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LATTICE IDEALS, THEIR INITIAL IDEALS AND (CO-)GENERIC
MONOMIAL IDEALS

KOHJI YANAGAWA

AL, ZAHIZ E. Miller, B. Sturmfels @K & DILRBFFR [9) OEMRTY. £
KOBERIZHOWT, GERAZE L THY 7. KA, [9] ITITEENRVERCEED,
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ABSTRACT. Monomial ideals which are generic with respect to either their genera-
tors or irreducible components have minimal free resolutions derived from simplicial
complexes. For a generic monomial ideal, the associated primes satisfy a saturated
chain condition, and the Cohen-Macaulay property implies shellability for both
the Scarf complex and the Stanley-Reisner complex. Reverse lexicographic initial
ideals of generic lattice ideals are generic. Cohen-Macaulayness for cogeneric ideals
is characterized combinatorially; in the cogeneric case the Cohen-Macaulay type is
greater than or equal to the number of irreducible components. Methods of proof
include Alexander duality and Stanley’s theory of local h-vectors.

1. GENERICITY OF MONOMIAL IDEALS REVISITED

Let M be a monomial ideal minimally generated by monomials m;,... ,m, in a
polynomial ring S = k[z1,... ,z,] over a field k. For a subset o C {1,...,7}, we
set my := lem(m; |7 € o), and a, := degm, € N" the exponent vector of m,.

Here my = 1. For a monomial x* = z7* --- 22", we set deg, (x*) := a;, and we call
supp(x®) := {i|a; # 0} C {1,... ,n} the support of x*.

Definition 1.1. A monomial ideal M = (ms,... ,m,) is called generic if for any
two distinct generators m;,m; of M which have the same positive degree in some
variable z, there exists a third monomial generator m; € M which divides my; ;; =
lem(m;, m;) and satisfies supp(my; 3 /my) = supp(my;3)-

The above definition of genericity is more inclusive than the one given by Bayer-
Peeva-Sturmfels [1]. In [1], M is called generic if no variable z, appears with the same
non-zero exponent in m; and m; for any 7 # j. But we will see that this definition
permits the same algebraic conclusions as the one in [1]. There are important families

“of monomial ideals which are generic in the sense of Definition 1.1 but not in the sense
of [1]. One such family is the initial ideals of generic lattice ideals as in Theorem 3.2.
Here is another one:

Example 1.2. The tree ideal M = (([,¢; ms)n—|1|+1 |0 # 1 C{l,...,n}) is
generic in the new sense but very far from generic in the old sense. This ideal is
Artinian of colength (n + 1)"~1, the number of trees on n + 1 labelled vertices.



Recall that a monomial ideal M C S can be uniquely written as a finite irredundant
intersection M = (),_, M; of irreducible monomial ideals (i.e., ideals generated by
powers of variables). We say M; is an irreducible component of M.

Definition 1.3. A monomial ideal with irreducible decomposition M = (\[_, M; is
called cogeneric if the following condition holds: if distinct irreducible components
M; and M; have a minimal generator in common, there is an irreducible component
M, C M;+ M; such that M; and M;+ M; do not have a minimal generator in common.

A monomial ideal M is cogeneric if and only if its Alezander dual ideal M? is
generic. See [8] or Section 4 for the relevant definitions. Cogeneric monomial ideals
will be studied in detail in Section 4. The remainder of this section is devoted to
basic properties of generic monomial ideals.

Let M C S be a monomial ideal minimally generated by monomials m,,... ,m,
again. The following simplicial complex on r vertices, called the Scarf complex of M,
was introduced by Bayer, Peeva and Sturmfels in [1]:

Ay = {oCA{l,...,r}|m; #m, for all T # o}.

Let S(—a,) denote the free S-module with one generator e, in multidegree a,. The
algebraic Scarf complez F,, is the free S-module P, ¢, S(—a,) with the differential

dle;) = Zsign(i,a)-.

i€o

Mg

. e .

Moy

where sign(i, o) is (—1)7*! if 7 is the j-th element in the ordering of o. It is known that
Fa,, is always contained in the minimal free resolution of S/M as a subcomplex |1,
§3], although Fa,, need not be acyclic in general. However we will see in Theorem 1.4
that it is acyclic if M is generic, as was the case under the old definition.

Theorem 1.4. If M s a generic monomial ideal, then the algebraic Scarf complex
Fp,, equals the minimal free resolution of S/M.

For an arbitrary monomial ideal M, Bayer and Sturmfels [2, §2] constructed a
polyhedral complex hull(M) supporting a (not necessarily minimal) free resolution of
M. Definition 1.1 suffices to imply that the hull complex equals the Scarf complex:

Proposition 1.5. If M is a generic monomial ideal, then the hull complez hull(M)
coincides with Ay, and in this case the hull resolution Foanvy = Fa,, is minimal.

Example 1.2 (continued) The Scarf complex Ajs of M is the first barycentric sub-
division of the (n —1)-simplex. By Theorem 1.4, Fa,, gives a minimal free resolution
of S/M. Miller [8] also constructed a minimal free resolution of S/M as a cohull
resolution, derived essentially from the coboundary complex of a permutahedron.

2. ASSOCIATED PRIMES AND IRREDUCIBLE COMPONENTS

In this section we study the primary decomposition of a generic monomial ideal
M.

— 2 —



Let M = (;_; M; be the irreducible decomposition of a monomial ideal M. Then
we have {rad(M;) | 1 < ¢ < r} = Ass(S/M). Note that distinct irreducible compo-
nents may have the same radical. Bayer, Peeva and Sturmfels [1, §3] give a method
for computing the irreducible decomposition of a generic monomial ideal (in the old
definition). The generalization of this method by Miller [8, Theorem 5.12] shows that
[1, Theorem 3.7] remains valid here, as we will show in Theorem 2.2 below.

Recall that codim(/) < codim(P) < proj-dimg(S/I) < n for any graded ideal I C
S and any associated prime P € Ass(S/I). Of course, there always exists a minimal
prime P € Ass(S/I) with codim(P) = codim(I), but there is no P € Ass(S/I) with
codim(P) = proj-dimg(S/I) in general.

Theorem 2.1. Let M C S be a generic monomial ideal. Then

(a) For each integer ¢ with codim(M) < i < proj-dimg(S/M), there is an embedded
associated prime P € Ass(S/M) with codim(P) = 1.

(b) For all P € Ass(S/M) there is a chain of associated primes P = Py D P, D
-+-D P, with codim(P;) = codim(P;_;) — 1 for alli and P; is a minimal prime of M.

Remark 2.2. Let M C S be a generic monomial ideal, and P, P’ € Ass(S/M) such
that P O P’ and codim P > codim P’ + 2. Theorem 2.1 does not state that there
is an associated prime between P and P’. For example, set M = (ac, bd, a®b?, ab®).
Then (a,b), {a,b, c,d) € Ass(S/M), but there is no associated prime between them.
Following [1, §3], we next define the extended Scarf compler Ap- of M. Let
(1) . M* = M+ (&P ... D)
with D larger than any exponent on any minimal generator of M. We index the
new monomials z2 just by their variables z,; so the vertex set of Ay is a subset of
{1,...,7}U{z1,...,zn}. This subset is proper if M contains a power of a variable.
Recall ([1, Corollary 5.5] for the old genericity or [8, Proposition 5.16] for the new)
that Ay is a regular triangulation of an (n — 1)-simplex A. The vertex set of A
equals {z,... ,Z,} unless M contains a power of a variable. The restriction of Aps-
to {1,...,r} equals the Scarf complex Ay of M. We next determine the restriction
of Ap- to {z1,... ,Zn}.
The radical rad(M) of M is a square-free monomial ideal. Let V(M) denote the

corresponding Stanley-Reisner complez, which consists of all subsets of {z1,... ,z,}
which are not support sets of monomials in M. Then we have the following:

Lemma 2.3. For a generic monomial ideal M, the restriction of the extended Scarf
complex Ap- to {zy,... ,Z,} coincides with the Stanley-Reisner complez V (M).

The following theorem generalizes [17, Corollary 2.4]. For the definition of shella-
bility, see [12, §I11.2] or [18, Lecture 8).

Theorem 2.4. Let M be a generic monomial ideal. If M has no embedded associated
primes, then M is Cohen-Macaulay. In this case, both Ay and V(M) are shellable.

Proof. The first statement immediately follows from Theorem 2.1. For the second
statement we note that all facets o of A~ have the following property:

(2) lon{1,...,r} = codimM and |ocN{zy,...,z,}| = dimS/M.

_3_



In particular, both cardinalities in (2) are independent of the facet o. On the other
hand, Ay is shellable since it is a regular triangulation of a simplex. A theorem of
Bjorner [3, Theorem 11.13] implies that the restrictions of Ay to {1,2,...,7} and
to {z1,... ,z,} are both shellable. We are done in view of Lemma 2.3. d

If we put further restrictions on the generators of a generic monomial ideal M,
then, since the extended Scarf complex Ay is a triangulation of a simplex, we can
apply Stanley’s theory of local h-vectors [12]. The next result will be reinterpreted
in Section 4 in terms of cogeneric ideals using Alexander duality [8].

Again let M* be as in (1), and define the ezcess of a face o € Ay to be e(o) :=
# supp(m,) — #o. This agrees, in our situation, with the definition of excess in [12].

Theorem 2.5. If M is generic and all r generators my,... ,m, have support of
size ¢, i.e. #supp(m;) = ¢ for all i, then M has at least (c — 1) - r + 1 drreducible
components.

Example 2.6. This is false without the assumption that M is generic. For instance,
the non-generic monomial ideal M = (z1, y1)N...N{(zy,, y,) has r = 2" generators, and
each generator has support of size ¢ = n, but M has only n irreducible components.

Proof. If ¢ = 1, there is nothing to prove, so we may assume that ¢ > 2. Set ' = Ay..
The hypothesis on the generators of M means that I has n vertices of excess 0 and
7 vertices of excess ¢ — 1. To prove the assertion, we use the decomposition

(3) hT,z) = > tw(lw,2)
wea :
of the h-polynomial of I" into local h-polynomials [12, eqn. (3)]. Here A denotes the
simplex on {z1,...,Z,} and 'y the restriction of I" to a face W of A. We have
(4) lw(Cw,r)=1 ifW=0.

Next, we consider the case #W = c. In the I'y, the vertices corresponding to
generators of M have excess ¢ — 1, and all other faces have excess less than ¢ — 1. So
we have

(5) ew(rw, SL') =/ (Fw)x + gz(r‘w)$2 —+ -4 fc_l(l—‘w)l‘c_l if #W = c,

where ¢;(I'w) is the number of generators of M whose support corresponds to the
face W of A by [12, Example 2.3(f)]. Moreover ¢;(T'w) > £,(T'w) forall 1 <i < c¢—1
by [12, Theorem 5.2 and Theorem 3.3].

The coefficients of £y (I'w, z) are non-negative for all W € A by [12, Corollary 4.7].
We now substitute the expressions in (4) and (5) into the sum on the right hand side
of (3), and then we evaluate at = 1. The number of irreducible components of M
equals the number f,_;(I') = h(I',1) of facets of I" by [8, Theorem 5.12], hence

AT,1) > 1+ Z(i&(rw)) > 1+ > (e—1)-4(w) = (c—1)-r+1.

#W=c 1= #W=c :
This yields the desired inequality. a

The inequality in Theorem 2.5 is sharp for all ¢ and r; see Example 4.15 below.

__4_



3. INITIAL IDEALS OF LATTICE IDEALS

We fix a sublattice £ of Z™ which contains no nonnegative vectors. The lattice
ideal I associated to L is defined by

Ir == (x*-x"|a,beN" and a—beL) cC S,

where x* = z{* - - - 2 for a = (ai,... ,a,) € N*. The ideal I, is homogeneous with
respect to some grading where deg(z;) is a positive integer for each s. In this section,
the word “reverse lexicographic term order” means a degree reverse lexicographic
term order with respect to this grading. We have codim(I;) = rank(£). The ring
S/I also has a fine grading by Z"/L (cf. [10]).

The following three conditions are equivalent: (a) The abelian group Z"/L is
torsion free, (b) I, is a prime ideal, and (c) I is a toric ideal (i.e., S/I. is an affine
semigroup ring). Even if Iz is not prime, all monomials are non-zero divisors of S/I,
and all associated primes of I, have the same codimension. If I, is the toric ideal
of an integer matrix A, as defined in [15], then I4 coincides with the lattice ideal I
where £ C Z" is the kernel of A.

Following Peeva and Sturmfels [11], we call a lattice ideal I generic if it is gener-
ated by binomials with full support, i.e.,

Ip = (x® —xP x™ —xP . x™ —xP)

where none of the r vectors a;, — b; € Z" has a zero coordinate.
Peeva-Sturmfels [10] also constructed the algebraic Scarf compler Fy of a lattice
- ideal I;. F is not acyclic in general, but it is always contained in the minimal free

resolution as a subcomplex. The algebraic Scarf complex F of a lattice ideal I, is
acyclic (hence F is the minimal free resolution of S/I;) in the following cases.

e [ is not a complete intersection and codim Iy = 2 ([10]).
e I, is generic ([11]).

Proposition 3.1. Suppose that the minimal free resolution of a lattice ideal I is
given by the algebraic Scarf complez (e.g. I is generic). Then we have the following.
(a) The Betti numbers of S/I; do not depend on the characteristic of k.
(b) If S/I. satisfies the Serre’s condition (Ss), then S/I. is Cohen-Macaulay.
(c) If S/I; is Gorenstein, then I is a principal ideal. .

Next, we will study the initial ideals of these lattice ideals.

Theorem 3.2. Let I; be a generic lattice ideal, and M the initial ideal of I, with
respect to a reverse lexicographic term order. Then M is a generic monomial ideal.

Example 3.3. Theorem 3.2 is false for the old definition of “generic monomial ideal”
given in [1]. For example, consider the following generic lattice ideal in k[a, b, c, dJ:

I = (a* = bed, ac? — b*d?, a*b® — 2d?, ab’c — d°,b* — a’cd, b3c® — a®d?, ¢ — abd)

This ideal was featured in [11, Example 4.5]; it defines the toric curve (¢20, 24 25 ¢31),
Consider a reverse lexicographic term order with a > b > ¢ > d. Then M =
{a*, a3c?, a®b3, ab’c, b*, b3c?, ¢®). Since a®c® and b3c? are minimal generators of M, it
is not generic in the sense of [1]. But M satisfies Definition 1.1 since ab’c € M. O

._5_



An important problem in combinatorial commutative algebra is to characterize
those monomial ideals which are initial ideals of lattice ideals. The recent “Chain
Theorem” of Hogten and Thomas [7] provides a remarkable necessary condition.

Theorem 3.4 (Hogten-Thomas [7]). Let M be the initial ideal of a lattice ideal I
with respect to any term order. For each P € Ass(S/M), there is a chain of asso-
ciated primes P = Py D Py D -+ D P, of M such that P; is a minimal prime and
codim(P;) = codim(P,—;) — 1 for all i.

In other words, initial ideals of lattice ideals satisfy conclusion (b) of Theorem 2.1,
even if they are not generic. We do not know whether part (a) holds as well.

Conjecture 3.5. Let M be the initial ideal of I with respect to some term order.
Then there is an associated prime P € Ass(S/M) with codim(P) = proj-dimg(S/M).

Note that all minimal primes of an initial ideal M have the same codimension.

Corollary 3.6. Conjecture 3.5 holds for the reverse lezicographic term order if the
lattice ideal I 1s generic.

Proof. Immediate from Theorem 2.1 and Theorem 3.2. a

The following result appears implicitly in the work of Hosten-Thomas [7] and
Peeva-Sturmfels [10].

Lemma 3.7. Let M be the initial ideal of a lattice ideal I with respect to any term
order. Then we have proj-dimg(S/M) < 2¢ — 1 where ¢ := codim I = codim M.

Proof. Following [10, Algorithm 8.2], we construct a lattice ideal I in S[t] =
k[zy,...,zn,t] whose images under the substitutions ¢ = 1 and ¢ = 0 are I and .
M respectively. Moreover t is a non-zero divisor of S[t]/I., and the codimen-
sion of Iy in S[t] is equal to codim(Iz). Since S/M = S[t]/(Ic + (t)), we have
proj-dimg(S/M) = proj-dimgy (S[t]/Iz) < 2° — 1. The last inequality follows from
[10, Theorem 2.3]. O

We note that Conjecture 3.5 is also true in codimension 2. In fact, we can prove
more.

Theorem 3.8. Let M be an initial ideal of a lattice ideal I; C S of codimension 2.
Then the minimal free resolution of M is given by the algebraic Scarf complex Fa,,.

Proof. If M is a complete intersection, then the assertion is obvious. So we may
assume that M is not a complete intersection. Let I C S[t] = k[z1,... ,Zn,t] be
a lattice ideal whose images under the substitutions t = 1 and t = 0 are I, and M
respectively. Since I is not a complete intersection, the algebraic Scarf complex F
is the minimal free resolution. Hence the i-faces of Ay, are in bijection to the ¢ + 1
faces of Ag/L' (see [11] for the definition) for all ¢ by the argument same to [11,
Theorem 5.2]. Since t is a non-zero divisor on S[t]/Ix and S[t]/(Ic +t) ~ S/M, the
multi-graded Betti numbers of S/M (over S) coincide with those of S[t]/I (over
S[t]). By the construction of F;» and the correspondence between the faces of Az /L'
and Ay, the multi-graded Betti numbers of S/M are concentrated in Ay, parts.
Thus Fja,, is the minimal free resolution. ‘ O
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An initial ideal of a codimension 2 lattice ideal may not be generic. Set I; :=
(ac — b?,ad — be,bd — ¢*) C S = k[a, b, ¢, d] be the defining ideal of the twisted cubic
curve in P3. S/I. is normal and Cohen-Macaulay. It is known that I, has eight
distinct initial ideals, when we consider all possible term orders (see §4 of [14]), but
seven of them are not generic. We also remark that four of the eight initial ideals are
not Cohen-Macaulay and have embedded associated primes of codimension 3.

Corollary 3.9. Conjecture 3.5 holds for any term order if codim(I;) = 2.
Proof. The assertion follows from Theorem 3.8 and [17, Corollary 2.7]. O

The above result also holds for the initial ideal in,([;) with respect to a weight
vector w € R" (c.f. [15]). Note that in, (/) is not a monomial ideal in general.
For any term order <, there is a weight vector w € R™ such that in, (1) = in,(Ir)
(c.f. [5]). As the usual term order case, we can construct a lattice ideal I in
S[t] = k[z1, ... ,Zn,t] whose images under the substitutions ¢ = 1 and ¢ = 0 are I
and in, (I;) respectively. So Proposition 3.7 also holds for in,, (/).

Theorem 3.10. Let Iy C S be a lattice ideal of codimension 2, and in,(I;) the
initial ideal with respect to a weight vector w € R™. If proj-dimg(S/in,(Iz)) = 3
(equivalently, S/in,(I¢) is not Cohen-Macaulay) and in,(Iz) # Iz, then there is a
codimension 8 embedded associated prime of in, (Iz).

4. A STuDY OF COGENERIC MONOMIAL IDEALS

Cogeneric monomial ideals were introduced in Definition 1.3. As with genericity,
our definition of cogenericity is slightly different from the original one of [16]. In
Theorem 4.6 we shall see that the result of [16], an explicit description of the minimal
free resolution of a cogeneric monomial ideal, is still true here. In fact, Alexander
duality for arbitrary monomial ideals [8] allows us to shorten the construction of this
resolution and clarify its relation to Theorem 1.4. For the reader’s convenience, we
briefly recall the definitions pertaining to Alexander duality. For details see [8].

The maximal N"-graded ideal (z,...,z,) C S will be denoted by m. Mono-
mials and irreducible monomial ideals may each be specified by a single vector

b = (by,...,b) € N, so we will write x> = 2% ---z% and m® = (z% | b, > 1).
Given a vector a = (ai, ... ,an) such that by < a, for all s, we define the Alexander

dual vector b? with respect to a by setting its s** coordinate to be
ay _ Jas+1-0bs ifb;>1
o= {5 2o

Whenever we deal with Alexander duality, we assume that we are given a vector a
such that for each s, the integer a, is larger than or equal to the s coordinate of
any minimal monomial generator of M. This implies that a, is also larger than or
equal to the s™ coordinate of any irreducible component of M, and vice versa. The
Alezander dual ideal M? of M with respect to a is defined by

M?* = (x**|mP is an irreducible component of M)

= n{mca | x© is a minimal generator of M }.
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That these two formulas give the same ideal is not obvious; it is equivalent to (M?)2 =
M. Tt follows from these statements that M is generic if and only if M® is cogeneric.

Example 4.1. The following monomial ideal in S = k[z, y, z] is cogeneric:
M = (y2®,z2%, y*z, 2%, 2%) = (z,y) N (2%, 4% 2%) N (g, 2).
Its Alexander dual with respect to a = (2, 2,2) is generic:
M? = (®y, zyz,5°2%) = (y%,2) N (2% 2) N {y,2%) N (z?,y) N (z).

Example 4.2 ([8, Examples 1.9, 5.22]). If M is the tree ideal of Example 1.2 and
a=(n,...,n), then its Alexander dual M? is the permutahedron ideal:

M2 = (gfWgf® ... gm™ ;s a permutation of {1,2, ... ,n}).

Thus the permutahedron ideal is cogeneric. Its minimal free resolution is the hull
resolution, which is cellular and supported on a permutahedron [2, Example 1.9].
The following discussion reinterprets this resolution as a co-Scarf complex. |

Definition 4.3. Let M = ();_, M; be a cogeneric monomial ideal. Set a = (D —
1,...,D—1) with D larger than any exponent on any minimal generator of M. The
Alexander dual ideal M® is minimally generated by monomials my,... ,m,, where
m; = xP" for M; = mP. We define the co-Scarf complez A%, to be the extended
Scarf complex of M?. More precisely, we set (M?)* := M2+ (zP,... | zD) and A3,
the Scarf complex of (M?)*. Since we index a new monomial z? just by z,, we see
that A3, is a simplicial complex on (a subset of) {1,...,r,z1,...,3,}.

Remark 4.4. (a) There is nothing special about our choice of a, except that it makes
for convenient notation. Everything we do with A3, is independent of which suffi-
ciently large a is chosen. In particular, the regular triangulation of the (n—1)-simplex
is independent of a, as is the algebraic co-Scarf complex (Definition 4.5) it determines.
We therefore set a = (D —1,...,D — 1) for the remainder of this section.

(b) For 0 C {1,...,r}, let M, be the irreducible monomial ideal ),  M;. Then
my, = x°% if M, = mP, and A3 N{1,... ,r} ={o C {1,...,r} | M, # M, for all 7 #
o} is just the Scarf complex of M2.

A face o of the co-Scarf complex Aj; fails to be in the (topological) boundary A3,
of A3, if and only if the monomial m, has full support, where m, is lem(m; | i € o)
under the notation of Definition 4.3. Such a face will be called an interior face of A3,.
The set int(A3,) of interior faces is closed under taking supersets; that is, int(A3%,) is
a stmplicial cocomplez. Just as the algebraic Scarf complex is constructed from Ay,
for generic M, we construct an algebraic free complex from int(A3,), but this time
we use the coboundary map instead of the boundary map. The following is a special
kind of relative cocellular resolution (in fact a cohull resolution) [8, §5].

Definition 4.5. Let D = (D,...,D) € N® and S(a, — D) be the free S-module
with one generator €} in multidegree D — a,. The algebraic co-Scarf complex F2u
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of M is the free S-module
. . . . * * . . . mUU{i} *
S(a,—D th differential d = ,oU . . .
@ (a ) with differentia (eX) E sign(z, 0 U{i}) o Couti

reinta) au{i}ggt(Aj‘w)
where sign(i,0 U {i}) is (—1)’*! if ¢ is the j-th element in the ordering of o U {i}.
Put the summand S(a, — D) in homological degree n — #o0 = n — dim(o) — 1.

Theorem 4.6. If M is a cogeneric monomial ideal, then the algebraic co-Scarf com-
plex F2M equals the minimal free resolution of M over S. In particular, M is mini-
mally generated by the set of monomials {xP~27 | o is a facet of A%}

Example 4.1 (continued) For the cogeneric ideal M = (z,y)N(z?, 32, 22)N(z, 2), the
interior faces of A3, are {2}, {1,2}, {2,3}, {2,z}, {2,y}, {2,2}, {1,2,2}, {1,2,¢},
{2,3,7},{2,3, 2z} and {2, y, z}. The co-Scarfresolutionis 0 - S — S°* = S° - M —
0. The generators of M have exponent vectors D — a2, = (0,1,2), D —ap . =
(1,0,2), D — apsg) = 0,2,1), D — a3,z = (1,2,0) and D — a2y,2) = (2,0,0).

Theorem 4.7. Let M C S be a cogeneric monomial ideal of codimension ¢ with the
irreducible decomposition M = (\._, M;. Then the following conditions are equivalent.
(a) S/M is Cohen-Macaulay.
(b) S/M satisfies Serre’s condition (Sz).
(¢) codim M; = ¢ for all i, and codim(M; + M;) < c+1 for all edges {i, j} € A3,.
(d) Every face of Ay has ezcess < c.
(e) A3, has no interior faces of dimension < n — c.

Remark 4.8. Hartshorne [6] proved that a catenary local ring satisfying Serre’s con-
dition (S) is pure and connected in codimension 1. The converse is not true even
for cogeneric monomial ideals. If we take M = (z,%?) N (y, 2) N (22, w) then S/M
is pure and connected in codimension 1, but does not satisfy the condition (S,);
in fact, depth(S/M) = 1. On the other hand, M’ = (z,y) N (3%, 2%) N (z,w) is
Cohen-Macaulay, although Ass(M) = Ass(M’).

The above theorem and remark leads to a natural question.

Problem 4.9. Which Cohen-Macaulay simplicial compléxes have Stanley-Reisner
ideal rad(M) for some Cohen-Macaulay cogeneric monomial ideal M?

Recall that the type of a Cohen-Macaulay quotient S/M is the nonzero total Betti
number of highest homological degree; if M is cogeneric then this Betti number equals
the number of interior faces of minimal dimension in A}, by Theorem 4.6.

Theorem 4.10. Let M be a Cohen-Macaulay cogeneric monomial ideal of codimen-
sion > 2. The type of S/M is at least the number of irreducible components of M.

Recall that S/M is Gorenstein if its Cohen-Macaulay type equals 1. This implies:

Corollary 4.11. Let M be a cogeneric monomial ideal. Then S/M is Gorenstein if
and only if M is either a principal ideal or an irreducible ideal.
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Remark 4.12. In the generic monomial ideal case, we have the opposite inequality to
the one in Theorem 4.10. More precisely, if M is Cohen-Macaulay and generic then

Cohen-Macaulay type of S/M = #{facets of the Scarf complex Ay}
< #{facets of Ay~} = #{irreducible components of M},
because the map Ap+ — Ay, 0= 0 N{l,...,r} is surjective on facets. Also here,

S/M is Gorenstein if and only if it is complete intersection {17, Corollary 2.11].

After we had gotten an algebraic proof of Theorem 4.10, we conjectured the follow-
ing more general result about arbitrary triangulations of a simplex. Margaret Bayer
proved our conjecture for quasigeometric triangulations, using local h-vectors [12].
Since the co-Scarf complex is a quasigeometric triangulation, Theorem 4.13 provides
a proof of Theorem 4.10.

Theorem 4.13 (M. Bayer, personal communication). Let p;, ps, ..., p, be points
which lie in the relative interior of (c — 1)-faces of a (n — 1)-simplex A. Let T' be
a quasigeometric triangulation of A having the p, among its vertices and having no
interior (n — ¢ — 1)-face. Then the number of interior (n — c)-faces is at least r.

Proof. According to the hypothesis, we have E Fea fo(int(I'r)) > r, and f;(int(T)) =

0 for all =1 < i < n-—c—1. By the decomposmon of the h-polynomial of T' into
local h-polynomials and the positivity of local h-vectors [12, Theorem 4.6], we have

ch—l(FF) > Z le1(TF).

FeA FeA
#F=c

On the other hand, we have seen that ¢;(I'r) = fo(int(I'r)) in the proof of Theo-
rem 2.5. Since a local h-vector is symmetric [12, Theorem 3.3], we have ¢,_;(I'r) =
0, (Tr) = fo(int(T'r)) for F € A with #F = c¢. So

hea(T) > Y £ea(Tr) = > folint(Tp)) > 7.
FeA FeA
#F=c #F=c

Since the h-vector of int(I') is the reverse of the h-vector of I' (see the comment
preceding [13, Theorem 10.5]), we have '

her(T) = hogre(int())
= Z(—l)"“*‘"(” )(fz (int(T))

c—
1=0
= fac(int(T)).
Thus, the number of interior (n — c)-faces of I' is at least r. O

Theorem 4.14. Let M be a cogeneric monomial ideal with r irreducible components,
each having the same codimension c. Then M has at least (c — 1) - r + 1 minimal
generators. If M has ezactly (c—1)-r+1 generators then S/M is Cohen-Macaulay.



Proof. The former statement is Alexander dual to Theorem 2.5. To prove the latter
statement, we recall the proof of Theorem 2.5. Assume that S/M is not Cohen-
Macaulay. Then I' := A%, has an edge {¢,j} whose excess e satisfies e > ¢, by
Theorem 4.7. Let W € A be the support of my; j3. Then #W = e + 2. By [12,
Proposition 2.2],

bw(Tw, ) = L(Tw)z® + L(Tw)z> + -+,

where £5(T'w) is the number of edges of I' whose supports are W. So we have
fao1(@) = A([,1) > (¢c—1) -7 +1+4,(T'w) > (c—1) -7+ 1 by an argument similar
to the proof of Theorem 2.5. Since f,_1(I') is equal to the number of generators of
M, the proof is done. O

Let M = (),_, M; be a cogeneric monomial ideal without codimension 1 com-
ponent, and ' := A3, its co-Scarf complex. Since I' is shellable, the Stanley-
Reisner ring &[] is always Cohen-Macaulay. Let (ho,hi,...,hs) be the h-vector
of I'. Since I is Cohen-Macaulay, h; > 0 for all ¢. Moreover we have hy =1, hy =,
proj-dimg(S/M) = min{i > 0 | h; = 0}, and the number of minimal generators of
M is equal to f,_1(I') = Y_r o hi- In particular, when M has pure codimension c,
then M is Cohen-Macaulay if and only if h, = het1 = -+ = h, = 0. In this case,
k[l is a level ring (see [4] for the definition), and the Cohen-Macaulay types of both
S/M and k[T] are equal to h._1. Note that k('] can be level, even if M is not Cohen-
Macaulay. The essential part of the proof of Theorem 2.5 is to show h; > h; for all
1 <i<c¢—1, when M has pure codimension c. We can understand Theorem 4.14
more clearly from this point of view.

Example 4.15. (a) The ideal M = (_, (2%, 4, -+ ,2%_;, Tc—14i) is cogeneric and
has (c — 1) - 7 + 1 minimal generators. Thus the inequality in Theorem 4.14 is tight.

(b) The converse of the latter statement of Theorem 4.14 is false. For instance,
M = (a*,b,c) N (a%b%,d) N (a,b% €) N (a® b% €?) C k[, ... €] is a Cohen-Macaulay
cogeneric monomial ideal with 4 irreducible components, but M needs 12 generators.
We also note that the Cohen-Macaulay type of S/M is 7, this is larger than the
number of irreducible components.

But in the codimension 2 case, we can prove the converse of Theorem 4.14.

Proposition 4.16. Let M be a cogeneric monomial ideal with r irreducible compo-
nents, all of codimension 2. Then S/M is Cohen-Macaulay if and only if M has
ezactly r + 1 generators.

Proof. Let (hg,- - ,hy) be the h-vector of A};. We always have hg = 1, h; = r and
h; > 0 for all 0 < i < n. By the remark before Example 4.15, M needs ) . , h;
generators, and M is Cohen-Macaulay if and only if hy = h3 =--- = 0. O
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Combinatorial pure subrings

Hidefumi Ohsugi
(Osaka University)

Abstract

This manuscript is a brief summary of the paper [8] with Jiirgen
Herzog and Takayuki Hibi. Based on some fundamental results on
combinatorial pure subrings of affine semigroup rings, the following
two theorems will be proved: (i) The ¢-th squarefree Veronese subring
of order d, where 2 < ¢ < d, comes from a poset if and only if either
g=2and3 <d<4,orqg>3and d= g+ 1; (ii) The Lawrence -
lifting of a homogeneous semigroup ring A is normal if and only if
A is unimodular, i.e., all initial ideals of the defining ideal of A are
squarefree.

1 Basic results

Let K be afield and K[t] = K[t1,...,t4) the polynomial ring in d variables
over K. Let A= {fi,..., fa} be aset of monomials belonging to K[t]. Sup-
pose that the affine semigroup ring K[A] = K{f1,..., fs] is a homogeneous
K-algebra, i.e., K[A] is a graded algebra K[A] = (K[A])o®(K[A]):D -
with (K[A])o = K and with each f; € (K[A]);. Such a semigroup ring K[A]
is called a homogeneous semigroup ring. Let K[x] = K[z,,...,z,] be the
polynomial ring in n variables over K with each degz; = 1 and let I4 de-
note the kernel of the surjective homomorphism 7 : K[x] — K[A] defined by
m(z;) = fi for all 1 <1 < n. We call 14 the defining ideal of K[A].

Let [d] = {1,...,d}. If T is a nonempty subset of [d], then we write Ar
for the subset AN K[{t;; 7 € T}] of A A subring of K[A] of the form
K[Ar] with 0 # T C [d] is called a combinatorial pure subring of K[A.
It Ar = {f,, fi,---, fi,}, then we set K[xr] = K[z, 2ip,...,7;]. Thus
IAT =14 ﬂI{[XT].



Let < be an arbitrary term order on K[x] and ¢ € I4 a binomial of
K|[x]. If the initial monomial in.(g) of g belongs to K[xr|, then g must
belong to K[xr|. In fact, if ¢ = u — v where u and v are monomials of
K|[x], then m(u) = m(v) since g € I4. Thus n(u) € K[{t;;j € T}] if and
only if m(v) € K[{t;; j € T}]. Since n(z;) € K[{t;;j € T}] if and only
if i € {11,%2,...,%,}, it follows that m(u) € K[{t;;j € T}] if and only if
u € K[XT].

This simple observation yields the fundamental result on elimination of
Grobner bases for combinatorial pure subrings.

Proposition 1.1. If G is the reduced Grobner basis of 14 with respect to a
term order < on K[x|, then G N K[x7| is the reduced Grébner basis of 14,
(with respect to the term order on K[xr] induced by <).

Proposition 1.2. If K[A] is normal, then any combinatorial pure subring
of K[A] is normal.

Proposition 1.3. If K[A] is Koszul, then any combinatorial pure subrings
of K[A] is Koszul.

2 Squarefree Veronese subrings

Let K[x] = K|[z,,...,T,] be the polynomial ring in n variables over a field
K and suppose that I is an ideal of K[x] which is generated by squarefree
quadratic monomials. We say that I is the Stanley—Reisner ideal of the order
complex of a finite poset if there exists a partial order on [n] such that I is
generated by those squarefree quadratic monomials z;z; such that ¢ and j are
incomparable in the partial order. A combinatorial criterion for a squarefree
quadratic monomial ideal to be the Stanley—Reisner ideal of a finite poset is
known in, e.g., [3]. ‘

We say that a homogeneous semigroup ring K[A] comes from a poset if
I, possesses an initial ideal which is the Stanley—Reisner ideal of the order
complex of a finite poset. For example, every monomial ASL (algebra with
straightening laws) discussed in, e.g., [2] comes from a poset. It is shown in
[9] that if K[A] comes from a poset, then the infinite divisor poset of K[A]
is shellable. Here, the infinite divisor poset of K[A] is the infinite poset
consisting of all monomials of K[A], ordered by divisibility.



Proposition 2.1. If a homogeneous semigroup ring K[A] comes from a
poset, then any combinatorial pure subring of K[A] comes from a poset.

Let K[t1,...,t4] be the polynomial ring in d variables over a field K with
each degt; = 1. Let 2 < ¢ < d. The ¢-th squarefree Veronese subring of
order d is the affine semigroup ring qu) which is generated by all square-
free monomials of degree ¢ belonging to K|[t;,...,%4]. It is known [10] that
each 'R‘(f) has an initial ideal generated by squarefree quadratic monomials.

(9)
d

However, it seems to be unknown if each R;’ comes from a poset.

Theorem 2.2. Let 2 < q < d. The q-th squarefree Veronese subring of order
d comes from a poset if and only if either (1) ¢ = 2 and 3 < d < 4, or (ii)
g>3andd=q+1.

In [2], it is proved that the infinite divisor posets of the second squarefree
Veronese subrings Rff) are shellable ([2, Theorem 4.1]). However, the shella-
bility of the infinite divisor posets of Rff) cannot follow from [9] if d > 5. It
remains open if the infinite divisor posets of all squarefree Veronese subrings
R with ¢ > 3 are shellable.

3 Lawrence liftings of semigroup rings

Let, as before, A = {fi,...,f.} be a set of monomials of K[ty,...,%4]
and suppose that the affine semigroup ring K[A] = K|f1,..., fa] is a homo-
geneous semigroup ring. Let I4 C K[x| = K[z, ...,z,] denote the defining
ideal of K[A].

If u € K[x] is a monomial, then we write supp(u) for the support of
u, i.e., supp(u) is the set of variables z; which divide u. If g =u —-visa
binomial of K[x], where u and v are monomials of K [x], then the support of
g is supp(g) = supp(u) U supp(v).

A binomial ¢ = u — v € 14 is called primitive if there exists no binomial
g =u' —v' € I, with ¢’ # g such that «’ divides u and v’ divides v. The set
of all primitive binomials of 14 is called the Graver basis of 1 4.

A binomial ¢ = u — v € I4 is called circuit if g is irreducible and if
there exists no binomial ¢’ = u’ — v’ € I4 with supp(g’) C supp(g) and with

supp(g’) # supp(9)-



The universal Gréobner basis of 14 is the union of all reduced Grobner
bases of I4. Every circuit of 4 belongs to the universal Grobner basis of 14,
and the universal Grobner basis of 14 is a subset of the Graver basis of 14.
See [10, Proposition 4.11].

Let A(A) = {fiz1,..., fazn,21,..,20}, Where 2y,...,2, are variables
over K. The homogeneous semigroup ring

I{[A(A)] = K[flzl, . ,fnzn, Zlye .- ,Zn]

is called the Lawrence lifting of K[A].

Let K[x,y] = K[z1,...,Z5,¥1,...,Yn] denote the polynomial ring in 2n
variables over K. If u = z; z;, - - - z;, is a monomial of K[x], then we write
for the monomial y;,y;, - - - y;, of K[y]. Moreover, if ¢ = v — v is a binomial
of K[x], then we define the binomial § of K[x,y] by § = u? — va. It then
follows that the defining ideal Ij(4) of the Lawrence lifting K[A(A)] of K[A]
is generated by all binomials § with g € I4. Moreover, the Graver basis of
Ip(4) coincides with the set of those binomials g such that g belongs to the
Graver basis of 14, and the set of circuits of Ip(4) coincides with the set of
those binomials g such that g is a circuit of I4.

In the present section, we are interested in the question when the Lawrence
lifting K [A(A)] of K[A] is normal.

We say that a homogeneous semigroup ring K[A] is unimodular if all
initial ideals of 14 are squarefree. It follows from [10, Remark 8.10] that K[A]
is unimodular if and only if all triangulations of the configuration associated
with A are unimodular. In addition, K[A] is unimodular if and only if all
lexicographic initial ideals of K[A] are squarefree. '

A quite effective criterion for a homogeneous semigroup ring K[A] to be
unimodular is known as follows. A binomial g = u — v is called squarefree if
both the monomials v and v are squarefree.

Proposition 3.1. A homogeneous semigroup ring K[A] is unzmodular zf
and only if every circuit of 14 is squarefree.

We are now in the position to give a main result of this section.

Theorem 3.2. Let K[A] be a homogeneous semigroup ring and K[A(A)] its
Lawrence lifting. Then, the following conditions are equivalent:
(1) K[A] is unimodular;



(ii) K[A(A)] is unimodular;
(ii) K[A(A)] is normal.

We conclude this paper with some examples of homogeneous semigroup
rings which are unimodular.

Example 3.3. (a) Let Rg[L] denote the monomial ASL (algebra with
straightening laws) associated with a finite distributive lattice L discussed in
[5]. Then, Rk[L] is unimodular if and only if L is planar. See also [1].

(b) Let K[G] denote the homogeneous semigroup ring arising from a finite
connected graph G studied in, e.g., [6] and [7]. Then, K[G] is unimodular if
and only if any two cycles of odd length of G possess a common vertex. In
particular, K[G] is unimodular if G is bipartite.
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Abstract

Let M be a maximal quasi-Buchsbaum module over a Gorenstein local ring (A4, m) of
dimension d. Assume that M has no free direct summand and let

[ & é
2 P2 2‘P1 lrpo—i*M'—*O,

be a minimal free resolution of M over A and

6y 6Yy

“2, pY,

PY, %, By 2, tm(sY) — 0,
a minimal free resolution of Im(8Y) over A. We put G; = Py, v = 8y_;,, fori € Z
and let (G.,7.) be the minimal complex thus obtained (cf. [2, (4.2)]). Then M is quasi-
Buchsbaum if and only if G, is the minimal part of a complex FE, constructed in the
following manner (see [2, (1.1)]). Define chain maps

Xoje 0 Fo — (La-1)P,

Ajo 1 con(Aj_1e)e — (Le—jo1)P (15 <d—1)
inductively and let F, := con(Ag—1,e)e, Where

oo Ly— - — L — Ly—k—0

is a minimal free resolution of the residue field k over A, L; = 0 for 7 < 0, F, is a minimal
free exact complex, and con();_1.)e denotes the mapping cone of A;_ . (see [2, (1.6)]).
When is M Buchsbaum? We give an answer to this question. Let K, denote the Koszul
complex of z1,...,z, with respect to A, where z1,...,z, are minimal generators of m.
Observe that K, is a subcomplex of L, such that L./ K, is free.

Main Theorem. With the above notation, M 1is Buchsbaum if and only if we can
choose \jo (0 < j < d—1) sothatUj_y,:= @ (Ke_1)P' is a subcomplez of con(Aj_1,)e
with con(\j_1,e)e/Uj-1,e free for each 1 < j < d and Ajolv;_,, =0 forall1 <j<d-—1.

In this paper, technical results are mostly omitted and proofs are given only to some
major parts of the theory. See [3] for the detail.



Buchsbaum cones and maximal Buchsbaum modules

Throughout this paper we denote by (A, m) a local Gorenstein ring of dimension d > 0
with k := A/m and r := dim(m/m?). Let

c— Ly— i — L —Ly—k—0

be a minimal free resolution of the residue field k over A. We extend this resolution by
setting L; = 0 for 4 < 0 and denote the resulting complex by L,. For minimal generators
Ty,..., T, of m, let K(z1,...,7;)s denote the Koszul complex of z,,...,z; with respect
to Afor 0 <! <rand K, := K(z1,...,Zr)e.

Lemma 1. With the notation above, we may think of K, as a subcompléz of L, such
that L,/ K, 1is free.

Let z1,...,2. be an A-basis of m, namely a system of minimal generators of m
such that z;,,...,2;, form a system of parameters of A for every sequence %y, ...,144 of
integers with 1 < 4; < --- < ig < 7 (see [12, Chapter I:Definition 1.7]). Recall that
such z,..., 2, always exist by Proposition 1.9 loc.cit. In the following argument, we
set B 1= { (201),---,2%(r) | 0 € &, } C m® and assume that z,,...,z, are minimal
generators of m obtained by permuting zy,...,z2, ie. (zi1,...,7,) € B, where &,
denotes the symmetric group on r letters. ‘

Given an A-module F and an integer n with 0 < n < d, we will denote by m)E.
- the module E/(zr_n41,...,2,)E . Further, for a complex (S.,,), we will denote by
((n)Ses (n)Pe) the complex obtained by tensoring S; and ¢; with (n)yA over A for alli € Z.
By the property of the differential of a Koszul complex, we have

n
(n)Ko = @ @ (n)K(-Tl)--wxr—n)._j /\Xs1 ARER /\ij,

J=0 r—n+1<s1<-<s5;<r

where {x1,...,Xr} is the free basis of K; corresponding to z,...,z,. Let
K!'™ = @ WK (T1, - Tron)e_iiny A Xy A A XLy,
r—n+1<81<<8_1<r
K:”i'n = @ (n)K(:L‘l, cee ,xr—n)._i AXsg Ao A Xs;

r—n+1<8:< - <8;<r

for 0 < n<d, i€Z | >0, where we understand K" = ( (resp. K['m = () if
n<i—1lori<1(resp. n <iori<0). These complexes are subcomplexes of ) Ke.
Further we denote the direct sum of the remaining summands of (nyKe by K%, more

precisely,

K= @ @ mK (1, ... ,z,._,,)._j AXsy AN A X,

0<j<i-1, i<j<n  r-n+1<s;<-<9;<r



We have
Klli,n — K///i—l,n ( )K _ Kli,n ey K//i,n et Kl/li,n
° ° ) n o — . 3 *

Since K, is a subcomplex of L, by Lemma 1, there are natural inclusions of K”*" and
K™ into (n)Le-

Let F, be a minimal free exact complex, namely a free complex satisfying Im(9;) C
mF,_; and H;(F,) = 0 for all : € Z, where 0, is the differential of F,. Let further m
be an integer with 1 < m < d and p; (0 < ¢ < m — 1) nonnegative integers. We say
that a complex E, is a Buchsbaum cone with base (F,, po,...,Pm-1), if it satisfies the
following conditions (i) and (ii).

(i) There are inductively defined chain maps

A0,0 : Fo — (Lo—l)po,
Ajo s con(Aj_1e)e — (Le—jm1)” (1<j<m—1)

and E, = con(Am-1,)s, Where con(A;_1.). denotes the mapping cone of \;_; .

(ii) Let Uj; := @l_o(Kis)* C B, ® ( {=0(L¢_,)P’) =con(Aj.)i for 0 <j<m-—1.
Then Aj4ly,_,, = 0forall1 < j <m—1,4 € Z In other words, U;_;, :=
@ ( e—1)" is a subcomplex of con(Aj_1.)e such that con(Aj_1e)e/Uj-1,e is
free for each 1 < j <m and Aj.|y,_,, =0forall 1<j<m—1.
If a complex F, satisfies the condition (i) above, we call it a quasi-Buchsbaum cone with

base (Fs, o, - - -, Pm-1)-
We investigate necessary and sufficient conditions for a quasi-Buchsbaum cone to be a

Buchsbaum cone, and by doing so, characterize complexes defining maximal Buchsbaum

modules. _
Given an integer m with 1 < m < d, nonnegative integers p; (0 <! < m —1) and
minimal generators z1, ..., Z, of m, we define ‘
m—2 m—2 m—2
U= @Ea”, U™ = @R, UL = @KL,
1=0 =0 1=0
(*)
_ m—1 m—1
W, = (Ko—l p, W//zn - @( £/~ll_ln ,, W./Ilz,'n — @( ://_lz—l,n)p[’
=0 =0

where U, = U’%" = U’*" = 0 in case m = 1. For a while, we fix such m and
Po,---yPm-1-

Lemma 2. Let S, be a free complex which contains U, as a free subcomplex such that
Se/U, 1is free. Let furtheér Ao : So — (Le—m)P™! be a chain map and C, := con(\,)s
its mapping cone. If Hp(n)Se/(US™™ @ U)™™)) = 0 and mHp_1((n)Ce) = 0 for all
0<n<d and (zi,...,z;) €B, then Ap|v,, =0 (modm).



Lemma 3. Let (S.,p.) be a free complez, U, its free subcomplez with S,/U, free,
(Tv,%s) a minimal free complez with T; = 0 for i < m — 1 satisfying mH,,_1(T,) = 0,
Hi(T,) =0 fori >m—1 and A\e : Se — Te—1 a chain map. If Ap|y,, =0 (modm),
then there is a chain map X, : S, — T._; satisfying A,|u, = 0 which is chain equivalent
to M.

Proposition 4. Let E, be a Buchsbaum cone with base (Fy,po,...,Pm-1). Let further
W,, WI'im and W™ be subcomplezes of E, as in (). Then the natural homomorphism

H,(W[*"™) — H;((n)Es) is surjective and H;((n)Es/ (W)™ & W[™)) = 0 for all 0 <
n<d, i € Z, and (z1,...,z,) € B.

Corollary 5. Let E, be a Buchsbaum cone with base (F,,po,...,Pm-1). Then
mH;(n)F.) =0 for all0<n < d, i € Z, and (z1,...,z,) € B.

Proof. Since W}"*™ = 0 for j < 4 and

m—1

Y4
W:”i’n = @ @ (n)K(:Cl; e )x'l'—‘n.)._.i A Xs1 ARERNAY Xs,'_() )

=0 r—n+1<81 < <8; <1
we see mH;(W."*™) = 0. Hence mH;((n)F.) = 0 by the preceding proposition.

Proposition 6. Let E, be a quasi-Buchsbaum cone with base (F,,po,-..,Pm-1).- If
mH;(n)Ees) = 0 for all0 < i < m, 0 < n < d, and (z1,...,2,) € B, then E, is
chain isomorphic to a Buchsbaum cone with the same base.

Proof. If m = 1 there is nothing to prove. Suppose that m > 2 and that our assertion is
true for m — 1. Denote con(Am—_2,e)e by D.. Since (n)E, is the mapping cone of (n)Am-1,e
for 0 < n < d, there is an exact sequence

0 — mLe-m-1) — mEe — mDe — 0
that yields a long exact sequence
R Hi((n)Eo) B Hi((n)Do) — Hi—l((n)Lo—(m—l)) e

Here mHi((n)E.) =0 and (n)L(i—l)—(m—l) =0 for all 0 < i < m, so that mH,-((,.)D.) =0
forall 0 < i < m—1 and (z,...,2,) € B. Since D, is a quasi-Buchsbaum cone
with base (F%,po,...,Pm-2), it is chain isomorphic to a Buchsbaum cone with base
(Fe,po, - - -y Pm—2) by the induction hypothesis, say S,. By Proposition 4, this S, satisfies
Hp((n)Se/(U/™™ @ U"™™)) = 0 with the notation of (). Let v, : S, — D, be the
isomorphism mentioned above, A, := Ap_140 v, and C, := con(\,).. Since C, =
con(Ae)e = con(Am-14)e = E,, we have mHp_1()Ce) = 0 for all 0 < n < d and
(z1,...,2;) € B by hypothesis. Hence Ap|y,, = 0 (modm) by Lemma 2. Finally, let
A¢ 1 Se¢ = (Loe—m)P™~* be the chain map satisfying A, ~ A, and A, |y, = 0 as in Lemma
3. Then the mapping ‘cone con(\,), is a Buchsbaum cone with base (F.,po, - - -, Pm_1)
which is isomorphic to C, & E,. '



Theorem 7. Let m be an integer with 1 < m < d and let G, be a minimal free complex
satisfying H/(GY) = 0 for i < d, Hy(G.) =0 fori <0, i > m, and mH;((nG.) = 0 for
al0<i<m,0<n<d, (z1,...,2,) € B. Then there is a Buchsbaum cone E, with
base (F.,po, - - - ,Pm—1) Such that G, = min(E,),, where p; = lp(Hi(G.)) (0 < i <m—1).

Proof. If p; = 0 for all 0 < ¢ < m — 1, then G, is a Buchsbaum cone with base
(G.,0,...,0). Suppose that p; # 0 for some 0 < i < m — 1. With the notation of 2,
Section 1], let F, := 0o(G.). Then by [2, (1.6)] there is a quasi-Buchsbaum cone E, with
base (Fi, Do, - - -, Pm—1) Such that G = min(E]),. Since Hi(m)G.) = Hi(nE,) for all
0<n<d,i€Z, and (y,...,z,) € B, we find by Proposition 6, that E; is isomorphic
to a Buchsbaum cone E, with the same base. Our assertion follows from the uniqueness

of the minimal part of a free complex (see [2, (1.1)]). O

Applying the results obtained so far, we now prove our main theorem which general-
izes Goto’s structure theorem for maximal Buchsbaum modules over regular local rings

(see [6]).

The next theorem can be proved in a more or less standard manner.

Theorem 8. Let M be a mazimal quasi-Buchsbaum module over A. Then M is Buchs-
baum if and only if mExty (M, A/(Tr—pt1,...,2r)) =0 for alli >0, 0 < n < d, and
(Zl,...,il),-) € 9B.

Theorem 9. Let M be a finitely generated mazimal module over A having no free direct

summand,

s 5 6
, Pg 2 Pl 1 Po —€—> M — O,
a minimal free resolution of M over A and
Y, &Y Y %
= Vv -1 \Y 0 \Y 1 A%
P, P » By —— Im(§)) — 0,

a minimal free resolution of Im(8Y) over A. We put G; = P)_;, v = 63_;,, fori € Z and
let (G.,7.) be the minimal complez thus obtained (cf. [2, (4.2)]). Then M is Buchsbaum
if and only if G, is the minimal part of a Buchsbaum cone with base (F.,po, - -, Di-1)
for some minimal free exact complez F, and nonnegative integers po, . . .,pa—1. Moreover
when this is the case, we have p; = La(HL(M)) for all 0 < i < d.

Proof. First of all, by definition, H(GY) = 0 for i < d, Hy(G.) = Exty*(M,A) = 0
for i < 0 and H;(G.) = H*(P)Y) = 0 for i > d. Let (z1,...,7,) € B. We have
mHi (M) = 0 if and only if mExt5*(M, A) = mH;(G,) = 0 for i < d by local duality
and ExtdA'i(M, mA) = H;i((n)G.) for 0 < i < d, 0 < n <d. Suppose that M is quasi-
Buchsbaum. Then, since mH;(G,) = mExt4*(M,A) = 0 for i < d and H;(G,) = 0
for i < 0, i > d as we have already mentioned above, the complex G, is the minimal
part of a quasi-Buchsbaum cone with base (Fi,po, - - -, p4—1) for some minimal free exact



complex F, and nonnegative integers p; := l4(Hi(G.)) = la(Hy(M)) (0 < i < d) by
(2, (1.6)]. If further M is Buchsbaum, then mH;((mG.) = mExt4 (M, ()4) = 0 for all
0 <i<d,0<n<dby Theorem 8. Hence G, is the minimal part of a Buchsbaum

cone with base (F,,po,...,ps—1) by Theorem 7 as desired. Since a Buchsbaum cone
E, with base (Fi,po, ..., p4—1) satisfies mH;((nE.) = 0 for all 0 < n < d, 5 € Z, and
(z1,...,z,;) € B by Corollary 5, the converse also holds by Theorem 8. O

Remark 10. If one prefers derived category argument, then assuming that A is a
residue class ring of a regular local ring, he/she will be able to give another proof
of the above theorem with the use of Yoshino’s corrected version of Schenzel’s theorem
(14, (2.3)].

We close this paper by giving a formulation in our language to some of Kawasaki’s
results on maximal surjective-Buchsbaum modules (see. [7] and [8]) in the case where
the base ring is Gorenstein.

In what follows, we will denote by O, the complex such that O; = 0 for all i € Z.
Given a quasi-Buchsbaum cone E, with base (F,,po,--.,Pm—1) and chain maps Ao :
Fo — (Le21)™, Aje i con(Aj_1e)e — (Le—j—1)P (1 < j < m — 1), we define chain
maps

Now i Ou — (Lact), Xz con(Ny_y o — (Locyma)? (1< G < m—1)

inductively so that con(A},). is a subcomplex of con(A;.). satisfying

con(Aj,): = é(L,-_l)p‘ CFEeo (é(Li_,)”‘) and

=0 =0
con(Aje)e/con(Aj,)e 2 F, for 0<j<m-—1,

and A}, = Aja|con( A1) for 1 < j < m — 1. With this notation, we say that a quasi-
Buchsbaum cone F, with base (£, po,...,pm-1) and chain maps Ajo (0<j <m—1)
is a surjective- Buchsbaum cone if it satisfies the condition

(i) Xj.=0forall0<j<m-—1.

Surjective Buchsbaum modules over Gorenstein local rings can be characterized in
the following way.

Theorem 11. Let M be a finitely generated mazimal module over A having no free
direct summand and (G.,v.) the minimal complez defined as in Theorem 9. Then M is
surjective-Buchsbaum if and only if G, is the minimal part of a surjective-Buchsbaum

cone with base (F,, po, . .., Pa—1) for some minimal free ezact complez F, and nonnegative
integers po, ..., pa—1. Moreover when this is the case, we have p; = l4(H: (M)) for all
0<i<d.
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The purpose of this short note is to give a survey on a joint work [2] with
Edoardo Ballico. We study an upper bound of the Castelnuovo-Mumford
regularity of zero-dimensional schemes, especially of a generic hyperplane
section of projective curves in positive characteristic.

For a projective scheme X C P¥, the Castelnuovo-Mumford regularity
reg(X) is defined as the smallest integer m such that H(P¥,Zx(m —1i)) =0
for all i > 1, see, e.g., [3]. The interest in this concept stems partly from the
well-known fact: The regularity reg(X) is the smallest integer m such that
the minimal generators of the n-th syzygy module of the defining ideal I of
X occur in degree < m + n for all n > 0.

In particular, for a zero-dimensional scheme S C P¥, the index of regular-
ity i(S) of S is defined as the smallest integer ¢ such that H*(P¥, Zs(¢)) = 0.
Remark that reg(S) = i(9) + 1.

Let S C P¥ be a generic hyperplane section of a nondegenerate projec-
tive curve C C P¥ ™! over an algebraically closed field K. Then S has the

*Partially supported by Grant-in-Aid for Scientific Research (no. 09740042), Ministry
of Education, Science, Sports and Culture, Japan



uniform position property in case char(K) = 0, see [5], while the property
does not necessarily hold in case char(K) > 0, see [14]. Instead, even for the
positive characteristic case, S has the linear semi-uniform position property
introduced in [1].

A study of the h-vectors of a zero-dimensional scheme S in linear semi-
uniform position gives an upper bound on the index of regularity, that is,
i(S) < [(deg(S) — 1)/N7]. There are some known facts on the sharpness of
the above bound. If a zero-dimensional scheme S C P¥ lies on a rational
normal curve, then we have an equality, #(S) = [(deg(S) —1)/N]. On the
other hand, assume that a zero-dimensional scheme S C P¥ is in uniform
position and deg(S) is large enough. If the equality i(S) = [(deg(S)—1)/N]
holds, then S lies on a rational normal curve, see, e.g., 9, 17].

Now we consider a generic hyperplane section S C P¥ of a nondegener-
ate projective curve over an algebraically closed field K such that S does not
have the uniform position property.  So you may assume char(K) > 0. Under
the condition that N > 3 and deg(S) is large enough, if S does not have the
uniform position property, then i(S) < [(deg(S)—1)/N]—1, which is proved
in classical Castelnuovo’s method. Let S C P¥ be a generic hyperplane sec-
tion of a nondegenerate projective curve with deg(.S) large enough. Without
assuming S is in uniform position, if the equality i(S) = [(deg(S) — 1)/N]
holds, then S lies on a rational normal curve.

A regularity bound
reg(X) < [(deg(X) — 1)/codim(X)] + max{k(X)dim(X), 1}

is known for a nondegenerate projective variety X, see [10, 13|, where k(X) is
the leasr integer such that X is k-Buchsbaum. Conversely, under the assump-
tion that a nondegenerate projective variety X is ACM, that is, the coordi-
nate ring of X is Cohen-Macaulay, if reg(X) < [(deg(X)—1)/codim(X)]+1
and deg(X) is large enough, then X is a variety of minimal degree, see
[11, 15]. Moreover, there gives a classification of nondegenerate projective
non-ACM varieties X attaining a regularity bound reg(X) = [(deg(X) —
1)/codim(X)] + k(X)dim(X). In [9], under the assumption that deg(X)
is large enough and char(K) = 0, it is shown that a projective non-ACM



variety having the equality must be a curve on a rational ruled surface, that
is, on a Hirzeburch surface.

Now we state our main results.

Theorem 1([2]). Let S C P¥ be a generic hyperplane section of a nonde-
generate projective curve C C PR with d = deg(C) over an algebraically
closed field K. If d > max{N? + 2N + 2,25} and i(S) = [(d — 1)/N7], then
S lies on a rational normal curve.

Theorem 2([2]). Let X be a nondegenerate projective variety in P¥. over an
algebraically closed field K. Assume that k(X) > 0, deg(X) > max{2 codim(X )2+
codim(X) 42,25} and reg(X) = [(deg(X) — 1)/codim(X)] + k(X) dim(X).
Then X is a curve on a 2-dimensional rational normal scroll.

The author would like to thank the organizers of this conference, Profes-
sors Mitsuyasu Hashimoto and Ken-ichi Yoshida, for their effort.
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AN INTRODUCTION TO TIGHT CLOSURE
KAREN E. SMITH

Lecture One: Main Properties of Tight Closure

In these two talks, I wish to give a brief introduction to the subject of tight
closure, aimed at commutative algebraists who have not before studied this topic.
The first talk will focus mainly on the definition and basic properties, and the sec-
ond talk on some applications. - Before beginning, I want to thank the organizers,
Professors Hashimoto and Yoshida, for kindly offering me this honor of speaking,
and for their great generosity during my visit to Japan. I also wish to thank Pro-
fessor Kei-ichi Watanabe for his generosity in hosting me in Tokyo, and especially
my friend and collaborator Nobuo Hara, for his generosity and patience in hosting
me, and in helping me find my way around Tokyo and to Kashikojima.

Tight closure was introduced by Mel Hochster and Craig Huneke about twelve
years ago [HH1]. Today it is still a subject of very active research, with an ever
increasing list of applications. Applications include areas like the study of Cohen-
Macaulayness. For example, the famous Hochster-Roberts theorem on the Cohen-
Macaulayness of rings of invariants has a simple tight closure proof [HH1|. Also,
the existence of big Cohen-Macaulay algebras was proved with ideas from tight
closure [HH3], and the existence of ”arithmetic Macaulayfications” in some cases
was discovered with tight closure [AHS], [Ku]. Tight closure has provided us with
greater insight into integral closure, and into the homological theorems that grew
out of Serre’s work on multiplicities. For example, it gives us simple proofs of the
Briangon-Skoda Theorem, the Syzygy Theorem of Evans and Griffith and of the
monomial conjecture (in mixed characteristic) [HH1]. Tight closure provided the
inspiration for results on the simplicity of rings of differential operators on certain
rings of invariants [SV], and it has produced ”uniform” Artin-Rees theorems [Hul].
There are also numerous applications to and connections with algebraic geometry,
such as in the study of singularities [W], [S1], [Hal], of vanishing theorems [Ha2],
[HS], [Had], and of adjoint linear series [S4], [S7], where the work of Japanese
mathematicians has had a particularly strong impact. In the second lecture, I will
summarize some of these applications to algebraic geometry, although of course,
there will not be enough time to do any of them any justice.

Let us begin with our task in the first lecture: to introduce the definition and
main properties of tight closure.

Tight closure is a closure operation performed on ideals in a commutative, Noe-
therian ring containing a field (that is, of ”equi-characteristic”). The tight closure
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of an ideal I is an ideal I* containing I. The definition is based on reduction to
characteristic p, where the Frobenius (or p — th power map) is then used. To keep
things as simple as possible, we treat only the characteristic p case here.

Definition. Let R be a Noetherian domain of prime characteristic p, and let
be an ideal with generators (yi1,...,yr). An element z is defined to be in the tight
closure I* if there exists a non—zero element ¢ of R such that

(%) c? € (y{’e,...,yfe)
for alle > 0.

Loosely speaking, the tight closure consists of all elements that are ”almost” in
I as far as the Frobenius map is concerned. Indeed, if we take the p® — th root of
() above, we see that

c!/?°z € IRVP"
for e > 0. As e goes to infinity, 1/p® goes to zero, so in some sense c'/?* goes to
1 (this idea can be made precise with valuations). So z is "almost in” I, at least
after applying the Frobenius map.

It is not important to restrict to the case where R is a domain; we can define
tight closure in an arbitrary Noetherian ring of characteristic p by requiring that ¢
is not in any minimal prime. However, because most theorems about tight closure
reduce to the domain case, we treat only the domain case in these lectures.

Ezample. Let R be the hypersurface ring
klz,y, 2]
(23 + y® — 23)’
where k is any field whose characteristic is not 3. Then
(z,9)" = (z,9,2°).
Indeed, if £ has characteristic p, we can write
(2)7 = (@ +9*) 52

where r = 1 or 2 and ¢ = p®. Expanding this expression as

r 2q—r 3i, 2q—r—31
w3 (P et
it is easy to see that each monomial z™y™ appearing in the sum has either m > ¢
or n > q unless both m and n equal ¢ — 1 (which only happens in the case where
p =1 mod 3). So we can take ¢ = z (or y), and conclude that cz? € (z9,y?) for all
g = p°. Thus 2% € (z,y)*. A similar argument can be used to show that z is not in
(z,y)*. Because this works for all p (except p = 3), we declare that 22, but not z,
is in the tight closure of (z,y) also in characteristic zero. So (z,y)* = (z,y,2%) in
every characteristic p > 0 except p = 3. '

The definition of tight closure takes some getting used to. Fortunately, one can
understand many applications of tight closure if one simply accepts the following
properties of tight closure as axioms:



Main Properties of Tight Closure.

(1) If R is regular, then all ideals of R are tightly closed.

(2) If R — S is an integral extension, then ISN R C I* for all ideals I of R.

(3) If R is local, with system of parameters 1, ..., T4, then (z1,...,%;) : Tiy1 C
(x1,...,2:)* (”Colon Capturing”).

(4) If p denotes the minimal number of generators of I, then I# C I* C I,
where for any ideal J, J denotes the integral closure of J.

(6) If R — S is any ring map, I*S C (IS)* (”Persistence”).

For the remainder of this lecture, we will discuss these five main properties, their
proofs and main consequences. Some of the five require some mild hypotheses;
precise statements will be given. All of them are true in any equicharacteristic
ring (although Property 2 is not interesting in characteristic zero). All of them
are quite elementary to prove, at least in the main settings, with the exception of
Property 5 which requires a new idea. We will stick to the prime characteristic
case, and simply remark that ”by reduction to characteristic p”, one can prove the
characteristic zero case without essential difficulty.

Note that one important property is omitted from the list. Any decent closure
operation ought to commute with localization, but amazingly, we still do not know
that tight closure does.

Open Problem. IfU is a multiplicative system in a ring R, is
I*RU™Y = (IR[UT*?

It is easy to see that one direction holds, namely, I*R[U 1] C (IR[U )*.
Indeed, if z € I*, then we have the equations czP° = aley” + -+ areyr in R.
Expandlng to R[U '], the same equations show that £ is in the tight closure of
IR[U™']. This is a very special case of Property 5 above. On the other hand, the
other direction is not known in any non-trivial case (see, however, [AHH], [S6]).

The localization problem is probably the biggest open problem in tight closure
theory. It is remarkable that the theory is so powerful while such a basic question
remains unsolved. The power is derived from the five main properties above, which
we now discuss.

Property One: All ideals are tightly closed in a regular ring.

It is easy to see why all ideals are tightly closed in a regular ring. For example,
consider the special case where (R, m) is local domain and the Frobenius map is
finite. This is not a very restrictive assumption from our point of view, because we
are usually interested in the local case anyway; also the Frobenius map is finite in a
large class of interesting rings— for example, for any algebra essentially of a finite
type over a perfect field or for any complete local ring with a perfect residue field.

We have a descending chain of subrings of R

RORPOR' SR’ 5.,



Because R is regular, the ring R is a free module considered over each one of the
subrings RP". Indeed, the Frobenius map is flat for any regular ring, but because we
have assumed that R is local and the Frobenius map is finite, we actually get that
R is free over RP". This means that, for any non-zero ¢, we can find an R*"-linear

splitting

R RF

c—1

so long as e is large enough that c is not in the expansion of the maximal ideal of
RP" to R (that is, ¢ ¢ mlP’l, where m[P‘] denotes the ideal of R generated by the
p® — th powers of the generators of m).

Now if we have an ideal I = (y1,...,y-) of R and an element z € I*, then we

can find equations
e € e
¥ =a1y] + o +aryf

for all large e. Applying the RP*-linear map ¢ above, we see that
2 =¢(a))y” + -+ Blan)yE

where each coefficient ¢(a;) is some element of RP". By taking the p® — th root of
this equation, we see that z is an R-linear combination of y;,...,y,. Thus z € I,
and I* = I for all ideals of R.

This completes the proof that all ideals are tightly closed in a regular ring, at
least in the special case we considered. The general case (of prime characteristic)
is not much harder. The point is that flatness of Frobenius in a regular ring. See

[HH1).

Property Two: Elements mapped to I after integral extension are in I*.

We now prove Property 2: if R — S is an integral extension of domains of prime
characteristic, and [ is an ideal of R, then ISN R C I*.
The following lemma will be useful also in the proof of Property 3.

Key Lemma. If R — S is a module finite extension of domains, and d is any

fired non-zero element of S, then there is an R-linear map, S 2R sending d to a
non-zero element of R.

The point in the proof of the Lemma is that after tensoring with the fraction
field, K, of R, we have an inclusion K — K ®pg S, where the latter is simply a

finite dimensional vector space over K. So of course there is a K-linear splitting
K®S YK sending 1®d to 1. Thinking of S as a subset of K ® S, we look at where
¥ sends each of a set of R-module generators {s1,...,sq} for S, say ¥(s;) = ¥ € K.

Now we can define ¢ to be the map ¢3 where ¢ is the product of the ¢;. This map
is R-linear, and sends each s; to an element of R. The lemma is proved.



To prove Property 2', let z € R be any element in /S N R. This means we can

write
Z2=a1% + -+ ary,

where a; € S and the y;’s generate I. Because this expression involves only finitely
many elements from S there is no loss of generality in assuming S is module finite
over R. Now, raising this equation to the p® — th power, we have

P‘_ p¢ pe epe
2 =ajy; + ey

Using the lemma, we find an R-linear map S 2 R sending 1 to some non-zero
element ¢ € R. Applying ¢ to this equation, we have

cz?" = (ol )yl + -+ (e )
This is an equation now in R, showing that z € I*. Property 2 is proved.

Essentially the same argument shows the stronger property: if R — S is an
integral extension of prime characteristic domains and I is an ideal of R, then

(IS)*NRcCI*.

Property 2, unlike the other four properties, is interesting only in prime charac-
teristic. For example, if R is any normal domain containing @, then R splits off of
every finite integral extension S (using the trace map). In this case, ISNR = I for
every ideal of R and every integral extension S.

Property 2 can be phrased in terms of the absolute integral closure. For any
domain R, the absolute integral closure R* of R is the integral closure of R in an
algebraic closure of its fraction field. In other words, Rt is the direct limit of all
finite integral extensions of R. Property 2 can be stated: TR* N R C I* for all
ideals I of R. This leads to the following interesting problem.

Open Problem. Let R be a domain of prime characteristic. Is IRT N R = I* for
all ideals R?

In addition to providing a very nice characterization of tight closure, an affir-
mative answer to this question would immediately solve the localization problem.
Indeed, it is easy to check that the closure operation defined by expansion to the
absolute integral closure and contraction back to R commutes with localization.

There is no non-trivial class of rings in which this open problem has been solved.
However, we do have the following result.

Theorem [S1]. Let R be a locally excellent' domain of prime characteristic. Then
I* = IR* N R for all parameter ideals I of R.

A "parameter ideal” is any ideal I generated by n-elements where n is the height
of I; if R is local, an ideal is a parameter ideal if and only if it is generated by part
of a system of parameters.

Virtually all rings the commutative algebraist on the street is likely to run across are locally
excellent, but see [Mats] for a definition.



As we see from the theorem, tight closure commutes with localization for pa-
rameter ideals. However, this does not follow from the theorem because this fact is
used in its proof. See instead [AHH].

The proof of this theorem is somewhat involved, so we do not sketch it here; see
[S1]. The result has been generalized to a larger class of ideals, including ideals
generated monomials in the parameters, by Aberbach [A].

Property Three: Colon Capturing.

Property 3, the colon capturing property of tight closure, is particularly instru-
mental in applications of tight closure to problems about Cohen-Macaulayness. Of
course, if R is a Cohen-Macaulay local ring with system of parameters z, ..., z4,
then by definition,

(T4, T35) : Tig1 C (21, .., Ti)
for each 7 = 1,2,...,d — 1. Colon capturing says that, tven for rings that are

not Cohen-Macaulay, the colon ideal (z1,...,%;) : ®it1 is at least contained in
(z1,...,z;)*. Loosely speaking, tight closure captures the failure of a ring to be

Cohen-Macaulay.
We now prove the colon capturing property of tight closure: if R is a local

domain (satisfying some mild hypothesis to be made soon precise) and z1,...,Z4
is a system of parameters for R, then

*

(1, @:) : Tig1 C (21,...,%;5)

foreachi=1,...,d —1.

Let us first assume that R is complete. In this case, we can express R as a

module finite extension of the power series subring k[[z1,. .., z4|], where k is a field
isomorphic to the residue field of R.

Suppose that z € (z1,...,%;) :r Zit+1. Consider the ring A contained in R
obtained by adjoining the element z to the power series ring k{[z1, ..., z4]]. Observe

that the ring A is Cohen-Macaulay; in fact, A is a hypersurface ring because its
dimension is d and its embedding dimension is d + 1 (or d, if z happens to be in
power series ring already).

Now, because z € (z1,...,%;) :R Ti+1, We can write

ZTiy1 = a1xy + -+ a;x;

for some elements a; in R. Raising this equation to the p® — th power, we have

e

pe,p° _ p°. P, p°, p°
zZ7 T =07 Ty + +a; z;

Because the inclusion A — R is a module finite finite extension, we can use the

Key Lemma to find an A-linear map R 24 sending 1 to some non-zero element
¢ € A. This yields equations

2" athy = Hal )l + -+ 4(al )]



where the ¢(a§-’e) are just some elements of A.
In other words,

c p° Py . ..P°
czP € (a7 ,...,2] )iazhy,

in the ring A. But A is Cohen-Macaulay, and xfg, . ’ng is a system of parameters
for A, so we see

e

ez €« ..., 2P)

for all e. This shows that z € (z1,...,z;)* in R (also in A, but it is R we care
about). Thus (zj,...,z;) ‘r Zit1 C (z1,...,2;)*, and the proof of the colon
capturing property is complete— at least for complete local domains.

Inspecting the proof, we see that we have not used the completeness of R in a
crucial way: what we need is that R the domain is a finite extension of a regular
subring. So this proof also works for algebras essentially of finite type over a field
(the required regular subring is supplied by Noether normalization) and in many
other settings. In fact, colon capturing holds for any ring module finite and torsion
free over a regular ring. See [HH1] and [Hu?2| for different proofs and more general
statements.

The philosophy of colon capturing holds for other ideals involving parameters.
For example, if I and J are any ideals generated by monomials in a system of
parameters {zo,...,Z4}, one can compute I : J formally as if the z;’s are the
indeterminates of a polynomial ring. Then the actual colon I : J is contained in
the tight closure of the 'formal’ colon ideal. Furthermore, even more is true: we
have I* : J is contained in the tight closure of the formal colon ideal. Essentially
the same proof gives these stronger results with very small effort. For an explicit

example, let zg,...,z4 be a system of parameters in a domain R. Then
t ty-= t—1 t—1\*
(xg, ..., xg)" (zoxy ... xq) C (x5 +,..., 25 ")
and even
¢ ty* t—1 t—1y+
(o, -y 2g)" : (woxy ... 2q) C (g ,...,zg )"

One reason for tight closure’s effectiveness is that these sorts of manipulations can
often help us prove a general statement about parameters if we already have an
argument for a regular sequence.

Some Consequences of the First Three Properties.

It follows immediately from the colon capturing property that if R is a local ring
in which all ideals are tightly closed, then R must be Cohen-Macaulay. Indeed,
if all parameter ideals are tightly closed, then colon capturing implies that R is
Cohen—-Macaulay. This leads us to define two important new classes of rings.



Definition. A ring R is weakly F-regular if all ideals are tightly closed. A ring R
is F-rational if all parameter ideals are tightly closed.

So far we have seen the following implications: Regular = weakly F-regular
— F-rational => Cohen-Macaulay. The first implication is Property 1, while the
last implication is Property 3.

The reason the adjective ”weakly” modifies ”F-regular” above goes back to the
localization problem. Unfortunately, we do know whether the property that all
ideals are tightly closed is preserved under localization. The term ”F-regular” is
reserved for rings R in which all ideals are tightly closed not just in R, but also in
every localization of R. That is, we have the following special case of the localization
problem:

Open Problem. If R is weakly F-regular, and U C R s any multiplicative system,
is the localization R[U™Y| also weakly F-regular?

This problem is much easier than the localization problem itself. Indeed, it has
been shown in a number of cases. For example, Hochster and Huneke showed the
answer is yes when R is Gorenstein [HH2|, [HH4]. This was later generalized to
the Q—Gorenstein case, and even to the case where there are only isolated non
Q-Gorenstein points, by MacCrimmon [M]. Using this, it is possible to see that
weakly F-regular is equivalent to F-regular in dimensions three and less. (These
statements require some mild assumption on R, such as excellence). Recently, an
afirmative answer was given also for finitely generated N-graded algebras over a
field [LyS]. By contrast, the full localization problem has not been solved in any of
these cases.

The problem is reminiscent of an analogous problem in commutative algebra that
looked quite difficult in the mid-century: is the localization of a regular ring still
regular? With Serre’s introduction of homological algebra to commutative algebra,
the problem suddenly became quite easy. Perhaps a similar revelation is necessary
in tight closure theory.

Returning to the applications of the first three properties, we now prove the
following easy, but important, theorem.

Theorem [HH1]. Let R C S be an inclusion of rings that splits as a map of R-
modules. If S is (weakly) F-regular, then R is (weakly) F-regular.

The proof is simple. Suppose that I is an ideal of R and that z € I*. This means
that for some non-zero ¢, cz? € IP’l where Il denotes the ideal generated by the
p® — th powers of the generators of I. Expanding to S, we have cz?* € (IS)P°] so
that z € (IS)*. But all ideals of S are tightly closed, and so z € IS. Now applying
the splitting S — R (which sends 1 to 1 R-linearly), we see that z € I in R as well.
This completes the proof.

The importance of this Theorem lies in the following corollaries.



Corollary. Any ring (containing a ﬁeld) which s a direct summand of a reqular
ring is Cohen-Macaulay.

The proof is obvious: a regular ring is F-regular by Property 1, so any direct
summand is also F-regular. By Property 3, this summand is Cohen-Macaulay.

Corollary (The Hochster-Roberts Theorem). The ring of invariants of a
linearly reductive group acting linearly on a regular ring 1s Cohen-Macaulay.

This is essentially a special case of the previous corollary because the so-called
Reynold’s operator gives us a splitting of R from R.

We emphasize that both the Theorem and its corollaries make sense and are true
in characteristic zero. Thus even though there are very fewer linearly reductive
groups in prime characteristic, the Hochster-Roberts Theorem for reductive groups
over the complex numbers has been proved here by reduction to characteristic p. To
be fair, we have not proved Properties 1 and 3 in characteristic zero (nor even given
a precise definition of tight closure in characteristic zero). However, if one accepts
the existence of a closure operation in characteristic zero satisfying Properties 1
and 3, then we have proved that the Hochster-Roberts Theorem follows.

We now mention one of the crown jewels of tight closure theory.

Theorem [HH3|. Let R be an ezcellent local domain of prime characteristic. Then
the absolute integral closure RT of R is a- Cohen—Macaulay R-module.

We can see that this must be true as follows. Let z;,...,z4 be a system of
parameters. Suppose z € (z1,...,%;) : Ti+1. By the colon capturing property, z €
(z1,...,z;)*. But for parameter ideals, tight closure is the same as the contraction
of the expansion to Rt (see the discussion of Property 2). Thus z € (z1,...,z;)RTN
R. This holds for all 4, so z, ..., 24 is a regular sequence on R*, and the Theorem
is ”proved”. Unfortunately, this is not an honest proof because the proof that
I* = IRt N R for parameter ideals I uses the Cohen-Macaulayness of R*.

Property 4: Relationship to integral closure.

Property 4 is really two statements. First, the tight closure is contained in the
integral closure for any ideal I. Second, the integral closure of I*# (where p is the
least number of generators of I) is contained in the tight closure I*.

The point in proving both statements is the following alternative definition of the
integral closure J of an ideal J in a domain R: an element z € J if and only if there
exists a non-zero ¢ in R such that cz™ € J™ for all (equivalently, for infinitely many)
n > 0. (This can be easily proved equivalent to the more standard definition of
integral closure by recalling another characterization of integral closure: J consists
of all elements z such that z € JV for all discrete valuation rings V lying between
R and its fraction field. ) Note that in particular, I* = T for all principle ideals I.

Now, with this definition of the integral closure, it is immediately clear that the
tight closure of any ideal is contained in the integral closure. Indeed, since the



p® — th power of the generators of I are contained in the p® — th power of I, we
have . . .
e e [Pl c P
for all e. So any z in I* is in I.
For the second statement, suppose that z € T#. This means that there exists

a non—zero ¢ such that for all n, cz™ € I*™. If yi,...,y, generate I, then I*"
is generated by monomials of degree un in the y;. But if yPys? .. y.* is such a

monomial, at least one a; must be greater than or equal to n. So
cz” € I" C (37,5 Yn)

for all n. In pa.rti_cular, this holds for n = p¢, for all e, and we conclude that z € I*.
The proof that I# C I* is complete.

The statement that 7# C I* is sometimes called the Brian¢on-Skoda Theorem.
The original Briangon-Skoda Theorem stated that for any ideal [ in a ring of conver-
gent complex power series, the integral closure of the u-th power of I is contained in
I, where p is the minimal number of generators of I [BS]. This statement was later
generalized by Lipman and Sathaye to more general regular local rings and then by
Lipman and Tessier to the so-called 'pseudo-rational’ local rings (for a ring essen-
tially of finite type over a field of characteristic zero, pseudo-rational is equivalent
to rational singularities) [LS], [LT]. Tight closure gives an extremely simple proof of
the Briancon-Skoda theorem for any regular ring containing a field: I*crI cl,
where the first inclusion follows from Property 4 and the second by Property 1.
But better still, tight closure explains what happens in a non-regular ring as well.

The original motivating problem for the Briangon-Skoda theorem is said to be
due to J. Mather: if f is a germ of an analytic function vanishing at the origin in C™,
find a uniform k (depending only on n) such that f k is in the ideal generated by the
partial derivatives of f. The Briangon-Skoda theorem tell us that we can take k = n.

Indeed, it is easy to check that f € Jy = (2L,..., 2L). So fr € J;" C T C J. It
is remarkable how easy the tight closure proof is for this problem that once seemed
very difficult.

Before moving on to Property 5, we consider one more comparison of tight and
integral closure. Let I be an m-primary ideal in a local domain of dimension d.
Recall the Hilbert-Samuel function defined by

HS(n) = length R/I™.
This function is eventually a polynomial in n, and its normalized leading coefficient

lim iHS( )

n—oo nd

is called the Hilbert-Samuel multiplicity of I. Analogously, when R is of character-
istic p, we can define the Hilbert-Kunz function

HK(e) = length R/IIP).



This function has polynomial growth in p¢, and its leading coefficient

) 1
elingo (—p—e)—dH K(e)
is called the Hilbert-Kunz multiplicity of I.

As is well known, the integral closure of I is the largest ideal containing I having
the same Hilbert-Samuel multiplicity (assuming the completion of R is equidimen-
sional). What is also fairly straightforward to prove is that the tight closure of I is
the largest ideal containing I having the same Hilbert-Kunz multiplicity (assuming
the completion of R is reduced and equidimensional) [HH1]. In this sense, tight
closure is a natural analog of integral closure.

Hilbert-Kunz functions are interesting and mysterious, with important connec-
tions to tight closure theory and surprising interactions with number theory. Much
has been proved about them by Paul Monsky, among others; see, for example, [Mo].
Please refer to the lecture of Professor Kei-ichi Watanabe for the latest ideas about
them, and to the bibliography of [Hu2] for more references on this topic.

Property Five: Persistence of Tight Closure.

The persistence property states: whenever R — S is a map of rings containing a
field, I*S C (IS)*. In other words, any element in the tight closure of an ideal I of
R will "persist” in being in the tight closure of I after expansion to any R-algebra.

Before discussing the precise hypothesis necessary, let us consider what is in-
volved in proving such a statement. Suppose z € I* where I is an ideal in domain
R. Thus there exists a non-zero ¢ such that

czlP°l e 11P°]

for all large e. Expanding to .S, of course, the same relationship holds in S (using
the same letters to denote the images of ¢, z, and I in S). This would seem to say
that the image of z is in (IS)*, which is what we need to show. The problem is
that ¢ may be in the kernel of the map R — S. Thus we need to find a ¢ that
"witnesses” z € I* but is not in this kernel. :

Unlike the first four properties, Property 5 does not follow immediately from the
definition. The new idea we need is the idea of a test element.

Definition. An element c in a prime characteristic ring R is said to be in the test
ideal of R if, for all ideals I and all elements z € I*, we have cz?" € IP°] for all
e. An element c is a test element if it is in the test ideal but not in any minimal
prime of R.

Note that the definition of the test ideal requires that cz?* € Il for all e, not
just for all sufficiently large e. We could also define the asymptotic test ideal as
above but require only that cz?" € I'?°] for e > 0. An interesting fact is that the
aymptotic test ideal is a D-module—that is, it is a submodule of the module R
under the action of the ring of all Z-linear differential operators on R. See [S2].



For more on the general theory of D-modules in prime characteristic, please refer
to Professor Kaneda’s lectures.

It is not at all obvious that there exists a non-zero test ideal for a ring R.
Fortunately, however, it is not very difficult to prove the following.

Theorem [HH2|. Let R be a ring of prime characteristic, and assume that the
Frobenius map of R is finite. If ¢ is an element of R such that the localization R, s
reqular, then c has a power which is a test element. That is, the test ideal contains
an ideal defining the non-regular locus of Spec R.

In a later paper, Hochster and Huneke prove this without the assumption that
the Frobenius map is finite, imposing the weaker and more technical hypothesis of
being finitely generated over an excellent local ring. Although the theorem stated
above for rings in which Frobenius is finite is quite easy to prove, the proof in the
more general setting is difficult and technical; see [HH4].

Note that in any ring R, the element 1 is a test element if and only if R is weakly
F-regular. We expect that much more is true:

Conjecture. The test ideal defines precisely the non—F-regular locus in Spec R.

The conjecture is proved in some cases, such as for (excellent local) Gorenstein
rings [HH4] and for rings N-graded over a field [LyS].

Having introduced the idea of a test element, we resume our discussion of per-
sistence. First of all, we should say that Property 5 is not known to hold in the
generality we've stated; some mild hypothesis on R is needed. The problem is in
finding test elements for R.

Let us now sketch the proof of persistence. Let R 2, S be a map of domains.
As we remarked above, persistence is trivially true when ¢ is injective, so factoring
¢ as a surjection followed by an injection, we might as well assume ¢ is surjective.
Now factor ¢ as a sequence of surjections

2

R— R/P, - R/P, — ... — R/(ker¢) =S,

where' P, C P, C --- C (ker¢) is a saturated chain of prime ideals contained in
the kernel of ¢. By considering each map separately, we see that we might as well

assume that the kernel of the map R 2, § has height one.

Now if R is normal, then the non-regular locus of R is defined by an ideal J of
height two or more. But as we mentioned above, this means that the test ideal has
height two or more,* so we can find a ¢ which is a test element but not in the kernel
of ¢. The proof is complete in the case R is normal. ’ ‘

2Like most proofs in tight closure theory, the proof reduces immediately to the case where
both R and S are domains. . .

3This requires some hypothesis on R, such as finite generation over an excellent local ring, so
that R satifies the conclusion of Hochster and Huneke’s theorem about test elements above. In
practice, all rings we run across will satisfy this hypothesis.



Finally, it is not difficult to reduce the problem to the case where R is normal,
using Property 2. What happens is the normalization R of R maps to an integral
extension S of S, namely the domam S obtained by kllhng a prime of R lying over

the kernel of ¢. The map R 2, § restricts to the map R 2. S Nowifz € I*in R,
then z € (JR)*, and so ¢(z) € (IS)* because we know persistence holds when the
source ring is normal. By Property 2 (or really, by the same proof used to prove
Property 2), we see that ¢(z) € (IS)* NS C (IS)*. This completes the proof of
persistence.

We have completed the proofs and discussion of the five main properties of tight
closure. It is natural to ask whether the five main properties characterize tight
closure. They do not, or at least, not obviously. For example, in characteristic p,
the ’plus closure’ IR* N R satisfies Properties 1,2, 3, and 5, and in all cases where it
can be checked, it satisfies Property 4 as well. On the other hand, since we expect
I* = IRT N R, this is perhaps not very convincing.

A more interesting question is whether we can define a closure operation for
rings that do not contain a field (that is, in 'mixed characteristic’) which satisfies
Properties 1 through 5. If so, many theorems that can now be proved only for rings
containing a field, such as the homological conjectures that grew out of Serre’s work
on multiplicities, would suddenly admit "tight closure” proofs. The only serious
attempts at defining such a closure operation in mixed characteristic are due to
Mel Hochster, but so far none has proved successful; see, for example, [Ho2].

I hope it is clear from this lecture that the main ideas in tight closure theory
are remarkably simple and elegant, and also that they have have far-reaching con-
sequences. In the second lecture, we will look more closely at applications of tight
closure to algebraic geometry.

Lecture Two: Three Applications of Tight Closure

. At the beginning of the first lecture, we mentioned that tight closure is appli-
cable to a wide range of problems in commutative algebra and related fields. In
this lecture, we will discuss in greater detail how tight closure has increased our in-
sight in three areas of algebraic geometry: adjoint linear systems (Fujita’s Freeness
Conjecture), vanishing theorems for cohomology (Kodaira Vanishing), and singu-
larities. We will mainly discuss the first of these, giving a tight closure proof of
Fujita’s freeness conjecture for globally generated line bundles, but we point out
connections with the other two topics as they arise.

In all three areas, characteristic p methods are used to prove characteristic zero
theorems. The unifying theme for the tight closure approach to these three problems
is the action of the Frobenius operator on local cohomology.

Reduction to Characteristic p.



Reduction to characteristic p is easiest to understand by example. Say we want
to study the affine scheme associated to the ring

Qlz,y, 2]
(¥ +9° +2%)

We instead consider the ”fibration”

Zlz,y, 7|

Spec

The fiber over a closed point (p) € Spec Z is the characteristic p scheme

Z/(p)[z, y, 2]
SPeC (@ 443+ 23]

whereas the fiber over the generic point (0) € Spec Z is the original scheme

Spec Oz, .
@+ 9t +2)

For the sorts of questions we are interested in here (which are ultimately cohomo-

logical) the following philosophy holds: what is true for the generic fiber is true

for a Zariski dense set of closed fibers, and conversely, what is true for a Zariski

dense set of closed fibers is true for the generic fiber. So in order to study the ring
Qlz,y, 7] Z/(p)z,y, 2]

(= +y° +2°) (2® +y° +2%)
The same approach works even if we take C as the ground field. Indeed,

, we consider the ring for a ”generic” p.

is obtained from Spec (79% by the flat base change Q@ — C. Again, from

the point of view of the types of questions we will consider, we might as well study

—zulw’y’z 5 and hence ZPAz.v:z] o o "generic” p.

(z*+y3+= (z3+y°+2°)
The philosophy holds for any scheme of finite type over a field of characteristic
zero. For example, if we are interested in the ring

_ Clz, v, 2]
© (wzd + V1Ty3 + 23)]

we set A = Z[w, \/ﬁ] and consider the fibration

Alz,y, 2]
(mz3 + V1Ty3 + 23)

— Spec A.

Spec



Alplz,y, 2]
(2 + VT 4 )’
where u is a generic maximal ideal in A. Each A/ is a finite field, so these closed
fibers are all ”characteristic p models”, for varying p, of the original ring R.

Again, we might as well study the prime characteristic ring

In general, if

Elzy,...,z,]
R= "0
(F1,...,F)

where £ is a field of characteristic zero, we let A = Z[coefficients of the Fys| C k
and set

Alzy,..., z,)
Ry=——21-—"""7°
AT (R, . F)

Then the map _ B
Spec R4 — Spec A

(or the map A — R,) will be called a family of models for Spec R (or R). The
generic fiber is the original scheme Spec R (after extending the field if necessary) and
a generic (or typical) closed fiber is a characteristic p model of Spec R. We will prove
theorems about R by establishing the same statement for a generic characteristic p
model of R, that is, "for all large p.”

The idea of a family of models can be used to define concepts in characteristic
zero which seemingly only make sense in prime characteristic. For example, we can
define F-regularity and F-rationality for finitely generated algebras over a field in
this way.

Definition. Let R be a finitely generated algebra over a field of characteristic zero.
Then R is said to have F-reqular type if R admits a family of models A — R, in
which a Zariski dense set of closed fibers are F-regular. (This does not depend on
the choice of the the family of models. )

Similarly, we can define weakly F-regular type, F-rational type, or F-split type for
any finitely generated algebra over a field of characteristic zero. (In characteristic p,
F-split means that the Frobenius map splits, that is, RP C R splits as a RP-module
map.)

There is a subtlety in the meaning of F-regularity for algebras of characteristic
zero. As we've said in the first lecture, the operation of tight closure can be defined
for any ring containing a field, so it makes sense to define a finitely generated
algebra over a field of characteristic zero to be weakly F-regular if all ideals are
tightly closed. This is a priori different from the condition of weakly F-regular
type. We expect that these notions are equivalent, but this remains unsolved. See
[Ho3|.

The notions of F-rational type and F-regular type turn out to be intimately

connected with the singularities that come up in the minimal model program. The
first theorem in this direction explains the name ”F-rational”.



Theorem [S3], [Hal]. A finitely generated algebra over a field of characteristic
zero has F-rational type if and only if it has rational singularities.

The concept of rational singularities is very important in birational algebraic
geometry. Recall that by definition, a ring R has rational singularities if and only
if it is normal and it admits a desingularization X for which H*(X,Ox) = 0 for all
i>0)

Because Nobuo Hara has lectured on this theorem before in Japan, we will not
dwell on it, although we will later mention some ideas in the proof. Now move on
the application of tight closure to Fujita’s freeness conjecture, where many related
ideas appear.

Application of Tight Closure to Adjoint Linear Series.

Let X be a smooth projective variety of dimension d, and let £ be an ample
invertible sheaf on X. We are interested in the adjoint line bundles wx ® L™,
for n > 0. Because L is ample, we know that for large n, this adjoint bundle is
globally generated. Fujita’s freeness conjecture provides an effective version of this
statement.

Fujita’s Freeness Conjecture. With X and L as above, the sheaf wx ® L3+ is
globally generated.

The conjecture is known in characteristic zero in dimension up to four [R}, [EL],
[Ka]. See [Ko] for a survey. In arbitrary characteristic, the best that is known is
given by the following theorem.

Theorem [S4]|. If X is a smooth projective variety of dimension d and L is a
globally generated ample line bundle on X, then wx ® L%+ is globally generated.

See [ST7] for a recent improvement of this result.

Our next task is to prove this theorem, that is, to establish Fujita’s Freeness
Conjecture for globally generated line bundles. This will give a good overview of
some of the methods that can be used in applying tight closure to algebro-geometric
questions. '

If X has characteristic zero, the first step is to reduce to the characteristic p case
using the standard technique we described. So it is enough to prove the theorem
in the case that X has prime characteristic.

A good way to study an ample line bundle on a projective variety X is to build

the section ring
S = @n>oH(X, L™).

This is a finitely generated, N-graded ring whose associated projective scheme re-
covers X. Its dimension is d+ 1. Assuming that X is irreducible, every section ring
S will be a domain. If X is smooth, then S has (at worst) an isolated singularity
at the unique homogeneous maximal ideal m. The invertible sheaf L™ corresponds
to the graded S-module S(n), the S-module S with degrees shifted by n.



Fujita’s Freeness Conjecture is equivalent to the following more commutative
algebraic statement.

Fuyjita’s Freeness Conjecture in terms of local cohomology. If (S,m) is
a section ring with an isolated non-smooth point, then HZ'(S) has the following
property: there exists an integer N such that for all p € HEFY(S) of degree less
than N, n has a non-zero S-multiple of degree —d — 1.

The proof of the equivalence of this statement with Fujita’s Conjecture is not
difficult. This is essentially the dual statement (using Matlis duality for S or Serre
duality for X). Details can be found in [S4].

To prove Fujita’s Conjecture, we will tackle this local cohomological conjecture.
First we describe a convenient way to think about elements in the local cohomology
module H&F(S).

Let zg,xy,...,2q be a system of parameters for S of degree one. Such a system of
parameters exists by our assumption that £ is globally generated (after enlarging
the ground field if necessary). The local cohomology module HZ(S) can be
computed as the cokernel of the following map

Sz/zo @Sz/zl @S — S,

b nel sy | Zho(C1as
ot ' ot : ot
where z denotes the product x0x1 ...zq of the z;’s. This is the last map in the Cech
complex for computing the cohomology of the sheaf of O x-algebras P, Ox(nL)
with respect to the affine cover of X given by the d+ 1 open sets U; where x; does
not vanish. More generally, the local cohomology modules H? (S) can be computed
as the cohomology of this Cech complex, so that H} (S) = @, o5 H (X, L"), for
allz > 1.

We represent elements of H%(S) by fractions [%] , with the square bracket
reminding us of the equivalence relation on fractions. If the degree of 7 is —n, we
see that —n = deg z — t(d + 1).

It is easy to see that if z € (zf,z!,...,x}), then n = [Z] must be zero, by
thinking about the image of the map above. Unfortunately, the converse is false.
However, we have the following interesting observation.

Lemma. Ifn=[Z]=0, then z € (zf,...,z5)*

The Lemma is easily proved: if 7 = [%] = 0, then this means that for some

integer s, we have
z°z

2= 152 =
where now z°z € (z5**,...,24t*). Thus

ze(zhte, ... 2t 2
so by colon capturing, z € (zf,...,z5)*. The Lemma is proved.



The Frobenius Action on Local Cohomology.

The Frobenius action on local cohomology is the main idea in the proof of Fujita’s
Freeness Conjecture for globally generated line bundles, and in the proof of the
equivalence of rational singularities with F-rationality. It is also the central point
in the relationship between tight closure and the Kodaira Vanishing theorem. The
idea of using the Frobenius action on local cohomology to study tight closure first
appears in the work of Richard Fedder and Kei-ichi Watanabe [FW].

The Frobenius action
H (S) = Hit'(S)

is easy to understand. Indeed, Frobenius acts in a natural way on each module
Sz oz, 1D the Cech complex defining the local cohomology modules; it simply
raises fractions to their p — th powers. This action obviously commutes with the
boundary maps, so that it induces a natural action on the local cohomology mod-
ules. In particular, the Frobenius action on H&H(S) is given by

ZP

(zt)P

P

]

z
n=[len

Using this, it makes sense to define tight closure for submodules of H% (S) by
mimicking the definition for ideals. For example, we can define the tight closure of
the zero submodule in HZ(S):

0* = {n € HE™(S)| there exists ¢ # 0 with en?” = 0 for all e > 0}.

The tight closure of zero in H&F!(S) is an important gadget. One can show that
it is the unique maximal proper submodule of H&!(S) stable under the action of
Frobenius [S3].

Returning to the proof of Fujita’s Freeness Conjecture, we observe the following
two facts.

(1) n =[Z] € 0* if and only if z € (af,...,2})"

(2) Any test element c kills 0*.
These two facts are straightforward to prove using nearly the same argument as in
the proof of the Lemma above.

Now the proof can be summarized in two main steps. First we show that if
n € H%1(S) does not have a multiple of degree —d — 1, then 7 is in 0*. Next we
show that 0* vanishes in all sufficiently small degrees. Obviously, upon completion
of these two steps, the proof is complete.

Step One: if n € HE(S) does not have a multiple of degree —d — 1, then 7 is
in 0*.



The main point is colon capturing. Assume on the contrary, that an element
n = [%] of degree —n has no non-zero multiple of degree —d — 1. This means that
every element of S of degree n — d — 1 must kill . In particular,

(zo,...,zq)" 4 I =0.

By the Lemma, this means that
(zo,. ., za)" 4tz e (ab,. ..z,

or in other words,
z€(zh,...,z)* : (zo,...,2q

Now we use colon capturing. We manipulate the parameters zo, ..., z4 formally
as if they are the indeterminants of a polynomial ring, in which case the colon ideal
(ignoring the x) would be easily computed to be

(zb,...,24) + (zo,.. ., zq) T D1 =(n—d=1)+1

Colon capturing says that the actual colon ideal is contained in the tight closure of
this "formal” colon ideal, that is,

z€((zh, ..., zh) + (2o, ..., mg)FHDO=()+1)+

But note that the degree z is (d + 1)t — n (because 7 = [%] has degree —n =
deg z — (d + 1)t). Thus

z € [(1133, s )xf'l) + (170, e ,:Bd)degz+l]*-

A moment’s thought reveals that this forces

z € (zf,...,zh)*.

Indeed, if }
cz? € (zh,. .. ,xf,)[‘ﬂ + (o, . .. ’md)desz+1](q17

we see immediately that because the degree of c is fixed, the degrees of the gener-

ators of [(zo,...,24)%8>*1]l4 are much larger than the degree of cz?, so that cz?

must in fact be in the ideal (z§,...,z%)!9 for large ¢ = p¢. But by Fact (1) above,

then we see that . ‘
n= [;] € 0%,

and the proof of step one is complete.

Step two: 0* vanishes in sufficiently small degrees.

The point is to consider the test elements of S. Because X is smooth, the section
ring S has an isolated singularity. This means that the defining ideal of the non-
regular locus of S is m-primary. As we mentioned in Lecture 1, this implies that the



test ideal of S (of all elements that ”witness” all tight closure relations) contains an
m-primary ideal. But according to Fact 2 above, the test ideal of S annihilates 0%,
so that 0* is killed by an m-primary ideal. This says that 0* has finite length, so of
course, it must vanish eventually in all degrees sufficiently small. This completes
the proof of step two, and thus the proof of Fujita’s Freeness Conjecture for globally
generated line bundles

Experts will notice that the argument above does not really require that X be
smooth. We used smoothness only in Step 2, to conclude that 0* is finite length.
But 0 is of finite length more generally, and is in fact equivalent to the variety X
being F-rational (or F-rational type in characteristic zero). Thus Fujita’s Freeness
Conjecture holds for any globally generated ample line bundle on a projective F-
rational (type) variety.

We should remark that Fujita’s Freeness Conjecture for globally generated line
bundles can also be proved, in characteristic zero, using the Kodaira vanishing
theorem. As far as I know, however, tight closure provides the only proof in prime
characteristic. Interestingly, the Frobenius action on local cohomology seems to act
as a substitute for Kodaira Vanishing. There is a good reason for this: it turns out
that Kodaira vanishing theorem is equivalent to a statement about the action on
Frobenius on local cohomology modules.

Tight Closure and Kodaira Vanishing.
Recall the classical Kodaira Vanishing Theorem:

Kodaira Vanishing. If X is a smooth projective variety of characteristic zero,
and L is any ample invertible sheaf on X, then H'(X,L™') =0 for allt < dim X .

The Kodaira Vanishing Theorem is false in characteristic p, although 1t can be
proved by reduction to characteristic p [DI]. See also [EV].

Let S = ®,>0H°(X, L") be the section ring of the pair (X,£). Unwinding
definitions using the point of view that local cohomology can be computed from the
Cech complex of the O x—algebra @L"™, Kodaira Vanishing is seen to be equivalent

to
H! (S) vanishes in negative degree for all ¢ with 1 < < dim S.

Because S has (at worst) an isolated non-Cohen-Macaulay point at m, we know
that each HZ (S) is supported at m, and hence must vanish in degrees sufficiently
small. So we could state the Kodaira Vanishing Theorem as follows: the Frobenius
action on a dense set of characteristic p models for S s m]ectwe i negative degrees
on H: (S), for1 <i<dimS§S. ~

Although it may sound a bit silly, this way of stating the vanishing of local
cohomology in negative degree has the advantage of making sense also for the top
local cohomology module HE™S(S). In fact, the injective action of Frobenius
on HEF1(S) in negative degrees is a new and important phenomenon, a natural
generalization of the Kodaira Vanishing Theorem, which is not at all apparent



otherwise. This extension to the top local cohomology module was conjectured to
be true and called ”Strong Kodaira Vanishing” in [HS]. The conjecture was proved
in a beautiful paper of Nobuo Hara [Hal], and in fact, turns out to be the main
point in his proof that a rationally singular variety (of characteristic zero) must be
of F-rational type. (See also [MS].)

The injective action of Frobenius on the negative degree part of local cohomolgy
can be re-interpreted in terms of tight closure of parameter ideals. Using ideas sim-
ilar to the ideas we used in the proof of Fujita’s Conjecture to translate statements
about the Frobenius action on 7 = [Z] into statements about the tight closure of
(z§,zt,...,zY), we get a tight closure version of Kodaira Vanishing.

Kodaira Vanishing in terms of Tight Closure [HS|. Let S be a section ring
of a pair (X, L) where X is a smooth variety of characteristic zero and L is an
ample invertible sheaf of Ox-modules. Then for any proper subset zq,...,zr of a
system of (homogeneous) parameters for S, where degz; > 0,

k
(xo,...,:l,‘k)* CZ(:I:o,...,:i:i,...,xk)*+SZD

1=0
where D is the sum of the degrees of the x;’s

This theorem is equivalent to the Kodaira Vanishing Theorem. Just as Kodaira
Vanishing can fail in prime characteristic, so can this tight closure statement. How-
ever, the statement holds when S is a generic characteristic p model for a section
ring of characteristic zero, that is, "for large p.”

By allowing the possibility that we have a full system of parameters in the above
version of the Kodaira Vanishing Theorem, we get the strong Kodaira Vanishing
Theorem. In fact, if zg,z1,..., x4 is a full system of parameters for a section S as
above, we get a more precise statement.

Strong Kodaira Vanishing [HS| [H]. Let S be an N-graded ring over a field of
characteristic zero, and let xo,z1,...,zq be a full system of (homogeneous) param-
eters for S, with degzx; > 0. Then '

d
(%0,..,2a)* = D _(T0,..,&i,-..,%a)" + S>p

1=0
where D 1s the sum of the degrees of the x;’s

The reason we get equality here is that Ssp is contained in (xo,...,Zq)", as can
be verified with the Briangon-Skoda theorem (Property 4).

It is possible to say precisely how large the degrees of the z;’s must be in the
statements of Kodaira and strong Kodaira vanishing in terms of tight closure. In
both theorems, each z; should have degree larger than a, where a is the a-invariant
of §. By definition (due to Goto and Wata.nabe) the a-invariant is the largest
integer n such that H7! dim § (S) is non-zero in degree n.



The strong form of Kodaira Vanishing is conjectured in [HS], where the idea of
the "monomial property of a d* sequence” due to Goto and Yamagishi is used.
It is proved in [HS] for rings of dimension two, from which it is shown that the
Kodaira Vanishing Theorem follows for any normal surface of dimension two. In
full generality, however, the statement was not known until Nobuo Hara proved the
injectivity of the Frobenius action on the negatively graded part of local cohomology
[Hal]. Hara has since greatly generalized his work; see [Ha3).

Tight Closure and Singularities.

Finally, we summarize some more connections between tight closure and singu-
larities in algebraic geometry.
Let X be a normal variety of characteristic zero. Assume that X is Q-Gorenstein,

that is, that the reflexive sheaf wy represents a torsion element Kx in the (local)
class group of X. In other words, the Weil divisor class Kx is assumed to have a

multiple which is locally principle.
Consider a desingularization X 5 X of X, where the exceptional divisor is a
simple normal crossings divisor with components Ei, ..., E,. Write

KX:W*KX+zn:a,-E,-

=1

for some unique rational numbers a;. To understand this expression, suppose that
rK x is locally principle, so that it makes sense to pull it back; then compare to
rK 4. The difference is some divisor supported on the exceptional set, hence of the
form Y., m;E;. Dividing by r, we arrive at the above expression, where 'equality’
means numerical equivalence of Q-divisors. See [KMM].

In general, the a;’s can be any rational number, although if X is smooth, we
can easily see that each a; will be a positive integer. This leads us to the following
restricted class of singularities.

Definition. The variety X has log-terminal singularities if all a; > —1, and has
log-canonical singularities if all a; > 1. (This is independent of the choice of desin-

gularization.)
The relationship to tight closure is is evidenced by the following theorem.

Theorem. Let X be a normal Q-Gorenstein variety of characteristic zero. X has
F-regular type if and only if X has log-terminal singularities.

This theorem follows immediately from the equivalence of rational singularities
and F-rational type discussed earlier, using the ”canonical cover trick”. Indeed,
assuming X is local, set

Y = Spec {Ox @ Ox(Kx)®Ox(2Kx)® ... Ox((r — 1)Kx)}

where 7 is such that O x(rKx ) is isomorphic to O x via a fixed isomorphism (so that
we can define a ring structure on Ox ®Ox(Kx)®Ox(2Kx)®... Ox((r—1)Kx)).



The natural map ¥ — X is called the canonical cover of X. It is easy to check
that when X is Cohen-Macaulay, the canonical cover Y is Gorenstein, and that the
map is étale in codimension one. With these properties, it is not hard to show the
following two facts:

(1) (Kawamata) Y has rational singularities if and only if X has log-terminal
singularities.
(2) (K.-i. Watanabe) Y has F-rational type if and only if X has F-regular type.
Thus the equivalence of F-regular type with log-terminal singularities follows from
the equivalence of F-rational type with rational singularities.

There are some subtleties involved in the argument using the canonical cover.
Watanabe’s argument shows F-rationality for Y is equivalent to strong F-regularity
for X. Strong F-regularity is a technical condition conjectured to be equivalent
to weak F-regularity (when both are deﬁned) introduced because it, unlike weak
F-regularity, is easily shown to pass to localizations [HH2]. However, in the case of
Q-Gorenstein rings, weak and strong F-regularity turn out to be equivalent M].

The first proof that F-regular type Q-Gorenstein singularities are log-terminal
is due to Kei-ichi Watanabe and uses a different argument [W]. This different ar-
gument also produces the following nice result.

Theorem [W]. Let X be a variety satisfying the conditions above. If X is of F-spht
type, then X has log—terminal singularities. (Recall, a local ring of characteristic p
is F-split if the inclusion RP — R splits as a map of RP modules.)

A very interesting open problem that has deep connections with number theory
is the following.

Open Problem. If X has log-canonical singularities, does X have F-split type?

Further Reading on Tight Closure.

The original tight closure paper of Hochster and Huneke [HH1] is still an excel-
lent introduction to the subject. There are also a number of expository articles on
tight closure. Craig Huneke’s book Tight Closure and its Applications [Hu2] is an
good place for a beginning commutative algebra student to learn the subject; it
contains several applications more or less disjoint from the ones discussed in detail
here. It also contains an appendix by Mel Hochster [Ho3] discussing tight closure
in characteristic zero. Another nice survey is [Hol], which contains a list of open
problems; although the article is now seven years old, many of these problems re-
main open. A more recent view is provided by the expository article [B]. The article
[S5] is a survey written for algebraic geometers. Huneke’s ” Tight Closure and Ge-
ometry” is another nice read for algebraists [Hu3]. All these sources, but especially
[Hu2], contain long bibliographies to direct the reader to numerous research articles

on tight closure.
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1 Introduction

Multiplicities defined by limits of Euler characteristics over powers of the
Frobenius map in positive characteristic were introduced by Dutta [1], who
showed that in many respects they have better properties than ordinary Euler
characteristics. In particular, if A is a local ring of dimension d, the Dutta
multiplicity of a nonexact complex of free modules of length d with homology-
of finite length is always positive; this fact was proven and used in an essential
way to prove the Intersection Theorem for rings of mixed characteristic in
Roberts [13].

More recently, the concept of Dutta multiplicity has been generalized to
rings of arbitrary characteristic using localized Chern characters by Kurano
[7]. While this definition agrees with the original one for rings of positive
characteristic, the lack of a simple construction in terms of limits over the
Frobenius map makes it more difficult to prove many of its properties. In
this paper we show that the positivity result mentioned above can be general-
ized to homomorphic images of regular local rings of arbitrary characteristic
containing a field.

The basic idea is to reduce to the case of positive characteristic using
the “Metatheorem” of Hochster [6], which states that if a set of equations
has a solution in any ring containing a field, then it has a solution in some
ring of positive characteristic. To apply this theorem, we use an alternate
description of Dutta multiplicity in terms of Adams operations. The theory
of Adams operations can be considered to be a generalization of the Frobenius
map to arbitrary characteristic, but it is defined on the Grothendieck group
of complexes rather than induced by a map of rings, so the theory, like that



of Dutta multiplicities, is somewhat more difficult than in the case of positive
characteristic.

In the first section we give a precise statement of the theorem and intro-
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