARY

Let X = {P,,...,Ps} be a set of s distinct points in P}, where
k = k is an algebraically closed field, and let A = ®;>0A; be the
(homogeneous) coordinate ring of X. The numerical function Hx(z) =
H(A, 1) := dimy, 4; is called the Hilbert function of the set X (or of the
ring A) and put o(X) := max{i | Hx(¢ — 1) = Hx(i)}. The integral
closure of A in its total ring-of quotients is of the form A4 = [];_, k[t:]
(where k[t;] is isomorphic to the coordinate ring of P;). In [7], F.
Orecchia showed that, as an ideal of A, the conductor of X (or of A),
Cx := {a € A | aA C A}, is of the form Cx = [[;_, t{*k[t;], where d;

1=1"1
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is the least degree of any hypersurface which passes through all of X
except for P;,. We call d; the degree of conductor of P, in X and write
dx(F;) for d;. Then we have dx(P) < o(X) — 1 for all P € X and it is
known ([5, 6]) that X always has at least one point P € X such that
dx(P) = o(X) — 1 (the maximum possible). If all points of X have
dx(P) = o(X) — 1, then X is called a Cayley-Bacharach set of points in
P". By relabelling if necessary, we always assume d; < --- < d, and we
write Cx =< dy,- - ,d, > as a short form for [[}_, t¥k[t;]. Let H be a
numerical function which can be the Hilbert function of a set of points
in P*. We set C(H) := {< d1,*- ,ds >| [[}_; t¥k[t;] is the conductor
of a set of points with Hilbert function H} and put a partial ordering
on C(H) by saying that < dy,--- ,d, ><< d},--- ,d’ > if d; < d! for
alli=1,...,s.

2. THE CONDUCTOR OF A k-CONFIGURATION IN P

Definition 1 (n-type vectors). We do this inductively.
1) A 0-type vector is defined to be 7 = 1. It is the only 0-type vector.
Then we define o(7) = —1 and o(7) = 1.

2) A 1-type vectoris a vector of the form T = (d) where d is a positive
integer. For such a vector we define &(7T) = d and o(T) = d.
3) A 2-type vector is an ordered collection

T = (), (d2), -, (du))

of 1-type vectors (di,...,d,) such that o(d;) < a(d;;,), i.e., d; <
diyy for i = 1,...,u — 1. For such a T we define o(7) = u and
o(T) = o((d)) = di.

4) Now let n > 3. An n-type vector is an ordered collection
T=(T, -, T)

of (n — 1)-type vectors Ty,..., T, such that o(7;) < a(Ti4;) for
i=1,...,u—1. For such a 7 we define a(7) = u and o(T) =
o(Ta)-



Definition 2 (k-configurations).

1) Let T be a O-type vector. A single point in P is a k-configuration
in PO of type T.

2) Let T = (d) be a 1-type vector. A set of d distinct points in P' is
called a k-configuration in P! of type T.

3) Let T = ((d1),...,(dy))be a 2-type vector. A finite set X of
points in P? is called a k-configuration in P? of type 7 if there
exist subsets Xy, . .., X, of X and distinct u lines Ly, ... , L, in P?
such that

i) X=UL X,
ii) X; € L; (2 P) is a k-configuration in P! of type (d;) for all
1<i<u,
iii) Every L; does not contain any point of X; for all j <.

4) Now suppose that we have defined a k-configuration in P! of

type T, where T is an (n — 1)-type vector.
Let T = (Ti,--. ,Tu) be a n-type vector. A finite set X of points
in P" is called a k-configuration in P" of type T if there exist
subsets Xi, ..., X, of X and distinct u hyperplanes Hy, ... ,H, in
P" such that
i) X=UL X,
i) X; C H; (=2 P*1) is a k-configuration in P*~! of type 7; for
all1 <4< u,

iii) Every H; does not contain any point of X; for all j <.
Proposition 3. Let X = UX,X; be a k-configuration in P". Then
dx(P) = dx,(P) + (u — i)
forall PeX; (1 <i<u).
Proof. Please see [4].

Example 4. Let X be a k-configuration in P of type (d). Then, one
can easily check that
dx(P)=d -1



for all P € X.

Example 5. Let X be a k-configuration in P? of type (di,...,dn).
Then, it follows by Proposition 3 and Example 4 that

dx(P)=d;—1+m—1
for all P € X;, where 1 < ¢ < m.

Example 6. Let T = (71,72, T3) be a 3-type vector, where 7; =
(1,2), T = (1,3,4),T; = (2,4,5,6,10). Let X = X; UX, UX; be a
k-configuration in P3 of type 7, and we write

X; =X UXy,
Xy = Xo1 U X5 UXys
and X3 = X3; UXj3, U X33 U X34 UXj3s,

where X;; are sub-k-configurations of X; (1 < ¢ < 3). We consider
the rooted tree T(T) associated to 7 and recall that every node of
T(T) corresponds to the unique sub-i-type vector of 7(: = 1,2,3)
and in particular every leave of T(7T) corresponds to the unique sub-
1-type vector of 7. Furthermore, by the same way as in [1], we place
the numbers on all the edges and the leaves, and T'(T) is labeled as
follows:

(1) 2 @O @ @ 2 @ (6) (6) (10)
X1 X Xp Xpo Xp3 X3 X3p Xa3 X34 X5

FIGURE 1

The number d on a leave in T(7) is the number of points in the sub-£-
configuration X;; of X corresponding to the sub-1-type vector (d) of 7.



We can use this tree T(T) to find the degrees of conductors of points
in X. By Proposition 3, we see that, for all P € X;;,

dx(P) = (the number on the leave corresponding to X;;) — 1

+ 3" (the numbers on 2-edges to get to the root
from the leave corresponding to X;;).

For example,
dx(P)=2-14+440=5
for all P € X3;, and we have that
(3 PeXyUXpUXo,
4 P e Xy UXog,
dx(P) 5
6

4 P e Xy,
P € X3 U X33 UXay,

9 PeXa

3. MAIN THEOREM AND COMMENTS

Theorem 7. Let X be a k-configuration in P™ with Hilbert function
H. Then Cx < Cxs for all Cx € C(H).

Proof. Please see [4].

Problem (Problem 5.12, [5]). Does the construction of Theorem 4.1
in [5] always produce a set X of points for which dim(4/Cx) is as small
as possible among those sets of points with Hilbert function H?

Remark 8. We can observe that every set of points in P* produced
by the construction of Theorem 4.1 is a k-configuration. Hence we see

that our theorem answers the question above.

Example 9 ([8]). The following Xj, ..., Xy are examples of sets of 9
points in P? with Hilbert function H ,

H: 13689 —.



The permissible values for H are £ = 2, 3, 4.
o o

Tt Cxo= (k)

Cx, = (t3k[t2])* x (t5k[ts])°

Ox, = (82k[ta]) x (t5k[ts])®

Cx, = (t1k[t1]) x (t3K[ta])® x (t3K[ta])®

Since the set X, is a k-configuration, we have that Cx, < Cx for
all Cx € C(H), and dim; A/Cx, = 31 < dim; A/Cyx. However, in
this case, we can observe from (8] that these examples are all possible
conductors of sets with Hilbert function H, and | C(H) |= 4. In [8], A.
Sodhi gave an algorithm of describing all possible conductors of sets of
points with the Hilbert function of a complete intersection in P2. This

problem is open in general case.

Problem. Determine all possible conductors of sets of points in P”
with a given Hilbert function H.
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On a certain upper bound for the
regularity of monomial ideals
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1. PRELIMINARIES

We first fix notation. Let N(resp.Z) denote the set of nonnegative integers
(resp. integers). Let | S| denote the cardinality of a set .S.



We recall some notation on simplicial complexes and Stanley-Reisner
rings. We refer the reader to, e.g., [Br—He], [Hi], [Hoc] and [St] for the
detailed information about combinatorial and algebraic background.

A (abstract) simplicial complez A on the vertez setV = {z1,zs,...,2,}
is a collection of subsets of V' such that (i) {z;} € A for every 1 <i < n
and (i) F € A, G C F = G € A. The vertex set of A is denoted by
V(A). Each element F of A is called a face of A. We call F € A an i-face
if | F |=i+41 and we call a maximal face a facet. Let F be a face but not a
facet. We call F free if there is a unique facet G such that F C G. If {z;}
is free, we call z; free.

We define the dimension of F € A to be dimF =| F | —1 and the
dimension of A to be dimA = max{dim F | F € A}. We say that A is
pure if all facets have the same dimension. In a pure (d — 1)-dimensional
complex A, we call (d — 2)- face a subfacet. We say that a pure complex A
is strongly connected if for any two facets F' and G, there exists a sequence
of facets

F=Fy,Fh,. . F,=G

such that F;_; N F; is a subfacet for7i =1,2,...,m.

Let f; = fi(A), 0 <4 < d — 1, denote the number of i-faces in A. We
define f_; = 1. We call f(A) = (fo, f1,.-., fa—1) the f-vector of A. Define
the h-vector h(A) = (ho, b1, ..., hqa) of A by

d

d
M fiat =14 =3 Rt

=0 i=0

Let fIi(A; k) denote the i-th reduced simplicial homology group of A with
the coefficient field %.

Let A = k[zy1,z2,...,Z,] be the polynomial ring in n-variables over a
field k. Define I5 to be the ideal of A which is generated by square-free
monomials z;, T, - -z, 1 <4 <y < -+ <4, < m, with {iy,05,...,1,} &
A. We say that the quotient algebra k[A] := A/IA is the Stanley-Reisner
ring of A over k.

Next we summarize basic facts on the Hilbert series. Let k be a field
and R a homogeneous k-algebra. By a homogeneous k-algebra R we mean
a noetherian graded ring R = @;>( R; generated by R; with Ry = k. Let
M be a graded R-module with dir_nk M; < oo for all ¢ € Z, where dim;, M;
denotes the dimension of M; as a k-vector space. The Hilbert series of M




is defined by

F(M,t) =Y (dimy M;)t'.

i€Z
It is well known that the Hilbert series F(R,t) of R can be written in the
form Ro+ hat + - + hyt*
F(R,t) _ 0 it + s

(1—t)dimE ’

where ho(= 1), h1, ..., h, are integers with deg R := ho+hy + -+ h, > 1,
which is called the degree of R. The vector h(R) = (hg, hy, ..., hy) is called
the h-vector of R. We consider k[A] as the graded algebra k[A] = @, k[A];
with degz; = 1 for 1 < j < n. The Hilbert series F(k[A],t) of a Stanley-
Reisner ring k[A] can be written as follows:

FA]LE) = 1+;({ijf)i

ho + hit + - - + hgt®
(1—1)¢ ’

where dim A = d—1, (fo, fi,- - ., fa—1) is the f-vector of A, and (hg, h1, ..., hq)
is the h-vector of A. It is easy to see deg k[A] = fs_1. On the other hand,
the arithmetic degree of k[A] is defined to be the number of facets in A,
which is denoted by a-degk[A]. See, e.g., [Ho-Tr] for the definition of the
arithmetic degree of a general ring R.

Let A be the polynomial ring k[z1, Z2, . . ., Z,] over a field k. Let M(# 0)
be a finitely generated graded A-module and let

0 — @A(_j)ﬂh,j(M) e — @A(_j)ﬂo.j(M) s M -0
j€Z j€Z

be a graded minimal free resolution of M over A. The length h of this
resolution is called the projective dimension of M and denoted by h = pd M.
We call 8;(M) = ez Bi,j(M) the i-th Betti number of M over A. We define
the Castelnuovo-Mumford regularity reg M of M by ’

reg M = max {j — ¢ | 8;;(M) # 0}.

See, e.g., [Ei] for further information on regularity. We define the initial
degree indeg M of M by

indeg M = min {i | M; # 0} = min {j | Bo;(M) # 0}.



Let I be a natural number. We say that M satisfies (N;) condition if
Bii+s(M) =0fori <!, s# indeg M.
We denote the number of generators of M by u(M) = By(M).

The following two theorem are a starting point for our study.

THEOREM 1.1 (Hochster’s formula on the Betti numbers [Hoc, Theorem
5.1]).
Bii(R[AD) = > dimpH; i 1(Apik),

FC[n), |F|=j

where

Ap={GeA|GCF}.

It is easy to see:

COROLLARY 1.2. }
reg In = max {i +2 | Hi(Ap; k) # 0 for some F C V}.

If F is a face of A, then we define a subcomplex linka F' by

linkaF ={GeA|FNG=0,FUG € A}.

THEOREM 1.3 (Hochster’s formula on the local cohomology modules
(cf. [St, Theorem 4.1])).

- |F)|
t
F(Hl k[A Z dlIIl]c i—|F|— 1(llnkAF k) E—— .
FeA 1t
where Hip (k[A]) denote the i-th local cohomology module of k[A] with re-
spect to the graded mazimal ideal m.

COROLLARY 1.4. }
reg In = max {i + 2 | H;(linka F; k) # 0 for some F € A}.

Next we recall the definition of Alexander dual complexes. For a simpli-
cial complex A on the vertex set V, we define an Alezander dual complez

A* as follows:
A*:{FCV:V\F&’A}.



THEOREM 1.5 [Tel, Corollary 0.3]. Letk be a field. Let A be a simplicial

complex. Then
reg In = pd k[A”].

2. REGULARITY OF THE SUM OF IDEALS

In this section we give a upper bound for the sums of sqare-free monomial
ideals.

In the rest of the paper we always assume that k is a fixed field.

First we prove the following proposition. It seems to be known, but we
cannot find it in literature.

PROPOSITION 2.1. Let I be a monomial ideal in the polynomial ring
A = k[zy,T2,...,2,] and m a monomial in A. Then

pdA/(I + (m)) < pdA/I+1.
For the regularity of the sum of square-free monomial ideals, we have
the following conjecture:

CONJECTURE 2.2. Let Ay(# 0) be a simplicial complex for i = 1,2.
Then we have

reg(Ia, + In,) < teg In, +1eg In, — 1.
If In, and Ia, are complete intersections, then the above inequality
holds. The next theorem gives a weaker upper bound.

THEOREM 2.3. Let A;(# 0) be a simplicial complex for i = 1,2. Then
we have

reg(Ia, + In,) < min{reg In, + a-degk[A,], reg I, + a-degk[A;]} — 1.

REMARK. Since the inequality reg I < a-degk[A] holds (cf. [Ho-Tr]
and [Fr-Te]), Theorem 2.3 is weaker than Conjecture 2.2.



3. EISENBUD-GOTO INEQUALITY

The theme of this section is Eisenbud-Goto inequality for Stanley-Reisner
rings of pure and strongly connected simplicial complexes.
First we give a lemma which is necessary for inductive argument.

LEMMA 3.1. Let A be a pure and strongly connected simplicial complez.
Then there exists a facet F € A such that

A":={H € A| H C G for some facet G(# F) € A}
s pure and strongly connected.
Now we give the main result in this section.

THEOREM 3.2(cf. [Fr-Te, Theorem 4.1]). Let A be a pure and strongly
connected simplicial complex. Then we have

‘regla < degk[A] — codimk[A] + 1.

COROLLARY 3.3. Let A be a simplicial complez such that codimk[A] >
2. Assume I satisfies (N2) condition. Then we have

pdk[A] < u(Ia) —indegly + 1.

4. EQUALITY CASE

In this section, we classify pure and strongly conneceted simplicial com-
plexes A which satisfy regln = deg k[A] — codimk[A] + 1, and give some
characterization for such complexes.

First we introduce some notation. Put [m] = {1,2,...,m}. We denote
the elementary (m — 1)-simplex by A(m) = 2/™ and put A(0) = {0}. We
put dA(m) = 2I™ \ {[m]}, which is the boundary complex of A(m).

Let A; be a (d — 1)-dimensional pure simplicial complex for i = 1,2.
If Ay N A, = 2F for some F with dim F = d — 2, we write A; Up A, for
A1 U A, We sometimes write Ay U, Ay for Ay Up A, if we do not need to
express F' explicitly.



We define a (d — 1)-tree inductively as follows.
(1)A(d) is a (d — 1)-tree.

(2)if Y is a (d — 1)-tree, then so is T U, A(d).

If Yy, Ys,..., Y are (d—1)-trees, we abbreviate AU, T1U LolUy- - -U T
as A + ((d — 1)-branches).

Let A be a (d — 1)-dimensional pure and strongly connected complex.
Take v, w € V(A). We say v and w are separated in A if {v, w} ¢ A
and that there exists no subfacet F in A with {v}UF, {w} UF € A. Ifv
and w are separated in A, We denote A(v — w) for the abstract simplicial
complex which is obtained by substitution of w for every vin A. The vertex
set of A(v — w) is V(A) \ {v}.

By Lemma 3.1 we know that every (d—1)-dimensional pure and strongly
connected simplicial complex can be constructed from the (d—1)-dimensional
elementary simplex A(d) by a succession

Ald)=A1 > Ay — -+ = Ay,

of either of the following operations :
(1)Aip1 = A; Upr 27, where z ¢ V(A;), F' is a subfacet of A; and F =
F'U {z}.
(2)Ai1 = (A;Up 2F)(z — y), where 2 ¢ V(A;), F' is a subfacet of A; and
y € V(A;) such that z and y are separated and F = F' U {z}.

Let A; be a simplicial complex for i = 1,2 such that V(A;)NV(Ay) = 0.
We define the simplicial join A; * Ay of Ay and A, by

Al*A2={FUG|F€A1,GEA2}.

LEMMA 4.1. Let A be a (d—1)-dimensional pure and strongly connected
complex. We assume

reglp = deg k[A] — codimk[A] +1 = 3.
Then A can be ezpressed as follows:
A = AN(z — y)* A(d — s) + ((d — 1)-branches)

for some (s—1)-tree A' and for some separatedx, y € V(A') with Hy(A'(z —
y)ik) # 0.

THEOREM 4.2. Let A be a (d — 1)-dimensional pure and strongly con-
nected complex. We put r = regla. Then

regla = deg k[A] — codimk[A] + 1.



if and only if A satisfies the following condition:

(1) A is a (d — 1)-tree which is not the (d — 1)-simplez if r=2.

(2) A= A'(v — w) for some (d — 1)-tree A’ and for some separated v, w €
V(A') if r=3.

(3)A = OA(r) x A(d — 1 + 1) + ((d — 1)-branches) if r > 4.

COROLLARY 4.3.  Let A be a (d — 1)-dimensional pure and strongly
connected complez on the vertex set [n]. Assume v :=regln > 4. Then the
following conditions are equivalent:

(1)
regls = deg k[A] — codimk[A] + 1.
(2)

A = OA(r) * A(d — 7 + 1) + ((d — 1)-branches).

(3) k[A] is Cohen-Macaulay with h-vector (1,n —d, 1,. .., (= h,_1)).
()

1, fori=3=0
fasbia) = 1 0= d=D() = (), fori=1i=12. n-d
i,i+j = n;fl_l)’ forj=r—11=1,2... n—d
0, otherwise.

(5)

; 0, fori#d
F(Hm(k[A]), 1) —{ i"“""l+t_d+"2-{-(-i-jtt:ld;2+(n—d)t“'+l+t“", fori=d.

COROLLARY 4.4. Let A be a (d—1)-dimensional pure and strongly con-
nected complex on the vertez set [n]. Assume regla = 3 and k[A] satisfies
(S2) condition. Then the following conditions are equivalent:

(1)
reglp = deg k[A] — codimk[A] + 1.

(2) ,
A = A(l-gon) * A(d — 2) + ((d — 1)-branches)

for some 1 > 3, where A(l-gon) is the boundary complez of the I-gon.
(3) k[A] is Cohen-Macaulay with h-vector (1,n —d, 1).



(4)

1, fori=j=0

i(n—d—i) (n—d+2 n—d—142 - <

Biivs(k[A]) = n—dti \ i+l )+( i—l41 )> forj=1,i=12,...,n—d

1,43 (n—d—l+2 fOT =9 =12 —d
i—14+2 ? ]_ y U= YLy, I

0

, otherwise

for some 1 > 3.
(5)

fori#d
, fori=d.

. 0,
F(Hm(k[A]), t) = { t-d+2 4 (n—d)t =441 444
T—t-1)e

REMARK. A Cohen-Macaulay homogeneous ring R with h-vector h(R) =
(1,h1,1,1,...,1) is called a stretched Cohen-Macalay ring (cf.[Oo]). These
corollaries also give the classification of stretched Cohen-Macaulay Stanley-
Reisner rings.
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Gorenstein associated graded rings of analytic
deviation two ideals

Shiro Goto and Shin-ichiro Iai

1 Introduction.

Let A be a Gorenstein local ring with the maximal ideal m and dim 4 = d. We assume
that the field A/m is infinite. This paper studies the question of when the associated
graded ring G(I) := @, I"/I"*" of an ideal I in A'is a Gorenstein ring. We shall give
a characterization of Gorenstienness in the graded ring associated to certain ideal having
analytic deviation two. Our main result implies, for example, that if 4 is a regular local
ring, p is a prime ideal in A with dim A/p = 2, and A/p is a complete intersection in
codimension one, then the associated graded ring G(p) is Gorenstein if and only if the
reduction number of p is at most 1.

Before stating our main result, let us fix some notation. Let I(# A) be an ideal in
A of height s. We put ¢ = MI) := dim A/m @, G(I) and call it the analytic spread
of I. Let ad(I) := ¢ — s that we call the analytic deviation of I ([HH]). Let J be
a minimal reduction of I. Hence J C I and I"*' = JI" for some n > 0. We put
r;(I) == min{n > 0 | I"*' = JI"} and call it the reduction number of with respect to
J. Suppose that a;, az, ..., a¢ is a minimal system of generators for the minimal reduction
J of I satisfying the following two conditions.

(¥) J;Ap is a reduction of A, for any p € V(I) with i =htyp < (.

(xx) a; g pif p € Assg A/Ji 1\ V([) forany 1 <i < (.

Here V(I) denotes the set of prime ideals in A containing I, and we set J; = (ay,az,- -+ ,a;)
for 0 < ¢ < (. According to [GNN1], 2.1, there always exists a minimal system of
generators aj, as, -+ , a for J satisfying conditions (x) and (**). We put

r; = max{ry, (I,) | p € V(I) andhtsp = i} for any s <i < (.
Our ideal I is said to be generically a complete intersection if r, = 0. Let

U=U)= ()] 4n4),

pEAssh s A/l

where Assh4 A/1 = {p € V(I) | dim A/I = dim A/p}. If I = U, then we say I is unmixed.
We denote the a-invariant of G(I) by a(G(I)) ((GW], 3.1.4). With this notation the main
result of this paper is stated as follows.



Theorem 1.1. Assume that ad(I) < 2 and htap < s+2 for any p € Assy A/I. Suppose
that G(I) is a Cohen-Macaulay ring. Then the following two conditions are equivalent.

(1) G(I) is a Gorenstein ring and a(G(I)) = —s.

(2) (a) rs(I) <ad(),
(b) 1; <i—s forany s <i<{(, and
(¢) I =T Uy (Jsiid i ).

When this is the case, if ad(I) = 2, then the following two assertions are satisfied:
(i) I=Uifandonlyifry; =0;
(i) ry,(fp) <1 for any p € V(I) such that htyp = (.

The Cohen-Macaulay property of the associated graded ring G(I) closely studied, and
we have a satisfactory criterion given by the first author, Y. Nakamura, and K. Nishida
([GNN1]). If G(I) is a Cohen-Macaulay ring, then we have depth A/I" > d — ¢ for all
n > 1, so that htyp < ¢ for any p € Assy A/I". Hence when ad(l) < 1, the Cohen-
Macaulayness of G(I) require the condition that ht4p < s +2 for any p € Ass, A/I.

Many authors have studied the Gorensteinness of the associated graded rings G(I).
However, almost all authors assumed the ring A/I is Cohen-Macaulay and we lack sat-
isfactory references analyzing ideals for which the rings A/I are not necessarily Cohen-
Macaulay. In our theorem 1.1 we have assumed that ht,p < s+ 2 for any p € Assq A/I
but the assumption that the ring A/I is Cohen-Macaulay is removed. The first author
and Y. Nakamura [GNal] explored generically complete intersection ideals I (which are
not necessarily Cohen-Macaulay ideals) with ad(I) = 1 in a Gorenstein local ring A of
dim A = 1 and gave in that case a criterion for the Gorensteinness in G(I). We have
recently succeed in generalizing their result to the case where the dimension of A is ar-
bitrary ([GI]). By our theorem 1.1 we have overcome the assumption that ad(I) =1 in
[GI] also, and get a characterization in the case where ad(I) = 2.

We now briefly mention the contents of the paper. The proof of Theorem 1.1, which
will be given in Section 3, is based on the case where d = ¢ = 2 and s = 0. In Section 2 we
shall devote Theorem 1.1 in such a case. In Section 4 we will summarize some corollaries
for unmixed ideals derived from our theorem.

Before entering into details, let us fix again the standard notation in this paper.
Throughout let (A4, m) denote a Gorenstein local ring with dim A = d and assume that
the field A/m is infinite. Let I (# A) be an ideal in A with a minimal reduction J. We
put s = hty I and ¢ = A(I). Suppose that a minimal system of generators a;,as,- - ,a;
of J satisfy conditions (x) and (%x). We set J; = (a1,as,--- ,a;). Let U = U(I) that is
the unmixed component of I. We put R'(I) = A[It,t] C A[t,t™!] (¢ is an indeterminate
over A) and G(I) = R/'(I)/t7'R'(I). We denote G(I) simply by G and put a = a(G),
which denotes a-invariant of G. Let 9 = mG + G;. We denote by Hiy(*) (i € Z) the
it2 local cohomology functor of G with respect to 9. For each graded G-module E, let
[E], stand for the homogeneous component of E of degree n and let a;(E) = sup{n € Z |
[Hig(E)]. # (0)} (i € Z). Let A= {p € V(I) | htyp = dim G,/pG,}. We denote by K¢
the graded canonical modules of G. We shall freely refer to [BH], [GN], [HK], and [HIO]
for details of the theory on canonical modules.




2 The case where d =/ =2 and s = 0.

Throughout this section we always assume that d = { = 2 and s = 0. Let I be generically
a complete intersection. The purpose of this section is to prove the next proposition.

Proposition 2.1. Assume that depth A/ > 0. Then the following two conditions are
equivalent.

(1) G is a Gorenstein ring.
2) ) )<,

(i) r; <1, and

(lll) I= alU U (alI N I)

When this is the case, I = U if and only if r; = 0.

When the conditions (i) and (ii) are satisfied, we get G is a Cohen-Macaulay ring if
depth A/I > 0 (see [GNN1]). Then from the a-invariant formula:

a(G) = max{{r; —i | s <1 < (U {r,(I) - (}}

(cf. [U], 1.4) we obtain that a = 0. Conversely when G is a Gorenstein ring, we have
a = a(G)y) for any p € V(I), so that a = 0 (recall that ry = 0). Therefore we get r; <1
by the a-invariant formula. Hence in the rest of this section we consider the case where
depth A/T > 0, r; < 1, and G is a Cohen-Macaulay ring with a = 0. Before proving
Proposition 2.1, let us summarize the following. Let a = (0) : I and let A= A/a. We
have U Na = (0) and hence a, is A-regular element (see [GNal], 2.1). Let Q (A) denote

the total quotient ring of A. We consider a commutative A-algebra

B:=1IA :Q(Z) IA
that is finite as A-module. We have depth IA = 2 because depth A/I > 0 and IA=]
(recall that I N a = (0)). Therefore the ring B is a maximal Cohen-Macaulay A-module.

Lemma 2.2. Kg 2 a,U iy (ai1 ;1 I).

Proof. Let D = a;TA : A I'A and let o = @7, which denotes the coset of a containing ;.

Then we have D
B=—:={£l/3€D}
o o

in Q (A). In fact, it is routine to check B 2 g Conversely, we take v € B. Then
ay € ITA and hence v = 3/a for some § € IA. Since JA-8=(TA-7)-a CTA-awe
D
have 3 € D. Therefore v € —.
«



We obtain that

KB = LTZ :Q(Z) B = UZ izg
(a1U+a) ‘A ((a,ll—l—a) I [)

= aUAgx D= .

Since I Na = (0), we have a,U :4 (1] :y I) = (a,U 4+ a) :4 ((a1I + a) :; I) and hence

: g1
KB=a1U A(:II I )

And we obtain that the natural homomorphism

U ‘A (a1] I I)
a

aU p (ad o 1) — &

is bijective. In fact, since U Na = (0), we have the map ¢ is injective. Let z € a,U :4
(ard :p I). We get ayx € a,U, as a; € a;] :f I. Hence & € U + a because a = (0) : a; (see
[GNal], 2.1). Therefore we get a U :4 (a;l :; I) C U + a and hence it is surjective.  [J

We put T' = G (_IZ) and S = G(IB) for short. Look at the natural exact sequence
0 >4 —B —B/A—0.Let C =BJ/A. Then dimC < 1. Since [A = IB, we get the
exact sequence

0-T5S=C =0 (1)
of graded G-modules. Moreover we have the exact sequence
0—=a—G ST -0 (1)

of graded G-modules by [GNal], 2.3. We note a; is B-regular element and hence A\(IB,) >
0 for all maximal ideal n in B. Let A denote the m-adic completion of A. Notice that
A®©aS =[]}, G(IB;) is the direct product of associated graded rings S; := G(IB;) of
ideals IB; (with positive analytic spread) in Cohen-Macaulay local rings B;, which are
finite as A-modules.

Lemma 2.3. S is a mazimal Cohen-Macaulay G-module.

Proof. Since deptha = 2, we get depthT > 0 by (#f). We apply the local cohomology
functors Hiy(*) (i € Z) to the graded exact sequences () and (f). Then by the resulting
graded exact sequence

0 — Hon(T) — Hiz(a) = Hap(G) = Hay(T) = 0

of local cohomology modules from (#), we have Hi,(T') = [Hin(T)]o and a(T) < 0 because
H2y(a) = [H%:(a)]o (see [GH], 2.2) and @ = 0. And by the resulting graded exact sequence

0 = Hy(S) = Hyp(C) = Hin(T) = Hin(S) = Hin(C) = HR(T) = Hy(S) — 0



of local cohomology modules from (fff), we have Hi,(S) = [Hiz(S)]o for any integers

i =0,1 and a5(S) < 0 because Hi(T), Hiz(C). and Hiy(C) are concentrated in degree 0
(see [GH], 2.2) and a(T") < 0.

Now assume that S is not a Cohen—Macaulav G-module. Let t = depthS. Then

= 0 or 1. Because A (04 Hiy(S = @/ H 4“ (i) as graded A @4 G-modules,

we can find 1 < j < n such that (0) # HA Lol S;) = [H*: o (Sillo. From [KN],

3.1 we obtain that a,(S;) < a;41(S;). However this is 1mp0551ble since a,(S;) = 0 and
ar41(S;) < a1 (S) 0. O

Apply the functor Homg (%, Kg) to the graded exact sequences (§) and (f), and we
get the following commutative and exact diagram:

0

0 ExtL(C, Ke)

|

0 —— Ks - Kg —  Cokerc*op* —— 0

“ H

0 —— Kr < Ke y Homg(a, Kg) — ExtL(T,Kg) — 0

|

ExtL(C, Ke) 0

|

0

of graded G-modules where K denotes formally Homg(S,K¢). Notice that HOIl'lc;(Cl Kg)
and Ext};(C,K¢) are concentrated in degree 0 (see [BH], 3.6.19 and [GH], 2.2). Now let
w = {w;}iez stand for the canonical I-filtration of A ([GI]). Hence we have I'+] C w; for
all i € Z and Kg = @ ;> wi—1/wi as graded G-modules. '

Lemma 2.4. Cokere* =2 A/U.

Proof. We put Z = Cokere*. Since Z C Homg(a,Kg), we have Z is concentrated in
degree 0. Therefore Z = A/E for some ideal E in A because we have a surjective
homomorphism A/wy = [Kglo = Z. Hence U C E, as a = (0) : U. Assume U C E
and choose p € Assq A/U so that U, C E,. Since p 2 a, we have T, = (0), so that
(0) = Kg, = [K7]p. Thus we get [I\C,]p = [41/E]p by the diagram above From [K¢|, =
Kg, = A, we obtain E, = (0), which is a contradiction. O

Lemma 2.5. Suppose p € V(I) such that htap =1 and p O a. Then IB, = a,B,.



Proof. We have I'A, is po—grimary ideal with gZP)Z = allﬁ,, because r; < 1. From
[GIW], 4.1 we obtain that [IA], = a,B,. Since IA = IB, we get IB, = a, B,. ]

We put X = Cokere*op*. Since Homg(a,Kg) and Ext}(C,K¢) are concentrated in
degree 0, we get X = [X]o. Hence there exists an ideal F in A such that X = A/F (recall
that .4/w0 = [KG]O —» _X').

Lemma 2.6. Suppose wy =1. Then I = F and hence r;(I) < 1.

Proof. We have a surjective homomorphism A/I — X and hence I C F. Assume I C F
and choose p € Assy A/I so that I, C F,. We have p # m because depth A/I > 0.
If p 2 a, then S, = (0), so that (0) = Ks, = [Ks],. Thus we get [K¢], = [4/F], by
the diagram above. Since [Kglo = A/wo = A/I, we have [A/]], = [A/F],. Therefore
I, = F,, which is impossible. If p D a, then htyp = 1 and hence S, = G(a;B,) is the
polynomial ring in one variable by Lemma 2.5. Then we have ay(S,) = —1 and hence
(0) = [Ks,Jo = [[Ks],Jo (see [BH], 3.6.19). Therefore we have [4/I], = [A/F],, whence
I, = F,. This is a contradiction. Thus we get I = F.
Then we get the exact sequence

0 -Ks =-Kg —A/T —0

of graded G-modules. Since [Kg]o = A/I, we have [Ks]y = (0) and hence ay(S) < 0 (see
[BH], 3.6.19). Let n be an maximal ideal in B. Then S, = G(IB,) is a Cohen-Macaulay
ring with a(S,) < 0 (recall that ay(S) > a(S;) = a(S,) for some j = 1,2,...,n). We
have A\(IB,) > 0. Suppose A(IB,) = 1. There is an element b € JB, such that bB,
is a minimal reduction of IB,. Thanks to the a-invariant formula, we get r,p (IB,) <
a(S,) +1 < 0 and hence bB, = JB, = IB,. Suppose A(IB,) = 2. Then we obtain
1;8,(IB,) < a(Sy) +2 < 1 from the a-invariant formula. Therefore in any case we get
1yp,(IB,) < 1, whence I*’B = JIB. So I?’A = JIA, as IB = IA. Then I2 C JI + a, and
hence we have I? = JI because I Na = (0). d

We now come to the proof of our proposition.

Proof of Proposition 2.1. (1) = (2). Assume G is a Gorenstein ring. Then w, = I,
so that r;(I) < 1 by Lemma 2.6. We must show that I = a;U :y (a;I :y I). Let
L = a,U :y (ayI :; I). Then we have I C L. Let p € Assy A/I. It is enough to prove
I, = Ly. We have p € A (see, e.g., [GI], 3.1) and p # m, as depth A/I > 0. If ht 4 p =0,
then U, = (0). Hence we may assume ht4 p = 1. Then a;4, is a minimal reduction of I,
with 4, 4,(l;) < 1 because p € Aand 1y < 1. So I, = ayly zy, I,. If hty I, = 0, then I,
is generically a complete intersection and hence we get I, = a,U(I,) :y(,) I, by [GI], 6.3.
Therefore I, = Ly, as U(I,) = U([)y. If hty [, = 1, then I, is an pA,-primary ideal of A,
with 1, 4,(Ip) = 1 because 14, 4,(I,) = a(G(I,)) + 1 and a(G(I,)) = a(G(I),) = a = 0.
Hence, according to [GI], 1.4, we get I, = a1 A, : I,. Therefore I, = L,, as p 2 U.

(2) = (1). First of all, we obtain that G, = G(I;) is a Gorenstein ring with a(G,) = 0
for all p € Assy A/I. In fact, let p € Assy A/I. If htyp = 0, then G, = A,, so that



we have nothing to prove. Hence we may assume ht4p = 1. Then a;4, is a minimal
reduction of I, with 14, 4,(f;) < 1, whence I, = al, :p, I,. When ht4 I, = 0, we get
I, = a\U(L}) sy, Ip- And when hty I, =1, we get I, = ayAp 1 I, (recall that p 2 U)
and hence ralAp(Ip) = 1. Consequently, from [GI], 6.3 and 1.4 we obtain that G, is a
Gorenstein ring with a(G,) = 0 in any case.

Then we have [wy], = I, for all p € Asss A/I, therefore wy = I (recall that w 2 I).
According to Lemma 2.6, we have I = F. Hence we get the exact sequence

0 5Ks =2Kg —A/I =0

of graded G-modules. Since [Kglo = A/I, we get [Is]o = (0)

Claim 2.7. The graded G-module Ks is generated by elements of degree 1.

Proof. Since a; is IA-regular element, a; is B-regular element. We put B =B/a,B and
S = G(IB). We have B/IB = B/IB is a Cohen-Macaulay ring and htp IB = 1, as
B and IB are maximal Cohen-Macaulay A-modules. From Lemma 2.5 we obtain that
IBg = (0) for any € V(IB) such that htzQ = 0. Thus we have IB is not nilpotent
since IB # (0) and IBg = (0) for all Q € Assy B/IB We have I?B = a,I B, therefore
ast is Sy := @, o[Si-regular element because a; is IB-regular element (see [GNal], 2.1).
Thus we get the graded exact sequence 0 — S (—1) = “4 S, — IB/I’B —0. Apply
the local cohomology functors Hiy(x) (¢: € Z) to this, and we have the graded exact

sequence 0 — HY(IB/I*B) — Hin(S+)(—1) 22 Hi(S4) of local cohomology modules.
And furthermore, applying the functor Homg (G /9, *) to this, we get isomorphism

Homg(G/9M, Hy(IB/I*B)) =2 Homg(G/IM, Hyn(S1))(—1)

of graded G-modules because aptG C 9, and hence Homg G/im Hin(S+)) is concen-
trated in degree 0 because Hiy(IB/I?B) = [Hy(IB/I*B)]; (see [GH], 2.2). We apply
the local cohomology functors Hiy(*) (i € Z) to the graded exact sequence 0 —)—§+ —
S —B/IB —0. Then by the resulting graded exact sequence 0 —Hi(S4) —Hix(S) —
Hiz(B/IB) —0 of local cohomology modules, we get the exact sequence

0 — Homg(G/9M, Hin(S+)) — Home(G/9M, Hip(S)) —Home (G/IM, Hyy(B/1B))

of graded G-modules. We have Hi(B/IB) = [Hjz(B/IB)]y, hence we obtain that
Homg (G/M, Hin(S)) is concentrated in degree 0 We note a;t is S-regular element (see

[GNN2], 2.3). Then we have the sequence 0 — S(-1) — 24 6§ 35 — 0 of graded G-
modules, as S = S/a;tS (see [VV]). Applying the local cohomology functors Hin(*) (i €

Z) to this, we have the graded exact sequence 0 — Hjy(S) — Hay(S)(—1) 2 HZ,(S) of
local cohomology modules. Therefore we get the isomorphism

Homg(G/9M, Hiy(S)) = Home (G/MM, Hip(S))(—1)

of graded G-modules, and hence Homg (G/9M, Ha;(S)) is concentrated in degree —1. This
means that the graded G-module Ky is generated by elements of degree 1. O



By the condition (iii) and Lemma 2.2 we may assume Kg = I. Using Claim 2.7 and
[HSV], 2.4 we obtain Ks = G because S is a Cohen-Macaulay ring. Therefore we have
the exact sequence

0 -Gy »Kg —A/I -0

of graded G-modules. Look at the homogeneous components

0 — A/wy — A/I =0
0— 1/12 — wo/w1 b 0
0= I*/PP - w/w, — 0

of above, where w = {w;}icz is the canonical I-filtration of A ([GI]). By induction on
i, we see that w; = I'*! for all integers i > 0. In fact, we have wy = I. Let i > 0
and assume w;_; = I'. We note that w; O I't'. From bijections above we obtain that
I'JI* = w1 Jw; = I'/w;, and hence the natural surjective map I'/I'*! — [i/w; is
bijective. Thus w; = I'*! for all i > 0. This means G is a Gorenstein ring.

Now let us check the last assertion. Suppose I = U. We take any p € V(I) such
that htap = 1. If p 2 a, then I, = (0). Andif p D a, then B, = A, because 4, is a
Cohen-Macaulay ring with K5 2 I,. Therefore we have T4, = alAp by Lemma 2 5, S0
that IA, C a; Ay, + a,. Since IA Na, = (0), we get 1A, = alAp Thus in any case we
obtain 14, 4,(/A,) = 0. This estabhshes that r; = 0.

Conversely, assume I C U and choose p € Assy A/I so that I, C UP Then we have
ht4 p =1 because U, # (0 ) and depth A/I > 0, and hence A4, = alA since r; = 0. Take
the G-dual of the sequence (#ff), and we have the exact sequence

0 —>Kr -G —A/U —0

of graded G-modules by Lemma 2.4, and hence [Kr]y = U/I. So [Kg,]o = U,/1, # (0).
However, we have a(T,) = 1 because T, = G(a;4,) is a polynomial ring in one variable.
This is a contradiction, which completes the proof of Proposition 2.1. O

We would like to close this section the following example of certain mixed ideal I
satisfying the conditions (i), (ii), and (iii) in Proposition 2.1 and whose the associated
ring is a Gorenstein ring.

Let k[[X,Y, Z, W]] be the formal power series ring in 4 variables over an infinite field
k. We put A =k[[X,Y,Z, W]]/(X(Y +W),(X+ Z)(Y + Z)W) that is a Gorenstein local
ring with dimension 2. We denote by z, y, 2, and w the reduction of X, Y, Z, and W
mod (X(Y + W), (X+2)(Y +2Z)W). Let I := (z,2z)N(x,y,w) = (v,yz,zw). Then I is
generically a complete intersection with height 0. Let a; = r +y2z + zw and ay = zw. We
put J = (ay,a;) that is a reduction of I with r;(I) =1, as I* = JI + (2?) and 2% = a;z.
Moreover we get J is minimal because a;, ay is d-sequence, and hence A(I) = 2. It is
routine to check that a;, ay satisfy () and (xx) stated in Section 1 and r; = 1. We put
L =a,U:y (a]:f I). Then I C L. Assume that I C L and take p € Ass4 A/I so that
I, C Ly. Then p = (x,y,w), which is height one. We have r,, 4(I,) = 1. Consequently,
L, = a4y 14, Iy # Ap. Since I, is the maximal ideal in A,, we have I, = L,. Therefore
I = L. Hence we get G(I) is a Gorenstein ring by Proposition 2.1.




3 The proof of Theorem 1.1.

In this section we prove Theorem 1.1. To do this, we may assume that I is a generically
a complete intersection and @ = —s because when G is Cohen-Macaulay, we have a = —s
if and only if the conditions (a) and (b) stated in our theorem 1.1 are satisfied (use the
a-invariant formula: a(G) = max{{r; —i | s <i < (} U{r,(I) — (}}). If ad(I) = 1, then
Theorem 1.1 is covered by [GI], 1.6. Hence we may assume furthermore ad(I) = 2. Thus
it is enough to show the following.

Theorem 3.1. Assume that I is generically a complete intersection with ad(I) =2 and
htap < s+ 2 for any p € Assy A/I. Suppose that G is a Cohen-Macaulay ring. Then the
following two conditions are equivalent.

(1) G is a Gorenstein ring.

(2) (a) (1) <2,
(b) Tst1 S 1; and
(©) I=JuiUy (JurD 21 1),

When this is the case a(G) = —s, and the following two assertions are satisfied:
(i) I=U if and only if 1,11 =0;
(ii) 1j,(Iy) <1 for any p € V(I) such that htyp =s+2.

Proof. If G is a Gorenstein ring, then a = —s (recall that r, = 0 and a = a(G(I,)) for all
g € V(I)) and hence conditions (a) and (b) stated in Theorem 3.1 are satisfied (use the
a-invariant formula). Therefore, to prove Theorem 3.1, we may assume that conditions
(a) and (b) are satisfied. Then we obtain that @ = —s (use a-invariant formula again).
Here we put K = (ay,as,- - ,a,). Since G is a Cohen-Macaulay ring, we get the sequence
ait,ast, - -+ ,ast is G-regular (see [GNa2], 3.3), so that

G/(art, ast, ..., at)G = G(I/K)

of graded A-algebras ([VV]). We note the following.

Claim 3.2. J,\U v (ol i1 I) = (JonU + K) 2o (Jond + K) o ).

Proof. We put D = J,,I i I, and then D C (Joyi 1 + K):yI Letx € (Jgl+ L) 1.
Then zI C (Jo1 I + K)N1?* = JoI + K NI Since ait,ast, -, a,t is G-regular, we
get K N I? = KI, and hence D = (J;1, I + K) :; I. Moreover we have J, U iy D C
(J1U + K) :y D. Let ¢ € (Jo1U + K) iy D. Then 2D C (JonU+ K)NIU =
JoiU + K N IU. Hence it suffices to show that A' N IU = KU. Let p € Assy /KU.
Then it is enough to prove K, N LU, = K,U,. We may assume U C p. Look at
the exact sequence 0 — K/KU — A/KU — A/K — 0 of A-modules. Then since
K/KU = (AJU) @4/ (K/K?) 2 (A/U)*, we have Assy A/ KU C Assy A/UUAss s A/
Therefore ht4 p = s, whence I, = U, = I. O



According to [GNN1], 3.4 together with Claim 3.2, passing to the ring A/K, we may
assume furthermore that s = 0. We must check that G is a Gorenstein ring if and only if
I'=a,U :y (a1 :;; I). Assume G is a Gorenstein ring. Then in the same way of the proof
of Proposition 2.1, (1) = (2), we get I = a;U :y (ai1 :; I).

Conversely, we take any p € A. It suffices to show that § (Ip) is a Gorenstein ring with
a(G(ly)) = 0 (see [GI], 1.2). Notice that ht4p = A(I,) < 2 because Jp is a reduction of
Iy. If ht4p =0, then I, = (0) and hence we have nothing to prove.

Assume that ht4p = 1. Then a;4, is a minimal reduction of I, with Laa, () <1
because ht4p = A(I,) =1 and r; < 1, so that I = aidy o, I If hts, I, = 1, then I,
is a pA,-primary ideal in 4,. Therefore p 2 U. So we have I, = a1 A, : I, and hence
Yo 4,(ly) = 1. If hty, I, = 0, then U(I), = U(I,) and hence we have I, = [a,U(I,) :
L) N U(Iy). Consequently, thanks to [GI], 1.4 and [GI], 6.3, we get G(I,) is a Gorenstein
ring with a (G(1,)) = 0.

Suppose that ht 4, p = 2. Then J, is a minimal reduction of I, with 1y, (1;) < 2 because
htap = A(f,) =2 and 1,(I) < 2. If ht,y, I, = 2, then p is a minimal prime ideal of I.
So we have p € Assy A/I, however this is a contradiction to the standard assumption.
Hence we get ht4 I, <1. Let ht,, I, = 1. Hence ad(I) = 1. Since p ¢ Ass, A/I we have
Ay/1y is a Cohen-Macaulay ring. Thanks to [GNN2], it is enough to check the following
three assertions: - '

L. T, 4]0 ([Blg) =1 forall Q € Assg, Ap/I;
2. a1 Ay g, 1, C I;
3‘ rcuAp (IP) S 1

Since hty, I, = 1, we have p 2 U and hence I, = a, 4, i, (ardy iy, L) D ar A, ‘4, Ip. Thus
we get the assertion 2. Let @ € Assy, Ay/I,. Then hty, @ =1 because the ring Ap/I is
Cohen-Macaulay. Take q € V(I) such that @ = qA,, and we have r, 4 g <1l,ashtyq=
1. Since a1Aq 14, Ig C I # Aq, we get 14,4, (I;) = 1. We must show the assertion 3.
Notice that a(Gy) = 0 (use the a-invariant formula: a(G,) = max{r;(I;) — 1,1, (I,) - 2}).
Since Gy is a Cohen-Macaulay ring, we have a,t is Gy-regular element (see [GNN2], 2.3).
Hence, passing to the ring A,/a;4,, it suffices to show the following claim, which is due
to [GNN2] (see [GNN1], 3.4).

Claim 3.3 ([GNNZ2]). Let A be a Gorenstein local ring. Let I be an ideal in A with
hty =0 and bA a minimal reduction of I. Assume that G is a Cohen-Macaulay ring with
a(G) = 1. Then 1y,4(I) <1 if A/T s Cohen-Macaulay and (0) :4 I C I.

Proof. We put a = (0) :x I, A = A/a and T = G(I'4). According to [GNN2], 4.5, we
have the exact sequence
0 5Ky —Kg —A/I(1) =0

of graded G-modules. Let w = {w;}icz be the canonical I-filtration of A ([GI]), hence we
have w; = A for i < -2 and K¢g = @D;>_, wi—1/w; as graded G-modules. Look at the
homogeneous component 0 — [K7]_; — A/w_; — A/I — 0 of degree —1 in the exact
sequence above, and we get w_; = I because w_; D I and hence [Ky]_, = (0). Therefore



a(T) = 1. So 1,3 (IA) < 1 by [GNN2], 4.4. Then I? C bl +a, so that I* = bl because
anI? = (0) (see [GNN2], 4.2 (1)). -

Now let ht 4 I, = 0. To prove that G(I,) is a Gorenstein ring with a (G(I,)) = 0, we must
show 1, (I,) <1 (see Proposition 2.1). It is enough to show wo, = I, by Lemma 2.6. We
have wo, 2 I,. Let g € Assy Ap/I,. Then ht 1 g <1. We have discussed earlier that G(/)
is a Gorenstein ring with a (G(I;)) = 0. Therefore we get wy, = Iy, so that wy, = I;.
Because G, is Gorenstein for any p € V(I) such that ht,p = 2, the last assertion
follows from Proposition 2.1. This completes the proof of Theorem 3.1. O

As consequence of Theorem 3.1 with [GNN1], 6.6, we get the following.

Corollary 3.4. Assume that I is generically a complete intersection with ad(I) = 2.
Suppose that depth A/I > d — s — 1. Then the following two conditions are equivalent.

(1) G s a Gorenstein ring

(2) (a)

(b) Tst1 S 1;
)
)

When this is the case, a(G) = —s, and the following two assertions are satisfied:
(i) I=U if and only if ryy1 =0;
(ii) ry,(fy) <1 for any p € V(I) such that htyp =54 2.

4 The case where [ is unmixed.

In this section we summarize some corollaries derived from Theorem 1.1. When I is an
unmixed ideal, we can simplify these conditions in 1.1 and readily have the following.

Corollary 4.1. Assume that ad(I) < 2 and I is an unmized ideal. Suppose G(I) is a
Cohen-Macaulay ring. Then the following two conditions are equivalent.

(1) G(I) is a Gorenstein ring and a(G(I)) = —s.

(2) (a) ry(I) < ad(I),
(b) pa,(I,) < htap for any p € V(I) such that htyp < (.

Here let u(*) stand for the number of generators. The condition (b) in Corollary 4.1 is
equivalent to saying that our ideal I has a certain special reduction (cf. [N], (2.2)).

Next, let us consider the case where d = (. Then we get the following, which is due
to [GNal] when ad([) = 1.



Corollary 4.2. Assume that ad(I) < 2 and I is an unmized ideal. Suppose d = €. Then
the following two conditions are equivalent.

(1) G(I) is a Gorenstein ring and a(G(I)) = —s.

(2) (a) rs(I) < max{0,ad(I) — 1},
(b) pa,(I;) <htyp for any p € V(I) such that ht4p < L.

Proof. We may assume G is Cohen-Macaulay by [GNN1], 6.5. Hence the sequence
ajt,ast, -+ ast is G-regular (see [GNN2], 2.3 and [GNa2], 3.3) and hence we may as-
sume furthermore s = 0. Then by Proposition 2.1 with [GNal], 2.11, we get Corollary
4.2. O

Let us note the following corollary.

Corollary 4.3. Let p be a prime ideal in a reqular local ring A with dim A/p = 2. Assume
that A/p is a complete intersection in codimension one, then the associated graded ring
G(p) is Gorenstein if and only if there is a minimal reduction J with r;(p) < 1.

We conclude this paper with the following example of the case where ad(p) = 2. Let
k[X1, X5, X5,Y7,Y5] and ks, ] be the polynomial rings over an infinite field k. Let n > 4
be an integer such that 3 { n and let ¢ : k[X;, X5, X;3,Y7,Y2] — k[s, t] be the homomor-
phism of k-algebras defined by ¢(X1) = 5, ¢(X,) = st, ¢(X3) = st?,4(Y;) = 3, 4(Y3) = t".
We put S = k[X;, X5, X35,Y1,Y5] and A = Son, where MM = (X, X, X3,Y7,Y5)S. Let
P =ker ¢ and p = *PA. We have the ring A/p is a complete intersection in codimension
one. Let k£ > 0. Then the ideal 0 is minimally generated by the following seven elements:

fl=/X'22—-X1X37 f2=X2X3_X12}/17
X1Y2 — Xg)flk (Tl =3k + 1)
= X2 - X, X,Y;, =
f3 3 14241 f4 X1Y2 _Xay'lk (n:3k+2),
foz XoY, — X3YE (n=3k+1) - X3Y, = X,V (n=3k+1)
XoYe — X\ VMY (0 =3k +2), X;3Yy — XoYF (n =3k 4+ 2),and
g= Y'23 _ }/171

When n = 3k + 1, they satisfy the relations:
fig ==Y 2+ Yof2 —Yofafs + Y fsfo
fog = -N1Yaff + YFfG =Y fufs + Y fi fo
fife = fafs — fsfa

and hence, letting § = (fs, fa, f5, fo + 9, 1 + f6)S, we get P? = IP. When n = 3k + 1,
they satisfy the relations:

fig = =Y f2 + YIS} = YI fufs + Yafafo
fg=-YYaf} + {2 =Y fufo + Y o fo
f2f6 = f3f5 - Y1f1f4



and hence, letting J = (fs, f1, 5, f1 + 9, f2 + f5)S, we get P? = JP. Hence by Corollary
4.3, the ring G(p) is a Gorenstein ring.

In particular, we have ad(p) = 2. In fact, assume PO = P2 Then P2 3 fifs — 2 =
X,(3X: X5 XY, — X3Y; — X3 — X7YP), so that 3X, Xo XY, — X3, - X3 - X3Y? e P
However this is impossible. Therefore, thanks to [N], we have A(p) = 5 and hence ad(p) =
2.
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ON THE FIBER CONES OF BUCHSBAUM MODULES

KIKUMICHI YAMAGISHI

Himeji Dokkyo University

1. MAIN RESULTS

The aim of this note is to investigate the behaviours of the fiber cones. Let (4, m) be a
Noetherian local ring and E a finitely generated A-module. For an ideal a, we denote by
Fu(E) the fiber cone of E with respect to a, namely,

Fo(E) := P a"E/a"mE.
n>0

There were already given several works on behaviours, especially on the Cohen-Macaulayness,
of the fiber cones, see [S] etc. But, concerning on the Buchsbaumness of them, we had
only quite few results unfortunately, cf., see [G2]. Thus, we are here very interested in
the Buchsbaumness of the fiber cones and we particularly calculate their local cohomology
modules. Namely, we try to find an answer to the following question:

Problem. How does one the local cohomology modules of the fiber cone F4(E) calculate?
Moreover, when does it obtain the Buchsbamness?

In particular, here we mainly discuss the case where the equality
[(Ga(E)) = I(E)

holds and the reduction numbers of such ideals a are at most one. Here we define an
invariant of E, written I(E), as follows:

I(E) := i (S: 1)  B(E),

1=0

where we denote by hi(E) the length of the ith local cohomology module Hi (E)of E, i..,
h(E) := 14(Hi(E)), and write s := dima E. Recall that Go(E) := PD,>o a"E/a"tE
denotes the associatde graded module of E with respect to an ideal a and Rq(E) :=
©D,.50 9" E denotes the Rees module of E associated to an ideal a. Moreover, R := R4(A)
denotes the Rees algebra of a and also 91 denotes the unique homogeneous maximal ideal
of R, i.e., 91:= mR + Ry. Then we have the only partial answer as follows.



Theorem 1. Suppose that the following conditions are fulfilled:

(i) E is a Buchsbaum A-module of dimensin s > 0:
(i) the equality I(G4(E)) = I(E) holds:
(iii) a?E = qaE holds for some minimal reduction q of a with respect to E:
(iv) mE is also a Buchsbaum A-module:
(v) the equality [(Ga(mE)) = I(mE) also holds.
Then, Fo(E)4 1= Ppso a"E/a"mE is a Buchsbaum module over R, and moreover the
fiber cone Fo(E) itself is so if and only if ma’E : a®> = maE : a holds.

As an application of Theorem 1, we can state a generalization of Theorem 5 described
below in the following.

Corollary 2. Suppose that the following conditions are fulfilled:

(i) E is a Buchsbaum A-module of dimensin s > 0:
(i) the equality I(G4(E)) = I(E) holds:
(iii) mE is also a Buchsbaum A-module:
(iv) amE = qmE holds for some minimal reduction q of a with respect to E.

Then the fiber cone Fq(E) is a Buchsbaum module such that
_ [ KUE) - R°(mE) + h°(aE) (p=0)
P EED = | (G ) C(1<p<s)

Moreover, Fo(E) is a Cohen-Macaulay module, 1f E 1is so.

In 1999 S. Goto [G2] just brought us an epoch-making work. He introcduced a new
notion called an (m-primary) ideal of minimal multiplicity (in Cohen-Macaulay rings) and
studied the Buchsbaumness of Rees algebras (and also the associated graded rings and
the fiber cones) associated to such ideals of minimal multiplicity. This notion is naturally
extended for Buchsbaum rings. Namely, for an m-primary ideal a in a Buchsbaum ring A
of dimension d > 0, we say that a possesses minimal multiplicity if the following equality

holds:
ea(A) = pa(a) +1a(A/a) — d —I(A).

In general, the term appeared in the right hand side makes a lower bound of the multiplicity
of a. So this is just a natural generalization of the notion in Cohen-Macaulay (local) rings
introduced by S. Goto, and moreover it is easy to see that this is equivalent to saying
that am C g (and hence the equality am = qm) holds for some (and hence every) minimal
reduction q of a. Then we also have the following as an corollary of our theorem.

Corollary 3. Let A be a Buchsbaum ring and a an m-primary ideal of A. Suppose that
the equality 1(Gq(A)) = I(A) holds and a possesses minimal multiplicity. Then the fiber
cone Fy(A) is a Buchsbaum ring.

Nextly, in the one dimensional case, we also have the following results.



Theorem 4. Let E be a one-dimesional Buchsbaum A-module and a an ideal of A such
that a?E = aaFE holds for some minimal reduction (a) of a with respect to E. Then the
following coditions are equivalent.

(1) The firber cone Fo(E) is a Buchsbaum module such that
I(Fo(E)) = €a(E) —lA(E/aE) — pa(aE) + pa(E) + [(E) + L(aE).
(2) amE C aFE for all minimal reducition (a) of a with respect to E.

Theorem 5. Under the same situation as in Theorem 4 above, suppose that amE C aoFE
holds for some minimal reducition (a) of a with respect to E. Then the following conditions
are equivalent.

(1) The firber cone Fo(E) is a Buchsbaum module such that
I(Fy(E)) = LE) — I(mE) + I(aE).

(2) amE = amFE holds.
(3) €a(E) =1a(E/aE)+ pa(aE) — ps(E) — I(mE) holds.

2. OUTLINE OF THE PROOF OF THEOREM 1

For simplicity, we usually denote by F(E), R(E), G(E) etc. omitting the letter of an
odeal a from our notation defined above.
In this section we assume that the following conditions are fulfilled:

(i) E is a Buchsbaum A-module of dimensin s > 0:
(ii) the equality I(G(E)) = I(E) holds:
(iii) a’E = gaFE holds for some minimal reduction q of a with respect to E:

Then, we begin with recalling the following facts.

Lemma 6 ([N], see also [SY]). The following statements are true.
(1) G(E) is a Buchsbaum R-module such that

[HR(G(E)]n = (0) (n#-p,1-p)
for 0 <p<sanda(G(E)) <1-s.

(2) For any minimal reduction of a with respect to E, say v := (by,by,...,b,), the
equalities

a’E=vwE and (b |i€c HENa"E= zb;’tean—n;E
€l

hold, where I C [1,s],n; >0 andn € Z.




Lemma 7 ([Y3]). The following statements are true.

(1)
H.(B) (n=0)
[HR(R(E))]. = { eENHL(E) (n=1)
(0) (else).
)

R, = { W
(3) HR(R(E)) = (0) if s > 2.
(4) If3<p<s, then

HE'(B) (ne3-p,-1])
[HR(R(E))]. = { [H(G(E)h—p (n=2-Dp)
(0) (else).

Furthermore we assume that the following conditions are also fulfilled:

(iv) mE is also a Buchsbaum A-module:
(v) the equality I(G(mE)) = I(mE) also holds.

Then, as the same as in Lemma 7, we also have the following.

Lemma 8. The following statements are true.

(1)
mENHY (E) (n=0)
[HR(R(mE))]. = { aENHL(E)  (n=1)
(0) (else).

©)
| A L
(3) By (R(mE)) = (0) if s 2 2.

(4) If 3<p<s, then

Hi ' (E) (ne3—p,—1])
[HR(R(ME)ln = { [Hy (GME)h-, (n=2-p)
(0) (else).



Now consider the following exact sequence of graded R-modules:

0 — R(mE) = R(E) — F(E) — 0.

(#1)

Then we have the long exact sequence of local cohomology modules of F(E) as follows:

0 — HY(R(mE)) = HY(R(E)) — Hy(F(E)) — -
— Hy (R(mE)) = H}(R(E)) — HE(F(E)) — -

(#2)

According to Lemmas 6-8, the long exact sequence of local cohomology modules (§ 2) is

divided into several parts as follows:

Lemma 9. The following statements are true.

(1) The following sequences of local cohomology modules are ezact:
0 — Hy(R(mE)) "= H(R(E)) — H(F(E))
— Hy(R(mE)) -~ Hyn(R(E)) — Hy(F(E)) — 0;
and for each 2 <p < s
0 — HE(F(E)) — HEH (R(mE)) 25 HEH(R(E)) —» 0.
(2) For each 2 < p < s, the homogeneous component of o?t! of degree n
[0+, : [HE (R(mE))], — [HE (R(E))].
18 isomorphic over A for all2 —p<n < —1.

Proof. Look for the following commutative diagram of graded R-modules:

0 —— R(aE) —— R(E) —— G(E) —— 0

0 —— R(mE) —— R(E) —— F(E) —— 0
Let 2 < p < s. By Lemmas 6 and 7, we see that the canonical map

HE (R(aE)) — HEH(R(E))
is surjective. Hence this implies that ¢! is so. Next look for the following:
[o?* ]« (B (R(ME))], — [HE (R(E))].
By Lemmas 7 and 8, we know that
La(HE (R(E))]a) = h?(E) = La((HE (R(E))]»)

and hence the surjective map [0?1!],, must be isomorphic.

Combining these observations we get the following.

(¢3)

(t4)



Proposition 10. The following statements are true.
(1) [HY(F(E))]n = (0) for alln £ 0,1.

(2) If 1 < p<s, then [HEL(F(E))], = (0) for alln # 1 — p. In particular, there ezists
the following ezact sequence of A-modules:

0 — [HR(F(E))-p — [HR(G(mE))]-p — [Hi(G(E))]-p — 0
for each 2 <p < s.
(3) a(F(E) <1-s.
Look for the following exact sequence of graded R-modules.
0— F(E)y — F(E) — E/mE — 0. (4 5)
By Proposition 10 we konw that
(B3, (F(E)4 )] = (0) foralln#1—p,

where 0 < p < s. According to [G1, Proposition (3.1)] it is easy to check that F(E)4
is Buchsbaum over R. Moreover it is also easy to see that the fiber cone F(E) itself is
Buchsbaum if and only if ma?E : a? = maE : a holds. This finishes the proof of Theorem 1.

3. OUTLINE OF THE PROOFS OF OTHER RESULTS

In this section, we assume that the following two conditions are fulfilled:

(i) E is a one-dimensional Buchsbaum A-module:
(ii) a?E = aaFE holds for some minimal reduction (@) of a with respect to E:

We also use the same notation F(E), R(E) etc. as in the previous section. Moreover we
usually regard the Rees algebra R as the graded A-subalgebra of A[t], the polynomial ring
over A with an indeterminate ¢, namely

R=) at" C Alt].

n>0

Let us consider the linear form at € [R];. Then

Proposition 11. The following statements are true.

(1) The following inequality

([0, at) < ea(B) = La(B/aE) = pa(aE) + pa(E) + E) + KaE)

holds. Moreover, the equality holds if and only if amE C aE holds.
(2) at is a d-sequence (cf. see [H]) on F(E) if amE C aE holds.



Lemma 12. The following equality holds:
ea(E) = {la(E/aE) + pa(aE) — pa(E) = (mE)} + l4(amE/amE),

where (a) 1s a minimal reduction of a with respect to E.

Note that the following formula holds in general:

€a(E) —lA(E/aE) — pa(aE) + pa(E) + I(E) + I(aE)
=I(E) — I(mE) + I(aE) + l4(amE/amE). (4 6)

Combining these observations, our Theorems 4 and 5 follow at once.
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On Chow groups of G-graded rings

Yuji Kamoi(Meiji Univ.)
and
Kazuhiko Kurano(Tokyo Metropolitan Univ.)

1 Introduction

In this paper, we study Chow groups of Noetherian rings graded by a finitely generated Abelian
group. It is well known that a class group of a normal graded ring is determined by homogeneous
height one prime ideals and homogeneous principal divisors. We will give a generalization of this
statement for Chow groups of Noetherian rings graded by a finitely generated Abelian group.

Let G be a finitely generated Abelian group (not necessary a torsion free) and A = (<) sec 4g
be the Noetherian G-graded ring. We call that a G-graded ideal p C A is G-prime, if every
homogeneous element of A/p is a nonzero divisor. If G has no torsion, then a G-prime ideal
is a G-graded prime ideal. Otherwise a G-prime ideal is not necessary a prime ideal and these
ideals involve an enough information to determine some property among G-graded rings. We
use these graded ideals to describe a Chow group of A. One can define a group AG(A) =
ZC8(A)/Rat®(A), where ZG(A) is the free Abelian group generated by [A/p] for each G-prime
p and Rat®(A) is a subgroup of Z®(A) which is a graded analogue of rational equivalence
determined by homogeneous elements and G-prime (see (2.5)). Then our main result is stated
as follows.

Theorem 1.1 Let W = {P € Spec(A) | P is a minimal prime of some G-prime ideal} C
Spec(4) and Z.(W) = @pew ZIA/P) C Z.(A). If G = Z™ & T with |T| < oo, then there is a
canonical map ¢ : AS(A) — A.(A) satisfying following conditions

(1) Coker(¢) = Z.(W)/ZS(A) + Rat.(4) N Z.(W)

(2) |T|Ker(¢) = 0.

If G is torsion free, i.e. T = (0), then G-prime coincide with G-graded prime. Thus W in
Theorem 1.1 is the set of all G-graded prime ideals and Z.(W) = Z¢(A) (and of course, |T| = 1).
Hence the next corollary is direct consequence of Theorem 1.1.

Corollary 1.2 If G is torsion free, then A®(A) is isomorphic to A.(A).



2 Definition of A%(A)

Let A be a Noetherian ring of finite type over a regular domain R. We treat a Chow group
of A using relative dimension instead of Krull dimension (Chap. 20 in Fulton[l]). Relative
dimension dimg(A/P) is defined as dimp(A/P) = tr.deg(k(P)/k(RN P)) —htr(RN P) for every
P € Spec(A). Note that dimg(A/P) = dimg(A/Q) +ht4/p(Q/P) for P C Q € Spec(A). For a
finitely generated A-module M, we set

dimg(M) sup{dimg(A/P) | P € Supp,(M)}
Asshgp(M) {P € Supp,(M) | dimg(M) = dimg(4/P)}.

The i-th cycle Z;(A) of A is a free Abelian group generated by [A/P] for every P € Spec(A) with
dimg(A/P) =i. Rat;(A) is a subgroup of Z;(A) generated by div(Q, a) for every Q € Spec(A),
dimp(A/Q) =i+ 1 and for every a € A\ Q, where

div(Q,a) = > L4, (Ap/(a,Q)Ap)[A/P).
PeMiny(A/(a,Q))
The i-th Chow group A;(A) is defined to be a quotient group Z;(A4)/Rat;(A). We define the Chow
group (resp. cycles, rational equivalence) of A by A.(A) = ®;>0Ai(A) (resp. Z.(A) = ®i>0Zi(A),
Rat.(A) = @izoRati(A)).
The goal of this setion is to define a similar notion of the Chow group for graded rings and

to difine a natural map from this group to the ordinary Chow group. Let (G, +) be a finitely
generated Abelian group. We call that a ring A is a G-graded ring, if there exist a family {4,},ca
of subgroups of A such that A = @ e Ag and AgAp C Agip for every g,h € G. Similarly,
a G-graded A-module is a A-module M with a family {M,},cc of subgroups of M such that
M= @gGG M, and A;My C Mgy for every g,h € G. The subgroup M, is called a degree g
part of M. Also, an element z € M, \ {0} is called a homogeneous element of degree g and we
denote by degz = g.

Henceforth, we assume that A is a Noetherian G-graded ring, its degree 0 part Ag is of finite
type over R and all A-modules are finitely generated. By the result of Goto-Yamagishi[3], A
is finitely generated over the degree 0 part Ay. Hence A is of finite type over R. Let us recall
some definition of G-graded rings from [4]. Defining the analogy of Chow group, we will use the
following notion.

Definition 2.1 A G-graded ideal p of A is said to be G-prime, if every homogeneous element
of A/p is not a divisor of zero. We denote the set of all G-prime ideals by Spec®(A).

Remark 2.2 If G is torsion free, then G-prime ideals are nothing but G-graded prime ideals
and SpecG(A) C Spec(A). However, if G has torsion, then G-prime ideals are not necessary
prime. For example, Let Z[z] = Z[X]/(X% — 1). We consider Z[z] as a Z/(2)-graded ring by
degz = 1 € Z/(2). Then Z[z] has no graded prime ideals and Spec®(Z[z]) = {(0)}. G-prime
ideals give a lot of information of G-graded ring and G-graded modules. It plays a role of prime
ideals in the category of G-graded ring (and the category of G-graded modules). See, for example,

(4], [3].




For an arbitrary ideal P C A, we put P* = ®4¢cP N A, the maximal graded ideal contained
in P. If P is prime, then P* is G-prime. Conversely, if p € Spec®(A), then P* = p for every
P € Assa(A/p) ((2,2) in [4]) and Spec®(4) = {P* | P € Spec(A)}. Furthermore, we have
Ass4(A/p) = Mina (A/p) since A()/pAp) is G-simple (see (2.6) below).

Let p C A be a G-prime and M be a G-graded A-module. We define a homogeneous localization
My of M at p by My, = S—1M, where S is the set of all homogeneous elements of A\ p. We
denote by Supp§ (M) = {p € Spec®(4) | M) # 0}. Note that P € Supp4(M) if and only if
P* € Supp§(M). We denote by Min§ (M) (resp. Assh§ (M), Assh§(M)) the set of minimal
G-prime ideals in Supp$ (M) (the set of G-prime p € Supp$ (M) with dim M = dim A/p, the set
of G-prime p € Suppﬁ(M) with dimp(M) = dimg(A4/p)).

Definition 2.3 We denote by ZF(A) a free Abelian group with basis [4/p] consisting of all
G-prime p such that dimgp(A/p) = i. The G-cycles of A is defined by the direct sum of Z8(4)
over all i and denote by Z%(A4).

For a finitely generated G-graded A-module M, M has a finite filtration 0 = Mg C M; C --- C
M, = M of G-graded submodules of M such that M;1/M; = A/p;(g;) for some G-prime p; and
for some g; € G. Note that Min§ (M) C {p1,--- ,pn}. Forp € Min§ (M), we denote the number
of copies of A/p(g) (for some g € G) appearing in these subquotients by Zim(M(p)). Then the
number £§ (p>(M(P)) does not depend on the choice of the filtration of M. In fact, Zim (M) is
coincides with the length of the maximal chain of G-graded submodules of M(y,). We denote by

[M] = ¥ e assng (an) L3, M) [A/0] € ZG 00y (A)-

Definition 2.4 Let p € Spec®(A) and let a € A\ p be a homogeneous element We denote by
Wl 0= Y £, (e /(@A) [A/d.
q€Min§ (4/(a,p))

We define Rat®(A) by a subgroup of Z(A) generated by div®(p, a) for all p € Spec®(4)
with dimg(A/p) = i + 1 and for all homogeneous element a € A\ p. We put Rat®(4) =
>0 Rat(A) € Z&(A) and call it the G-rational equivalence of A.

Later, we will see that div®(p, a) = [4/(a,p)] (Lemma 2.9). Hence we have Rat¥ (4) C Z§(A)
for all i and Rat®(4) = @5, Rat{ (4) € 28(4).

Definition 2.5 The i-th G-Chow group of A is defined by AF(4) = Z¢(A) /Ratf (4). We
define the G-Chow group of A by AS(4) = ZG(A4)/Rat%(A).

Definition-Proposion 2.6 ((1.6) in [4]) A G-graded ring A is said to be G-simple, if A has
no proper G-graded ideal. If A is G-simple and G' = {g € G | Ay # 0}, then A is field and A
is a twisted group ring A§[G'] of G’ over the field Ao. In particular, A is complete intersection.



Now, we have the following relative dimesion formula for G-prime ideals.

Lemma 2.7 Let p € Spec®(A) and P € Spec(A) with P* = p. Then we have
dimgp(A/P) = dimg(A/p) — dim Ap/pAp.

Particularly, dimg(A/p) = dimp(A4/Q) for all Q € Ass4(A/p), i.e. Asshp(A/p) = Assa(A/p).

Proof. We put K = [A(;)/pA(y)lo and G(p) = {g € G | [A()/pA(p)]s # 0}. Then we have

dimg(A/P) tr.deg(k(P)/K) + tr.deg(K/k(R N po)) — htr(R N po)
dim K*[G(p)]/PK'[G(p)] + tr.deg(K/k(R N po)) — htr(R N po)

dim A(p)/PA(p) + tr.deg(K/k(RNpo)) — htr(R N po)

If Q € Assa(A/p), then dim A(,) /QA(p) = dim A(,) /pA(p) by (2.6). Hence we have dimpg(A/p) —
dimg(A4/P) = dim Ay /pAp) — dim Ay/PAp) =dim Ap/pAp. 0O

Lemma 2.8 (1) Miny(M) = UpeMing(M) Assa(Alp).
(2) Asshy(M) = UpeAsshg(M) Assa(A/p).

(8) Asshp(M) = UbeAuhg(M) Assa(Alp).

Proof. (1) Let P € Mins(M) and p = P*. If ¢ € Min§(M) and q C p, then q C P.
Since Ass4(A/q) C Supp,(M), we have P € Mins(A/q) = Ass4(A/q) and ¢ = P* = p. Thus
Miny (M) C UpeMing(M) Assa(A/p). Conversely, let p € Min§(M) and P € Assa(A/p). I
Q € Min4 (M) with Q C P, then Q* € MinG (M) as above. Also, we have Q* C P* = p and, by
the minimality of p, Q* = p. Since P is minimal prime of A/p, we have Q = P. This complete
the proof of (1).

(3) Let p € Assh§ (M) and P € Asshp(M). Then, by definition, dimp(A/P) > dimg(A/p)
> dimg(A/P*). On the other hand, we have dimp(A/P) < dimg(A4/P*) by (2.7). Hence
dimg(A/P) = dimg(A/p) = dimg(A/P*). This implies that P* € Ass& (M), P € Ass4(A/P*)
and Ass4(A/p) C Asshg(M) (again by (2.7)). Thus Asshg(M) = UveAssth(M) Assa(A/p).

The assertion (2) is proved by the same way as (3). O

Lemma 2.9 Let p € Spec®(A) anda € A \ p is a homogeneous element. Then we have the
following.

(1) Assh(4/(a,p)) = MinG(4/(a,p)) and Asshr(4/(a,p)) = Mins(4/(a,p)).

(2) dimp(A/q) = dimg(A/p) -1 for all q € Min§(A/(a,p)) and dimp(4/Q) = dimg(A/p) -1
for all Q € Miny(A/(a,p)).




Proof. The assertion (1) follows from the assertion (2).

(2) Let q € Min§(4/(a,p)) and Q € Assa(A/q). If P € Assa(A/p) with Q@ D P, then Q
is minimal prime of A/(a,P). Indeed, if we let Q1 € Mina(A/(a, P)) such that @ D Qi, then
q=Q* D> Q% D (a,P)* D (a,p). Then, by the minimality of q, we have g = Q* = Q7 and, by
the minimality of @, Q = Q;. Since P* = p, we have a ¢ P and dimg(A4/q) = dimg(4/Q) =
dimg(A/P) — 1 = dimg(A/p) — 1. This completes the proof of Lemma. m]

Now we define a group homomorphism from Z&(A) to Z.(A) as follows;

¢ : Z28(4) — Z.(A)
[A/p] +— ZPEASSR(A/,,)KAP(AP/PAP)[A/P]-

Then, by (2.7), ¢ is a graded group homomorphism. Namely, ¢(ZF(A)) C Z;(A). Sometime,
we consider that ZG(A) is a subgroup of Z.(A) via ¢. Let p € Spec®(4) and a € |J beaAg \ P
Then, by Lemma 2.9, we have

#(dive(p, a)) = - qeMing (4/(ap)) eﬁ(q) (A)/(a,p)Aq))#([A/4])
= quMing(A/(a,p)) ZQEAssA(A/q) lg(q, (A(q)/(a,p)A(g))laq (AQ/44q)[A/Q)]
Y qeMinG (4/(ap)) L@eAssa(4/p) LAa (AQ/(a:9)AQ)[A/Q]
2 QeMina(4/(ap) tha (AQ/(a,0)AQ)[A/Q]
= Y Qeasshn(4/(ap) f4a(Aq/(a,p)AQ)[A/Q].

Since a is a nonzero divisor of A/p, ¢(div®(a, p)) = 2 QeAsshr(4/(ap)) (Ag/(a,p)Ag)[A/Q]
belongs to Rat.(A). Hence ¢ induces a graded group homomorphism ¢ : A®(4) — A.(A).
Henceforth we call this ¢ the natural homomorphism from A%(A4) to A.(4).

In the same way as ordinary Chow groups, we have the following.

Lemma 2.10 (1) If f : A — B is a flat G-graded ring homomorphism of relative dimen-
sion k , then the map from Z$(A) to ZC. ,(B) that sends [A/p] to [B/pB] induces a map
on G-Chow groups from AZ(A) to AG ,(B).

(2) Let S be a multiplicatively closed subset of A consisting from homogeneous elements. For
each G-prime S~'p of S~1A, we define dimp(S~1A/Sp) = dimg(A/p). Let ZE(S, A)
denote the subgroup of ZG(A) generated by [A/p] such that pN S # ¢. Then the inclusion
76 (8, A) — Z8(A) induces an ezact sequence

26(S,A) — AS(A) — A%(S714) — 0.
(3) A finite G-graded ring homomorphism g : A — B induces the map g. : A°(B) — A%(4)
such that g.([B/B]) = €5, (Bz)/BBp))[A/v] (dimp(B/P) = dimr(A/p),p = ANP),

or 0 (otherwise).
]

Similar to section 2.3, 2.4 of [1], we have an intersection with divisors on G-Chow groups. The
following lemma will play an important role in the proof of our main result.



Lemma 2.11 Let a be a homogeneous element of A such that a & p for each p € Assh(A).
We define a map Ndiv®(a) from Z8(A) to ZE(A/(a)) by

z9(4) 2O, 75(4/(a)
o (W e
Then the map div®(a) induces AS(A) — AS(A/(a)) such that
AG(4) DT 46 (4/(a)
4 © J
Ai4) 2O AL (A/(a)).

is commutative.

The next proposition is follows from (2.10) and (2.11).

Lemma 2.12 Let A[t] be the polynomial ring over the G-graded ring A. We regard Alt]
as a G-graded ring by putting degt = g for some g € G. Then the following two maps are
isomorphism;

(1) AS(A[t]) L5 AS(A[t, ) induced from A[t] 5 Aft,+7Y],

(2) AG(A[) 250, A (4).

In particular, [A[t]/pA[t]] N div®(t) = [A/p] € AG(A) for p € Spec®(A).

3 Proof of Theorem 1.1

(1) Since ¢ factor through an inclusion Z.(W)/Z.(W) N Rat.(A) < A.(A), it is enough to
proved that Z.(W)/Z.(W) N Rat.(A) < A.(A) is surjective.

Let P € Spec(A) with dim Ap/P*Ap = d. We prove that [A/P] € A.(A) comes from Z.(W)
by induction on d. Suppose that d > 0 and Y = W N Spec(A/P*). Then the following diagram

ﬁ% < A.(A)
1 o 1

_Z.T_H_:Y nzlia:/.hA 7 < A.(A/PY).

is commutative. To prove our assertion, it is only need to show that [4/P] is contained in
Im[Z.(Y)/Z.(Y) N Rat.(A/P*) = A.(A/P*)]. Thus we may assume that P* = 0, (namely, any
nonzero homogeneous elements are nonzero divisors). Consider the localization sequence

Adimg(4/P) (S, A) — Agimp(4/P)(A) — Adimg(a/P)(A@@) = 0



where S is the set of all nonzero homogeneous elements of A. Since A (g is G-simple (or A(q) is
a twisted group ring over the field [A(o)]o), A.(A(0)) = Adimn( Aw) (A©0) = Adimr(4) (A(g))- On
the other hand, d = dim Ap = dimg(A) — dimg(4/P) > 0 and dimg(A) > dimg(A/P). Hence
[A/P)] is rationally equivalent to some cycle 3, ns[A/P;] such that dimp(A/P;) = dimg(A/P)
and P, contains a nonzero homogeneous element. Since P; # 0 and dimg(4/P;) < dim r(4),
dim Ap, /P Ap, = dimg(A/P}) — dimg(A/P,) < dimg(A4) — dimg(A/P) = d. Then, by induc-
tion hypothsis, [4/P] € Im[Z.(W)/Z.(W) N Rat.(A) — A.(4)] and so is [A/P].

(2) In order to prove |T|Ker(¢) = 0, we construct ¢ : A.(4) — A% (A) such that Y@([A/p]) =
|T'|[A/p] for every p € Spec®(A).

First, we convert prime ideals of A to G-prime using group ring extension. Let A[G] =
(45) 9eG Ae, be a group ring over A and A[G] regards as a G-graded ring by deg(ae,) = deg(a) +9
for every homogeneous element a € A.

Claim. A flat ring homomorphism f : A — A[G] such that fla)=ae_gforac Ay, g€G
induces an isomorphism f* : A;(4) = AG,, (A[G]). (Here m is a rank of the free part of G, ie.
m = dimg(G ®z Q).

Proof of Claim. Since A[G]o = ®gecAge—g and A[G] is also a group ring over A[Glo, we have
the following bijective correspondence between Spec(A4[Glo) and Spec®(A[G)) :

Spec(A[Glo) +— Spec®(A[G])
P — PA[G]
Bo — B.

Furthermore, this bijection gives isomorphism Z;(A[Glo) = Z¢, .(A[G]). Also this isomorphism
inudeces Rat;(A[G]o) = Rat{, ,,(A[G]) and A;(A[G]o) = A& ..(A[G)). Since A is isomorphic to
A[G)o via f, we have f*: A;(4) = AG . (A[G)).

Next, we regard A[G] as a Laurent polynomial ring A[G] = A[T)zE, - -, zE!] with variables

Ty, -+ ,Tm. Then we have an isomorphism g* : AC(A[T)[z1,- - »2Tm]) = A.G(A[T][ziﬂa N =)
= AY(A[G]) induced from A[T|[z1,- - ,Tm] — ATz, ,zEl], by (2.12), (1). Also, by
(2.12), (2), we have an isomorphism

ive (z div® Tm
AS, (AlTllos,- - om]) S5 4G (AlTfoa, - ) — -+ o AT(AT)).

Denote these composition by 1 : AG(A[T][z1, - ,Tm]) — ACG(A[T]). Finally, a finite map
h: A — A[T] of G-graded rings induces a homomorphis h. : AS(A[T]) — AC(A).
Now, we define ¢ : A,(4) — A®(A) by a composition map of

Ai(4) L5 AG,,(4[6) L7 AS (AT, Zm]) > AS(AIT]) = AT (A).

By definition of each map, it is easy to see that n(g*)~1F*([A/p]) = [A[T]/pA[T]] for p €




Spec®(A). Hence we have

P(@([A/p]) = h.(A[T]/pA[T]))
= Lopenssgy (AT1/pair) Larmy e, (AT N /0 AT ) ) ha ((ALT]/])
2 penssS zy (AIT1/pAIT) LAT) ) (AT N() /P AIT ) €5, (AIT) () /BAIT o)) [ A/ ]
5., (AT /P AIT ) A/5]
= |T|[A/y]
for every p € Spec®(A). This implies that tKer(¢) = po(Ker(¢)) = 0. o

Corollary 3.1 Let H be a subgroup of G such that G/H is torsion. Then AH(A(H)q is
isomorphic to AG(A)q, where AH) = @By An and A%(-)g =A%(-) 2 Q.

Proof. Since G/H is torsion, we have a bijective correspondence between Spec? (AH)Y and
Spec®(A);
Spec (AH)) «— Spec®(A)
p — (VA
pH R

Then we have the following exact sequence
0 Z8(A) » ZHE(AM) 5 D 50

such that D is torsion. A cokernel of Rat®(4) — Rat® (A#)) is also torsion. This completes
the proof of lemma. m}

Corollary 3.2 Let A= geq0 An e a ordinary graded ring. Then a Q-Chow group A. (A(d))Q
of the d-th Veronese subring A of A is isomorphic to A.(A)g.

Proof. This is the direct consequence of (1.2) and (3.1). O

Remark 3.3 (1) Corollary 1.2 is essentially contained in the result of Fulton-MacPherson-
Sottile-Sturmfels[2]. Their striking result tells us, Chow groups of schemes over a feild
with an action of a connected solvable group scheme are isomorphic to its equivariant
Chow groups.

(2) As in Corollary 1.2, the inverse map of the canonical map ¢ : A(A4) — A, (A) is coincide
with the map n(g*) ™! f* of the proof of (1.1). We are able to discribe this inverse map
explicitly, when graded rings are standerd. If A = @, An, then the map n(g*) "1 f* is
determined by -

Ay 2L aSw)
Ul = /P,

where in(P) is a initial term of homogenization of P.
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On the highest Lyubeznik number of local cohomology modules
with Cohen-Macaulay support
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ABSTRACT. We will show the result that the highest Lyubeznik number A4 4(A) is one
if A is a Cohen-Macaualy local ring containing a field, where d is the dimension of A (cf.
[K2)).

We assume that all rings are commutative and noetherian with identity.

§1. Definition and Questions.

The investigation of the structure of local cohomology modules H}, (F) was initiated by
Grothendieck and is a very interesting subject in a field of commutative algebra, where
Y is a closed subscheme of a scheme X and F is a quasi-coherent Ox-module. Although
several authors have developed very interesting results and deep theories, these modules
are still very mysterious. For the finiteness properties of local cohohomology modules,
Huneke and Sharp ([HuS]) and Lyubeznik ([L1]) proved remarkable results and further
Lyubeznik defined a numerical invariant of local rings with respect to local cohomology
modules [L1, Theorem-Definition 4.1]:

Definition 1. Let A be a local ring of dimension d which admits a surjective ring ho-
momorphism 7 : R — A, where R is a regular local ring of dimension n containing
a field. Set I = kerw and let m be the maximal ideal of R. Then the Bass number
tp(m, HF*(R)) is finite and depends only on A, i and p, but neither on R nor on 7. We
denote this invariant by A,;(A4), and we call this number the Lyubeznik number (or the
(p,i)-Lyubeznik number).

A complete local ring containing a field is always a surjective image of a regular local
ring containing a field. So, if A is a local ring containing a field, but not necessarily a
surjective image of a regular local ring containing a field, one can set \,;(A4) = \,;(A4"),
where A" is the completion of A with respect to the maximal ideal.

Lyubeznik gave the following question [L1, Question 4.5].

Question 1 (Lyubeznik). Is it true that A\g4(A) =1 for all A ?

Recently Walther answered this question negatively [W, Proposition 3.2], using the
Brodmann sequence. We also prove similar results using the spectral sequence (cf. [K1]).
These rings are not Cohen-Macaulay. So we refine the above question as follows:

Question 2. Is it true that A\g4(A) = 1 for Cohen-Macaulay rings A ?

Key words and phrases. local cohomology, Lyubeznik number, spectral sequence, Cohen-Macaualy.




This question is true for Cohen-Macaualy local rings A of characteristic p by the result
of Peskine and Szpiro [PS, Proposition 4.1], since the spectral sequence HPH}(R) =
HP*9(R) degenerates. Our aim in this talk is to answer Question 2 affirmatively, that is
we will prove that if A is a Cohen-Macaulay local ring containing a field of dimension d,
then the highest Lyubeznik number A44(A) is one.

§2. Key Lemmas.
The following result follows immeditately from [EGA]:

Lemma 1. Let (A,m) be a local ring with the mazimal ideal m. Let B be the ring
((AM*MN. Then the following assertions hold:

(i) B is a local ring with the mazimal ideal mB;

(i) if A is Cohen -Macaulay (resp. regular), then B is Cohen -Macaulay (resp. regular);
(iii) if A is a homomorphic image of a Cohen-Macaulay local ring and satisfies the Serre

(Sk)-condition, then B satisfies the Serre (Sy)-condition for a positive integer k;

(iv) the natural map A — B is a faithfully flat extension;

(v) if A= R/I for some local ring R and an ideal I of R, then it holds that

B = ((RY)™"I((R")™)™;
(vi) if the dimension of A is equal to d, then the dimension of B is equal to d,

where A® is the completion of A with respect to the mazimal ideal, and A®P is a strict
henselization of A (See [EGA, (18.8), pp.144] for the definition).

The key lemma is as follows:

Lemma 2. Let (R,m,k) be a regular local ring of dimension n containing a field, and
I an ideal of R of dimension d > 1. If R/I satisfies the Serre (S2)-condition, then the
following assertions hold:

(i) inj.dimp H"*(R) = d ;

(i) inj.dimg HI(R) <n—1-j ifj >n—d,
where inj.dimy T is the injective dimension of an R-module T

Proof. The statement (i) is straightforward from [L1, iv)], so we only have to prove the
assertion (ii).

The assertion (ii) follows from the following fact: If R/I satisfies the Serre (S2)-
condition, the “Second Vanishing Theorem” holds for the local cohomology module H; } (R),
that is HJ(R) = 0 for j > dimR — 1. (cf. [Sp, p.143, line 15]). For the proof, we use
Lemma 1 and the results in [HuL] O

§3. Main Results and their Sketch Proofs.

Proposition 1. Let R be a regular local ring containing a field of dimension n, I an
ideal of R of dimension d > 1. If R/I satisfies the Serre (S3)-condition, then we have
Aag(R/T) = 1.




Proof. By Grothendieck’s spectral sequence, we obtain the following spectral sequence:
E}* = HP H}(R) = H"*? = H’"(R).
The spectral sequence has the differentials as follows:
Ed—r,n——d-(l—'r) N Ed,n—d — Ed+r,n—d+(1—r)
T T T *

Our aim is to prove that all the differentials that come into and go out of E4"¢ are zero
for all r > 2. From Lemma 2, we can express E,-terms in the diagram below (Figure).
The circles mean the vanishing of Ey-terms by Lemma 2. Furthermore all E>-terms are
zero except the black circles.

L

o—o

Figure

The assertion immediately follows from the above diagram.
Therefore the above spectral sequence collapses at Eg’"_d and we have isomorphisms:

HiH}™(R) = E;"

Ed,n—d

Hn

HA(R).

Since R is a regular local ring, H}(R) is isomorphic to E(k), where E(k) is the injective

hull of k. Since HLH}~%(R) is isomorphic to E(k), it therefore follows from [L1, Lemma
1.4, p.44] that \;4(A) = 1. The proof of the proposition is completed. O
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Theorem 1. Let A be a local ring containing a field with dimension d. If A is Cohen-
Macaualy, then we have Mg 4(A) = 1.

Proof. Completing the local ring A with respect to the topology defined by the maximal
ideal, if necessarily, there is a surjection R — A" from a regular local ring R containing
a fields to A" by Cohen’s structure theorem. We denote its kernel by I and the maximal



ideal of R by m. Since A" = R/I satisfies the Serre (S;)-condition, the theorem follows
from Proposition 1. O

84. Monomial Cases.

Recently Yanagawa shows the following result of local cohomology modules with sup-
ports in monomial ideals (cf. [Ya]).

Proposition 2 (K. Yanagawa). Let S be a polynomial ring k[z:,... ,z,). Let I be a
squarefree monomial ideal, that is, the Stanley-Reisner ideal In of a simplicial complex
A c 21} Suppose that S/I, is pure d-dimensional. Then p?(m, H?A'd(S)) =11if and
only if A is connected in codimension one.

Therefore the converse of the theorem unfortunately does not hold in general.

Example 1 (K. Eto). Let Ss be the localization of k[z1, 3,3, 24,75, 2] by an ideal
(21, T2, T3, T4, Ts, Te), I = (%1, T2, T3) N (T2, T3, T4) N (3, T4, T5) N (T4, T5, T6) N (25, Te, T1)
and P = (x1, 9, T3, Ts, Tg). Then it holds that Sg/I is not Cohen-Macaulay. On the other
hand, it follows from [Ya, Corollary 3.16] that A33(Ses/J) = 1. Further one can find the
direct proof of the result that A33(Ss/I) =1 in [EK], using the spectral sequence.
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On A*-fibrations
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1 Introduction

This article surveys some recent results (proved in ([BD 2] and [BD 3] ) on A*-fibrations
and is based on a talk given at the 22nd Symposium of ” Commutative Algebra” held at
Toyama (Japan). The author thanks the organisers for the invitation.

Throughout the article, all rings are commutative, noetherian and all modules are finitely
generated.

For a ring R, R* denotes the group of invertible elements of R and R™ denotes a
polynomial ring in n variables over R. For a prime ideal P of R, k(P) denotes the field
Rp/PRp. For an R-algebra A, Q4 /R is the module of Kahler differentials of A over R.

The notion of A*-fibration is analogous to that of Al-fibration. Therefore, we will
begin this article by first defining a more general notion of an affine fibration and then
defining an A*-fibration.

Definition 1.1. For a ring R, an R-algebra A is said to be an affine n-fibration over R
(denoted by A™), if the following conditions hold :

(i) Ais a finitely generated flat R-algebra.

(ii) For every prime ideal P of R, A ®g k(P) = k(P).
Definition 1.2. For a ring R, an R-algebra B is said to be an A*-fibration over R, if
the following conditions hold :

(i) B is a finitely generated flat R-algebra.

(ii) For every prime ideal P of R, B®gk(P) is a Laurent polynomial ring k(P)[T, T~]

in one variable T over k(P).

Remark 1.3. Let A be an A"-fibration over R. Then, since A is a finitely generated
flat R-algebra and all fibre are smooth, it is easy to see that Q4 is a finitely generated
projective A-module of rank n. Similarly, if B is an A*-fibration over R, then Qp /R &
projective B-module of rank 1.



Example 1.4. (1) Let M be a projective module of rank n over a ring R and let
A = Symy(M), the symmetric algebra of M over R. Then A is an A"-fibration over R.
We call such an affine fibration trivial.

(2) Let L be a projective R-module of rank 1 and let L' = Homg(L, R). Let

L®" = L Qg --- Qg L (n-times) if n > 0 and L®" = L7 ®g -+ Qg L™ (—n-times) if
n < 0. Let B = @,zL®". Then B is an A*-fibration. We call such an A*- fibration
trivial.

Remark 1.5. Let R be a semilocal ring. Then there exists only one trivial A"-fibration
over R viz. R. Similarly, the Laurent polynomial ring R[T,T~!] in one variable T is
the only trivial A*-fibration over R.

The general question as to when an A"-fibration over a ring R is trivial was first
raised by Dolgachev and Weisfeiler ([DW]). Though it is easy to give examples of non-
trivial A™-fibrations if R is not regular, the following remarkable theorem of Asanuma
gives a complete structure theorem for an A™-fibration over an arbitrary ring R ([A],
Theorem 3.4).

Theorem 1.6. Let A be an A™-fibration over a ring R. Then A is (upto an isomorphism)
an R-subalgebra of a polynomial ring RI™ for some m such that

Alm ~ SymR[m](QA/R (S R[m]).

Note that, the above theorem says that if R is a regular local ring, then an A"-
fibration A over R is at least stably a polynomial algebra over R, i.e., Al = R+ for
some integer t > 0.

In the next section, we show how this theorem of Asanuma is useful for investigating
the problem of triviality of Al-fibrations.

2 Al-fibration

Definition 2.1. An integral domain R with the quotient field K is said to be seminormal
if z € K and 22,23 € R then z € R.

For a ring A, Pic (A) denotes the group of projective A-modules of rank 1. The proof
of the following result can be found in ([Sw], Theorem 6.1).

Theorem 2.2. Let R be a seminormal domain. Then, for every positive integer m,
Pic(R™) = Pic(R).

The following result is due to Hamann ([H], Theorem 2.6).

Theorem 2.3. If R is a seminormal domain, then RW is R-invariant (i.e., if R C A
and Al™ = R™t1 then A = RW).

From theorems (1.6), (2.2) and (2.3) it is easy to deduce:

Theorem 2.4. Let R be a seminormal, semilocal domain. Let A be an Al-fibration -
over R, then A= Rl

—67—



Thus, using a result of Bass-Connell-Wright ((BCW], Theorem 4.4), one concludes :
Corollary 2.5. Every Al-fibration over a seminormal domain R is trivial.

As an interesting application of (2.5), Bhatwadekar obtained the the following gen-
eralisation ([B], Theorem 3.7) of the famous Abhyankar-Moh/ Suzuki epimorphism the-
orem.

Theorem 2.6. Let R be a seminormal domain of characteristic zero. Let I be an ideal
of RIX,Y] such that R[X,Y]/I = R[T|(= RM). Then I is a principal ideal say generated
by F and R[X,Y] = R[F,G].

The main ingredient of the proof of (2.6) is the result (under the given assumptions)
that I = (F) and R[X, Y] is an A'-fibration over R[F] with Qg(x,y)/r(r) is a free R[X, Y]-
module (of rank 1) and then apply (2.5).

Recall that Asanuma’s structure theorem (1.6) implies that any A'-fibration over
a ring R is an R-subalgebra of a polynomial algebra RI™ for some m. Therefore it is
natural to ask:
What fibre conditions would be sufficient for an R-subalgebra of RI™ to be an A!-fibration
over R ?

This problem was investigated by Bhatwadekar-Dutta and among other results the
following was proved ([BD 1], Theorems 3.10, 3.12) :

Theorem 2.7. Let R be a domain with quotient field K. Assume that R is normal or
R contains the field of rationals. Let A be an R-subalgebra of a polynomial algebra RI™
such that

(i) A is R-flat.
(11) AQg K is a normal domain of dimension 1.

(1ii)) A®pgk(P) are integral domains for all height one prime ideals P of R.

Then, A is an A'-fibration over R.
Subsequently, the following result was obtained by Dutta ([D], Theorem 3.4).

Theorem 2.8. Let R be a normal domain with quotient field K. Let A be a finitely
generated faithfully flat R-algebra such that

(i) A®r K = KU,
(i) For each prime ideal P of R of height 1, the fibre ring A ®p k(P) is geometrically
integral over k(P).

Then A s a trivial A'-fibration over R.

Remark 2.9. Let R be a discrete valuation ring. In this special case, (2.8) was proved
earlier by Kambayashi and Miyanishi ((KM], Lemma 1.3).



3 A*-fibration

Since the notion of A*-fibrations is analogous to that of A!-fibrations, it is quite natural
to ask whether results similar to (2.5) and (2.8) hold for A*-fibrations. In this section

we address this question.

We begin with the following result ([BD 2], Proposition 3.7) which is an analogue
(for an A*-fibration) of Kambayashi-Miyanishi result mentioned in (2.9).

Proposition 3.1. Let R be a discrete valuation ring with quotient field K, uniformising
parameter T and residue field k. Let B be a finitely generated flat R-algebra such that

(i) The generic fibre B®g K ~ K[T,T7'].

(ii) The closed fibre B/mB is geometrically integral over k.
Then there are precisely two possibilities :

(a) If (B/nB)* # k*, then B ~ R[T,T~"]
(b) If (B/mB)* = k*, then B ~ R[X,Y]/(n™XY +aX + fY + 7v) for some
o, B € R*, v € R and positive integer m. Therefore B/TB = kW,
In particular, every A*-fibration over a discrete valuation ring 1s trivial.

The following technical lemma ([BD 2], Lemma 3.1) gives a criterion for an A*-
fibration over an arbitrary domain to be trivial.

Lemma 3.2. Let R be an integral domain and let B be a flat R-algebra. Suppose that
there ezist non-zero elements x,y in R such that

(i) = and y either form an R-sequence or are comazimal in R.
(ii) B[1/z] ~ R[1/=][T, T~
(iii) B[1/y] = R[L/y][T,T"].

Then B is a trivial A*-fibration over R.

The following analogue of (2.8) can be easily deduced from (3.1) and (3.2) (see ([BD
2], Theorem 3.11)).

Theorem 3.3. Let R be a normal domain with quotient field K and let B be a finitely
generated flat R-algebra such that

(i) The generic fibre K ®r A 1s a Laurent polynomial ring K[T,T] in one variable
over K.

(ii) For each prime ideal P of R of height one, the fibre k(P) ®g B is geometrically
integral and (k(P) ®r B)* # (k(P))*



Then B is a trivial A*-fibration over R.
As a consequence, we have
Corollary 3.4. Every A*-fibration over a normal domain is trivial.

In view of (3.4) and (2.5), it is natural to ask whether A*-fibrations over a seminormal
domain are trivial. With the help of the following (structure) theorem ([BD 3], Theorem
3.4), one can construct however an explicit example (3.6) of a nontrivial A*fibration
over a seminormal one-dimensional local domain.

Theorem 3.5. Let R be a seminormal one-dimensional semilocal domain with
Jacobson radical J and quotient field K. Let B be an A*-fibrations over R. Then,
B~ R[X,Y]/(Y?-YX —aX? - )), where R[X,Y] = R, X\ € R* and a is an element
of J for which there ezists b € K such that b(b— 1) = a. Moreover, B =~ R[T,T™] if
and only if b € R.

Example 3.6. Let k be a field and let R be a semilocal noetherian normal domain
of dimension one with precisely two maximal ideals M; and M, such that R/M1 =
R/M2 =k and k — R. (For instance, we may take R = S~ 'k[t], where k is a field and

= k[t] \ (1 U L), where I = tk[t] and I, = (t — 1)k[t].) Let J = - M; N M and let
R =k +J. Then J is the conductor ideal of R in R, R/J = k and R/J(=k®k)isa
finite module over R/J(= k). Therefore, R is a finite module over R. Hence, as R is
noetherian, by the Eakin-Nagata theorem ([M], 3.7, p.18), R is noetherian. Now it is
easy to see that R is a local domain with maximal ideal J and residue field R/J = k.
Moreover, R is the normalisation of R and R is semi-normal in . Since My + M, = R
there exists b € M, such that 1 —b € M,. Let a = b(b — 1). Then b ¢ R but
b(b—1)=a€ JCR. Nowlet B=R[X,Y]/(Y?-YX —aX? —1). Then, by (3.5), B
is a non-trivial A*-fibration over R.

The following theorem ([BD 3], Theorem 3.8) gives a criterion for an A*-fibration
over a seminormal, one-dimensional, semilocal domain to be trivial.

Theorem 3.7. Let R be a seminormal one-dimensional semilocal domain and B an
A*-fibration over R. Then B is a trivial A*-fibration over R if and only if Spec B
is an open subscheme of an Al- fibration over R (or equivalently, Spec B is an open
subscheme of Spec (RW).)

Remark 3.8. Let R be a seminormal domain. Then, by (2.5), every A!-fibration over
R is trivial. If R is normal, then, by (3.4), every A*-fibration is trivial. But, if R is not
normal, then, as shown by the example (3.6) , there may exist a nontrivial A*-fibration
over R. This anomaly is not so surprising. The plausible explaination (without explicit
connection to the problem) is that, if R is normal, then Pic (R[T,T~!]) = Pic (R[T]) =
Pic (R). On the other hand, if R is seminormal but not normal, then Pic (R[T])=

Pic (R) and it may happen that Pic (R) # Pic (R[T,T~!]). For example, if R is seminor-
mal, one-dimensional, local, then Pic (R) # Pic (R[T,T!)) if and if its normalisation
R is not local. Therefore, the proof of (3.5) yields the following :

Corollary 3.9. Let R be a local, one-dimensional, seminormal domain. Then every
A*-fibration over R is trivial if and only if Pic (R) = Pic (R[T,T']).

We conclude this article with the following remark which indicates subtle differences



between (trivial) A! and A*-fibrations.

Remark 3.10. Let R be a ring. Let A and B denote trivial A' and A*-fibrations
respectively over R. Then
(i) R is a retract of A.

(ii) R is a retract of B if and only if B is a Laurent polynomial ring R(T, T7'] in one
variable over R.

(iii) Qa/r =~ A if and only if A~ RU.
(lV) QB/R ~ B.
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DERIVED CATEGORY OF SQUAREFREE MODULES

KOHJI YANAGAWA  (OSAKA UNIV.)

ABSTRACT. A squarefree module over a polynomial ring S = k[z1,...,z,] is
a generalization of a Stanley-Reisner ring, and allows us to apply homological
methods to the theory of monomial ideals more systematically.

In the derived category D®(Sq) of squarefree modules, we have two duality
functors D and A. The functor D is the usual one RHomg(—,wg[n]), while
the Alezander duality functor A is rather combinatorial. We will show a strange
relation Do AoDo AoDo A= T2 where T is the translation functor.

Romer defined a squarefree module over an exterior algebra E. A theorem
of Bernstein-Gel’fand-Gel’fand’s gives a derived equivalence between finitely gen-
erated Z-graded modules over S and those over E. We see that the functors
defining this equivalence preserve the squarefreeness, and can be described by
our D and A in the squarefree case.

1. SQUAREFREE MODULES

Let S = k[z1,...,z,) be a polynomial ring over a field k. Consider an N"-
grading S = @,cyn Sa = Paenn k22, where 22 = [, 27 is the monomial with
the exponent a = (ay,...,a,). For a Z"-graded module M and a € Z", M,
means the degree a component of M, and M(a) denotes the shifted module with
M(a), = Maib. We denote the category of all the S-modules by Mod, and
the category of Z"-graded S-modules by *Mod. A morphism in *Mod is an S-
homomorphism f : M — N with f(M,) C N, for all a € Z".

For M,N € *Mod and a € Z", set *Homg(M, N). := Hom-poa(M, N(a)).
Then *Homg(M, N) := @,z *Homg(M, N), is a Z*-graded S-module. If M
is finitely generated, * Homg(M, N) = Homg(M, N) as the underlying S-module.
Thus, we simply denote * Homg(M, N) by Homg(M, N) in this case. In the same sit-
uation, Ext% (M, N) also has a Z"-grading with Ext (M, N), = Extiyq(M, N(a)).

For a € Z", set supp,(a) := {i | a; > 0} C [n] :== {1,...,n}. Wesayac Z"
is squarefree if a; = 0,1 for all ¢ € [n]. When a € Z" is squarefree, we sometimes
identify a with supp, (a).

Definition 1.1 ([12]). We say M € *Mod is squarefree, if M is finitely generated,
N"-graded (i.e., My = 0 for all a ¢ N"), and the multiplication map M, 3> y —
zPy € Mayp is bijective for all a,b € N* with supp, (a + b) = supp, (a).

Let A C 2" be a simplicial complex (i.e., if F € A and G C F then G € A).
The Stanley-Reisner ideal of A is the squarefree monomial ideal I5 := (zF | F ¢ A)
of S. We say S/I, is the Stanley-Reisner ring of A. Stanley-Reisner rings and
ideals are always squarefree modules. A free module S(—a), a € Z", is squarefree



if and only if a is squarefree. In particular, the canonical module wg = S(~1)
is squarefree, where 1 = (1,...,1) € N". For a subset F' C [n], Pr denotes the
monomial prime ideal (z; | i € F) of S. Any monomial prime ideal of S is of the
form P for some F C [n]. S/Pr(—@) is squarefree if and only if G C F.

We denote by Sqg (or simply Sq) the full subcategory of *Mod consisting of
squarefree modules. Using the five lemma, we see that Sq is a subcategory of
*Mod closed under kernels, cokernels and extensions.

For the study of Sq, the concept of the incidence algebra of a finite partially
ordered set (poset, for short) is very useful.

Let P be a finite poset. The incidence algebra A = I(P,k) of P over k is the
k-vector space with basis {e;,, | z,y € P with £ < y}. The multiplication defined
by €s,y€z,w = Oy €z, makes A a finite dimensional associative k-algebra with
1 =3 ,cpesqs Wewrite e; for e; .. Note that e; ey = 654 €;. Thus A= DB,cpecA
as a right A-module. Denote the category of finitely generated right A-modules by
mod 4. Fach ey A is projective in mod,4, and any projective object is a finite direct
sum of copies of e, A for various = € P.

If M is a right A-module, then we have M = @, Me, as a k-vector space. We
write M, for Me,. If f : M — N is an A-linear map, then f(M,) C N,. Note that
Me, , € My and Mge, , =0 for y # z.

It is easy to see that [e;A], = k if < y, and [e;A], = 0 otherwise. For each
z € P, we can construct an injective object F(z) € mod4. Let E(z) be a k-vector
space with basis {&, | y < z}. Then we can regard F(z) as a right A-module by

5 e — ey fy=zandw <z,
v 0 otherwise.

The following is well-known.

Lemma 1.2. The category moda has enough projectives and enough injectives.
An indecomposable projective (resp. injective) object is isomorphic to ey A (resp.
E(z)) for some z € P. And

gl.dim A < max{t | 3 chain zo < z; < --- < z; in P}.
The following result was essentially proved in [14] (in a more general situation).

Proposition 1.3. Let 2" be the boolean lattice, and A = I(2(M k) its incidence
algebra. Then we have a category equivalence Sq = mod 4.

Proof. For N € mody, set M = @,y Ma to be a k-vector space with M, =
Ngupp, (=) for each a € N™ (note that supp, (a) C [n] is an element of 2["). Then M
has an S-module structure such that the multiplication map M, > y — 1Py € M,y
is induced by N 3 y + y-epe € Ng, where F' = supp, (a) and G = supp, (a+Db).
By an argument similar to the proof of [14, Theorem 3.2], we can see that M is
squarefree and the correspondence mody 2 N — M € Sq gives an equivalence
mod,4 = Sq. ' a



Let A = I(2"), k) and F C [n]. By the above correspondence, the right A-module
erA (resp. E(F)) corresponds to S(—F) (resp. S/Pr). So we have the following.

Corollary 1.4 ([13]). Sq is an abelian category, and has enough projectives and
enough injectives. An indecomposable projective (resp. injective) object in Sq is
isomorphic to S(—F') (resp. S/Pg) for some F C [n]. And

sup{ proj. dimgy M | M € Sq} = sup{inj.dimg, M | M € Sq} = n.

A projective object S(—F) in Sq is also projective in *Mod. Thus a projec-
tive resolution of a squarefree module M in Sq is also a projective resolution in
*Mod. In particular, a Z"-graded minimal free resolution P, of M € Sq consists
of S(=F)’s. Since Homg(S(~F),ws) = S(—F*) with F°:= [n] \ F, Homg(P,,ws)
is a complex of squarefree modules again. Hence we have the following.

Proposition 1.5 ([12]). If M is squarefree, so is Exty(M,ws) for alli > 0.

Remark 1.6. Let A = I(2["] k) be the incidence algebra of 2. The opposite ring
A°P is isomorphic to A itself by A 5 (ep)® > epc € Afor F C [n]. If N €
mody, ExtYy (N, A) has a natural left A-module structure. By the identification
AP = A Ext’y (N, A) can be seen as a right A-module. If N corresponds to a
squarefree module M, then Exty(N,A) € mody corresponds to the squarefree
module Extk (M, ws).

Definition 1.7 ([13]). A Z"-graded S-module M = @, ;. M, is called straight,
if the following two conditions are satisfied.
(a) dimg M, < oo for all a € Z™.
(b) The multiplication map M, > y — 2Py € M.y, is bijective for all a € Z" and
b € N* with supp, (a + b) = supp_ (a).

A finitely generated S-module M is straight if and only if M is a direct sum
of finitely many copies of ws. The injective hull *E(S/Pr) of S/Pr in *Mod is a
straight module.

Denote by Str the full subcategory of *Mod consisting of all the straight modules.
For a Z"-graded S-module M = @, ;. M,, we call the N*-graded submodule
Dacne Ma the N*-graded part of M, and denote it by N'(M). It is easy to see that
if M is straight then (M) is squarefree. Conversely, for a squarefree module N ,
there is a unique (up to isomorphism) straight module Z(N) whose N"-graded part
is isomorphic to NN, see [13, §2]. For example, Z(S/Pr) & *E(S/Pp).

Proposition 1.8 ([13, Proposition 2.7]). The above correspondences give the addi-
tive covariant functors N : Str — Sq and Z : Sq — Str, and they give a category
equivalence Sq = Str.

By Propositions 1.4 and 1.8, Str has enough projectives and injectives. An in-
decomposable projective (resp. injective) object in Str is isomorphic to Z (S(=F))
(resp. *E(S/Pr)) for some F' C [n]. Note that Z(S(—F)) is a flat S-module. In
fact, Z(S(—F)) is isomorphic to the localization of the free module S(—F) at the
monomial z°. A minimal injective resolution of a straight module M in Str gives
a minimal injective resolution in *Mod.



Theorem 1.9 (Mustata [9] and Terai [11]). For all i > 0, the local cohomology
module H, (ws) = H}, (S)(—1) is a straight module whose N"-graded part is iso-
morphic to Bxts(S/Ia,ws).

Theorem 1.9 also holds in the level of complexes. Let P, be a Z"-graded minimal
free resolution of S/Ia. In the argument before Proposition 1.5, we have seen that
Homg(P,,ws) consists of finite direct sums of squarefree modules S(—F). So we
have the complex Z(Homg(P.,ws)) consisting of flat modules Z(S(—F)).

Definition 1.10 (Miller [8]). We say
C;, = Z(Homg(P,,ws))(1)
is the canonical Cech complez of Ia.

Note that é;A is a cochain complex of flat S-modules. Since the :** cohomology
of Homg(P.,ws) is Ext(S/Ia,ws), we have

H'(C1, (-1)) = Z(Exts(S/1a,ws)) = Hy, (ws),
and hence o .
H'(C},) = H, (S).
Let E* be an injective resolution of S in *Mod. Then Cs _ is a flat resolution of
['7,(E*), in other words, (f;A and 'y, (E*) are isomorphic in the derived category
Dt(*Mod), see Proposition 2.2 below. Since H}, (M) is the i** cohomology of the
derived tensor product ', (E*) ®% M, we have the following.

Theorem 1.11 (Miller [8]). For an arbitrary (not necessarily graded) S-module
M, we have . o
1a(M) = H'(C}, ®s M).

Let C C Z™ C R™ be an affine semigroup (i.e., a finitely generated sub-semigroup
containing 0) with ZC = Z", and R := k[C] = k[z° | c € C] C klzf, ... z¥] its
semigroup ring. We assume that R is normal, and m := (z° | 0 # c € C) is the
graded maximal ideal. We can define squarefree modules over R, see [14]. As in
the polynomial ring case, a radical monomial ideal of R (i.e., a radical Z"-graded
ideal) is squarefree. The category Sqp of squarefree R-modules is equivalent to
the category mod of finitely generated right A-modules, where A =1 (L, k) is the
incidence algebra of the face lattice L of an (n — 1)-polytope obtained as a cross-
section of the cone R>oC (C R™), see [16]. We say R is simplicial if the cone RxoC
is spanned by n vectors. For example, a polynomial ring S = k[N"] is simplicial. If
R is simplicial, then L = 2/l as a poset and Sqp = Sqs.

Let I be a radical monomial ideal of R. From a minimal projective resolution P,
of R/I in Sqp, we can construct the canonical Cech complex Cy of I. Each Ct is a
flat R-module and we have Hi(M) = H*(C; ®g M) for an R-module M.

Theorem 1.12 ([16)). If I C R is a radical monomial ideal, then
max{i | H}(R) # 0} = proj. dimg,  (R/I).



For M € Sqp, we have n — depthy M < proj. dimgq, M. If R is simplicial, then
the inequality becomes an equality. If R is not simplicial, there is some M € Sqp
for which the inequality is strict. The next result states that “the second vanishing
theorem” (c.f. [7, Theorem 2.9]) for a regular local ring also holds for a simplicial
normal semigroup ring if the support ideal is a monomial ideal.

Corollary 1.13 ([16]). Assume that R is simplicial. For a radical monomial ideal
I, the following conditions are equivalent.

(1) HMR) = Hy"'(R) = 0 (recall that diim R = n).

(2) Spec(R/I)\ m is connected.

When R is not simplicial, H}~'(R) can be non-zero even if Spec(R/I) \ m is
connected. Set R = k[z,y,z,w|/(xz — yw) and I = (z,y). Then R is a normal
semigroup ring, and the corresponding cone RC' is the cone over a square. Hence
R is not simplicial. Since I is a prime ideal, Spec(R/I) \ m is connected. But
H}(R) # 0, while dim R = 3.

2. FUNCTORS ON THE DERIVED CATEGORY OF SQUAREFREE MODULES

Let Com®(Sq) be the category of bounded cochain complexes of squarefree mod-
ules, and D®(Sq) the bounded derived category of Sq. A squarefree module M
can be regarded as a complex -+ - 0 - M — 0 — --- with M at the 0th
place. For a complex M* and an integer p, let M*[p] be the p** translation of M®.
That is, M*[p] is a complex with M*[p] = M**? and dpp = (—1)Pdps. A complex
M* € Com®(Sq) has a projective (resp. injective) resolution P* € Com’(Sq) (resp.
I* € Com®(Sq)). That is, there is a quasi-isomorphism P* — M* (resp. M* — I °)
and P* (resp. I*) conmsists of projective objects S(—F) (resp. injective objects
S/Pr) in Sq .

Let M* and N°* be complexes of S-modules. We define a complex Hom$(M*, N*)
by Homs(M*, N*) = [T, Homs(M?, N*%) and d'(£) = [1((~1)'fysady +d ;)
for f = (f;)jez € Hom}(M?*, N*). Note that if M*, N* € Com®(*Mod) and each
M is finitely generated then each Homg(M7, N*+/) can be seen as a Z"-graded
module, and hence Hom$(M*®, N*) € Com®(*Mod).

The following is a key lemma, of this section.

Lemma 2.1 ([13, Lemma 3.20]). For all squarefree module M and all F C [n),
N (Homg(M,*E(S/Pr))) is isomorphic to (MF)*®(S/Pr). Here (Mg)* is the dual
k-vector space of Mr, but we set the degree of (Mp)* to be 0 (since it is essentially
Homy (Mp, [S/Prlr)). In particular, N (Homg(M,*E(S/Pr))) is squarefree.

A minimal injective resolution D* of wg[n] in *Mod is the following form.

(1) D*:0— D" —D"™! ... 5D 0,
D'= (P *E(S/Pr),
FC[n]
|Fl=—i



and the differential is composed of (—1)*") . nat : *E(S/Pp) = *E(S/Pr\;}) for
j € F, where nat : *E(S/Pr) — *E(S/Pp\(;;) is induced by the natural surjection
S/Pp — S/Pp\(;y, and a(j, F) := #{i € F | i < j}. See [3, §5.7].

Proposition 2.2. Let M* € Comb(Sq), and P* its projective resolution. Then
the complezes N'(Hom$§(M*, D*)), N'(Homg(P*,D*)) and Homg(P*,ws(n]) belong
to Com®(Sq), and are isomorphic in D*(Sq).

Proof. By Lemma 2.1, the complexes N (Homg(M*®, D*)) and N (Homg(P*, D*))
belong to Com®(Sq). Since Homg(S(—F),ws) = S(—F¢), Homg(P*,ws[n]) also
belongs to Com®(Sq). By the usual argument of double complexes, we have a
Z™-graded quasi-isomorphisms
Hom%(M*, D*) — Hom$(P*,D*) and Homg(P*,ws[n]) — Homg(P*,D*).
Taking the N"-graded part of these morphisms, we have quasi-isomorphisms
N (Hom$(M*,D*)) — N (Hom§(P*, D*))
and
Hom(P*,ws(n]) = N (Homg(P*,ws[n])) — N (Homg(P*, D°)).
O

We can check that D induces a contravariant functor from D’(Sq) to itself.
We also denote this functor by D. If P*® is a projective resolution of M*, then
N (Hom%(P*, D*)) and Homg(P*, ws[n]) isomorphic to D(M*) in D’(Sq) by Propo-
sition 2.2. Since D(M*) = N (Hom§(P*, ws[n])), the next lemma is easy.

Lemma 2.3. D is a duality functor, that is, satisfies D o D = Idpssq). And we
have HY(D(M*)) = Extz(M*, wg).

For a squarefree module M, we can describe D(M) = N (Hom"(M, D*)) explic-
itly. By Lemma 2.1, we have

(2) D(M): 0 — D™(M) — D"H(M) — --- — D (M) — 0,
D'(M) = P (Mr)" ® (S/Pr).

FCln]
|Fl=—1

As in the lemma, the degree of (Mp)* is 0 € Z". The differential is composed of
the maps
(—1)°0F) - (v5)* @ mat : (Mp)* @k S/Pr = (Mr\(5)" ®k S/ Pr\i5)

for j € F. Here (v;)* is the k-dual of the multiplication map v; : Mp\(;3 2 y —
z;y € Mp and “nat” is the natural surjection S/Pr — S/Pr\yj;- Note that D(M)
is a complex of injective objects in Sq. If M € Sq is a Cohen-Macaulay module
of dimension d, then D(M) gives a minimal injective resolution of Ext%4(M, ws)
in Sq (after suitable translation). Thus, in this case, Z(D(M)) gives a minimal
injective resolution of Z(Ext% ¢(M,ws)) in *Mod ([13, Proposition 3.17]). Since
Z(Exts(S/1a,ws)) = H}, (ws), this fact is very useful to the study of the injective
resolution of Hj (S). See [13] for detail.




For a complex M* = {M* 6} € Com’(Sq), we can also describe the complex
D(M?*) in a similar way. In fact,

D(M*) = P D'(M) = P (M) ®(S/Fr),
i—j=t —|F|—j=t
and the differential given by
DY(M*) > (M})*®4(S/Pr) 2@y — dpuy(z®y )+(~1)'(6*(z)®y) € DH(M*),

where 6* : (ML)* — (M™)* is induced by the k-dual of 69~ : M~! — MJ. The
complex D(M?*) consists of injective objects, but it is not minimal in general.

If M is straight, then so is MY := * Homg(M,*E(k))(—1). Obviously, (—) gives
an exact duality functor on Str. By the equivalence Sq 2 Str of Proposition 1.8, we
have an exact duality functor A on Sq which corresponds to (—)V. More precisely,
for M € Sq, we set

A(M) := N(Z(M)") = N'(* Homs(2(M),*E(k))(~1)) € Sq.

We say A is the Alezander duality functor ([8, 10]). It is easy to see that A(M)f is
the k-dual of M, and the multiplication map A(M)r 3 y — z;y € A(M) gy for
i ¢ F is the k-dual of Mpe\(;y 3 y = z;y € Mpe. For example, A(S/Pr) = S(—F¢).
Hence A interchanges an injective resolution with a projective resolution. We also
have A(S/In) = Iav, where AY := {F C [n] | F* ¢ A} is (Eagon-Reiner’s)
Alezander dual simplicial complez of A ([4]).

Remark 2.4. Let A = I(2(", k) be the incidence algebra of 2(". Since Sq & mod A,
we have D?(Sq) = D’(mod,). By Remark 1.6, the duality functor D corresponds
to the functor R Homy(—, A[n]) from D"(mod 4) to itself (after the identification
AP =2 A given in Remark 1.6).

Let J = @ FC[n]E’(F) be the direct sum of indecomposable injective objects.
Then End(J) = A and we have an exact contravariant functor Homu(—, J) from
mody to mod4er. Since we have the isomorphism A = A°°, Homu(—, J) can be
seen as a functor from mod, to itself. This functor corresponds to A.

Next we will describe the complex
F(M) := AoD(M) = AN (Hom* (M, D*))),

for M € Sq. For each F' C [n], (Mp)° denotes a k-vector space with a bijection
Yr : Mg — (Mp)°. We denote 9¥r(y) € (Mp)° by y°, and set deg(y°) = 0. Then

F (M) = P (Mr)° @ S(-F°)
|F|=i
and the differential map is given by

d(y° ®s) =Y (1)) (z,9)° @ z;s.
JEF



For a complex M* = {M?* 6} € Com®’(Sq), we can also describe F(M*) =
Ao D(M*) in the following way:

Fi(M) = @ F) = D (Mp) & S(-F),

itj=t |Fltj=t
and the differential is given by
FHM®) D (ML) ®cS(—F) 3 y®s — drui)(y®s) + (—1)1%(y) ®s € FHH(M®).
Here 6%, : (ML)° — (ME™)° is induced by &7 : M7 — MI*1.
Theorem 2.5. We have a natural equivalence

DoAoDoAoDo A THM
in D¥(Sq), where T is the translation functor (i.e., T2 : M* — M*[2n]).
Proof. For M* = {M?§'} € Com’(Sq), the complex Hom$(F(M*),ws[n]) is iso-
morphic to D o Ao D (M*) in D*(Sq). We have

Homy(F(M"),wsn]) = Homs( €D  (Mp)* @ S(=F), ws)

—i—n=|F|+j
= P Mp)yexS(=F)
—i—n=|F|+j
= P M) exS(=F).
i=—n—|F|+j

Here we simply denote the dual vector space of (M ;j )° by (M ;j )*, since (M ;j ) =
M;? as k-vector space (but the degree of (M, ~7)° is 0). Also here deg(Mz")* = 0.
The differential of Hom§(F(M*),ws[n]) is given by

(M7) @ S(-F) 3y @1 ()" Y (-1 y() @+ 6" (y) © 1,

IeF

where Uf : Mp — 'MF\{I} is the k-dual of v : MF\U} >z Tz € Mg, and
5t (MG7)* — (M77~Y)* is the k-dual of 6797 : Mz7™! — My".

Similarly, F(A(M?*)) represents Ao Do A(M*) in D’(Sq), and we have

FAM) = @ (AM)r) & S(-FF)

i=|F|+j

= P M) @ S(-F)
i=|F|+j

= P M) eS=F).
i=n—|F|+j

Also here, we simply denote (A(M~7)p)° = (M =0)¥)° by (M, -7)*. The differential
of the above complex is given by

(M) @ S(—F) 3y ®10 Y (-1t oj(p) @z + (-1)TH 8 (y) @ 1.
leF



We can check that the multiplication by (—1)*®#9+ on (M;?)*®;.S(~F), which
can be regarded as a submodule of both Hom*(F(M*),ws[n]) and F*(A(M?*)),
induces a quasi-isomorphism between Hom®(F(M*®),ws[n]) and F(A(M*)). So
DoAoD = T?0.AoDo A as a functor on D?(Sq). Since (AoDoA)o(AoDo4)
Idpe(sq), we get the assertion. ]

Example 2.6. Assume G C F, and set H := F'\ G. Then we have

DoAoDoAoDo A(S/Pr(—QG))
=DoAoDoAoD(S/Pg(—F°))
=DoAoDo A((S/Pg)(—G + F)[n - |G]))
=DoAoDo A((S/Ps)(—H)[n — |G]))

= Do Ao D((S/Pye)(~G)—n + |GI)

— Do A((S/Pye) (G — HO)[2n — |G| - |H])
=D o A((S/Pge)(—F)[2n — |F]])

= D(S/Pr(—H)[|F| - 2n])

— S/Pr(H - F)3n— |F| - |

= 5/Pr(~G)f2n].

3. RELATION TO THE BERNSTEIN- GEL’FAND- GEL'’FAND CORRESPONDENGCE

Let S = k[z1,...,2,] be a polynomial ring as in the previous sections, and
E = k(es,... ,en) an exterior algebra. We regard E as a Z"-graded ring with
deg(e;) = (0,...,0,~1,0,...,0) where —1 is in the i*" position. When we regard
S and E' as Z-graded rings, we set deg(z;) = 1 and deg(e;) = —1 for all 5. For a
Z"-graded E-module M and a € Z", M, means the degree a component of M , and
M (a) is the shifted module with M (a)y, = Ma4p as in the polynomial ring case.

Denote the category of finitely generated Z-graded S-modules (resp. E-modules)
by modgs (resp. modg). Although the categories modg and modjg are far from
equivalent, a famous theorem of Bernstein-Gel’fand-Gel’fand (2] (see also [1]) states
that D?(mods) = D*(modp). We will see that this equivalence also holds in the
Z"-graded context. Denote the category of finitely generated Z"-graded S-modules
(resp. E-modules) by *mods (resp. *modg). For a functor R : D*(*mods) —
D®(*modg), we use the convention of [5).

For M € *mods, we define R(M) = Homy(E(—1), M) to be a Z*-graded cochain
complex of free E-modules as follows. (The original definition in [5] is R(M) =
Homy(E, M), but we use this grading. We will also shift the grading of £(N) whose
original definition is S®; N.) We can regard Homy(E(—1), M,) as a free E-module
E(—a)®™ M= in natural way. Set the cohomological degree of Homy(E(—1), M,)
to be |[a := 3¢}, a;- The differential of R(M) is defined by

Homy(E(—1), Ma) 3 f — [e— Z zif(eie)] € @D Homy(E(—1), Maypsy)-

i€[n]



We can also define the complex R(M*) = Dz Homy (E(—1), M?) for a complex
M* € *modg in a similar way.

Note that R(M) is hard to be a bounded complex even for a module M. But, if
M* is a bounded complex, then R(M*) has bounded cohomology (i.e., only finitely
many non-vanishing cohomology modules). And R preserves quasi-isomorphisms.
Thus R defines a covariant functor from D?(*mods) to D?(*modg).

Next, we will define a left adjoint £ of R. Set L(N®) = D¢z S(—1) ®% N7 for a
complex N* = {N%,6'} in *modg. The cohomological degree of L(N *) is given by
LY(N®) = Bicjja S(—1) % NI. And the differential is defined by

Li(N*) D S(-1)®x N, 2s®y— Z 7,5 ® ey + (1)} (s ® 8 (y)) € LTH(N®).
i€[n]
If N* is bounded so is £L(N*®). And L preserves quasi-isomorphisms. Hence L defines
a covariant functor from D?(*modg) to D?(*mods). By the same argument to [5,
§2], we can prove the following.

Theorem 3.1 (BGG correspondence (Z™-graded version)). With the above nota-
tion, the functors R and L define an equivalence D?(*mods) & D’(*modg).

The functors R and L are closely related to D and A of the previous section. To
see this, we recall the definition of a squarefree module over E.

Definition 3.2 (Rémer [10]). A Z"-graded E-module N = @,cz- Na is squarefree
if N is finitely generated and N = @ g N-r-

For example, a monomial ideal of E is always squarefree. We denote the full
subcategory of *“modg consisting of all the squarefree E-modules by Sqg. There are
functors S : Sqz — Sqg and € : Sqg — Sqp defining an equivalence Sqg = Sqp.
Here S(N)p = N_p for N € Sqg, and the multiplication map S(N)Foyr iy €
S(N)rugiy for i ¢ F is given by S(N)p=N_p3z+> (=1)26Fe;z € N_(rugiy) =
S(N)rugiy- See [10] for further information.

Comparing £ and F = Ao D defined in the last section, we have the following.

Proposition 3.3. If N* is a (bounded) complez of squarefree E-modules, then
L(N*) = S(—1) ® N*® is a (bounded) complez of squarefree S-modules. Hence
L gives a functor from D(Sqg) to D*(Sqg). Moreover, for M* € Com®(Sqg), we
have Lo E(M®*) = Ao D(M?*).

On the other hand, R(M) is very hard to be a complex of squarefree E-modules.
In fact, R(M) is a complex of free E-modules, but a free E-module E(-a) is
squarefree if and only if a = 0. But we have the following.

Proposition 3.4. If M* is a bounded complez in Sqg, then R(M?*) = EoDoA(M?®)
in D(*modg).

We can see that D}, (*mods) 2 D’(Sqg) and D}, (*modg) = D*(Sqg). If
M* € Db(Sqg), then R(M*) € Dj, (*modg) by Proposition 3.4. Hence, un-
der the equivalence D§,_(*modg) = D’(Sqg), we have SoR = Do A While
Proposition 3.3 states that Lo & = Ao D.
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§1. INTRODUCTION

Throughout this talk, let A be an excellent Cohen-Macaulay normal local domain of
characteristic p > 0 and with d = dim A > 2. Further, assume that the residue field
k = A/m is infinite and perfect. Also, let I be an m-primary ideal in A. We use the
following notation:

F:A— A: the Frobenius map defined by F(a) = aP.
R(I) = A[lt] (vesp.R'(I) = A[It,t™']), the (resp. the extended) Rees algebra of I.
gri(A) := R(I)/IR(I) = R'(I)/t~'R'(I), the associated graded ring of I.

We always use the letter g for a power p® of p. Then we put Ild = (a%|a € I)A.

Definition (1.1). (cf. [Hu], [FW]) (1) The tight closure I* is the ideal defined by
a € I* if and only if there exists an element ¢ € A° such that for all sufficiently large
q = p°, ca? € 19 where A°:= A\ U{P|P € Min(A)}.

(2) The integral closure T is the ideal defined by a € T if and only if there exists a monic
polynomial F(X) = X"+ a1 X" ' +--- +an € A[X] with a; € I’ such that F(a) = 0.
(3) A local ring A in which every ideal (resp. parameter ideal) is tightly closed is called
weakly F-regular (resp. F-rational).

The main purpose of this talk is to give a criterion for the Rees algebra R(I) to be
F-rational. .

In order to explain our motivation, let A be a normal local ring which is essentially of
finite type over a field of characteristic zero. Let f : X — Y := Spec A be a resolution of
singularities of Y. The ring A is said to be (or have) a rational singularity if Rif,0x =0
for all j > 0. Note that this property does not depend on the choice of a resolution of
singularities. Then the following theorem is known.

Theorem (Lipman [Lil]). If I is an integrally closed ideal in a rational surface sin-
gularity, then R(I) is also a rational singularity.

In the last symposium on Commutative Algebra, Hyry showed the following theorem,
which gives a criterion for R(I) to be a rational singularity.
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Theorem (Hyry [Hy2]). Assume that A is regular. Then R(I) is a rational singularity
if and only if it is a Cohen-Macaulay normal domain with a(I,J) = adj(I*"1) for any
minimal reduction J of I, where a(I,J) is the largest ideal a of A for which Ia = Ja.

As is known, the notion of F-rational rings (in positive characteristic) is very closely
related to that of rational singularities. In fact, in the above notation, A is a rational
singularity if and only if its reduction mod p is F-rational for all sufficiently large prime
p>0.

So we shall consider the following questions in positive characteristic. In the following,
we use the notation described on the top of the report.

Questions (1.2).

(1) Find a criterion for R(I) to be F-rational.

(2) Assume that R(I) is a Cohen-Macaulay normal domain (+a) over an F-rational
ring. Then is R(I) F-rational?

(3) If R(I) is F-rational, then is the base ring A also F-rational?

(4) Both A and R(I) are F-rational if and only if so is R'(I)?

In order to state our main theorem, we need the following notion, which has been
recently introduced by Hochster.

Definition (1.3) (Hochster [Ho]). Let Z = {I1,...,I,} be a finite set of ideals in
A. Then T is the ideal defined by o € Z* if and only if there exists ¢ € A° such that
ca? € If +--- + I for all sufficiently large g = p¢. Then Z* is called the tight integral
closure of Z.

Note that an element z € A is in T if and only if there exists an element ¢ € A° such
that cz” € I™ for infinitely many n. Thus {I}* = I. Moreover, if an ideal I is generated
by elements {a1, ... ,an}, then the tight integral closure {a; 4, ... ,agA}* is equal to
the tight closure I* of I. Thus the netion of tight integral closure can be regarded as a

generalization of these two notions. Furthermore, the following fact is important:
(I_1++E)* - {Ilv aIn}i_C_Il‘i‘"'-l—In.

The next theorem is the main theorem in this talk, which gives a criterion for R(I )
to be F-rational.

Theorem (1.4). Let (A,m, k) be an excellent Cohen-Macaulay normal local domain of
characteristic p > 0. Let I be an m-primary ideal in A and J = (fy,... fa) a minimal
reduction of I. Put JW = (!, ... f}).
Then R(I) is F-rational if and only if the following statements hold:
(1) R(I) is Cohen-Macaulay.
(2) Foralll > 1 and for 1 <s <1d, {I°, flA,..., fLA}2 = I° + JU that is,
if there exists an element c € A° such that cx? € I°9 + JU for all sufficiently
large ¢ = p°, then z € I + JUU.
When this is the case, the following statements hold.
(i) A, is F-rational for all prime p € Spec A \ {m}.
(ii) J* C J+ 1471,




(iii) (JH) = J0 + f1717* for alll > 1.
(iv) I C Tpar(A) := ann(0)}. (4) the parameter test ideal of A.

In case of F-rational local rings, the above criterion becomes simpler.

Corollary (1.5). Assume that A is F-rational. Then R(I) is F-rational if and only if

(1) gri(A) is Cohen-Macaulay.
() {1, flA, ..., flAy=1°+JU  foralll,s>1.

Proof. Since excellent F-rational rings are pseudo-rational([Sm]), the assumption (1)
implies that R(I) is Cohen-Macaulay ([Li2]). So we may assume that R(I) is Cohen-
Macaulay. Then since R(I'9) is also Cohen-Macaulay and J [ld] is a minimal reduction
of I, if s > Id, then we have

Isq g Idlq = ( {q) 7f¢liq)Ilq(d—l) g (f{q? Tt tliq)
Hence for such integers s, [, we get {I°, fLA, ..., fLA}= =1+ (ff, ..., f}) if and only

if JW is tightly closed, that is, A is F-rational. Thus the assertion follows from Theorem
(1.4). O

The following corollary gives a partial answer to Q.(1.2)(3).
Corollary (1.6). If R(I) is F-rational and a(gr;(A)) # —1, then A is also F-rational.

Proof. Take any minimal reduction J of I. Since gr;(A) is Cohen-Macaulay, we get
r;(I) — d = a(gr;(A)) < —1. Thus the assumption implies that r;(I) < d—2. In
particular, I4~1 = JI9-2 C J. Theorem (1.4) implies that J* C J 4+ I?~! = J, and so
that A is F-rational, as required. [

In the above corollary, the assumption “a(gry(A}) # —17 is not superfluous.

Example (1.7). (See [Ar]) Let k be a field of characteristic 2.
(1) Let A = k[[z,y,2]]/(2*> + 2%y + zy?). Then A is pseudo-rational but not F-
rational. Further, we have a(grm(A)) = —1 and that R(m) is F-rational.
(2) Let A = k[[z,y,2]]/(22 + 2° + zy® + zyz). Then A is pseudo-rational but not
F-rational with 7p,,(A) = m. Furthermore, R(m") is a Cohen-Macaulay normal
domain but not F-rational for every integer r > 1.

Proof (Sketch):. (1) In order to prove this, it is enough to show that
{m3, 224, y? A} = m® + (22, ¢?) (see [HYW1] in detail).

Indeed, we can show that any generator a;zy + a2zz + asyz (a; € k) of the socle of
A/m3 + (22, y?) is not contained in {m3, z24, y*>A}*.

(2) It is enough to show that (zz)9 € m3? + (2%4) holds for all ¢ = 2¢ by induction on
e > 1. Furthermore, this shows that (z2"~1y"12)? € m37 + (2%79) for all ¢ = 2¢. Thus
R(m") is not F-rational since 22" ~1y" "1z ¢ m® + (227, y*") for each r > 1. O

Further, we have



Theorem 1.8. Let (A, m) be a local ring of a rational surface singularity of character-
istic p > 0. Let I be an integrally closed m-primary ideal of A such that the blowing-up
f: X = Proj R(I) — Spec A is a resolution of singularity. Then the Rees algebra R(I™)
is F-rational for all sufficiently large m € N.

The above theorem suggests the following conjecture.

Conjecture (1.9). Let A be as in (1.8). Let I be an integrally closed m-primary ideal
of A such that Proj R(I) is F-rational. Then the Rees algebra R(I™) is F-rational for
all sufficiently large m € N.

§2. PROOF OF THE MAIN THEOREM

In this section, we give a sketch of the proof of Theorem (1.4).

2.1 Notation. In the following, we use the following notation. Let I be an m-primary
ideal of A and J = (fi, ... , fa) its minimal reduction. We put f = f1--- f4, gi = f/fi
for all i and JU = (fl,..., f}) for every | > 1. Also, we put R := R(I) = A[It], M =
mR + R4, and G = R/IR. Moreover, we denote X = Proj(R) and Ox(n) = R(n)~
for n € Z. Let E be the closed fiber of the blow-up f : X — Spec A which is induced
from the natural ring homomorphism A — R(I).

We begin with the “Sancho de Sales sequence” with respect to the Rees algebra R(I);
see e.g. Lipman [Li2].

Lemma (2.2). (Sancho de Sales sequence) Under the notation as in (2.1), we have
(SS) = Hin(R) = P Ho(I™) = @D Hy(X, 0x(n)) —» HF'(R) — -+
n>0 nez

Using this, we show the following lemma, which plays a key role in the proof of
Theorem (1.4).

Lemma (2.3). Under the notation as in (2.1), suppose that R is Cohen-Macaulay.
Then we have the following exact sequence for alln < —1:

0— H™/(X, 0x(n)) = [HE, (R)] 22 HE(4) 25 [HE(R)], 0.

Proof. As E = f~1(m) being closed in X = Proj(R), there exists the following exact
sequence
0= HE 1 (X,0x(n)) - HY(X,0x(n)) = H* (X \ E,Ox(n))
— HE(X,0x(n)) = HY(X,0x(n)) = 0.
Since X \ E = Spec A \ {m}, we have HY"}(X \ E, Ox(n)) = H%(A) (see e.g.[TW,
Proposition(1.17)]). Also, under the assumption that R is Cohen-Macaulay, (SS) implies

that HL(X, Ox(n)) = [H,_‘,g;r I(R)]n for all n < —1. Therefore we get the required exact
sequence. [J

In the following, let ¢,, and v, denote the homomorphisms described in (2.3). We
now consider the condition for [%] to be included in Im(¢,). In order to do that, we
need the following lemma.




Lemma (2.4). Let A be any Cohen-Macaulay local ring of dimension d > 2. Let I be
an m-primary ideal of A and J = (f1, ..., fa)A its minimal reduction. Suppose that
G = gri(A) is Cohen-Macaulay. Then for all integers 1, r,s > 1 with 1 < s <dl,

(2.4.1) [[Hdr + J[1+T1] S(fre f)r I+ I

The following corollary, which will be used in the proof of Theorem (1.4), easily follows
from the above lemma. Note that “if part” is trivial but “only if part” is important.

Corollary (2.5). Under the same notation as in Lemma (2.4), we further suppose that
I,n are positive integers such that dl —n > 1. Then for any element a € A,

[fl} € Im(é—_n) if and only if acI¥4 ™+ Ju,

We now prove the main part of Theorem (1.4) by proving the following proposition,
which is more practical version.

Proposition (2.6). Under the same notation as in (2.1), we further assume that R s
Cohen-Macaulay. Put

b(R) := —min {n € Z‘ [Soc (HET' (R))],, # O} (>1).
Then R is F-rational if and only if

(2.6.1) (I, LA, - fLAY =TI+ (fl, -, fDA

holds for alll > 1 and for all s with max{1l, dl —b(R)} < s <dl—1.
When this is the case, (2.6.1) holds for alll > 1 and 1 <s < dl — 1.

Proof (Sketch):. We may assume that ¢ € I is a test element for parameters in both
A and R by Vélez’ theorem([Ve]). Then from (2.3), for all ¢ = p°® and for all n < —1,
we have the following commutative diagram with exact rows:

0 —— [HE, (R)]ln —22s HE(A) —2— [HF'(R)n —— 0
(2.6.2) icFe J,CFe lCFC

¢qn

0 —— [H%+(R)]qn Hy (A) [Hd+1(R)]qn — 0

First, we prove “if part”. In order to do that, we show that if o € [(0)* Hb( R)] then

o = 0. We may assume that o is a generator of Soc(Hgq'(R)). Since Soc(Hgy drL(R))
is a graded module, we have a € [Hg d“(R)] for some 1 < —n < b(R) (note that

a(R) = —1). Since ¥, is surjective, we can write as a = 9, (€) for some & € Hi(A).
Since ¥nq(cFe(€)) = cF¢(e) = 0 by definition, cF¢(§) € Im(¢ng) for all sufficiently
large ¢ = p®. Thus it suffices to show the following claim.




Claim 1:. For any £ € HZ(A) and for each n < —1, if cF(£) € Im(¢n,) for all
sufficiently large ¢ = p®, then & € Im(¢,,).

Write £ = [}%] for some a € A and [ > 1. By assumption, cF¢(§) = [%}’] € Im(¢nq)
for all sufficiently large ¢ = p°. Thus cad € T%a+n9 4 jlldal by (2.5). It follows from the
assumption (2.6.1) that a € I%+" 4+ Jl. Then ¢ = [?‘*[] € Im(¢,,) as required. Hence

R is F-rational.
Since the proof of “only if part” is similar, we omit it. [

In order to complete the proof of Theorem (1.4), we prove the following proposition,
which gives several necessary conditions for R to be F-rational. But these conditions
are not sufficient even if dim A = 2 (see e.g (1.7)).

Proposition (2.7). Under the same notation as in (2.1), suppose that R is F-rational.
Then
(i) Ay, is F-rational for all prime p € Spec A\ {m}.
(i) J* C J+ 1471
(iit) (JU)* = JW 4 f=17* for all 1 > 1.
(iv) I C Tpar(A).

Proof. (i) For any prime p # m, since A,[t] = R(I), is F-rational, so is A,. To see
(ii) and (iii), we put s =dl — 1 in (1.4)(2). Then

(1t g0) {1t fA, e Ay = 1 g,

In particular, %1 + JU is tightly closed. On the other hand, since R is Cohen-
Macaulay, I¢ = JI471; hence J#~1 = J#~dJd—1 Then since I#~1 4 Jlll = jdl-dyd—14
JU = pi-tpd=1 4 Jll e get

(2.7.1) (JUy € (ff7ret 4 gy = pierpet 4 g,

Therefore for any z € (J!)*, we can write as z = y + f'~!z for some y € J! and z €
I4=1, Then z € J* since J is generated by a regular sequence. Thus z € JU + fl=1*
Hence we get the assertion (iii). Moreover, putting ! = 1 in (2.7.1), we also obtain (ii).

To see (iv), we first prove that (0);1;3‘(,4) C Im(¢_1). In fact, for any € € (0)}{$(A),
we write as £ = [?‘%] Since A is Cohen-Macaulay and cF¢(§) = [;"TZ] =0in Hi(A),
we obtain that ca? € JI4 for all sufficiently large ¢ = p®; thus a € (Jih*=. By (2.7.1),
we have a — f'~'b € JI for some b € I?~1. Namely, we have [%] = [%] € Im(¢_1)

in Hd(A), as required.
Then it suffices to show that

d—1
(2.7.2) (H, (R)+ > (@)1 (> 5 ).

In fact, if this is valid, then I.[H;’ler (R))-1 = L[H&(G)]-1 = 0, and so 1.(0)%. S
I.Im(¢—1) = 0; hence I C annA(O)*Hd'(A) = Tpar(A).



In order to see (2.7.2), we consider the following two short exact sequences:
0>Ry 2R—->A—D0, 0> Ri(1)>R—->G—0.
From these sequences, we get

= HEy Y(G) —» H (Ry)(1) - Hi, (R) = Hx(G) = HFH(R)(1) = 0.
Thus it is enough to show that [H%+ (R)]o = 0. For any element 8 € [thd]o, we
can write as 8 = a/f™ for some integer | > 1 and a € I @' On the other hand, since
4 = JUdi=d e have B € Im([@7; Ry, a-1)o = [Ry1elo). Thus [H%+ (72)]0 = 0. We
have completed the proof of Proposition (2.7), and so Theorem (1.4). O

§3. APPLICATIONS

The following proposition is an analogy (in positive characteristic) of Lipman’s theo-
rem. We were informed by Huneke and Smith that they also have proved this theorem.

Proposition (3.1). Let A be an F-rational local ring of dimension two. Then for any
integrally closed ideal I of A, R(I) is F-rational.

Proof. Since R(I) is Cohen-Macaulay, it suffices to show that {I s xlA, ylA}i =
I* + (2!, y!) for all I > 1,1 < s < dl. Suppose that z € {IS, Tl A, ylA}i. Then there
exists an element ¢ € A° such that cz? € I°9 + (xlq, qu) for all ¢ = p°®.

Since A is a rational surface singularity, one has I? = JI. Hence for all ¢ = p®, one
has that

czd e qu_lf—l— (xlq’ qu) C qu—l + (:qu, qu) C (Js—l + (xl, yl))[lﬂ‘

Since A is F-rational and J is an ideal generated by monomials in a system of parameters
z, y, this implies that

2 € (Js—‘1 + (Cl’,'l, yl))* _ Js—l + (:El, yl) — (Jil, xl—lys—l, ,.’L‘S_lyl_l, yl) .

Hence z = 2 +az! +by! for some 2’ € ('~ 'y*~!, ... ,z°"y!"!) and q, b € A. Similarly,
since cz? € J97 I + (2%, y'7), we can also write cz¢ = w + o z'9 + b'y'e for some
wel- (:vlq—lyq(s_l), ‘e ,x‘J(s_l)qu_l) and o/, b’ € A. Therefore, we have that

! la]
29 —we (wl-—lys—l’ xs—lyl-—l)[q] n (:zlq, qu) _ (zzy(s—z), x(s—l)yl> .

But this implies that cz'? € J91] = I for all g = p°, so that 2’ € Is = I® by the
valuative criterion, where we used the fact that if A is a rational singularity then any
power of an integrally closed ideal is also integrally closed. Consequently, we obtain
that z € I° + (¢!, y), as required. O

The following theorem shows that “only if part” of Q.(1.2)(4) is true. But “if part”
remains open.



Theorem (3.2). If A and R(I) are both F-rational, then so is R'(I).
The above theorem easily follows from the following key lemma and Theorem (1.4).

Lemma (3.3). Let A be an F-rational local ring, and let I be an integrally closed
m-primary ideal in A. We further suppose that

(i) gri(A) is Cohen-Macaulay.

(i) There exists a minimal reduction J of I such that

{I?, 1A+ [ f4AY=TI°+J foralls=2,--- ,r(I)+ 1.

Then R'(I) is F-rational.

Proof. Put R := R'(I) = A[lt,t7'] and M = (m, It, t"')R’. Take a minimal
reduction J of I which satisfies (ii). Since R’ is Cohen-Macaulay and (Jt,t7!) is a
homogeneous parameter ideal of R’, it is enough to show that (Jt, t71) is tightly closed
to prove that R’ is F-rational.

Now take any non-zero element ¢ € I and fix it. Then since R, = A[t,t7!] is F-
rational, ¢ has a power ¢™ which is a test element for both 4 and R’. Replacing ¢ with
c", we may assume that c is a parameter test elment for both 4 and R’. Fix such an
element c € I.

Now suppose that = € (Jt,t~1)*. Since (Jt,t™!) is a homogeneous ideal which con-
tains all of the negative part of R’, we may assume that z can be written as z = zt*
for some integer k > 0 and x, € I*¥. Then for all ¢ = p¢, we have

cz? = czth? € (J[Q]tq, t'q) R
Thus we get

(3.31) clc [t_kq (J[‘”tq, t—‘J) R’] = Jlapk=Da 4 p(k+Da for al] g = pe.
0

Under the above notation, we must show that z € [(Jt,t )R]y = JI*~1 4+ I*+! for
all k > 0. In case k = 0, by (3.3.1), we have czl € JI9 + 19 = I for all ¢ = p®. This
implies that zo € T = I = [(Jt,t71)R']o.

In case where 1 < k < r(I), we have that z € J + I**! by (3.3.1) and (ii). On the
other hand, J N I* = JI*~! as gr;(A) is Cohen-Macaulay. Hence

ar €PN (J+ MY =g Tk 4 14 = g1 4 %41 — [(Jt,t YR ).

In case where k > r(I) + 1, we have zj € I* = JI*~1 4 [¥+1 = [(Jt,t )R]} as
required. Summing up, we conclude that = € (Jt,t~!) and have completed the proof of
the lemma. O

For rational singularities, the similar result as in Theorem (3.2) holds. See [HYW?2]
in detail.



Theorem (3.4). Let A be an essentially of finite type over a field k of characteristic
zero. Let I be an m-primary ideal of A. Then R(I) is a rational singularity if and only
if so is R'(I).

Remark. Since A is a rational singularity if and only if it an F-rational type, the above
theorem follows from Theorem (3.2), but we have an another proof with geometric
flavor; see [HYW2].

In higher dimensional case, there exist many examples of a Gorenstein F-rational local
ring whose Rees algebra R(m) is a Cohen-Macaulay normal domain but not F-rational.
Also, one can get many examples of a Cohen-Macaulay normal Rees algebra which is
not a rational singularity (in characteristic zero) from this.

Theorem (3.5). Let A = k[zo,21,... ,z4]/(x§ + 27" +---+z3), where a; are integers
d
1
with 2 =ag < a1 < --- < aq. Suppose that r := Z — >1 and p := char(A) > adr .
i—0 a; r—1

Then A is a graded F-regular domain with isolated singularity and the following state-
ments hold:
(1) R(m) is Cohen-Macaulay.
(2) R(m) is normal if and only if a1 = 2,3.
(3) R(m) is F-rational if and only if (a1,a2) = (2,n),(3,3),(3,4),(3,5), where n is
any integer with n > 2.

Proof. See [HYW1] in detail. 0O

Remark. The content of this talk will be contained in [HYW1]; see also [HYW2] in
detail.
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REES ALGEBRAS OF F-REGULAR TYPE

NoBUO HARA (Tohoku Univ.), KEN-ICHI YOSHIDA (Nagoya Univ.)
and KEI-ICHI WATANABE (Nihon Univ.)

Let (A, m) be a local ring of dimension d > 2 and let I be an m-primary ideal.
The Rees algebra of I is, by definition, the graded ring R(I) := A[It], where the
degree of elements of A is zero and ¢ is an indeterminate of degree 1. Then the ring
homomorphism A — R(I) induces a morphism ¢: Proj R(I) — Spec A, the blowing-
up of Spec A with respect to the ideal I.

Various properties of Rees algebras, e.g., Cohen-Macaulay and Gorenstein proper-
ties, has been studied by commutative algebraists. The condition for Rees algebras
to have rational singularities has been studied by Lipman [L], Hyry [Hy] and others.
Motivated by their works, we studied in [HYW1] the F-rationality of Rees algebras
over a local ring of characteristic p > 0.

F-rationality is defined via tight closure in rings of characteristic p ([FW], [HH1])
and is known to correspond to rational singularity in characteristic zero via reduction
modulo p > 0 ([H], [MS], [Sm]). Tight closure also enables us to define F-regularity
([HH1]), which is another important class of rings in characteristic p > 0 and corre-
sponds to log terminal singularity under Q-Gorenstein property ([H], [HW]).

As far as we know, much is not known about F-regularity of Rees algebras. The
purpose of this note is to investigate the F-regularity, and related geometric aspects
such as log terminal singularity, of Rees algebras R(I), especially in the case when I
is an m-primary ideal in a 2-dimensional local ring (A, m).

This note is a summary of [HYW?2], and our exposition here is in some sense a geomet-
ric counterpart of the preceding talk by Yoshida on [HYW1]. We use various geometric
methods such as splitting of the Frobenius map and resolution of singularities. Based
on this philosophy, we also prove miscellaneous results concerning singularities of Rees
algebras.

1. STRONG F-REGULARITY OF REES ALGEBRAS AND GLOBAL F-REGULARITY

The notion of F-regularity defined for rings of characteristic p > 0 has a few variants.
Rings in which all ideals are tightly closed are said to be weakly F-regular ([HH1]). In
this note we mainly consider strong F-regularity defined as follows, rather than weak
F-regularity.

Definition 1.1. ([HR], [HH2]) Let R be a reduced ring of characteristic p > 0 which
is F-finite (i.e., the inclusion map R — RY? is module-finite).

(i) We say that R is F-pure if the map R — RP splits as an R-linear map.

(ii) We say that R is strongly F-regular if for every element ¢ € R not in any minimal
prime of R, there exists a power ¢ = p° such that the inclusion map ¢/R — R4
splits as an R-linear map.




Strong F-regularity is a priori stronger than weak F-regularity, but they are known
to coincide for rings of dimension < 2 ([Wi]) and Q-Gorenstein rings ([Mc]). (Q-
Gorenstein means that the canonical class has a finite order in the divisor class group
of every local ring.) The following implications hold in characteristic p > 0:

regular = strongly/weakly F-regular = F-rational = Cohen-Macaulay, normal.

U
F-pure

Also, a Gorenstein F-rational ring is strongly F-regular.

We can extend these concepts to rings in characteristic zero. Namely, a ring R
essentially of finite type over a field of characteristic zero is said to be F-xx type if
its reduction modulo p is F-+* for all p > 0. It is proved that R has only rational
singularities (resp. log terminal singularities) if and only if R is of F-rational type (resp.
F-regular type and Q-Gorenstein). Also, if R is of F-pure type and Q-Gorenstein, then
R has only log canonical singularities. For a proof and generalizations, see [H], [HW],
[MS], [Sm].

Next we consider the global version of strong F-regularity and F-purity. Let Y be
an F-finite scheme of characteristic p > 0, i.e., the Frobenius morphism F: Y — Y is
finite. One says that Y is F-split if the Frobenius ring homomorphism F': Oy — F.Oy
splits as an Oy-module homomorphism ([MR]). We introduce an analoguous notion
to study strong F-regularity of Rees algebras. '

Definition 1.2. Let Y be a projective scheme over an F-finite ring A of characteristic
p > 0. We say that Y is globally F-regular if for any effective Cartier divisor D on Y,
there exists e € N such that the composition map Oy £, F;Oy — F:Oy(D) splits as
an Oy-module homomorphism, where F*: Oy — F*Oy denotes the e-times iterated
Frobenius map.

Note that the above definition includes the case when Y = Spec A. In this case it
immediately follows that Y = Spec A is globally F-regular (resp. F-split) if and only if
A is strongly F-regular (resp. F-pure). More generally, we have the following

Proposition 1.3. Let Y be a projective scheme over an F-finite ring A of character-
wstic p > 0.
L. IfY is globally F-regular (resp. F-split), then Y is locally strongly F-regular (resp.
F-pure), i.e., the local ring Oy, is strongly F-regular (resp. F-pure) for every
y €Y. In the case when Y = Spec A, the converse is also true.
2. If f+Y — Z is a birational projective morphism with f.Oy = Oz and if Y is
globally F-regular (resp. F-split), then Z is also globally F-regular (F-split).

Now we give a criterion for strong F-regularity (resp. F-purity) of Rees algebras in
terms of global F-regularity (resp. F-splitting). Although we have criteria for general
normal graded rings which are more or less similar to Proposition 1.5 below, we restrict
ourselves to the following situation which includes the case of normal Rees algebras
with respect to ideal-adic filtrations.

1.4. Setup. Let (A,m) be a local ring of dimension d > 2 and let R = @®,5, R, be
a Noetherian normal graded ring with the degree 0 part Ry = A. Let X = Proj R
and denote the closed fiber of 1: X — Spec A by E = 3~!(m). We also denote
X = Spec x(@,>00x(n)), and let S be the closed subscheme of X defined by the



ideal sheaf @,50 Ox(n) of Oy, where Ox(n) = R(n)~ for n € Z. Then we have the
following "fundamental diagram”:

S X % SpecR
N l
x 4 Spec A
We put the following assumption, which is always the case for Rees algebras R = R([):

1. ¢: X — Spec R is an isomorphism in codimension 1.
2. There is an ample Q-Cartier Weil divisor D (with integer coefficients) on X such
that Ox(n) = Ox(nD)t" for n € N, so that

R=R(X,D) =P H°(X,Ox(nD))t".

n>0
The condition (1) is satisfied if ¢: X — Spec A is a birational morphism. We also note
that any normal graded ring is of the form R(X, D) for some ample Q-Cartier Q-Weil
divisor D on X.

Under the above assumtions, the top local cohomology of the :th symbolic power
wg) of the canonical module of R is written as
Hyt () = @ HE (@R ()"
n<i

Note also that the 1-dimensional socle of H&! (wg) sits in the degree 0 part Hyf ' (wr)o =

H(wx). Hence the following criterion is proved as in [W1].

Proposition 1.5. With the notation as in 1.4, let A be an F-finite ring of character-
istic p > 0. Then the following conditions are equivalent.
1. R= R(X, D) is strongly F-regular (resp. F-pure).
2. X = Proj R is globally F-regular (resp. F-split).
3. For every nonzero element ¢ € A, there exists a power ¢ = p° such that the
map cFe: Hi(wx) — H%(wgg)) is injective (resp. the induced Frobenius map
F: Hi(wx) — H}é(w&’f)) is injective).

2. STRONG F-REGULARITY OF REES ALGEBRAS OVER
TWO-DIMENSIONAL LOCAL RINGS

In this section, we study the strong F-regularity of Rees algebras of m-primary ideals
in 2-dimensional local rings.

Let (A, m) be a 2-dimensional local ring of characteristic p > 0 and / C A an m-
primary ideal. The F-regularity version of Boutot’s theorem ([HH1], [HH2]) says that
if R(I) is strongly F-regular, then so is A, too. Hence we may assume without loss of
generality that A has a rational singularity and [ is integrally closed.

In the above situation, we proved in [HYW1] that R(I) is F-rational if A is F-
rational. On the other hand, we have examples of integrally closed m-primary ideals [
in a non-F-rational rational surface singularity (A, m) of any fixed characteristic p > 0
such that R(I) is F-rational — in other words, examples in which the F-rationality
version of Boutot’s theorem breaks down ([W3], [HYW1]).

We now consider a similar question for strong F-regularity. As we mentioned above,
Ais strongly F-regular if so is R(I). However, contrary to the F-rational case, we cannot



expect the converse any more. The strong F-regularity of R(I) imposes somewhat
strong conditions on I. If R([) is strongly F-regular, then X = Proj R(I) should be
globally F-regular (Proposition 1.5), but this is too much to ask in general as we will
see in Example 2.3 below.

First we give examples of strongly F-regular Rees algebras. The point of the con-
struction is the following

Lemma 2.1. Let X be a normal projective surface over an F-finite ring of character-
isticp > 0 and let g: X — X be the minimal resolution. Then X is globally F-regular
(resp. F-split) if and only if X is globally F-regular (F-split).

Proof. The sufficiency follows from Proposotion 1.3 without assuming that ¢ is the
minimal resolution. To prove the necessity, we need the assumption that ¢ is minimal,
which implies that Ky is g-nef. Then it follows that g.O3(—nKg) = Ox(—nKy)
for n > 0. Since one has Homo, (FiOz,0%) = FfO3((1 — p°)Kg) and a similar
isomorphism on X by the adjunction formula ([MR]),

HOInO,-((FfOXvOX’) = HomoX(F:OX,OX)'

Hence an F-splitting ¢: F*Ox — Ox of X gives an F-splitting of X. The statement
for global F-regularity is proved similarly. ]

2.2. Ezample. If (A, m) is a 2-dimensional F-regular ring and if I is an integrally
closed m-primary ideal such that 7Oy is an invertible sheaf on the minimal resolution
X of Spec A, then R(I) is strongly F-regular. In particular, if (A, m) is a 2-dimensional
F-regular ring, then R(m") is strongly F-regular for every r € N.

2.8. Ezample. (2) Let (A, m) be a regular local ring of characteristic p > 0. We can
successively blow up suitable smooth points to obtain a birational projective morphism
f: X — Spec A with X smooth such that the dual graph of the exceptional set of f is
as follows:

D, —
|

E,— D, —C —Ds— Es
|

D, —
Here C, D; and E; (1 = 1,2,3,4) denote the exceptional curves (=2 P!) with self-
intersection numbers C? = —5, D? = —2 and E? = —1, respectively. Consider an

anti- f-nef exceptional cycle Z = 4C + !, (5D; + 6 E;) and let [ = H(X,0%(—2)).
Then X = Proj R(I) is obtained by contracting CUU?_, D; in X to a non-log-terminal
singularity. Hence X is not even locally F-regular, so R(I) is not strongly F-regular.

2.4. Notation. Through the remainder of this section we work under the following
notation unless otherwise specified. Let (A, m) be a 2-dimensional local ring essentially
of finite type over a perfect field k£ with only a rational singularity and let I be an
integrally closed m-primary ideal. Then I™ is integrally closed for all n € N and the
Rees algebra R(I) = A[It] is normal ([L]). Let ¢: X = Proj R(I) — Spec A be the
blowing-up with respect to I and let g: X — X be the minimal resolution. Then
f=1o0g: X — Spec A is the smallest resolution such that IO is an invertible sheaf.
We denote the exceptional set of f =) o g by E. Let E be the exceptional set of f
with irreducible components E, ..., E;.




2.5. Observation. Let the notation be as in 2.4. Since (A, m) is a rational singularity,
for any set A of f-exceptional curves such that B = Ug,e4 Ei 1 connected, there exists

a projective morphism X — X’ which contracts E’ to a point z’ € X' with rational
singularity and induces an isomorphism X'\ E' = X"\ {a"} ([A]). In this case, we simply
say that a connected subgraph E’ of E contracts to a rational singularity (X', z').

Now assume that char k = p > 0. Then R(I) is strongly F-regular if and only if
X = Proj R(I) is globally F-regular (Proposition 1.5), or equivalently if X is globally
F-regular (Lemma 2.1). If this is the case, then every connected subgraph E' of E
contracts to an F-regular singularity by Proposition 1.3.

The following theorem says that the converse of this observation holds true in char-
acteristic zero or p > 0.

Theorem 2.6. With the notation as in 2.4, let char k = 0. Then R(I) is of strongly
F-reqular type if and only if every connected subgraph of E = Ui, Ei contracts to an
F-reqular type (or equivalently, log terminal) singularity.

Outline of the proof. The necessity is already proved in 2.5. We sketch the proof of the
sufficiency. Our idea is to consider the "anticanonical ring”
R(X, —Ifx) = @ HO(X, Ox(—nf{x))Tn
n>0

of X. This is equal to the anticanonical ring R(X,—Ky) of X, since g: X — X is the
minimal resolution (cf. 2.1). It is proved that R(X, —Kx) = R(X, —Ky) is a finitely
generated A-algebra and that Y = Proj R(X, —Ky) is obtained by contracting some
subgraph of E C X and satisfies the following properties ([Sa)):

1. R(X, —Ifx) = R(Y, —IX’y).

2. —Ky is ample with respect to the natural morphism ¥ — Spec A.
Hence we may assume that Y has only log terminal singularities. Also in characteristic
p > 0, we can apply Proposition 1.5 to prove:

Proposition 2.7. With the notation as in 2.4, let chark = p > 0. Then R(I) is
strongly F-regular if and only if the anticanonical ring R(X, —Kx) is strongly F-regular.

This makes the situation better, because R(X, —Kx) is Gorenstein, so that in char-
acteristic zero, R(X, —Kx ) has strongly F-regular type if and only if it has log terminal
(or equivalently, rational) singularities. (R(I) is not even Q-Gorenstein in general.)

Thus, to complete the proof of Theorem 2.6, it is sufficient to prove that R :=
R(X,—Kx) = R(Y,—Ky) has log terminal singularities if so does Y = Proj R. To
prove this let = Spec y (B,50 Oy (—nKy)T"), the "infinite anticanonical covering”
of Y, and consider the fundamental diagram for R = R(Y, —Ky) as in 1.4:

S ¥y 5 Spec R
N !
Y — SpecA

Since R and ) are Gorenstein and ¢: J — Spec R is an isomorphism in codimension
1, one has Ky = ¢*KRg, so that R is log terminal if and only if so is Y. On the other
hand, Y is log terminal if so is Y, since a finite (anti)canonical covering of YV is a
hypersurface in Y ([E], [KMM], see also [W2]).

Consequently, R is log terminal if so is Y. The theorem is proved. d




2.8. Remark. (1) For a fixed prime number p > 0, one may ask if the characteristic
p version of Theorem 2.6 holds: If char k = p > 0 and if every connected subgraph of
E contracts to an F-regular singularity, then is R(I) strongly F-regular? We do not
know the answer to this question.

(2) Let us say that a resolution graph of a normal surface singularity is a GFR
graph if every connented subgraph of it contracts to a-log terminal singularity. We can
check whether or not a given resolution graph is GFR. For example, the graph of the
minimal resolution of a log terminal singularity is GFR, while the graph in Example
2.3 is not GFR. Theorem 2.6 asserts that R(I) has strongly F-regular type if and only
if I is obtained by I = H°(X, OX(——Z)) for some resolution f: X — Spec A4 with GFR
graph and an anti-( f-)nef exceptional cycle Z.

Next we put the assumption that the Rees algebra R(I) is Q-Gorenstein. Note
that Q-Gorenstein F-regular rings have log terminal singularities. It turns out that
Q-Gorensteinness imposes a very strong restriction on the structure of Rees algebras.

Theorem 2.9. With the notation as in 2.4, let char k = p > 0. Then the following
conditions are equivalent.

1. R(I) has log terminal singularities.

2. R(I) is Gorenstein and F-regular.

3. (A, m) is a regular local ring and I = (z,y™) for some regular system of parameters
z,y of A and an integer m > 1.

Proof. The implications (3) = (2) and (2) = (1) are easy.

To prove the implication (1) = (3), let the notation be as in 2.4 and let Z be the
y-exceptional Cartier divisor with /Ox = Ox(—Z). Also, we denote the antidiscrep-
ancies of f and g by A = f*K4 — K3 and A, = g"Kx — K, respectively. Then A,
an effective divisor since g is the minimal resolution. We preview some results from
the next section (Proposition 3.1), which hold true in arbitrary dimension:

(i) If R(I) is Q-Gorenstein, then A = —¢g*Z + A,.

(ii) If R([) is log terminal, then A has a terminal singularity.

Now, if R(I) has log terminal singularities, then A is a regular local ring by (ii),
since 2-dimensional terminal singularities are regular. Hence A has integer coefficients
and we can consider K3 = —A. Then A, also has integer coefficients by (i).

Let X = Spec x(BD,>0 Ox(—nZ)t") and consider the fundamental diagram for the
graded ring R(I) as in 1.4. Since 7: X — X has an Al-bundle structure, X is Q-
Gorenstein as well as X, and X is log terminal if and only if so is X. On the other
hand, & is log terminal if so is R([), since ¢: X — Spec R(I) is an isomorphism in
codimension 1. Hence, if R(I) is log terminal, then so is X, i.e., [4,] = 0.

Consequently, our assumption implies that A; = [A;| = 0, so that —K 3 = —¢*Z
is f-nef. Hence every E; is a (—1)-curve or a (—2)-curve, and we can easily verify that
the dual graph of the exceptional divisor £ = | E; of f must be as follows.

0 — 0 — .- — o — o
1 2 m—1 m

Here a blank circle o (resp. solid circle o) denotes a (—2)-curve (resp. (—1)-curve), and
the numbers outside of the vertices denote the coefficients of ¢g*Z. The condition (3)
immediately follows from this. O



2.10. Remark. We do not have a direct proof of (1) = (2) of Theorem 2.9, but
it is likely that Q-Gorensteinness of a Rees algebra implies Gorensteinness under a
weak assumption (see the proof of Proposition 3.1). On the other hand, S. Goto and
K. Yoshida pointed out that there is a known simple proof of (2) = (3).

3. MISCELLANEOUS RESULTS IN HIGHER DIMENSION

In this section, we prove miscellaneous results concerning (F-)singularities of Rees
algebras of higher dimension.

First we recall the definition of some singularities in characteristic zero. Note that
the definition makes sense even in characteristic p > 0 if, for example, the singularity
under consideration is of dimension 2. A normal Q-Gorenstein variety V is said to
have terminal (resp. log terminal) singularities if for every resolution of singularities
f:V — V, the coefficient of the discrepancy divisor Ky — f*Kv in each f-exceptional
divisor is positive (resp. > —1).

Now we prove the following result, which is used in the previous section.

Proposition 3.1. Let (A, m) be a Q-Gorenstein mormal local ring with an isolated
singularity, essentially of finite type over a field k, and let I be an m-primary ideal.
Assume that char k = 0 or dim A = 2. If the Rees algebra R(I) has only log terminal
singularities, then A has only a terminal singularity.

Proof. Let ¢: X = Proj R(I) — Spec A be the blowing-up with respect to I and Z the
1h-exceptional Cartier divisor with IOx = Ox(—Z). Since R := R([) is Q-Gorenstein,
there exist integers 7 > 0 and b such that wg) =~ R(b). Hence, comparing

wg) ~ P H(X, wgp(—nZ))t"

n>r

with R(b) = @n>_p H°(X, Ox(—nZ))t", one sees that r = —band wﬁ? ~ Ox(rZ). So,
Kx ~o 2 (”NQ”— denotes Q-linear equivalence), and in particular, X is Q-Gorenstein.

Let g: X — X be a resolution of singularities and let f = ¢ og: X — Spec A. We
denote the antidiscrepancies of f and g by A and A,, respectively. Since R = R(I)
is log terminal by the assumption, X is also log terminal, i.e., |[Ay] < 0. This follows
from an argument using the fundamental diagram (1.4) as in the proof of Theorem 2.9.

Now, it follows from Ky ~g Z that A ~g Ay, — g*Z. This implies A = AN, — g7,
since the both sides are f-exceptional. Hence |A] = |Ay] —¢*Z < —¢*Z, since g"Z
has integer coefficients. Since A has an isolated singularity, ¢"Z is supported on the
exceptional set of f, so the above inequality implies that the coefficient of A in every
irreducible f-exceptional divisor is negative. Hence A has a terminal singularity. O

3.2. Remark. Proposition 3.1 has a partial converse as follows: If (4,m) is a 3-
dimensional Gorenstein terminal singularity of characteristic zero, then the Rees alge-
bra R(m) has Gorenstein rational (hence log terminal) singularities. We ask if a similar
implication for "F-singularities” holds in fixed characteristic p > 0. Namely, if (A, m)
is a 3-dimensional Gorenstein F-terminal singularity of characteristic p > 0, then is
R(m) F-rational? See [HYW2] for details, and see also [W4] for F-terminal rings.

Let (A,m) be a local ring and I an m-primary ideal. Recall that the extended Rees
algebra of I is defined to be R'(I) = A[It,t"]. In [HYW1], it is proved that if the Rees
algebra R(I) and A are both F-rational (of characteristic p > 0), then so is the extended



Rees algebra R'(I), too. This leads us to the following theorem in characteristic zero,
since rational singularity is equivalent to F-rational type, and since the rationality of
R(I) implies the rationality of A by Boutot’s theorem [B].

Theorem 3.3. Let (A, m) be a local ring essentially of finite type over a field of char-
acteristic zero and let I be an m-primary ideal. Then the Rees algebra R(I) has rational
singularities if and only if the extended Rees algebra R'(I) has rational singularities.

We shall give an alternative proof of this theorem with geometric flavor. The proof
needs the following lemma, which is proved for rational singularities in characteristic
zero by Bingener and Storch [BS], and also for F-rational rings in characteristic p > 0
by using the tight closure technique ([HYWZ2]).

Lemma 3.4. Let (A,m) be a local ring essentially of finite type over a field and let
0# fem. If A is (F-)rational, then B = Alz,y]/(zy — f) is also (F-)rational.

Proof of Theorem 3.3. The sufficiency is easy by Boutot’s theorem [B]. So let us prove
the necessity. Let Ox(n) = R(I)(n)~ on X = Proj R(I), Y = Spec x(B,5o Ox(n)t")
and let Y’ = Spec x (@nzo Ox(n)t" & Bnco OXt"). (Note that we changed the no-

tation partly from the previous sections.) Then the fundamental diagram in 1.4 is
extended as follows.

Yy % Spec R'(I)

1 !
Y % Spec R(I)
i 1

X % Spec A

Here, ¢', ¢, 1 are a birational projective morphisms. On the other hand, if we write
Ox(L)ly = fOu for an affine open subset U of X, then Oy/|y = Opl[ft,t7!] =
Ovlz,y]/(zy — f). Hence by Lemma 3.4, Y has rational singularities if so does X.

Now, since R(I) has rational singularities, so does X = Proj R(I) by [B]. Then Y
has rational singularities by [E], and Y’ has also rational singularities by the above
argument. We have H'(Y,Oy) = 0 for i > 0, since Spec R(I) and Y have rational
singularities. Hence H'(X,Ox(n)) =0 for i > 0 and n > 0, so that H'(Y’,Oy/) = 0.

Consequently, we have R'¢,Oy/ = 0 for ¢ > 0, where ¢': Y’ — Spec R'(I) is a
birational projective morphism from a variety ¥” with only rational singularities. Thus

we conclude that R'(I) has rational singularities. O
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Transcendence Degree of a Domain over a Subfield

Hiroshi Tanimoto

(Miyazaki University)

The following theorem is well-known.

Theorem 1 Let k be a field and k[a] = k[ai, ... ,a,] an affine domain
over k. Then dim k[a] = tr.deg; k[a].

Several people tried to generalize this theorem. For example, the fol-
lowing theorems were shown.

Theorem 2 ([4]) For any subalgebra R with k C R C kl[g], dim R =
tr.deg; R.

Theorem 3 ([2]) For any subalgebra R with k C R C k[a]y where M €
Max k[a], dim R = tr.deg; R.

We want to make the same attempt as these theorems. For example,
can we change k[a]y to k[a]p where P € Speck[a] ? I was interested in
this problem. '

Considering the transcendence degree of k[a]p, we have to extend the
field k. From this reason, we defined before new transcendence degree as
follows. For a k-domain R with tr.deg; R < oo, we call min { tr.degy R |
K is a subfield of R with k C K.} the transcendence degree of R with re-
spect to k, and express it by tdy R. And we call a subfield K of R such
that k C K and td; R = tr.degg R a transcendentally mazimal subfield (a
tm-subfield, for short) of R over k.

1.  We asked before whether the following equation holds:
tdy R = max {tdy R | m € Max R }.
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In other words, we asked whether td; R has a local property or not. It
was shown that if R is semilocal, the answer is affirmative, but in general,
I didn’t know whether the equation holds or not. But as I have got a
counterexample to this problem after that, I show this first.

Example 1 There is a regular domain R of dim R =1 containing a field
k such that td; R > max { tdy Ry | m € Max R }.

Construction of R Let k be any algebraically closed field and X, Y vari-
ables over k. For any a € k, we put fo(X,Y) = X3Y3 +aX? + X +
a?Y?2 +Y + a3, and for the multiplicatively closed subset S generated by
{ foX,Y) | a€k }, we set R = S7'k[X,Y]. Then R is the example
which we want.

To show the reason, we first note that f,(X,Y) is irreducible over k for
any a € k, and for any m € Maxk[X,Y], there is some a € k such that
fo(X,Y) € m. Therefore dim R < 1. On the other hand, since we can
show that k is a tm-subfield of R, the proof of which is complicated a little
and omitted, we have td; R = tr.deg; R =2 and dim R = 1.

Now we remember the following theorem which I stated in [5].

Theorem 4 Let A be a Noetherian domain containing o field k with
tr.deg, A < co. Then if dim Ay = tdy Ay for any m € Max A, the follow-
ing conditions are equivalent.
(1) A is catenary.
(2)  For any m € Max A and p € Spec A with p Cm,

(a) dim An/pAm = tdp An/pAn, and

(b) dim Ap = tdy Ay.

By Theorem 4, dim Ry = tdy Rm = 1 for any m € Max R. Hence
max{tdkRm | me MaxR} =1<tdi R. O

2.  Next, for generalizing Theorem 1, Theorem 2 and Theorem 3, we
consider the following situation:
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kC (R,m) C (A,n), where k is a field, (R,m)
is a quasi-local domain and
(A,n) is a Noetherian local
domain with dim A = td; A
dominating R.

Then we ask whether the equation dim R = td; R holds.
We consider two cases, that is,

(a) R is Noetherian, and (b) R is not Noetherian.

For the case (a), I talked before. The answer is affirmative. In this case,
A can be easily generalized to the case that it may not be Noetherian.

On the other hand, R cannot be generalized to the non-local case as
follows. 4

Example 2 There are a Noetherian non-local semi-local domain R con-
taining a field k and a Noetherian local domain (A,n) with R C A and
nN R € Max R which satisify that dim A = td; A and dim R < td; R.

We use Nagata’s example (cf. [3] Example 2 in Appendix). O
For the case (b), the answer is negative in general as follows.

Example 3 There are a DVR A and a quasi-local ring R containing a
field k with R C A which satisfy that dim A = td; A and dim R < td; R.

Construction of R and A Let k be any field and X , Y variables over k.
Set S ={ aX | a€k(Y) }, then k C k[S] C k(Y)[X] and Xk(Y)[X]N
k[S] = Sk[S]. Hence k C k[S](s) C k(Y)[X](x), and set R = k[S]s), m =
(S)R, A=k(Y)[X]x)and n = X A. Then (R, m), (A, n) are the example
which we want.

Because we have that dim A = td; A = tr.degyy)A = 1 and k is a
tm-subfield of R. For any a € k(Y), we have (aX)’ = X(a2X) € XR, so
that v XR = m. Therefore for any p € Spec R withp C m, we have X ¢ p.
Hence pR[1/X] is a proper ideal of R[1/X]. Now for any f € nNk[S] with
f#0, we can write f = >"" , a; X" (Va; € k(Y), az # 0). Then

f=aX 1+ (a:/ar) X4, aifay € k(Y).
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1+ Y (ai/ax)X** is a unit in R, and by R[1/X] D k(Y), a;X* is a unit
in R[1/X]. Hence f is also a unit in R[1/X], so that p = (0). Therefore
dim R=1<td; R =tr.deg, R=2. 0

On the other hand, if k is a tm-subfield of A and A is catenary, the
answer is affirmative, where R need not be local.

Theorem 5 Let (A,n) be a Noetherian catenary local domain and R a
quasi-local domain containing a field k where k 1s a tm-subfield of A and
dim A = tr.deg, A. Then nN R is a mazimal ideal of R and dim R =
tr.deg, R.

Proof. By Theorem 4, we have dim A/p = tr.deg; A/p for any p € Spec A.
Therefore we can prove this theorem by the same way as the proof of
Theorem 3 which uses Alamelu’s theorem (cf. [1]). O

Remark. Let ¢ be a field with £ C k and A a localization of an affine
domain ¢[a] = {[ai, . .. ,a,] over £ by a prime ideal P of {[a]. Then it seems
that we have a generalization of Theorem 3. But this case arrives at that
of Theorem 3. In fact, set M = P N k[a], then we have A = k[a],,. By
Theorem 4 we find that M € Max k[a].

3. For variables Xi,... , X, (n € N), let M be a semigroup generated
by X{*--- X4 (Vg; € Q). Then we show that dim k[M] = tr.deg, k[M]
for any field k. In particular, we construct a maximal saturated chain of
prime ideals. First of all, we define X/ for any ¢ € Q.

Let T ={ X; | i=1,...,n,¢€Q } be a set of variables over k,
G = (T) a free Abelian group generated by T' and H =
(XpX5" | u,v €Z, ug = vr) a subgroup of G. I, denote G/H. Then for
any n € Z, (Xiq)" = Xi(¢n) in I;,. Hence in I,, we express X;, by X7 for any
q€Q. Then I, =(X!|i=1,...,n, ¢ € Q). Then we have the following
theorem.

Theorem 6 Let M be a subsemigroup of I,,. Then dim k[M] =
tr.deg; k[M], and we can construct a mazimal saturated chain of prime

ideals. Moreover if M C (X} |i=1,...,n,q€Q, ¢>0), we can con-
struct such a mazimal saturated chain descending from ME[M].
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The proof of Theorem 6 is the same as that in [5].
At the last of my report, we state the following example.

Example 4 Let k be any field and M a semigroup generated by { XY |
q€Q, q>0} where XY are variables over k. Then dim k[M] =
tr.deg, k[M] = 2, and we can construct a mazimal saturated chain of prime
ideals descending from (M) as follows:

0 Cc{ XY -XY/|jeQ,j>0}) C (M)
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On Degenerations of

Cohen-Macaulay Modules:

Yuji YOSHINO

Math. Department, Faculty of Science
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1 ) and p functions

Let R be a noetherian ring, and we denote by Lr the set of isomorphism classes of
R-modules of finite length. For a given f.g.R-module M, we consider the functions on

LR:
A (Y) := lengthp(Homp(M,Y)), om(Y) == lengthR(M ®rY) for Y € Lpg.

The first theorem states that these functions determines the local-isomorphism class
of a module M.

Theorem 1.1 The following conditions are equivalent for f.g.R-modules M and N.
(1) A (Y) = An(Y) for any Y € L.
(2) par(Y) = pn(Y) for any ¥ € L.
(3) M, = N, for any p € Spec(R) (i.e. M and N are locally isomorphic.)

This is a generalization of a theorem of Auslander who proved the theorem in
artinian case (but non-commutative). See [1]. At this moment I can prove the the-
orem only in a fairly non-standard way. Actually I need some technics of separated
ultraproducts of modules that was developed in 4].

2 Several orderings

In the following we assume that (R, m, k) is a local ring. Then Theorem 1.1 says that
the X (or p) function determines the isomorphism classes of f.g.modules, but moreover,
using the ) function, we can measure the largeness of a module.

1This is not the final version of the paper. The final and detailed version will be submitted
elsewhere.
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Definition 2.1 (“hom ”ordering)
For f.g. R-modules M and N, we denote M <jom N if Ay(Y) < An(Y) forany Y € Lp.

Theorem 1.1 says that this gives a well-defined partial order on the set of isomor-
phism classes of f.g. R-modules. It is easy to see that M <j,, N iff pm(Y) < pn(Y)
for any Y € Lpg.

My motivation of this work is to describe this partial ordering for maximal Cohen-
Macaulay modules. Before proceeding this we remark that the hom ordering is related
to the degeneration problem.

Definition 2.2 (“ext "and “EXT ”ordering)
(1) One says that M splittingly degenerates to N if there is an exact sequence 0 —
Ny -+ M — N, — 0 such that N = N, & N,.
(2) M <ot N if there is a sequence of splitting degenerations M = My, My,... , M, =
N (i.e. each M; splittingly degenerates to M;,,).
(3) <pgxr is a partial order generated by the following rules:

(a) M Sext N=> M <EXT Na

(b) M <pxr N<= M®L<pxr N®L,

(¢) M <gxr N <= M®™ <pxr N,

Definition 2.3 (“deg ”and “DEG ”ordering)
Suppose that R contains a coefficient field k that is an algebraically closed field.
(1) One says that M degenerates to N if there is a f.g. R[t]-module Q which is k[t]-flat
such that, writing Q. := @ ®xq k[t]/(t — ¢) for ¢ € k, we have Q. = M if ¢ # 0 and
Qo = N.
(2) M <4y N if there is a sequence of degenerations M = My, M, . .. , M, = N (ie.
each M; degenerates to M;,1).
(3) <pEG Is a partial order generated by the following rules:

(a) M <4eg N=> M <pge N

(b) M <ppg N <= M®L<ppg N® L

(¢) M <ppe N <= M™ <ppg N™

One should notice that if M and N are comparable in one of the orders <,,;, <gxr,
<deg» <DEG, then M and N have the same multiplicity (or rank). We can easily prove
the following implications.

Propositon 2.4 M <gxt N = M<pggN = M <wom N

3 AR ordering and a main theorem

In the following we assume that R is a Cohen-Macaulay complete local ring with
only isolated singularity and we denote by CM(R) the category of maximal Cohen-
Macaulay modules over R. In this case it is known that CM(R) admits Auslander-
Reiten sequences. See Yoshino [5] for more detail.
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Definition 3.1 (AR ordering)
We define the order <4r on CM(R) as the partial order generated by the following
rules:
(a) f0 = 7X — E — X — 0 is an AR-sequence in CM(R), then E <sp X ® 7X.
(b) M <pap N<= M®L<sr NSL,
(c) M <ap N <= M® <,pg N,

It is obvious that M <4sg N = M <gxr N. If CM(R) contains only a
finite number of indecomposable Cohen-Macaulay modules, then, since there are only
a finite number of AR-sequences, easily in a combinatorial way we can describe the
poset structure of CM(R) in AR-ordering.

The following theorem is the main result of this note.

Theorem 3.2 Let R be a Cohen-Macaulay complete local ring that is of finite Cohen-
Macaulay representation type. And suppose one of the following conditions:

(1) R is an integral domain of dimension one.

(2) R is of dimension two.
Then, for any M and N in CM(R) with the same rank, we have the following equiva-
lences.

M<sg N &< M<gxr N &< M <pgg N <= M <pon N

When R is a finite dimensional (noncommutative) algebra, several results similar
to our theorem has been known by Bongartz. See [2, 3]. But in a proof of our theorem,
one cannot use his method because of the difference of nature between the Auslander-
Reiten quivers of Cohen-Macaulay modules and that of finite dimensional algebras.
To prove the theorem, it is necessary to have a lot of informations concerning the
Cohen-Macaulay approximations of a module of finite length.

For several one-dimensional non-domain cases I can verify the validity of the the-
orem. But at this moment I have no general proof for this even in dimension one.
Therefore it seems to be natural to propose the following

Conjecture 3.3 The theorem would be valid without any assumption on R but when
R is a Cohen-Macaulay local ring of finite Cohen-Macaulay representation type.

If R is of infinite Cohen-Macaulay representation type, then there is an example
that fails the implication M <gxr N = M <sr N.
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1 Preliminary

We shall remention the stable module theory of Auslander and Bridger. We
extend the notion of stable equivalence, which is the only difference between
their original terminology. All the other notions are in (1] and [?].

Let (R, m,k) be a commutative Noetherian local ring, and mod R the
category consisting of finitely generated R-modules. The projective stabi-
lization mod R is defined as follows.

o Each object of mod R is an object of mod R.

e For A\B € modR, a set of morphisms from A to B is
Hompg(A, B)/P(A, B) where P(A,B) := {f € Homg(4,B) |
f factors through some projective module}. Each element is denoted

as f = f mod P(A, B).

Definition 1.1 If f,f' € Homg(A,B) and g,¢' € Homp(B,C) satisfies
f=f andg= g, then go f = g o f'. With this in mind, we may define
the composite go f =go f.

Definition 1.2 Assume a € Hompg(A, A') is an isomorphism in mod R, that
is, o € Hompg(A', A) exists to make aoa = la and a¢oa = 14. Then we

t
say that a is a stable isomorphism, and A is stably equivalent to A (A > A).

A stable module refers to a module without free summand.

Lemma 1.3 (Auslander-Bridger [2]) The following are equivalent for
a € Hompg(A, A').
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1) a is a stable isomorphism.

2) There ezists an isomorphism & € Homp(A ® P', A' ® P) with some
progective modules P and P' such that todos = a with some split
monomorphism s : A — A® P’ and split epimorphismt: AP — A’

If R is complete, A and A’ have unique decompositions A = A, & A, and
A" = A, @ A, with stable modules A, and A, and projective ones A, and A,
Whence we have following condition that is equivalent to (1) and (2)

3) a1y is an isomorphism in mod R where

CEAN
a: A, @A, 2T AL A,

Here we shall review on the notion of Auslander’s transpose which is the
functor on mod R. The transpose of modules and morphisms are defined
as stable equivalence classes and not as objects nor morphisms of mod R.
(See [1] (2.5) and (2.6).) Although for the consistency, we would start with
defining transpose on mod R.

Definition 1.4 For an R-module M, we define the transpose of M as an

d
R-module tr M = Cokerdp,,,* where Fy, Dy Fyo = M is the minimal
projective presentation of M.

Since we assume dr,,, ® k = 0, tr M is always a stable module; transpose

of a projective module is zero. We also observe that tr tr M 2 £ M.

A homomorphism f € Hompg(A, B) induces a chain map f, : Py, — Pg,
where P4, and Pg, are minimal free resolutions of A and B respectively.
The R-dual f," : Pg," — P4,” again induces a homomorphism ¢r B — tr A
which we call ¢r f. The map tr f is not uniquely determined by f; it depends
on the way of lifting up to f, or projecting down from f*o. Nevertheless we
have tr f = tr f' for (¢r f)’ induced from f in another way.

Remark 1.5 1) If f = f' for f, f' € Hompg(A, B), then tr f=tr f.
2) tr(tr f) = f.

Definition 1.6 For f € Homg(A4,B), we define trf = trf €
Homg(tr B,tr A).
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2 kernels and cokernels

Although mod R is not an abelian category, we have “something like” kernels
of the morphisms.

Lemma 2.1 [§] For f € Homg(A, B), there ezists a map p € Hompg(P, B)

from a projective module P such that f:A®P Y2 B s surjective. Moreover,
if f' € Hompg(A, B) with f' = f and p' € Homg(F', B) wzth a projective

module P' make f' : Ao P — %) g surjective, then Kerf Ker fr. Hence
we would denote Ker f by Ker f, which is uniquely determined up to stable
equivalence.

Let f, f and P be as in Lemma 2.1. Consider the natural inclusion

Kerf( )AGBP

Together with ny, Ker f has the following properties.
Lemma 2.2 Let the notation as above. We have the following:
1) io ny =

2) If ¢ € Hompg(X,A) satisfies f oz = 0, there exists hy €
Hompg(X, Ker f) such that z = nsohy

Proof. We may assume f = (f pp). Since fon;+pgogs =0, fons =0.
Provided foz = px ou for some u € Hompg(X, Pg), that is, (f pp) o (_)— 0.
Then we have some h € Homp(X, Ker f) such that (u) = (q;) o h, which
implies n; = goh. (q.ed.)

Strictly speaking, Ker f is not the kernel of f. Because it lacks the unique-
ness of hg in 2) of Lemma 2.2. (See Example 2.3.)

Example 2.3 Let R = kl[z,y,2]]/(z?* — yz), = R/(yz) and B =
R/(yz,y?, 2%). Let f : A+ B be the natural map znduced from the inclusion

(yz) C (yz,y%,2%). Since f is surjective, Kerf Kerf R/(z) ® R/(y),
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and the sequence 0 — Ker f 25 A 4 B — 0 is evact. Put X = trk and let
u € Homp(X, Ker f) be as follows:

0—>R(—g-))

16)

0 — R?

R - X S 0
" Mo 1
(o—g) R* — Kerf — 0.

Easily we get nyou = 0y = uy 0 0g where 04 = 0 € Hompg(X,A) and
0 =0 € Hompg(X,Ker f). Also we have u # O after tedious calculation.

Definition and Lemma 2.4 For f € Homg(A4, B), we define Coker f €
mod R as Coker f := trKer tr f. If we put c; := trnyy, (Coker f,c;) satis-

fies the following.

1) cfoi=Q.

2) If y € Hompg(B,Y) satisfies y o f = 0, there exists e, €
Hompg(Coker £,Y) such that y = e, 0¢;. o

Two modules Ker f and Ker f are not always stably isomorphic. More
precisely, we get the following.

Lemma 2.5 1) There is an ezact sequence 0 — L — M — N — 0

such that L sgt Ker f, M ét Ker f and N j’%‘t Qx(Coker f).

2) There is an ezact sequence 0 — L' — M' — N' — 0 such that

st st
M'" 2 Coker f, N' = Coker f and Qp(L') is the surjective image of
Ker f.

st
Corollary 2.6 1) Ker f = Ker f if f is surjective.
st
2) Coker f = Coker f if f is injective.

3) Coker f & Qz!(Ker f) if Exth(A, R) = 0.
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proof. We shall prove only 3). If Extk(A, R) = 0, then f is injective. We
have QL(L') = Ker f since Imf = A, (qe.d.)
In mod R, by definition, a morphlsm f is injective if and only if ny = 0.

Hence f is injective if Ker i = 0. But vanishing of Ker f is not a necessary
condition for f to be injective.

Example 2.7 Let A,B be two modules with pd(B) = 2. Let f be a split

monomorphism A — A@® B. Obviously ny =0 but Kerf Q r(B) is not
projective.

However we have the following:

Proposition 3.2 Suppose Exty(B,R) = 0. The following are
equivalent for f € Hompg(A, B).

1) fis a stable isomorphism.
2) ny =0and ¢f =0.

3) Coker f ;"-’t- 0 and Ker f ’;‘t’ 0.

To show this, we need to discuss the complexes.

3 Homotopy classes of complexes

Let A, B be R-modules. Let Fy, and Fg, be free complexes such that 79F4,,

10FBe, T1F 4 and 71 Fp, are free resolutlons of A, B, tr A and tr B respectively.

dF
That is, we have exact sequences -+ — Fa; A Fao —, 0 «— trA «

Fal « FAO — ... and so on. We call Fy, a two-sided resolutlon of A. A
homomorphism f € Hompg(A, B) induces a chain map f : Fae — Fp,. It is
not hard to see

Fp, Fu
Ker f % Coker dgone (5,); = Coker ?j; (dla‘” _5;“) (3.1)
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and
Fpy  Fao
Y Fpo [dF o
Cok = Coker dgone (£.), = Cok 51 3.2
Coker f = Coker dgane (1.)o = Coker 7 ™ ( 0 —dp,, (3.2)
These formulae are not surprising because the category of homotopy

classes of R-complexes is triangulated. Putting Co = Cone(fs),,,, we have
a diagram of chain complexes

Co™ Fuo L5 Fpo &5 Culy

(For the definition of triangulated category, see [3].) First of all, it is easy to
show the following (essentially [5].)

Lemma 3.1 With notations as above, f = 0 if and only if f, is homotopic
to zero.

Lemma 3.1 is valid only for chain maps between two-sided resolutions.
Notice that Cy = Cone(f,),,; is not a two-sided resolution any more. (It is
if Extp(B,R) =0.)

Proposition 3.2 The following are equivalent for a morphism f in mod R.
1) f is a stable isomorphism.

2) Cone (f,), = Ce_1 is a trivial complez which is a split exact sequence
of free modules.

s st
3) Coker_]i’i‘t- 0 and Ker f 0.
If Exty(B, R) = 0, then the following is also equivalent to the above.
4)ny =0 and ¢; = 0.

proof. The implication 2) = 1) comes from an exact sequence 0 — F, —
Cone(n.), — Ce—1 — 0 where Cone(n,), is a direct sum of F, and some
trivial complex. The equivalence between 2) and 3) is clear because 7,C,
and 7oC*, are projective resolutions of Ker f and tr Coker f respectively.
The implication 3) = 4) is obvious, and 4) = 1) is straightforward from the
following Lemma 3.3.
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Lemma 3.3 For f € Homg(A, B), we have the following. If ny =0, then
st
A’ is a direct summand of B' for some A' = A and B' with 0 — P — B —
st
B — 0. If Exth(B,R) =0, then B= B'.

proof. Let ny, : Fkery, = F,, be a chain map induced by ny. We have an
exact sequence of complexes

0 — Fers, — Cyl(ny,), = Cone(ng,), = 0

where Cyl(ny,), is a direct sum of Fy, and some trivial complex. Clearly

(3

Coker dgone(n 'L =~ A @ Coker dpl{i to' Since the sequence 0 — Ker f BEA
A®P B 0is exact, we have only to put B’ = Cokerdgone(n,,),-

Therefore B £ 4 & tr QhtrKer f. (g.e.d.)
Let A € mod R, put A, = F4, and A’y = F%(A)oﬂ' The identity map

on QL(A) induces a natural map use : A's = A The complex La, =
Cone(ua,), is of the form

01
(00)‘[12 OO)L —)L ..

and satisfies Hi(L44,) =0 (i > 0) H'(Ls") =0 (¢ >0). Put B,,B's,and
Lg,, similarly for B € mod R. An R-homomorphism f € Homg(A,B)
induces chain maps f, : Ay — B, fo: A'e = By, and fr, : Las = Lps.
We have an diagram with exact rows and columns:

A

0 — Bo+l - LB.+1 — B, - 0

where Cy, = Cone(fs)oy1s CLe = Cone(fry)esrr and C's = Cone(f'y),s-

This diagram gives us the following two lemmata.
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st
o

Lemma 3.4 For giwen R-homomorphism f, there exist modules C

Coker QL(f), K X Ker f, and a projective module K such that 0 — P —
C — K — 0 s ezact.

Lemma 3.5 For every integerr > 1,

Ker Q5(f) & O (Ker f).

For given f € Hompg(A, B), suppose Ker f X 0. Then we have an exact
sequence 0 - @ — A® P — B — 0 with some projective modules P and
Q, which implies that Qk(f) is a stable isomorphism. Conversely, in case
that Qp(f) is a stable isomorphism, Ker f is not always free.

Example 3.6 Let z € R be an non-zero-divisor of R and M any R-module.
Let f be an endomorphism of M @ R/(2?) as f = ((1,2) . Then Q}(f) is an

endomorphism of Qp(M) @ R that is a stable isomorphism; QL(f) = (32) .
But Ker f sgt R/(z) is not free.

Lemma 3.7 Suppose that Exty(A, R) = 0. For an R-homomorphism f €
- Hompg(4, B), Qk(f) is a stable isomorphism if and only if Ker f Lo,

Proposition 3.8 Let f be an R-homomorphism f € Homg(A,B) and r a
positive integer.

1) Ifpd(Ker f) <r, then Q5 (f) is a stable 1somorphism.

2) If QR(f) is a stable isomorphism, then pd(Ker f) < r.

proof. If Q%(f) is a stable isomorphism, then Coker Q%(f) is free. From

Lemma 3.4, pd(Ker Q5 '(f)) < 1. Lemma 3.5 induces Ker Q5'(f) %
57" (Ker f), hence pd(Ker ) < r- -

Suppose pd(Ker f) < r. Using Lemma 3.4 and Lemma 3.4, we have
pd(Ker Q%(f)) = 0. Thus Qx((Q%(f)) is a stable isomorphism.
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4 Derived category

A chain map f, : A — B, is called a quasi-isomorphism if H;(f,) is an
isomorphism for each 7.

Remark 4.1 If f € Hompg(A4, B) is a stable isomorphism, then f, : Faq —
Fg, is a quasi-isomorphism.

As we see later, the converse of above is not true.

From now on, let us assume that R is Gorenstein. For each A € mod R,
0 A — YA — X4 — 0 denotes the finite projective hull of A; that
is, pd(YA) < oo and X# is a maximal Cohen-Macaulay module. An R-
homomorphism f : A — B induces the homomorphism Yf: YA = YB.

Proposition 4.2 The following are equivalent for f € Hompg(A, B).
1) fo: Fae — Fpo isa quasi-isomorphism.
2) Yf:YA— YB is a stable isomorphism.

3) Ytrf:YirA— YtrB is a stable isomorphism.

Let D(mod R) denote the derived category of R-complexes, D_(mod R)
(D4(mod R)) the subcategory of complexes C, with the property that
H;(C,) = 0 for sufficiently small (or large) z. Consider F(mod R) =
{C&€D(mod R) | Hy(C,) = 0 (i > 0), H/(RHom(C,,R)) = 0 (i > 0)}.
Yoshino proved the following theorem :

Theorem 4.3 (Yoshino,[5]) Let R be a (not necessarily Gorenstein)
noetherian local ring. There is an equivalence of categories

F(mod R) N D_(mod R) = F(R)”

where F(R) denotes the category of finite R-modules with finite projective
dimension.

If R is Gorenstein, we don’t need the assumption of boundedness. Next
theorem is established by Kawasaki’s simple proof.
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Theorem 4.4 (Kawasaki-K) Let R be a Gorenstein local ring. There is
an equivalence of categories

F(mod R) = F(R)™.

proof. We have only to show that C, € D_(mod R) if C, € F(mod R).
Since C, € D4 (mod R), RHom(C,, R) € D, (mod R) N D_(mod R). Hence
RHom(RHom(C,, R), R) € Dy(mod R) N D_(mod R). Because R is Goren-
stein, RHom(RHom(C,, R), R) = C, in D(mod R). (q.e.d.)

This theorem gives a construction of finite-projective hull.
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A NOTE ON NAGATA CRITERION FOR SERRE’S
CONDITIONS

RYO TAKAHASHI

1. INTRODUCTION

This is not in a final form. The detailed version of this note will appear
in Math. J. Okayama Univ. ([10]).

Throughout this note, we assume that all rings are noetherian.

Let A be a ring, and P be a property of local rings. We denote by P(A)
the set of prime ideals p of A such that A, satisfies P, and call it the P-locus
of A. The following statement is called the Nagata criterion for P, and we
abbreviate it to (NC).

(NC) : For a ring A such that P(4/p) contains a non-empty open subset
of SpecA/p for every p € SpecA, P(A) is open in SpecA.

Tt is known that (NC) holds for P = regular ([3][5][6](8]), Cohen-Macaulay
([3][5][6]), Gorenstein ([2][6]), and complete intersection ([2]).

Now we recall Serre’s (R,,) and (S,)-conditions for a ring A. These are
defined as follows. Let n be an integer.

(R,) : For every p € SpecA with htp < n, Ay is regular.
(S,) : For every p € SpecA, depth4, = inf(n, htp).

We easily see that (NC) holds for P = (integral) domain, coprimary (a
ring A is called coprimary if A has just one associated prime), (Rq), (S1),
reduced, and normal. As corollaries of these results, it is easy to see that
the P-locus of a homomorphic image of a ring satisfying P is open for P’ =
Cohen-Macaulay ([5][6]), Gorenstein([6]), domain, coprimary, (Ro), (S1),
and reduced.

The following theorems are the main results of this note.

Theorem 1. (NC) holds for P = (S,).
Theorem 2. (NC) holds for P = (Rp).

We know that the properties “regular”, “Cohen-Macaulay”, “reduced”,
and “normal”are described by using (R,) and (S,). So the fact that (NC)
holds for each of these four properties is obtained as a corollary of Theorem
1 and 2.

In the next sections, we shall give an outline of the proof of the theorems.
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2. OUTLINE OF PROOF OF THEOREM 1

We prove it by induction on n. Suppose that a ring A satisfies the as-
sumption in (NC). By induction hypothesis, S,_;(4) is open in SpecA.
Hence we can write S,_1(A) = U;_, D(fi) with f; € A. Therefore A4y, sat-
isfies (Sp—1) and S,(A) = U;_; Sn(Ay,). We want to prove that S,(A) is
open, so replacing A by Ay,, we may assume that A satisfies (S,_;).

There exists a radical ideal I of A such that S,(A4)¢ (the closure of the
complement set of S,(A) in SpecA) is equal to V(I). We can write I =
p1 N ---Np; with p; € SpecA. We may assume that there are no inclusion
relations between the p;’s and that htp; < htp; for all 3.

Now we claim that ht] 2 n. If this is true, we have S,(4)° = V(I). In
fact, suppose that S,(A)° G V(I) and take p € V(I) —S,(A4)°. Then p; C p
for some k, hence p; € S,(A). Since ht] 2 n, we obtain htpy > n, hence
depthA,, 2 n. Therefore there exist z;,--- ,z, € px and f € A — p; such
that x is an Ay-sequence and Ay = pyA;. Since py € S, (A4)c, we obtain
that D(f) N S,(A4)¢ # @. Let p be a minimal element of this set. Since
p € V(I), we have pkAf pAs. Therefore x is an A -sequence in pA,.
It follows that depthA, 2 n. For any q € SpecA Wlth q & S p, we have
q € Sp(A) by the minimality of p. Thus, A, satisfies (S,), contrary to the
choice of p.

Now it only remains to prove the claim. It is enough to show that htp, >
n. Suppose that [ := htp; £ n — 1. Then depthA,, = I, hence there exist
T1,--+,% € pr and f € A —p; such that x is an Ag-sequence, (x)A; is
p1Ag-primary, Ay = p;Ag,and D(f) N'V(p1) € S.(A4/p1). Replacing A by
Ay, we may assume that x is an A-sequence, (x) is p;-primary, I = p;, and
A/p; satisfies (S,). Hence p] C (x) for some r > 1. .

Let — denote modulo (x). By the generic freeness, replacing A by its
localization, we may assume that p;’/pr°t" is A/pr-free for all 1 < i < r.
Let pe S (A) and p’ € SpecA with p’ & p. Then A4, is Cohen-Macaulay
if ht(p’ + p1/p1) S n, and depthA, 2 n otherwise.

In fact, if ht(p + pl/pl) < n, taking p” € SpecA with ht(p’ + pi/p1) =
ht(p”/p1), we see that (A/pl),,u is Cohen-Macaulay. Replacing A by A, we
may assume that p] = 0. Then it is easy to see that A, is Cohen- Macaulay,
and so is Ay. If ht(p' + p1/p1) 2 n, we have grade(p’ + p;/p1, A/p1) 2 n.
Hence y1,--- ,y, is an A/pi(= A/p;)-sequence for some y; € p’. Then we
easily see that this is an A/p;" (= A/(x))-sequence. It follows that this is
an Ap-sequence, hence depthA4, 2 n.

Thus, we see that A, satisfies (S,), contrary to the choice of p.

—122—



3. OUTLINE OF PROOF OF THEOREM 2

Before the proof, we consider the following condition for a local ring A.
(R!) : For every p € SpecA with codimp < n, A, is regular.

Here we put codiml = dimA — dimA/I for an ideal I of A. It is easy to
see that A satisfies (R,) if and only if A, satisfies (R},) for all p € SpecA.

Now we start to prove Theorem 2. Discussing similarly to the proof of
Theorem 1, we may assume that a ring A satisfies (Rn-1), Ra(A)° = V(1)
for some ideal I of A, I = p; N ---Np, with p; € SpecA, there are no
inclusion relations between the p;’s, and htp; < htp; for all i.

We claim that ht] > n. If this is true, we easily see that Rn(A)° is the
union of V(p;) such that htp; = n and A,, is not regular.

To prove the claim, it suffices to show that htp; = n. Suppose that
! ;= htp; < n — 1. Then A,, is regular, so replacing A by its localization,
we may assume that for some z,---,T; € P1 X is an A-sequence in Py,
(x) = p1, I = p1, and A/p; satisfies (Rn). Let p € R,(A)° and q € SpecA
with q € p. Then A, satisfies (R7,).

In fact, let p’ € SpecA such that p’ & p and codimp'A, < n. Then, since
codim(p’ + p1/p')Ap = codim(zy, - - ,z;)(A/p")p £ 1, we obtain codim(p’ +
p1/p1)A, < codimp’ A, < n. Taking p” € SpecA with codim(p’+p1/p1)A4p, =
codim(p"/p1) Ay, we see that (A/p1)y is regular, so is Ay, and sois Ay. Tt
follows from this that A, satisfies (R},).

Thus, we see that A, satisfies (R,), contrary to the choice of p.
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A characterization of one dimensional
N-graded Gorenstein rings of finite
Cohen-Macaulay representation type

Tokuji Araya
Graduate school of Natural Science and Technology
Okayama University,700-8531 JAPAN

Let R = ®R, be an N-graded Cohen-Macaulay ring where R, = k is
a field. We denote by modR the category of finitely generated graded R-
modules whose morphisms are graded R-homomorphisms that preserve de-
grees. We also denote by CMR the full subcategory of mod R consisting of all
graded maximal Cohen-Macaulay modules. In the last conference, we proved
that if R = ®R, be a one dimensional N-graded Gorenstein ring of finite
Cohen-Macaulay representation type where Ry = k is an algebraically closed
field of characteristic 0, then there exists the exceptional sequence that gen-
erates all graded indecomposable maximal Cohen-Macaulay modules. (we
call such an exceptional sequence MCM generating. (c.f. [2])) In that work,
we had to compute the dimension of Exty(X,Y) as k-vector space, for all
indecomposable graded maximal Cohen-Macaulay modules X and Y and for
all n € N. Through this computation, we noticed the importance of the
invariants d(R) and d,(R) of R that are defined as follows:

Definition 1

d(R) := sup{z dimy, Ext®(X,Y) | X,Y € CMR are indecomposable},

n>0

d(R) := sup{dim; Ext}(X,Y) | X,Y € CMR are indecomposable}.
The main Theorem of this lecture is following;

Theorem 2 [1, Theorem 3.2]

Let k be an algebraically closed field of characteristic 0 and let R be a pos-
itively dimensional N-graded Gorenstein ring with isolated singularity where
Ry = k. Then the following conditions are equivalent.
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(i) R is a one dimensional N-graded Gorenstein ring of finite Cohen-
Macaulay representation type.

(ii) d(R) < oo
(ii’) do(R) < oo
(iii) d(R) <9
(iii*) do(R) <9

1 Preliminaries

In this section, we assume R = @R, is a one dimensional N-graded Goren-
stein ring of finite Cohen-Macaulay representation type and assume that
R, = k is an algebraically closed field of characteristic 0. In this case, it is
known that R is isomorphic to one of the following rings (c.f.[5] ).

(An) R=klz,y)/(y*—2") (n2>2)

(Dn) R=klz,y)/(zy* —2") (n23)

(Bs) R =klz,yl/(z* +y") (1)
(Br) R=k[z,9)/(z° + zy°)

(Bs) R=k[z,9)/(z* +¢°)

Moreover the Auslander-Reiten quiver of CMR for each type can be
described as they are shown in [Figures (1) — (7)]. We denote by I' the
Auslander-Reiten quiver of CMR.

For indecomposable graded maximal Cohen-Macaulay modules X and Y,
we write X <Y if X 2 Y or if there exists a finite path from X to Y in I

Lemma 3 [2, Lemma 3.3.], [1, Lemma 2.1, Lemma 2.2] The following
hold for indecomposable graded mazimal Cohen-Macaulay modules X andY .

(i) There are no cyclic paths in I'.
(ii) If Hom(X,Y) #0, then X XY.

(iii) If Exth(X,Y) # 0, then QX <Y =X 7X. Here, 7X denotes the
Auslander-Reiten translation of X.

As a corollary of this Lemma, we get the following Lemma.

Lemma 4 [1, Lemma 2.3]
For any indecomposable graded mazimal Cohen-Macaulay modules X and
Y, we have §{n € N | Ext}(X,Y) #0} < 1.
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2 Proof of the main Theorem

In this section, we shall prove the main Theorem. To show the theorem,
we need the graded version of Brauer-Thrall 1 theorem for graded maximal
Cohen-Macaulay modules, due to [5], [4] and [3].

Theorem 5 (graded version of Brauer-Thrall 1 theorem) Let R be
an N-graded Cohen-Macaulay ring with isolated singularity where Ry = k
is a perfect field. If sup{e(X) | X € CMR is indecomposable} < oo, then
R 1s of finite Cohen-Macaulay representation type. Here e(X) denotes the
multiplicity of the irrelevant mazimal ideal along X.

Proof of 2 The implications (iii) = (ii) = (ii’) and (iii) = (ii’) = (ii’) are
trivial. First, we show (ii’) = (i). Since do(R) < 0o, we see that dim; R,, =
dim; Hom (R, R(n)) < do(R) < oo for all n. Therefore the Hilbert polynomial
of R is constant. Hence dim R = 1. For any indecomposable graded maximal
Cohen-Macaulay module X, dim; X, = dimg (R, X (n)) < do(R) for all n.
Therefore the multiplicity e(X) of X is bounded by do(R). Hence R is of
finite Cohen-Macaulay representation type by theorem 5.

To prove (i) = (iil’), it is enough to compute sup{dim; Hom(R,Y),
dim; Hom(Y, R), dimj; Hom(X;,Y), dim; Hom(Y;,Y) | Y € CMR is inde-
composable } where X; and ¥; are in [2, Figures (1) — (7)] . For an inde-
composable graded maximal Cohen-Macaulay module X, we denote by X+
(resp. X~) the smallest additive full subcategory of CMR containing all
indecomposable graded maximal Cohen-Macaulay modules ¥ with X < Y
(resp. Y < X). Then, by induction on the length of the path from X to
Y (resp. from Y to X), one can easily check that dimj Hom(X, Y)=1
(resp. dim; Hom(Y, X) = 1) for all indecomposable Y € X+ (resp. Y € X™)
with ¥ is not free and 7Y ¢ X+ (resp. 77Y ¢ X~). Since R is a one
dimensional N-graded Gorenstein ring of finite Cohen-Macaulay representa-
tion type, we may assume that R is one of the rings given in (1) . Thus
we are able to compute dimy Hom(R, R(n)) = dimy Hom(R(—n), R) for all n
by Hilbert function. Since the functor Hom(R, —) (resp. Hom(—, R)) is an
exact functor on R* (resp. R™), it is possible to compute dim; Hom(R,Y)
(resp. dimy Hom(Y, R)) for all Y € R* (resp. Y € R™) by using Auslander-
Reiten quiver. Since Hom(R,Y’) = 0 (resp. Hom(Y, R) = 0) for all Y ¢ R*
(resp. Y ¢ R™) by lemma 3, it is possible to compute dim; Hom(R,Y)
and dim; Hom(Y, R) for all Y € CMR. For any X € {X;,Y;};, since we
have already computed dimy; Hom(X, R(n)) = dimj Hom(X(—n),R) and
since Hom(X, —) is an exact functor on X, it is also possible to compute
dim; Hom(X,Y) for all Y € X* by using Auslander-Reiten quiver. In this
way we can accomplish the computation of dim, Hom(X,Y) for any inde-
composable X,Y € CMR and get the invariant do(R). The result is shown
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in table 1. Looking at this table we have do(R) < 9.

Table 1:
Hype || Agmt1 | Aom | Doym I Dom+1 | FE¢ | Er | ESJ
@] 1 23] 4 [#[6][0]

Finally, we prove (iii’) = (iii). Because we have already proved (iii’)
= (i), we may assume that R is one given in (1). Since Extk(X,Y) =
ExtL(Q"!X,Y) for all n > 0 and by lemma 4, it is enough to show do(R) >
d;(R). For any indecomposable graded maximal Cohen-Macaulay module X,
the first syzygy QX of X is also an indecomposable graded maximal Cohen-
Macaulay module. Since there exists a natural epimorphism Hom(QX,Y) —»
Ext}(X,Y), one can see do(R) > di(R) and get d(R) < 9.0

Remark 6 Let R be a one dimensional N-graded Gorenstein ring of finite
Cohen-Macaulay representation type with Ro = k being algebraically closed
field of characteristic 0 (i.e. R is isomorphic to one of the rings given in (1)).
In the above proof, we showed how to compute the invariant do(R). Remark
that we can also compute the invariant d,(R) (n > 1) by using Auslander-
Reiten quiver in a similar way to this. Since Extj(X,Y) = Exth(Q"1X,Y),
we have dn(R) = di(R) for n > 1. We will show how to compute d;(R).
For an indecomposable graded maximal Cohen-Macaulay module X, we de-
note by X the smallest additive full subcategory of CMR containing all
indecomposable graded non-free maximal Cohen-Macaulay modules Y with
OX <Y < 7X. We also denote by X (1) the smallest additive full sub-
- category of CMR containing all indecomposable graded non-free maximal
Cohen-Macaulay modules Y with 7X <Y and X £ Y. It turns out from
lemma 3 that ExtL(X,Y) = 0 for all Y ¢ X and Extj(X,Y) = 0 for all
v € X' and for all n. And it follows from lemma 4 that Extz(X, —) is an
exact functor on XM U X', Hence it is possible to compute d;(R) (and
therefore d,(R) for all n > 1) by using Auslander-Reiten quiver. The results
are given in following table.

Table 2:
’7 ” A2m+1 I A2m | Do, l D2m+1 | E6 lE7 | ES J
dR) =do(R) | 1 2 | 3 4 416109
LR =1 | 1 2 | 1 2 | 3|46
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the type of (4,) with n =2m + 1.

Figure(1) :

Rjz)\‘

the type of (4,) with n = 2m.

Figure(2) :

0
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Figure(3) : the type of (D,) with n = 2m.

R(=2m+1) R(=2m + 3)

Figure(4) : the type of (D,) with n=2m + 1.
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Rationality, Algebraicity and Transcendency

in Fgl[21, ey 2m]]
and Language Theory

by

Takashi Harase
Fac. of Integrated Media,
Wakkanai Hokuseigakuen College

Abstruct: Everyone knows that the formal power se-
ries f =Y gc, 2P = z4+2P+2P +.. € Fp[[2]] is al-
gebraic, and the series g = Yo 2"t =142+2% 4. €
Fp[[2]] is rational, i.e. g € F,[[2]]. Our results explain
this relation as a special case.

Section 1. At first we need the following:

Definition 1. Fixing a base number ¢, |n| = |n|,
denotes the number of digits in g-adic(base q) expres-
sion of non-negative integer n. For an non-negative
integer vector n = (n1,...,ny), |n| is defined to be
equal to sup{|ni|, [nz], ..., |nm |}

Using this definition we have:

Theorem. If f = Y7 anz™ € Fy[[21, 23, ..., 2] is
algebraic, then it follows that

ZCI,nzlnI € Fq(2) .
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More precisely, if f = > anz™ € Fo{[21, 22,
zm]] satisfies an algebraic equation of degree d with
coefficients in Fy[z1, 22, ..., 2m] and degrees at most s,

then
g= Z an2!® € Fy(2)
n

and
degg < d((¢"*+1)s+1)™.

Corollary. If f = > - ,an2™ is algebraic in
Fq[[2]] then

Z( Z an)2' € Fo(2).

=0 ¢gl-1<n<¢!-1

Example 1. For each prime p, f =14z + 2P +

:cp +2P° +... is algebraic in Fy[[z]]. ®(f) = 1+z+z%+

4. = T%?E is rational, and contained in Fp(z). On

1 2
the other hand g = 1+ 2P + 2P +zP +... € Fp[lz]]
is transcendental. Because, ®(g) =1+ 2% + P T1 +
gP 4 s algebraic but not rational.

Example 2. As we have —1/2 = —5 =1+3+
32 4+ 33 + ... € Q3, it follows that

f=01+ m)-1/2 =(1+ w)1+3+32+33+...
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= (1+z)(1+2%)(1+2%)....

Terms of 2™ with |m| = n + 1 are comming from

expansion of (1+ x)...(1+ 23" )z®". The number of
these terms is 2™ and coefficients are 1. Therefor we
have

1—2
1-2x

o(f)=1+z+ i gngntl = € F3(z).

Section 2. Let k be a perfect field of char(k) =
p > 0. As usual k[[z1, ..., 2m]] stands for the formal
power series ring over k. A monomial 2}'z32...z'™ in
k[[21, ..., 2m]] will be abbriviated to z! € k[[z]]. For
each r = (r1,72,...,7m), 0 < 1; < g—1 (g = p°), we
defined in [2] the operator A, over k[[21, 23, ..., 2m]] :

n 1/¢ _n
(S = et

- These operators are naturally extended to those over
k((z)).

Let X be an alphabet, that is, a finite set of
letters(indeterminates). After the notations of [7],
k < X> denotes the non-commutative ring of formal
power series of words in X* over k :

k<X>={ Z W]y, € k}.
weX*
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Here X* is the free monoid generated by X (or the
set of words over X including 1). For each letter = in
X the right operator 7! over k KX>> is defined by

(Z apw)r = Z Az W.

weX™* wex*

For each word w € X* operator w™! is defined recur-
sively by (wz)™! =z~ lw™!. A subset M C k <X>>
is called stable if and only if S € M implies Sz~! € M
for each letter z € X.

In the sequel we use special alphabet

qu = {mrlrz,”,rmlo _<_ 7‘1,1"2, ...,'rm _<__ q - 1}
with indeterminates Ty, ry...r,, -

Definition 2. For i = (i1,...,9m), let [ = |i| and
let the base g expression of i; be (i;); (4;)1-1-.-(45)1
with (i;)p = 7jn € Xgm. We define a mapping ® from
the monomials in k{[z]] to X =~ by the following: if
[ # 0 then

11 .22 'i"rn —_—
<I)('2"1 z2 "'zm ) - w"'ll"°2l---"'mlm"'l,l——lrz,l—l---"'m,l—l

---$r11r21...rm1 9

and ®(1) = 1. ® can be extended to k-linear and
continuous map from k[[z1, 22, ..., Zm]] t0 k KX gm>>.
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Example 1. For a monomial 259228 € Fy[[z, y, 2]]
we have

B (2592 2°) = ®(g(10V)2y(102,(1102) — g, ) 011 2100

€ Fz <<X23>> .

By generalizing the results of G. Christol and al
[1], we have:

Theorem 1. For every perfect field of positive
characteristic k£, the following statements are equva-
lent.

(1) f € k((2)) is algebraic over k(z)

(2) f is contained in an A-stable k(z)-finite sub-
module in k((z)).

(3) f is contained in an A-stable k-finite subspace
in k((2)).

Here, by definition, a subset M C k((z)) is A-stable
if and only if M contains A,(f) with f for each r.

On the other hand, in the early years of 60’th,
Schiitzenberger and other Language theorists studied
the relations between formal power series of words
and recognizability of languages. Their results will
be summarized as follows [7]:

Theorem 2. For arbitrary semiring k, the follow-
ing conditions for f € k «KX>> are equivalent.

(1) f is recognizable.
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(2) f is contained in stable k-finite submodule in
E<X>. |
(3) f is rational.

From now, we assume q = p¢(e > 0), k = F, and
X = X m. So the operator A, is reduced to

n n

for each r = (ry,72,...,Tm), 0 <1 <qg—1.

It is easy to see the following key lemma of this
paper:
Proposition 1. Let r = (ry,72,...,7m) and let

T = Trirg.rm € X.Suppose f =3 qanz" € k[[z]]
have no constant term. Then it follows that

®(A:(f)) = (B(f))= "

Remark. It must be noted that Ag(1) = 1 in kl[z]],
but 1z, =0 in k <X> .

By using the Proposition 1, we can prove the
following:
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Proposition 2. A finite subspace M € k|[z]] is A-
stable if and only if ®(M) + k is stable in k <KX m>>
and finite.

Using this Proposotion, Theorem 1 and 2, we
have that f € k[[z]] is algebraic if and only if ®(f) is
rational. Considering the ring homomorphism

kll21, w0y 2m]] = K[[2]] (2 = 2),

the theorem can be proved. Qualitative results are
obtained by estimating the dimension of ®(M).
cf. [2] and [3].

Section 3. Comments. We have, in fact, proved that
f =2, anZ" € Fy[[21, 22, ..., 2m]] is algebraic if and
only if ®(f) € Fq «Xgm>> is rational. This result is
known in single variable case.(cf. [1]) As an applica-
tion of the result, we can prove the transcendency of
number theoritical functions such as

> _(u(m) + ¢(n))a™y",

where p (resp. ¢) is the Moebius (resp. Euler) func-
tion.

In the case of positive characteristics, many the-
orems concerning the algebraicity of formal power
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seiries are valid for several variables, contrary to the
characstic zero.(cf. [1],]2],[3],[6]) The obove equiva-
lence shows the reason of these facts.
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