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Preface

This is the Proceedings of the 21-th Symposium on Commutative Algebra in Japan (held
on November 23‘-26, 1999), which was financially supported by Professor Masanori Ishida
of Tohoku University (the Grant-in-Aid for Scientific Researches in Japan). This time
we had many guest speakers from abroad, including Professor Steven Dale Cutkosky and
Professor Eero Hyry. I would like to express my hearty thanks for their excellent lectures.
We also had many participants from Korea, our neighbors, and I wish this conference has
provided a good opportunity to grow up a further friendship between Korea and Japan.
January 22, 2000

Shiro Goto
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GOOD IDEALS IN GORENSTEIN LOCAL RINGS

Suiro GoTO

1. INTRODUCTION.

This is a joint work [GIW] with Shin-ichiro Iai and Kei-ichi Watanabe. And what I
want to do in my talk is to study certain m-primary ideals in Gorenstein local rings.
So, in what follows, let A denote a Gorenstein local ring with the maximal ideal m and
d = dim A. Let I be an m-primary ideal in A. Then

Definition (1.1). We say that I is a good ideal in 4, if I contains a parameter ideal
Q in A as a reduction and the associated graded ring G(I) = Dol n/I"t of T is a
Gorenstein ring with a(G(I)) =1 — d. Here a(G(I)) denotes the a-invariant of G(I).

In this definition the latter condition is rather strong. Actually, good ideals in our
sense are good ones next to the parameter ideals in A and they are characterized in the

following way.

Proposition (1.2). Let I be an m-primary ideal in A and assume that I contains a
parameter ideal @ in A as a reduction. Then the following conditions are equivalent.
(1) I is a good ideal in A.
Q2 I’=QIand I=Q: 1.
(3) I = QI and L4(A/T) = 5La(A/Q).
4 PC?andI=Q:1I.
(5) The extended Rees algebra R’ = R'(I) of I is a Gorenstein ring with Kp =
R'(2-d).
If d > 1, you may add the following.
(6) I"=Q": 1 for alln € Z.
When this is the case, Kajr = 1/Q, r(A/I) = pa(I) —d > 1, and €%(A) = 204(A/T).
Here £4(*) and pa(*) denote respectively the length and the number of generators.

More or less, the conditions in Proposition (1.2) directly follow from Definition (1.1)

and it is not very difficult to check their equivalence. Here the point is as follows : as far
1991 Mathematics Subject Classification. Primary 13A30; Secondary 13H10.
Key words and phrases. Rees algebra, associated graded ring, Cohen-Macaulay ring, Gorenstein ring,

a-invariant.
The author is supported by the Grant-in-Aid for Scientific Researches in Japan (C(2), No. 11640049).
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as I know, the characterization (1.2) is almost all we know about general good ideals. So,
in my talk I am very eager to develop further the theory of good ideals and my purpose
is to answer the following questions.

Problem (1.3). (1) Determine all the good ideals in a given Gorenstein local ring.
(2) Characterize those Gorenstein local rings A for which the sets

X4 ={I|Iis agood ideal in A}

of good ideals are finite.
(3) When X4 = 07

On the other hand the notion of good ideal is directly generalized to that of equi-
multiple ideals. And this generalization contains somewhat unexpected results, which
Mee-kyoung Kim will talk about in her lecture.

2. THE CASE WHERE dim A = 0.

By (1.2), in the case where dim A = 0, our ideal I is good in A if and only if I = (0) : I.
We also have that if X4 # ), then the length £4(A) of A must be even. Therefore it
seems quite natural to guesé the converse is also true. However this is not the case and
we have the following.

Theorem (2.1). Let k be a field. Then the following conditions are equivalent.

(1) The field k contains a square root \/a for any element a € k.
(2) Let A= ano Ay be a finite-dimensional Gorenstein graded k-algebra with k =
Ag. Then X4 # 0 if and only if 2 | dimy, A.

This theorem says that if the base field k is large enough, then X4 # 0 if and only
if 2 | £4(A) at least for finite-dimensional Gorenstein graded k-algebras 4 = 3~ ., A,
with k = Ao. Here let me note the following, which is an immediate consequence of my
proof of Theorem (2.1).

Corollary (2.2). For each a € k with no square root in k there exists at least one ﬁhite-
dimensional Gorenstein graded k-algebra A = A(c) with k = Ao such that 2 | dimy A but
Xa=0. )

Let me give an example to illustrate the theorem.

Example; (2.3). Let k[X,Y] be the polynomial ring in two variables over a field k and
let A=k[X,Y]/(X™-Y™ XY) (n>2). Then §X4 < 2. More explicitly we have

(1) X4 =0 if and only if n is even and o? # —1 for any « € k. ’

(2) §X4 =1 if and only if n is odd, or n is even and chk = 2.

If k =R (the field of real numbers), the situation is very bad. In fact, we have
o,



Example (2.4). Let n > 1 be an integer and let R = k[X;,Y; | 1 < i < n] be the
polynomial ring in 2n variables over a field k. Let a = (X? - Y2, X,Y;|1<i<n)in R
and put A = R/a. Then we have

(1) a(A) =2n and dimy A = 4.

2) Xy=0if k=R

One of the simplest way to construct Artinian Gorenstein local rings is the idealization.
Let (R,n) be an Artinian local ring and let E = Er(R/n) be the injective envelope of
R/n. Let A = R x E denote the idealization. Hence A = R ® E as R-modules and the
multiplication in A is given by (a,z) - (b,y) = (ab, ay + bz) and the ring A is an Artinian
Gorenstein local ring with the maximal ideal m =n x E ([R]). In this situation we have
a certain structure theorem of good ideals in A = R x E, which Satoshi Haraikawa will

talk about in his lecture.

3. THE CASE WHERE dimA = 1.

If dim A = 1, there is a beautiful correspondence theorem between the set X4 and the
set V4 of certain overrings of A. To explicitly state the result, let K = Q(A) be the total
quotient ring of A. We denote by Y4 the set of Gorenstein A-subalgebras C of K such
that C 2 A but the A-module C is finitely generated.

Let me begin with the following.

Lemma (3.1) (cf. [L1], Lemma 1.11). Suppose that I? = oI with a € I and let
c:{% |ieI} in K. Then
(1) C is an A-subalgebra of K and I = aC. Hence C is a finitely generated A-module.
(2) C = A if and only if I = aA.
(38) A:k C=aA: I
(4) C is a Gorenstein ring if  =aA: I.
(5) C =1l

Now let me choose I € X4. Then since I? = al ' and I = aA : I for some a € I, by
(3.1) we get the Gorenstein A-subalgebra C = {2 |ieI}of K. AsaA# 1, C #A
whence C € V4. Because C =1 :, I by (3.1) (5), the map ¢ : X4 — Ya, [ — C'is
well-defined, that is independent of the choice of the element a € I and it is an injection,
since A :x C =1 ((3.1)(3)). We furthermore have the following.

Theorem (3.2). There is a one-to-one correspondence between X4 and Y4, which sends
each I € X4 to Endal =1 :x I and takes back each C € Y4 to Homa(C,A) = A :x C.
The correspondence reverses the inclusion and one has the equality

£a(C/A) =L4(A/A k C)
_3_



forallC € Ya4.

It is often much easier to compute the set V4 than the set X4. Let me give one

example.

Theorem (3.3). Let A be a one-dimensional reduced complete local ring with e(A) = 2
and let B = A denote the normalization of A. Then

(1) Every intermediate ring A C C C B is a Gorenstein ring.

(2) §Xa = La(B/A).

(3) The set X4 is totally ordered with respect to inclusion.
Hence there is a unique chain A=Cy C Cy C--- C C, = B of rings between A and B
where n = £4(B/A). '

Typical examples of one-dimensional reduced complete local rings A with e(A) = 2

are as follows.

Example (3.4). Let k be a field and n > 1 an integer. For a local ring R let x(R)
denote the residue class field of R.
(I) (#AssA = 2) Let A = k[[X,Y]]/(X) N (X + Y™"), where k[[X,Y]] denotes the
formal power series ring in two variables X, Y over k.
(IT) (A is an integral domain with [£(B) : k(A)] = 1) Let A = k[[t?,t>"+1]] C k[[t]],
where k[[t]] denotes the formal power series ring in one variable over k. Then
B = k[[t]].
(IIT) (A is an integral domain with [x(B) : k(A)] = 2) Let K/k be an extension of fields
with [K : k] = 2 and choose § € K so that K = k+k6. Let A = k([[t, 6t"]] € K[[t]],
where K{[t]] denotes the formal power series ring in one variable over K. Then

B = K][[t]].

For these rings A we always have §X4 = n.
Unless A is reduced, the set X4 is no more finite, even though A has multiplicity 2.

Example (3.5). Let & be a field and A = k[[X,Y]]/(Y?). Let z,y denote respectively
the reduction of X, Ymod(Y?). Then

(1) X4 = {(«*,y) | i > 1}. Hence the set X, is infinite, which is a totally ordered set
with respect to inclusion.

(2) Every module-finite extension of 4 in K is a Gorenstein ring.

Hence between A and B there is a unique chain

A=Cogclg---CC'¢=R[l.]g~~gB

- .’L""

of rings, consisting of module-finite extensions of A, where R = k[[z]] in A.
— 4 _



One of the direct consequences of Theorem (3.2) shows that good ideals I and J in
A must coincide, once I = J as A-modules. Hence the set X4 is finite, if A has finite
CM-representation type. However, in general the number of good ideals depends on the
base field. In fact, let k be a field and B = k[[t]] the formal power series ring over k.
Then we have the following.

Example (3.6). Let A; = k[[t3,¢]] and A2 = k[[t*,#°,t%]]. Then
(1) Xa, = {(t5,¢7,8), (t1,15)} and V4, = {B, k[[t?,t3]]}.
(2) Xa, = {(t8,£°,¢10,¢11), (5,¢5,°)} U {(t* — M%,¢5 — A2t8) | X € k} and Va4, =
{B, k[[t?,t3]]} U {A2[t? + M3] | X € k}. Hence §X4, = ik + 2 and so the set Xa,
is infinite if so is k.

This example (3.6) also shows the inequality £4(4/A) > HX ‘4 may occur if e(A) > 3.
Now you may wonder when X4 = ). As for the question I have partial answers only.
Let me state. them. '

Proposition (3.7). Suppose that A/m is infinite. Then the following conditions are
equivalent.
(1) Xa=0.
(2) Every m-primary ideal I in A with the Gorenstein associated graded ring G(I) is
principal.
(3) Every m-primary ideal I in A for which Proj R(I) is a Gorenstein scheme is
principal.

Proposition (3.8). The following conditions are equivalent.

(1) A is a discrete valuation ring.
(2) The completion A of A is reduced and X4 = 0.

I suspect that A is a discrete valuation ring if X4 = 0.

4. THE CASE WHERE dim A = 2.
If dim A = 2, we have the following characterization of good ideals in A.

Theorem (4.1). Suppose that dim A = 2. Let I be an m-primary ideal in A and assume
that I contains a parameter ideal Q as a reduction. Then the following nine conditions
are equivalent to each other.

(l) TeXy,.

(2) I* € Xy forall£>1.

(3) I? = QI and I* € X4 for some £> 1.

(4) The Hilbert function £4(A/I™) is a polynomial in n for alln > 0 and It € X4

for some £> 1.
—5—



(5) G(I) is a Cohen-Macaulay ring and It € X4 for some £ > 1.

6) I"=Q":1I foralln e Z.

(7) L4(A/I™) = n2L4(A/I) for alln > 1.

(8) The Rees algebra R = R(I) of I is a Cohen-Macaulay ring and Kr = Ry as
graded R-modules. :

(9) The extended Rees algebra R' = R'(I) of I is a Gorenstein ring and Kpr = =~ R as
graded R'-modules.

When this is the case, the equality
pa(I™) =npa(l) —n+1

holds true for all n > 1.

Here let me note that conditions (1) and (2) in Theorem (4.1) are not equivalent to
each other, unless dim A = 2. We actually have in the case where dim A = 1 that £ =1 if
2> 1 and I* € X4. And even though I* € X4 for all £ > 0, the ideal I is not necessarily
a good ideal in A. Let me give one example.

Example (4.2). Let k[[X Y, Z)] be the formal power series ring over a field k and let
A =k[[X,Y,Z]]/(Z* — XY). Let z,y, and z denote respectively the reduction of X,Y
and Z mod (22 — XY). We put I = (22,92, 22,yz). Then I* € X4 for all £ > 2 but
I ¢ XA. ' )

However, if I¢ € X4 for some £ > 1, the powers I" of I are good ideals in A for all

n > N + 1, where N denotes the least integer N > 0 such that the Hllbert function
£4(A/I™*1) of I is a polynomial in n for all n > N. Namely '

Theorem (4.3). Let I be an m-primary ideal in A which contains a parameter ideal Q
in A as a reduction. Let N > 0 be an integer and suppose that the equality

AT = ) ("37) e ("7 ) +eien

holds true for all integers n > N. Assume that I¢ € X4 for some £ > 1. Then the
following assertions hold true.

(1) 2(A) = 0 and e}(4) = %e?(A).

(2) L4 (A/(TF)™H1) = (n+ 1)%04(A/I*) for all integers k> N +1 and n > 0.

(3) I*€ X4 ifk >N+ 1.

(4) I € X4 if and only if HY(G) = (0).
Here G =G(I) and M=mG + G4.

Recall that a two-dimensional Noetherian local ring R is rational if R is normal and

there exists a desingularization X — Spec R with H(X,0x) = (0) ([L2]). In the case
J— 6 J—



where our Gorenstein local ring A is rational, the theory of good ideals are closely related
to that of adjoints I of ideals I in the sense of J. Lipman ([L3]). He proved that the
equality 7 = Q : I holds true for any m-primary integrally closed ideal I in A and for
any minimal reduction Q of I, if A is a two-dimensional Gorenstein rational local ring.
Therefore for an m-primary ideal I in A we have that I € X4 if and only if I = I. Added
to it, thanks to Kato’s Rieman-Roch theorem [K], we have the following characterization
of good ideals. Let f : X — Spec A be a desingularization and let I be an m-primary
ideal in A. Then we say that I is represented on X if IOx is invertible. With this
notation my characterization is stated as follows.

Theorem (4.4). Let A be a two-dimensional Gorenstein excellent rational local ring.
Let I be an m-primary ideal in A which contains a parameter ideal Q in A as a reduction.
Then the following conditions are equivalent.

(1) I'eXa.

2 I is integrally closed, which is represented on the minimal resolution of Spec A.

3) I=1I.

Here let me explore the simplest case. In general it is possible by the same manner to
explicitly describe the good ideals for any two-dimensional Gorenstein rational excellent
local rings, which Kei-ichi Watanabe will also talk about in his lecture.

Example (4.5). Let k[[X,Y, Z]] be the formal power series ring over a field k. Let
A=E[[X,Y,Z])/(Z?°~XY). Then the minimal resolution of Spec A is given by Proj R(m)
and we have X4 = {m¢| £ >1}.

I close this section with the following.

Remark (4.6). (1) According to an argument of Huneke and Swanson [HS], in the case
where dim A = 2 we have pd4A/I = oo for all I € X4. Hence X4 = 0 if A is a regular
local ring with dim A < 2. T don’t know whether the converse is also true.

(2) If A is a rational local ring, the product of two good ideals is again a good ideal
in A. This is no more true, unless A4 is a rational singularity. For example, let A =
k[[X,Y,Z]]/(Z? — X™Y™) (n > 2). Then we have the following two ideals m, I =
(z™,y", 2) are good in A but mI ¢ X4. So, the condition that the product of any two

good ideals is again a good ideal might characterize rational singularities.
5. THE CASE WHERE dim A > 3.
If d = dim A > 3, we have the following.

Theorem (5.1). The set X4 is necessarily infinite if dim A > 3.

The proof is quite easy. We just look at the ideal I = (X1, X2, X3)* + (X4, -+, Xa4),
where X1, X5, -+, X4 is a system of parameters of A. Then the ideal I is always a good
J— 7 —



ideal in A, so that we have §X4 = oco. However, if you are interested in the question
whether the set
Xg ={I € X4 | I contains Q as a reduction}

is empty or not for a given parameter ideal @ in A, the problem turns more complicated.
To conclude my talk let me add a few results about the question. Let R = k[X1, X2, X3]
be the polynomial ring in three variables over a field k. Let a;, az,as > 1 be integers and
Q= (X1, X3?,X5%). We denote by Xg, or simply by X(q,,a,,44) the set of ideals J in
R which are generated by monomials in X1, X5, X3 and such that J 2 Q, J?=QJ, and
J=0Q . J. Then clearly JRop € XR,, for all J € X(4,,a5,05), Where MM = (X1, X2, X3).
Added to it, because a; = b; for alli =1, 2, 3 if Xay,a2,a3)X(a1,a2,03) F 0, we immediately
see that Xp,, is infinite if X{q, q,,05) # @ for infinitely many vectors (ai,as,as) with
ais > 1. From this viewpoint the next result might have its own interest.

Theorem (5.2). Let a1,a2,a3 > 1 be integers. Then X(a, a,,0q) = 0 if and only if one
of the following conditions is satisfied.

(1) {a1,d2,a3} > 1.
(2) 2’[a1a2a3.
(3) (a1,a2,a3) = (2) 2, 0dd), (2’ odd, 2): or (Odd; 2, 2)

The most striking consequence of Theorem (5.2) is the following.

Corollary (5.3). Sﬁppose that min{a1, az,a3} > 3. Then X4, a5,05) # O if and only if
2 l ajaqag.

This gives an alternative proof of Theorem (5.1) and we get

Corollary (5.4). ﬁxk[lxl,xa,xs]] = 00.
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EQUIMULTIPLE GOOD IDEALS

MEeE-KYOUNG KIM

ABSTRACT. Let I(#A) be an ideal with ht4(I) = s in a Gorenstein local ring (A,m) of
dim(A) = d > 1 and assume that I contams an ideal Q = (a1,a2,---,as) in A as a
reduction. Then we say that I is the st& good ideal in A if the following conditions are
satisfied : (1) I2 = QI, (2) I = Q : I, and (3) A/I is a Cohen-Macaulay local ring. Let X1
be the set of the first good ideals in A. In this paper we will give a correspondence theorem
between the set X}‘ and the set V4 of certain overrings of A.

1. INTRODUCTION

This is a joint work with Professor Shiro Goto.

Let A be a Gorenstein local ring of dimension d > 1 and m denote the maximal ideal
in A. Let K = Q(A) be the total quotient ring of A. Let I(# A) be an ideal in A and
s = hta(I). Assume that I contains an ideal Q = (a3, - ,as) in A as a reduction; hence
Q C I and I"*! = QI™ for some n > 0. We put rq(I) = min{n > 0| I"*! = QI"} and
call it the reduction number of I with respect to Q. Let HE, (%) (i € Z) stand for the &
local cohomology functor of A with respcet to m. We denote by p4(M) the number of
elements in a minimal system of generators for M as an A-module and £4(M) the lenght

of ‘M as an A-module. We define
R(I) = A[It] C A[t),

R'(I) = A[It,t™1) C Aft,t™Y],

and

G(I)=R'(I)/t"*R'(I)

(here ¢t denotes an indeterminate over A), which we call the Rees algebra, the extended

Rees algebra, and the associated graded ring of I, respectively.

1991 Mathematics Subject Classification:Primary 13A30; Secondary 13H10.
Key words and phrases:Rees algebra, associated graded ring, Cohen-Macaulay ring, Gorenstein

ring, a-invariant, canonical module.
The author is supported by BSRI-97-1435.
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The concept of good ideal was first introduced by Goto, Iai, and Watanabe ([GIW]).
In [GIW] they developed the theory of m-primary good ideals in a Gorenstein local ring.
Let A be a Gorenstein local ring with the maximal ideal m and d = dim(A). Let I denote
an m-primary ideal in A and assﬁme that I contains a parameter ideal @ = (a1, - ,aq)
of A as a reduction. We put G = G(I) and M = mG + G. Let [HE,(G)], denote the
homogeneous component of degree n in the dt local cohomology module HE.(G) with
respect to M. Let a(Q) = maz{n € Z | [HL(G)]» # (0)} (GW, (3.1.4)]). Then they
defined that the m-primary ideal I is good if G is a Gorenstein ring and a(G) = 1 — d
and they explored that this condition is équivalent tosaying that I2=QI and I =Q: I

([GIW)).
Let I(# A) be an ideal in a Gorestein local ring A and s = ht4(I). Assume that I
contains an ideal @ = (a1, -- ,a,) in A as a reduction. Then we say that I is good ideal in

A of height s if the associated graded ring G(I) is a Gorenstein ring with a(G(I)) = 1—s.
Let X} denote the set of good ideals in A of height s. We denote by Y4 the set of
Gorenstein A-subalgebras C' of K such that C 2 A but the A-module C is finitely
generated. The purpose of this paper is to give the following correspdndence theorem in

the case where ht(J) = 1.

THEOREM 1.1. Let I(# A) be an ideal in a Gorenstein local ring A and 1 = ht4(I).
Assume that I contains an element a in A such that I"*! = aI™ for some n > 0. Then
we have : |

(1) There is an one-to-one correspondence between the sets X} and yA, which sends each
I € X} to Endal = (I :4 I) and takes back each C € Y4 to HomA(C,A) =A:gC.

(2) The correspondence reverses the inclusion.
As consequence of the theorem, we have

COROLLARY 1.2. Let I(# A) be an ideal in A and 1 = ht 4(I) and assume that I2 = aI
for some a € I. Suppose pa(I) > 2 and let C = {2 | z € I}. Then C is a Gorenstein
ring if and only if aA : I € X} and A/I is a Cohen-Macaulay local ring.

The proofs of Theorem 1.1 and Corollary 1.2 will be given in Section 2. Section 3 is
to discuss the question when X} = 0.
Throughout this paper, A denotes a Gorenstein local ring with maximal ideal m and

dim(A) =d > 1 and K = Q(A) denotes the total quotient ring of A.



2. PROOF OF THEOREM 1.1.

Let I(# A) be an ideal in A and 1 = ht4(I). Assume that I contains an element a in
A such that I™t! = aI™ for some n > 0. Notice that the element a ia a regular element
in A. To begin with we note the following. This is known by [GIW] but let us give a

brief proof for completeness.

LeEmMA 2.1. ([GIW]) Suppose I? =al and let C = {£ | z € I} in K. Then we have :
(1) Cis an A—subalgébra of K and I = aC. Hence C is a finitely generated A-module.
(2) C = Aif and only if I = aA.

(3) A:xk C=aA:1I

4)C=1I:x1.

Proof. (1) Since I>=al anda€ I, Cisa subring. of K containing A. We have C =2 |
as A-module, because I = aC and the element a is a regular element in A. Hence C is a
module-finite extension of A.

(2) The assertion (2) is clear, because I = aC and the element a is a regular element in
A.

(3) Since the element a is a unit in K, we have
A:g C =aA:g aC.

Moreover we have aA :g aC = aA : I, because I = aC and C contains the identity
element.

(4) Since I = aC and the element a is a unit in K, we see
I:gI=aC:gaC=C:gC.

Furthermore we have C :x C = C, because C contains the identity element. This

completes the proof of all our assertions.

LEMMA 2.2. Suppose I? = al, I = aA : I and A/I is a Cohen-Macaulay local ring.
Let C = {2 | z € I}. Then C is a Gorenstein ring.

Proof. Suppose I = aA : I. Then we have an isomorphisin A :x C = C of C-modules,

by I = aC and the Lemma 2.1.(3). So we have

C2A:xC=A:C=Homy(C,A). -



Let apply the functor HE () to the exact sequence 0 - C — A — A/I — 0 of A-

modules. And we get
H: (C)=0 for i#d,

so that C is a Cohen-Macaulay ring. By [BH, Theorem 3.3.7], we have C = K¢ as

C-modules, where K¢ is a canonical module of C. Hence C is a Gorenstein ring.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. (1) Let I € X. Then since A/I is a Cohen-Macaulay local ring,
I? =al,and I = aA: I for some a € I, by Lemma 2.1 and 2.2, we have the Gorenstein
A-subalgebra C = {£ | i € I} of K. Since aA # I, we have C # A whence C € V4.
Because C = I :x I by Lemma 2.1.(4), the map ¢ : X; — Y4 given by o(I) = C
for all I € X}, is well-defined, that is independent of the choice of the elements a € I.
Suppose that p(I) = ¢(J), where I,J € X}. Then since I = aA : I for some a € I and
J =bA: J for some b € J, by Lemma 2.1.(3). We have

I=aA:I=A:xkp(I)=A:gp(J)=bA:J=J,

so that the map ¢ is injective. Let C € Y4 and put I = A :i C. Then I # A as C # A.

Since C is a Gorenstein A-subalgebra of K, we see

C & K¢ & Egtim®=4m©) (¢ K )
= HOmA(C,A)
2 A:xC,

whence I is a projective C-module of rank 1. Thus I = aC for some a € I, whence we

have A
I? = (aC)(aC) = a®’C = aaC = al.

Therefore I contains aA as a reduction, so that ht4(I) = ht4(aAd) = 1, because a is a
regular element in A. Hence C = I/a and so by Lemma 2.1.(3), I = aA : I. Applying
the functor HE () to the exact sequence 0 — C — A — A/I — 0 of A-modules, we get

H  (A/T)=0 for i#d—-1,

since A and C are d-dimensional Gorenstein rings, whence A/I is a Cohen-Macaulay

local ring. Thus I € X} and ¢(I) = I :x I = C by Lemma 2.1.(4). Hence the map



@ : X} — V4 is surjective.
(2) Let C,D € Va.

Cram : C D D ifandonlyif A:x CCA:g D.

Proof of Claim. (=) This is trivial. (<) By the bijective map ¢, we have
I'kI=C and J:xgJ=D.

for some I,J € X}. Let z € D. Then since A:g C C A:x D, we have zI C zJ C J. By
the definition of X}, there exists an element a € I such that aA: I =1 Writexza=2»

for some b € J. Then
bl = zal = axl C aJ C aA,

so that b € 1. Hence we see
a(z]) = (ax)] =bI C I* = al.

Since a is a non-zero-divisor in A, we have zI C I. Thus = € I :x I. This completes the

proof of Theorem 1.1.
COROLLARY 2.3. Let I, J € X}. Assume that I = J as A-modules. Then I = J.

Proof. Since I = J as A-modules, there exists an element o € A which is a unit in K
such that the map p : I — J given by p(z) = ax for z € I is the isomophism. Then

since J = al, we have
J:xkJ=al:gal=1:x 1 in Y.
Hence I = J by Theorem 1.1.

COROLLARY 2.4. Let I(# A) be an ideal in A and 1 = ht 4(I) and assume that I = af
for some a@ € I. Let £ > 1 be an integer. Then £ =1 if Ife Xx}.

Proof. Suppose £ > 2. Since (I%)? = a‘I%, I* contains a‘A as a reduction, whence
C ={% |z €I} € Ya by Theorem 1.1. Hence C = {i | i € I} as I' = a*"'I.
Therefore I C A :x C as I = aC, which is impossible because A :x C = afA: I* = TI*
by Lemma 2.1.(3).
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Proof of Corollary 1.2. We have I = aC. Then since I? = al, by Lemma 2.1.(3) we have
(a) A:ix C=aA:l

Hence C # A because pa(I) > 2. Therefore if C is a Gorenstein ring, then C € Y4 by
Lemma 2.1.(1), whence A :x C € X} by Theorem 1.1. Thus we have aA : I € X} by (a)
and A/I is a Cohen-Macaulay local ring, because we apply the functor H: (*) to the exact
sequence 0 — C — A — A/I — 0. Conversely suppose aA : I € X} and A/I is a Cohen-
Macaulay local ring. By Theorem 1.1, there exists D € V4 such that A :x D =aA: I,
whence A :x D = A :x C by (a). Applying the functor Hi () to the exact sequence
0—C—A— A/T -0, we get H: (C) = 0 for i # d, so that C is a Cohen-Macaulay
ring. Notice that C = A :x (A:x C) and D & A :g (A :x D) ([BH, Theorem 3.3.10]),
because A is a Gorestein local ring and C, D are maximal Cohen-Macaulay A-modules.
Thus we have
D=2A:x (A:xk D)=A:x (A:xk C)=C,

so that C is a Gorenstein ring. This completes the proof of Corollary 1.2.

EXAMPLE 2.5. Let A = k[[s*s,t?]] be the formal power series ring over a field k. Then
X} = {(t?,s%t%) A}

Proof Let A denote the normalization of A. Then A = k|[[s?,st,t?]]. Hence A € Y4 since
A = A[s?). By Theorem 1.1, we see A: A € X}. Since A = A[s?] = A + As?, we have

A:A=A:s%=(t2s%2)A,

whence (t2,s%t2)A € X}. Let C € Ya. Then A C C C 4 C K = Q(A). Hence
A:CD2A: A= (25%?)A. So we take an arbitary ideal J(# A) in A such that
J D (t?,5%t2) A = t? A. Consider the following exat sequence

0 — Kerp — A/t?A 2y AlJ — 0.

 Notice that AJPA 2 KXY, Z))/(Y* - XZ2,Y?%,Z) = k[[X,Y]])/(Y?), where X — s%,
Y + st, and Z — t2. Then Kery = (Y), whence J = (st,t2)A. Thus we see
X1 C {(t2,5%2)A, (st,t?)A}. - -

CLAIM : J = (st,t2) A is not the 1t good ideal in A.



Proof of Claim. Suppose J is the 1#2 good ideal in A. Then J? = fJ for some f € J.
Hence f | st and f | t? in B = k[[s,t]]. Since f is a reduction of J, we see fB = fB,
whence f = ut for some unit u in B. Write v = c+as+bt+g, wherec# 0in k, a ,b € k,
and g € B. Then f = ut = ct + ast + bt> + g, whence ¢ = 0 because ¢ ¢ A, which is
absurd. This proves Claim.

Therefore we have X} = {(t2,32‘t2)A} and Y4 = {:4_}

EXAMPLE 2.6. Let (B,n) be a regular local ring with dim(B) > 1 andlet A= Bx B =
(B[X]/(X?)) denote the idealization of B over B (here X denotes an indeterminate over
B). Let = denote the reduction of X mod (X?). Then X} = {(a,7)A |0 # a € n}.

Proof. Let I = (a,z), where 0 # a € n. Then I2 = (a?,az)A = ol and ht4(I) = 1 since
oA is areduction of I. A/I'is 1-dimensional Gorestein local ring, because A/I = B/aB.
Since I = al, wesee I CaA: 1. Let f € aA: I. Write f = by + b1z, where bo,b; € B.
Then fa = bpa + biza € aA, and fr = boz + b1z? € aA <= by € aA since z2 = 0.
Hence I = aA : I. Thus I € X}. Let C € Y4. Then A C C C K = Q(A), where Q(A)
is the total quotient field of A. Since A = B + Fz, where F = Q(B), wesee C=B&® L
with Bz C L C Fz. Since B = L, ‘we have B C Bg C F for some 0 # g € B. Write
g= %, where a,b are non-zero coprime in B. Since B C Bg, we have 1p = ¢ g for some
¢ € B, whence b = 1, because a and b are coprime. Hence g = %, where 0 # a € n. Thus

C=B+B %, where 0 # a € n.
CraiM: A:C =aB + Bz.

Proof of Claim. Let w € (A : C). Write w = by + by, where bg,b; € B. Then

ngA4‘=>w(BV+B§)gA=B+Bz
4=>w£EA
a
b
— 2¢B
a
<= by € aB

<= aB + Bz.

By Theorem 1.1, we have A : C € {(a,x)A | 0 # a € n}. Therefore X} = {(a,z)A | 0 #
a € n}.



3. THE ESTIMATION OF THE SET X.

Let S = ®,>05, be a Noetherian graded ring and assume that S contains a unique
graded maximal ideal 9. We denote by Hjy(x) (i € Z) the itk local cohomology functor
of S with respect to 9. For each graded S-module E and n € Z, let [Hi,(E)], denote
the homogeneous component of the graded S-module Hi,(E) of degree n. If S, = (0)
for all n < 0 and E is a finitely generated graded S-module, we have [Hi;(E)], = (0)
for all n>> 0 and ¢ € Z. We put 4

a(B) = mas{n € Z | [H (Bl # 0}

with e = dimgE and call it the a-invariant of E ((GW, (3.1.4)]). For each p € Z, let
E(p) stand for the graded S-module, whose underlying S-module coincides with that of
E and whose graduation is given by [E(p)]n = Epin for all n € Z. We denote by K the

graded canonical module of S, if it exists.

PROPOSITION 3.1. Suppose I € X} and let R = R(I). Then K = R, as graded

R-modules.

Proof. Let a € I with]? = al. We put P = R(aA) and at € R;. Then at is transcen-
dental over A and P is the polynomial ring over A, so that P is a Gorenstein ring with

Kp = P(-1). By [BH, 3.6.12], we have the following isomorphisms
Kr = Homp(R,Kp) = Homp(R,P(—l)) = [HO'Inp(R,P)](—l) & (P P R)(—l).
CramM : (P:p R)=1IR.

Proof of Claim. Since I € X}, we have I"*! = o] for all n > 0. Hence IR-R =
IR = IP C P. Therefore we get IR C (P :p R). Let a"t"™ € (P :p R), where
n > 0. Then a™z = a™*! for all z € I, so that a™ € (a™*! : I) = I™*!. Thus we get
a™" € I"t1" = [IR),.

Then since IR & R, (1) and by Claim, we have Kg(1) 2 R4(1). Thus Kp = R,.
This completes the proof of Proposition 3.1.

We are now discussing the question when X} = 0. To do this we need the following

two lemmas.
' —16—



LEMMA 3.2. Let I(# A) be an ideal with ht4(I) = 1. Let a € I such that "t = ql™
for some n > 0. Assume that ps(I) > 2. Let r = roa(I). Then I" € X} if G(I) is a

Gorenstein ring.

Proof. Since pa(I) > 2, we have r > 1. Hence (I")* = a"I" and ht4(I") = 1, because
a"A is a reduction of I". Thus a(G(I)) = rera(I”) — ht4(I") = 1 —1 = 0. Since
a(G(I)) = —1(modr), G(I") is a Gorenstein ring, by [Hy, Theorem 2.4].Thus I" € Xl
by Definition.

LEMMA 3.3. LetI(# A) be an ideal with ht4(I)= 1. Let a € I such that I"*! = aI™
for some n > 0. Assume that pa(I) > 2. Let r = roa(). Then a”A : I" € X} if

ProjR(I) is a Gorenstein scheme.

Proof. Let R = R(I). Then since /Ry = \/W, we have ProjR(I) = Spec(C),
where C = I"/a" = A[I/a]. Hence C is a Gorenstein ring. We have I” = a"C and
so (I")? = (a"C)(a"C) — a"a"C = o’ I". We claim pa(I™) > 2. In fact, suppose that
pa(I") = 1. Then I" = a” A by [S, Chap.2, Theorem 1.7]. Let z € I. Then a" 'z € I,
we get a" !z € a"A, whence a € aA. Thus I = aA. This is impossible, because

pa(I) > 2 by our assumption. Thus a”A : I" € X} by Corollary 1.2.

THEOREM 3.4. Suppose that A/m is infinite.Then the following conditions are equiv-
alent.

(1) x5 =0.

(2) Every equimultiple ideal I with ht4(I) =1 in A for which G(I) is Gorenstein ring is
principal.

(3) Every equimultiple ideal I with ht4(I) = 1 in A for which ProjR(I) is Gorenstein

scheme is principal.

Proof. Because the field A/m is infinite, every equimultiple ideal I with ht4(I) =1 in
A contains an element a € I such that I"*! = aI™ for some n > 0 (cf.[NR]).

(1)=(2). Suppose there exists an equimultiple ideal I with ht4(I) = 1 in A such that
G(I) is a Gorenstein ring and pa(I) > 2. By Lemma 3.2,we have I" € X}, where
r = r,A(I). This is impossible, because X} = 0 by our assumption.

(2):(1). Suppose X} # 0 and let I € X}. Choose a € I so that I? = al, G(I) is a

Gorenstein ring, and ht4(I) = 1. By (2), I is a principal ideal, i.e., I = aA. This is



absurd. -
(1)=>(3). Suppose there exists an equimultiple ideal I with hta(I) = 1 in A such that

ProjR(I) is a Gorenstein scheme and p4(I) > 2. By Lemma 3.3, we have a™A : I" € X5,

where

3)=(

r = roa(I). This is impossible, because X'j = () by our assumption.

1) Suppose X} # 0 and let I € Xj. Choose a € I so that I?’=aland I =aA: 1.

Then C = I/a is a Gorenstein ring by Theorem 1.1. Hence ProjR(I) = Spec(C) is a

Gorenstein scheme, so that the ideal I has to be principal, i.e., I = aA. This is absurd.

[BH]
[G1]
[GIW]
[GW]
[HIO]
(Hy]
[NR]
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COHEN-MACAULAY MULTI-REES ALGEBRAS

EERO HYRY

NATIONAL DEFENCE COLLEGE

1. INTRODUCTION

Let (A, m) be a local ring, and let I,...,I, C A be ideals of positive height.
The multi-Rees algebra Ra(Lh,...,I.) = A[Lt,...,I:t;] C Alty,...,t.] where
ty,...,t, are-variables. Multi-Rees algebras are connected to multiple blowing
up. The purpose of this lecture is to report on some recent work on their Cohen-
Macaulay and Gorenstein properties ([5]). In investigating homological properties

- of a Rees algebra of a single ideal the corresponding form ring plays a central role.
Unfortunately, in the case of several ideals this method seems not to work anymore.
Our approach is to compare the properties of the multi-Rees algebra Ra(l1,...,I,)
to those of the corresponding diagonal subring which is the usual Rees algebra
Ra(I1---I.) of the product I ---I,.. It has already been proven in [7, Corollary
2.10] that the Cohen-Macaulayness of R4(I1,...,I,) implies that of Ra(l; - I,.).
However, easy examples show that the converse is not true. We therefore seek
additional conditions which would make Ra(Iy,---,I;) Cohen-Macaulay in this
case. We start by characterizing in Theorem 3.4 the Cohen-Macaulay property
of Rq(I1,...,I;) in terms of the sheaf cohomology of the corresponding multi-
projective scheme ProjR4(l1,...1;). For usual Rees algebras this was done by
J. Lipman in [11, Theorem 4.1]. The case r = 2 was treated in [7, Theorem 2.5].
However, in the general case we have to follow a quite different line of argument.
We then utilize the fact that Proj R4 (I3, ..., I,) is isomorphic to the usual blowup
ProjRa(I;-- - I.). If the dimension of the closed fiber is small, then most of the
sheaf cohomology is known to vanish. This helps us to state the conditions for
the Cohen-Macaulayness of R4([1,...,I,) when the product I --- I, has analytic
spread less than three (s. Theorem 3.8 and Theorem 3.10). We apply our re-
sults to joint reductions in Theorem 4.1. Finally, we investigate the Gorenstein
property of Ra(lh,...,I.). If Ra(ly,...,I;) is Cohen-Macaulay, it turns out in
Theorem 5.2 that the Gorensteiness of the diagonal R4(I; ---I,.) is equivalent to
that of Ra(I1,...,I;).

2. PRELIMINARIES

In this section we fix some notation and recall some general facts about multi-
graded rings. We always assume that all rings and schemes are Noetherian. We also
assume that all schemes and morphisms are separated. If n,n' € Z" and n; < n}
for j=1,...,r, we write n < n’. Let 1; = (0,...,0,1,0,...,0) (j/=1,...,7) be
the canonical base elements of Z". Moreover, we set 1 = (1,...,1).

Let S = @,,cn- Sn be an r-graded ring finitely generated over Sp by elements in
degrees 1;,...,1,. The diagonal subring of S is the graded ring S4 = @neN Sh,...,n-



The irrelevant ideal of S is St = D..50 Sn- The multiprojective scheme Proj S is
defined in the usual way by using the multihomogeneous prime ideals P C S which
do not contain S*. The quasi-coherent sheaf corresponding to S(n) is invertible
for every n € Z". We denote it by Oz(n). Note that multiprojective schemes
are projective: if Z% = Proj S2, the inclusion S — S induces an isomorphism
f: Z — Z2 such that f*(Oza(n)) = Oz(n,...,n) for all n € Z. In the following
we take S = Ru(h,...,I,) where I,...,I, C A are ideals of positive height.
However, many of our results could be formulated for more general multigraded
rings, too (cp. [7]). We set Z = ProjS. Note that dimS =d +r and dimZ = d.

3. THE COHEN-MACAULAY PROPERTY OF A MULTI-REES ALGEBRA

We are now going to characterize the Cohen-Macaulay property of S in terms of
sheaf cohomology. We consider the Rees algebra T' = Rgs(S*). Note that

T = @ ( @ Sﬂ,+k,....nr+ktk)'

k>0 n>0
Set W = ProjT. In the following lemma which is crucial for the proof of our first

main Theorem 3.4, we observe that W can in fact be considered as a vector bundle
over Z.

Lemma 3.1. W =V(0z(1,)®---® 0z(1,)).

Outline of the proof. Write T' = S[S*t] where t is a variable. Cover W with open
affine sets D (st) = SpecT{(,;) where s € S1. Since Tx = @50 Sny+k,....n.+4t5,
we observe that T(s) = @,50(S(n))s). But then W = Spec @50 Oz(n) =
SpecSym(0z(11) & --- & Oz(1,)). N O

Next we want to calculate the sheaf cohomology modules Hi (W, Oy ) with sup-
ports in F = W xg S/9t where 9 denotes the homogeneous maximal ideal of S.
Note that these are r-graded S-modules. In fact, a look at the Sancho de Salas
sequence ([11, p. 150]) shows that Hi(W,Ow) = [Hyn(T+)]o where 9 is the ho-
mogeneous maximal ideal and T+ = @, Tk the usual irrelevant ideal of T Set
E=2Zx4A/m.

Proposition 3.2. As a graded S-module
Hy(W,0w) = (D Hy (2, 0z(m))
n<0

for alli > 0.

Outline of the proof. We utilize the local cohomology sheaves Hi(Ow) with sup-
ports in D = W x5 S/ where % = D, .o Sn (for basic facts about local cohomol-
ogy sheaves we refer to [1, §1.]). Let 7: W — Z be the canonical morphism. As
M = m @ A, the functor I'r(W, - ) equals to the composite I‘,,-:(E)(W,'HOD( - ).
We thus have a spectral sequence

B = H_, 5, (W, H(Ow)) = Hp(W,Ow).

We can now cover Z with open affine sets U = SpecB such that n~}(U) =
Spec B[t,...,t,] where ty,...,t, are variables. Also 7~'(U)ND = V(ty,...,t,).



It is well-known from [2, Proposition 2.1.12] that

: 0 ifi#r,
H(h.-n,tr)(B[tl’”"tr]) = {® < Bt;tl et if =17,
n r

This leads to the observation that
; 0 ifi#r,
+(Hp(O =
T (Hp(Ow)) {$n<o Op(m) ifizr
But then the spectral sequence considered above degenerates. The claim follows,
because by the affiness of  H_, g (W, H}(Ow)) = HE(Z, 7. (HD(Ow))). 0O

A second ingredient in the proof of Theorem 3.4 is the following proposition ([8,
Lemma 1.1]) which originates from (11, Lemma 4.2]. It relates vanishing of local
cohomology, sheaf cohomology and sheaf cohomology with supports to each other.

Proposition 3.3. Let T be a standard graded ring defined over a local ring (B,n).
Let 9t denote the homogeneous mazimal ideal of T. Set W = ProjT and F =
W xp B/n. Let N be a graded T-module. Let k € Z. Then the following conditions
are equivalent:

1) [HE(N))k =0 for all i > 0;

2) The canonical homomorphism Hi(Ny) — H};(W,Jv(k)) is an isomorphism for
alli > 0;

8) The canonical homomorphism Ny — T'(W, N(k)) is an isomorphism and one
has Hi(W, N(k)) = 0 for i > 0;

4) [Hiw (N))e = 0 for alli > 0.

We are now ready to prove

Theorem 3.4. Let A be a local ring of dimension d, and let I,...,I. C A be
ideals of positive height. Then Ra(I1,...,I;) is Cohen-Macaulay if and only if the
following conditions are satisfied

1)T(Z,0z(n)) = I --- I for alln > O;

2) H(Z,0z(n)) =0 for alli >0 andn > 0;

3) H;(Z,0z(n)) =0 for alli <d andn < 0.

Outline of the proof. Consider T as an (r + 1)-graded ring. Let Q denote the cor-
responding irrelevant ideal. As a first step we will show that [HE (T)]n,x = O for all
i>20andn <0, k> 0. Because T = ,,50 450 Sn1+k,...,n,+k, there is an obvious
isomorphism Q — T+ which maps an element in T,k to the corresponding ele-
ment of Ty,_1 41. By using the long exact sequences of cohomology corresponding
to the exact sequences

0— T+ — T —T/T* —0 and 0—Q —T—T/Q—0
one now checks that for any k£ > 0 and n < 0 there are isomorphisms
(H3 (D)l k = [H (Q)ln ke = [Hy(TH)lac1,641 = [Hy(Dlno1,k41-

As [H3(T)]nx = 0 for k > 0, the above claim follows.
The Sancho de Salas sequence (s. [11, p. 150]) now gives an r-graded sequence

oo — [HE(T))o — Hin(S) — HL(W,0n) — ...



As [HE(T)]no = 0 for n < 0, this implies by Proposition 3.2 that there is an
isomorphism [Hi;(S)]a = Hiy "(Z,0z(n)) for n < 0. We thus see that [Hi;(S)]a =
0 for i < d+r and n < 0 if and only if 3) holds. On the other hand, the Sancho de
Salas sequence also implies that
HyMo= P [Hin(S)n
some n;>0

Recall from [3, Lemma 2.1} that [Hg"(S)ln = O if some n; > 0. Therefore
[Hiz(S)ln=0for all i < d+r and n € Z" such that n; > 0 for some j if and only
if [H5(T))o = 0 for all i > 0. But according to Proposition 3.3 this is equivalent to
having T'(W, Ow) = S and HY(W,Ow) = 0 for i > 0. The claim follows, because
T(W,0w) = @pzo [(2,05(n)) and H'(W,On) = 50 H(2,0z(n)). O

Remark 3.1. Note the formula [Hj;(S)]a = Hy "(Z,0z(n)) for i >0 and n < 0.

Because Proj R4 () - -+ I,) = Z, it follows in particular that the Cohen-Macaulay
property of Ra(Iy,...,I,) implies that of R4(ly - --I-). This recovers [7, Corollary
2.10]. The converse implication does not hold in general (s. {7, Example 2.11]). In
comparing the Cohen-Macaulay properties of R4([1,...,I.) and Ra({; ---I,) the
main point is now to understand how the vanishing of the cohomology of the sheaves
Oz(n,...,n) (n € Z) affects the vanishing of the cohomology of Oz(n) (n € Z").
The following lemma, which can be proven by means of a Castelnuovo-Mumford
type lemma (s. [5]), is therefore very essential for our arguments:

Lemma 3.5. Let m € Z and p € N.
a) Suppose that H(Z,0z(m —1i,...,m —i)) =0 for alli > p. Then
HY(Z,0z(ny —1i,...,n, —i)) =0

foralli>p and n > (m,...,m). Moreover, in the case p =0 we also have --

[(Z,0z(n+1;)) = L,I(Z,0z(n))
forn>(m-1,....m-1mm-1,....m—1) andj=1,...,r.

b) Suppose that H;(Z,0z(m —1i,...,m —1)) =0 for all i < p. Then
. HY(Z,0z(ny —1i,...,n.—14)) =0
foralli<p andn < (m,...,m).

Let I C A be an ideal of positive height. Set X = ProjRa(I). As the closed
fiber of the canonical projection X — Spec A has dimension < ¢(I) — 1, it is
well-known from [2, Corollaire (4.2.2)] that H*(X,F) = 0 for every coherent sheaf
F on X if ¢ > £(I). When the ideal has small analytic spread, we thus see that

most of the sheaf cohomology vanishes. The next lemma shows that the same also
holds for the sheaf cohomology with supports in the closed fiber E = X x4 A/m.

Lemma 3.6. If X is Cohen-Macaulay, then Hy(X, L) = 0 for any invertible sheaf
Lon X ifi <d-—¢I).

Outline of the proof. We may assume that A is complete. By the above the claim
is then a consequence of the local-global duality of Lipman ([11, p. 188]) according
to which H;(X, L) = Hom 4 (H*(X,wx ® L71), E4(k)). 0

The values of m which we can use in Lemma 3.5, can now be found using



Lemma 3.7. Set £ =¢(I) and a = a(G 4(I)). If Ra(I) is Cohen-Macaulay, then
a) H(X,0x (£ —1-4)) =0 for all i > 0;
b) Hy(X,0x(d—€—1)) =0 for alli <d.
Suppose, moreover that A is Cohen-Macaulay. Then
a’) H{(X,0x(£+a—1)) =0 for all i > 0;
b)) Hp(X,0x(d—€+1—1)) =0 for alli < d.
Outline of the proof. By taking r = 1 in Theorem 3.4 we immediately see that a)

" holds. Taking into account Lemma 3.6 also b) follows. To prove a’) we first observe

that the Cohen-Macaulayness of R4(I) now implies that of the form ring G 4(I).
Let 9 denote the maximal homogeneous ideal of R4(I). Then [Hi(Ga(I))]n =
0forall i > 0and n > a. Set Y = ProjGa(I). By Proposition 3.3 we get
Hi(Y,Oy(n)) = 0 for all i > 0 and n > a. By standard arguments this further
gives Hi(X,Ox(n)) = 0 for all i > 0 and n > a. Thus a’) follows. Finally, a look

~ at the Sancho de Salas sequence

.. — Hi(A) — Hp(X,0x) — [H;;;‘(RA(I))]O —
([11, p. 150]) shows that H5(X,Ox) = 0 for i < d. This implies b’). O

For ideals whose product has analytic spread two, we have the following result:

;Theorem 3.8. Let A be a local ring, and let I,,...,I, C A be ideals of positive

grade such that £(Iy -+ I.) < 2. Then Ra(l1,...,I,) is Cohen-Macaulay if and only
if Ra(Iy - --I,) is Cohen-Macaulay and (I, ---I;,) : Ij, = Iy - .- I;y_ Iy, -+ I, for
all<ji < <jr<randl1<Il<k.

Outline of the proof. 1t is a general fact that if I1,..., I, C A are ideals of positive
grade, then

Q) [(Z,0z(n—m)) =T(Z,0(n)) rz,0,) (" - 17")

for all n > m > 0. This fact together with Theorem 3.4 now easily implies that
the conditions of the theorem are necessary.

Let us prove that they are also sufficient. Since R4(I; - - - I,) is Cohen-Macaulay
and ProjRs(I,---I,) & Z, Lemma 3.5 together with Lemma 3.7 implies that
Hi(Z,0z(n)) =0 for all i > 0 and n > 0. Moreover, since I'(Z,0z(1)) = I, - - - I,
we get T'(Z,0z(n)) = I --- I™ for all n > 1. By (}) one now checks that this in
fact holds for ail n > 0. Finally, set E = Z x 4 A/m. By applying again Lemma 3.7
and Lemma 3.5 we see that H(Z,0z(n)) =0 for all i < d and n < 0. The claim
then follows from Theorem 3.4. O

Example 3.1. In general R4(I,J) need not to be Cohen-Macaulay even if it is
normal and R4(IJ) is Cohen-Macaulay. By [6, Example 3.6] it is possible to find a
three-dimensional regular local ring A and an ideal I C A such that R4(lo) does
not have rational singularities although it is normal and Cohen-Macaulay. We can
also find an ideal an ideal J, C A such that Y = Proj R4(Jp) is regular and that
IOy is invertible. Then Proj R4 (Io, Jo) = Proj Ra(IoJo) = Y is normal. It is not
difficult to see that this implies IZJ¢ = IZJg for p,q > 0. Take I = I)¥ and J = J§"
where N > 0. Then R4(I,J) is normal. Moreover, it still holds that R4(I) does
not have rational singularities (use e.g. [8, Proposition 2.1]). Now R4(I,J) is not
Cohen-Macaulay. To see this, consider the blowup Z = Proj Rg,(1)(JRa(I)). By
looking at the affine open sets which cover Z, one easily checks that Z = V(IOy).




In particular, Z is regular. The Cohen-Macaulayness of R4(I, J) would then by [11,
Theorem 4.1] imply that R4(I) has rational singularities. Finally note that since A
has rational singularities, by using [11, Theorem 4.1] again we may choose N > 0
in such a way that R4(IJ) is Cohen-Macaulay.

J. Verma showed in [12, Theorem 3.4] that in a two-dimensional regular local ring
integrally closed ideals primary to the maximal ideal always have Cohen-Macaulay
multi-Rees algebras. This can be generalized as follows:

Corollary 3.9. Let A be a Cohen-Macaulay local ring which satisfies the condition
(R2). Let I,...,I. C A be integrally closed equimultiple ideals of height two such
that also I, --- I, is equimultiple of height two. Then R4(I,...,I,) is Cohen-
Macaulay if and only if A/I; --- I, is Cohen-Macaulay

With the preceeding techniques one can handle the case of analytic spread three,
too. For details we refer again to [5].

Theorem 3.10. Let A .be a Cohen-Macaulay local ring of dimension d, and let
I,J C A be ideals of positive height such that £(IJ) = 3. Let 0 and N denote the
homogeneous mazimal ideals of R4(I) and R4(J) respectively. Then Ra(I,J) is
Cohen-Macaulay if end only if the following conditions are satisfied
1) R4(1J) is Cohen-Macaulay;
2)I?J*:I1=1J? and I?J? : J = I?J;
3) [Hizx(JRA(I))]o = 0 and [Hy{(IRA(J))]o = 0 for alli < d + 1.

We also have the following result concerning rational singularities of R4 (I, J):

Theorem 3.11. Let A be an excellent local ring of equicharacteristic zero. Let
I,J C A be ideals of positive height such that €(IJ) = 3. If Ra(I), Ra(J) and
RA(1J) have rational singularities, then so does R4(I,J).

Outline of the proof. Since Z = Proj R 4(IJ) has rational singularities, it is enough
to show that H(Z,0z(p,q)) = 0 for all i > 0 and p,¢ > 0. Indeed, then
also W = Proj Rs(S*) = V(0z(1,0) ® Oz(0,1)) has rational singularities. But
H(W,0w) = @, .50 H'(2,02z(p,q)))- Since R4(IJ) has rational singularities,
we have H(Z,0z(n,n)) =0 foralli > 0 and n > 0 (s. [8, Proposition 2.3]). By
Lemma 3.5 we now get H(Z, Oz(p,q)) = 0 for alli > 0 and p,q > 2—i. It remains
to prove that H'(Z,0z(p,0)) = 0 and H'(Z,0z(0,q)) = 0 for all p,q > 0. But
this is clear, since R4(I) and R4(J) have rational singularities. ]

When the product IJ has a small reduction number, we need not to assume
anything about the analytic spread £(1J):

Theorem 3.12. Let (A, m) be a Cohen-Macaulay local ring of positive dimension,
and let I,J C A be m-primary ideals such that 7(IJ) < 1. Then Ru(I,J) is
Cohen-Macaulay if and only if IJ : I =J and IJ : J = 1.

Example 3.2. Let k be a field. Let 4 = k[z,1 12)(z,y,2) Where z,y,z are vari-
ables. Take I = (z?,y,2)A4 and J = m, where m = (z,y,2) is the maximal ideal
of A. Then I and J are normal ideals. Moreover, IJ = (z%,3?, 22, zy, £z, yz) has
a minimal reduction (23 + y? + 22, zy,zz + yz), and one checks that r(IJ) = 1.
Therefore R4(I, J) is Cohen-Macaulay. One easily sees here that R4 (J)/IR4(J) =
k[U,V,W]/(z?,zV,zW) where U,V and W be variables. It is then not diffi-
cult to check that if 9 denotes the homogeneous maximal ideal of R4(J), then
[Hin(Ra(J)/IRA(J))]n # 0 for all n < 0.



4. AN APPICATION TO JOINT REDUCTIONS

Joint reductions were introduced by D. Rees. Let us first recall the definition
from [10, p. 218). Let q € N". A set {a;; € [;|i=1,...,7;5=1,...,¢;} is called
a joint reduction of I, ..., I, of type q if

™
I I = (@i, @ig )M I T I I
i=1
for all n > 0. It is known that if 4 has an infinite residue field, then joint reductions
always exist when |q| > £(I; --- I;)

Theorem 4.1. Let A be a local ring, and let I, ..., I, be ideals of positive height.
Let {a;; |t =1,...,7;5 =1,...,q;} be a joint reduction of I,..., I, of type q. If
R4(L,..., 1) is Cohen-Macaulay, then .

r
ny e _ . ny i1 ni—lyniv1 | gn
I —E (CESTRIPIN- T ¥ LD HAPRy ey I
i=1

for alln > q.
Outline of the proof. Since
Sn = (al,ltl, ... >al,q1tl)s -1 +--+ IQT,ltr; LR )ar,q..tr)sn—l,-

for n >> 0, we observe that the elements a; jt; induce an epimorphism o: F — O3z
where F = @]_, Oz(—1:)®%. It follows that the corresponding Koszul complex

K(F,o): ANlF . S NFNIF—s... 5F—0;

is exact. By Theorem 3.4 H*(Z,Oz(n)) = 0 for all i > 0 and and n > 0. Moreover,
we have I'(Z, Oz(n)) = Sy, for all n > 0. Chasing the complex K (F,0)®Oz(n) now
yields an epimorphism I'(Z, (n)) — I'(Z, O(n)), which implies the claim. O

Note that in the case r = 1 this recovers the well-known result of Johnston and
Katz in [9] saying that the Cohen-Macaulayness of a Rees algebra R4(I) implies
that the reduction number 7;(I) < ¢(I) —1 for any ¢(I)-generated reduction J C I.

5. THE GORENSTEIN PROPERTY OF A MULTI-REES ALGEBRA

Proposition 5.1. Suppose that A is a homomorphic z'niage of a Gorenstein local
ring. Then the canonical module

ws = P T(2,wz(n)).
n>1
Outline of the proof. Recall first from [3, Lemma 2.1] that [Hg"(S)]a = 0 if some
n; > 0. By Remark 3.1 we then get Hyt"(S) = @, HE(Z,0z(n)). The claim

now follows by taking Matlis-duals, because by the local-global duality of Lipman
(11, p. 188]) HE(Z,0z(n)) = Hom4(T'(Z,wz(~n)), Ea(k)). O

Theorem 5.2. Let A be a local ring, and let I),...,I, C A be ideals of positive
height. If Ra(Ih,...,I,) is Cohen-Macaulay, then Ra(Ly,...,I.) is Gorenstein if-
and only if Ra(lh -+ - I,) is Gorenstein.



Outline of the proof. We may assume that A is complete. Set R = R4(I;---I,.).
Note that by Proposition 5.1 wg = (ws)®. In particular, when ws = S(—1), this
means that wg = R(—1). The Gorensteiness of S therefore implies that of R.
Conversely, suppose that wg = R(—1). Then, for any n > 1,

I(Z,wz(n)) = Hom  (I7™™ --- I'"" [(Z,wz(n,...,n))) (cp. [4, Theorem 2.2.])
=Hom4(I7™™ ---I'"™ I(2,0z(n - 1,...,n - 1)))
=TI(Z,0z(n-1))

where n = max{ny,...,n,}. Because I'(Z,0z(n — 1)) = Sh_1 by Theorem 3.4,

the claim follows.
O
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THE COEFFICIENT IDEAL AND THE CANONICAL MODULE
OF A REES ALGEBRA

EERO IIYRY

NATIONAL DEFENCE COLLEGE

1. INTRODUCTION

Let (A, m) be a local ring of dimension d having an infinite residue field, and
let I C A be an ideal of positive height h and analytic spread £. Let J C I an
“ideal. The coefficient ideal of I relative to J, denoted by a(I,J), is by definition
the largest ideal a C A such that Ja = Ja. It is easy to see that the coefficient
ideal always exists. Also note that if a(J,J) contains a non zero-divisor, then
an application of the ‘determinant trick’ shows that necessarily T = J i.e. J is
a reduction of I. This notion was introduced by Aberbach and Huneke in their
article [1] where they proved a new Briangon-Skoda type theorem. Their theorem,
called a Briangon-Skoda theorem with coefficients, states that if (4, m) is a regular
local ring containing a field and I C A is an m-primary ideal, then I"+4-1 C
a(I,J)J" ([1, Theorem 2.7]) for all minimal reductions J C I and all integers n > 0.
In their article Aberbach and Huneke raise the question whether the coefficient
ideal a(I, J) might be independent of the minimal reduction J C I. It is shown
in [5, Theorem 3.4] that the answer is positive if the Rees algebra R (I) is Cohen-
Macaulay. It also comes out that the coefficient ideal is closely related to the
canonical module wpg, (). The purpose of the present lecture is to outline the proof
of this result and discuss some of its corollaries (see Theorem 3.1 and Corollaries 3.2
and 3.3 below). For more details, we refer to [5].

Our approach has been influenced by the article [11] of Lipman. Assuming that
A is a regular local ring essentially of finite type over a field of characteristic zero, he
showed that I"+¢-1 C adj(I*~!)J™ where adj(I*~") denotes the adjoint ideal of I*~!
(see [11, p. 745 and p. 747]). The adjoint adj(I*~!) can be defined as ['(Y, I*"'wy)
where wy denotes the canonical sheaf of Y and Y — Spec 4 is any desingulariza-
tion such that 7Oy is invertible. The A-module I'(Y, I*~'wy) is considered here as
an ideal of A by means of the trace homomorphism I'(Y,wy) — w4 = A. One has
adj(I*~) C a(I, J). Moreover, when d = 2 and I is an integrally closed m-primary
ideal, Lipman proved in [11, Proposition 3.3] that a(I,J) = adj(I) = J : I. Note in
particular that in this case the Rees algebra R 4(I) is always known to have rational
singularities (use [9, Proposition 1.2] and [6, Proposition 2.1]).

In the following all rings and schemes are assumed to be Noetherian. We set
R=R,(I) and X = Proj Ra(I). The maximal homogeneous ideal of R is denoted
by 2.




2. PRELIMINARIES ON THE CANONICAL MODULE OF A REES ALGEBRA.

The purpose of this section is to recall some known properties of the canonical
module of a Rees algebra needed in the sequel. This topic has been investigated
by several authors (see e.g. [4], [2],[7] and [14]). Here we want to emphasize in
particular the connection of the canonical module to the canonical sheaf of the
corresponding projective scheme.

Suppose from now on that A is a homomorphic image of a Gorenstein local
ring. By definition the canonical sheaf wy = H~(RY%) where R% is the dualizing
complex of X. We have Ry = f’(ﬁf‘) where f: X — Spec A is the canonical
projection and R% is a normalized dualizing complex of A. The canonical sheaf
wx is defined up to an isomorphism. By the general theory of duality we get a
trace morphism RI'(X,R%) — R (see [3, Chapter VII, Corollary 3.4]). Taking
cohomology gives a trace homomorphism I'(X,wx) — w4. This is injective. In
the following we shall always consider I'(X,wx) as a submodule of w4 by means of
this homomorphism. The trace homomorphism corresponds to the canonical ho-
momorphism Hé(A) — HE(X,Ox) where E = X x4 A/m, via the isomorphisms

Hom4(T(X,wx), Ba(k)) = H§(X,0x) and Homyu(wa, E4(k)) = Hn(4)
(see [12, the proof of Lemma 4.2] or [13, p. 110]). The canonical sheaf equals to the
associated sheaf of the canonical module wgr. However, even the following is true:
Proposition 2.1. As a graded R-module wg = @I‘(X, I'wy).

n>1
Outline of the proof. Consider the Sancho de Salas sequence
... — HA(R) — HE(X,0x(n)) — [Hg (R)]n — 0.

This implies that [Hg ' (R)]n = HE(X,Ox(n)) for all n < 0. Taking the Matlis-
duals and using the isomorphism Hg (X, Ox(n)) = Hom(T(X,wx (—n)), Ea(k)),
now gives [wgr], = ['(X,wx(n)) = I'(X, "wx)) for all n > 0. Because [wg], = 0
for n < 0 by [2, Part I, 6.3], the claim follows.
Remark 2.1. We list here some facts which will be used later (for the proofs, see [5]):
1) I'(X,wx) D I'(X, Iwx) D F(X,I2wx) D...;
2) I'(X, I"wx) = Hom (I, T(X, I"twx)) for all n > 0;
3) Set G = G4(I). Recall that the a-invariant a(G) = sup{n € Z | [H%;(S)]» # 0}.
When A is Cohen-Macaulay, there exists a monomorphism
0 — P (X, I"'wx) /T (X, "'wx) — wa
n>1
which is an isomorphism if R is Cohen-Macaulay. In the case a(G) < 0, this gives
wa =D(X,wx) = (X, Jwx) = -+ = T(X, 177 wy)
so that I"+e(@)+1y,, c (X, I"wy) for n > 0.

Let J C I be any reduction, and let 7 > 0 be any integer such that I"t! = JI".
Set Y = ProjR4(J). We now have a finite morphism 7: X — Y, which can
be utilized to express wx in terms of wy. Indeed, given a canonical sheaf wyx,



we know that there exists an isomorphism m,wx = Homy (7.Ox,wy). Note that
m.Ox = I"Oy(—r). Taking into account the commutative diagram

N'X,wx) _)trace wa

Zl Ttrace

Homy (7,0x,wy) —— Homy(Oy,wy) = ['(Y,wy)
(see [3, Chapter III, Theorem 10.5]), one can now check that the following holds:

Proposition 2.2. Let wx be a fized canonical sheaf of X. Then
(X, "wx) =T, J""wy) 1, I"
for all n > 0 as submodules of wa.

Finally, we need information about the generating degrees of wg. It is then
important to observe that from a certain degree on elements of wg can be expressed
as linear combinations of the generators in such a way that the coefficients lie in
the subring R4(J) C R. This is based on a version of the Castelnuovo-Mumford
lemma. Its proof is analogous to that of [13, Lemma 5.1].

Lemma 2.3. LetY be a scheme, and let L be an invertible sheaf onY generated by
finitely many global sections si,...,5; € T'(X,L): Let F be a coherent sheaf onY.
Letm e Z. If H(Y,F ® L™ %) =0 for all i > 0, then the induced homomorphism
I'(X,F ® LM)® — I'(X, F @ L™!) is surjective for n > m.

Proposition 2.4. Suppose that R is Cohen-Macaulay. If depthA/I™ >d—m—n
forn =1,...,8 ~m—1, then I'X,I"'wx) = JI(X, ["wx) for all reductions
J C I and all integers n > m.

Outline of the proof. Observe first that we have JOx = IOx. Generators of J
therefore determine global sections which generate /Oy. By Lemma 2.3 we then
_only need to show that Hi(X,wx(m —4)) = 0 for i > 0. Recall that by the
local-global duality of Lipman ([10, p. 188])

Hom 4 (H'(X,wx (m — i), Ea(k)) = Hy (X, Ox(i — m))
where E = X x4 A/m. The proof can now be completed using the the Sancho de
Salas sequence
oo = [HE (R))imn — HE(Rizm) — HE(X,0x(i —m)) — ...
(see (12, p. 150]). O

3. THE MAIN RESULT

Let A be a local ring. Recall that an ideal I C A is said to satisfy the condition
Gy if u(I,) < htp for every p € V(I) with htp < k — 1.

Theorem 3.1. Let (A, m) be a Gorenstein local ring of dimension d. Let I C A
be an ideal with positive height h and analytic spread €. Suppose that I satisfies
G, and that depthA/I" > d—h—-n+1 forn =1,...,6 — h. If R is Cohen-
Macaulay, then a(I,J) = T'(X,I" 'wx) as ideals of A for all minimal reductions
J C I. In particular, a(I, J) is independent of the minimal reduction J. Moreover,
a(I,J) = J" : I" where v = r3(I). In the case r < £ — h + 1, we even have
al,Jy=J:I=--.=Jr—1:.17.



Outline of the proof. We sketch here the proof of the first part of the theorem. It
follows from Proposition 2.4 that T'(X, I"wx) = JT(X, " wyx) = IT(X, I*'wy).
Thus (X, I*'wx) C a(I,J). It remains to prove that a(I,J) C T'(X, " lwy).
Since Ia(I,J) = Ja(I,J), we also have I"a(I,J) = J"a(I,J). So a(I,J) C J" - I".
Because of [8, Theorem 2.2 and Remark 2.7] we may apply [8, Lemma 2.3 b)] to
find a generating sequence a, .. .,a, of J which is a d-sequence. According to [15,
p. 33] this implies that a(G4(J)) < —h. Set Y = Proj R4(J). We now obtain from
Remark 2.1 3) that J" C I'(Y, J*~*7wy). But then Proposition 2.2 implies that
a(I,J) C J™: I" CT(Y, JF=1+7wy) : I = T(X, I*lwy). m]

We now show that the canonical module is completely determined by the coef-
ficient ideal.

Corollary 3.2. Let (A,m) be a Gorenstein local ring of dimension d. Let I C A
be an ideal with positive height h and analytic spread €. Suppose that I satisfies G,
and that depth A/I" > d—h—n+1forn=1,...,¢—h. If R is Cohen-Macaulay,
then

h—2
wr=@PL)): " Me P M),
n=1 n>max{h—1,1} '

Outline of the proof. By Theorem 3.1 we have I'(X, I"'wy) = a(I, J). Therefore
Proposition 2.4 implies that I'(X, I"wx) = I*~"*1q(I,J) for all n > h— 1. On the
other hand, according to Remark 2.1 2) we have I'(X, I"wx) = a(I, J) : I*"1-" for
n < h — 1. The claim then follows from Proposition 2.1.

O

Let A be a Gorenstein local domain essentially of finite type over a field of char-
acteristic zero. Given an ideal I C A, the adjoint ideal of I, denoted by adj([), is
defined as adj(I) = I'(Y, Jwy) where Y — Spec A is any proper birational mor-
phism such that Y has rational singularities and that IOy is invertible. When A is
regular, this definition coincides with the one given in [11, p. 140] (see [11, Proposi-
tion 1.3.1]). The result of Lipman mentioned in the introduction ([11, Proposition
3.3]) can now be generalized as follows:

Corollary 3.3. Let (A,m) be a Gorenstein local domain essentially of finite type
over a field of characteristic zero and let I C A be an equimultiple ideal of height h.
If R is normal and Cohen-Macaulay, then R has rational singularities if and only
if a(I,J) = adj(I*~!) for some (and then also for all) minimal reductions J C I.

Outline of the proof. Since R is normal and Cohen-Macaulay, it has rational sin-
gularities if and only if X has rational singularities (see e.g. [6, Proposition 2.1]).
Let f: Y — X be a desingularization. By definition X has rational singularities
if and only if fiwy = wx. Since I'(X, fuwy (n)) = [(Y,I"wy) for all n > 0, this
is the case if and only if adj(I™) = I'(X, I"wx) for n 3> 0. Observe here that the
trace-homomorphism f,wy — wx induces an inclusion adj(I") c T'(X, I"wy).
By Remark 2.1 2) we have Hom4(I,T'(X,I"wx)) = T(X,I" lwx). Similarly,
Hom4(I,T(Y,I"wy)) = (Y, I"'wy). It follows that if R has rational singu-
larities, then necessarily adj(I™) = T'(X, I"wx) for all n > 0. By Theorem 3.1 we
then get a(I, J) = adj(I*~') for any minimal reduction J C I. Conversely, suppose
that a(,J) = adj(I"~") for some minimal reduction J C I." By [11, p. 745 and
p. 747] we know that adj(I") = I"~*+! adj(I*~!) for n > h — 1. On the other



hand, using Proposition 2.4 we have I'(X, I"wx) = I"~"*1a(1,J) for n > h — 1.
Hence I'(X, I"wx) = adj(I") for n > h—1 which means that X and so also R have
rational singularities. O

In this context we also want to recall the following result (see [6, Theorem 3.2])

Theorem 3.4. Let A be a regular local ring of dimension d essentially of finite
type over a field of characteristic zero. Let I C A be a normal m-primary ideal such
that r(I) < 1. Then R4(I) has rational singularities if and only if adj 192 = 4,
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Good ideals in idealizations

Satoshi HARAIKAWA

Z OB IIHHEEER A DHIFED FIZiThbNizbDTH 5. Gorenstein HFTER (4, m) W
D ideal I 13, zbé#ﬁ%&k n IR U TER ™! = QI™ 17z 9 K 5 7% parameter ideal Q
Z& Y m-primary ideal TdH % LIRE T %. Ideal I DREFEREIR @,501™ /1™ 4% Gorentein
BTHoTEZDaAEEN]I —dmATHELENIEBGEHBTTHR, ZDideal IDT L%
ARD good ideal TH 2 EIELR. HTF#X [GIW] IZRT, good ideals DEREF A R
NODB B, TO—HE, [GIW] NI H s ikt o 7= BAHI O ORMIZ T 2128
HLUT, B&ITHDIZWERS, ST, RADKITN0OTHS Z EERETNIE, A Dideal
I good THDEWD LY, ROFHTEEIMA SND I EN—RICHENATNS.

Proposition. dimA=0TH» 5 ELRET L. KD IFHIFEVIZFEETH 3.

(].) 1€ Xy
2)I= (0),:41'
(3) I = (0) TH>T, B2 La(I) = %BA(A) MRS B,

T ZTHIE (Rn) % Artin BFTBRE L, E = Ex(R/n) & R OERKE R/n DARNAE
L7zF, ED R ETOAT7IMEE L THESNS 0 KT Gorenstein HFTR A = Rx E IZxt
L, ] AN good ideals DREMTEEITLTHEVWERS. flXiTideal (0)x EC A
ZR5I1Z, LORMBIZXD, ZDideal (0) x E A AND good ideal TH 2 Z LMD 5
had. DM, ideal I C ARDWT, IBERINR = (0) AT AND good ideal
THBILE, DHERARUELTOADHCRBH EZMD I =€((0) x E) E&Eh5



ZENAETH D, END T EMFSNTNS. T I T, Fhld A ND good ideals IZDWNT,
ROWEZTFHREENT, COWMEEMIBLEZ. TOFHET, ANOD good ideals DESE X,y
IZDOWTER

X4 = {g(a X L)l a C R: ideal, a>=(0), L= (O)Eu, €€ AutR_algA}

MBI L TWBDTIERWD, ENWS T ETHD.

LAL, EEITIZ Z ORkICET Z EAMHL W good ideals bEE S FET B T LK
MO LN, TOHRICADENS, £, —RRIK7E AND good ideal DHFIEEHE 2B XT
<.

Theorem. I 8 A D ideal & THUE, I DS ARD good ideal THB T L&, LLTITRNS 4
Strewied, %X a2 = (0)MRILTB RO T 7 ) a & R/a-#RTEE& h - (0) ;0= R/a
D (a, ) WEET D EIF, EWIZFAETHS. TO&EMHLEIR

() FEED z,y € L KR LER h(z)h(y) = 0, h(z)y + h(y)z = 0 DR D ILD.
(ii) a,b € RMa, b€ h(L) H7=T7/25E, ab=0TH 5.
(iii)a € RAa € h(L) &HETRS, £EDz € EIXXMULT az € L THoTEK
h(az) = 0 2SR D ILD.
(iv) I={(a,5) |a€ R, z€ L s/ta=h(x)}.

TH5. ZIZT,ac RIZAMLUT @idmod a TD reduction (amod a ) ZKY. BBID
EE ZOXS7M (0, h) 31 FTV L THE—BDICEED, Bica=INR &35,

4 Artin BT RINT o® = (0) THBH/L ideal a ZIND, Ti& h & L TRERERN
i, 25 O (a,h) BEFEOSRME: (),(i), (i) Z2HZL, & (iv) DM<ETR A KD good
ideal ] Z3RWB &, BIIT =ax L E72BDT, ideal a x L3 A D good ideal THY, ft>
T, EED € € Autg_gy AL TE(ax L) 1IZ ARND good ideal TH 5.



COEEERMAT, UTFICED S Artin BFTE (R, n) kot L TARNA E = Eg(R/n) &
3K, KITL0 D Gorenstetin FATER A = RxE WX LT, B A A good ideals 22 TIRE
LESERES HIB kZ2heEl, B in>3LL0T

Re_ FXY]
T (XY XY)

ETB. =X mod (X", Y",XY),y=Y mod (X",Y", XY) EBL. a=2"1,8=
vyl ZBROBE {1,z |1 <i,j<n—1} DWHEEETNIE = Ra+ RETH D

ZENDONS.

EEIZE T, B AND good ideal ZHFTITIE, £7, H a® = (0) A2 T R D ideal
aZHRTZENRELIRD. TOHAZ RDideal a &, TDideal a XML TL := (0);a %
Z2TRODEUTOMEEH T EAUKS.

a | (mn—r) (yn—s) (zn—r’yn—s) (xn—r + )\yn—s)
L| Rs'a+RB Ra+Ry’S Rra+Ry'S R (y -

BL,0<rs< -2’3 0£ A€k &ETD. O HIET 2 R/aMEERE: L — R/a &K
DBIIIROBREZ LZFREL Y. A, MEAREETn=3a= () &T5. 75
L L=Rza+RBTH>T, 20O LITKDEBREHED.

s
-2 0 z 2 [za ﬁ]L

R3

[7 4]
R/a

e, T Lo Rjazknz e [ g | 2, Y )| pooeanyae
[7 9] : R = R/a(f,g € R) KB LERAMTHD, BROBRA00 0] THB LW
SHEME [ E gtk o TRIIET ZENTE S, BIZ, Bl h BEMORKD &2
IRl fLgDEETEEHTIENTES. ZoMIZBNT, EERIZER b 2RD
% &, Tt h € Homp, (L, R/a) W char k £ 27251, h=00DBTH>T, L char k =2

moiEcek EMY h(za) =0, h(f) = af &35,



ZORRIZLUT, BRDideal aiITXH LT, 5 h 2K, WA = R x EMNOD good ideals
EERICTIE TROKENESND. £ 9 chark #£#2DEER

a IeX, Ca=INRZEHT
(z"T) R-(ay" ', 17a) + R-(—az™ "1, B) + ax(0)
n>2r+2 (a €k)
(z™) (z"") x (Rz"a+ RP)
n<2r+2
W) R-(-ay"~*"!,a) + R:(az""", y°B) + ax(0)
n>2s+2 ‘ (a€k)
") (y"~*) x (Ra + Ry*p)
n<2s+2
(=", y"°) R-(ay™*"!,27a) + R-(—az""", y°f) + ax(0)
n>2r+2andn>2s+2 (a€ek)
(xn'——r’ yn—s) (xn—r, yn~s) X (era + Rysﬁ)
n<2r+2orn<2s+2
(mn—r + /\yn—s) (xn—r + )\yn—s) X R~(y"l,3 _ )\xr—la)
0#£Xek




THo>T,blchark=2TH3RE56E

a IeX, Ta=INREWMEZT
(z™T) R (ay"‘1 + T bhrhra
‘ F<isn-r-1
+R- | —az" "1+ ¥ oyt B| +ax(0)
5<i<n-1
n>2r+2 (a,bs,¢c; € k)
(z"") R-(0,z"a)+ R: ( > ciyi,ﬁ) + ax(0)
2<i<n—1
n<2r+2 (c; € k)
S Y P
F<i<n—1
+R: (—ax"‘l + X ciyi,ysﬂ) + ax(0)
. 3<ikn—s-1
n>2r+2 (a,b;,¢c; € k)
(y"*) R- ( > b,'z",a) + R-(0,3°8) + ax(0)
2<i<n—1
n<2s+2 (b; € k)
(zn—r’yn—s) R (ayn——s‘l + z bifl,‘i, zra)
. F<isn—r-1
+R- (—a:::""‘1 + X ciyi,y’ﬂ) + ax(0)
3<i<n—s-1
n>2r+2
and (a,b;,¢c; € k)
n>2s+2
(i) R ( pD biz",z’a) +R ( )> ciy",y"ﬂ) +ax(0)
F<i<n—-r-1 2<i<n—s-1
otherwise (bi,ci € k)
@ +0) | R ( S ezt T byhyB- Ax“la) +ax(0)
‘ 2<i<n-r s<i<n-s
0#A€k (ai, b; € k)




E73%. BiZn =3, char k # 2 TN, TORBRITIES.

a IeXys Ca=INRZEMWZY
(0) R-(ay?, a) + R-(—az?,B) (a € k)
(z?) (z?) x (Rza + RP)

(v?) (v*) x (Ra + Ryp)
(=*,9%) (z%,4°) x (Rza + Ryp)
(z® + Xy?) (#% + Xy?) X R-(8 — Aa)
0#£X€k

ZOREDFTIE, XTS5 R D ideal a ¥ (0) TRWAESIE, TR AN good ideal 3%
Tax LEWIEEL, —FHTa= (0725, BAMND good ideal I = R-(ay?, @) +
R-(—az% B) (a € k)13, £ € Autp_uy A%

€(a,ma+T1f) = (a +ray® + Tz(—(wQ), ra+ Tzﬂ)

EEDNE, HRX T =¢((0) x E) BRILTS. RiZn=3, char k=2 &THE

a IEXATG=IORE‘?%TCT 0eHg
(0) R-(ay? + b2?, @) + R-(—az?® + cy?, ) 6(c) = ay? + bz?
(a,b,c € k) 0(B8) = —az? + cy?
(z?) R-(0,za) + R-(cy?, B) + (z?)x(0) 6(a)=0
(cek) 8(8) = cy?
(v*) R-(bz? a) + R-(0,yB) + (v*)x(0) 0(a) = bz’
(bek) (8) =0
(= %) (z%,9%) x (Rza + Ryp)
(2 + 2y?) R-(z% 4+ by?, B — Aa) + (2% + My?) x(0) 6(a) = (=A)"1z?
0#X€k (bek) 0(6) = by?

ZDERTHEIFNBOES He 3 a=(0) ELERKOEHOLEM (i) £#M=3 Homp(E, R) D
RERIMBEEL, FEDITTOI € Hp IR U T & € Autp_ay A % £(a,2) := (a+0(2), 2)
EEDNE, BRI = £(a x L) BEOID. flxida = @) KEALTAED. §
5L, %X INR = (¢) ZWMTLI7E AND good ideal 113, Tec € k EMWM>T
I = R(0,za) + R-(cy?, B) + (z2) x (0) DMK ETZENTESD. TIT, 540%
0(c) =0,008) =P L TEED Hg DILEL, TL T &HE Autp g, A BB &, £K
DT (a,2) € ARMUT 2z =ria+ 18 EBLKEE(a, 2) = (a+o(cy?),2) TH T, B



SR T = ¢ (a x L) BRILT 5.
> Tn=3THNE, thk OEEICEFE <, BOOTENEL NI ENbM D,
LIAL7EAE5 n = 4, char k = 2 DIREI BT a = (2°) KT S AFO good ideal
1% |
I = R-(y* + 2% za) + R-(—2?, B) + (z°) x (0)

EEDNUE, U725 € € Autp_ay A I L THERT = ¢(ax L) BRI TBZ LAY
B2, DED, TDgood ideal I IO LFDOFHORFD 1 DTH 5.

SE 3k

[GIW] S. Goto, S. Iai, and K.-i. Watanabe, Good ideals in Gorenstein local rings,
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BUCHSBAUMNESS OF THE REES ALGEBRAS OF m-PRIMARY
IDEALS WHOSE REDUCTION NUMBERS ARE AT MOST ONE

KIKUMICHI YAMAGISHI

1. INTRODUCTION

The aim of this note is to investigate the conditions for blowing-up rings, especially the
Rees algebras R(a) := @D, 50" of m-primary ideals a, to be Buchsbaum. In particular,
we shall mainly discuss the case where the reduction numbers of such m-primary ideals are
at most one. }

Throughout this note, let (4,m) be a Buchsbaum ring of dimension d > 0 and a an
m-primary ideal of A. We always assume that the residue field A/m is infinite.

In 1998, Y. Nakamura [N] gave us the equivalent condition for the associated graded
rings of m-primary ideals, whose reduction numbers are at most one, to be Buchsbaum.
Recently the author proved the same argument without any hypotheses about the reduction
numbers of m-primary ideals [Ya).

Concerning the Buchsbaumness of Rees algebras, however, we have already known a
quite few works. In 1985, J. Stiickrad [St] proved that for any parameter ideal q of A
the Rees algebra R(q) is Buchsbaum too. Moreover, in 1999, S. Goto [G2] brought us an
epoch-making work. Namely, he introcduced a new notion, called an m-primary ideal of
minimal multiplicity, and studied the structures of Rees algebras associated to such ideals
of minimal multiplicity.

On the other hand, in January 1997, Nakamura (see Corollary 2 below) tackled with
this theme and proved a partial generalization of the Stiickrad’s theorem in the case where
the dimension of given Buchsbaum rings are very small. :

Now we shall state our main result as follows.

Theorem 1. Suppose that, for some minimal reduction q of a, the following three condi-
tions are satisfied:

(i). a2 = qa holds;

(ii) writing q = (a1, az,...,aq) the equality

(a2,a%,... ,a2)Na™ = (a?,a3,... ,a2)a™ 2

holds for3<n <d+1; and
(iii) a has minimal multiplicity, i.e., ma C q holds.
Then R(a)+ = P, 0" is a Buchsbaum R(a)-module. Moreover, the Rees algebra R(a)
is a Buchsbaum ring if d > 2.

We mention that our reslut is a generalization of the Stiickrad’s theorem, hence the
Nakamura’s result below.



Corollary 2 (Nakamura). Suppose that, for some minimal reduction q = (a1, az, ... ,aq)
of a, the following four conditions are satisfied:

(i) a2 = qa holds;

(ii) a2 Z?:l [(a1,...,85,... ,aq) : a;] holds;

(i) a has minimal multiplicity; and

(iv) 2<d<4.
Then the Rees algebra R(a) is a Buchsbaum ring too.

Further consequences of our Theorem 1 are stated as follows:
Corollary 3. Let A be a Buchsbaum ring of marimal embedding dimension. Then the
Rees algebra R(m) is a Buchsbaum ring. Moreover R(m); and R(m)>2 := @, 5, m" are
Buchsbaum modules over R(m) too.

Applying the similar arguments on Buchsbaum modules we also have the following

corollary concerning linear mazimal Buchsbaum modules, which were introduced by K.
Yoshida [Yo]. Namely

Corollary 4. Let E be a linear mazimal Buchsbaum A-module. Then both Ry (E) and
Rm(E)+ are Buchsbaum modules over R(m).

Remark 5. In the case where dim A = 1, unfortunately, the last part of Theorem 1 is
not necessarily true in general. Namely, there exist counterexamples such that the Rees
algebras R(a) are not Buchsbaum rings, even though R(a); are Buchsbaum modules.

2. QUASI-BUCHSBAUMNESS OF R(a)

Throughout this note, let us keep the notation as follows:

R:= @, 59", the Rees algebra of a;

Ry = @:1)0 a™, the homogeneous ideal of positive degree of R;
G :=@,>,0"/a™*!, the associated graded ring of a;
2M:=mR + R, the unique homogeneous maximal ideal of R.

When we are setting a = (ai,as,...,a,) the Rees algebra R is usually regarded as the
A-subalgebra of the polynomial ring A[t], where ¢ is an indeterminate over A;

R = Alait,azt, ... ,aut].

¢From now on, let us assume that, for some minimal reduction q := (a1, as,... ,aq) of

a, the following three condition are satisfied:
(i) a% = qa holds;
(ii) the equality
(a%,a3,...,a2)Na" = (a?,a2,... ,a2)a" 2
holdsfor3<n<d+1,

(iii) a has minimal multiplicity, i.e., ma C q holds.

Then we begin with the following.



Lemma 6. One has the following statements.
1)
[HR(R+)]n =

{ anNHY (4) (n=1)
(0) (else);

and Hy(R4) = (0). Therefore Ry is a Buchsbaum R-module for d = 1.

(2) A
[ HR(G)-1  (n=0)
ik ={ o (else)
(3) For each3 <1 <d, .
H'(4)  (ne[3-1,0)
HyR)w={ Hy (Gh-:  (n=2-1)

(0) (else).
Lemma 7. One has the following statements.
(1) There are ezact sequences of graded R-modules as follows:
0 — HY(Ry) — Ry — R(a+U/U); — 0,
where we put U = HY, (A).
(2) Suppose that depth A > 0, and put a := a;. Then there are short ezact sequences
of graded R-modules as follows: :
0— Ry R, — Ry/aRy —0;
0 — G(-1) — R4 /aRy — R(a/(a))+ — 0.
0 — Ry(-1) 2 Ry — Ry/at-Ry — 0;

0 —s A(=1) -2 Ry /at - Ry — R(a/(a))4 — 0.

Combining these facts we get the following, which we shall need later in order to
use induction on d := dim A. We refer [Su] for the details on quasi-Buchsbaumness of
rings/modules.

Proposition 8. R, is a quasi-Buchsbaum R-module. In particular one has

at-HL(Ry) = (0) for 0<i<d.



3. REDUCTION STEP TO THE CASE WHERE depth A > 0

Let us write u := pa(a) and v := p4g(m), where g (*) denotes the minimal number
of generators of an A-module. Moreover, for a set S we denote by |S| the number of all
elements in S. Recall that, for integers i, j, we denote by [i, 5] the set of integers n such
that + <n < j. Of course, [i,j] =0 if ¢ > j. Then we have the following.

Lemma 9. There erist systems of elements in A, say ai,az, ... , ay and T1,Za, ... , Ty,
which satisfy the following conditions:

(1) ay,az,...,a, is a minimal system of generators of a;

(2) any d-elements of a1t,ast,... ,a,t in R form a system of parameters for G, i.e.,

this is equivalent to say that there is an integer v > 0 such that a™*! = (a; | i € I)a”
for all I C [1,u] with |I| =

(3) z1,z2,...,%y 15 @ mz’nz’mal system of generators of m;

(4) any d-elements of ay,... ,ay,%1,... ,T, form a system of parameters for A.

Let a1,a,... ,ay and z1,2s,... 1, be a systems of elements in A satisfying four con-
ditions in Lemma 9 above. We put at := ayt,ast,... ,a,t and z := T1,T2,...,Ty. Let

K'(at, z; Ry ) be the Koszul (co-)complex generated by the system at, z over the graded R-
module Ry and we denote it by K' (9% Ry ) simply. Also H'(0; R4.) denotes the cohomology
modules of the Koszul complex K'(91;R).

In order to lead the Buchsbaumness of R, we enoughly show that the canonical map
¢R+ H'(9Ry) — Hm(R+)

is surjective for all 0 < i < d, see [SV, Theorem (2.15) in Chap. I]. The next section shall
be devoted to proving this statement by induction on d := dim A. Before doing it, we
have to prepare the reduction step, which allows to reduce our problem to the case where
depth A > 0. We begin with the following.

Lemma 10. Let 7 : H(R) — R and 7y : HY(R;) — Ry be canonical inclusions.
Then one has the followmg statements.

(1) Suppose that d > 2. Then the canonical map induced by T
™ H (0L HY(R)) — H'(9L,R)
18 injective for all 0 < i < d, and moreover
[r ) : [H (G HR (R))]n — [HH (0 R)),

15 injective for 1 —d < n < 0.
(2) The canonical map induced by 7

i HY (O HY(Ry)) — HI(OLR,)

is injective for all 0 < i< d+1.



Proposition 11. .S'u;l;pose that d > 2. Then one has the following statements.
(1) R is a Buchsbaum ring if and only if R(a+ U/U) is so, where we put U := HY (A).
(2) R4 is a Buchsbaum R-module if and only if R(a+ U/U)4 is so.

Corollary 12. The following statements are true.

(1) R4 is a Buchsbaum R-module for d = 2.

(2) Suppose thatd > 2. Then ¢k : H'(9G R) — HE(R) is surjective for i < 2. Hence
R is a Buchsbaum ring for d = 2. »

(3) Suppose thatd > 3. Then R is a Buchsbaum ring if Ry is a Buchsbaum R-module.

4. PROOF OF MAIN RESULTS

Before giving the proof of our results, we need two more facts.
Lemma 13. The following statements hold. |
(1) anU(a) is a Buchsbaum A-module of dimension d such that
H2 (anU(a)) = (0) and Hi(anU(a)) =U(a)/anU(a).
(2) A/anU(a) is a Buchsbaum A-module of dimension d — 1 such that
| HC (A/anU(a)) = U(a)/anUla).
(3) There is an eract sequence of graded R-modules:
0 — (anU(a))(-1) 2 Ry /at-Ry — R(a+ U(a)/U(a))y — 0.
(4) The following sequence of local cohomology modules
0 — H: (anU(a))(~1) — Hy(Ry/at-Ry) — Hy (R(a+ U(a)/U(a))4) — 0
is exact for 0 < i < d. '
Proposition 14. The canonical map
plH (O (anU(a))(~1)) — H (MG Ry /at - Ry)
is injective for all 0 < i < d.
Now we are ready to prove our main results, Theorem 1 and Corollaries 2-4.

Outline of the proof of main results. For the case where d = 2 we have already shown
our statement by Corollary 12. Now let d > 3 and assume that our statement is true for
d — 1. By Proposition 11, we may further assume that depth A > 0. Now put a := a; and
U(a) := (a) : m. Look at the following short exact sequence:

0 — (anU(a))(-1) 2 Ry/at-Ry — R(a+U(a)/U(a)); — 0.
By the hypothesis of induction on d, the graded module R(a+U(a)/U(a))+ is Buchsbaum.
Acoording to Lemma 15 below, we consequently get the Buchsbaumness of R, /at - Ry
from Lemmal3, Proposition 14 and the observation above. Finally consider the next short
exact sequence of graded R-modules:
00— R+(—1) Lt) R+ — R+/at . R+ — 0.

Since R, /at - Ry is Buchsbaum, we naturally get the Buchsbaumness of R itself by
Proposition 8. This completes the proof of Theorem 1. Further results also follow at once.



Lemma 15. Let 0 — E' — E — E" — 0 be an ezact sequence of finitely generated
A-modules. Suppose that the following three conditions are satisfied:

(i) dimE = dim E' = dim E” > 0;
(i) E’ and E" are Buchsbaum A-modules;
(iii) the following sequence of local cohomology modules

0 — H: (E') — H. (E) — HL(E") — 0

is exact for 0 < i < s, where s := dimE.
Then the following statements are equivalent.

(1) E is a Buchsbaum A-module.
(2) The sequence of Koszul cohomology modules

0 — Hi(m; E') — H{(m; E) — H'(m; E”) — 0

s exact for 0 <1 < s.
(3) The canonical map induced from the monomorphism E' — E above

H(m; E') — H'(m; E)

1s injective for 0 <1 < s.

5. ONE DIMENSIONAL CASE

In the case where dim A = 1 we have the following characterization for the Rees algebras
to be Buchsbaum.

Theorem 16. Let A be a Noetherian local ring of dimension d =1 and a an m-primary

ideal of A. Then the Rees algebra R is a Buchsbaum ring if and only if the following four
conditions are satisfied:

(i) A is a Buchsbaum ring;
-(ii) a® = aa for some (resp. every) minimal reduction (a) of a;
(iii) a has minimal multiplicity, i.e., ma C (a) for some (resp. every) minimal reduction

(a) of a;
(iv) for some (resp. every) A-basis of m, say {z1,%2,...,Zy}, it holds that
zja:aC (z;):m
forall1 <j<w.

When this is the case, the associated graded ring G is a Buchsbaum ring too.

Unfortunately, without the condition (iv) in Theorem 16, the Rees algebra R is not
necessarily a Buchsbaum ring, though it is quasi-Buchsbaum.



Example 17. Let k[[X,Y, Z,W]] be a formal power series ring over an infinite field k.
Now consider

A:=K[X,Y,Z,W))/(XZ,YZ,XW,YW,Y? + W?) = k[[z,y, z,w]],

and four m-primary ideals of A as follows:

ao := (a,9?), a1 := (22,92, 2%), az:= (22,92, 2%, xy) and a3 := m?,

where we put a := z + z and m is the maximal ideal of A. Then

(1) Ai 1s a Buchsbaum ring of dimension 1 and m3 = am

2

(2) HY (A ) =y?A =w?A =k, and hence H) (A) C a; C m? for each i = 1,2,3.
(3) a? = a%a;, ma; € a®A and l4(a;/ag) =i for each 0 < ¢ < 3.

(4) R(ap) and R(a;) are Buchsbaum rings.

(5) R(az) and R(a3) are not Buchsbaum rings, but they are quasi-Buchsbaum.
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(G2]

(GY]
(N]
[Sc]
(St]
(Su)
[SV]
[Ya]

[Yo]

REFERENCES'

S. Goto, Buchsbaum rings of mazimal embedding dimension, J. Algebra 76 (1982), 383-399.

S. Goto, Buchsbaumness in Rees algebras associated to ideals of minimal multiplicity, J. Algebra
213 (1999), 604-661.

S. Goto and K. Yamagishi, The theory of unconditioned strong d-sequences and modules of finite
local cohomology, preprint.

Y. Nakamura, On the Buchsbaum property of associated graded rings, J. Algebra 209 (1998), 345—
366.

P. Schenzel, Standard systems of parameters and their blow-up rings, J. reine und angew. Math.
344 (1983), 201-220.

J. Stiickrad, On the Buchsbaum property of Rees and form modules, Beitr. Algebra Geom. 19 (1985),
83-103.

N. Suzuki, On a basic theorem for quasi-Buchsbaum modules, Bull. Dept. Gen. Ed. Shizuoka College
of Pharmacy 11 (1982), 33-40.

J. Stiickrad and W. Vogel, Buchsbaum rings and applications, Springer-Verlag, Berlin, New York,
Tokyo, 1986.

K. Yamagishi, The associated graded modules of Buchsbaum modules with respect to m - primary
ideals in the equi-I - invariant case, J. Algebra (to appear).

K.-i. Yoshida, On linear marimal Buchsbaum modules and syzygy modules, Comm. in Alg. 23 (1995),
1085-1130.

COLLEGE OF LIBERAL ARTS, HIMEJI DoKKYO UNIVERSITY, KAMIONO 7-2-1, HiMEJI-sHI, HYoGoO
670-8524, JAPAN
E-mail address: yamagisi@himeji-du.ac.jp



On filtrations having small analytic deviation

Koji NISHIDA

Chiba University

1 Introduction

Let A be a d-dimensional Noetherian local ring with the maximal ideal m and let F =
{Fu}nez be a family of ideals in A such that (i) F,, D F,y, for all n € Z, (ii) F;, = A and
Fy # A, and (iii) F,F, C Fuqq for all m,n € Z. In this report we simply call such F a

filtration. When a filtration F is given, we can consider the following algebras:

= Z F,T" C A[T] (T is an indeterminate),

n>0

R(F) =Y FI"C AT, T, and
nez

G(F) = R'(F)/T'R(F) = @ Fu/Foi1-

n>0

Those algebras are respectively called the Rees algebra, the exteﬁded Rees algebra, and the
form ring associated to F. We always assume that R(F) is Noetherian and dim R(F) =
d + 1. Typical exampleé of filtration are constructed from an ideal I. For example,
setting F;, = I", we get the I-adic filtration. Symbolic filtration of I is defined by setting
F, =I™ where I(™ = ﬂpeMinA A/l I"A, N A. It is also important to set F}, = I, where
I™ denotes the integral closure of I™.

We denote by €(F) the Krull dimension of the ring A/m ®,4 R(F) and call it the
analytic spread of F (cf. [13]). If F is the ideal adic filtration of an ideal I, then £(F) is
just the analytic spread of I in the sense of Northcott and Rees. It is easy to see that,
similarly as the case of ideals, the inequality ¢(F) > hta F) always hold (here it should
be noticed that hty F; = hty Fy, for all n > 1). So, following Huckaba and Huneke [8],
we set ad(F) := €(F) — hty Fy and call it the analytic deviation of F. For example, if
F is the symbolic filtration of an ideal I, then ad(F) < d — ht4 I. On the other hand, if



I™ C F, C I for all n, then ad(F) coincides with the analytic deviation of I in the sense
of Huckaba and Huneke.

The main result of this report is a characterization of the Cohen-Macaulay property of
the formn ring associated to a filtration having small analytic deviation. If F is a filtration
with ¢(F) = ¢, we can choose elements a;,--- ,a, in A so that a) € Fy,--- ,a, € Fy, for
some positive integers ky,--- ,k; and F,, = Zle a;F, _, for all n > 0. We will show that,
in the case where ad(F) = 0, G(F) is Cohen-Macaulay if and only if A/(ay,--- ,a¢) + F,
is Cohen-Macaulay for finite number of n and G(F;) is Cohen-Macaulay for all p €
Asshy A/Fy, where F, is the filtration {FoAp}tnez of A, and Asshy A/Fy = {p € Spec A |
F; Cp and dim A/p = dim A/F,}. This characterization was already proved by Goto in
the case where F is the symbolic filtration of a prime ideal p such that dim A/p =1 (cf.
[3]). We will also discuss the case where ad(F) = 1. Although the statement is rather
complicated, a condition for G(F) to be Cohen-Macaulay will be given similarly as the
case where ad(F) = 0.

Throughout this report A is a d-dimensional Noetherian local ring with the maximal
ideal m. and F = {F,},ez is a filtration of A such that R(F) is a d + 1-dimensional
Noetherian ring. In the case where F is the symbolic filtration of I, we write Ry(I),
R.(I), and G,(I) instead of R(F), R'(¥), and G(F).

2 Preliminaries
Let F = {F,}nez be a filtration of A. We begin with the following. -
Lemma 2.1 dimR(F)/mR(F) = dim G(F)/mG(F).

Definition 2.2 The analytic spread £(F) is defined to be dimR(F)/mR(F), which is
equal to dim G(F)/mG(F) by 2.1

Definition 2.3 Let ay, - ,a, be a systemn of elements of A. If ay € F,,--- ,a, € Fy,
for some positive integers ky,---  k, and F,, = "7 a;Fy_x, for all n > 0, we say that
ay, - 0, s a reduction of F. ' ‘

Let £ = ¢(F). If a1, -+ ,a, is a reduction of F stated in 2.3, then we have ¢ < r
since the ring R(F)/(a,T*,--- ,a,T*¥)R(F) + mR(F) is Artinian. On the other hand,
we can always choose al,.' - ,a¢ in A so that a; € Fy,, - ,a, € F, for some positive



integers ki, - - - , kg and @, 7%, - -+, a,T* form an sop for R(F)/mR(F). Then ay,--- ,acis
a reduction of F. When this is the case, we have k; = max{n | q; € F,} for all 1 <i < ¥,

because a,T*, - - - , a,T* is an sop also on G(F)/mG(F).
Lemma 2.4 hty F} < {(F) <d.

Definition 2.5 We denote by ad(F) the difference ¢(F) —ht4 Fy and call it the analytic
deviation of F. In particular, F is said to be equimnultiple, if ad(F) = 0.

Example 2.6 Let I be an ideal of A with htql = s. Let F;, = IM™ for all n. Then
ad(F) < d —s. In particular, F is equimultiple, if s =d — 1.

Example 2.7 Let I be an ideal with a reduction J = (a1,--- ,a,)A. Let F = {Fp}nez
be a filtration such that I" C F;, C I* for all n. Then ay,--- ,a, is a reduction of F. In

particular, if I is generated by an regular sequence, then F is equimultiple.

Finally we state about localization of filtration. For a prime ideal p, we set F, =
{(Fu)p}nez. Notice that F, is a filtration of A,. We always have £(F,) < {(F) because
F has a reduction consisting of ¢(F) elements and it is a reduction of F,. Because

A, ®4 G(F) 2 G(F,), once G(F) is Cohen-Macaulay, then so is G(Fy).

3 Equimultiple filtration

Let F be a filtration of A. The following theorem is a characterization of the Cohen-
Macaulay property of the form ring associated to an equimultiple filtration of a Cohen-
Macaulay ring. It was already proved by Goto (3, Theorem(1.2)] in the case where F is
the symbolic filtration of a prime ideal p with dim Alp=1.

Theorem 3.1 Let A be a Cohen-Macaulay ring and hty Fy = s. Let a;,--- ,a, be ele-
ments in A such that ay € Fy,, -+ ,as € F, for some positive integers ky,--- ,k, and
F, =Y 1aF,k forn > 0. Set N =737 ki +max{a(G(F,)) | p € Asshy A/F,}.

Then the following conditions are equivalent.
(1) G(F) is a Cohen-Macaulay ring.

(2) G(Fp) is Cohen-Macauluy for allp € Asshy A/Fy and Af(ay,--- ,as)+ Fy is Cohen-
Macaulay for all1 <n < N.



When this is the case, A/F, is Cohen-Macaulay for any n > 1, F, = Yoo aiFu_k, for
any n > N, and a(G(F)) = max{a(G(F;)) | p € Asshy A/Fr}.

4 The case where ad(F) =1

Let F = {F,}nez be a filtration of A with ht4 F1 = s < d. In this section, we would like to
deal with the case where ad(F) = 1. However, even if we can easily check that ad(F) <1,
it may be difficult to see that ad(F) is surely 1. So we will develop our argument assuming
that F has a reduction consisting of s + 1 elements, which is equivalent to the condition
that ad(F) is at most 1.

Throughout this section we always assume that a), - - - , as, a5y are elements in A such
that a, € Fy,, -~ ,as € Fi,,as41 € Fy,,, for some positive integers ky,-- -, ks, k41 and
F, = Zf:ll a;F,_x, for n > 0. Moreover, we assumne that, a,, - ,a, is an A-regular
sequence and if q € Asshy A/F), then F,,Aq = ZlevaiF,,_kiAq for n > 0. It should be
noticed that we can always find such ay,- - ,as, as4; if £(F) < s+1. We put

P={peSpecA|F, Cpandhtyp <s+1},
s
o= k+max{a(G(F,)) | q € Asshy A/F1} +1,
i=1

s+1

8= Zki + max{a(G(F,)) | p € P}, and
i=1
K = (a1, - ,a,)A.
We will denote a,y1 (resp. ksy1) by b (resp. k).

Theorem 4.1 Let G(F) be a Cohen-Macaulay ring. Then we have the following asser-

tions.
(1) depthA/K + F, >d—s—1 for alln > 0.

(2) bT* is a non-zero-divisor on G(F)sq, where F is the filiration {K + F/K }nez of
A/K.

(3) depth A/K +bF,+ F, >d—s—1 for any n > 0.
(4) Fo=Y12) aiFuy, for anyn> .

(5) a(G(F)) = max{a(G(F)) | p € P}.



Theorem 4.2 Let A be a Cohen-Macaulay ring. Let G(F,) be a Cohen-Macaulay ring
for any p € P and depth A/K +bF, + F, >d—s—1 for all1 < n < 3. Then we have

the following assertions.
(1) depthA/F, >d—s—1 for any n > 0.

(2) If A/K+F, is Cohen-Macaulay for any 1 < n < «, then G(F) is a Cohen-Macaulay

Ting.

5 Applications

Let A be the formal power series ring K|[[X,Y, Z, V]| over a field K. Let I be the ideal
of A generated by the maximal minors of the matrix
( XY z wm )
M=|Y Z W X ,
zZ W X ym

where m is a positive integer. Then A/I is a Cohen-Macaulay ring with dim A/I = 2.
In the following, applying the results in previous sections, we will compute the symbolic
powers of I.

For 1 < i < 4, let a; be the minor corresponding to the matrix derived from M deleting
the i-th column. Usually, we denote a,, as, a3, and a4 by a,b, ¢, and d, respectively. Then

we have the following relations:

(#1) Xa—-Yb+Zc—Wmd=0,
(#2) " Ya—Zb+Wc—Xd=0, and
(#3) Za—Wb+Xc—-Y™d=0.

Lemma 5.1 Let p € Asshy A/I. Then IA, = (a,d)A,. Hence I™A, = I"A, for alln
and G(IAy) is a Gorenstein ring with a(G(IA4,)) = —2.

Proof. Let q be the ideal of A generated by the maximal minors of the mtrix

Y Z
z W
w X

Then I € qasq C (Y,Z,W)A and b = —X3 mod (Y, Z,W)A. It follows that q Z p
for any p € Asshy A/I as q is a prime ideal with htyq = 2. Because qI C (a,d)A,
IA, C (a,d)A, for any p € Asshy A/I. Thus we get the assertion.



Theorem 5.2 Let m = 1. Then there exists e € I®*) \ I? such that Ry(I) = A[IT,eT?).
When this is the case, Rs(I) is a Gorenstein ring.

Proof. Set

w=XZ-Y? v=X:-YW, w=XW-YZ,
f=XY-2ZW, g=YW —2% h=XZ—-W?2,

Then we have the following relations:

(#3) (e — bd) = u(b? — ac),
(#4) w(c? — bd) = u(be — ad),
(#s) F(c¢? = bd) = u(ab — cd)
(#s) g(c* — bd) = u(ac - d*),
#) h(® = bd) = u(a® — bd)

Because u, v is a regular sequence, by (#3) there exists e € A such that ue = ¢? — bd and

ve = b? — ac. Moreover, by (#4) we have

we(c> —bd) = wue(bc — ad)
= (c¢* —bd)(bc — ad),

and so we = bc — ad. Similarly, using (#s), (#s), and (#7), we get fe = ab — cd,
ge = ac — d?, and he = a® — bd. Hence e € I? : A, where 2 = (u,v,w, f,g,h)A. This
implies e € I? as ht4, A > 3. We have e ¢ I? since (Y,Z,W)A+ I? = (X5)Y,Z, W)A
and e = X* mod (Y,Z,W)A.

We set

A ifn<0.

Then Fy = I, Fy = I* + eA, and I"* C F, C I™ for all n. Let F = {Fu}nez It is easy
to see that F is a filtration such that F,, = aF,,_; + eF;,_y for all n > 2. Hence F is an
equimultiple filtration and a,e is a reduction of F.

Let p € Asshy A/Fy. Then by 5.1 G(F,) (= G({,)) is a Gorenstein ring with
a(G(Fp)) = -2, and so 14+ 2 + max{a(G(F;,)) | p € Asshy A/Fi} = 1. Notice that



A/Fy is a Cohen-Macaulay ring. Therefore by 3.1 we see that G(F) is Cohen-Macaulay
and A/F,, is Cohen-Macaulay for all n > 1. Now, by [4, Theorem 1.2] it follows that G(F)
is a Gorenstein ring with a(G(F)) = —2. Then [5, Corollary 1.4] implies that R(F) is a
Gorenstein ring. Let n be a positive integer. Since A/F, is Cohen-Macaulay, F, C Im,
and F,A, = I™A, for all p € Assy A/F, = Asshy A/I, we get F,, = I™. Therefore
R(F) = Ry(I) and the proof is completed.

In the case where m > 2, using the results stated in section 4, we get the following

result.
Theorem 5.3 Let m > 2. Then there exists e € I®® \ I® such that Ry(I) = A[IT, eT?].
When this is the case, Ry(I) is a Gorenstein ring.
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MONOMIALIZATION OF MORPHISMS

S. DALE CUTKOSKY

1. MONOMIALIZATION ALONG A VALUATION

Suppose that
RCS 4 : 1
is a local homomorphism of local domains, essentially of finite type over a field k.

The structure of such an extension is extremely complicated, even when R and S are

regular.
The simplest examples of an extension (1) are monomial mappings and monoidal
transforms.

R — S is a monomial mapping if R has regular parameters (yi, ... ,ym) and there
exists an etale extension of S which has regular parameters (zi,. .. ,z,), and a matrix
a;j such that

N =m‘1'11 ...zzln
Ym = z‘l‘m! - glmn

R — S is a monoidal transform if there exists a regular prime P C Rand 0 # y € P
such that § = R[-E]m where m is a prime which contracts to the maximal ideal of

R. If R is regular, then there exists a regular system of parameters (y1,... ,y,) in R,
and r < n such that
S:R[lﬁ,... 9-] .
Y1 Yilm,

Suppose that V is a valuation ring of the quotient field K of S, such that V'
dominates S. Then we can ask if there are sequences of monoidal transforms R — R’
and S — S’ such that V dominates S', S’ dominates R’, and R’ — S’ has an especially
good structure.

R - ScV
t T (2
R - S ‘

An example of a theorem of this kind is Zariski’s Local Uniformization Theorem.

Theorem 1.1. (Zariski’s Local Uniformization Theorem [20]) Suppose that k has
characteristic zero, R is a local domain essentially of finite type over k, and V is a
valuation ring of the quotient field of R dominating R. Then there ezists a reqular
local ring B!, essentially of finite type over k such that RC R' C V.

. Using the resolution theorems of Hironaka [13], we can perform monoidal trans-
forms on R and S in (2) to reduce to the case where R and S are regular.

It is possible to obtain a diagram (2) making R’ — S’ a monomial mapping when-
ever the quotient field of S is a finite extension of the quotient field of R, and the
characteristic of k is 0.

partially supported by NSF.



Theorem 1.2. (Monomialization, Theorem 1.1 [9]) Suppose that R C S are regular
local Tings, essentially of finite type over a field k of characteristic zero, such that the
quotient field K of S is a finite extension of the quotient field J of R.

Let V be a valuation ring of K which dominates S. Then there exist sequences of
monoidal transforms R — R’ and S — S’ such that V dominates S', S' dominates
R' and R' = S’ is a monomial mapping.

In fact, we show that there are regular parameters (z1,....,Z,) in R, (y1,...,yn)
in S, units dy,...,d, € S’ and a matrix (a;;) of nonnegative integers such that
Det(a;i;) # 0 and

Ty = yt...ylmdy
: 3
Tn = Yleyinnd,.

By extracting t-th roots of the d; where ¢t = Det(a;;), we obtain an etale extension
of S’ realizing (z1,...,Z,) as monomials in a regular system of parameters.

The standard theorems on resolution of singularities allow one to easily find R’ and
S’ such that (3) holds, but without the essential condition that Det(a;;) # 0. The
difficulty of the proof is to acheive this condition.

The most difficult case of the proof of Theorem 1.2 is when V is a nondiscrete

“rational rank 1 valuation. Such valuations are not Noetherian.

Under very mild assumptions, valuations can be represented by “formal” Puiseux
series (Kaplansky [14]). Let k be a field, I be an ordered abelian group. Define S(T)
to be the set of series

Z ait""

such that a; € k, 0; € T and {o;} is well ordered. S(T') is a field, with valuation
v(f) = oy if f = a;t”* + higher order terms, with a; # 0. If K is an algebraic
function field, with an embedding 7 : K — S(T'), then v restricts to a valuation v’ of
K. We can obtain interesting value groups such as Q in this way.

Theorem 1.2 is false in positive characteristic p. A simple counterexample is the
morphism of curves ‘

y= zP+xP+1.

Extracting a p-th root of 1 + z is inseparable. However, it may be possible to obtain
a diagram (3) in positive characteristic. This would be sufficient to prove Theorem
1.3 below in positive characteristic.

(From Theorem 1.2, we obtain an affirmative answer to two conjectures of Ab-
hyankar.

The first conjecture of Abhyankar is that simultaneous resolution from above along
a valuation (proved in 2 dimensional function fields by Abhyankar [1]) is true for
arbitrary function fields. The statement of the Theorem, giving an affirmative answer
in characteristic zero, follows.

Theorem 1.3. (Theorem 1.1 [10]) Let k be a field of characteristic zero, L/k an
algebraic function field, K a finite algebraic extension of L, v a valuation of K/k,
and (R, M) a regular local ring with quotient field K, essentially of finite type over k,
such that v dominates R. Then for some sequence of monodial transforms R — R*
along v, there ezists a normal local ring S* with quotient field L, essentially of finite
type over k, such that R* is the localization of the integral closure T of S* in K at a
mazimal ideal of T'.



Abhyankar has shown [3] that the conjecture is false if we ask for S* to be regular.
Simultaneous resolution from above is a key step in generalizing Abhyankar’s proof
of local uniformization for surfaces to arbitrary dimensions.

If (1) is a birational extension, (1) has a factorization by quadratic transforms if
dim R =dim S = 2, and R, S are regular (Zariski [22], [23], Abhyankar [2]) .

However, if dim R = dim S > 3, with R, S regular, there does not in general exist
a factorization of R = S by monoidal transforms (Hironaka [12], Sally [16], Shannon

17).

[ JI‘hus if R C S is birational, the strongest possible conclusion is the existence, for
- any valuation ring V' of the quotient field of S, of a diagram (2) such that R’ = 5.
This has been conjectured by Abhyankar [4]. We prove this second conjecture in
characteristic zero.

Theorem 1.4. (Local Factorization)(Theorem A [8], Theorem 1.9 [9]) Suppose that
R C S are regular local rings, essentially of finite type over a field k of characteristic
zero, with a common quotient field K. Let V be a valuation ring of K which domi-
nates S. Then there ezists a regular local ring T, with quotient field K, such that T
dominates S, V dominates T, and the inclusions R - T and S — T can be factored
by sequences of monoidal transforms.

N <

a N
R — S

Local factorization along a valuation of maximal rank in dimension 3 was proven
by Christensen [7]. The conjecture was proven in dimension 3, and characteristic
zero, in [8]. The conjecture is proven in all dimensions, and characteristic zero in [9].
Theorem 1.2 allows us to reduce the proof of Abhyankar’s conjecture (in characteristic
zero) to the special case of a monomial mapping. Local factorization of a monomial
mapping follows from a theorem of Morelli [15] on “Strong factorization” of toric
(locally monomial) mappings.

Recently, Wlodarczyk [18], [19] and Abramovich, Karu, Matsuki and Wlodarczyk
[5] have proven the ”Weak Factorization Conjecture” for birational morphisms. They
have shown that a birational morphism of nonsingular projective varieties, over a
field of characteristic zero, can be factored by alternating sequences of blowups and
blowdowns.

2. MONOMIALIZATION OF PROPER MORPHISMS

We will now look at some global analogs of the preceeding theory.

Hironaka (Chapter 0 of [13]) has defined “complete” varieties. A complete k-variety
is an integral scheme X of finite type over k, such that for any valuation ring V of
the function field k(X) of X, there exists a morphism from spec(V) into X which lifts
the embedding of V into k(X). If the morphism is always unique, X is proper. A
complete variety satisfies the existence part of the valuative criterion of properness.
Thus if a variety is both separated and complete then it is proper. As pointed out by
Hironaka in [13], from Zariski’s Local Uniformization Theorem, and his theorem [21]
on the quasi compactness of the Zariski Riemann manifold of valuations of a function
field, it follows that singularities can be resolved in characteristic zero by a complete
morphism.



Theorem 2.1. (Zariski) If X is a proper k-variety (of characteristic zero) then there
ezists a complete nonsingular k-variety Y, and a birational morphism Y — X.

The existence of a resolution of singularites of X by a proper morphism is proven
by Hironaka in [13].

Now suppose that ® : X — Y is a morphism of nonsingular proper k-varieties,
where k'is a field of characteristic 0.

Definition 2.2. & is locally monomial if for every p € X there ezist regular pa-

rameters (Y1, - - - ,¥m) in Ov,a(p), and an etale cover U of an affine neighborhood of
p, uniformizing parameters (z1,... ,z,) on U and a matriz a;; such that
— apy Qain
yl = ml e Inl
yn= g

Definition 2.3. A morphism ¥ : X; = Y; is a global monomialization of & if
there are sequences of monoidal transforms o : X1 - X and f: Y1 = Y, and a
morphism ¥ : X; — Y1 such that the diagram

X Lin
l 4
x *v

commutes, and ¥ is a locally monomial morphism.”

An extremely interesting question is if every morphism & : X — Y of proper
varieties (over a field of characteristic 0) has a global monomialization.

Recall that there exist morphisms over a field k of positive characteristic which do
not have a global monomialization.

The construction of a monomialization by complete varieties follows from Theorem
1.2.

Theorem 2.4. (Theorem 1.2 [9]) Let k be a field of characteristic zero, ® : X —
Y a generically finite morphism of nonsingular proper k-varieties. Then there are
birational morphisms of nonsingular complete k-varieties a : X1 =+ X and f: Y1 —
Y, and a locally monomial morphism ¥ : X; — Y) such that the diagram

X Y n
{ {
X *v

commutes and a and B are locally products of blowups of nonsingular subvarieties.
That is, for every z € X, there erist affine neighborhoods Vi of z, V of x = a(z),
such that a : Vi = V is a finite product of monoidal transforms, and there erist affine
neighborhoods Wy of ¥(z), W of y = a(¥(z)), such that 8 : W1 — W is a finite
product of monoidal transforms. ‘

A monoidal transform of a nonsingular k-scheme S is the map T' — S induced by
an open subset T' of Proj(®Z™), where Z is the ideal sheaf of a nonsingular subvariety
of S.

If & : X — C is a morphism from a projective variety to a curve, the existence of
a global monomialization follows immediately from resolution of singularities. In the
case of a morphism of complex projective surfaces, a proof of the existence of a global
monomialization follows from results of Akbulut and King (Chapter 7 of [6]).

We have proven that a global monomialization exists for a morphism from a 3-fold
to a surface [11].



Theorem 2.5. (Theorem 1 [11]) Let ® : X — S be a proper dominant morphism
from a 3-fold X to a surface S, over an algebraically closed field k of characteristic
zero. Then ¢ has a global monomialization.

¢From our proof, we can in fact put the mapping in a more combinatorial form.

Theorem 2.6. (Theorem 2 [11]) Let ® : (Ux C X) = (Us C S) be a dominant
proper morphism of toroidal embeddings from a 3-fold X to a surface S. Then ¢
has a global monomialization such that ¥ : (@ *(Ux) C X;) = (B7'(Us) C S) is a
toroidal morphism.
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ASYMPTOTIC REGULARITY

S. DALE CUTKOSKY

1. ASYMPTOTIC REGULARITY OF IDEALS

Let A = k[zy,...,z,] be a polynomial ring over a field k. Let m be the maximal
graded ideal. Suppose that I C A is a homogeneous ideal. let

0=2---oFR 22120
be a graded free resolution. Let
a; = max {degrees of generators of Fj}.

The regularity of I is defined to be )
reg(I) = max {n| there exists j such that H7 (I),_; # 0}
=max {n | there exists j such that Tor{ (k,I)n4; # 0}
=max {a; —j | j >0}.

.The equivalence of these definitions can be found in Eisenbud and Goto [7], Bayer
and Mumford [1].

In general one expects that invariants of an ideal I behave better after taking a
sufficiently high power of I. It is of interest to understand the asymptotic behaviour
of the regularity of high powers of I.

Irena Swanson [10] has shown that there exists a bound D such that

reg(I™) <nD

for all n > 0.

Let I be any homogeneous ideal of A. In Theorem 1.1 of [5], which is joint work
with Jiirgen Herzog and Trung, it is shown that reg(I™) is a linear polynomial for all
n large enough. Let d(I) be the maximal degree of a minimal set of generators of I.

Theorem 1.1. (Theorem 1.1 [5]) Let I be an arbitrary homogeneous ideal. Let d(I)
denote the mazimum degree of the homogeneous generators of I. Then

1. There is a number e such that reg (I") < nd(I) +e for alln > 1.
2. reg (I™) is a linear polynomial for all n large enough.

Similar results have been obtained independently by Vijay Kodiyalam [8].
Since we have bounds d(I™) < reg(I™) for all n, it follows from that the asypmptotic
regularity '

tim 28 _ i d(TIl )

n
always exists, and is a natural number.

We will give an outline of the proof of Theorem 1. We will first discuss the proof
of 1.

partially supported by NSF.



Let R = @, 50 I"t" be the Rees algebra of I. Let I = (fi,...,f;) where the f;
are homogeneou—s of degree d;. R is a bigraded S = k[z1,--- ,Zr, 1, -- ,ys] module,
with the grading deg(y;) = (d;, 1), deg(z;) = (1,0). Let N = (z1,... , ;).

i [0 i#T

Hy(S)am = { 0 a>ndI)—r+1li=r
Consider a bigraded free resolution of R.
oo FI = P S(—ay;, =b) = - = @D S(=arg, ~bi,) + R0

t t

Set
¢ = maxt{atj — b;d(I)},
e = max{c; — j}.

Since HN(F™™%)(m—iny = 0 implies H},(I")m—i = Hy(R)(m-i,n) = 0, we get that
reg(I™) < nd(I) +e.

Now we will give discuss the idea of the proof of 2. of Theorem 1.1.

Torf (k, I™), = Torf(S/mS, R)(a,n)-
Define
reg;(I") = max{a | Torf (S/mS, R)(a,ny # 0} — i.
Then
reg(I™) = max{reg;(I™),i > 0}
Each Tor{(S/mS,R) is a finitely generated bigraded module over kfyi,...,ys). It
follows that reg;(I™) is linear for n >> 0.

2. ASYMPTOTIC REGULARITY OF IDEAL SHEAVES

Let T be an ideal sheaf on P". The regularity reg(Z) of Z is defined to be the least
integer t such that H*(P",Z(t —i)) = 0 for all i > 1 (c.f. Mumford, Lecture 14 [9]).

Suppose that T is the sheafification of a homogeneous ideal I of A. The saturation
of I is defined by

T= {f € A| for each 0 < i < n, there exists n; > 0 such that X[ f € I}

The local cohomology of I is related to the global cohomology of T by the following
well known exact sequences.

01— T=@H(P",I(n)) = Hy(I) >0

H'(P,I(n)) = H ' (Da
for i > 0. _
Thus reg(Z) = reg([).
It follows from 1. of Theorem 1.1 that if 7 is generated scheme theoretically in
degree d, then there exists a constant e such that
reg(I") <nd+e

for all n > 0. This result was proven for nonsingular complex varieties by Bertram,
Ein and Lazarsfeld [2].
Let H be a hyperplane section of P". let

f:B=proj(PI1") > P"

n>0



be the blowup of Z, with exceptional divisor
E= proj(@ /I,
n>0
Lawrence Ein and Robert Lazarsfeld (6] have defined the Seshadri constant €(Z) of 7
to be )
e(T) = sup{n € Q|f*(H) — nE is ample }.
Lazarsfeld and Ein have proven that
reg(Z®) 1
n  €I)
the reciprical of the Seshadri constant of Z.
We give examples in in Theorem 10 [3] of ideal sheaves T of nonsingular complex
space curves whose asymptotic regularity ’
lim 87
n .
is irrational. In particular, 2. of Theorem 1.1 is not true for ideal sheaves.
These examples also give smooth space curves which have irrational Seshadri con-
stants.
A particular realization of this example satisfiew

reg(Z") = [r(9+ V2)] + 1 + o(r)
for 7 > 0, where [r(9 + v/2)] is the greatest integer in (9 + v/2),

_ f0 if r = g2, for some n € N
o(r) = {1 otherwise

lim

-gm is defined recursively by go = 1,q1 = 2 and ¢, = 2¢n—1 + gn-2- Note that r such
that o(r) = 0 are quite sparse, as

g2n > 3"

Example 10 of [3] uses the method of [4], which is to find a rational line which
intersects the boundary of the cone of effective curves on a projective surface in
irrational points.
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Introduction

Let N be a free Z-module of rank r > 0. A subset 0 C Nr := N ®z R is said to be
a convex polyhedral cone or simply a cone if 0 = Roz; + - + Ryz, for a finite
subset {z;,...,%s} C Ngr, where Rg:={c€ R;c> 0}. The cone o is said to be
rational if z;’s are in N, and strongly convex if o N (—o) = {0}. A subset n of
a convex polyhedral cone o is said to be a face and we write 7. < o if there exists
a linear function ! of Ng such that o C (I > 0) and n =0 N (Il =0). A set X of
strongly convex rational polyhedral cones in Ng is said to be a fan or rational fan
if (1) X is nonempty, (2) 0 € X and 9 < o imply n € X and (3) if 0,7 € X then
o N7 is a common face of o and 7. A real fan is defined to be a fan without the
rationality condition of the cones.

The theory of toric varieties is based on the fact that each toric variety of dimen-
sion 7 corresponds to a fan in R™. In this note, we give a scheme theoretic definition
of fans. Then we see that a fan itself is a kind of variety, and the associated toric
variety is its base extension. This remark is not essentially new, however I cannot
give a good reference now.

We have already had the theory of intersection complexes on “rational” fans
as well as dualizing complexes and de Rham complexes. One of our purpose is to
generalize these theories for “real” fans. We define a dualizing functor on a category
of complexes on a real fan. A kind of Serre duality and Poincaré duality hold for
this fonctor. Still we have not enough results for real fans.



1 Fan is a kind of scheme

By a semigroup we always mean a subsemigroup with 0 of a torsion free additive
group.

Let S be a semigroup. A subset I C S is said to be an ideal if I + S C I. An
ideal P of S is an prime ideal if P # S and z,y € S\ P impliesz +y € S\ P.
The empty subset of S is a prime ideal of S by definition.

For a semigroup S, we denote by 1-Spec S the set of prime ideals of S.

Let X := 1-Spec S. For an element m € S, we set X, := {P € X ;m ¢ P}.
The topology of X is defined by the open basis {X,, ; m € S}. The structure sheaf
Sx of X is a sheaf of semigroups such that Sx(X,,) = S+ Zm for every m € S. We
call the pair (X, Sx) an affine 1-scheme.

Example 1.1 For the semigroup S = {0}, we denote 1 := 1-Spec S, and call it

the zerodimensional torus.

Let ¢ : T — S be a homomorphism of semigroups. If P C S is a prime ideal, then
the pull-back ¢~!(P) is a prime ideal of T'. Hence, this correspondence P — ¢~!(P)
defines a map

¢ : X =1-SpecS — Y = 1-SpecT .

For each m' € T, we have *¢™!(Y;r) = Xg(m). In particular, ®¢ is a continuous map.
The homomorphism of sheaves ¢’ : ¢~'Sy — Sy is defined so that the diagram

T 24, s
{ ’ {
ap 1Sy (X) EE Sy(x)

commutes. )

A general 1-scheme is defined as follows. The pair (X, Sx) of a topological space
X and a sheaf Sy of semigroups is said to be a 1-scheme, if X is covered by open
subsets U such that (U, Sx|U) is isomorphic to an affine 1-scheme. Such an open
set U is called an affine open set of X. We often denote the 1-scheme (X, Sx)
simply by X.

Let (X,Sx) and (Y,Sy) be 1-schemes. A pair f = (fo,$) of a continuous map
fo: X = Y and a homomorphism ¢ : f; 'Sy — Sy of semigroup sheaves is said



to be a regular morphism if it is locally a morphism of affine 1-schemes at each
point of X.
Let S and T be semigroups. A natural bijiction

1-Spec S x 1-Spec T —» 1-Spec(S & T)

is defined by (P, P2) — (PL®T)U (S @ P,).

Let X,Y be 1-schemes. We denote by X x; Y the set theoretical product X x Y’
with the product topology. We define the 1-scheme structure on X x; Y as follows.
For affine open subsets U = 1-Spec S C X and V = 1-SpecT C Y, we define

Sxle(U X V) =SeT.

Then we get a product 1-scheme (X x; Y,Sxx,y)- In particular, 1-Spec(S & T) =
1-Spec S x; 1-SpecT.
For a cone o in Ng ~ R", the dual cone 0¥V C Mg ~ R’ is defined by

0V :={z € Mg ; (x,u) > 0,Yu € 0} .

It is a cone in Mg. The dual cone of a cone in Mg is defined in Ng similarly, and
the equality (0V)¥ = g holds. We also define

ot = {z € Mp ; (z,u) = 0,Vu € 5}

which is a linear 'subspace of Mg. Let 7 be a cone of Ng. Then 7¥ No+ is a face of
mV for every face o of 7.

Let X be a fan of Ng. We regard X a 1-scheme as follows. For each element o €
X, we denote by F'(o) the set of faces of 0. A bijection ¢, : F(0) = 1-Spec(MNaV)
is defined by ¢,(n) :== M N (¢V\n'). By this bijection, we introduce an affine
1-scheme structure on F'(c). These 1-scheme structures of F(o) for 0 € X are
naturally patched together as open subschemes, and we get a 1-scheme structure on
X.

A 1-scheme X is said to be locally of finite type if Sx (U) is finitely generated
for every affine open set U C X. We say that X is of finite type if it is locally of
finite type and is covered by a finite number of affine open subsets.

Lemma 1.2 Let X be a 1-scheme locally of finite type. For each point z € X,
there erists a unique affine open set U = 1-Spec S of X such that z is a closed point
of U.



We denote by Sx ; the semigroup S in the above lemma. Sy is called the local
semigroup of X at z. The local semigroups are defined also for points in 1-schemes
which are not necessary locally of finite type.

Let z,z’ be points of 1-scheme X. z’ is said to be a specialization of z if ' is
contained in the closure of {z} in X. z is said to be a generalization of z’.

Let S be a semigroup. Then the semigroup ring A[S] is defined for any com-
mutative ring A. A[S] is defined as the free A-module @,,c5 Ae(m) with the basis
{e(m) ; m € S}. The multiplications in A[S] is defined by e(m)e(m’) = e(m + m/)
and e(0) = 1 in A[S]. We denote by ¢4 the map S — A[S] defined by ¢4(m) :=
e(m). If P C A[S] is a prime ideal, then ¢;'(P) is a prime ideal of the semigroup
S. Hence we get a map “¢4 : Spec A[S] — 1-SpecS. The morphism of sheaves
9% S1-spec s = Ospec a[s) is defined naturally.

Let X be a 1-scheme. For a commutative ring A, an A-scheme X, is defined
as follows. For each affine open subset U = 1-Spec S C X, we set Uy = Spec A[S].
Then these affine A-schemes U, are naturally patched together to an A-scheme X 4.
We also write it by X x; Spec A, and call it the base extension of X to A.

A homomorphism ¢ : T — S of semigroups is said to be finite if there exist
finite elements z,...,z; € S such that

S= (1 +¢(T)U---U(zs +¢(T)) -

For any nontrivial commutative ring A, it is easy to see that ¢ is finite if and
only if A[S] is a finitely generated A[T]-module with respect to the associated ring
homomorphism A[T] — A[S]. ‘ » _

A morphism f : X — Y of 1-schemes is said to be finite if, for any aﬁiné open
subset V' C Y, the pull-back U = f~}(V) is an affine open subset of X, and the
associated homomorphism Sy (V) = Sx(U) of semigroups is finite.

For a 1-scheme X , the diagonal morphism A x 1 X = Xx1X is defined naturally.
A 1-scheme is said to be separated if the diagonal morphism is finite.

For affine open subsets U,V of X, the pull-back A=Y (U x V) is equal to U N V. ’

For a finitely generated semigrouﬁ S, we denote by M(S) the minimal additive
group containing S. We denote by C(S) the cone generated by S in the real space
M(S)r := M(S) ®z R. The dual Z-module of M (S) is denoted by N(S).



Lemma 1.3 Let ¢ : T — S be an injective homomorphism of finitely generated
semigroups. Then ¢ is finite if and only if ¢r(C(T)) = C(S), where ¢r : M(T)r =
M(S)R is the linear map extending ¢.

Proof. Since the extended homomorphism ¢z : M (T) — M (S) is injective, we
may assume that M (T') is a submodule of M (S) and ¢r is an inclusion map. Clearly
the cone C(T) is contained in C(S). '

Assume that ¢ is finite. There exists a nonempty finite set {z;,...,z;} of S such
that

S=(x;+T)U---U(zs+T).

It is sufficient to show the dual cones C(T)V and C(S)Y in N(S)r are equal.. The
inclusion C(T) C C(S) implies C(S)Y C C(T)Y. Let u be an element of N(S)g \
C(S)V. Then there exist z € S with (z,u) < 0. We take sufficiently large integer
a > 0 such that (az,u) < (z;,u) for i = 1,...,s. Since as € S, there exist : and
y € T with az = z; +y. Then (y,u) = (az,u) — (zi,ﬁ) < 0. Hence u is not in
C(T)". This implies C(T)¥ C C(S)".

Conversely, assume C(T) = C(S). Let k be an arbitrary field. The assumption
implies that, for any element x € T, there exists a positive integer d with dz € S.
Hence the semigroup ring k[S] is integral over the subring k[T]. Since k[S] is finitely
generated, it is an k[T]-module of finte type. Hence the morphism of the semigroups
is finite. ’

q;e.d.

Let X be a 1-scheme locally of finite type. X is said to be irreducible if there
exists a point 0 € X such that X is the closure of {0}. Then 0 is called the generic
point of X. If 0 is the generic point of X, then Sx ¢ is a free

Z-module of finite rank. We call this group the base group of X. In this case,
Sx(U) is a subsemigroup of Sx ¢ for any affine open subset U C X.

Theorem 1.4 Let M and N be mutually dual free Z-modules of rank r > 0. A
1-scheme X is a separated normal irreducible 1-scheme locally of finite type with the
base group M if and only if X is a fan of NR'

Proof. For each element z € X, we set 0, := C(S;)" C Ng.



Let x,y be elements of X. Then, for the diagonal morphism A : X — X x X,

we have L
A™Y(F(oz) x F(oy)) ={z€ X ;z,y € {z}};.

Since X is separated, this is an affine open subset of X. Hence this is equal to
F(o,) for some w € X. Since the morphism F(o,) = F(0; X 0,) is finite, the
inclusion map S; + S, C S, is finite. By Lemma 1.3, the cone C(S,) is equal to
- (8:z) +C(S,). By taking dual cones, we have o, = 0, Noy. Hence o, is a common
face of o, and oy.

In particular, if o, = oy, then we have o, = o, and hence w = z since w is
a generalization of z. Similarly we have w = y. Hence o, = o, implies z = y.
This means we may regard X a set of cones in Ng. Then X is a fan by the above
observation.

q.e.d.

Let X be a fan. Then the associated toric variety over a field k is the base

extension X, = X x; Speck.

2 Real fans

Let M be a free Z-module of rank r > 0.

A real fan X in Mp is regarded as a 1-scheme as follows. The topology of X is
defined similarly as “rational” fans. Namely, {F(c) ; 0 € X} is an open basis of X.
For each 0 € X, we set Sx(F(0)) := ¢V, which is not finitely generated in general.

In [1], we studied on the categories of complexes of graded modules on rational
fans. De Rham complexes and the intersection complexes are described in this
category. We intend to generalize this theory for real fans. Up to now, we could
define the category of graded exterior modules on a real fan, and define a dualizing
functor of it.
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§1. Introduction

Hilbert-Kunz multiplicity is known to be a very mysterious invariant.of a ring or an
ideal. We will show a very beautiful formula on Hilbert-Kunz multiplicity for integrally
closed ideals in 2-dimensional Gorenstein rational singularities. In the proof, McKay
correspondence and “Riemann-Roch formula” play essential roles. Also this formula
gives a new significance to “good ideals”.

In this talk, (A, m, k) is a Noetherian local ring of characteristic p > 0 with d =
dim A > 0 and the residue field k is algebraically closed.

First we recall the definition of Hilbert-Kunz multiplicity. This notion was defined
implicitly by Kunz ([Kul],1969) using the Frobenius morphism in characteristic p > 0
and formulated explicitly by Monsky ([Mo],1983).

Definition (1.1). ([Kul,Ku2,Mo|) Let A be as above. Then the Hilbert-Kunz multi-
plicity of an m-primary ideal I is defined as

1 ld] 1/a/1 Al/q
enx(I) := lim ;‘ﬁ# = lim M__/dIL),
€— 00 q €e— 00 q

where 119 (g = p®) is the ideal generated by the g-th powers of all elements of I. By
definition the Hilbert—-Kunz multiplicity of A is egx(A) = egx(m).

(1.2) Let e(I) denote the usual multiplicity of I. Then inequalities % <epk(l) <
e(I) hold; see [Hu]. Suppose that A is Cohen-Macaulay. Then it is well-known that
e(I) > 1a(A/I) and equality holds if and only if I is generated by an A-regular sequence.
On the other hand, Dutta [Du,Theorem (1.9)] proved that if A is a complete intersection
local ring then :

(2.2.1) exx (1) > La(A/).
(1.2.2) If, in addition, pd4 A/I < oo, then equality holds in (1.2.1).!

1 After this symposium, Kurano and Hashimoto. informed us that if 4 is a Cohen-Macaulay Roberts
ring (e.g. complete intersections, quotient singularities etc.), a local ring with dim A < 2 or a Gorenstein
local ring of dimension 3 then equality (1.2.2) holds for any m-primary ideal of finite projective dimesion.



But, it is an open question whether the inequality egx(I) > [4(A/I) always holds
or not. It is important to investigate this inequality (and equality) in studying the
relationship between Hilbert-Kunz multiplicity and the other invariants of a local ring;
see [WY1,WY2]. Furthermore, our main theorem in this talk gives a new significance
to the difference “egx(I) —la(A/I)” in the theory of singularities.

In general, it is not so easy to compute ey (I); see e.g. [HM,BCP]. In fact, we do
not know even whether ey g (I) is a rational number or not. But, in case of quotient
singularities, we can calculate ey (I ) by the following formula.

Proposition A. ([BCP,WY]) Let (A, m) C (B, n) be an extension of local domains
where B is a finite A-module of rank r and A/m = B/n. Then for every m-primary
ideal I, eHK(I, A) = +6HK(IB,B).

In particular, if B is regular, then egg(I) = -i——lB(B/IB).

Next, we recall the notion of “good ideals” in a rational singularity of dimension 2.
Let A be a two-dimensional normal local ring. Then A is said to be a rational singular-
ity if there exists a resolution of singularities® f : X — Spec 4 such that H' (X, O X) =0.

Remark. ([Li]) If Aisa two-dlmenswnal excellent normal local ring, then there exists
a resolution of singularities f : X — Spec A (even if characteristic of A is p > 0).

In the following, assume that A is a rational singularity of dimension 2 and f: X —
Spec A is a resolution of singularities with E := U7_,;E; = f~!(m) the exceptional
divisor on X, where E;’s are the irreducible components of E. Then an ideal I in A is
said to be represented on X if the sheaf IOx is invertible and I = H°(X, IOx).

If an ideal I is represented on some resolution X, then it is integrally closed. Con-
versely, any integrally closed ideal can be represented on some resolution X. In fact,
Giraud [Gi] showed the following

Theorem B. ([Li, §18], [Gi]) Assume that A is a rational singularity of dimension
2. Then there is a one-to-one correspondence between the set of integrally closed m-
przmary ideals I in A that are represented on X and the set of effective anti- -nef divisors
Z =% ,0E; on X (ie. a; >0, ZE; < 0 for all 1). The correspondence is given by
I0x = Ox(-2) and I = H(X,0x(-2)).

‘A resolution f : X — Spec 4 is minimal if X contains no (—1) curves.3 In case of
two-dimensional local rlngs such a minimal resolution is unique up to isomorphism.

Suppose that f : X — SpecA is a minimal resoulution. In the set C .of cycles
supported on f~!(m), we can define a partial order < as follows: for Z, Z'eC, 7z<Z
if Z' — Z is an effective divisor on X. Then the fundamental cycle Z is the mlmmum' '
element with respect to < among all positive anti-nef divisors. '

Definition (1.3). ([GIW]) Assume that A is a rational singularity of dimension 2.
An ideal I of A is called good if I is integrally closed and represented on the mlmmal
resolution f: X — Spec A. '

2f: X — Spec A is a projective and birational morphlsm and X is a regular scheme.
3A curve C is said to be (—1) curve if C = P; and C? =



In [GIW], Goto et.al. defined the notion of good ideals for any Gorenstein local ring
as follows: Let I be an m-primary ideal of a Gorenstein local ring A. Then I is “good”
if the associated graded ring grr(A) is a Gorenstein ring with a(grr(4)) =1-d.

Further, the following fact has been proved in [GIW], which justifies our definition
for good ideals in (1.3).

Theorem C. (cf. [GIW]) Suppose that A is Gorenstein. Then I is good if and only if
one of the following conditions holds.

(1) I is stable and e(I) =2-14(A/T).

(2) I* = JI and I = J : I for some (any) minimal reduction J of I.

Furthermore, if A is a rational singularity of dimension 2, then the following condition
1s also equivalent to the above ones. ‘

(3) I is an integrally closed ideal represented on the minimal resolution.

We are now ready to state our main result in this talk.

Main Theorem (1.4). Let A be a two-dimensional rational Gorenstein local ring and
assume that A is a pure subring of a regular ring B, which is a finite A-module of rank
N.
(1) Let I = H*(X,0x(—Z2)) be a good ideal such that IOx = Ox(—Z) and put Z =
i, a;E;, where Ey,... ,E, are irreducible exceptional curves on a minimal
resolution X — Spec A. Then we have

Dizy @il
N K
where n; is determined by the fundamental cycle Zy = Z -1 niE;.

(2) Let I be arbztrary integrally closed ideal of A and let T be the “good closure” of
I (that is, I is the minimum good ideal with I>1I). Then we have

BHK(I) - lA(A/I) = eHK(I) - lA(A/I)

eHK(I) - lA(A_/I) =

Also, if A is a rational singularity which may not be Gorenstein, we have the following

Proposition (1.5). Assume that A is a rational singularity of dzmenswn 2 and let
Icr be integrally closed ideals in A. Then

eHK(I) — lA(A/I) > BHK(II) - lA(A/II)

and equality holds if I and I' have the same good closures. In particular, epgg(I) >
L4(A/I) for integrally closed ideals. :

As, an application of the above proposition, we can show the following < .°

Corollary (1.6). Let A be a rational singularity of dimension 2. Put

' I
v(n) := sup {CHL() ’ I is an integrally closed ideal with I C m™ } for eachn > 1.

e(I)
. 1
Then we have lim v(n) = —.

n—oo 2



Remark (1.7). Let A be a two-dimensional local ring of characteristic p > 0. If there
erists an m-primary integrally closed ideal I of finite projective dimension, then A is
regular.®

In fact, we take an ideal I mentioned as above. Since such an ideal I is tightly closed,
we have that A is F-rational by Aberbach [Ab,Theorem (1.1)]. Thus Proposition (1.5)
implies that egg(I) > l4(A/I) unless A is regular. On the other hand, since I has
a finite projective dimension, we have egg(I) = l4(A/I) by Dutta [Du]; see (1.2.2).
Hence A must be regular. O

Example (1.8). Let A be a two-dimensional complete local ring which is isomorphic to

ka, where G is a finite subgroup of SL(2, k). Then A is F-rational and Gorenstein.
Moreover, since e(A) = 2, the maximal ideal m is a good ideal. In fact, m =
HO(X ,Ox(—2y)), where Zy = Y _, n;E; is the fundamental cycle of a minimal res-
olution X. Thus Theorem (1 4) implies that
16 -1

1
egg(m) = lA(A/m) + |G| Zn 1+ —— IGI =2- @, see also (WY1, §5].

§2. Proof of the Main Theorem

The tools of the proof of the Main theorem are so-called “McKay correspondence”
and “Riemann-Roch formula”.
First, we recall the McKay correspondence.

Proposition D. (McKay correspondence) (|AV,Yo]) Let B = k[[X, Y]] and let G be a
subgroup of SL(2,k) such that |G| # 0 in k and A = BC, the invariant subring of B.
Then we have the following facts. '
(1) As an A-module, B = @__, M, where {M;} coincides with the set of iso-
morphism classes of zndecomposable mazimal Cohen-Macaulay A-modules with
n; = rank M; and My =
(2) There is a one-to-one correspondence between the set {M;} and the set of iso-
morphism classes of irreducible representations of G via the group algebra B [G].
(3) Let f : X — SpecA be the minimal resolution of A and let Z = Y7 i=1 i E;
be the fundamental cycle on X. Then if we choose the indices suitably, then
¢(M;).E; = 6;; and rank M; = n; (where c(x) denotes the Chern class and
M; = f*(M;)/torsion).
Next, we recall the Kato’s Riemann-Roch formula, which plays the central role in the
proof of our Main Theorem and (1.5).

Theorem E (Kato’s Riemann-Roch formula). ([Li]),[Ka]) Let f : X — Spec A be
a resolution of singularities of A, where A is any normal local ring of dimension 2. Let
F be a locally free sheaf on X of rank r and let Z be a cycle supported on f~Y(m). If

we put
H(X - E,F
X(]:) = lA ((—_2

o) + (X2,

4Recently, this result was generalized by Goto to arbitrary rings of arbitrary dimension.



then we have g
x(F(2) ~x(F) =r- LD 7). 5,

where Kx denotes the canonical divisor on X and ¢(F) is the Chern class of F defined

by
C(]:) B = deg(}-lEi) = X(Ei’ F Qo OEi) -T- X(Ei)OE.')

for every irreducible component E; of E.

Corollary (2.1). Assume that A is a rational singularity, I is an integrally closed m-
primary ideal and f : X — Spec A is a resolution of its singularity such that IOx =
Ox(—2) is invertible, where Z is an effective anti-nef divisor supported on f~!(m).

Also, let M be a finitely generated reflexive A-module of rank M = r, and let M =
r* (M)/torswn 5 Then we have

(1) x(M(=2)) = la(M/IM) = —7 - Z(#Z_) (M) Z.
In particular,
(2) X(Ox(~2)) =la(A[]) = _Z%_K;rtﬁ :

Proof. ([Li]) Since A is a rational singularity, H'(X,F) = 0 for every coherent sheaf
F on X generated by ifs global sections. In particular, we have H'(X, M) = 0 and
H'(X,0x(—Z)) = 0. Also, since M is reflexive, we have H*(X — E, M(—Z)) = H*(X —
E,M) = H*(X,M) = M. Hence x(M) = 0. Also, let ay,...,a, be a system of
generators of I, and let = : 03‘2" — Ox(—Z) be the surjection defined by ay,... ,a, and
put F := Ker7. From the exact sequence

(2.1.1) 0 — F - 0¥ — 0x(-2)—0
we have the long exact sequence of cohomology modules
HY(X,0%)® — I = H(X,0x(-2)) — H'(X,F) — H'(X,0x)®" = 0.

Since the first map is surjective, we have H' (X, F) = 0 and also H'(X,F ® M) = 0
since M is generated by its global sections. Now, tensoring M with m, we get an exact
sequence -

0 —FOM— M® — M(-Z) —0.

Taking the global sections and noting that H' (X, F ® M) = 0, we have the surjection
M® = H(X,M)®" — H°(X,M(-Z)) sending (z1,...,z,) to 3, a;z;. This

_shows that H*(X, M(=2)) = IM and x(M(-Z2)) = lA(M/IM). Now our results
follows from Theorem E taking x(M(—2)) — x(M). O

5M is a locally free Ox-module generated by its global sections (cf. [AV]).



Remark (2.2). Note that ¢(F) - E; > 0 if F is generated by its global sections. In
particular, ¢(M) - Z > 0 in (2.1). This fact is essential in the proof of (1.5).

Although Theorem E is contained essentially in [Li] or [Ka], it is stated in a different
form in these literatures. So, for the convenience of the readers, we put a proof here.
The key of the proof is in the following Lemma.

Lemma (E-1). Let f : X — SpecA be as in Theorem E and let Z, Z' be cycles
supported on f~'(m) = JI_, E; such that Z' = Z + E; for somei. Then

X(F(2") - x(F(Z)) = —x(Ei, F(Z') ® OF,).

where x(E, L) := L4(H*(E, £)) — l4(H'(E, L)) denotes the “Euler characteristic of L”
for any coherent sheaf L over a curve E.

Proof. From the exact sequence
0 F(Z'Y®Ox(—E;)=F(Z) - F(Z') — F(Z')® Op, — 0,

we get the following long exact sequence of cohomology modules

0— H(X, F(2)) =5 HY(X, F(2')) =% H*(E;, F(Z')® OF,)
- HY(X, F(2)) = HY(X, F(Z')) 2% HY(E;, F(Z') ® OF,) — 0.

On the other hand, for any cycle Z on E, we have
0 H(X,F(2)) » H (X - E,F(Z)) - C -0

for some C. Thus we obtain the following commutative diagram :

0 —— H%X,F(Z)) —— H'(X -E,F(2)) c 0
llﬁ lﬂz lﬁa .
0 —— HY%X,F(2")) —— H(X — E,F(2') c’ 0,

where the second vertical map f; is isomorphism. Therefore we get
dim H'(X, F(2")) — dim, H (X, F(2))
= dim; H'(E;, F(Z') ® OF,) — dimy, H*(E;, F(Z') ® Og,)
+ dimy H°(X, F(Z')) — dim;, H(X, F(Z))
= —x(Ei, F(Z') ® Og,) + dimj, Cok 3,
= _X(Ei; .’F(Z') ® OE‘.) + dimy C — dim, C'.
This yields the required assertion. [ |

For the convenience of the readers, we recall the Riemann-Roch formula on a curve
E.



Lemma (E-2). (cf. [Li, §10]) Let E be an irreducible curve on the non-singular surface
X, and let F be a locally free Ox-module of rank F = r. Then we have

x(E, F® Og) =r1-x(E,Og) + deg(F ® Og).

Remark (E-3). Under the same notation as in Lemma (E-2), we have

x(B,0) = - ZUE )

Furthermore, if £ = P!, then x(Op) = 1.

Proof of Theorem E. Let Z = Y '_, n;E; and we prove by induction on N(Z) :=
Yor_i Ini|. I N(Z) =0, then Z = 0 and statement is trivial. Then put Z' = Z+E; asin
Lemma E-1. Now, by Lemma E-1, x(F(2")) - x(F(2)) = —x(Ei, F(Z')® OF,) and the

Kx +E;)-E;
latter is equal to — deg(F(Z’)®Og,) —rx(Og;) = —(rZ' + c(F)) -Ei+r£-—x+—)1
(cf. [Li, §10]). Now, N(Z') is equal to either N(Z)+ 1 or N(Z) — 1. Assume that
Theorem E is true for Z and we will show for Z’. Then

x(#2) -x(7) = {LE=D )2} - (i F2) 0 08)
L {W —c(]—')Z} _ (TZ'-[-C(]'-))‘ Ei+7‘(KX +2Ei) - E;
rZ' - (Kx - Z') ,
= -dn7,

which proves Theorem E in this case and the same argument shows also the case N(Z’) =
N(Z)-1. O

Outline of the proof of Theorem (1.4) and Proposition (1.5). Let A be a two-
dimensional rational Gorenstein local ring, and let f : X — Spec A be the minimal
resolution. Put Zo = ) ._, n;E; be the fundamental cycle on X. Also, let I be a
good ideal and take the corresponding anti-nef divisor Z = Y_._; a;F; such that I =
H%(X,O0x(—Z)). Then we must show N - egg(I) = N -la(A/I) + YI_; ain;.

(1) Since A is a finite subring of a regﬁlar local ring B, we have N-egk(I) = Ig(B/IB)
by Proposition A. Further, from the McKay correspondence, the ring B can be written

as
B=@P M = 4P P M2,
r=0 r=1

where {Mo(= A), My, ..., M.} is the set of indecomposable maximal Cohen-Macaulay
A-modules such that rank M; = n; forall i = 0,1,..., 7.
Put M; = f*(M;)/torsion for each i. Then by (2.1), we have

7' Kx-Z

2 +C(M,')~Z.

lA(M,'/I.Mi) = X(M,(—Z)) = rank(Mi)



Furthermore, the McKay correspondence implies that

c(M;) - E; = deg(M; |E,) = { ; 8 ; 3
Therefore we get
lp(B/IB) = gni la(M;/I.M;)
=L oy 7]
i=0
= Z n? - 14(A/) + Zr: ain; (7 e(Mo) =0)
i=0 =1

= N-lA(A/I)+ia,‘n,-.

=1

(2) Let I be an integrally closed m-primary ideal and I the good closure of I. Let
f': X' — Spec A be a resolution on which I is represented and let f : X — Spec A be
the minimal resolution so that there is a morphism g : X’ — X such that f' = fog. In
this situation we have IOx: = Ox:/(~2') and T = H°(X, Ox(~Z)) where Z = g,(2").
Now, since Z' = ¢g*Z + Y, where Y is an effective cycle on X' which is contracted to
points on X by g, and since ¢(M) is defined on minimal resolution for any reflexive
A-module M, we have ¢(M)-Y = 0. This shows (1.4) (2). '

(3) To prove (1.5), we consider a locally free sheaf F, = f*(A'/9)/torsion  of rank
q*. If I = H°(X, Ox(=2Z)), then by the same argument as is (1), we have

2 -2 —Kx-Z

La(4Y/1.4Y%) = x(F(~2)) = ¢ =

+c(Fq) Z = 42'1A(A/I)+C(fq)'z'

Now, let T be the good closure of I and let X, X', Z,Z'|Y be as in (2). Then since
enk () —la(A/I) = limg_,o(c(Fy)- Z)/q* and ¢(F,)-Y = 0 (note that c(F,) is defined
-on X), we have ek (I)—14(A/I) = ey (I)—1a(A/I). Also,if I C I' are good ideals of
A represented by anti-nef cycles Z, Z' respectively, with Z > Z’, then c(F)(Z-2")>0

since F, is generated by its global sections (recall (2.2)). This shows the inequality in
(1.5). O

Remark. Let A be a rational singularity of dimension 2 and I C I' be integrally closed
ideals in A. We believe that if we have equality in (1.5), then I and I’ have same good
closure although we have no proof yet.



§3. Examples

The list of F-rational Gorenstein rings. A = k[[z,y, 2]]/(f(z,y, 2)), where k is a
field of characteristic p.

type  equation ’ char A egg(A)

(An) f=zy+ 2! p>2 2-1/(n+1) (n>1)
(Dn) f=z*+y22+y™! p>3 2-1/4n-2) (n>4)
(Bs) f=2"+y>+2* p>5 - 2-1/24

(Br) f=22+y>+y2° p>5 2-1/48

(Bs) f=2+y>+2° p>7T 2-1/120

Example (3.1). Let A = k|[(s,t)], the et* Veronese subring of k[s,t]. Then there
exists a minimal resolution f : X — Spec A such that f~!(m) = E 2 P! with E? = —e.
Thus the set of good ideals in A is {m"},>;. Further, we have

e—1

La(Afm™) = —n? + (1-5)n and emx(m) - La(4/m™) =n- =

2

Let us explain the details in the following. Let N = Zzoe_f ) Zzoe_{ be a lattice of

rank 2, and let M = Homgz(N, Z) be its dual lattice with dual pairing denoted (, ). Now
consider the following three cones in Ng := N @z R;

— — —
o:=Rxoe] +Rxo(—€7 +eez),
— —
o1 :=Rxoe; +Ryoez,

0y :=Rxo€; + Ry (—€ +e€&3).

Then A = k[y,zy,z%y,... ,z%] = k[oV N M] is the affine coordinate ring of the cyclic
quotient singularity Tv(A) corresponding to the finite fan (N, A) where A = {o}.

Moreover, the toric singularity T (A’) corresponding to the finite fan (N, A’), where
A' = {01,0,} as the subdivision of A gives a minimal resolution f : X := Ty(A') —
Spec A of A with exceptional divisor E = P! and E? = —e.

From Remark (E-3) and E? = —e, we obtain Kx - E = e — 2. Thus by Kato’s
Riemann-Roch formula, we get

(nE)? + (nE) - Kx —nle+n(e—2) (n?-n)e
- = - = + n.

2 2 2

On the other hand, we put I; = (z'y,--- ,z°y)A for all i = 1,2,... ,e. Then each I;
is an indecomposable maximal Cohen-Macaulay A-module of rank 1. Further, we have
B:=k[s,t| 2L ® - - ®I._; &I as A-modules.

Put Z; = f*(I;) for each i. Then since Z; has no torsion, it is a locally free O x-module
of rank 1. Moreover, since I;A; = z*yA; and I;A; = z°yA,, where 4, := kloy N M] =
klz,y] and A, := k[oy N M| = k[z~!, z°y], we have that ¢(Z;) - E = e — i for each i.
Hence by the similar argument as in the proof of the main theorem, we get

lA(A/m") =

n n 1 & . e—1
egrx(m™) —l4(A/m )=n-?Z(e—z)=n-—2—; see also [WY2].

i=1



Example (3.2). Let k be an algebraically closed field of characteristic p > 3. Suppose

. v-1 0 0 -1 . .
that G := <( 0 1)1 o naturally acts on B = k[s,t]. Then the

invariant subring is A := B¢ = k[z,y, 2], where z = st(s* — %), y = %, 2 = s* + ¢t
Put A = k[[X,Y, Z]]/(X? — Y Z2 + 4Y3) = BG. Then A is an F-rational singularity
of type (Dy).
The graph of the set of exceptional divisors of the minimal resolution f : X — Spec A
of A can be written as

Ei—E¢—E,

3
WlthE(l‘;:Ef =E22=E§=—2andE'0~E1 =E0'E2 =E0°E3 =1
For any effective divisor Z = E?:o a;E; supported on f~1(m), Z is anti-nef if and
only if the following inequalities hold:

200 >a;+ay+as

2a; > a
(3.2.1) toe
202 2> ag
2a3 > ao

Put 7o = (2,1,1,1), @ = (,2,1,1), 7 = (2,1,2,1), 7 = (2,1,1,2) and % =
(3,2,2,2). Then for any vector Z' = (ao, a1, as,a3) in the semigroup

<(a0)a'l)a'27a3) € Z‘izo

(3.2.1) holds for a; (i = 0; 1,2,3)>,

if ag is even (resp. odd), then we can write as

1=0 =0

3 3
Z = E ¢z (resp. 7= E 7 + Z{) for some ¢; € Z>q.

Thus the set of anti-nef divisors on X forms a semigroup generated by Zy, Z;, Z,, Z3,
and Z,, where

Zy = 2Ey + E1 + E; + E3, (the fundamental cycle)
Zy =2Ey + 2E, + Ey + E3,
Zy =2Ey + By 4+ 2E, + E3,
Z3 = 2B + E1 + E, + 2B,
and Zy = 3Fy + 2FE, + 2E, + 2E;.

Further, we put a = 2y — 2,b = 2y + z and ¢ = 2z. Then the corresﬁonding good
ideal I; (¢ = 0,1,2,3,4) to the anti-nef divisor Z; (¢ = 0,1,2,3,4) can be found in the



list below.

divisor  good ideal I reduction J enx(I)
Zy IO:m=(a,b,c) Jo ( ) 1+7/8
Z1 Il =(a2,b,c) ( b) 2+8/8
Zz I2 :‘(a,bz,c) Jo ——( ) 2+8/8

Z3 Ii=(a+ba%c) Jo=(a+ba ) 2+8/8
Z4 Iy = (c,a?,ab,b?) Jp = (c ,(a—b) ) 3+12/8
Thus any good ideal in A can be written as a product m™ I I3 I3 I} (ny4 € {0,1})
in a unique manner.

Remark (3.3). (cf. [WY2]) If A is a two-dimensional Cohen-Macaulay local ring and
if I is stable, then

eHK(I") - lA(A/I") =n- {CHK(I) - lA(A/I)} .
For example, if A is a rational singularity of dimension 2 and if I is an integrally
closed ideal, then we can apply this formula; see also [WY?2].
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In this note, we summarize some of the facts on various invariants of Noetherian
local rings introduced in [KL1-2]. We also define some other invariants related to

columns of the presenting matrix of module, and discuss some of their properties.

1. Basic Definitions and Facts

Throughout this paper, we assume that (A4, m) is a commutative Noetherian local

ring, and all modules are unitary.
We first state the following result in [KL1], on which the definitions of our invari-

ants are based:

Theorem. Let (A, m) be a Noetherian local ring. Then there is an integer ¢ > 1 such
that for each finitely generated A-module M of infinite projective dimension, the ideal
generated by the entries of the map ¢; is not contained in m! for all i > 1 + depth A
(¢ > depth A if A is Cohen-Macaulay), where

(Fuy ) -on —> AT+t 85 gni B3y pqnjen Ly gm0 4
is a minimal (free) resolution of M.

Some previously known results in commutative ring theory are slightly improved
from this fact: One direction of Kunz’s characterization of regular local rings in
characteristic p > 0 ([Ku]) can be easily explained - if the Frobenius endomorphism
is flat and some finitely generated A-module M is of infinite projective dimension,



then every map in the minimal resolution of €M (M with the Frobenius map applied
e-times) would have all of its entries in m?*. This contradicts the above theorem.

One can similarly explain, and slightly improve, Herzog’s characterization ([H2]) of
the modules of finite projective and injective dimension in characteristic p > 0 ([KL1,
Corollary 2.8]'). The theorem also explains the results of Dutta and Eisenbud ([Du,Ei])
on the existence of free summands in certain syzygy modules ([KL1, Proposition 2.2])
because an A-summand of a module is characterized by a column of zeros in its
presenting matrix.

Also, using the argument of the theorem, some new numerical invariants of lo-
cal rings were introduced in [KL1]. They are col(A) and row(A) associated with
the columns and rows, respectively, of the maps in infinite minimal resolutions. In
[KL2], two more invariants were defined, say crs(A) and drs(A), which are asso-
ciated with the Cyclic modules determined by Regular Sequences and their Matlis
duals, respectively. We remark here that the 'dual’ invariants row(A) and drs(A),
which correspond to col(A) and crs(A) respectively, can be defined using the finitely
generated modules of finite injective dimension and the vanishing of Ext-modules.

More precisely, we have the following definitions :

Definition. In defining row(A) and drs(A) below, we assume that A is Cohen-
Macaulay. We denote by i(M) the i-th map in a minimal resolution of a finitely
generated A-module M. We also use the usual notation Soc(M) := Hom4(A/m, M)
to denote the socle of M. -

i) col(A) := inf {t > 1: for each finitely generated A-module M of infinite projec-
tive dimension, each column of ¢;(M) contains an element outside mt, for
all i >1 + depth A4 }.

row(A) := inf {¢t > 1: for each finitely generated A-module M of infinite pro-
jective dimension, each row of ¢;(M) contains an element outside mt, for
all i > depth A }.

ii) ers(A) ;= inf {t > 1 : Soc(A/(x)) ¢ m‘(A/(x)) for some maximal regular
sequence X = Ij,--+,Zn}.



drs(A) := inf {t > 1: Soc((A/(x))") ¢ m*((4/(x))V) for some system of pa-
rameters X = T, -+, Z4}-

When A is regular local, we interpret the above definition as col(4A) = row(A) =

1. These invariants are related as follows:

(1) i) 1 < col(A) < ers(A) < oo.
ii) If A is Cohen-Macaulay, then 1 < row(A4) < drs(A) < oco.
iii) A is a regular local ring if and only if any, equivalently all, of the invariants
in i) and ii) is 1. ([KL2, Proposition 1.3])

(2) If A is Gorenstein, then
i) col(A) = row(A) and ii) crs(A) = drs(A). ([KL2, Proposition 4.1])

In view of the above fact (1), it seems natural to consider the following conjecture:

Conjecture. ([KL2]) Let (4,m) be a Noetherian local ring such that some system
of parameters is a reduction of m. Then ‘
(i) col(A) = crs(A),

(ii) if A is Cohen-Macaulay, row(A) = drs(A).

We first remark that the additional assumption on the system of parameters is
essential: For the hypersurface ring A = F[z,y]/(zy(z + y)) where F is a field with
two elements ([HS, Example 3.2]), col(A) = mult(A) = 3 but crs(A) = drs(A) = 4.

We list some of facts which show that the conjecture is in the affirmative.

(3) (i) If depth A = 0, then col(A) = crs(A).
(ii) If dim A = 0, then row(A) = drs(A). ([KL2, proposition 1.7])

(4) Let (A, m) be a non-regular Cohen-Macaulay local ring such that some system
of parameters is a reduction of m. Then A is of minimal multiplicity, i.e.,
mult(A) =1+ edim A — dim A, if and only if all of its four invariants are equal
to 2. ([KL2, Corollary3.7])



(5) If (A,m) is a hypersurface ring, then col(A) = mult(A). Moreover, if some
system of parameters is a reduction of m, then all four invariants of A are equal
to mult(A). ([KL2, Theorem 4.3])

(6) Let R = k[te, ¢+, ¢(e=Ve=1] where k is a field and e > 4. (It is known that R
is an 1-dimensional Cohen-Macaulay local ring, but it is not Gorenstein.) Then
(i) col(R) = 2 = crs(R),
(ii) row(R) = e — 1 = drs(R). ([L2, Theorem 2.6])

We close this section with a very useful fact ([KL2, Proposition 1.4]) that for
a Cohen-Macaulay local ring A, drs(A) can be described as the generalized Loewy
length ¢£(A), i.e., drs(A) = £¢(A), where ¢£(A) was defined in [D3] as the infimum of
positive integer ¢ such that m* C (x) for some system of parameters x = z,-- -, z,
of A.

2. More Column Invariants and Questions

In this section, we define some invariants related to the columns of the presenting
matrix of module, and discuss their behavior. We also ask some questions on the

invariants defined in this paper.

Definition. Let (A, m) be a Cohen-Macaulay local ring, and M a maximal Cohen-
Macaulay module without free summands. We define colcp (M) to be the smallest
c such that each column of the presenting matrix of M contains an element outside

m¢. We now define:

colom(A) := sup{colcp(M) : M is a maximal Cohen-Macaulay module without

free summands. }.

colcar(A) is not necessarily finite while col(A) is always finite. Noting that col(A)
is determined by the minimal presenting matrices of the (1 + depth A)-th syzygy
modules, we extend the definition of col(A4) as follows:

Definition. For a nonnegative integer 7,



colj(A) := inf{t > 1 : for each j-th syzygy module without free summands of
infinite projective dimension, each column of its minimal presenting matrix contains

an element outside m*}.
The following is immediate from the above definitions:

Proposition. Let (4, m) be a Noetherian local ring. Then
(1) COl(A) = COll+depth(A)(A)-

(2) colj(A) > coljy1(A) for all j.

(3) colj(A) < col(A) < oo for all j > 1 + depth A.

The following theorem shows the relationship between invariants colcp(A) and
col;(A).

Theorem. Let A be a Cohen-Macaulay local ring of dimension d. Then

COld(A) = COlCM (A)

We sketch the proof of the above theorem, which will appear in [L1].

We assume that colcp(A) and coly(A) are finite. One inequality colgp(A) >
col4(A) follows immediately from the definition of colgps(A). For the other inequality,
let ¢ = colcp(A). Then there exists a maximal Cohen-Macaulay module M with no
free summands such that the presenting matrix of M has a column which is contained
in m'~1. If ¢ denotes the presenting matrix of M, then ¢ has a column contained in
m!~!. Using a mapping cone of complexes, we construct a d-th syzygy module, which
has no free summands and its presenting matrix is of the form

(* o)
* (£)p )

This gives the other inequality coly(A) > t = colcp (A). =

To relate two invariants col(-) and indez(-), we recall the definition of indez(-): In
[D2] Ding defined the index of a Gorenstein local ring (R, m) as indez(R) := inf {t >
1:6(R/m*) > 0}, and later considered the same definition for Cohen-Macaulay local



rings A with canonical modules in [D1]. For this case, it is shown in [KL3] that
colcm(A) = index(A). Moreover, if A is Gorenstein then col(4) = index(A) since
colem (A) = col(A) ([KL3]).

Next we put forth some of questions about the invariants defined in this paper.

Question 1. (Ding’s Conjecture, [D3]) Let R be a Gorenstein local ring. Is
index(R) the same as ¢¢(R)?

In [D2], Ding shows that his conjecture holds if R is a hypersurface ring with the
infinite residue field, and that in that case indez(R) is equal to the multiplicity of
R. In [H1] J. Herzog answers Ding’s conjecture in the affirmative for homogeneous
Gorenstein k-algebras. On the other hand, Ding ([D3]) has generalized this result to
the case when the associated graded ring gr,(R) is Cohen-Macaulay. However, M.
Hashimoto and A. Shida recently ([HS]) showed that Ding’s conjecture may not hold
unless the residue field of R is infinite; their example is R = F[z,y]/(zy(z + v)),
where F' is a field with two elements.

Question 2. (Conjecture, [KL2]) Let A be a Noetherian local ring with the
minimal reduction. Then col(A4) = crs(4), and if A is Cohen-Macaulay then row(A)
= drs(A) ?

;From the argument before Question 1 and the fact £6(A) = drs(A), we know
that the positive answer to Question 2 implies Ding’s conjecture.

Question 3. Let A be a Cohen-Macaulay local ring. Then col(A) < row(A) ?

We note that crs(A4) < drs(A), and if R is Gorenstein then col(R) = row(R) and
crs(R) = drs(R).

Question 4. Let (4, m) be a Noetherian local ring. Is col(A) the same as
col(A/m)? If A is Cohen-Macaulay, row(A) = row(A/m)?

For a finitely generated A-module M, we define col(M) [resp. row(M)):= 1 if
projdim M < oo. Otherwise, we define col(M) [resp. row(M)] to be the smallest ¢



such that for each ¢ > 1 + depth A [resp. 7 > depth A], each column [resp. row] of ¢;
contains an element outside m¢, where (F, ,) is a minimal resolution of M.

Using a mapping cone of complexes, we can show that col(A) [resp. row(A)] has
the same value as col(M) [resp. row(M)] for some finitely generated A-module M of
depth 0.
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ON ARITHMETIC MACAULAYFICATION OF
NOETHERIAN RINGS

TAKESI KAWASAKI

Tokyo Metropolitan University

1. INTRODUCTION

Let A be a commutative ring with identity and b an ideal in A. The
Rees algebra of b is the graded ring

R(b) = E(6T)"
n>0
where T is an indeterminate. The blowing-up of Spec A with center
Spec A/b is Proj R(b). In the present paper we consider the existence
of Cohen-Macaulay Rees algebras. We say that A has an arithmetic
Macaulayfication if there is an ideal b of positive height such that R(b)
is Cohen-Macaulay.
Main theorems of this paper are the following.

Theorem 1. Let A be a Noetherian local ring of positive dimension.
Then the following statements are equivalent:

(A) A has an arithmetic Macaulayfication;
(B) A is unmized and all the forward fibers are Cohen-Macaulay.

Theorem 2. Let A be a Noetherian ring possessing a dualizing com-
plezx. If the codimension function of A is a constant on the associated
primes of A, then A has an arithmetic Macaulayfication.

Here a Noetherian local ring A is said to be unmixed if dim A/p =
dim A for every associated prime p of A. A formal fiber of A are the
rings A,, / pfi,, where p is a prime ideal in A.

The studies on the Cohen-Macaulay property of Rees algebras started
from Barshy [2]. He gave the defining ideal of R(b) and its free reso-
lution if b is generated by a regular sequence. Around 1980, Goto and
Shimoda studied several properties of R(b) in the case where A is a
local ring and b is a parameter ideal. See [5], [6], [7], and [13].

Summarizing these investigations, Goto and Yamagishi [8] estah-
lished the theory of u.s.d-sequences. Their theory contains the existence
of an arithmetic Macaulayfication in the case where A is an unmixed



and Spec;—i is Cohen-Macaulay except for the closed point. See also
Brodmann [3] and Schenzel [12]. Recently Kurano [11] proved that
a Noetherian local ring A containing a finite field has an arithmetic
Macaulayfication if the non F-rational locus of A is of dimension 1.
Independently this was also done by Aberbach [1]. Theorem 1 gives a
necessary and sufficinet condition to exist an arithmetic Macauldvﬁca-
tion.
The theorems above give some consequences.

Corollary 3. A Noetherian local ring is a homomorphic image of a
Cohen-Macaulay local ring if and only if it is universally catenary and
all the formal fibers of it are Cohen-Macaulay. An excellent local ring
1s a homomorphic image of a Cohen-Macaulay, excellent local Ting.

Corollary 4. A Noetherian ring has a dualizing complez if and only
if it is a homomorphic image of a finite-dimensional Gorenstein ring.

2. SKETCH OF THE PROOF OF THEOREM 1

In the rest of this paper we sketch the proof of Theorem 1. Let
A be a Noetherian local ring with maximal ideal m. The implication
(A)=(B) is easy and the converse is also if dim A = 1. Therefore we
see the proof of the implication (B)=>(A) in the case where dim 4 > 1.

First we describe the choice of center. For a finitely generated A-
module M, let a?(M) denote the annihilator of the p'" local cohomology
module HZ(M) of M and let a(M) = [, gim s 97 (M).

Definition 5. Let M be a finitely generated A-module of dimension d >
0 and 0 < s < d an integer. A p-standard system of parameters of
type s for M is a system of parameters z, ..., 24 for M such that

® Tyy1,..., &g €a(M) and

eI € G(M/(.'l7,'+1, .. .,xd)]\/l) for i S S.

This notion was given by N. T. Cuong [4]. If the condition (B) holds,
then we can find a p-standard system of parameters.

Proposition 6. Assume that A satifies (B) and d = dim A > 2. Then
there exist an integer 0 < s < d —1 and a p-standard system of param-
eters of type s for A.

The implication (B)=>(A) comes from the following proposition.

Proposition 7. Assume that d = dim A > 2 and there ezists a p-
standard system of parameters x,, ... , x4 of t1pe s<d-2 for A. Let
4= (zi,...,%q) for1 <i<s+landb=gq;---q,q5;7". If0:2,=0,
then the Rees algebra R(b) is Cohen-Macaulay.



Let by, ..., b, be ideals in A. The mult-Rees algebra of them is
defined to be

Rby,....,b)= @@ (bT)™ - (b,T)
ny,..,nr20 -

where T, ..., T, are indeterminates. We show that

R(qla"'7qsaqs+1a"'aqa+l)
N’

d—s—1 times
is Cohen-Macaulay hecause Hyry [9] gave the following theorem.

Theorem 8 (Hyry). Let by, ..., b, be ideals in A of positive height.
If R(by,...,b,) is Cohen-Macaulay, then R(b,---b,) is also.

A p-standard systém of parameters satifies assumptions (1)-(5) of
the following theorem. Therefore we obtian Proposition 7.

Proposition 9. Letz, ..., x4 be a sequence in A and q; = (x;,...,14)
fort < i-<d We fir integerst < s+1<d, ay, ..., ay > 0, and
Og41 > d—s—1 and put

S=R(qt,..;,qt,...,q3+1,...,q3+']).
a; limes a4 limes
If the sequence x4, ..., x4 satifies the following siz conditions: ’

(1) =i, ..., x4 is ad-sequence on A/(2* | X € A) for allt < i < s+1,
Ny, oo, Mo >0, and AC{t,...,i —1};

(2) zi, ..., x4-1 ts a d-sequence on A/({z}* | X € A},z4) for all
t<i<s+1l,n,...,n-1>0,and AC{t,...,i — 1}

(3) Tg41, ..., Tq is @ u.s.d-sequence on Af(zX* | X € A) for all
g, ..., n,>0and AC{t,...,s};

(4)
{eP I X €A 2y ) i O (@} [ X € A)+ g -+ qi3y]
=@ X EA) + (Tkyo oy mimn)qf gt T gl
forallt<i<k<s+1,k<I<d,ngy....,ni_,ny>0,n4 ...,
oty Whgts oo, Neg1 2 0, and A C {t,...,i =1}
(5) ,
[ 1A € A) el gy ] = [ | A € A) a5y qicy
foranyt <i<s+1,ny,...,n1 >0 n; ..., ngyy >0, and.
Ac{t,...,i—2};
(6) 0:2y C0:ay,



then
H;);S+S+(S) =0:2q,
Hyg 5, (S)=0 forp#0,d—t+1+a+---+a,n

q
and
d—s+14op++asy —
[Hq,S+S+ (S)]("ly~~,"a‘+~~'~+a,+l) - O
unless ny, ..., Naytotapy, < 0.

The proof is the descending induction on ¢. If t = s + 1, then the
assertion comes from the theory of u.s.d-sequences.

Assume that ¢t < s+ 1. We may assume that o, = 1 by using the
general theory of mult-Rees algebras. Let A = A/x;A and §; = q;A for
t+1 < i < s+1. Then the sequence x,,, ... , 24 in A satifies (1)-(6).
Therefore

S = R@t+1,---,ﬁt+1‘,flt+2,---aﬁt+2,- --,fls+1,---,qs+1)

-~ -~ —

a1 + 1 times a4 times ay4y times

is ALMOST COHEN-MACAULAY. Furthermore (4) gives an ALMOST
EXACT sequence

0 — 5(-1,0,...,0) 2 g y 8 y 0.
Hence S is ALMOST COHEN-MACAULAY.

The precise proof is too long to submit this proceedings. Please refer
the preprint [10].
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Three theorems on Gorensteinness in associated graded rings

Shin-ichiro Iai

1 Introduction.

This is a joint work with Professer Shiro Goto ([GI]).  In this paper we are going to develop a
theory of Gorensteinness in graded rings associated to certain of ideals in Gorenstein local rings.
Let A be a Noetherian local ring with the maximal ideal m and dim A = d. We assume the field
A/m is infinite and A is a homomorphic image of a Gorenstein local ring. For each ideal I in A
we put R(I) = Y ;50 I't! C Aft], R'(I) = 3,z I't C Aft, 71, and G(I) = R'(I)/t7'R/(I) and
call them respectively the Rees algebra, the extended Rees algebra, and the associated graded
ring of I. Let a = a(G(I)) denote the a-invariant of G(I). The purpose of this paper is to prove
the following three theorems. The first one is a slight generalization of a theorem due to [Hy].

Theorem 1.1. Let I (# A) be an ideal in A and let k > 1 be an integer with I* # (0). Suppose
that G = G(I) is a Cohen-Macaulay ring. Then the following conditions are equivalent.

(1) G is a Gorenstein ring and a = —1mod k.

(2) G(I*) is a Gorenstein ring and 1=+ D (0) : I for all 1 < i < a.
a+1

A 1.

When this is the case, we have a(G(I*))

We will prove our theorem 1.1 in Section 3. Next we will investigate a certain special kind of
ideals. Let I (# A) be an ideal in A of height s. Let J be a minimal reduction of I. Hence
J C I and I™*! = JI™ for some n > 0. We put r = r;(I) := min{n > 0| I"*! = JI"} and call
it the reduction number of I with respect to J. Let A\(I) denote the analytic spread of I, that is
A(I) =dim A/m®4 G(I). We put £ = A(I). Then J is minimally generated by /-elements ([NR]
or [S], Ch.2), whence £ > s. Let ad(I) = £ — s and call it the analytic deviation of I (cf. [HH]).
Ideals having analytic deviation 0 are said to be equimultiple. With this notation our second
main result is stated as follows, which we will prove in Section 4.

Theorem 1.2. Assume that A is a Gorenstein local ring and let I be an equimultiple ideal in
A with ht4 I > 1. Then the following two conditions are equivalent.

(1) G(I) is a Gorenstein ring.
(2) G(I) is a Cohen-Macaulay ring and I" = J" : I".

Lastly we shall explore in Section 5 the ideals I with ad(I) = 1. Let

U= () 4nA4)
pEAsshs A/

where Asshy A/I = {p € V(I) |dim A/I = dim A/p}. Then we have the following.



Theorem 1.3. Assume that ad(I) = 1 and I, is generated by an Ap-regular sequence for all
p € Asshy A/I. Then the following two conditions are equivalent.

(1) G(I) is a Gorenstein ring.

(2) (a) A is a Gorenstein ring,
(b) depthA/I >d—s—1,
(¢) ry(I) €1, and
(d) I=(JU:I)nU.

Our theorem 1.3 is based on Theorem (1.1) of [GNa] in the case where d = 1 and s = 0. With the
same hypothesis as in Theorem 1.3 the first author and Huckaba [GH] studied the Gorenstein
property of R(I) and essentially proved in the case where s > 2 that R(I) is a Gorenstein ring
if and only if G(I) is a Gorenstein ring and s = 2 (cf. [GH], Corollary 2.12). And summarizing
their result with our theorem 1.3 we have

Corollary 1.4. Suppose that I, is generated by an Ap-regular sequence for all p € Asshy A/I.
Let ad(I) =1 and s > 2. Then the following two conditions are equivalent.

(1) R(I) is a Gorenstein ring.

(2) (a) A is a Gorenstein ring,
(b) s=2,
depth A/I >d -3,
ry(I) <1, and
I=JU:)nU. :

The defining ideals of projective monomial varieties of codimension 2 always satisfy conditions
2 stated in Corollary 1.4 ([BM]), whence their Rees algebras are necessarily Gorenstein rings.

Before entering into details, let us fix again the standard notation in this paper. Throughout
let (A, m) denote a Cohen—Macaulay local ring with dim A = d and assume that A is a homo-
morphic image of a Gorenstein local ring. We denote by K4 the canonical module of A. Let
I (# A) be an ideal in A of height s and J a minimal reduction of I. We put R' = R'(I) and
G = G(I). Let a = a(G) and letr = r;(I). We denote by Kp and K¢ the graded canonical
modules of R’ and G respectively.

2 Preliminarites.

In this section we summarize some facts which we will frequently use in this paper. Firstly we
shall give a result originated in an argument given by Herzog, Simis, and Vasconcelos [HSV],
concerning the structure of canonical modules of extended Rees algebras. Namely we have the
following result, which is due to [TVZ] in the case where R(I) is a Cohen-Macaulay ring with
hta I > 1.

Fact 2.1. There ezists a unique family w = {w;}icz of A-submodules of K4 satisfying the

following four conditions.

(a) wit1 Cw; foralli € Z,



(b) w; =Ky4 for all i K0,
(¢) I'w; C wiyj for alli,j € Z, and
(d) Kp = ez w;tt as graded R'-modules.

If G is a Cohen-Macaulay ring, we have w; = Ka 2 w—q for all i < —a — 1 and get an

isomorphism
Kg = @ wi—1/w;

i>-a

of graded G-modules.

Let us refer to this family w = {w;}iez as the canonical I-filtration of K 4. We furthermore have

Fact 2.2. Let ad(I) =0 and s > 1. Suppose G is a Cohen-Macaulay ring. Then
(1) w; = JHT=sH1K 4 i, I" for alli € Z.

(2) wi =I5ty = Ji=stly | foralli>s—1.
The next criterion will play a key role in this paper.

Fact 2.3. Assume that A is a Gorenstein local ring and G is a Cohen-Macaulay ring. Let
A={pe V() |htap =dimG,/pGy}. Then A = AssyG and the following three conditions
are equivalent to each other. i .

(1) G is a Gorenstein ring.
(2) There is a monomorphism G(a) = K¢ of graded G-modules.

(3) Gp is a Gorenstein ring with a = a(Gy) for all p € A.

3 The proof of Theorem 1.1.

In this section we assume that A is a Gorenstein local ring and G is a Cohen-Macaulay ring.
Let w denote the canonical I-filtration of K4 = A. Let k > 1 be an integer. Then G(I*) is also
a Cohen-Macaulay ring with the canonical I*-filtration wk) = {wijljez of Ka = A. If G is a

ot ) since Kpr = R'(a+ 1), so

Gorenstein ring and @ = —1 mod k, we have Kg/(r) & "(I5)(
a+1

that G(I*) is a Gorenstein ring with a(G(I*)) =
show in this section.

— 1. The converse is also true as we shall

To begin with we note

Lemma 3.1. Suppose that I* # (0) and G(I*) is a Gorenstein ring. Then

(1) a = -1 modk,



_a+1
Tk

3) IM = w_gykj_1 for allj € Z.
J

(2) a(G(1%)) — 1, and

Proof. Let b= a(G(I*)). Then {wy;}icz is the canonical I*-filtration of A and Wi(=b—-1) = A (cf.
Fact 2.1). Hence wy; = I¥(+*+1) for all i € Z. Consequently wy(_y) = I* C A = w_q_; so that
we have k(—b) > —a— 1. Let n = k(~=b) +a+1> 1. Then I" = I"w_4_1 C w_gyn-1 = I¥,
whence n > k as I¥ # (0). On the other hand, because —a +n — 1 —k = k(=b — 1) and

Wr(—p—1) = A, we have —a+n —1—k < —a — 1 (recall that o.lz_a_l =ADw_,), whencen < k
atl_ 1, because k = k(—b) +a + 1.
Hence k(—b+j —1) = —a+kj — 1 for all j € Z and 50 w_q4xj—1 = I* for all j € Z. O

so that we have n = k. Therefore a = —1 modk and b =

Identify G = @,z I'/I"*! and Kg = @,z wi—1/wi. Then we set ¢ : G(a) - Kg be the
homomorphism of graded G-modules defined by

o(z mod I'***1) =z mod w;

for all z € I'*® and i € Z. Let K = ker . Then K; = [I*+® N w;]/I*teH! for all i € Z.

Lemma 3.2. Suppose that G(I*) is a Gorenstein ring. Then K is a finitely graded G-module.

Proof. Since Kp is the finitely generated graded R'-module, we have an integer a such that
wiy1 = Jw; for all i > «, while by Lemma 3.1 (3) we see wy, = I°t™t! for some m > «. Hence
wj = I3+ for all § > m, because wiy, = Jw; for all i > . This forces K; = (0) if j > m,
whence K is a finitely graded G-module. O

The next result is due to [Hy]. Let us give a brief proof in our context.

Corollary 3.3 ([Hy], Theorem 2.4). Let ht4 I > 1. The following conditions are equivalent.
(1) G is a Gorenstein ring and a = —1 mod k.
(2) G(I*) is a Gorenstein ring.

Proof. Tt suffices to show the implication (2) = (1). We look at the homomorphism ¢ : G(a) —
‘Kg. Then by Lemma 3.2 K is finitely graded, which forces £ = (0) since G4 C +/(0) :¢ K
and gradeG; = ht4 I > 1 (notice that G is a Cohen-Macaulay ring). Hence the map ¢ is a
monomorphism and so G is a Gorenstein ring by Fact 2.3. 0

Lemma 3.4. Let ht4 I = 0. Then I®7*1 D (0) : I' for every 1 < i < a if G is a Gorenstein
ring.

Proof. Induction on d. We have a = a(G)) for all p € V(I). By [O], Theorem 1.6 we may
assume that d > 1 and our assertion holds true for d — 1. Let 1 < i < a and put Z =
(0) :4 I'. Then Z # A. We must show Z C I**!. Let e : G - G((I+ Z)/Z) be the
canonical epimorphism of associated graded rings and put L = kere. Then L is a graded ideal
in G with Ly, = (I™NZ)/(I™"'NZ) for each m € Z. Notice that £4(L,,) < oo for all
m < a—1+ 1, where £4(Ln,) denotes the length of Ly,. In fact, suppose (Lm), # (0) for some



p € Spec A\ {m}. Then by the hypothesis of induction we see Z, C I,‘,"i"'1 C I so that
(Lm)p = (I;" NZzy)/ (I;""H N Zy) = (0), which is absurd. Hence £4(Lp) < oo if m <a—1i+1.
Notice that ZNI%+! = (0), because for each p € Ass A we have Z, = (0) if p 4 I and Ig“ = (0)
otherwise. Thus L is a finitely graded G-module, whence Hp, (L) = @)z Hi(L;) = H)(L) = (0)
since G is a Cohen-Macaulay Ting with d = dim G > 1. Therefore L, = (0) so that ZNI™ =
ZNnI™ forallm < a—i+1. Thus Z C I*~**! as was claimed. ]

The next result will provide for the lack of criteria simi]ar to Corollary 3.3 in the case where
hty I =0.

Theorem 3.5. Suppose ht4 I =0 and I1°~*t1 D (0) : I' for all 1 < i < a. Let I¥ # (0). Then
the following conditions are equivalent.

(1) G is a Gorenstein ring and a = —1 mod k.

(2) G(I*) is a Gorenstein ring. )

a+1
k

Proof. By Lemma 3.1 we have only to show that G is a Gorenstein ring if so is G(I*). We may
assume k > 2. Hence 1 < k —1 < a because a = —1 mod k by Lemma 3.1 (1). We begin with
the following.

When this is the case, we have a(G(I*)) = 1.

Claim 1. a = a(Gy) for allp € V(I).

Proof. Let p € V(I): Then a > a(Gy). We have the equality if w_, C p. Suppose that w_, ¢ p.
Then I* = w_gyx_1 D I*lw_, by Lemma 3.1 (3), whence I",‘ = I",“_l. Therefore If‘l = (0),
while we get (0) : I¥~! C I*~%+2 C p by our standard assumption. This is impossible. O

To complete the proof it suffices by Fact 2.3 to show that G} is a Gorenstein ring for all
peA={pe V(I)| htap = AI)}. Let p € A and put £ = ht4p. By induction on £ we
will show that G, = G(I,) is a Gorenstein ring. Let £ = 0. Then since a = a(Gp) by Claim
1, we have I;*! = (0) so that Ig™**! = (0) : I} for all 1 < i < a. Thus G, is a Gorenstein
ring by [O], Theorem 1.6. Assume that £ > 1 and G, is a Gorenstein ring for any q € A with
ht4q < £. We look at the homomorphism ¢ : G(a) —+ Kg. The purpose is to show Ay, ®4 ¢
is a monomorphism. Let K = kery. Suppose that K, # (0) and choose any q € Ass4 K so
that ¢ C p. Then Kq # (0) and g € A since A = Assy G (Fact 2.3). If ¢ C p, then by the
hypothesis on £ = ht4 p the ring G4 = G(I;) is Gorenstein with a = a(G(I3)), so that Aq®4 ¢ is
an isomorphism (recall that wq = {wiq}icz is the canonical Ig-filtration of Ay), which is absurd.
Thus Assa, K, = {pAp}, whence £4,(K;) < oo since K is a finitely graded G-module by Lemma
3.2. Therefore depthGp = 0 so that we have dimGy, = 0, whence £ = htqp = 0. This is
the required contradiction and we conclude that Ay, ®4 ¢ is a monomorphism. Hence G, is a
Gorenstein ring for all p € A by Fact 2.3 and Claim 1. Thus G is a Gorenstein ring. O

As a special case of Theorem 3.5 we have the following.
Corollary 3.6. Let hty I = 0 and put n = min{n € Z | I}*" = (0) for all p € Asshy A/I}.

Then the following conditions are equivalent.

(1) G is a Gorenstein ring.



(2) G(I™) is a Gorenstein ring and I"™+1 D (0) : I* for all 1 <i < n.
When this is the case, we have a = n and a(G(I"*!)) = 0.

Proof. By Proposition 2.4 and Theorem 1.1 it suffices to show a = n in any case. This is certainly
true if I"*! = (0). Assume that I"*! % (0) and choose p € Asshy A/I so that I} # (0). Then
n = a(Gp) since I,’,‘Jrl = (0). Therefore we get a = n if G is a Gorenstein ring (recall that
a = a(Gy)). Suppose G(I"*!) is a Gorenstein ring. Then a(G(I"*!)) = 0 since a(G(I;*")) =0,
so that we have a = n by Lemma 3.1 (2). O

4 The proof of Theorem 1.2.

In this section let I be an equimultiple ideal of height s and it’s reduction J generated by elements
ay,as,--- ,as. Hence aj,as,...,as. The purpose of this section is to prove the following.

Theorem 4.1. Let s > 1. Then G is a Gorenstein ring if and only if the following four
conditions are simultaneously satisfied.

(1) A is a Gorenstein ring.

(2) A/(I*+ J) is a Cohen-Macaulay ring for all 1 <i <.

(8) JNI'=JI'"Y forall1 <i <.
) I

(4 I7

When this is the case, we have I' = J* : I" for all i € Z.

Proof. We may assume A is Gorenstein. Let f; = a;t (1 < ¢ < s). Then {fi}1<i<s is a subsystem
of homogeneous parameters for G. Therefore the sequence {fi}1<i<s i8 G-regular if G is Cohen-
Macaulay. By [VV] we furthermore have condition (3) is equivalent to saying that f1, fa,+ - , fs
is G-regular. Hence in order to prove our theorem we may always assume condition (3) is
satisfied. Then since

G/(f17f2)"' ’fs)GEG(I/J)

as graded A-algebras, passing to the ring A := A/J, we find G is a Cohen-Macaulay ring if
and only if condition (2) is satisfied (use the exact sequencese 0 — I*A/I*t1A — A/I't1A —
A/I'A — 0). When this is the case, by Fact 2.2 we get w,_; = J™ : I" and w; = I'"5tlw,_,;
for all i > s — 1. Therefore condition (4) is satisfied and I* = Ji : I" for all i € Z, once G is a
Gorenstein ring. Conversely assume that G is a Cohen-Macaulay ring and I" = J” : I". Then
w; =I5t for all i > s — 1, since we—y = J™ : I" = I" and w; = I"_s"flw,_l. Therefore
the kernel K of the homomorphism ¢ given in Section 3 is a finitely graded G-module, whence

= (0) because G4+ C +/(0) :¢ K and grade G4 = ht4 I > 1. Thus'by Fact 2.3 G is a Gorenstein
ring. B . O

5 The proof of Theorem 1.3.

In this section we assume that the field A/m is infinite. Let I (# A) be an ideal in A with
htaI = s and A(I) = s + 1. Assume that I, is generated by an Ap-regular sequence for all
p € Asshy A/I. Let J be a minimal reduction of I with r = r;(I). Then since A/m is infinite,
we may choose a system ai,as,: - ,as4+1 of generators for J so that the sequence aj,as,--- ,as



is A-regular and I, = K, for all p € Asshy A/I where K = (a1,a3, - ,a,) (cf. [AHT]). Let
U =U(I) = ycassh, 4/1(TAp N A) denote the unmixed component of I. We put R = R(I),
R' =R/(I), and G = G(I). Let a = a(G). To begin with, let us summarize the following.

Lemma 5.1 ([GNN2], Lemma 2.8 and Proposition 2.9). Suppose that G is a Gorenstein
ring. Thenry(I) <1 and a = —s.

Lemma 5.2. (JU:I)NU =[(JU+K):I|NU.

Proof. Let z € [(JU+K):I]NU. Then zI C (JU + K)NU? = JU + (K NU?). Hence to
see (JU : )NU = [(JU+K): I]NU it suffices to show that KU = K N U2. It is enough
to show KpUp, = K, N U for all p € Ass4 A/KU. We may assume U C p. Look at the
exact sequence 0 - K/KU — A/KU — A/K — 0 of A-modules. Then since K/KU =
(A/U) ®a/k (K/K?) = (A/U)*, we have Assg A/KU C Assy A/U U Assy A/K. Therefore
ht4 p = s whence Uy = Kp. O

The next result is a slight modification of the theorem given by [GNa]. In the original
statement condition (3) is that I = (JU : I) N (I : m). Let us check these two conditions
are equivalent to each other under the assumption that d = 1, s = 0, and r;(I) < 1. Since
I:mCU,weget I=(JU:I)N(I:m)if I =(JU:I)NU. Assume that I = (JU : I)N(I : m)
and take € (JU : I) N U. Then since x € U, méz C I for some £ > 1. We take such
an integer £ > 1 as small as possible. Then £ = 1. In fact, assume £ > 2 and we have
mé~lg C (JU : I)N (I : m) = I, which contradicts the minimality of £. Hence mz C I so that
z € (JU: I)N (I : m) = I. Therefore we have I = (JU : I) N U since I C (JU : I)NU (recall
that 12 = JI).

Proposition 5.3 ([GNa], Theorem (1.1)). Let d =1 and s = 0. Assume that I, = (0) for
allp € Asshy A/I. Then G is a Gorenstein ring if and only if (1) A is a Gorenstein ring, (2)
ry(I)<1l,and 3) I=(JU:I)NU.

We are now ready to prove Theorem 1.3.

Proof. If conditions (a), (b), and (c) are satisfied, then G is a Cohen-Macaulay ring and a = —s
(JGNN1] and [GH], Proposition 2.4 ). Conversely, if G is a Gorenstein ring, then a = —s
and conditions (a), (b), and (c) are satisfied by Lemma 5.1 together with Burch’s inequal-
ity ([B]). Therefore, to prove the theorem we may assume without loss of generality that
conditions (a), (b), and (c) are satisfied. Then because G is a Cohen-Macaulay ring, the se-
quence ait,ast, - -+ ,ast is G-regular ((GNN2], Corollary 2.3 (2)) and so we get the isomorphism
G/(art,ast, -+ ,ast)G = G(I/K) of graded A-algebras. Besides, we have r;(I) = r;/k(I/K)
([GNN2], Lemma 2.4 (1)) and (JU : I)NU = [(JU + K) : I]NU by Lemma 5.2. Hence passing
to the ring A/K, we may furthermore assume that s = 0. We put b = a;. Hence J = bA.
We must check that G is a Gorenstein ring if and only if I = (JU : I) NU. Firstly suppose
that I = (JU : I)NU. Let p € A = Assy G (cf. Fact 2.3). We want to show that G(I,) is a
Gorenstein ring with a (G(I;)) = 0. Notice that ht4p = A(J;) < 1 because J, is a reduction of
I,. Hence hty, I, < 1. If hty, I, = 1, we have ht4p = 1 whence I, is an pAp-primary ideal
in Ap. Therefore p 2 U so that we have I, = J, : I,. Hence G(I,) is a Gorenstein ring with
a(G(Iy)) = 0 by Theorem 1.2. Suppose that hty, I, = 0. If ht4p = 0, then I, = (0) and we



have nothing to prove. Assume that ht4p = 1. Then J, is a minimal reduction of I, since
htap = A(Ip) = 1 and we have I, = [J, - U(Ip) : I,) N U(I). Therefore thanks to Proposition
5.3, we get G(Ip) is a Gorenstein ring with a (G(I)) = 0. Thus by Fact 2.3 G is a Gorenstein
ring.

Conversely suppose that G is a Gorenstein ring. Then a = 0. We want to show I = (JU :
I)NU. Let L= (JU: I)NU. Then I C L since I? = JI. Assume that I C L and choose
p € Assy A/I so that I, C Ly,. Then p € A = Assy G. Hence ht4p = \(I,) < 1, because J,
is a reduction of I,,. If hta, I, = 1, then Iy, is an pAp-primary ideal of A, and Jj is a minimal
reduction of I,. Hence I, = J, : I, by Theorem 1.2, because G(I;,) is a Gorenstein ring with
a(G(Ip)) = 0. Therefore we have I, = L, since p 2 U, which is impossible. Thus htg4, I, = 0.
If htap = 0, then I, = (0) so that U, = U(I,) = (0). Hence L, = (0), which is impossible.
Thus ht4p = 1 and so J, is a minimal reduction of I,. Therefore by Proposition 5.3 we get
I, = (J, - U(I) : I,)NU(Jp) = Ly. This is a final contradiction, which completes the proof of
Theorem 1.3. 0
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- COMPRESSED POLYTOPES

HIDEFUMI OHSUGI

(GRADUATE 'SCHOOL OF SCIENCE, OSAKA UNIVERSITY)

This is a brief draft of the paper [3]. A convex polytope P C R™ is called integral
if all vertices of P belong to Z". Moreover, a convex

polytope P C R™ is said to be a (0, 1)-polytope if each of its vertices belongs to
{0,1}". Let P C R" be an integral convex polytope with the vertices d;,d,,... ,d,
and K[y1,¥s,... ,Y,) the polynomial ring in ¢ variables over-a field K. The toric
ideal of P is the ideal Ip C K[y1,¥2, - - . ,Y,) generated by all homogeneous binomials
f=1, v, T, ys,, where N = 2,3, ..., with Y 6, =S, 85, A compressed
polytope [5, p. 337] is an integral convex polytopé P C R" such that the initial ideal
of Ip with respect to any reverse lexicographic monomial order on K[y, s, ... , Y]
is generated by squarefree monomials. If P C R" is compressed, then all faces of
P are again compressed. It turns out [7, Corollary 8.9] that an integral convex
polytope is compressed if and only if any of its “pulling triangulations” (e.g., {5]) is
unimodular. :

It is known [5, Example 2.4 (b)] that the convex polytope of all n x n doubly
stochastic matrices is compressed. Moreover, it is proved [7, Theorem 14.8] that
all reverse lexicographic initial ideals of its toric ideal are generated by squarefree
monomials of degree at most n. The purpose of the present paper is to discuss
the technique appearing in the proof of [7, Theorem 14.8] in a much more general
situation and to show that the convex polytope determined by a certain system of
linear inequalities is compressed provided that the polytope is a (0, 1)-polytope. The
explicit statement will appear in Theorem 1. Our situation is particularly nice if
the coefficient matrix of the system of linear inequalities is totally

unimodular, because the required assumption that the polytope is a (0, 1)-polytope
is automatically satisfied if the coeflicient matrix is totally unimodular (Corollary 2).
Example 3 says that the class of compressed (0, 1)-polytopes includes (i) hypersim-
plices, (ii) order polytopes of finite partially ordered sets, and (iii) stable polytopes
of perfect graphs.

We fix integers a;;, b; and €;, 1 < i < m, 1 < j < n, with each ¢; € {0,1}, and
suppose that the set of all solutions

z=(zM,2® ... z™)eR"
of the system of linear inequalities

n
b <Y ayz®) <bi+e, 1<i<my (1)
j=1

0<z0 <1, 1<j<n (2)
1
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is nonempty. Thus the system of linear inequalities (1) and (2) determines a convex
polytope P C R"™. The question

whether P is a (0, 1)-polytope or not seems to be rather difficult. However, once
the convex polytope P turns out to be a (0,1)-polytope, we immediately conclude
that P is compressed.

Theorem 1. Suppose that the conver polytope P C R™ determined by the system
of linear inequalities (1) and (2) is a (0,1)-polytope. Then P is compressed.

Theorem 1 is particularly nice if the coefficient matrix (aij)1<i<m;1<j<n Of the sys-
tem of linear inequalities (1) is totally unimodular, because the required assumption
that P is a (0, 1)-polytope is automatically satisfied if (ai;)1<i<m;i<j<n is totally
unimodular.

A matrix is called totally unimodular if each of its subdeterminants belongs to
{0,+1,—1}. It follows from Hoffman and Kruskal [2] that if an m x n matrix
(aij)1<i<m;i<j<n With each a;; € Z is totally unimodular, then, for arbitrary integers
b; and g;, 1 < i < m, with each ¢; € {0,1}, all of the vertices of the convex polytope
in R® determined by the system of linear inequalities (1) and (2) belong to Z".
Hence i

Corollary 2. Let an m x n matriz (a;j)1<i<mu<j<n e totally unimodular. Then,
for arbitrary integers b; and €;, 1 < 1 < m, with each ¢; € {0, 1}, the convez polytope
determined by the system of linear inequalities (1) and (2) is compressed.

Examples of totally unimodular matrices contain vertex—edge incidence matrices
of finite bipartite graphs. Consult, e.g., [4] for the detailed information about totally
unimodular matrices.

Example 3. (a) One of the most direct applications of Corollary 2 concerns the
hypersimplex. Let 2 < d < n be integers. The d-th hypersimplez in R" is the convex
polytope A(n; d) C R™ which is the convex hull of all (0, 1)-vectors (z(),z®, ... z()
with £ + z®) + ... 4+ 2(® = d. Since the 1 x n matrix [1,1,...,1] is totally uni-
modular, it follows that A(n;d) is compressed.

(b) Let P = {a;,,...,a,} be a finite partially ordered set and Op the order
polytope [6, Example 4.6.34] of P. Thus Op is the convex polytope in R® whose

vertices are the (0, 1)-vectors (z(1, 2, ...  z() satisfying that if z(9) =1
and if oy < @ in P then z(®) = 1. In particular, the origin of R is a vertex of
Op.

Since the system of linear inequalities (i) () < z® for all s and ¢ with oy < a
and (ii) 0 < () < 1 for all 1 < j < n determines Op, it follows from Theorem 1
that Op is compressed.

(c) Let G be a finite graph on the vertex set V(G) = {1,2,...,n} having no
loop and no multiple edge, and E(G) the edge set of G. We associate each subset
W C V(G) with the (0,1)-vector p(W) = ¥ e e; € R™. Here e; is the j-th unit
coordinate vector in R™. In particular, p(() is the origin of R*. A subset W C V(G)
is called stable if {i,j} € E(G) for any 1,7 € W with ¢ # j. Note that the empty
set and all single-element subsets of V(G) are stable. Let S(G) denote the set of
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all stable sets of G. The stable polytope of G is the (0,1)-polytope in R™ which is
the convex hull of {p(W); W € S(G)}. It then follows from Chvital [1] together
with Theorem 1 that the stable polytope of G is compressed if G is a perfect graph.
(A finite graph G is called perfect if, for all induced subgraphs H of G including
G itself, the chromatic number of H is equal to the maximal degree of complete
subgraphs contained in H.)
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81. Introduction

Let p, r be integers with 2 < p < r — 2. Given a homogeneous ideal I of height p in
a polynomial ring R := k[z,,...,z,], there is a finitely generated torsion-free graded
R-module M with no free direct summand satisfying Exty(M,R) =0for 1 <i<p—1
that fits into an exact sequence of the form

(%) 0— S 1 —8 93— — 85 —S&M— I(c) — 0,

where c is an integer and S; (0 < ¢ < p — 1) are finitely generated graded free R-
modules (see e.g. [2], [13]). Conversely, as proved in our previous paper [3], given a
finitely generated torsion-free graded R-module M with no free direct summand satis-
fying Ext}(M,R) = 0 for 1 < i < p — 1, there is a homogeneous ideal I of height p
in R fitting into an exact sequence of the above form. But, unfortunately, the residue
class rings defined by the ideals constructed by our method of [3] are not even reduced
in general.

When does there exist a prime I fitting into (x)? The aim of this talk is to give an
answer to this question. In fact, there is a homogeneous prime ideal I of height p fitting
- into an exact sequence of the form (x) for some c and Sy, . .., Sp_1, if the given module
M as above is reflexive . Since M is reflexive if R/I is equidimensional by the local
version of [13, Corollary 1.20], it turns out that the reflexiveness of M is equivalent to
the existence of such a prime I. This theorem is known well for the classical case where
p =2 (see e.g. [8], [10]).

To prove our theorem, as in the proof of the main theorem of [3], we make full use
of the minimal free complex F, bounded on both sides with differentials 8F defined by
the conditions M = Coker(8f), H;(F.) = 0 for i > 0, and H'(FY) = 0 for i < 0. The
way we use it in our new proof, however, is very different from that in our previous one.
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This time, we make a kind of decomposition of F, regarding its homologies as in [1], in
order to construct a finitely generated torsion-free graded module M over the integral
normal domain A := R/(fi,..., fp—2) defined by a homogeneous R-regular sequence
fiy..., fo—2 such that there is a homomorphism ¢ : M — M over R inducing an
isomorphism Hi (o) : H: (M) — Hi (M) for all 0 < i < r—p+2. Then, applying to the
A-module M the well-known determinantal method for constructing two-codimensional
subschemes, we obtain our main results. The same method has already been proposed
in [12] to treat the simplest case where F, is the direct sum of the free complexes giving
the minimal free resolutions of graded modules of finite length over R.

§2. Descent of graded modules via free complexes and existence
of homogeneous prime ideals

Let R := k[zy,. .., z,] be a polynomial ring in 7 indeterminates z,, ..., T, over an infinite
field k, m := @, ,[R]; the irrelevant maximal ideal in R, and A the graded residue class
ring of R defined by a homogeneous ideal in R. We assume that A is Cohen-Macaulay.
For a complex C, of finitely generated graded free modules over A, we say that C, is
minimal if Im(8F) C mC;_; for all i € Z, where 8C (i € Z) are the differentials of C,.
If there are a minimal complex C, and a split exact complex C7, of finitely generated
graded free modules over A, such that C, = C, @ C/, then we will denote C, (resp.
C!) by min(C,), (resp. se(C.).). Further, in this case, min(C,). (resp. se(C,),) will be
called the minimal (resp. split exact) part of C, (see [1, (1.1) and (1.2)]). Given a chain
map f, : C; — D, of complexes, its mapping cone will be denoted by con(s, ).

Definition 1. Let L, be a complex of finitely generated graded free modules over A, a
a homogeneous ideal in A, and m an integer. We say that a subcomplex L', of L, is a
quasi-direct summand of L, up to (a, m) if it satisfies the following conditions.

(i) L's and L", := L,/L’', are free complexes.

(ii) There is a chain map p, : L", — L'[—1], satisfying Im(y;) C aL_, foralli <m
such that Le = con(ie)e.

Lemma 2. Let V be a finitely generated graded module over A,
P P
NG N 1N YOI - S VR

a minimal free resolution of V over A, and a a homogeneous ideal in A annihilating
V. Let further n > 0 and m be integers. Then, there is an integer | such that, for an
arbitrary homogeneous A-regular element f of a!, there is a free resolution

i P P — B —V —0

of V over A:= A/(f) such that
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(i) B, := P./fP. is a quasi-direct summand of P, up to (a",m), where P, =0 and
P.=0fori<0,

(ii) the canonical homomorphism Hi(cw) : Hi(P.) — Hi(B,), induced from the
chain map a. : P, — P, over A obtained by composing the natural surjection
P, —» P, and the injection P, — P,, is an isomorphism for all i € Z.

Lemma 3. Leta, I, m, n, s; (a+2 < i < m) be integers withn > 0, m > a+1,
0<s;<!l(a+2<i<m) anda be a homogeneous ideal in A. Let further L,, L's, G,
and G', be complezes of finitely generated graded free modules over A such that L',
(resp. G'.) is a quasi-direct summand of L, (resp. G.) up to (a!,m) (resp. (a',m+1)).
Suppose G; =0 fori <a+1, Hi(G,) =0 fori >a+1, aHy41(Gs) =0, and

(31) Im(8%)Na*Gi_; Ca**Im(8%) foralls, i withs; <s<l, a+2<i<m.

If there is a chain map Ny : L'y — G’y andl > n+1 +z;."=a+2‘sj, then there is a chain
map A, : Lo — G, such that

() Mlprs = a0 X,
(ii) con(N,)e is a quasi-direct summand of con(),), up to (a®,m),

where t, : G's — G, denote the injection and we understand ):;"za 428 = 0 1n case
m=a+1.

Lemma 4 (cf. [1, (1.5)]). Let ap and a be integers with a > aol, and let F, be a
minimal complez of finitely generated graded free modules over A such that F; = 0 for
i < ag and Hy(F,) =0 fori > a. Let further

v — Py — P — Py — H,(F,) — 0

be a minimal free resolution of H,(F,) over A and G, := P|—a — 1],. Then there ezist
a minimal complex L, of finitely generated graded free modules over A and a chain map
te : Le — G, such that F, is the minimal part of con(u,)s, where L; = 0 for i < aq
and H;(L,) =0 fori > a.

Applying the above three lemmas repeatedly, we obtain

Lemma 5. Let ag < 0 be an integer, d := dim(A), and F, a minimal complez of finitely
generated graded free modules over A such that F; = 0 fori < ao, dim(H;(F,)) < d—2+i
forap < i < -1, and H;y(F,) = 0 for i > 0. Let further a be a homogeneous ideal in
A annihilating all Hi(F,) (ag < ¢ < =1) and n > 0 an integer. Then, there is a
positive integer ng such that, for an arbitrary homogeneous A-reqular element f of a™,
there are a complex D, of finitely generated graded free modules over A and a complex
D, of finitely generated graded free modules over A := A/(f), satisfying the following
conditions.

(i) F, is the minimal part of D,.
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(ii) D, := D,/fD, is a quasi-direct summand of D up to (a™,0).
(iii) D; =0 and D; =0 fori < aq.

(iv) The canonical homomorphism H;(v.) : Hi(D.) — H;(D,), induced from the
chain map ve : Dy — D, over A obtained by composing the natural surjection
D, - D, and the injection D, — D., is an isomorphism for alli € Z.

(v) The canonical homomorphism
H: (vy) : HE (Coker(8P)) — H? (Coker(8P))
induced frorri vy is an isomorphism for all0 < i < d — 1 with
H%2(Goker(8P)) 22 HE2(Coker(8P)) =0.

Theorem 6. Let ay, p be integers with ap < 0, 2 < p < dim(A) and F, a minimal
complez of graded free modules over A such that F; = 0 for i < ag, dim(H;(F,)) <
dim(A).—p+ ¢ for ap < i < =1, and Hi(F.,) = 0 for i > 0. Let further a be a
homogeneous ideal in A of grade larger than or equal to p—2 annihilating all H;(F,) (ap <
i < —1). Then, there are a homogeneous A-regular sequence fi,..., fp—2 with f; € a
for all1 < i < p—2, a minimal complex F, of finitely generated graded free modules
over A/(fi,..., fp-2), and a chain map 7, : Fy, — F, over A satisfying the following
conditions.

(i) F; =0 fori < ao.

(ii) The canonical homomorphism
Hi(ro) : Hi(Coker(df)) — HE(Coker(5f))

induced from 79 is an isomorphism for all 0 < i < dim(A) —p + 2.

(iil) The canonical homomorphism H;(t,) : H;(F,) — H;(F,) induced from 7, is an
isomorphism for all i € Z.

Moreover we can choose fi,..., fo—a so that Proj(A/(fi,..., fp-2)) is smooth in the
outside of the union of Proj(A/a) and the singularity of Proj(A).

‘Borrowing the idea of orientation from [5], [6] and [9], we will say that a coherent
sheaf M of rank v on a projective scheme X — Proj(R) is orientable on a Zariski open
subset U of X, if A" M|y = Oy(n) for some integer n.

Let M be a finitely generated graded module over R with no free direct summand,

81
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p—1
a minimal free resolution of M over R, and

7 a‘I‘lo-l 9%y w9 n 9% Vv
0— F 2% A, TR 2 MY — 0
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a minimal free resolution of MY over R, where ap < 0. Let further F; := F/"V and
0; =0}V for i <0, and 9y := (8" 0 8y)V. Connecting the former resolution to the dual
of the latter with the use of dy, we obtain a complex

B, 8-, Bag-1

F.:"‘ap+lF Fpl "__)Fl FO F_l—)n-

— Fyfy — 0

bounded on both sides (cf. [1], [3]) such that H;(F,) = 0 for ¢ > 0 and HY(F,Y) = 0
for i < 0, where Fi = FV and 8, = 8V for i < 0. We will denote this complex by
cpx(M),.

Applying the above theorem to cpx(M),, we obtain the following

Theorem 7. Let p, u be integers with2 < p <r, u > p, a a homogeneous ideal in R of
height larger than or equal to u, and M a finitely generated torsion-free graded module
over R with no free direct summand satisfying Exth(M,R) =0 for 1 <i < p—1 such
that M, s free for all homogeneous prime ideals p C R not containing a. Then, there
are a homogeneous R-regular sequence f,..., fo—o with fi€a forall1<i<p-—2, a
finitely generated graded module M over R := R/(fi,..., fo—2), and a homomorphism
@ : M — M over R satisfying the following conditions.

(i) The canonical homomorphism H}(p) : Hi (M) — Hi(M) induced from ¢ is
an isomorphism for all0 <i <1 —p+2 and H; P (M) =0

(ii) The scheme X := Proj(R) is an integral normal scheme which is smooth in
outside of its subscheme of codimension u — p + 2.

(ili) The sheaf M on X that M defines is locally free and orientable on the outside
of a subscheme of X of codimension u — p + 2.

(iv) M is torsion-free over the integral domain R.

Lemma 8. Let s > 4 be an integer, X the projective scheme Proj(A), Z a subscheme
of X of codimension larger than or equal to s. Assume that X is an wntegral normal
scheme which is smooth in the outside of Z. Let M be a torsion-free coherent sheaf on
- X of rank t + 1 > 2 which is locally free and orientable on the outside of Z and m an
integer such that M(m) is generated over Ox by its global sections. Let further n be the
integer such that /\t"L1 M|x\z & Ox\z(n). Then for all integers m,, ..., m, larger than
m, there exists a two-codimensional closed subscheme Y of X smooth in the outside of
a subscheme of X of codimension not less than min(s, 6), whose ideal sheaf Ty fits into

a Bourbaki sequence

12
0— @(’)x(—mi) — M — Ty(c) — 0,

i=1

wherec=n+3;_ m
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Lemma 9. Let p, q be integers with 2 < p <71, 1 < q < p, M a finitely generated
torsion-free graded module over R with no free direct summand satisfying Exth (M, R) =
0 forl <i<p-1, fi,..., fg homogeneous polynomials of R forming an R-regular
sequence, A the factor ring. R/(f1,..., fy), M a finitely generated graded module over
A, ¢ : M — M a homomorphism over R such that Hi(y) : Hi(M) — Hi (M) is an
isomorphism for alli < r—p. Suppose there ezists a homogeneous ideal I of height p—q in
A and a homomorphism ¢ : M — I(c) (c € Z) such that H (¢)) : Hi (M) — Hi (I(c))
is an isomorphism for all i < r —p. Then there is a homogeneous ideal I of height p
in R containing fy, ..., f, with I/(fi,...,f,) = I and a homomorphism v : M — I(c)
such that Hi () : H: (M) — Hi(I(c)) is an isomorphism for alli <t —p.

We need the following property that one can prove applying the local version of [13,
Corollary 1.20] to the graded case.

Lemma 10. Let I € R be a homogeneous ideal of height p > 2 and M a finitely
generated torsion-free graded module over R with no free direct summand satisfying
Exth(M,R) =0 for 1 <i < p— 1. Assume that they fit into an exact sequence of the
form

0— S —Sp0— - — 8 — SodM — I(c) — 0,

where ¢ is an integer and S; (0 < i <p—1) are finitely generated graded free modules
over R. Then R/I is equidimensional if and only if M is reflerive.

Main Theorem. Let p be an integer with 2 < p < 7 — 2 and M a finitely gener-
ated torsion-free graded reflexive module over R with no free direct summand satisfying
Extl(M,R) = 0 for 1 < i < p—1. Then, there is a homogeneous prime ideal I of height
p which fits into an exact sequence of the form

0— S 1 —S 02— — S —S&M—I(c)— 0,

where ¢ is an integer and S; (0 < i < p— 1) are finitely generated graded free modules
over R.

Outline of the proof of Main Theorem.

(1) Let F, := cpx(M)., aq be a negative integer such that F; = 0 for all ¢ < ao, and
a be the product of ann(H;(F,)) (ap < i < —1). Then H_,(F,) = 0, dim(H;(F,)) =
dim(Extﬁ'{"(Coker(afv), R))<r—p+iforalli<p, and ht(a) > p+ 2.

(2) There are a homogeneous R-regular sequence fi,..., f,2 With f; € a for all
1 <i<p—2, a finitely generated graded module M over R := R/(fi,..., fp—2), and a
homomorphism ¢ : M — M over R satisfying the conditions (i), (ii), (iii), (iv) stated
in Theorem 7 with u = p + 2.

— 109 —



(3) By Lemma 8, there is a two-codimensional closed subscheme Y of X := Proj(R)
smooth in the outside of a subscheme, say Z’, of X of codimension not less than
min(4, 6) = 4, whose ideal sheaf Ty fits into an exact sequence of the form

t
00— @0"(_’”‘) — M — TIy(c) — 0.
i=1
Let I be the saturated homogeneous ideal of Y in R. Then, we have a Bourbaki sequence

O—»éf?(—mi) — M — I(c) — 0.

i=1

(4) With the use of Lemma 9, we can show that there is a homogeneous ideal I in
R of height p containing fi,..., f,oo with I/(fi,..., fp—2) = I which fits into the long
Bourbaki sequence ().

(5) By Lemma 10, Y is equidimensional and hence is reduced.

(6) Since F, is exact at Fy and F_;, we can prove that Y\ Z’ is connected if m; (1 <
i < t) are large enough by showing H%(Oy\z/) & k.

(7) Now Y is an equidimensional reduced scheme such that Y\Z’ is smooth and
connected. Since dim(Y’) > dim(Z’), Y can have only one irreducible component. Hence
the saturated ideal I is prime.

See [4] for the detail. .
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Dutta multiplicities and test modules

Kazuhiko Kurano

Tokyo Metropolitan University

We shall define Dutta multiplicities and test modules. Dutta multiplicity is an invariant
for a bounded finite free complex with homology of finite length. It is slightly different from
the alternating sum of lengths of homologies as below. By the theory of Dutta multiplic-
ities, P. Roberts proved the vanishing theorem of intersection multiplicities [13] (he used
a vanishing of Dutta multiplicities under some condition) and the New Intersection Theo-
rem in the mixed-characteristic case [14] (he used a positivity of Dutta multiplicities under
some condition in the case of positive characteristic). The positivity of Dutta mulitplicity
in the case of mixed-characteristic is still a open problem. It is deeply related to Serre’s
positivity conjecture of intersection multiplicities as below. A test module is a maximal
Cohen-Macaulay module with some additional condition. Once a test module exists, then
it helps calculation of Dutta multiplicities and the positivity conjecture of Dutta multi-
plicities is true. We shall show that the small Macaulay modules conjecture implies the
existence of test modules. We shall give some examples of test modules.

Before defining Dutta multiplicities, let’s see a relation between Dutta multiplicites and
alternating sum of lengths of homologies.

Dutta multiplicity x.(F.) and alternating sum of lengths of ho-
mologies
Let (A, m) be a homomorphic image of a regular local ring. Let

F.:05F,—=---—F—0

be a perfect A-complex with support in {m}, i.e., F. is a bounded complex of finitely
generated A-free modules such that F. ® 4 Ap is exact for any prime ideal P # m.
Then, the Dutta multiplicity xoo(F.) is a ratonal number (that is defined later) satisfying:

Fact 1 With notation as above, if one of the following two conditions is satisfied, then the
Dutta multiplicity Xoo(F.) coincides with > (1) Lo (H(F.)).

(1) There ezist a regular local ring S and an S-free complez G. such that (i) A is a
homomorphic image of S, (ii) F. = G. ®s A. (We say that F. is liftable to a regular
local ring if the condition is satisfied.)

(2) A is a Roberts ring.

There ezists an ezample F. that satisfies Xoo(F.) # 3 ;(—1)0a(H;(F.)) (over a Gorenstein
ring [12]). (Therefore, such a complez F. never satisfies the condition (1) as above.)
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The author does not know any example of a complex that its Dutta multiplicity is not
an integer.

Let K. be the Koszul complex of a system of parameters z of A. Then, K. satisfies the
condition (1) as above. Therefore we have

Xeo(K) = Y _(~1)'4(Hi(K.)) = e(g, A) > 0.

i

There are a lot of examples of Roberts rings, e.g., complete intersections, quotient singu-
larities, Galois extensions of regular local rings, an associated graded ring of a regular local
ring (with respect to any filtration of ideals that makes the ring Noetherian), simplicial
semi-group rings. ’

Notation

Let A be a commutative Noetherian ring with 1 that is a homomorphic image of a regular
ring.

K, (A) denotes the Grothendieck group of finitely generated A-modules. For an A-module
M, [M] denotes the element in K(A) corresponding to M.

If a ring homomorphism g : A — B is finite (as a module), we have the induced ho-
momorphism g¢* : K¢(B) — Ko(A) of additive groups defined by ¢*([M]) = [(M] for an
B-module M, where ;M is an A-module M whose A-module structure is given through g.

A,(A) is the Chow group of the affine scheme Spec A. For a prime ideal p of A of
dim A/p =1, [Spec A/p] denotes the cycle in A;(A) corresponding to the closed subscheme
Spec A/p. If a ring homomorphism g : A — B is finite, we have the induced homomorphism
g* : A.(B) = A.(A) by g*([Spec B/P]) = [Q(B/P) : Q(A/P N A)][Spec A/P N A], where
Q() is the field of fractions. (See 1.4 in Fulton [5]. g* is the push-forward of cycles for the
proper morphism Spec B — Spec A.)

For an additive group N, Ng denotes N ®z Q.

Let (A, m) be a local ring. Let

F.:03F—=---—F—0

be a perfect A-complex with support in {m}. We shall refer s as the length of the complex
F. if F, is not 0. We define the Euler characteristic map xr. : Ko(4) — Z (or xr. :
Ko(A)g — Q) to be
xr.([M]) = Y (-1)La(H(F. ®4 M)).
t

Definition of the Dutta multiplicity xo(F.)

Let F. be a perfect A-complex with support in {m}. Here, we shall give three kind of
definitions of the Dutta multiplicity of a complex F.. (Of course they are equivalent to
each others.)

(I) We assume that (A4, m) is a d-dimensional complete local ring containing a field of
characteristic p > 0 with perfect residue class field A/m.
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Let f : A — A be the Frobenius map, i.e., f(z) = z*°. Note that fe is finite for
every e > 0. Then the Dutta multiplicity of the complex F. is defined to be

() =t X0

e—00 p

€Q.

(This definition is due to Dutta [2].)

(I) Here, assume that (4, m) is a Nagata local domain with Noether normalization S,
i.e., S is a regular local subring of A such that the inclusion S — A is finite.

Take any finite normal extension L of Q(S) containing Q(A). Let By, be the integral
closure of A in L. (By, is a finitely generated A-module, but it may not be a local
ring.)

Then we have :
xr.([BL])

(L:Q(A)]
(It does not depend on the choice of L.)

Xoo(F.) = eQ

(III) Let A be a homomorphic image of a regular local ring and put d = dim A. Then, we
define Dutta multiplicity as

Xoo(F.) = xr. (5" (Spec Al,)) € Q

Here, 74 : Ko(A)g — A.(A)g is an isomorphism of Q-vector spaces given by the
singular Riemann-Roch theory (Fulton [5]), and we put

[Spec A]; = Z 24,(Ap)[Spec A/P] €'A4(A)g.

dim A/P=d

It is known that 74([A]) = [Spec A]q + (lower dimensional terms). Here, we say that
A is a Roberts ring if 74([A]) = [Spec A]4 is satisfied. Therefore, if A is a Roberts
ring, then we have xo(F.) = xr.([4])-

We can also define the Dutta multiplicity [11] by using Adams operations of compleces
defined by Gillet-Soulé [6].

Positivity of Dutta multiplicities ‘

‘Let K. be the Koszul complex of a system of parameters z of A. Then, we have
Xowo(K.) = xk.([A]) = e(z,A) > 0. The following conjecture is a natural generalization
of the positivity. (So, xeo(F.) is a generalization of the usual multiplicity.)

Conjecture 2 Let A be a homomorphic image of a regular local ring and put d = dim A.
Let
' F.:03F;—>--—>F->0

be a perfect A-complex with support in {m}. If Hy(F.) #0, then Xoo(F.) > 0.
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Remark 3 (1) With notation as in the conjecture, there exists an example such that

xr.([4]) < 0 (Roberts [15]).
If A is a Cohen-Macaulay ring, then we have xg.([A]) = £La(Ho(F.)) > 0.

Therefore, if A is a Cohen-Macaulay Roberts ring, then we have X (F.) = xr.([4]) =
24(Ho(F.)) > 0 and the conjecture is true for A.

Let F. be a perfect A-complex with support in {m}. Then, it is easy to see xoo (F.[—1]) =
—Xoo(F.), where F.[—1] is the shifted complex. If K. is the Koszul complex of a sys-
tem of parameters, then we have xoo(K.[-1]®2 ® K.) = 2x00(K.[~1]) + xeo(K.) =
—xk.([4]) <0.

Therefore, we can not remove the assumption on the length of the complex in the
conjecture.

The New Intersection Theorem implies that the length of the complex in the conjec-
ture is just d.

Roberts proved the conjecture if A is of positive characteristic. It played an essential
role in his proof of the New Intersection Theorem in the mixed-characteristic case.

If A.contains a field of characteristic 0, then the conjecture is also true (Kurano-
Roberts [11]).

The conjecture is open even if A is Gorenstein.

The conjecture is deeply related to Serre’s positivity conjecture of intersection mul-
tiplicities [16]. Pricisely speaking, the conjecture in the case where F. is liftable to
a regular local ring (see Fact 1 (1)) is equivalent to Serre’s positivity conjecture of
intersection multiplicities in the case where one of two modules is a Cohen-Macauly
module (not necessary maximal). They are still open problems.

Let IF. be a complex as in Conjecture 2. If . is liftable to a regular local ring that is
equi-characteristic or unramified of mixed-characteristic, then the Dutta multiplicity
Xoo(F.) is positive by Serre’s positivity theorem in those cases [16]. If F. is liftable to a
regular local ring that is ramified of mixed-characteristic, then the Dutta multiplicity
Xoo(FF.) is non-negative by Gabber’s non-negativity theorem [1].

Test modules

Here we define the notion of test modules. Using test modules, we prove that the small
Macaulay modules conjecture (Hochster [7]) implies Conjecture 2.

Definition 4 Let A be a homomorphic image of a regular local ring and put d = dim A.
A finitely generated A-module M is called a test module for A if M is a (non-zero) maximal
Cohen-Macaulay module with 74([M]) € A4(A)q.

Assume that (A4,m) is a d-dimensional complete local ring containing a field of charac-
teristic p > 0 with perfect residue class field A/m. Let f be the Frobenius map. Then
74([M]) € A4(A)g if and only if [;M] = p?[M] is satisfied in Ko(A)q. '

Remark that A itself is a test module for A if and only if A is a Cohen-Macaulay Roberts

ring.
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Proposition 5 Let (A, m) be a d-dimensional integral domain that is a homomorphic im-
age of a regular local ring. Assume that A has a test module M. Then, for a perfect
A-complez F. with support in {m}, the following are satisfied:

(1) ) = 282D

F. M
(2) If the length of F. is equal to d, then we have xo(F.) = LalHo(F. @4 M)
rank 4 M

if F. is a complez as in Conjecture 2, then we have xo(F.) > 0.

. Therefore,

Outline of a proof. Put r = ranks M. Since M is a test module, we have 74([M]) =
r[Spec A).
Therefore we have

Xoo(F.) = xr.(73" ([Spec A])) = xr.([M]/r) = x.((M])/r.

Since M is a maximal Cohen-Macaulay module, we have xg ([M]) = £4(Ho(F. ®4 M))
if the length of IF. is equal to d. q.e.d.

By Proposition 5, a test module makes calculation of Dutta multiplicities easier.

Furthermore, if a local domain A has a test module, then Conjecture 2 is true for A.

It is known that Conjecture 2 is reduced to the case where A is a complete local domain.
Therefore, if every complete local domain has a test module, then Conjecture 2 is true.

By the next theorem, the small Macaulay modules conjecture (Hochster [7]) implies
Conjecture 2. :

Theorem 6 If every complete local domain has a mazimal Cohen-Macaulay module, then
every complete local domain has a test module.

Outline of a proof. Let (A, m) be a complete local domain. Take a Noether normalization
S of A.

For the simplicity, assume that the field extension Q(A)/Q(S) is separable.

Take a finite Galois extension L over Q(S) that contains Q(A). Let By be the integral
closure of A in L. (Bg is a complete local domain.) Let G be a Galois group of L/Q(S).
Then, every g € G gives an S-automorphism g : By — By. Therefore, every g € G induces
9* : Ko(BL)g = Ko(BL)g and ¢* : A«(BL)g = A«(BL)g- So, G acts on both Ko(Br)g and
A.(BL)g-

"Let N be a maximal Cohen-Macaulay B-module. Put M = eB ¢IN. Then, it is easy to
€G

see that M is a maximal Cohen-Macaulay B-module with (M gfz M for any g € G. Then

[M] € Ko(BL)g is an G-invariant. Hence so is 75, ([M]) € A.(BL)g. On the other hand, we

have (A, (Br)g)® =~ A.(Bf)g = A.(S)g = Au(S)g (Example 1.7.6 in Fulton [5]). Therefore

we have 75, ([M]) € A4(BL)g. Then we obtain 74([M]) € Ay(BL)g and, therefore, M is a

test module for A. q.e.d.
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Remark 7 (1) A complete intersection is a Cohen-Macaulay Roberts ring. Therefore,

(2)

(3)

if A is a complete intersection, then A itself is a test module for A.

It is not known whether test modules exist or not even if A is an equi-characteristic
complete Gorenstein normal domain.

Let A is a d-dimensional Cohen-Macaulay ring. Put 74([A]) = g4+ - - - + qo, where
¢ € A;(A)g- Then it is known that 74([Ka]) = ¢a — ga—1 + -+ + (=1)'qa—i + - -~
Therefore, if ¢; =0 for i < d — 2, then A® K4 is a test module for A.

Let (S,n) be a Cohen-Macaulay Roberts ring. Assume that A is a subring of S

satisfying the following two conditions; (1) A is a homomorphic image of a regular
local ring, (2) the inclusion A — S is finite. Then S is a test module for A.

Example 8 (1) Let k be an algebraically closed field of characteristic 0. Let T' =

k[z1,...,z,] be the graded polynomial ring over k with deg(z;) = --- = deg(z,) =1
and I a homogeneous prime ideal of T with I C (z1,...,7,)% Put A= (T/1)(a1,....20)-

Suppose that A is a Cohen-Macaulay ring of minimal multiplicity, i.e., e(m,A) =
dimg/m m/m? — dim A+ 1. Then, A has a test module. (Use Bertini’s classification,
e.g., p166 in Yoshino [17].) '

Let k be an algebraically closed field of characteristic 0. Let T' = k[z,, ..., Z,] be the
graded polynomial ring over k with deg(z;) = - - - = deg(z,) = 1 and I a homogeneous

ideal of T. Put A = (T/IT(zl\,_,_,xn), that is the completion of (T'/I)g,,...z,)-

Assume that 4 is a Cohen-Macaulay ring with only finitely many isomorphism classes
of indecomposable maximal Cohen-Macaulay A-modules.

Then A has a test module. (Use Eisenbud-Herzog’s classification [4]).

Let k be a field and m, n positive integers at least 2. Put T = k[z;; | 1 <i<m;1 <
1< Tl] Put A= (T/Ig(:vij))@).

If m = 2, then A has a test module.
If m +n < 16, then A has a test module.

If m = n = 8, then dim A = 15 and we have
Ta([4]) = @15 + 13 + qu1 + g9,
where 0 # ¢; € A;(A)g for i =9,11,13,15.

Let k be a field and A the completion of the (2,1)-scroll, i.e.,

So 51 ¢
A = k[[so,SI,SZ,to,tl]] /Iz ( 8(1) S; ttl) ) .

Then, A is a 3-dimensional Cohen-Macaulay normal domain. We shall describe all
test modules for A. We refer the reader to Yoshino [17] for the theory of maximal
Cohen-Macaulay modules.
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It is known that A has just 5 kinds of (isomorphism classes of) indecomposable
maximal Cohen-Macaulay modules as follows:

A) KA; S—Z’ Sl, M

Put a = [A], 8 = [K4l, 7 = [S-2], § = [S1], € = [M] in Ko(A). Then, it is known
that Ko(A) =Z: =Za+ZB,and y=20 -, 6 =2a— B, e=a+f.
Here, we have an isomorphism 74 : Ko(A)g = A.(A)g- Put 74(@) = g3+¢2+¢1, where
¢ € A;(A)g. (Note that Ag(A)g = 0.) Then, 74(8) = g3 — g2 + ¢1 is satisfied. Then,
it is easy to see that A3(A)g = Qgs ~ Q, A2(A)o = Qg ~ Q, A1 (A)g = Ae(A)g =0,
(1 =0).
Therefore, we have 74(a) = g3 +4s, Ta(8) = g3 — a2, Ta(7) = g3— 342, 74(8) = g3+3¢2,
7a(€) = 2q3.
Hence,

AMD K2 e S e ST e M™
is a test module for A if and only if n; — ny — 3n3 +3ngy = 0. (ny, ..., ng are
non-negative integers such that at least one of them is positive.)

Let ay, ..., as be non-negative rational numbers (at least one of them is positive)
and put

b3qs + baga = a17a(0) + a27a(B) + asTa(y) + as7a(8) + asa(e).

(Note that, if b3, b, are rational numbers such that 0 # 3b3 > |b,|, then we can find
ai, ..., as satisfying the above equation.)

Let F. be a perfect A-complex with support in {m} of length 3 and assume that it
is not exact. For any maximal Cohen-Macaulay module N, we have xg ([N]) > 0.
Therefore, we obtain

baxr. (T3 (g3))+baxr. (777 (g2)) = ar1xw.(a)+azxr.(B)+asxr.(7)+asxr.(6)+asxr.(€) > O.

That is, for any rational numbers bg, b, satisfying 0 # 3bs > |by|, we have byxr. (77" (g3))+
boxr.(T5'(g2)) > 0. Therefore, we obtain

Xoo(F.) = xr.(71" (g5)) > 3lxe.(73" (2))]-

If a complex F. is liftable to a regular local ring, then xg.(77'(g2)) = 0 is satisfied.

By using an example dut to Dutta-Hochster-MacLaughlin [3], we can construct a
complex F. such that X (F.) = 60 and xr.(75'(g2)) = 1.
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EQUIVARIANT TWISTED INVERSE PSEUDO-FUNCTORS
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1 Introduction

Throughout these notes, a scheme means a separated noetherian scheme, for.
simplicity. We fix a base scheme B. Let G be a flat B-group scheme of
finite type. We denote by Ag the category of G-schemes of finite type and
G-morphisms.

The purpose of these notes is to discuss an equivariant version of
Grothendieck’s duality theorem. The original Grothendieck’s duality the-
orem is as follows, see [5].

Theorem 1.1 Let f : X — Y be a proper morphism between schemes.
Then, ‘the canonical’ natural map

p(f) : Rf.RHom} (F, f'G) — RHomp, (Rf.F,G) (1)

is an isomorphism for F € Dg.,(X) and G € D{. (Y), where f* denotes the
right adjoint functor of

Rf* : Déco(X) H'Dgco(y)
(called the twisted inverse functor).

Problem 1.2 Let f: X — Y be a proper morphism in Ag. Formulate and
prove an “equivariant version” of Grothendieck’s duality theorem.

An equivariant version of Grothendieck’s duality may not be unique in its
formulation. In fact in 6], the associated action of a generalized hyperalgebra
of G is used to establish an equivariant duality theorem. In order to formulate
an equivariant version of the duality theorem, the category Qco(G, X) of
G-linearlized quasi-coherent Ox-modules in [GIT] is a good substitute of

—120—



Qco(X), the category of quasi-coherent sheaves over X, in the equivariant
case. There is no difference with [6] concerning with this point.

Even for the non-equivariant case, it is convenient to embed Qco(X) into
Mod(X), the category of O x-module sheaves. This is mainly because Qco(X)
is not closed under Hom operation. So we need to embed Qco(G, X) into
some larger category Mod(G, X) which is closed under various operations
necessary to formulate and prove a duality theorem.

However, the framework of [6] is far from satisfaction. We list the prob-
lems in [6, section 2]. First, unless B = Spec k, we do not know how to find
a generalized hyperalgebra of G in general. So the duality is not applica-
ble to a quite general G which is flat of finite type. Secondly, the category
Qco(U, X) is not closed under Hom. The reason why (6) in page.191 in [6]
is so restrictive (i.e., z is required to be in D~ (Coh(U, X))) comes from this
problem. We are not able to discuss R Home, (Dx, Dx) in this framework
(where Dy is the equivariant dualizing complex) appropriately. Moreover,
‘Qco(G, X) is not a thick full subcategory of Qco(U, X) in general, and we
can not use Dqco(c,x)(Qco(U, X)).

Although there is no new application which is not discussed in [6] here,
these are the reason why we are going to discuss a new approach.

Problem 1.3 Establish an equivariant version of the theory of twisted in-
verse for morphisms in Ag, and define “the” equivariant dualizing complex
for objects in A when the base scheme B is Gorenstein of finite Krull dimen-
sion.

This problem is related to the problem of equivariant compactifications.
Let f : X — Y be a morphism in Ag. We say that a sequence of morphisms

xiLzly

is a G-equivariant compactification of f if it is a sequence of morphisms in
Ag, the morphism i is an open immersion, and p is proper. If there exists an
equivariant compactification f = pi of f, then we may well define =19,
where p' is the right adjoint of Rp, as before, and i* is the restriction (i.e.,
the inverse image via the open immersion ). Twisted inverse was defined
thus in the non-equivariant case by P. Deligne [2].

If G is a trivial group, then it is the usual compactification. M. Nagata
[9] proved that there is a compactification of a (separated of finite type)
morphism between noetherian schemes. His proof was valuation-theoretic,
and a more scheme-theoretic proof is available in [7]. On the other hand,
the problem of equivariant compactifications is open (however, see [13]). In
these notes, we solve Problem 1.3 avoiding this open problem. We extend
the category Ag, and we look for a good substitute of a compactification
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in this enlarged category. The extended category is not a category of single
schemes, but is a category of diagrams of several schemes.

The use of diagrams of schemes is a standard technique in descent theory
and it has been known that it is also useful in studying equivariant sheaves,
see for example [11, 3, 1]. Tn particular, there is nothing (essentially) new in
sections 2 and 3. Probably what is essentially new here is only Theorem 4.5
and the results that follow. The details of these notes will appear elsewhere.

2 Diagrams of schemes

Let I be a small category, and P = P(I,Sch /B) be the functor category
Func(7°P, Sch /B), where I°P is the opposite category of I, and Sch /B is the
category of B-schemes. Let X, € P. For i € ob(I), we denote the B-scheme
X.(i) by X;. For ¢ € Mor(I), we denote the morphism of B-schemes X,(¢)
by )(4,.

For X, € P, we define a small category Zar(X,) as follows. An object of
Zar(X.,) is a pair (z,U) such that ¢ is an object of I, and U a Zariski open
subset of X;. A morphism from (4,V) to (:,U) is a pair (¢, h) such that
¢ :i— jis a morphism of I such that V C X;'(U), and h: V — U is the
restriction of X. i

We define a pretopology of Zar(X,) so that Zar(X,) is a site. A family
of morphisms

{(&x, 7)1 (x, Va) = (5, U) 1
is said to be a covering of (¢, U) if j, = i and ¢ = 1;forany Aand U, V) = U.

Letting I'((¢,U), Ox,) := (U, Oy,), the sheaf of commutative rings Oy,

is defined, and Zar(X,) is a ringed site. The restriction map is given by

F(('L, U)) OX.) = F(Uv OX.)LF(XJI(U)) OXj)
ELF(V: OX,') = F((],V),Ox.)

for any (¢,h) : (§,V) — (i,U), where u is the map induced by the unit of
adjunction Oy, — (X¢)*X.;0X; = (X¢)*OX_.,-- »

We denote the category of Ox,-modules over Zar(X,) by Mod(X,). The
category Mod(X,) is a Grothendieck category with projective limits. Various
operations on module sheaves over a ringed sites are discussed in [4]. In
particular, for two objects M, N € Mod(X,), the tensor product M ®o,, N
and the hom-sheaf Home, (M, N) are defined. :

Let X, € P and J a subcategory of I. Then, we have a canonical re-
striction of X, to J°P, which we denote by X ;. There is an obvious inclusion
functor Q; : Zar(X;) — Zar(X,), which is continuous and cocontinuous (see
[14]) almost by the definition of the topology of Zar(X,). Moreover, we have
that the restriction of Oy, to Zar(X;) is nothing but Ox,. The pull-back by
@y is denoted by (?); : Mod(X,) — Mod(X;).

—122—



For ¢ € ob(I), we denote the subcategory of I with the object set {:}
with a single morphism {1;} by (¢). The category Zar(X;) and Zar(X,) are
canonically identified. So we have a canonical restriction functor

(7), = (?)(,’) : MOd(X.) — MOd(X,)

Thus, for M € Mod(X.,), we have a collection of sheaves (M;). However, it
is unreasonable to expect that we can retrieve M from the collection (M,).
We need some more information which give connections among these sheaves.

Let ¢ : i — j be a morphism in /. Then, there is a natural map S, :
M; — (X4)«M; given by

LU, M;) = F((lv U), M)ﬁr((]a Xgl)1 M) = F(U7 (X¢)*Mi)'
It is easy to check the following.

Lemma 2.1 For: € ob(I), the canonical map M; = (idx,.).M,- = (X1,)eM;
agrees with By,. For two composable morphisms ¢ :i — j and ¢ : j — k, the
composite map

B, X))
Bty (X )My P (X ) (X M 2 (X yg) M
agrees with By.

Conversely, if ((M;)icob(r), (Bs)seMor(y) is a collection such that M; €
Mod(X;) for i € ob(I), B4 € Mod(X;)(M;, (Xg)«M,) for ¢ € I(1,5), and the
conditions in the lemma above are satisfied, then the sheaf M € Mod(X,) is
retrieved from these data.

For a morphism ¢ : ¢ — j of I, we define ay to be the composite map

* (X4)*B " €
(Xg) Mi=5(X) (Xg) oM M;,
where ¢ is the counit of adjunction.

Definition 2.2 (see [1]) We say that M € Mod(X,) is equivariant if oy
is an isomorphism for each ¢ € Mor(I). We say that M is locally quasi-
coherent (resp. locally coherent) if M, is quasi-coherent (resp. coherent) for .
each i € ob(I). We say that M is quasi-coherent (resp. coherent) if M is
both equivariant and locally quasi-coherent (resp. locally coherent).

We denote the full subcategory of Mod(X,) consisting of equivari-
ant (resp. locally quasi-coherent, quasi-coherent, and coherent) sheaves by
Eq(X.) (resp. LQco(X.), Qco(X.), and Coh(X ))

Let IP be a property of schemes. We say that X, satisfies P if X; satlsfy
IP for all 2 € ob(I). Let Q be a property of morphisms. We say that X,
satisfies @ if all the structure morphisms X; — B satisfy Q. We say that
X, has Q-arrows if X, satisfy Q for all ¢ € Mor(I). Let f, : X, —» Y, be a
morphism. We say that f, satisfies Q if f; satisfies Q for each ¢ € ob(I).

The following is checked easily, using the five lemma.
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Lemma 2.3 Let X, € P. Then, LQco(X.) is a thick subcategory of
Mod(X,). If moreover, X, has flat arrows, then Eq(X,) and Qco(X.) are
also thick subcategories of Mod(X,).

We say that a morphism f, : X, — Y, is a morphism of fiber type, if

x; Loy
} Xy v
x, & oy,

is a fiber square for each morphism ¢ : ¢ — j of I.
Let f, : X, — Y, be a morphism in P. Then, a continuous functor

f1: Zar(Y,) — Zar(X,) is given by f71((5,U)) = (4, f71(U)). It actually
gives a morphism of ringed sites

fo : (Za.l‘(X.),(Qx.) - (Zar(Y.),Oy.)

in an obvious way. Thus, the direct image functor (f.). : Mod(X,) —
Mod(Y,) and the inverse image functor f} : Mod(Y,) — Mod(X.,) are defined

in a natural way.

3 The simplicial object associated to a group action

Let A denotes the category of standard simplices. The object set ob(A) is
{[0],[1],[2], - - .}, where [n] is the ordered set {0 < 1 < --- < n}. Morphisms
of A are monotone maps. An object of P(A,Sch /B) is called a simplicial
B-scheme.

Let X € ob(.Ag). We define B(G, X) as follows. We define B(G, X)) to
be G™ xp X for n > 0. We define B(G, X)s» : B(G, X)jn41) —= B(G, X)) by

(9n+17-~7g279133) (”‘ = 0)
B(G1X)6?(9n+17"'1gl)m) = (gn+17""gi+lgi,'“)glyx) (O<Z<n)
(gn)-'-)gl,w) (1=n+1)’

where 67 : [n] — [n + 1] is the unique injective monotone map such that
i ¢ Im §;. We define B(G, X),» : B(G, X)n = B(G, X)n+1) by
B(G,X)ﬂ.?(g‘nv"agl)z) = (gn,‘":gi+17e7gi7"':gl>x)

fori=0,1,...,n, where 67 : [n+1] — [n] is the unique surjective monotone
map such that #(o?)7!(¢) = 2, and e denotes the unit element of G. This
gives the definition of B(G, X), see [8, (VIL.5)]. Note that B(G,?) is a functor
from Ag to P(A,Sch /B).

We define the subcategory Ay, of A by

ob(Ap) :={[0],[1],[2]}, Mor(Au) := {injective monotone maps}.

We denote the restriction B(G, X)a,, of B(G,X) by Bu(G, X).
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Lemma 3.1 The following hold:
1 There is an equivalence of categories Qco(G, X) = Qco(B(G, X)).
2 The restriction induces an equivalence Qco(B(G, X)) = Qco(Bu(G, X)).
3 Let lee a property of morphisms of noetherian schemes such that
i Any isomorphism satisfies Q.
ii A composition of two morphisms which satisfy Q again satisfies Q.
iii Q s stable under base change.
iv The structure map G — B satisfies Q.

Then, By (G, X) has Q-arrows. In particular, By (G, X) has flat, of
finite type arrows. ’

4 Let f : X — Y be a morphism in Ag. Then, B(G, f) is a morphism
of fiber type. In particular, By(G, f) : Bu(G,X) — Bu(G,Y) is a
morphism of fiber type. If Q is a property of morphisms stable under
base change and f satisfies Q, then By (G, f) satisfies Q.

4 Equivariant twisted inverse

A diagram of schemes is required to be noetherian and separated. Thanks
to the development of the theory of unbounded derived category and derived
functors [12, 10], the existence of the right adjoint of the derived functor
R(f.). is fairly easy. '

Theorem 4.1 (Neeman) Let F : S — T be a triangulated functor between
triangulated categories. If S is compactly generated and F respects coprod-
ucts, then F' has a right adjoint.

Utilizing the theorem, the following is proved without difficulty.
Theorem 4.2 Let f, : X, — Y, be a morphism in P. Then,
R(fo)* : DLQco(Xo) i DLQco(Yo)
has a right adjoint f!.
This gives a definition of f' for a proper morphism f : X — Y in Ag.
We define the equivariant f' to be By (G, f)'. We also denote R(By (G, f).)
simply by f,. As it is easy to see that f, is way-out both (after all, we only

consider finitely many quasi-compact separated schemes), we have that f' is
way-out right. In particular, we have
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Lemma 4.3 f!(DEQco(}/')) C DE—QCO(X.)'

Although it is a difficult problem to find an equivariant compactification
of f, it is easy to find a ‘fake compactification’ of By (G, f).

Proposition 4.4 Let f : X — Y be a morphism in Ag. Then, there is a
factorization of By (G, f)

Bu(G, X)X, 2% By (G,Y)
such that p, is proper and i, is an image-dense open immersion.

This is an immediate consequence of Nagata’s (non-equivariant) compact-
ification theorem. Utilizing a fake compactification, we can define f' for a
non-proper morphism f in Ag.

Theorem 4.5 Let By (G, f) = p.is be a fake compactification, and n €
{0,1,2}. Then, there is a ‘canonical’ isomorphism

e !

(Datepe 2 130, (7)n
between functors from Diqo.(Bu(G,Y)) to Difqeo(Bu(G, X)).
As a corollary, the following follow. Let the notation be as above.

e i*p, maps D.(Bu(G,Y)) to D& .(Bu(G, X)).
e “Flat base change” of i*p} ,

o The composite functor f' := i*p. is independent of the choice of fake
compactification.

o For any composable f,g € Mor(Ag), there is a canonical isomorphism
(9f)' = f'g' such that (hgf)' = (gf)'h' = f'g'h’ agrees with (hgf)' =
f(hg)' = fg'h'.

Thus, a pseudofunctor (?)' over Ag is defined, which is compatible with
the forgetful functor (which forgets the G-equivariant structures)

(?)IO] : DEQCO(BM(G7 ‘Y)) - Daco(‘\’)'

Let f : X — Y be a proper morphism in Ag. Then, the canonical isomor-
phism (1) is an isomorphism in D{.(G,Y) for Dg,, (G, X) and DE (G, Y).

What we miss here is, an explicit description of f' for the case f is finite
or smooth. We only remark that there are obvious analogies of the explicit
constructions of f' found in [5] for those two cases.
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A NOTE ON THE CONORMAL MODULE OF AN IDEAL
GUANGFENG JIANG

ABSTRACT. This note is to study the conormal module M of an ideal § in an analytic
algebra O/h, where O is the convergenet power series over the complex numbers. The
torsion part T'(M) of M and the torsion free module M /T (M) are expressed by the relative
primitive ideal. Two characterizations for M/T(M) to be free are proved. Some immediate
applications are worked out.

1. INTRODUCTION

Let O be the stalk over 0 of the structure sheaf of C™. Let £ C X be reduced analytic space
germs at 0 locally embedded in (C™,0) defined by two radical ideals g C b of O respectively.
Let g := g/h be the image of g in Ox := O/h under the canonical projection. The main
interest of this article is to study the conormal module M := g/g? by the relative primitive
ideal | x 8 of g. The primitive ideal of g (relative to X) was introduced by Siersma-Pellikaan
[10, 11] and generalized to relative version in [5, 6].

In general, Ox is not regular, so the Oy := O/g module M is neither free nor torsion free
even if both X and ¥ are complete intersections. Especially, ¥ is not a complete intersection
in X. Then the following questions would be interesting.

a) Find descriptions of the torsion part T(M) of M, calculate the length (when it is finite)
of T(M);

b) Find descriptions of the torsion free module N := M/T(M) and conditions on the
freeness of N.

The motivation to these questions is the studying of functions with non-isolated singular-
ities on singular spaces. The primitive ideal of g collects all the functions whose zero level
hypersurfaces pass through ¥ and are tangent to the regular part Xreg of X along £ N Xeg.
If we supply X with the so called logarithmic stratification [12], then the primitive ideal of
g consists of exactly all the functions from g whose stratified critical loci on X contain ¥
(cf. [5]). Hence, locally the primitive ideal plays a similar role to the second power of the
maximal ideal of the local ring Ocm ¢ in singularity theory. In order to study the topology
of the Milnor fibre F of a function f with singular locus X, we use a good deformation (the
Morsification) fs of f. This fs has relatively simpler singularities than f. The existence of
the good deformation and related invariants (both topological and algebraic) have close rela-
tionship with M, T(M) and N. Roughly speaking, the freeness of N implies the existence of
the good deformation [5]. The length of torsion module T'(M) (when it is finite) gives some
information on how X sits in X (cf. [7]).

Under some conditions, we answer the questions a) and b). More precisely, after some
descriptions of T'(M) and N, we mainly prove the following (see also Remark 9)

Main Theorem Let ¥ C X be reduced complete intersection germs of pure dimension,
defined by two ideals g C bh of O respectively. Assume that Xgng does not contain any

1991 Mathematics Subject Classification. Primary 13C12, 14B07; Secondary 32505, 32530.
Key words and phrases. conormal module, primitive ideal, symbolic power, torsion.
Supported by JSPS, LNSTC, NNSFC.
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irreducible components of £.. The Ox-module N is free if and only if there exists an O-
regular sequence gy, . .. ,9n generating g, such that

/ng (glv'-' ,gp)+(gp+l,--- :gn)2a

where p := codim X, n := codim .

As an application, in the last section we study lines on a variety with isolated complete
intersection singularity. More applications to the general deformation theory of non-isolated
singularities on singular spaces will be given in the sequel papers.

2. PRIMITIVE IDEALS

Let Ocm be the structure sheaf of C™. The stalk over 0 is denoted by O,, or O. Let
Der(O) denote the @-module of all the C-derivations of 0. Let (X,0) be a reduced space
germ defined by a radical ideal h C O. Define

Derx (0) := {¢ € Dex(0) | £(h) C b}.
Let (2,0) C (X,0) be a subspace defined by an ideal g C O.

Definition 1. The primitive ideal of g relative to X is
J 5= s €ales) eqforany € € Derx (0).

Remarks 2. (1) When X is smooth this definition was given by Pellikaan [10, 11]. It is
straightaway to verify that [, g is an ideal of O, and g? + b C [, g C g always holds.
And for g; D b (i =1,2), we have [, g1 N [y g2 = [ (1 N g2);
(2) Geometrically, the relative primitive ideal collects all the functions whose zero level
surfaces pass through & and are tangent to the regular part Xrez of X along £ N Xpeg.
(3) The relative primitive ideals have been generalized to higher relative primitive ideals
in [6]. Under the assumption that § is pure dimension, g is radical, and the Jacobian
ideal of b is not contained in any associated prime of g, it was proved that the primitive
ideal [ x 8 is the inverse image in O of the second symbolic power of the quotient ideal
g := g/h of Ox. Remark that the results in [6] generalized the results of [13, 10, 11].

3. CONORMAL MODULE: THE TORSION PART

Let h C g be radical ideals of O, X = V() and X = V(g). Denote by Xjing the singular
locus of X and Xreg = X \ Xsing. Denote by g := g/b, the quotient ideal in Ox := O/h. The
Oy := O/g-module M := g/g? ~ g/g> + b is called the conormal module of §.

Proposition 3. Let ¥ C X be defined by radical ideals g > h of O. If X;ing does not contain
any irreducible components of ¥, then we have

Ixo
T(M)=T:=-=2—.
(M) P
Consequently, we have the following exact sequence
0— T(M)-5M-5N — 0 (3.1)
where N :=g/ [y 9.

Proof. Let U be an open neighborhood of 0 in C™ in which X and ¥ are defined. Let
V = I\ (XsingU Xsing)- Then V is an open dense subset of & by the assumption. Then T = 0
on V since V is a reduced local complete intersection in Xre;. Hence T C T(M).
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For any @ € T(M), let B € Og be a non-zero divisor such that fa = 0. By taking
representatives we have Ba € g2+ 5. So for any £ € Dy, we have £(8a) = $¢(a) mod g. But

£(Ba) € g, hence £(a) € g. This tells us that a € [ g. O
Proposition 4. Let X be a reduced complete intersection in C™. Assume that Xsing does not
contain any irreducible components of £. If one can choose an O-regular sequence gy, . .. ,gn
which is the minimal generating set of g, such that

a) there exists an integer 0 < t < n such that the images of g1, ... ,g: are in T(M);

b) the germs (§t+1)z,- - - , (Gn)z at z € X, generate g, and form an Ox ,-regular sequence,

where Ox , is the localization of Ox at z,

then

) fa=(91,-- ) + (41, ,9n)%
2) N is free Og-module of rank n — t, (3.1) splits and M = N & T(M).

Proof. 1) If f =a191+ -+ angn € g and £ € Dx then
£(f) = arr1€(ge41) + - + anf(gn) (mod g).
f € [y gifand only if £(f) = 0( mod g) for any £ € Dx. By the assumption on g;41,... ,gn ,
we know that (£(ge+1), ... ,€(gn)) = d(9t41,- .- ,9n) is injective at every point on X\ (Xging U
Ysing), hence aq1,...a, € g. _ ~ ~ ~
2) Suppose that there exist Biy1,... , s € Ox such that @ = Bi+18t+1+ -+ GnfBn =0 in
N. By taking the representatives we have

a = Bt19t+1 + -+ Bugn € (915- - ,9t) N (t+1,- -+ 1 9n) + (941, - - - ,gn)%.
Let a = 8191 + - - + Big: + G, where G € (g¢41,--- ,91)?, then

—B1g1 — -+ = Bigt + Ber19t+1 + - + Bngn € (9141,--- ,9n)°
Since gi,... ,gn are O-regular, 3; € g. Hence g;41,... ,gn form a free basis of V. O

Let g be generated by an O-regular sequence: gi,...,9n, and let there exist an integer
0 < t < n and non-zero divisors A,... ,A\; € Ox such that X\, ... , \Js are zero in M as
Os-module. Namely

Mgty Mg €92+
where );g; is the representative of X;g;.

Let hy,...,hp, form a minimum generating set of . Denote h = (hy,--- ,h,,)T, g =
(91, ,92)T, G = (G1,---,Gy)T, and A = diag{\1, -, A}, where T means the trans-
position of the matrix indicated. Let A and B = (B,:B;) be the matrices such that
A(g, -~ ,9:)T = Ah+ G, h = Bg where A is a ¢t x p matrix, B a p x n matrix, and
B is a p x t matrix, By is a p x (n — t) matrix, G; € g°.

Let Cy = AB;,C2 = AB3, by (2.1.5.1), we have

(A=C1) (g1, y90)" = Ca(ge41,- ,92)T =0 mod g?)

Note that g/g? is a free Ox-module. we have A = C;, C, = 0 in Og. ;From this we
obtain the following lemma similar to the implicit function theorem.

Lemma 5. Let ¥ a complete intersection in C™ defined by g as above. There is an open
and dense subset X0 of & \ X sing Such that for each z € 0

det Cy =det A(2) = A\i(2) - Ae(2) #0,

and consequently rank(B,(P)) >t andt < p. Hence from hy =--- = hy =0, one can express
g1, .-, gt as functions of g¢41,... ,gn in a neighborhood of every point P € X0, ]
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4. FREENESS OF N AND THE PRIMITIVE IDEAL

Let £ C X be reduced complete intersections in C™ of pure dimensions. Assume that Xging
does not contain any irreducible components of £. If g is generated by an O-regular sequence
g1,--- »gn, we can choose the generating set {h1,...,hp} of h such that (with changing of
the generators of g if necessary):

t
h; = Zbijgj mod 92 1<i<p (4.1)
Jj=1
where t is an integer 0 < t < n, b;; ¢ g\ 0, and for each 7, (byj,-.. ,bp;) # 0 in (Ox)?,
(otherwise one could lower t). Denote B := (b;;).

Lemma 6. Under the assumptions above, we have

1) t=p
(2) There exists at least one maximal minor of B which is non-zero divisor in Ox.

Proof. Since X 'is a complete intersection of pure dimension, Xg,g can be defined by the
Jacobian 7 () of b, which can be generated by b and the p x p minors of the Jacobian matrix
J(h) of . Since each of these minors, say Aj, .. j,, is the determinant of BGjl,m ,jp modulo g,
where Gj, .. j, is the ¢ X p submatrix of J(g), consisting of the 0 < ji < - --jp < m columns of
J(g), the Jacobian matrix of g. Suppose t < p, there would be, det(BGj,,... j,) =0 mod g.
This is impossible since we assume that Xsing does not contain any irreducible components
of ¥. This proves (1).

(2) Suppose that all the p x p minors of B are zero divisor in (92 Then there exists
0 # a € Ox such that abj Aba A--- Aby, = 0in AP( Ox)t, where b; € (Og)? is the image of

the i-th row vector of B. Hence abl, by, ..., by are linearly dependent in (Og)t. Then there
are ai,...,ap € Ox which are not all zero, such that a1b + - - + apb, = 0 € (Ox)*. Hence
arh; +- + aph, =0 mod g2. ;From this we have J(h) C g, a contradiction. O

Proposition 7. Let h C g C define two reduced complete intersections X D X of pure
dimension. Assume that Xsing does not contain any irreducible components of &. If in (4.1)
we have t = p = codim X, then b := det(b;;) is a non-zero divisor in O, and
1) the images 91,... ,8p of g1,... ,gp generate T(M) over Os;
2) the images Gp+1,--- Gn Of gp41,- .- ,gn generate N freely over Oz, so M ~T(M)® N,
and rank(M) = rank(N) =dimX —dimX =n —p;
3) For each z € X;eg N X, the germs (§p41)z, - - » (§n): form an Ox ,-regular sequence and
generate g;;

) fxg = (gl’-- . )gp) + (gp+1a" . igﬂ)2;
5) there is a length formula if it is finite

o
)\(Z,X) = 102 (T(M)) = lOz; (m) .
We call A(X, X) the torsion number of the pair (X, X). When ¥ and X are clear from the
context, we write A for A\(Z, X).

Proof. Since t = p and b is a non-zero divisor, one can see that §i,...,4p € T(M) by
multiplying B* to the both sides of (4.1) , where B* is the adjoint matrix 6f B.

Since g1, ... ,dn generate M over Oy, and (3.1) is exact, T(gp+1), ... ,m(dn) generate N. If
there is a relation: Bp17m(dp41) +-- +,3n1r(gn) =0 € N, then ﬂp+1gp+1 + +ﬂngn € T(M).
This means that there is a non-zero divisor 8 € Ox, such that ﬂ(ﬂp+1gp+1 4.4 ﬂng,.) 0e
M. By taking representatives, this simply means 8Bp+19p+1 + - + BBa8n € 82 + h. Hence
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there are p1,...up € O such that

prhy + - + pphp + BBp+19p+1 + - - + BBugn € 0%
By (4.1), this becomes

191 + -+ Hpgp + BBps1Gpr1 + - + BPugn € 07,

where (u'l ,u;,) = (m ,up) B. Since g1,...,9n form an O-regular sequence, we
have 83; = 0 in Ox. Note that f is a non-zero divisor, hence 8; = 0 in Oy. This proves 1)
and 2).

For each prime z € Xreg N, N, is also free with the images of (gp41)z,-- -, (gn)- as basis.
Then ([ §), = §2 since (X, ) is a reduced complete intersection in the regular space (X, z).
Since Ox, is regular, by Vasconcelos’ Theorem [15], (§p41)z,--- , (gn)> is an Ox ,-regular
sequence, and they generated g, by Nakayama lemma;

4) follows from Proposition 4.

For the length formula, note that

Jxo (91,--- +9p)
T(M) = = .
( ) 92+h (gl,-'-,gp)2+(gly-'-;gp)(gp+l,---,gn)+(hlyw-,hp)

It is easy to see that

— (gl yeee gp)
(gl, R ,gp)2 + (gh .. :gp)(gp+1) v :gﬂ)
is a free Og-module. Since b is a non-zero divisor, the following sequence is exact

]\11 :

0 — My 25 M, — T(M) — 0,

P _
where ¢p(g;) := D bi;g;. By [2, A.2.6], we have the length formula of T'(M). O
Jj=1

Note that in the following , we do not assume (4.1).

Proposition 8. Let ¥ C X be complete intersection germs of pure dimensions defined by
radical ideals g D h of O. Let codim X = p and codimX = n. Assume that X, does not
contain any irreducible components of . If N is a free Ox-module, then

1) there exists an O-regular sequence g, ... ,gn, generating g, such that
— the images §G1,... ,Gp of g1,... , gp generate T(M);
— the images gp41, ... ,0n Of gpt1,... ,gn form a basis of N;

— rank(M)=rank(N) =n —p=dimX — dimX;

2) [x8=1(91,---,9p) + (gp+1,--- ,9n)>
3) we can choose the generators hy, ... , h, of by such (4.1) holds witht = p and b a non-zero

divisor in Og;

Proof. Let the images §it1,... ,0n Of gt41,... ,9n € g generate N over Oy, where t :=
n —rankN.

For any z € Xreg N E, by the assumption, NV, is a free Oy, module with the images of
(g¢+1)z,--- ,(n), as basis. By Vasconcelos’ theorem [15], the germs (Gi4+1)z,--- ,(Gn)z in
Ox,, form an Oy ,-regular sequence. And

_ _ _ ¢ 9
8z = (Ge+1,--- ,9n): + (f"T> (42)
z
Hence the germs (h1)2, ..., (hp)z, (9t41)z, - - - , (gn)z in Ocm ; form an Ocm ,-regular sequence,
where h;,...,h, form a minimal generating set of h. However, since h, C g,, we have

n—t+p=grade(hy,... ,hp,Gt41,-.. ,9n); < grade (g), = n. Hence t > p.
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Extend g441,. .. ,gn to an O-regular sequence: gi,... , gn, such that they generate g. Then
41, -- ,0n generate M over Ox.. We look for the generator set of T(M). Let

7(Gi) = Cit417(Ge41) + -+ + Cn(Gn), 1=1,... ¢
Hence by (3.1), §; := —§i+City1§t+1+- - - +Cingn € T(M),i = 1,... ,t. Taking representatives,
denote g: = —gi + Cit410t41 + - + Cingnyt = 1,...,1, g£+_1 = Jt+j, j=1...,n—1t Then
g=1(9%,---,95), with g{,... ,§; € T(M). By Lemma 5, t < p. We have proved 1).

Note that g, C Ox,, defines also a complete intersection (X, z) in the regular space germ
(X, 2), and we have p = t in (4.2). By actually [10, 11], (Lf)—g) = g2. By Nakayama, lemma

2z
and (4.2), we have §; = (gp+1,--- ,gn)-- By Proposition 4, we have 2).

Since h C g, we have h; = bi1gy + -+ + bipgp, + bipt19p41 + -+ + bingp,i = 1,... ,p. For

any & € Derx(o)) we have bip+1§(g‘l)+1) +--t blﬂg(g;l) =0 modg,i =1,...,p. Hence
bipt19p41 + -+ + bingy, € [y 9, which implies that bipy1,... ,bin € g for i =1,...,p. It is
obvious that b is a non-zero divisor in Og. O
Remark 9. Combining the conclusions in Proposition 4, Proposition 7 and 8, one sees that
the Main Theorem is proved. Moreover, either of the equivalent conditions in the Main
Theorem is equivalent to 3) in Proposition 8.
Egzample 10. Let b be defined by h := z3+zy3+21%2+22? = 0, g be defined by g; := z2+y° =
0,92 := z=0. Thus h = (h), g = (g1,92). Notice that h is not weighted homogeneous. So it
is not easy to find the generator set of Derx(O). Then we have the same problem for [, g.
If we denote g} = g1 + 2zg2 + g2, then h = zg} + (2 — z)g2, where z is a non-zero divisor in
Os. By Proposition 7, we have:

e T(M) is generated by g} over Og

o Jx8=1(91,9) = (a® + ¢’ + 222,77

o N =(92)/(9192,93) is a free Op-module.

The following example shows that it is not necessary for T'(M) to be generated by g; when
t>p.

Ezample 11. Let g = (g1,92) with gy = zy, g2 = zand h = (h) with h = 22y +yz+2° = zg, +
yg2+93. Then Oz = C{z,y}/(zy), [x 8 = (2%y,y2,2%) and g® +b = (z%y?, zyz, 2%, 2%y +y2).
So T(M) = Cz?y. And N is not a free Og-module.

5. LINES ON SPACES WITH ISOLATED COMPLETE INTERSECTION SINGULARITIES

We include some applications of the theory to lines on a space germ with isolated complete
intersection singularity. Let ¥ be the germ of a smooth curve in (C™*1,0) defined by g. We
call such a ¥ a line since locally it is biholomorphic to a line. Define g := Ry, % C, the semi-
product of Ry, with the contact group C (cf. [8]), where Ry is a subgroup of R := Aut(C™, 0)
consisting of all the ¢ € R preserving g. This group has an action on the space mgOP. For
h = (h1,...,hp) € mgOP, there is an ideal h generated by h,... , hp, and a germ X = V(h).

“The image of the differential of h: O"+! 40P is denoted by th(h). Define a pK-invariant
or

th(h) + gOP’

Choose ¥ as the z-axis. Then ¥ can be defined by g = (y1,--- ,¥n)-

A= A(Z,X) = dimg

Proposition 12. Let £ be a line on a space germ X with isolated complete intersection
singularity of codimension p. Then h is sK-equivalent to an h with components h; = biy;
mod g2, where b; ¢ g, i = 1,...p. Morcover A\(£,X) = A\(Z,X) = dim¢ @/ (b+g) = [
where b := by - - - by, and l; is the valuation of b; in Os,.
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Proof. Since ¥ C X, for a given generator set {hi,...,hp} of b, we have h; = > bijy;
mod g2,i =1,... ,p, where b;; € Oy, and for fixed 1, b;;’s are not all zero since X is complete
intersection and Xgng = {0} C X. Since Oy is a principal ideal domain, by changing the
indices, we can assume that by | b;;. Let y] = y1 + Z?ﬁ gﬁy]‘. Then h; = b1y, mod g2.
Let hf = h; — glillhl,i =2,...,p. Repeat the above argument will prove the first part of the
proposition.

Consider the exact sequence

o+t My op _y coker(dh*) — 0.

By tensoring with Oy, we have the exact sequence
opt! any 0% — coker(dh*) — 0.
However by the expression of h;’s above, this is just
or 0
_— —
th(h) + gOP

Since b # 0, by [2, A.2.6], we have the formula for . g

dh*
0808 —

Corollary 13. Let X be a space germ with isolated complete intersection singularity of
codimension p in (C™*!,0), and ¥ is a line in X defined by g. Then we can choose the
coordinates of (C"*1,0) such that g = (y1,.-- ,Yn), J1s---,0p € T(M) and fps1,--- »0n
generate N which is free of rank n — p, and

/XG=(y1,---,yp)+(yp+1,---,yn)2 a

Corollary 14. (Due to Pellikaan) Let X be the germ of a space with isolated complete
intersection singularity of codimension p in (C"*1,0), and £ a line in X, defined by g =
(y1,--- ,Yn)- Then the Second Exact Sequence [9, 3] is exact on the left also:

0— M504 @ 05 — QL — 0.
Furthermore it is splitting and
T(Q% ® Og) = T(M), rank(Q4 ®Os)=n—-p-1.

These tell us that the torsion number \(h,g) is independent of the choice of the generator
sets of g and b.

Proof. We have the following presentation:
dh 1
OS}—)O}* — Q4 —o0.
Tensoring with Oy, we have the exact sequence
0r- %08t ) ® Op — 0.

Remark that the map dh is equivalent to a map defined by the matrix (I_)ij). Hence

ortl 1 /4
g R0gx E_x0pPlg 2 _ >0 NeT(M)=0sa M.

imdh im(b;;)

Then exact is o
n+1
0—M-— L 05 —0

: imdh .

Since QL is free Ox-module of rank 1, by [2, A.2.2], we have the exact sequence. -0
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Remark 15. In general, given an analytic space germ (X, 0), one cannot find a smooth curve
L C X that passes through and is not contained in Xsi,g. However, if there are smooth
curves on X in the above sense, how to distinguish them is a problem. We found that the
torsion number ) is a nice candidate for this purpose [7]. In studying the Euler-Poincaré
characteristic x(F) of the Milnor fibre F of a function with singular locus a smooth curve
on a singular space, we found that this A also appears in x(F). Note also that the torsion
number was generalized to “ higher torsion numbers” in [6, 7].
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SHEAVES ON A FINITE POSET AND
LOCAL COHOMOLOGY MODULES WITH SUPPORTS IN
MONOMIAL IDEALS

KOHJI YANAGAWA

1. INTRODUCTION

The local cohomology module H:(R) of a noetherian commutative ring R with
supports in a (non-maximal) ideal I has been studied by a number of authors. But
it is still very mysterious. When R is a regular local ring containing a field, some
remarkable results on the minimal injective resolution of Hi(R) were obtained by
Huneke-Sharp (7] and Lyubeznik (8, 9]. Among other things, they proved that the
Bass numbers of these local cohomology modules are always finite.

Very recently, a combinatorial description of the local cohomology module H}(S)
with supports in a monomial ideal I of a polynomial ring S = klz1,... ,z,] was
obtained by Mustata [10] and Terai [13]. Since Hi(S) = H!.(S), we may assume
that I is the Stanley-Reisner ideal I of a simplicial complex A C 2{1--:n},

In this note, we will study a minimal injective resolution of Hj, (S). We will
see that Bass numbers u*(P, H{A (S)) are equal to certain values of the (Z™-graded)
Hilbert function of Exts(Ext%(S/Ia, S), S) for some 1.

Next, we will study the local cohomology module Hi(R) of a normal Gorenstein
semigroup ring R = k[C], C C Z™ C R", with supports in a monomial ideal (i-e.,
a Z"-graded ideal) I. We say R is simplicial if the cone R, C can be spanned by
dim(R,C) elements of R". If R is simplicial and Gorenstein, the Bass number
(P, H(R)) is always finite. And it is equal to a certain value of the (Z"-graded)
Hilbert function of Ext(Ext}(R/I, R), R) as in the polynomial ring case.

2. SQUAREFREE MODULES AND STRAIGHT MODULES

Let S = k[z,,... ,2,] be a polynomial ring over a field k. Consider a natural
Z"-grading on S. An ideal of S is Z"-graded if and only if it is a monomial
ideal. Let m := (zy,...,z,) be the graded maximal ideal. For a Z™-graded S-
module M = P, 5. M, and b € Z", we denote by M (b) the Z™-graded S-module
which coincides with M as the underlying S-module and whose grading is given by

[M(b)]a = Mayp. Let ws := S(=1,...,—1) be the canonical module of S. For a
subset F' C [n] := {1,... ,n}, Pr denotes the monomial prime ideal (z; |t € F) of
S. For a = (aj,... ,a,) € N*, denote the monomial [Tz by x2. :

We denote the category consisting of all the S-modules (resp. Z"-graded S-
modules) and their S-homomorphisms (resp. Z"-graded S-homomorphisms) by
Mod (resp. *Mod). Here, we say an S-homomorphisms of Z"-graded modules
[N — M is Z"-graded, if f(N,) C M, for all a € Z". Let M, N be Z™-graded
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S-modules. Recall that if N is finitely generated then Ext%(N, M) € Mod has
natural Z"-grading (cf. [2, 4]).

In this note, N means the set of non-negative integers. A Z"-graded S-module
M = @, cz. Ma is called N*-graded if M, = 0 foralla ¢ N*. Fora = (a1,... ,a.) €
Z", set supp(a) := {i | a;> 0} C [n]. We say a € Z" is squarefree if a; = 0, 1 for all
i € [n]. When a € Z" is squarefree, we identify a with F' := supp(a). For example,
we denote M, by Mp and M(a) by M(F) for M = @,cz. Ma € *Mod.

Let A C 2" be a simplicial complex, i.e., if € A and G C F then G € A. The
Stanley-Reisner ideal of A is the squarefree monomial ideal Ix := (x* | F € A) of
S. Any squarefree monomial ideal is the Stanley-Reisner ideal /5 for some A.

Definition 2.1 ([14]). We say an N"-graded S-module M =P, y- Ma is square-
free, if M is finitely generated and the multiplication map M, 3> y — x®y € M.,
is bijective for all a,b € N* with supp(a + b) = supp(a).

It is easy to see that a Stanley-Reisner ring S/, is a squarefree module. The free
module S(—F) is squarefree for all F' C [n], in particular, ws is squarefree. And
S/Pr(—Q) is squarefree if and only if G C F. If M is squarefree then dimy M, =
dimy Mgypp(a) < 00 for all a € N*, and we have dimg M = max{ |F| | Mp #0}.

We denote by Sqg (or simply Sq) the full subcategory of *Mod consisting of
all squarefree modules. Sq is an abelian category admitting the Jordan-Horder
Theorem. Moreover, Sq has enough projectives and enough injectives. An inde-
composable projective (resp. injective) object in Sq is isomorphic to S(—F) (resp.
S/P) for some F' C [n]. If M is squarefree, then both Syz;(M) and Ext%(M,ws)
are also for all ¢ > 0 ([14, Corollary 2.4 and Theorem 2.6]).

Recently, monomial ideals of an exterior algebra E = k(zi,...,z,) are stud-
ied by several authors (e.g., [1, 3, 12]). Romer [12] defined squarefree modules
over E. A monomial ideal of E is always squarefree, and the category Sqg of
squarefree E-modules is equivalent to the category Sqg of squarefree modules over
S = k[z1,...,%Zs], and an indecomposable projective object in Sqg is a certain
monomial ideal of E. A projective object in Sqg has a simple and explicit (but
infinite) E-free resolution. The notion of a squarefree module is also useful in the
study of an exterior algebra, see [12, 3].

Definition 2.2. A Z"-graded S-module M = D, ;. M, is called straight, if the
following two conditions are satisfied.
(a) dimy M, < oo for all a € Z™.
(b) The multiplication map M, 3 y — xPy € M.y, is bijective for all a € Z" and
b € N with supp(a + b) = supp(a).

A finitely generated S-module M is straight if and only if M is a direct sum of
finitely many copies of wg. The injective hull *E(S/Pr) of S/Pp in *Mod (we will
say *E(S/Pr) is the *injective hull of S/Pr) is straight. Recall that *E(S/Pp) is
not injective in Mod, if Pr # m.

Denote by Str the full subcategory of *Mod consisting of all straight modules.
For a Z"-graded S-module M = @,.;. Ma, we call the N*-graded submodule
D.cn» Ma the N*-graded part of M, and denote it by M. Tt is easy to see that if
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M is straight, then M is squarefree. For example, the N™-graded part of *E(S/Pr)
is isomorphic to S/Pp. Conversely, for a squarefree module N, there is a unique
(up to isomorphism) straight module N, whose N™-graded part is isomorphic to N.
We say N is the straight hull of N. Summing up, we have the following.

Proposition 2.3 ([15, Proposition 2.7]). The functors Sq > N N € Str and
Str > M — M € Sq give the category equivalence Sq = Str.

3. INJECTIVE RESOLUTIONS

The abelian category Str has enough projectives and enough injectives. An
injective object of Str is a direct sum of finitely many copies of *E(S/Pp) for
various F' C [n]. So we have the following.

Proposition 3.1 ([15, Theorem 3.2]). Let M be a straight S-module, and *E* :

0 M —*E°— *E' - --- a minimal injective resolution of M in the category

*Mod (we say *E* a minimal *injective resolution of M). Then *E' is straight for

all i > 0. More precisely, *E* = Drcpn *E(S/Pp)¥(PrM) (the degree shifting does

not occur). And we have *inj.dimg M < inj.dim M = dimg Supp(M) = dimg M.
Let M, N be Z"-graded S-modules, and *E* a minimal *inject_ive resolution of

M. If N is finitely generated, then H'(Homg(N,*E*®)) = Ext%(N,M). Since

Hj(M) = limExt(S/I', M), we have Hi(M) = H'(Ti(*E*)), where T';(=) :=

—

lim Hompg(R/I', —) is the functor from *Mod to itself. So Hi(M) has a natural

—

Z™-grading.

Corollary 3.2 ([15, Corollary 3.4]). If M is straight, so is Hj, (M).

Proof. Let *E*® be a minimal *injective resolution of M. By Proposition 3.1, the
complex *E* consists of straight modules. Hence so does I';, (*E*). O

Since the canonical module wg is straight, a minimal *injective resolution *D® of
ws consists of *E(S/Pr)’s (without degree shifting) by Theorem 3.1.

Corollary 3.3 (Mustata [11] and Terai [13]). For all i > 0, the local cohomology
module Hj, (ws) = Hj (S)(—1,--+,—1) is a straight module whose N*-graded part
is isomorphic to Exty(S/Ia,ws).

Proof. Since ws is straight, so is Hj (ws) by Corollary 3.2. Observe that the N"-
graded part of Homg(S/Ia,*E(S/Pg)) is isomorphic to S/Pp if In C Pg, and 0
if not. Thus the N"-graded part of Homg(S/Ia,*D*) and that of T, (*D*®) are
isomorphic. Recall that Ext%(S/Ia,ws) is squarefree. So the N™-graded part of
Hj}, (ws) is isomorphic to ExtS(S'/IA,ws) ‘ , O

We have an explicit formula for the Bass numbers of straight modules.

Theorem 3.4 ([15, Theorem 3.5]). Let M be a straight S-module, and )\7[ its N™-
graded part. Then, 1i*(Pp, M) = dim[Exty ™" (M, wg))p.
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Corollary 3.5 ([15, Corollary 3.6]). For alli,j, we have

W (Pr, Hi, (S)) = dimyExtl 17 /(Ext}(S/Ia,ws), ws) ]
dim [ Extr  F(Ext](S/14, ), S)]r.

We can also compute the Bass numbers at an arbitrary prime ideal P, since
we have p'(P, Hj (S)) = p*~"(P*, Hj, (S)) by [4, Theorem 1.2.3], where P* is the
largest monomial prime ideal contained in P and ¢ := dim(Sp/P*Sp).

Set d := dim S/I5. If Ext%%(S/Ia,S) is Cohen-Macaulay (e.g., S/I itself is
Cohen-Macaulay), a minimal injective resolution of H}":d(S) is naturally “visual-
ized” using A, see [15].

Let I be an arbitrary ideal of S, and z = {z1,... ,z,} a generating set of I.
Set C* := lim K*(z') be the Cech compler with respect to z.” Let M be an S-
—

module. It is well-known that H}(M) = H{(M ®s C*) for all i > 0. Note that C*
is a complex of flat S-modules. Thus Hi(M) is the ith cohomology group of the
derived tensor product of C*®% M. From now on, we assume that I is a squarefree
monomial ideal. Let F, be a Z"-graded minimal free resolution of S/I over S. Set
G* := Homg(F.,ws). Since G* is a direct sum of the copies of squarefree modules
S(—F), we have the straight hull E* := G* of G*, which consists of flat S-modules.
By Corollary 3.3, we have H(E*) = Hj(ws). But we can prove more. By an
argument similar to the proof of Corollary 3.3, we see that the Cech complex C*
and E* represent the same object in the derived category D*(Mod) of Mod. Thus
we get a new proof of a result of E. Miller.

Theorem 3.6 (Miller [10]). With the above notation, we have
Hi(M) = H'(E* ®s M)

for a (not necessarily Z"-graded) module M. If M is Z™-graded, H}(M) ®s ws =
HY(E* ®s M) as Z"-graded modules.

4. SHEAVES ON FINITE POSETS

The results of the remaining part of this note are from [16].

In this section, we study sheaves on a partially ordered set (poset for short). Let
P be a finite poset. We regard P as a category. The objects of this category are
the elements of P, and the morphism from z to y in P is relation of the form z < y,
that is, Homp(z,y) is either {z <y} or 0. Let k be a field, and vect the category
of finite dimensional k-vector spaces and their linear maps. A sheaf on P (with
value in vect) is a covariant functor F : P — vect. For z,y € P with z < y, we
call the corresponding linear map F(z) — F(y) the restriction map. A morphism
of two sheaves F and G on P is a natural transform. Denote the category of sheaves
on P by Sh(P). It is easy to see that Sh(P) is an abelian category admitting the
Jordan-Horder Theorem and the Krull-Schmidt Theorem.
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For z € P, we define the sheaves J, and &, as follows:

koify> koify<az,
Jz(y)={ ry=% Ez(y)={ ny=®

0 otherwise, 0 otherwise,
where the restriction map of J, (resp. &) is always injective (resp. surjective).

Proposition 4.1. (a) The sheaf J, (resp. E.) is a projective (resp. injective)
object in Sh(P) for all z € P. And any projective (resp. injective) object in Sh(P)
is a direct sum of finitely many copies of J, (resp. &) for various z € P.

(b) The category Sh(P) has enough projectives and enough injectives. For all
F € Sh(P), both proj.dimgyp) F and inj.dimg,py F are at most rank(P). In
particular, both of them are finite.

5. SQUAREFREE MODULES OVER A NORMAL SEMIGROUP RING

Let C C Z% C R? be an affine semigroup (i.e., a finitely generated semigroup
containing 0), and R := k[C] = k[x® | ¢ € C] C k[z1,z7",... , 24, x;'] its semigroup
ring over a filed k. A Z%graded ideal of R is called a monomial ideal, since it is
generated by monomials. In this note, we always assume that C is normal and
positive. In other words, R is normal, and m := (x° | 0 # ¢ € C) C R is the graded
maximal ideal. Since R is normal, it is Cohen-Macaulay (c.f. [2, Theorem 6.3.5]).
We also assume that ZC = Z¢. Hence we have dim R = d.

Let R, be the set of non-negative real numbers. Consider the rational polyhedral
cone R,C := {3 ric; | : € Ry, ¢; € C} C R There are vectors a; € Z¢ C R¢,
1 <i < mn,such that RyC = {z € R? | (a;, z) > 0 for all i}. Here (z,y) = ZLI TiY;
is the inner product of two vectors z,y € RY. For z € RY, set supp(z) := {i |
{ai, z) > 0} C [n]. It is easy to see that z € R? is contained in the relative interior
of R, C if and only if supp(z) = [n].

We say R is simplicial if R,C can be spanned by d elements of R%. In this
case, we can take n = d. A polynomial ring S = k[zi,...,z,] = k[N"] is &
simplicial semigroup ring. In this case, supp(z) for z = (z1,... ,2,) € R™ is given
by {i |z > 0} C [n].

We denote the set of non-empty faces of R.C by L. The order by inclusion
makes L a finite poset. The rank of L as a poset is d. Note that R is simplicial
if and only if L is isomorphic to the boolean lattice B, as a poset. For z € R, C,
there is a unique face s(z) € L such that z is contained in the relative interior of
s(z). For z,2' € RyC, supp(z) = supp(z’) if and only if s(z) = s(2').

Next we will define a squarefree C-graded module over R = k[C], C C Z¢. A
Z*-graded R-module M = @, ;. M, is called C-graded if M, = 0 for all a & C.

Definition 5.1. A C-graded R-module M is called squarefree, if M is finitely
generated and the multiplication map M, > y — x%y € M,y is bijective for all
a,b € C with supp(a + b) = supp(a).

When R is a polynomial ring, the above definition coincides with the previous
definition of a squarefree module over a polynomial ring.
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We denote the category consisting of all the R-modules (resp. Z%-graded R-
modules) and their R-homomorphisms (resp. Z?-graded R-homomorphisms) by
Mod (resp. *Mod). We denote the full subcategory of *Mod consisting of all
squarefree modules by Sqp, or simply Sq. It is easy to see that Sq is abelian.

Theorem 5.2. The categories Sqg and Sh(L) are equivalent.

It is obvious that R itself is a squarefree module. Since the canonical mod-
ule wgp of R is isomorphic to the ideal (x¢ | ¢ € C with supp(c) = [n]), cf. [2,
Therorem 6.3.5], wg is also squarefree. Let A C L be an order ideal (i.e, if F' € A,
G e L, and G C F, then G € A). Set In := (x°| c€ C and s(c) € A) to be a
radical monomial ideal of R. A radical monomial ideal I of R is Ia for some A.
Both I and R/IA are squarefree. When R is a polynomial ring (i.e.,.C = N¢ and
L = B, as a poset), the above definition of Ia coincides with that of the Stanley-
Reisner ideal I of a simplicial complex A. Note that an order ideal A C B, can
be regarded as a simplicial complex whose vertex set is (a subset of) [n].

For a face F € L, set Pp := (x° | c € C with s(c) ¢ F) C R be a monomial
ideal. Since R/Pr can be regarded as the normal semigroup ring k[C N F], Pr is a
prime ideal and R/Pr is Cohen-Macaulay. Conversely, any monomial prime ideal
of R is of the form P for some F € L. Observe that dim(R/Pr) = dim F, where
dim F is the dimension as a face of R, C.

As in the polynomial ring case, we can prove that if M is a squarefree module
then so is Exth (M, wg) for all i > 0.

The category Sq has enough projectives and enough injectives. For a face F' € L,
we denote the radical monomial ideal (x¢ | ¢ € C and s(c) D F) by Jp. It is easy to
see that Jp is a squarefree module corresponding to the sheaf Jr € Sh(L). Thus an
indecomposable projective object in Sq is isomorphic to Jr for some F. Similarly,
an indecomposable injective object in Sq is isomorphic to R/Pr for some F'.

When R = S = k[zy,... ,Z,] is a polynomial ring, Jr is nothing other than the
free module S(—F). If R is not a polynomial ring, Jr is not free for some F'. For
example, wg is always projective in Sqz. A projective object in Sqp is always
a maximal Cohen-Macaulay R-module. All squarefree maximal Cohen-Macaulay
R-module is projective in Sqp, if and only if R is simplicial.

6. LocaL. COHOMOLOGY MODULES WITH SUPPORTS IN A MONOMIAL IDEAL
(NORMAL SEMIGROUP RING CASE)

Definition 6.1. We say a Z%-graded R-module M = @5« M, is straight, if

(i) dimy M, < oo for all a € Z°.
(ii) The multiplication map M, 3 y > xby € Mo, is bijective for all a € Z¢ and
b € C with supp(a + b) = supp(a).

A finitely generated module M is straight if and only if M = w® for some t € N.
The injective hull *E(R/Pr) of R/Pr in *Mod is a straight module.

Denote by Str the full subcategory of *Mod consisting of all straight modules.
Str is an abelian category (even if R is not simplicial). Let M = €, .z« M, be a
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Z*-graded R-module. We call the submodule M := @, M, the C-graded part of
M. It is easy to see that if M is straight then M is squarefree.

Proposition 6.2. Suppose that R is simplicial. For a squarefree module N, there
is a unique straight module M such that M = N. From this correspondence, the
categories Sq and Str are equivalent.

If R is not simplicial, there is a non-zero straight module M with A = 0.
If R is simplicial, Str is an abelian category with enough projectives and injec-
tives. An indecomposable injective object in Str is *E(R/Pr) for some F € L.

Theorem 6.3. Assume that R is simplicial, and M is a straight R-module. For a
face F € L and c € C with s(c) = F, we have

1 (Pp, M) = dimi[Ext& 4™ F (M wp)]..
Here M is the C-graded part of M.

As in the polynomial ring case, we can compute p'(P, M) at an arbitrary prime
ideal P, using Theorem 6.3 and a principle of [4]. :

If R is simplicial, the local cohomology Hi(M) of a straight module M with
supports in a monomial ideal [ is straight again, as in the polynomial ring case.

Even if R is not simplicial, a Z%-graded minimal injective resolution of wx consists
of straight modules *E(R/Pp) (without degree shifting), see (6.1) below. By the
same argument to the polynomial ring case, we have the following.

Theorem 6.4. Let I be a radical monomial ideal of R. Then Hi(wg) is a straight
module whose C-graded part is isomorphic to Exty(R/I,wg).

By Theorems 6.3 and 6.4, we have the following.

Corollary 6.5. Suppose that R is simplicial and I is a radical monomial ideal of
R. For all F € L and c € C with s(c) = F, we have

11 (Pr, H} (wg)) = dimy[ Extd = dmF(Ext? (R/I,wg), wgr)]e < 0.

If R is not simplicial, Corollary 6.5 is not true. In fact, if I := ( y) C R :=
k[z,y,z,w]/(zz — yw), then p°(m, H}(S)) = oo for m := (z,y, 2, w), see [6, §3).
Note that R is a normal semigroup ring, but not simplicial.

Finally, we will give a formula on the Hilbert function of H’ . (wr). Recall that a
Z%-graded minimal 1nJect1ve resolution *D* of wg is given by

(6.1) 0—*D°—*D' 5 ... 5*D? 0,
‘D' = GB *E(R/Pr).
FeL
dim F=d—1i

Let T' be a cross-section of the cone R, C. Then T is a polygon of dimension d—1.
For a face F € L of RyC, F denotes the face T N F of T. By this correspondence,
the face lattice L of T is isomorphic to L as a poset. We can regard L as a finite
regular cell complez (c.f. [2, §6.2]). Let C be the augmented oriented chain complex
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of L. For an order ideal A C L and a € Z¢, set C(A) := @, kF be a subcomplex
of C, and
CA):= P kF
Fea
supp(F)2 supp(a)
be a subcomplex of C(A). We also set C(A, A,) == C(A)/C(A,).

Theorem 6.6. With the above notation, we have H}A (wr)s = Hd_i_l(é(A, A,))
for alli> 0 and a € Z°.

If R is simplicial, the chain complex (A, A,) is isomorphic to the augmented
chain complex of lkr A for some F' € L. Thus, when R is a polynomial ring, the
above formula is nothing .other than Terai’s formula in [13].

Using Theorem 6.6, we can get a simple combinatorial proof of “Hartshorne-
Lichtenbaum vanishing theorem” [5, Theorem 3.1] for a normal semigroup ring and
a monomial ideal (when R is Gorenstein).

Corollary 6.7. If In # m (equivalently A # {¢}), then Hf (wg) = 0.
Proof. Tf A # {4}, then H_;(C(A)) = H_;(C(A,A,)) = 0 for all a € Z°. O
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MUTATIONS OF EXCEPTIONAL SEQUENCES ON
GRADED GORENSTEIN RINGS

TOKUJI ARAYA
GRADUATE SCHOOL OF HUMAN AND ENVIRONMENTAL STUDIES
KYOTO UNIVERSITY, KYOTO 606-8501, JAPAN

The concept of an exceptional sequence on the category of coherent
sheaves was developed in [2] and generalized in [1]. We define it in the
.context of commutative algebra similarly on the category of coherent
sheaves.

Let R be an N-graded Gorenstein local ring and Ry = k is an alge-
braically closed field.

We denote by mod R the category of finitely generated Z-graded R-
modules with morphisms that are degree preserving maps, by CM R the
full subcategory of mod R consisting of all maximal Cohen-Macaulay
modules, and by D®(modR) the derived category of bounded com-
plexes.

Definition 1. For E' € D®(mod R), E' is called ezceptional provided
RHom(E', E') is isomorphic to k.

A sequence of exceptional complexes € = (--- ,E;_1,E;,E4q,---)
is called an ezceptional sequence provided RHom(E;, E';) = 0 for i > j.

Example 2. 1. Let R = k[z] be a polynomial ring in one vari-
able. Then any indecomposable module is exceptional, and
e=(---,R(-1),R,R(1),---) is an exceptional sequence.

2. Let R be a 1-dimensional N-graded Gorenstein local ring of finite
Cohen-Macaulay type, then any indecomposable maximal Cohen-
Macaulay module is exceptional.

Definition 3. For E' and F' € D®(mod R), there exists a canonical
map from RHom(E',F') ®; E' to F'. The left mutation L5 F' of F' by
E' is defined by the triangle;

RHom(E,F)®:E - F — £p F
Dually,the right mutation Rr. E' of E' by F" is defined by the triangle;
RArp E = E - DRHom(E,F) @ F
where D is the k-dual.



Let B be the braid group on infinite strings, having generators o;
(i € Z), with relations 0;0,110; = 0i410;044; for all 1 and 0,0; = 0;0;
for |j —i| > 2. Then B acts on the set of exceptional sequences by

oie=(,Ei1,Eiy1,Re i, B0 Bz )
o'e=(,Ei-1, L, Eis1, B, Biga- )
A direct sum Z*® of Z also acts on the set of exceptional sequences by
eie = (- ,Ei, Bi[l],Ei1,--+)
where e; is the natural basis on Z*°. So, if G is the semi direct product
B x Z*, then G acts on the set of exceptional sequences.

Definition 4. Let € be an exceptional sequence.
1. We say that an exceptional module E is generated by € provided
there exists o in G such that E is contained in oe.
2. € is called generating provided any exceptional module is gener-
ated by €.

Problem 5. Does there exist a generating exceptional sequence ?

Answer 6. 1. It is yes if R = k[z] is a polynomial ring. In this case
(---,R(-1),R,R(1),---) is a generating exceptional sequence.
2. If R is a 1-dimensional N-graded Gorenstein local ring of finite
Cohen-Macaulay type, then there exists a generating exceptional
sequence. - '

I will give an explanation on this second answer in my lecture.

Theorem 7. If R is a 1-dimensional N-graded Gorenstein local ring of
finite Cohen-Macaulay type, then there ezists a generating exceptional
sequence. ’

Since R is a 1-dimensional N-graded Gorenstein local ring of fi-
nite Cohen-Macaulay type, R is isomorphic to one of following types

(c£.[4]);

( n) R= k[:L‘, y]/(y2 - xn)
(Dn) R=k[z,y)/ (z z")
(Bs) R=k[z,y]/(s® )
(Er) R=klz,y]/( +xy ®)

(Es) R=klz,u]/(z*+°)

The Auslander-Reiten quiver of CM R for each type are shown in

figures (1)-(7). We take the exceptional sequence €q as in figures (1)-
(7).

Claim 8. The ezceptional sequence €y is generatling.

[Slw]

To show this claim, we need two lemmas.
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Lemma 9. If 0 - X — &Y — Z — 0 is Auslander-Reiten
sequence in CM R, then Ry, Ry, - - - Ry,, X 1s isomorphic to Z[—1] and
Ly, Ly, -+ Lv..Z is isomorphic to X|[1].

Lemma 10. Let E be an ezceptional module. If E is not a mazimal
Cohen-Macaulay module, then there ezists a mazimal Cohen-Macaulay
module X and integer n such that 0 - X — R(n)" = E — 0'is an
ezact squence where r = dimy Hom(X, R(n)) = dim; RHom(X, R(n)),
ie. B2 mR(,,)X[l]

By lemma 9, any exceptinal maximal Cohen-Macaulay modules are
generated by £y, and by lemma 10, any exceptinal non maximal Cohen-
Macaulay modules are generated by €. Therefore € is generating.

Conjecture 11. Let ¢ be an exceptional sequence. The following
claims would be true.
1. € is generating if and only if for any exceptinal maximal Cohen-
Macaulay modules are generated by €.
2. G acts transitively on the set of generating exceptlonal sequences.
3. € is generating if and only if it is maximal. Here we say that ¢
is mazimal provided there is no exceptional module that we can
add into € as an exceptional sequence. '
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eo=(-++,R(-2n —3),R(-4),R(-2n — 1), R(-2),1(-2n+ 1), ,(-2n + 3),--- , I,(-1),
In,--  Ip, I, R(~2n + 1), R, R(~2n + 3), R(2),---)
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klz,y)/(v* - 2%")

: (Ay) with n even, R

figure(2)

’MlaR) R(l)s

\R(=2), R(~=1), N4, N_, Mp_y, M_s, - - -

o= (-
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2n
B.

figure(3) : (D,) with n odd, R = k|, y]/ﬁ(#f_:_:g__)_/—
1(=2)

...... Yi(-2n41) - -t Xl(—2n+1){--}’1(—2n+3)~-~-~--X1(—2n+3)-~----

...... :2ni D/"B(_Z"MTL"‘ 3)eennn.
R(=2n+1) T R(-2n+ 3)///___)

eo=(--,R(=2),R(=2n+ 1), A(=2n + 1), X1 (-2n + 1),--- , A, R, R(=2n + 3), R(2),---)
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€ =(--,R(-2),R(-1),D4,D_,Y,,No_y,--- , Y1, A, R, R(1),--")
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€ = ( o ’R(_S))R(_z)’R(—3)a]‘ll("3)v A(_l)a M‘b X7 A:Nla R,R(—l),R(Z), o )
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figure(7) : (Eg), R = k[z,y]/(z® + ¢°)

€0 = ( . 1R(_2))R(_1)1N21 CZ)B27 XI)XZvcltBl: N17R’ R(l)) .t ) ‘
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A note on graded Betti numbers of

Gorenstein rings

TADAHITO HARIMA

(Shikoku University)

This note is a brief summary of a joint work [7, Sections 6~8] with Professors
A. V. Geramita and Y. S. Shin. We study graded Betti numbers of some
Artinian Gorenstein rings obtained from a construction of linkage theory.

1. PRELIMINARIES

1.1. Let A be a (standard) graded ring over a field k, namely, A is a
graded ring ®;>0A; satisfying Ap = k, A = k[A;] and dimz A, < oo.
This means that there is an integer n > 0 such that A = R/I where
R = k[zg,z1,...,25] = ®i>oR; is the polynomial ring with the standard
grading, i.e., each degx; = 1, and I = ®;>0]; is a homogeneous ideal of R.

The Hilbert function of A is defined by the numerical function H(A4, —) :
N — N with

H(A,1) := dimg A; = dimg R; — dimy [;

for all ¢ > 0, in particular H(A,0) = 1. When A = @izo Aj; is Artinian, we
put
s(A) = Max{i | A; # (0)}

and we call s(A) the socle degree of A. In this case we denote by the finite

sequence
H(A) = (H(A) 0)? H(A’ 1)) ey H(A’ S(A)))

the Hilbert function of A. A finite sequence (ho, hy,...,hs) is unimodal if
there is an integer £ such that

ho Shy< - She>hepy > - > by

The Hilbert series of A is defined by the formal power series

F(A,)) = i H(A, i)\ € Z[[\])].

i=0
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Let

b, by
0— PR — - — PR —R—A—0
=1 j=1
be a graded minimal free resolution of A as a graded module over R. The

numbers {f; ;} are uniquely determined by A, namely,
Bi,; = dimy Tor® (A, k);

for all (4, 7). So we call 3; ; the (i, j)-th graded Bett: number of A. The Betti
numbers of A determine the Hilbert series (i.e., the Hilbert function) of A
by .

1+ T (—1)inBi
F(A, A) — Zt—l EJ—]( )

(1= Xntl
The converse is not necessarily true. However we notice from many examples

that the Hilbert function of an algebra gives some restrictions on the Betti

numbers of the algebra.

"1.2. Let X = {P},...,P;} be a set of s distinct points in the projective
space P™ := P"(k) (where k = k is an algebraically closed field). Then P; <
pi = (Li1, ... ,Lin) CR= k[:l?o,:l:l,... ,:En] where the L,‘j, i=1...,n,
are n linearly independent linear forms and g; is the (homogeneous) prime
ideal of R generated by all the forms which vanish at P;. The ideal

I=Ix:=p N N,

is the ideal generated by all the forms which vanish at all the points of X.

The Hilbert function of X is defined by

Hx (i) := H(R/I,9)
and we put
o(X) :=Min{i | Hx(: — 1) =| X |}
where | X | denote the number of points on X. Since A is 1-dimensional
Cohen-Macaulay, we can check that
Hx(0) < --- < Hx(o(X) — 1) = Hx(o(X)) = --- =| X| .

Let Z be a finite set of points in P*. We say that Z is a complete intersec-
tion of type (a1,...,as) if Iz = (f1,..., fn) for some f; € Ry, (1 <4 < n).
In this case we have 0(Z) =a1 + - - +ap —n+1and | X |= [, a:.
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2. HILBERT FUNCTIONS AND BETTI NUMBERS OF SOME
ARTINIAN GORENSTEIN RINGS

First we give some description of Hilbert functions and Betti numbers of
Artinian Gorenstein graded rings obtained from the construction of the fol-

lowing lemma which is a special case of Remark 1.4 in [17].

Lemma 1. Let X and Y be finite sets of points in P such that XNY = @ and
XUY is complete intersection. Then R/(Ix+ Iy) is an Artinian Gorenstein
graded ring.

Theorem 1 (Theorems 6.1, 6.5 and 7.1, [7]). With the same notation as in
Lemma 1, we have
1) s:=s(R/(Ix + Iy)) =a(XUY) — 2 and
- 2) the Hilbert function of R/(Ix + Iy) is unimodal.
Moreover, assume that 20(X) < o(XUY). Then we get the following.

3)

e - {200l

4)

[Torf(R/(Ix + Iv), k)]; & [Torf(R/Ix, k)]; @ [Toryy,_;(R/Ix, F)]s+14n—j
for all i, j, that is,

Bii(R/(Ix + Iy)) = Bij(X) + Bn+1-i s+1+n—j(X).

Remark. The assertion 4) on Betti numbers is a slight generation of a
wonderful result, first discovered by M. Boij [3].

Remark. The equality 3) on Hilbert functions is not necessarily hold with-
out assuming 20(X) < o(XUY). For example, we can show it by taking the
following two basic configurations as the sets X and Y.

e o o x *x x Y
e o o x x X

X o o o x x %
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Then we can check that o(X) = o(Y) = 5,0(XUY) = 8 and
HX)=H(Y) : 1 3 6 8 99 99
HR/(Ix+Iy) : 1 3 67 6310 -,

i.e., H(R/(Ix +Iy),3) # H(X, 3). However we do not know such an example
for the equality 4). So we have a question.
Question. Does the equality 4) on Betti lnumbers hold without assuming
20(X) < o(XUY)?
Next, taking care to control the sets X and Y in Theorem 1, we would like {0
discuss a problem on maximal Betti numbers of Artinian Gorenstein rings.
Definition (n-type vectors). We do this inductively.

1) A 0-type vector is defined to be 7 = 1. It is the only 0-type vector.

Then we define a(7) = —1 and o(7T) = 1.

2) A 1-type vector is a vector of the form T = (d) where d is a positive
integer. For such a vector we define a(7) =d and o(7) = d.

3) A 2-type vector is an ordered collection

. T= ((dl)’(d2);--- r(du))

of 1:type vectors (du,...,dy) such that o(d;) < a(dit1), ie., d; < di1
fori =1,...,u ~ 1. For such a T we define a(7) = u and o(T) =
o((dy)) = du.

4) Now let n > 3. An n-type vector is an ordered collection

T=(M,...,T)

of (n — 1)-type vectors 7i,...,Ty such that o(T;) < a(Ti41) for i =
1,...,u — 1. For such a 7 we define o(7) = u and o(T) = o(Ty).
Definition (k-configuration).
1) Let T be a 0-type vector. A single point in P° is a k-configuration in
PO of type T.

2) Let 7 = (d) be a 1-type vector. A set of d distinct points in P! is
called a k-configuration in P! of type T.
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3) Let T = ((d1),--.,(dy))be a 2-type vector. A finite set X of points
in P2 is called a k-configuration in P2 of type T if there exist subsets
X1,...,Xy of X and distinct u lines Ly, ... ,Ly in P? such that

i) X=UL,X;,
i) X; ¢ L; (2 P!) is a k-configuration in P! of type (d;) for all
1<i<uy,
iii) Every L; does not contain any point of X; for all j < i.

4) Now suppose that we have defined a k-configuration in P"~! of type
7T, where T is an (n — 1)-type vector.

Let 7 = (T1,...,Ts) be a n-type vector. A finite set X of points in
P” is called a k-configuration in P"™ of type T if there exist subsets
X1,..., Xy of X and distinct u hyperplanes Hj, ... ,H, in P* such that
i) X =UL, X, .
ii) X; ¢ H; (2 P*1) is a k-configuration in P*~! of type 7; for all
1<i<u,
iii) Every H; does not contain any point of X; for all j < .

Remark. Let X be a k-configuration in P®. Then the Hilbert function and
the Betti numbers of R/Ix are completely determined by Type(X). Hence,
it follows from Theorem 1 that the Hilbert function and the Betti numbers
of R/(Ix + Iy) are also completely determined by Type(X). (For the details,
please see [7].)

3. MAXIMAL BETTI NUMBERS AND THE WEAK LEFSCHETZ ?ROPERTY

Let H , be the collection of all the possible Hilbert functions of Artinian
Gorenstein rings of codimension n + 1, and for a H € H ,,, we consider the
collection B,(H) of all the possible Betti sequences of Artinian Gorenstein
rings with Hilbert function H. We put a partial ordering on this set B ,(H)
by saying that {ﬂ,‘j} > {’)’,‘j} if ﬂij > Vij for all 4, 5.

Definition. Let H € . A Betti sequence {8;;} € B,(H) is mazimal if
{Bi5} > {;} for all {v;;} € Bn(H).

Problem. Let H e #H,.

1) Does there exist the maximal Betti sequence in B ,,(H)?
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2) If there exists, then find the unique maximal Betti sequence and show
an example of an Artinian Gorenstein ring with that maximal Betti

sequence for Hilbert function H?

When n = 1 the answer is easy. There is only one Betti sequence for a
given H € H ;! When n = 2 the answer is not easy, but both a maximum
and a minimum exist for every possible H € H 2 (see [5]). Unfortunately,
when n > 2 it seems nothing is known. However, since our linkage method
we discussed above can be carried in any codimension, we have (rashly?)

conjectured the following.

Conjecture. Let X be a k-configuration in P" and Y a finite set of points
~ such that XNY =0, XUY is complete intersection and 20(X) < o(XUY).
Let H be the Hilbert function of R/Ix + Iy. Then the Betti sequence of
R/Ix + Iy is maximal in B ,(H).

“Our interest in this problem comes from the following fact for codimension
3.

Theorem 2. Let n = 2.

1) Any Hilbert function in the set H o actually occurs for some Artinian
Gorenstein ring obtained from the construction of Conjecture (see [13]).

2) Let H be a possible Hilbert function in Ho. The Betti sequence of an
Artinian Gorenstein ring, with Hilbert function H, obtained from the
construction of Conjecture is mazimal in Bo(H) (see [11]). Namely,
the conjecture is true in the case n = 2.

To give some evidence for our conjecture, we prove it, with an additional
assumption, for the family of Artinian Gorenstein graded rings having the
weak Lefschetz property.

Definition ([21]). Let A = ®_yA; be an Artinian ring. We say that A
has the weak Lefschetz property if there is an element g € A; such that
g: A; = Ay (multiplication by g) is injective or surjective for every i.

We notice by [14] that all the Artinian Gorenstein rings obtained from the
construction of Conjecture have this property.

— 159 —



Theorem 3 (Theorem 8.2, [7]). Let R/Ix + Iy be an Artinian Gorenstein
ring obtained from the construction of Conjecture, and let H be the Hilbert

function of the ring. Here we put an additional assumption,
o(XUY) - 20(X) > n.

Then
Bij(R/Ix + Iy) > Bij(B)
Jor alli, j, where B is any Artinian Gorenstein ring with the weak Lefschetz

property which have Hilbert function H.

As J. Watanabe showed in [21] that almost all Artinian Gorenstein rings
have the weak Lefschetz property, so this result makes our conjecture more

interesting.
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EXTREMAL MINIMAL RESOLUTIONS AND
DECOMPOSITIONS OF A FINITE SET OF POINTS IN P"

YONG SU SHIN

This is a part of a joint work with Professor A.V. Geramita and Professor
T. Harima ([3], [4], and [5]).

Let X ={Py,...,Ps} be a set of s distinct points in the projective space
P"(k) (where k = k is an algebraically closed field). Then P, & p; =
(Lit, - .. ,Lin) C R = k[zg,z1,... ,2p] where the L;j, j = 1,...,n are n
linearly independent linear forms and g; is the (homogeneous) prime ideal
of R generated by all the forms which vanish at P;. The ideal

I=Ix:=p1N---Ngs
is the ideal generated by all the forms which vanish at all the points of X.
Since R = @ R; (R: the vector space of dimension ("’;") generated by
all the monomials in R having degree i) and I = ®&32,I; we get that
A=R/I =&Z(Ri/L;) = 20 Ai
is a graded ring. The numerical fupction .
Hx(t) = H(A4,t) := dimy A; = dimy R; —‘dim,c I,
is called the Hilbert function of the set X (or of the ring A).
Let I = Ix C R = k[zo,...,zy] and let
Fr:0aF, - aF, =510
be a minimal free resolution of I. We write
Fi= éR(—aij) where a1 <--- < ajp;
j=1
where the numbers a;; are the graded Betti numbers of I. We set
B; = {ai1,...,air}
and call it the i-th Betti numbers of I and call
B(I) :={By,..., B}
the Betti multiset of I.
Now fix a Hilbert function H and consider

Hp = {I C R|H(R/I,t) = H(t) for all t}
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Let I and J be in Hy. We say
B(I) < B(J) & Bi(I) € Bi(J)
foralll1 <i<n.

Theorem 1 ([6]). If we follow the procedure above, then we always get the
mazimum Betti multiset for a codimension 8 Gorenstein Hilbert function.

Question. What about codimension > 37

In this case we have neither Stanley’s result [11] nor that of Buchsbaum
and Eisenbud [2]. However, we have the theorem of Bigatti-Hulett-Pardue
which gives the maximum Betti multiset for points ([1], [9], and [10]).

In order to use points to make the maximum Betti multiset we devised
in the papers [3] and [5], we define a character called the n-type vector
which generalizes to P" the numerical character of Gruson-Peskine 8] to

P2 ,

We now recall some definitions from (3].

Definition 2. 1) A 0-type vector will be defined to be 7 = 1. It is the
only 0-type vector. We shall define o(7) = —1 and o(T) = 1.
~ 2) A 1-type vector is an object of the form 7 = (d) where d > 1 is a
~ positive integer. For such a vector we define a(T) = d = o(T).
3) A 2-type vector, T, is
T= ((dl), (d2)a teey (dm))
where m > 1, and the (d;) are 1-type vectors. We also insist that
o(d;) = di < a(di1) = dip1-
For such a 7 we define o(7) = m and o(T) = o((dm)) = dmn.
Clearly, a(T) < o(T) with equality if and only if 7 = ((1),(2),... ,(m)).

Remark: For simplicity in the notation we usually rewrite the 2-type vector
((d1), - » (dm)) 85 (da, - . ,dm) - | 2
4) Now let n > 2. An n-type vector, T, is an ordered collection of (n—1)-
type vectors, Th,...,Ts, i.e.
T=(T,---,Ts)
for which o(7;) < a(Tig1) fori=1,...,5s -1
For such a T we define a(7) = s and o(T) = o(Ts).
Example 3. Consider the following sequence which is the Hilbert function
of 16 points in P?
‘ H=149 14 16 —
We associate to it the 3-type vector
HoT=(Ti=(1,3), T2=(1,24,5)
where
Ti=(3) + Hi:134 -
T2=(1,2,4,5) & Hy:1 3 6 10 11 —
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two Hilbert functions of points in P2. In turn H; decomposes into
H;;:1— and Hi:123 —

and H> into
H :1—5 ; Hyp:12 —;
Hy3:1234 - and Hyy:12345 —
all these last Hilbert functions of points on lines.

Interestingly enough, one can reverse the process and thus construct a
set of points which realizes the given Hilbert function. A set of points

constructed in this way is called a k-configuration.

Theorem 4 ([3]). Let S, is the collection of Hilbert functions of all sets of

points in P*. There is a 1-1 correspondence

Sn ¢ { n-type vectors }

where if HE S, and H < T then a(H) = o(T) and o(H) = o(T).

Theorem 5 ([4], [7]). All k-configurations associated with the same Hilbert
function H have the same minimal free resolution. It is the “worst” minimal
free resolution associated to Cohen-Macaulay rings having Hilbert function

H.

Let Z be a basic configuration in P* and let X be a k-configuration in P®

which is contained in Z. Let Y:=Z — X.

Theorem 6 ([4]). Let X, Y, and Z be as above, let R = k[zo, ..., z,], H =
H(R/Ix+Iy,t). Suppose that o(Z) > n+20(X). Let B be the Betti multiset
of Ix + Iy. If J is any other Gorenstein ideal of R such that

(1) H(R/J,t) = H; and :
(2) R/J has the Weak Lefschetz Property,
then B > B(J).

Remark 7. Let H = {b;}i>0 be a 0-dimensional differentiable O-sequence
with b; = (";’") for i < d and let {c;}i>o be the sequence obtained from H by
subtracting the Hilbert function {e;}:>0 of the coordinate ring k[zy, . .., zn]/(Q)

where Q is a form of degree d.

i it
n+1 n+d
() e (19 o
n+1 n+d
1 1) d -1 ieeen €hid—1 | €hyd - -
I Il
€] €d
i Ch—1 cp e

Then there is an integer h for which

l=cp<c1<ca<---<cp1 and ¢j; > cp.
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Let H; denote the sequencecy ¢ ¢ -+ Cp—1 — .

Theorem 8 ([5]). Let Hy = {ci}i>o0 be as above. Then H; is a 0-dimensional
differentiable O-sequence.

Theorem 9 ([5]). Let H = {b;}i>0, Q, {ei}i>0, and h be as above. Define
a new sequence H| = {c[}i>0 as follows:

Lk fori<h+d-1,

T\ bi—chor, fori>h+d-1

Then H) is a 0-dimensional differentiable O-sequence.

Example 10. Consider the 0-dimensional differentiable O-sequence
H : 14 10 20 34 50 67 84 102 122 —.

Let Q be a form of degree 2 in R = k[z,y, 2z, w]. Then the Hilbert function
of the coordinate ring R/(Q) is

H(R/(Q),t) =t*+2t+1 for t>0.

Proceeding as in Remark 7 we obtain:
H 1 4 10 20 34 50 67 84 .102 122|122 —

1 4 9 16 25 36 49 64 81 100121

yielding 1 4 9 14 18 20 21 22 l 1

H; :-1 4 9 14 18 20 21 22 —
Hy : 149 16 25 36 49 64 81 100 — .

Thus H is the Hilbert function of the union of : 100 points on a conic C,
and 22 points on a conic Cy where C; and C; can be chosen to be any two
distinct conics and no point chosen on C; lies on C;.

Theorem 11 ([5]). Let X be a finite set of points in P" which has Hilbert
function H and let H] = {c/}i>0 be as in Theorem 9. Then, for every
hypersurface C in P™ of degree d > 1,

H(XNC,t) < Hy (1)

for every t > 0.

Example 12. Let H be as in Example 10 and let X be a set of 122 points
in P? with Hilbert function H.

Theorem 11 says that if Y is a subset of X and Y lies on a conic hyper-
surface in P3, then the Hilbert function of Y, Hy, satisfies Hy < H' where

H : 14 9 16 25 36 49 64 81 100 — .

In other words, for every integer ¢, Hy(t) < H'(t).
Moreover, let Z be a k-configuration in P? of type

((1,3),(2,3,5,8),(1,2,3,4,5,6,7,8,9),(1,2,3,4,5,6,7,8,9,10)).
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Then the Hilbert function of Z is H. Let Z; be a subset of Z and a k-
configuration in P3 of type ((1,2,3,4,5,6,7,8,9),(1,2,3,4,5,6,7, 8,9,10)).
Then the Hilbert function of Z; is H'. Hence, we can achieve the bound H’
from a k-configuration.

There is one more observation we would like to make about sets of points
X C P which have Hilbert function H where H & T, 7 = (T3,...,7;), an
n-type vector.

Let X be a finite set of points with Hilbert function H such that H(X,t) =

H(T,t) where T = (T1,...,T;).

Proposition 13 ([5]). Let X, H and T be as above and let U C X be such
that the Hilbert function of U, Hy, satisfies Hy = H(T—@-1)---, T7)-

Then, if we let T' = (Ty,... , Tr—q) and X' = X — U then Hy = H(T").

Continuing with Example 10, let X be a set of 122 points in P? with
Hilbert function i

H : 1 4 10 20 34 50 67 84 102 122 —
Suppose, in addition, that Y is a subset of X with Hilbert function
H : 149 16 25 36 49 64 81 100 —
Then Proposition 13 says that Z := X — Y has Hilbert function
Hz : 1 4 9 14 18 20 21 22 —.

In other words, X must be the union of Y and a set Z with Hilbert function
Hjy.

Now I would like to show 0-dimensional differentiable O-sequences which
can be from only k-configurations. To show that, we shall classify the min-
imal free resolution of the ideal in P® with Hilbert function

Ho T =(((1)), (1), (d))).

e Let X be a k-configuration in P? of type (((1)),((1),(2))). Then the
Hilbert function of X is

1 44 -,

which is generic and hence the minimal free resolution of the ideal T
of any set of points with Hilbert function Hy is

0 — R¥-6) — R8(-5) — RS(-4) - I — 0.

o Let X be a set of 5-points in P3 with Hilbert function
H:1455 —.
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— If X is a k-configuration in P? of type (((1)), ((1),(3))), then the
Hilbert function of Iy is H = Hx and a minimal free resolution of
Ix is

0 — R}-4)®R(-5) — R5(-3)® R*(-4)
— R¥-2)®R(-3) — Ix—0.

— Let Y be a set of five points in P2 such that four points lie on a
hyperplane and are a complete intersection in that hyperplane and
the remaining point is not on that hyperplane. Then the Hilbert
function of Iy is H = Hy and a minimal free resolution of Iy is

0 — R(—4)®R(-5) = R(-3)® R'(-4)
- R3(-2)—>Iy—0.

— Let Z be a set of five points in P? such that any four points among
them do not lie on a hyperplane. Then the Hilbert function of Iz
is H = Hz and a minimal free resolution of Iy is

0 = R(-5) — R-3) = R(-2) — I — 0.

Hence the Hilbert functions Hyx, Hy, and Hz are the same, however,
the ideals Ix, Iy, and Iz have all different kinds of minimal free resolutions.
This means that we have three kinds of minimal free resolutions with Hilbert
function H : 1 4 5§ —.

Theorem 14. Let X be a k-configuration in P3 of type (((1)), (1), (d)))
with d > 4. Then the Hilbert function Hx can be from only k-configuration
in P* of type (1)), ((1), (d))).

In particular, the minimal free resolution of the ideal I of any set of points
in P® with Hilbert function Hy is

0 — R*-4)®R(-(d+2)) — RS(-3)®R*-(d+1))
— R3(-2)® R(-d) - I—0.

Theorem 15 ([3]). Let X be a k-configuration in P? of type (e1,...,er).
Suppose that ejy1 —e; > 2 foralli=1,... ,r—1. Then the Hilbert function
Hyx can be from only a k-configuration in P2
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Properties of the discrete counterpart
of an algebra with straightening laws
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1 Introduction

DeConcini, Eisenbud and Procesi defined the notion of a Hodge algebra in their
article [DEP] and proved many properties of Hodge algebras. They also showed
that many algebras appearing in algebraic geometry and commutative ring theory
have structures of Hodge algebras. In fact, the theory of Hodge algebras is an
abstraction of combinatorial arguments that are used to study those rings.

A Hodge algebra is an algebra with relations which satisfy certain laws regulated
by combinatorial data. It is possible to exist many Hodge algebras with the same
combinatorial data. And there is the simplest Hodge algebra with given combinato-
rial data, called the discrete Hodge algebra. For a given Hodge algebra, we call the
discrete Hodge algebra with the same combinatorial data the discrete counterpart
of it.

Among the most important facts of DeConcini, Eisenbud and Procesi’s results
are

e A Hodge algebra and its discrete counterpart have the same dimension.

o The depth of the discrete counterpart is not greater than the depth of the
original Hodge algebra.

It is known that there is a Hodge algebra whose discrete counterpart has strictly
smaller depth than the original one [Hib]. And we note in Section 3 that there is a
series of examples of Cohen-Macaulay Hodge algebras of dimension n whose discrete
counterparts have depth 0, where n runs over the set of all positive integers. So there
is no hope to restrict the difference of the depth of a Hodge algebra and that of the
discrete counterpart.

But if we restrict our attention to ordinal Hodge algebras (algebras with straight-
ening laws, ASL for short), the influence of the combinatorial data to the ring theo-
retical properties become greater. So there may be a restriction to the combinatorial
data by the ring theoretical properties of an ASL.

In this article, we study the poset which generate a Cohen-Macaulay ASL. Since
it is equivalent to study the properties of combinatorial data of an ASL, i.e., the
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properties of the partially ordered set (poset for short) generating the ASL, and to
study the properties of the discrete counterpart, our results are sometimes written
in the language of posets and sometimes in the language of commutative rings.

2 Preliminaries

In this article all rings and algebras are commutative with identity. For two sets X
and Y, we denote by X \ Y the set {z € X|z ¢ Y'}. Standard terminology on Hodge
algebras and Stanley-Reisner rings are used freely. See [DEP], [BV], [Sta, Chapter
I1], [BH, Chapter 5] and [Hoc] for example. However, we use the term “algebra with
straightening laws” (ASL for short) to mean an ordinal Hodge algebra.

In addition we use the following notation and convention.

e For a poset P, we define the order complex A(P) of P by
A(P) :={0c C P| o is a chain},,

where a chain stands for a totally ordered subset. We also define the reduced
Euler characteristic x(P) of P by

e When considering a poset, we denote by oo (or by —oo resp.) a new element
which is larger (smaller resp.) than any other element.

o If P is a poset and z, y € P U {oo, —oo} with = < y, we define

(z,y)p:={2€Plz<z<y}

o If A is a Hodge algebra over k generated by H governed by ¥, we denote by
Agis the discrete Hodge algebra over k generated by H governed by ¥ and call
it the discrete counterpart of A.

Now we recall the notion of a standard subset [Miy2].

Definition 2.1. Let A be a Hodge algebra over k generated by H governed by Z.
A subset Q of H is called a standard subset of H if for any element z € QA and for
any standard monomial M; appearing in the standard representation

=3 bM;  (0#b; €k, M, is standard)
1

of z, supp M; meets Q.

—170 —



Note that if Q is a standard subset of H, then A/QA is a Hodge algebra over k
generated by H \ Q governed by /€.
Like [Sta, I1.5], we make the following

Definition 2.2. For a Hodge algebra A over k generated by H governed by X, we

define
core H := U supp V,

N is a generator of &
coreY := {y € T | supp pu C core H},
core A := A/(H \ core H)A.

It is obvious that if Q = {z1, ..., 2} is a subset of H such that QNcore H = ), then
Q is a standard subset of H and z,, ..., x; is an A-regular sequence. In particular,

Lemma 2.3. core A is a Hodge algebra generated by core H governed by core ¥.
Furthermore, if H\core H = {zy, ..., 2,}, then z,, ..., z; is an A-regular sequence
and core A = A/(z1,...,11).

Moreover, it is easily verified that
(core A)gis = core(Aqis)-

So we denote both sides by core Ag;s.

3 Examples

In this section we give a series of examples of Hodge algebras whose discrete coun-
terparts have strictly smaller depths.

Let k be a field and ¥, ..., y, be indeterminates over k, where n is an integer
greater than 1. Set A = k[yy, ..., ¥,]®, the second Veronese subring of the polyno-
mial ring k[y,, ..., yn]. We define a Hodge algebra structure of A by the following
way.

Set H = {z;j | 1 <1< j < n} and define the order on H by r1; <21, < -+ <
Tin < Tog < Toz < +++ < Tpp. Embed H in A by ¢: 2;; — y;y;. Let X be the ideal
of monomials on H generated by {z;jzx | 7 > k,1 > i}. Then it is verified that A
is a Hodge algebra over k generated by H governed by X. It is known that A is a
Cohen-Macaulay ring with dim A = n. o

In order to study the depth of Agis, we use the technique of polarization (see
[DEP, 84]). Let X;; (1 <i<j<n)andY (1 <i<j<n)be indeterminates.
Then Agis is isomorphic to k[X]/I, where I is the monomial ideal generated by
{XijXw | 5 > k,1 > i}, and the polarization J of I is the square-free monomial ideal
of k[X, Y] generated by

{Xij)/ij I 1<1<3< n} U {Xij)(kl | (Z,]) 75 (k, l), i>k 1> Z}
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It is known that X12—Yi2, X13— Y13, ..., Xin—Y1n, Xoa—Ya3, ..., Xnan—Ya-1m
is a k[X,Y]/J-regular sequence (see [DEP, Proposition 4.3]) and

KX, Y)/(J+ (Xij; — Vi1 <i<j<n))x=k[X]/I.
So
dim Agis — depth Ag;s = dim(k[X,Y]/J) — depth(k[X,Y]/J).

Since J is a square-free monomial ideal, it corresponds to a simplicial complex
by the theory of Stanley-Reisner rings. It is easily verified that

{XII;XIann} U {)/z] I 1 S " <j S n, (7/).7) 75 (lan)}

and
(X5 |1<i<j<n, j<i+1}U{V;|1<i i+2<j<n}
are facets of this simplicial complex. So it has facets of dimensions ("?_,Ll) —1 and

('2') +1. Since (("“2”) -1)— ((’2‘) +1) = n—2, we see, by the theory of Stanley-Reisner
rings, that
dim(k[X,Y]/J) — depth(k[X,Y]/J) > n—2

(see e.g. [Miyl, p. 370] or [BH, Theorem 5.1.4]). Therefore
depth Agis < 2

since dim Agis = n.
On the other hand, since no generator of I involve X;; and X,,, we see that
X11, Xnn is an k[X]/I-regular sequence. So

depth Adis = 2.

Summing up, A is a Cohen-Macaulay homogeneous Hodge algebra of dimension n
and the discrete counterpart Ag;s has depth 2. And, since H \ core H = {211, Tnn},
core A is a Cohen-Macaulay homogeneous Hodge algebra of dimension n — 2 and
depth(core Ag;s) = 0.

4 Stepping stones

In the following of this article, we restrict our attention to ASL and consider the
following

Problem 4.1. If there is a Cohen-Macaulay ASL over k generated by a poset P,
what can be said about P? In particular, is P Cohen-Macaulay over k?

To tackle this problem, we state two stepping stones and consider the following four
conditions.
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(i) P is a poset.

(i) P is a pure poset.
(iii) P is a Buchsbaum poset.
(iv) P is a Cohen-Macaulay poset.

The implications (iv)=(iii)=(ii)=>(i) are well known. And in the following, we
state that, under the assumption that there is a Cohen-Macaulay ASL generated by
P, (iii)=-(iv) and (i)=-(ii) are also valid.

First we state the following result of [Miy3].

Theorem 4.2. Let A be a Cohen-Macaulay square-free Hodge algebra over a field k.
Suppose that core Agjs is Buchsbaum. Then Agis is Cohen-Macaulay. In particular,
if P is a Buchsbaum poset which generate a Cohen-Macaulay ASL, then P is Cohen-
Macaulay.

Let A be the Hodge algebra, of the case n = 3, considered in the last section. It is
verified that core Ag;s is Buchsbaum and, as is stated in the last section, core A is a
Cohen-Macaulay ring of dimension 1 and depth(core Agis) = 0. So the square-free
assumption in the theorem above is essential.

Now let k be a field and z1, ..., z, be indeterminates over k and S = k[z, ...,
z,] a polynomial ring. Assume that S is given a graded ring structure such that
So = k and each z; is a homogeneous element of positive degree.

For a graded ideal I of S, Hartshorne [Har], Sturmfels-Trung-Vogel [STV] defined
the notion of geometric degree geom-deg] and arithmetic degree arith-degt of I.
By definition

degI < geom-deg I < arith-deg I

and
deg I = geom-deg I <= S/I is equidimensional,

geom-deg I = arith-deg I <=> S/I has no embedded prime ideals.

Assume a monomial order on S is settled and let in(I) be the initial ideal of I
with respect to this monomial order. It is well known that deg ] = deg(in(/)). And
Hartshorne [Har], Sturmfels-Trung-Vogel [STV] showed that

geom-deg(in(I)) < geom-deg /

and
arith-deg(in(I)) > arith-degI.

So if S/in(I) has no embedded prime ideals, then

geom-deg(in(J)) = geom-deg I = arith-deg I = arith-deg(in(7))
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and S/I is equidimensional if and only if S/in(I) is equidimensional.
Assume that A is a graded Hodge algebra over k. Then it is well known that
there is a polynomial ring with monomial order and a graded ideal I of S such that

A~S/I and Ags~ S/in(I).

Assume further that A is square-free. Then it is known [DEP, Proposition 5.1]
that A and Ag;s are reduced rings. So by the arguments above, we see the following

Proposition 4.3. Let A be a square-free graded Hodge algebra over a field. Then
A is equidimensional if and only if Ags is equidimensional. In particular, if A is a
graded ASL generated by a poset P, then A is equidimensional if and only if P is
pure.

Since a Cohen-Macaulay ring is equidimensional, we see the following

Corollary 4.4. Let P be a poset. If there is a Cohen-Macaulay ASL generated by
P, then P is pure. '

5 Rees algebras

As is noted below, a Rees algebra of an ASL have a structure of an ASL under cer-

tain conditions. In this section we study the relation between the Cohen-Macaulay

property of such a Rees algebra and the property of the discrete counterpart of it.
First we recall the definition of a straightening closed ideal.

Definition 5.1. Let A be a graded ASL over a field k generated by a poset P and
Q@ a poset ideal of P. If every standard monomial u; appearing in the standard
representation

af =Y rip, 0#r €k

of aff with a, f € Q and a # B, has at least two factors in @, we say @ (or the
ideal QA of A) is straightening closed.

Note that if the ASL is discrete, then any poset ideal is straightening closed.

Now let P be a poset and @ a poset ideal of P. We define the poset P W
Q as follows (cf. [BV, Section 9]). Denote a copy of @ by Q* and the element
corresponding to x € Q by z* € Q*. Set PW(Q = PUQ"* as the underlying set. And
for o, f € PW(Q, we define o < S if and only if one of the following three conditions
is satisfied.

e fePanda< fin P.

sa=z" =y " withz,ye Qand z <yin P.
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e a=zs*withze@, e Pandz < fin P.

With this notation, we recall the following fact (see [DEP, 10d] or [BV, (9.13)]).

Proposition 5.2. Let A be a graded ASL over a field k generated by a poset P.
Suppose that Q) is a straightening closed poset ideal of P and I = QA. Then

(i) The Rees algebra R with respect to I is a graded ASL over k generated by
T PyQ.

(i) The associated graded ring G is a graded ASL over k generated by P such
that ind G C ind A. In particular, if A is the discrete ASL, then so is G.

Now we state a result about Cohen-Macaulay property of P W Q.

Theorem 5.3. Let P be a Cohen-Macaulay poset over a field k .and @ a poset ideal
of P. If
(~00,2)p) =0 foranyz € (PU{oo)\@ (5.1)

then P Q is also Cohen-Macaulay over k.

See [Miy3] for the proof.
It follows directly from Theorem 5.3 the following

Corollary 5.4. If P is a Cohen-Macaulay poset over a field k with unique minimal
element and @) is a poset ideal of P, then P W Q is also Cohen-Macaulay over k.

Note the posets considered by Bruns-Vetter in [BV, Section 9] are Cohen-Macaulay
posets with unique minimal element. So Corollary 5.4 gives another proof of [BV,
(9.4) Theorem (b)].

Now let P be a Cohen-Macaulay poset over a field k, A an ASL generated by P,
Q a straightening closed poset ideal of P and I = QA. Denote the Rees algebra with
respect to I by R and the associated graded ring by G. Then G is Cohen-Macaulay
by Proposition 5.2 and by the argument of [Miy3], the condition (5.1) is equivalent
to a(G) < 0, where a(—) is the a-invariant of Goto-Watanabe [GW]. Therefore, by
the result of Trung-Ikeda [TI], we see the following

Theorem 5.5. In the setting above, R is Cohen-Macaulay if and only if P& Q is
Cohen-Macaulay over k.
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