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ON MACAULAYFICATION OF
NOETHERIAN SCHEMES

TAKESI KAWASAKI

1. INTRODUCTION

Let X be a Noetherian scheme. The desingularization of X is a birational proper
morphism Y — X with Y non-singular. We know that X has a desingularization if
X is a variety over a field of characteristic 0 or if dim X < 3. Several authors are
studying the desingularization of varieties over a field of positive characteristic.

In the present paper, we give a birational proper morphism Y — X with Y Cohen-
Macaulay.

Theorem 1.1. Let A be a Noetherian ring possessing a dualizing complez and X
a separated, of finite type scheme over Spec A. Then there is a birational proper
morphism Y — X where Y is a Cohen-Macaulay scheme.

Such a morphism Y — X is named to be a Macaulayfication of X by Faltings [3].
The birational morphism given by Theorem 1.1 is a blowing-up. Theorem 1.1
stands on the following

Theorem 1.2. Let A be a Noetherian local ring of dimension d. If

(1) A has a dualizing complez;

(2) dim A/p = d for each associated prime p of A,
then there is an ideal b of positive height such that Proj R(b) is a Cohen-Macaulay
scheme. Here R(b) denotes the Rees algebra @, 5, b™.

Analyzing the proof of Theorem 1.2, we can answer to Sharp’s conjecture [10] in
affirmative. '

Theorem 1.3. Let A be a Noetherian local ring or a Noetherian integral domain.
Then A has a dualizing complez if and only if A is a homomorphic image of a finite-
dimensional Gorenstein ring.

In this paper we give a brief proof of Theorem 1.2. Please refer to [5] for the
complete proof of Theorem 1.1 and 1.3. From now on we agree that A denotes a
Noetherian local ring with maximal ideal m.

1991 Mathematics Subject Classification. Primary: 14M05, Secondary: 13H10, 13A30.
Key words and phrases. blowing-up, desingularization, Macaulayfication, Rees algebra.



2. A P-STANDARD SYSTEM OF PARAMETERS

In this section, we give the definition and properties of a p-standard system of
parameters, which was introduced by N. T. Cuong [2]. Firstly we see the following
definition and lemmas given by Schenzel [7], [8] and [9].

Definition 2.1. For a finitely generated A-module M, an ideal a(M) is defined to
be

a(M) = ‘ dHMa,nnHr';,(M).

Of course a(M) = A if and only if M is Cohen-Macaulay.

Lemma 2.2. Let M be a finitely generated A-module. If A has a dualizing complez,
then the following statements hold:
(1) dim A/a(M) < dim M;
(2) Let p € Supp M. Then a(M) ¢ p if and only if M, is a Cohen-Macaulay
Ay-module and dim A/p + dim M, = dim M.

Lemma 2.3. Let M be a finitely generated A-module of dimension d and z,, ..
x4 a system of parameters for M. Then

A

(@1, ..., @im1)M 22y C (21, ..., i) M 1 a(M)
foranyl1 <i<d.
The p-standard system of parameters is defined by using the notion of a(—).

Definition 2.4. Let M be a finitely generated A-module of dimension d and z, ... ,
x4 a system of parameters for M. We say that z;, ..., z4 is a p-standard system of
parameters if

T4 € a(M),
z; € a(M/(ziy1,...,za) M), fori<d.

As a consequence of Lemma 2.2, we have the following

Lemma 2.5. Let M be a finitely generated A-module. If A has a dualizing complez,
then M has a p-standard system of parameters.

In particular, a Noetherian local ring A satisfying the assumption of Theorem 1.2
has a p-standard system of parameters.
The following theorem is the main theorem of this section.



Theorem 2.6. Let M be a finitely generated A-module of dimension d > 0 and z,
., 4 a p-standard system of parameters for M. Then, for any integer 1 < i < d
and subsystem of parameters yy, ..., yu—1 for M/(z;,...,zq) M, we have

(26.1) (Y1, Yo-1, A | A E MM 14y = (11, -, Y1, 22 | A € A)M 1y,
for1<v<wand AC{i+1,...,d}. Here we agree that y, = z;.
Proof. If i = d, then the both side of (2.6.1) céincide with

(Y151 Yo1)M 1 a(M)

by Lemma 2.3.
Therefore we assume that ¢ < d and work by descending induction of §A. If
A={i+1,...,d}, then the both sides of (2.6.1) are

Y1y, Yo-1, Tit1, - - - )M s a(M/(Tiga, . . ., za) M).

Assume that A # {i+1,...,d} and let [ be the largest integer in {i +1,...,d} \ A.
Let a be an element of the left hand side of (2.6.1). Then

a € (y]-?""y'v—l)wl)z/\ | A € A)M:y'vyu
= (yl,--~,yv—1,37l,$A | /\ S A)Myu

by the induction hypothesis. We put y,a = z;b + ¢ with
ce (yla"'vyv—l,x/\ | A € A)M
Then

b€ (Y1, Yo-1,2r | A EA)M 1y,
= (yla"',yv—hw/\ | Aej&)Mml

by Lemma 2.3. Thus z;b, yua € (y1,...,Y%s—1,%x | A EA)M. O
Corollary 2.7. With notation of Theorem 2.6, z, ..., 4 is a d-sequence on M.
See [4] for the notion of d-sequences.
Corollary 2.8. With notation of Theorem 2.6, let q; = (z;,...,z4). Then
(@3 [ A€ MM +q7* - q M 2’7t = [(23* | X € A)M + g7+ 0’ M] 1 qiy
for any integers 2 <1< j<d, ny, ..., n;>0and AC{1,...,7i—2}.

The proof of Corollary 2.8 is very long. We omit it.



3. THE PROOF OF THEOREM 1.2

Let M be a finitely generated A-module of dimension d > 0 and b an ideal. We
agree that R(b) is the Rees algebra @, 5, b™ and Ry (b) denotes a finitely generated
R(b)-module @,,5,b"M.

To prove Theorem 1.2, we show the following theorem by induction on t. As a
consequence of Corollary 2.7 and 2.8, a p-standard system of parameters satisfies the
assumption of the theorem.

Theorem 3.1. Let x4, ... , x4 be a subsystem of parameters for M wheret < d. We
put

g9; = ($i,~~-,xd),
b =0qi- - qq,
Y; = Proj R(b;)
and F; the coherent sheaf [Rpr(6;)]~ on'Y; for each t <1 < d. If

(1) z;, ..., 4 1s a d-sequence on M/(z3* | X € A)M for anyt <i < d, ny, ..
ni_1>0andAC{t,...,i—1};

(2)

i

[(23)M + b7 M]: 2i"7" = [(23*)M + b} M] : gis
foranyt+1<i<d, ng ..., ni-1 >0and AC{t,...,1—2},
then
depth(F;), >d—t+1 for any closed point p € Y;.

Proof. First we note that dim(F;), = d for any closed point p € Y;. Let p be an
associated prime ideal of M such that dim A/p = d. Then p* = @,5op N b} is an
associated prime ideal of Rp(b;). Since zy, ..., z4 is a subsystem ‘of parameters
for A/p, and hence analytically independent on A/p, p N b C mb} for all n > 0.
Therefore any closed point on Y; contains p*. Furthermore dim R(b;)/p* = d + 1.

Assume that t = d. Then Yz = Spec A/HJ,(A) and F; = [M/HZ (M)]~. Therefore
depth(Fy4), > 0 where p is the unique closed point of ¥;.

Assume that ¢ < d. Then Y; is the blowing-up of Y;;; with respect to q;Oy,,,.
Let p be a closed point of Y; and g its image under the blowing-up Y; — Y;,;. Then
q is also a closed point. Let B = Oy,,,, N = (Fi41), and n the maximal ideal
of B. Since ¢410y,,, is invertible, g1 B = z;B for some t +1 < 4 < d and z; is
B-regular. Therefore Oy, , = B[zi/t)(n f(2:/2.)) OF B[Zt/Ti)(n,f(z:/c:)), Where f is a
monic polynomial with coefficients in B.

We compute the local cohomology H{ (N). It is clear that HY(N) = 0 if ¢ # 1,

2. Let ft(i)l be the coherent sheaf [R)//5tp/(bs4+1)]™ on Yiyy and NO = ( t(j_)l)q. Then
depth N, depth N® > d — t by the induction hypothesis.



There is an exact sequence

) n n !
1) 0= @t g g e
a>0 01 M +0 ‘M T n>0 L0 M z M

The left hand side of (3.1.1) is annihilated by z; because of the assumption (2) and
z; is a regular element on the right hand side of (3.1.1). Indeed

e Mz (2,2, .. zg) M = alM
because z;, ..., x4 is a d-sequence on M/zL M. Therefore
b7 b7, M+ 2t M
H! ( t+1 ) H! ( t41 t )
! ,j.i) zjbp, M : 71690 M
and
I (@ by M ) _ bp Mz, .
T \ns0 zthia M) bk M + 0y 2,

Taking localization, we have H.(N/z\N) = H} (N®). Since the local cohomology
functor commutes with direct limit and there is an exact sequence

we have
He(N)=H, H, (N)
— lim HZ,(N/alN)
l
— lig H (V)
1
=1lim NO /2 NO.

lym
Since depth N® > d — t and x; is N®-regular,
HP’H:(N)=0 forp<d—t—1.
Similarly

i (@ st = s, (@ )

n>0 n>0
i 72, (@ i)
l n>0 bt+1

- @ thM.xt
>0 b M+ 0y 2y



Indeed, Hg, (b, M) = 0 for all n > 0 because =, ... , 74 is a d-sequence and hence
0:pr £:NGer1 M = 0. Therefore th;t(N ) = 0. Next we consider the spectral sequence

E}* = HEH{(N) = HEY(N).

We already know that E2? = 0if ¢ # 1, 2 and E?> = 0if p < d —t — 1. Since
depth N >d —t, E}' = HP*'(N) =0 for p <d —t — 1. Thus we obtain

HPH!(N)=0 ifgq#1,20orp<d-t—1
n=rqe

and
th;t(N ) =0.
Using this we compute depth(F;),. We assume that Oy, , = B[z;/T¢)(n, #(z:/21))- Let
L = N[T]/(z;T — z;)N[T], where T is an indeterminate. Then

(Fo)p = [L/HG, (L))(nf(ai /2
Taking local cohomology of an exact sequence
0 — N[T) 222 N[T] - L — 0,
we obtain an exact sequence
0 — Hg (N[T]) — Hg,(L) — H.(NI[T)) — HZ(N[T]) — 0.
By using an exact sequence
0 — HypHI ' () — H{, sy (=) — Hjp HE(—) — 0,

we find that
Hf’“’f(T))Hgt(N[T]) =0 ifg#1,20orp<d-—t.

Hence Hf, ¢y Hg, (L) = 0 for p < d —t. Since
Hg (L/Hq, (L)) = Hy,(L)
and
Hy (L/Hg (L)) =0 ifg#1,
we have
H, sy HE(L/H (L)) =0 ifqg#lorp<d-—t.
By the spectral sequence
B3' = H{, poryHa, (=) = Hiyfiry(5),

we have depth(F;), >d —t+ 1.
We can also show that depth(F;), > d—t+1 when Oy, , = Blzy/%:|(n f(:/2:))- The
proof of Theorem 3.1 is competed. [



4. QUESTIONS

We closed this paper by giving further questions.

Question 4.1. Let X be a Noetherian scheme. Is there a birational proper morphism

Y

— X such that Y is Cohen-Macaulay and normal?

When X is a quasi-projective variety over an algebraically closed field, whose

characteristic zero or positive prime, and X has little non-Cohen-Macaulay points,
Brodmann [1] gave such Y.

Question 4.2. Let A be a Noetherian local ring satisfying the assumption of Theo-
rem 1.2. Is there an ideal b such that R(b) itself is Cohen-Macaulay?

When dim A/a(A) = 0, we know the existence of such an ideal. For example,

see [4]. Recently the author [6] find such an ideal when dim A/a(A) = 1.

'S
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What makes a flat complex exact?

MITSUYASU HASHIMOTO

Graduate School of Mathematics, Nagoya University
Chikusa-ku Nagoya 464-8602 Japan
hasimoto@math.nagoya-u.ac.jp

1 Introduction

Throughout this paper, R denotes a noetherian commutative ring. The sym-
bols ® and Hom stand for ® g and Homp, respectively. For p € Spec R, the
field R,/pR, is denoted by x(p). Moreover, the symbol ?(p) stands for the
functor k(p)®?.

For an R-algebra A, an A-module means a left A-module unless otherwise
specified, and the category of A-modules is denoted by 4M.

For an R-coalgebra C, a C-comodule means a right C-comodule, unless
otherwise specified. The category of C-comodules is denoted by M.

For a locally noetherian abelian category C, the full subcategory of C
consisting of all noetherian objects of C is denoted by Cy.

We sometimes face to a difficulty when we want to generalize a result
over a field to a result over arbitrary base. Let

F:0— FOL e, p2 ..

be an R-flat complex. We say that F is u-acyclic if for any R-module M,
HY(F® M) =0 (i > 0) and the canonical map

oy H(F)® M — H(F® M)

is isomorphic. We want to prove a theorem which guarantees the u-acyclicity
of F and the finiteness of H°(F) from assumptions on F(p) for various p €
Spec R. Assume that F is u-acyclic and H°(F) is R-finite. Then, it is easy
to see that H°(F) is R-finite projective. Hence, we have that H*(F(p)) = 0
(i > 0) and h§(p) := dim.g) H°(F(p)) is finite for p € Spec R, and hg is a
locally constant function on Spec R by u-acyclicity. Are these conditions are
sufficient to guarantee the converse? The answer is no, see Example 22. What
is a good condition to impose to guarantee the converse? One possibility is to



add some finiteness conditions on H*(F ® R/p) for p € Spec R, see (19) and
(20) in Theorem 15. This assumption is really effective when we study higher
direct images of proper morphisms, and studied extensively by Grothendieck
[5] by using some different point of view and methods. Even if each term of
F is not R-finite, flat complexes in commutative ring theory satisfies some
finiteness conditions (e.g., metafiniteness), and (19) is satisfactory in this
sense.

However, in studying integral representations of quantum groups, the au-
thor felt necessity of another good additional assumption to impose, because
quantum groups are independent of geometric objects (at least in the clas-
sical sense) and hence (19) is useless, and quantum groups has been studied
extensively over a field by many authors. Our main theorem states: the con-
verse is true if we assume that F° is R-projective, see Theorem 15 (18). As
an application, we show that Schur algebras (in the sense of Donkin [3]) for
any poset ideal of the set of dominant weights are constructed over arbitrary
base ring and a g-analogue of Donkin-Koppinen’s bicomodule filtration the-
orem hold for GLy(n) and SL,(n) over arbitrary base R and for arbitrary
g € R*.

In section 2, we give a detailed proof of the main theorem and some
counterexamples. In section 3, we give a survey on some applications of
Theorem 15.

Note that all of section 2 and some part of section 3 are contained in
[6]. For other applications of Theorem 15 such as generalizations of Ringel’s
approximations which we miss here, see [6].

2 The theorem

Let f : M — N be an R-linear map. We say that f is R-pureif 1y ® f :
W®M — W ®N is injective for any R-module W. Obviously, any R-pure
map is injective. When M C N, then we say that M is a pure submodule of
N if the inclusion map M — N is pure. Note that a split injection is pure.

Lemma 1 Let P and F be flat R-modules, and f : P — F an R-linear map.
Consider the following conditions.

1 f s injective and Coker f is R-flat.

2 f 1is pure.

3 For any p € Spec R, the map f(p) : P(p) — F(p) is injective.

4 For any m € Spec R, the map f(m): P(m) — F(m) is injective.

Then, 1,2,3 are equivalent. If P is R-projective moreover, then 1-4 are equiv-
alent.



Proof The direction 1=-2=-3=-4 is obvious.

First, we prove 1 assuming either 3 or that P is R-finite and 4 holds.
We assume the contrary, and prove the contradiction. There exists some
m € Max R such that f, is not injective or Coker f, is not Rp-flat. Hence,
we may assume that (R, m) is local. As R is noetherian, there exists some
ideal maximal with respect to the incidence relation among ideals I of R such
that R/I ® f is not injective or R/I ® Coker f is not R/I-flat. Replacing
R by R/I with I maximal one as above, we may assume that 7 = 0. We
set C := Coker f and K := Ker f. Note that for a nonzero ideal J of R,
R/J®C is R/J-flat and R/J ® f is injective.

Let J be a nonzero ideal of R. Then, from the short exact sequence

0—-P/K—F—C—0,
we have an exact sequence
0 — Torf(R/J,C) —» R/J @ P/K — F/JF — C/JC — 0

and an isomorphism Tor®(R/J, P/K) = Torf(R/J,C). On the other hand,
as the map R/J® f : P/JP — F/JF is injective, the canonical map R/J ®
P — R/J ® P/K is isomorphic and Tor®(R/J,C) = 0 for any nonzero ideal
J of R. In particular, C is R-flat, and hence so is P/K. So the inclusion
map K — P is R-pure, and K is R-flat. This shows that R/J ® K = 0 for
any nonzero ideal J of R.

Now what we want to prove is K = 0. If R is not a domain, then any
prime ideal p of R is nonzero. As the R-module R has a filtration with
successive subquotient is of the form R/p with p € Spec R, we have that
K =0, since R/p ® K = 0 for any p. Hence, we may assume that R is a
domain. Consider the case 3 holds. Asthe map K = R®K — k(0)®K =0
is injective, we have that K = 0. Next, we consider the case P is R-finite
and 4 holds. In this case, as we have K/mK = 0 and K is R-finite, we have
K = 0 by Nakayama’s lemma.

Finally, assuming that P is R-projective and 4 holds, we prove 1 holds,
and this completes the proof of the lemma. We may assume that R is local
as well, and hence P is R-free by Kaplansky’s theorem [9]. Let B be a free
basis of P, and we denote the set of finite subsets of B by A. For A € A,
we denote the free summand of P generated by A by P,. Let us denote the
composite map Py — P — F by fi. Then, we have K = l_u_}n Ker f, =0 and

C= l_gl Coker fy is R-flat, as each P is R-finite free. a

Corollary 2 Let P be an R-flat module, and assume that P(p) = 0 for
p € Spec R. Then, we have P = 0.

Proof Apply the lemma to the map P — 0. O



Lemma 3 Let P be an R-projective module, and M an R-finite pure sub-
module of P. Then, M — P splits, and M and P/M are R-projective.

Proof As P is a direct summand of a free module, we may assume that
P is an R-free module with a basis B. As M is R-finite, there exists some
finite subset By of B such that M is contained in the R-span P, of By. Let
us denote the R-span of B\ By by P,. Then, we have P/M = Py/M & P;.
Hence, replacing P by P,, we may assume that P is R-finite, which case is
easy. O

Lemma 4 Let R — K be an injective homomorphism of commutative rings,
P an R-projective module, Mg an K -finite submodule of P := KQP. Then,
Mg N P is R-finite.

Proof As P is a direct summand of a free module, we may assume that
P is an R-free module with a basis B. As Mg is K-finite, there exists some
finite subset By of B such that M is contained in the K-span K - By of B.
As R — K is injective, we have

MgNP C(K-By))NP=R-B,,
and Mg N P is R-finite.

Corollary 5 Let R be reduced, P an R-projective module, M an R-submodule
of P. If dim,,) M(p) < oo for any p € Min R, then M is R-finite.

Proof Let us set K to be the total quotient ring Iyeminr By of R and
Mg := M ® K. As we have M C Mg N P, we have that M is R-finite by
the lemma. O

Lemma 6 (Universal Coefficient Theorem) LetF be an R-flat complez
and M an R-module. Assume thatF is bounded above (i.e., F* = 0 fori > 0)
or M is of finite flat dimension. Then, there exists some spectral sequence

ER? = Tor® (HY(F) ® M) = H?"Y(F @ M).

If we have flat.dimgr M < 1, then we have EY? = EP4, and there exists some
eract sequence

0— H*F)® M — H"(F ® M) — Torf(H"™(F), M) — 0.

Proof Let G be a flat resolution of M of finite length. Consider the spectral
sequence for the double complex F @ G. O



Definition 7 We say that an R-complex
F:0-F'—-F'-F*—...

is u-acyclic if for any R-module M, H'(F® M) = 0 (i > 0) and the canonical
map

v H(F)® M — H(F ® M)

is isomorphic.

Lemma 8 Let F be a u-acyclic R-complez. Then, R' @ F is a u-acyclic R'-
complex for any base change R — R'. Moreover, for any R-module M, FQ M
is u-acyclic.

Proof Easy. a
Lemma 9 Let
0-FLGoH =0

be an ezact sequence of R-complezes. Assume that F is u-acyclic and f* :
F' — G' is R-pure for i > 0. Then, G is u-acyclic if and only if H is
u-acyclic.

Proof Easy. O

Lemma 10 Let (Fy)xea be a filtered inductive system of u-acyclic R-complezes.
Then, H_II)IF,\ 1s u-acyclic.

Proof Obvious.

Lemma 11 Let (R, m) be a local ring, and F' an R-flat module. Then, there
erists some ezact sequence of R-modules

0-P—-F—-G—-0 (1)
with P being R-free, G being R-flat, and G/mG = 0.

Proof Take an x(m)-basis B of F(m), and let P be the R-free module
with the basis B. The canonical map P = R- B — k(m) - B = F/mF is lift
to amap ¢ : P — F. When we set G := Coker ¢, then obviously we have
G/mG =0, and by Lemma 1, ¢ is injective and G is R-flat. O

Corollary 12 Let (R, m) be a local ring, F' an R-flat module, and ¢ a non-
negative integer. If dimyp) F(p) = c for any p € Spec R, then, we have
F = Re.



Proof  We take an exact sequence (1) as in the lemma. As we have
dimy(m) P(m) = ¢, we have P = R°. This shows that G(p) = 0 for any
p € Spec R by dimension counting. By Corollary 2, we have G = 0, and
hence we have F' & R°. O

Lemma 13 Let , .
F: L prd, p2
be an R-flat complez. Then, we have the following.

1 If H(F ® R/p) is R-finite (resp. 0) for any p € Spec R, then H'(F @ M)
is R-finite (resp. 0) for any R-module (resp. any R-finite module) M.

2 If H(F ® R/p) = 0 for any p € Spec R, then
F® > F' - F? — Cokerd* — 0

is a u-acyclic R-flat complez, and Ker d° is an R-pure submodule of F°
(hence s R-flat).

Proof Easy. O

Let M be an R-module. We say that M is R-metafinite if there exists
some noetherian commutative R-algebra A and an A-finite module structure
of M which induces the original R-module structure of M via restriction.

Lemma 14 Let M be a metafinite R-module. Then, for any R-finite module
N, N®M is R-metafinite. If S is a multiplicatively closed subset of R, then
Ms is Rg-metafinite. If M(p) = 0 for any p € Spec R, then we have M = 0.

Proof Easy.
Our main theorem is as follows:

Theorem 15 Let . .
F:0— FOL e 2,

be an R-flat complex. Consider the following conditions.

1 H(F® R/p) =0 (i > 0) and H(F ® R/p) is R-finite for any p € Spec R.
2 H%(F) is R-finite projective and F is u-acyclic.

3 H°(F) is R-finite and H'(F) = 0 (i > 0).

4 H'(F(p)) = 0 (i > 0) and h§(p) := dimyy) H(F(p)) is finite for p €
Spec R, and hY is a locally constant function on Spec R.

5 H*(F(m)) =0 (i > 0) for m € Max R.



Then, we have the following.

(16) We have 5<4<162=3.

(17) If gl.dim R < oo or IF is bounded, then 8=2.
(18) If F° is R-projective, then 4=>1.
(

19) Let n be a nonnegative integer. Assume that H'(F(p)) = 0 (i > n),
and H*(F ® R/p) is R-metafinite for any p € Spec R. Then, H'(F ®
M) =0 (i > n) for any R-module M. In particular, if H'(F ® R/p) is
R-metafinite for any p € Spec R, then we have 4=1.

(20) Letn be a nonnegative integer. Assume that H'(F(m)) =0 (i > n),
and H*(FQ® R/p) is R-finite for any p € Spec R. Then, H(FQ@M) =0
(i > n) for any R-module M. In particular, if HY(F ® R/p) is R-finite
for any p € Spec R and H(F) is R-finite, then we have 5=1.

Proof The implication 1=-2 is obvious from Lemma 13. It is trivial that 2
implies 1,3 and 4. The implication 4=5 is also trivial. Hence, (16) follows.

The assertion (17) immediately follows from Lemma 6.

We prove (18). By Lemma 5, we have that H°(F ® R/p) is R-finite for
any p € Spec R. So it suffices to show that H(F® R/p) = 0 (i > 0) for
p € Spec R. We may and shall assume that R is a domain. Moreover, we may
localize at maximal ideals of R, and we may assume that (R, m) is local. So
we shall assume that (R, m) is a d-dimensional local domain, and we proceed
by induction on d. If d = 0, then R is a field and there is nothing to be
proved. Hence, we consider the case d > 0.

We take an element 0 # z € m. By induction assumption, any proper
localization of F is u-acyclic. Moreover, for any non-zero ideal I of R, FQ R/I
is u-acyclic. Hence, it suffices to show H'(F) = 0 for ¢ > 0. This shows that
supp H(F) C {m} fori > 0. As Ris a domain, we have proj.dimp R/Rz = 1.
By Lemma 6, we have an exact sequence

0 —» HY(F) ® R/Rt — H'(F ® R/Rz) — Torf(H"*}(F), R/Rz) — 0.
Hence, for i > 2, we have

soc H(F) = Homg(R/m, H(F)) C
Homg(R/zR, H(F)) = Tor®(R/zR, H(F)) = 0.

As supp HY(F) C {m}, we have H(F) = 0 for ¢ > 2. Hence, it suffices to
show that H'(F) = 0. By Lemma 13, we have that Kerd" is an R-pure
submodule of F!, and is R-flat. Hence, replacing F by the R-flat complex

0— F° = Kerd' — 0,



we may assume that F* = 0 (i > 2) without loss of generality.

As F is R-projective and R is local, F is R-free by Kaplansky’s theorem
[9]. We take a basis B of F°. As dimy(m) H°(F(m)) < oo, there exists some
finite subset By of B such that H°(F(m)) is contained in the x(m)-span of
By in F°(m) = k(m) - B. Now we set G® := R- By and Q := R- (B \ By).
When we denote the composite map

Q — F°£>F1

by ¢, we have ¢ is injective and G* := Coker ¢ is R-flat by Lemma 1. The
composite map :

GOQFO£F1—>G1

gives an R-flat complex G of length one, and we have a short exact sequence
of R-flat complexes

0 (idg : Q%Q) — F5G — 0.

As 7 and 7( frakp) (p € Spec R) are quasi-isomorphisms, replacing F and G,
we may assume that F© is R-finite free without loss of generality.
As the sequence

0 — H°(F(p)) — F°(p) — F'(p) — 0 = H'(F(p))

is exact, dimy) F'(p) is finite and constant on Spec R by assumption. By
Corollary 12, we have that F"! is R-finite, and hence so is H*(FF). As we have
H'(F)® R/Rz C H'(F® R/Rz) = 0, H(F) = 0 by Nakayama’s lemma,
and this completes the proof of (18).

(19) is proved using similar reduction steps (and is easy, because H"(F) =
0 follows from Lemma 14). The proof of (20) is also similar, and is proved
using Nakayama’s lemma. O

Remark 21 Let f : X — Y be a proper morphism of locally noetherian
schemes, and F a coherent Ox-module flat over Y. Then, R*f.F =0 (i > 0)
if and only if H*(f~!(y),F ®oy k(y)) = 0 (i > 0). In this case, f,F is a
locally free Oy-module. To verify this, we may assume that Y = Spec R is
affine, as the question is local on Y. Let F be a Cech complex C*(4, F) for
some finite affine open cover U of X. Then, “if” part and the local freeness
of f,F follows from (20). The “only if” part is a consequence of (17). This
result, which is a special case of the results due to Grothendieck, is found
in [5, Corollaire II1.7.9.10] (although “if” part is not shown). It seems that
(19) and (20) has been known, at least as a folklore, and what is essentially
new here is only (18).



Example 22 Projectivity of F? is really necessary to guarantee the impli-
cation 4=>1. Let (R, m) be a DVR, and we set K := k(0), and we denote the
canonical inclusion R — K by ¢. Let F be the R-flat complex

*(1,0)
0 R K—>K — 0.

Then, it is easy to see that the condition 4 is satisfied, but F is not even
acyclic. Note that H*(F) = K/R is not metafinite.

Example 23 Even if the condition 4 is satisfied and F is u-acyclic, H°(F)
is not necessarily R-finite. Let R := Z, and we set FO := {a/b|a,b €
Z and b is square-free}. We define F as F°, concentrated in degree zero.
Then, F is a u-acyclic flat complex, 4 is satisfied, but H°(F) = F° is not
R-finite.

3 Application to comodule theory over arbi-
trary base

In this section, we briefly review some applications of Theorem 15. For detail,

see [6, Chapter III].
Let X T be an ordered set. We use interval notation for X freely. Namely,
for \, p € X, we set

Mp)={reXt|A<v<u}
(—o0, N :={ve XT|v<A}

and so on. For a subset Q of X*, we say that @ is a poset ideal of Xt if
A € Q implies (—oo0,\] C Q for A € XT.

Lemma 24 Let X* be an ordered set. Then, the following are equivalent.

1 There exists some order-preserving injective map f : X+ — N such that
f(X) is a poset ideal of N.

2 #Xt < oo, or there exists some order-preserving bijective map g : X —

N.
3 X7 is countable, and #(—00, ] < 0o for any A € XT.
Let R = k be a field.

Definition 25 If C is a k-coalgebra and (X, A, V, L) satisfies the following
condition, then we say that (X*,A,V,L) is a weak highest weight theory
(resp. highest weight theory) over C.



a X7 is an ordered set which satisfies the equivalent conditions in Lemma 24.

b A =(Ac(N)), V=(Ve(N) and L = (Lc(N)) are families of finite dimen-
sional C-comodules parameterized by X+.

¢ Lc(A) is simple for A € X T, and any simple C-comodule is isomorphic to
some Lo ().

d top(Ac(A)) = Le(A) = soc(Ve(A)) for A € X

e Any simple subquotient of rad Ac(A) is isomorphic to Lo(p) for some
o< A

e* Any simple subquotient of V¢ (A)/soc(V¢(X)) is isomorphic to Le(p) for
some g < A.

fIf A, p€ Xt and A # p, then Homg(Ag(A), Ve(u)) = 0.

g For \,p € X* and i = 1 (resp. i = 1,2), Exti,(Ac()), Vo(p)) = 0.

If Ende Le(A) = k for A € X' moreover, then we say that (X, AV, L) is
split.

Remark 26 Let k be a field. We say that (C, X+, V, L) is a highest weight
category over k [1] if

i Cis a locally finite k-category, where an abelian category A is called locally
finite if it has a small set of generators consisting of objects of finite
lengths and it has an exact inductive limit of arbitrary filtered inductive
system.

ii X7 is an interval-finite ordered set in the sense that X is an ordered set
such that for any A, p € X, [\, p] is finite.

ii L = (L(A\))xex+ is a complete set of non-isomorphic simple objects of C
parameterized by X*.

iii V = (V(X))aex+ is a family of objects of C, and for each A € X', a
monomorphism L(A) — V() is specified, and any simple subquotient
of V(X)/L() is isomorphic to some L(p) for p < A.

iv For A\, u € X, dim; Hom¢(V(X), V() < oo.

v For any A, u € X, there exists some subobject N of finite length of A())
such that A(A)/N does not have L(u) as its subquotient.



vi For any A € X7, the injective envelope I(\) of L()) has a filtration
such that

A F,(\) =V

B Forn > 1, there exists some g = p(n) > A such that F,,(A)/F,_1(A) &
V().

C For p € X*, pu(n) = p for only finitely many n.

D lim Fi(A) = I(}).

It is easy to see that if (X*,A,V, L) is a highest weight theory over a k-
coalgebra C, then (MC, X*,V, L) is a highest weight category over k, see
[6]. Conversely, if (C,X*,V, L) is a highest weight category over k and X*
satisfies the equivalent conditions in Lemma 24, then there exists some k-
coalgebra C, an equivalence of k-categories F : C — M, and a family A’ of
C-comodules such that (X*,A’, F(V), F(L)) is a highest weight theory over
C.

If X* is finite, then the construction of C is easy. It is easy to see that I :=
@Direx+ I(A) is of finite length this case, and C is defined to be the opposite
coalgebra of the dual coalgebra of the endomorphism algebra End¢(7) (finite
dimensional!). The case X * infinite is done using stratification argument (in
this case, C may be infinite dimensional).

To construct such an F, it suffices to construct an equivalence Fy : C; —
M¢ of such type, because V() is finite length for A € X* under the condi-
tion. Note that a locally noetherian k-category A is completely determined
by Ay because it is equivalent to the functor category Sexi(.A7, tM),! where
Sex;, denotes the category of left exact k-functors, see [4]. Now Fy is given
by (Home(?, @scx+ ()"

Thus, if Xt satisfies the conditions in Lemma 24, then a highest weight
category is always expressed in terms of a highest weight theory over a coal-
gebra. The reason we work on coalgebras is that the coalgebra case admits a
very easy generalization to the work over arbitrary base, and the conditions
in Lemma 24 is satisfied by many examples.

Note that if (X, A, V, L) is a highest weight theory over C, then any of
A, V and L determine others.

From now on, let R be a noetherian commutative ring. Let C be an R-flat
coalgebra.

IThis notation is due to Gabriel and explained thus: sinister exact.



Definition 27 We say that (X, A, V) is a semisplit highest weight theory
over C if the following conditions are satisfied.

a X is an ordered set which satisfies the equivalent conditions in Lemma 24.

b A = (Ac(A))rex+ and V = (Ve(X))aex+ are families of R-finite projective
C-comodules indexed by X*.

¢ For any p € Spec R, there exists some family of finite dimensional C(p)-
comodules A(p) indexed by X+ such that (X, A(p), V(p), L(p)) is a
split highest weight theory over C(p), where V(p) := (V(A)(p)) and

L(p) := (socop)(Ve(A)(p))).

Definition 28 Let C be an R-coalgebra. We say that D C C is an R-
subcoalgebra of C if D is an R-pure submodule of C, and Ag(D) C D ® D
holds.

If D is an R-subcoalgebra of an R-coalgebra C, then D itself is an R-
coalgebra, and the inclusion map D — C is an R-coalgebra map. If C is
R-flat, then so is D, and the restriction functor res? is fully faithful exact. A
D-comodule is identified with a C-comodule M such that wy (M) C M ® D.

Definition 29 Let (X1, A, V) be a semisplit highest weight theory over C.
We denote the set of poset ideals (resp. finite poset ideals) of X+ by II (resp.
Il¢). A family (Cy)remn, of is called a Donkin system associated to (X, A, V)
if the following conditions are satisfied.

1Cs=0.
2 Form,n' €Iy, Cr C Cif m C 7.

3 Let 7 € IIf, and A a maximal element in «, and we set «’ := 7\ {\}.
Then, we have an isomorphism of (C, C)-bicomodules

Cr/Co = R\ ® Ac(A)* ® V()
where R()) := Homc(Ac(X), Ve(X)).

Lemma 30 Let (X*,A,V) be a semisplit highest weight theory over C, and
R — R’ a homomorphism of commutative rings. Then, (X*,A"| V') is a
semisplit highest weight theory over C', where (?)" denotes the functor R'®?.
If (Cr) is a Donkin system associated to (X*, A, V) moreover, then (C.) is
a Donkin system associated to (X+,A’,V').

Lemma 31 Let (Xt,A,V) be a semisplit highest weight theory over C.
Then, (X1, V* A*) is a semisplit highest weight theory over the opposite
coalgebra C°P. If (C,) is a Donkin system associated to (X+, A, V) more-
over, then (C2P) is a Donkin system associated to (X*,V* A*).



As an application of Theorem 15, we have the following

Theorem 32 Let R be a noetherian commutative ring, C an R-flat coal-
gebra, and (X*,A,V) a semisplit highest weight theory over C. Then, the
following are equivalent.

1 There exists some Donkin system associated to (Xt,A, V).
2 There ezists some Donkin system associated to (X, A, V) uniquely.

3 C is projective as an R-module.

By definition of Donkin system, the theorem is viewed as a generalization
of Donkin-Koppinen’s bimodule filtration theorem [11]. :

From now on, let C be an R-projective R-coalgebra, (X+, A, V) a semis-
plit highest weight theory over C, and (Cy) the associated Donkin system.
For w € II, we define C, := li_n)le, where p runs through all finite poset
ideals of 7.

As in Donkin’s paper [3], we have the following.

Theorem 33 Let w € II, and V and W be C,-comodules. Then, the canon-

ical map . 4
Extg (V,W) — Extg(V, W)

is an isomorphism for 1 > 0.

Corollary 34 If m € II, then (m,A(n), V(7)) is a semisplit highest weight
theory of Cr, and (C,) is its associated Donkin system, where A(m) :=
(Ac(M))rer, V(7) := (Vo(N))aer, and p runs through all finite poset ide-

als of .

For m € Il§, Cr is R-finite projective. We define the Schur algebra with
respect to m to be the dual algebra of C,, and denote it by S,. Note that
M and s, M are equivalent. As in [1], we have the following.

Theorem 35 Let V and W be R-finite C-comodules. Then, Extic(V, W) is
R-finite for ¢ > 0. '

4 Examples
The following is another application of Theorem 15.

Lemma 36 Let f: C — D be an R-coalgebra map of R-flat coalgebras. Let
V be a D-comodule. Assume



1 C and V are R-projective
2 For any p € Spec R, R'ind3{) V(p) = 0 for i > 0.
3 dimyy, indg((';)) V(p) is finite and locally constant on Spec R.

Then, we have indg V' is R-finite projective, and for any commutative R-
algebra R' and any R'-module M, we have R ind$,(M ® V) =0 (i > 0) and
the canonical map

M ®ind$V — ind%, (M @ V)

is isomorphic, where C' := R'® C and D' := R' ® D.

Proof Note that if I is an R-injective module, then I ® D is an injective
D-comodule. For an R-module N, I* ® D is a D-injective resolution of
N ® D for an R-injective resolution I* of N, as D is R-flat. This shows that
R'ind$(N ® D) = 0 (i > 0) and ind$(N ® D) = N ® D. In particular, we
have that the cobar resolution

CobarpV:0-V®D >V ®D® — ...

of V is an ind$§-acyclic resolution of V. Hence, we have that R*ind$ V is the
ith cohomology of the complex

ind$ CobarpV:0-V®C —-V@D®C — ---.

Applying Theorem 15 to this R-flat complex, we are done. a

Let k be an algebraically closed field. An k-group scheme G is called
reductive, if it is k-smooth (of finite type), affine, connected, and its radical
(maximal connected normal solvable subgroup) is a torus (a finite direct
product of G,, = GL;). Let R be a noetherian commutative ring.

An R-group scheme G is called reductive if it is R-smooth, affine of finite
type over R and all geometric fibers of G is reductive in the sense of the last
paragraph. A torus T over R is an affine flat R-group scheme of finite type
finite direct product of G,,. For split torus T' = G2, a T-module is identified
with a Z"-graded R-module. A maximal torus T of G is a closed subgroup,
which is a torus, such that all geometric fibers of T is a maximal (with respect
to incidence relation) torus. A reductive R-group G is called split if there is
a split maximal torus 7' of G such that each graded component (Lie G), of
the adjoint representation Lie G as a T-module is an R-free module. Note
that any split reductive group is defined over Z, and any reductive group
over a strictly Henselian local ring is split.

We assume that G is non-trivial. The set of roots X of G forms an abstract
root system, and we take a base A of 3. Thus, the set of positive roots is



determined, which we denote by ¥*. For each root «, the root subgroup U,
of G is determined. We denote the product [[,ez+ Us (in any order) by U.
The semidirect product UT = TU is denoted by B. Note that U is an affine
space over R, and B is smooth affine of finite type over R.

Theorem 37 Let G be an R-flat infinitesimally flat affine R-group scheme
of finite type with connected fibers. Then, the coordinate ring R|G] of G is
R-projective.

Proof See [6, Theorem I1.2.2.5]. O

In particular, any reductive R-group scheme has a projective coordinate
ring, see also [15] and [14].

Let us consider a split reductive R-group G. Let us denote the set of
dominant weights of G by X&. For A € XZ, we denote the corresponding
rank-one R-free B-module by R). We denote the induced module indg Ry
by Vg()), and we denote Vg (—woA)* by Ag(A).

The following is an immediate consequence of Lemma 36.

Proposition 38 Let A € X*. Then, the following hold.
1 (Kempf’s vanishing). We have Riind§(R,) = 0 fori > 0.

2 (Universal freeness). We have Vg(A) s R-finite free. If R' is a commu-
tative R-algebra, then we have that the canonical map R' ® Vg(A) —
Vrec(A) is an isomorphism.

Proof Note that the assertion 1 is well-known as Kempf’s vanishing the-
orem [10] when R is a field. Moreover, if R is a field, then dimg V() is
finite and independent of R by Weyl’s character formula, see [8, p.250]. By
Lemma 36, the assertions follows. d

Remark 39 As we know that G/B is proper over Spec R, we can prove the
proposition without using (18). In fact, as we know that R*ind%(R,) is R-
finite for ¢ > 0, it suffices to invoke (20), which is well-known and easier to
prove.

By the proposition and by Theorem 37, immediately we have

Example 40 Let G be a split reductive R-group. Then, (X¢, Ag, Vg) is a
semisplit highest weight theory with a unique associated Donkin system.



Note that integral Schur algebras were constructed by S. Donkin [3] by
different method.

There is an example to which (19) or (20) is not applicable, but our main
theorem (18) is applicable.

Let g be a unit of R. Let H := R[Mat,(n)] be the R-algebra generated
by x;; over R with the fundamental relation

-1 -1
TikTil = q  TiTik, TikTjk = q TjkTik, LTk = TjET4l
-1 . .
iz — T + (g7 — @)zazjr =0 (I1<i<j<n,1<k<l<n).

Defining R-algebra maps A : H - H® H and € : H — R by A(z;j) =
Yiza ® xy; and €(z;;) = 6,5, respectively, H is an R-bialgebra, where §;;
denotes the Kronecker delta. The bialgebra H is called a quantum matriz
space, see [13]. See also [7] for some discussion over arbitrary base ring. Note
that SEY in [7] agrees with R[Mat,—1(n)]. Note that H is not commutative
or cocommutative in general. We have an identity

D := Z (_q)_l(d)a:a(l) 1Z5(2)2 " " To(n)n = Z (_q)—l(a)wl o(1)Z20(2) " * " Tno(n),
c€Gn oc€Gn

see (13, p.42] and [7, Lemma 9.2]. It is known that D is a central group-
like element in H [12]. Moreover, D is transcendental over R, and H is
R[D]-free by the straightening formula [7, Theorem 9.6]. Now we define
R[SLy(n)] := H/(D — 1) and R[GLy(n)] := H[D™Y].

Lemma 41 Both R[SL,(n)] and R[GLy(n)] are R-projective.

Proof As H is R[D]-free, R[SL,(n)] = H/(D — 1) is R[D]/(D — 1)-free,
hence is R-free. As an R-module, R[GLy(n)] is an inductive limit of the
inductive system

H:H2H2H - .|

and the multiplication by D on H is R-pure, since H is R[D]-free. As H is R-
free, we have R[GLy(n)] = lim H is R-Mittag-Leffler by [6, Lemma 1.3.2.10].

As H is a finitely generated R-algebra, it is countably generated as an R-
module. Hence, so is R[GL,(n)], as it is a countable union of H. As
R[GLy(n)] is an R-Mittag-Leffler module of countable type, it is R-projective.

O

Induced modules and Weyl modules are defined for these quantized linear
groups, see [13]. In [13, Chapter 10], a g-analogue of Kempf’s vanishing and
Weyl’s character formula (over a field) are proved. Hence, we have Kempf’s
vanishing over arbitrary base and universal freeness of induced and Weyl
modules as well. The proof is similar to that of Proposition 38. Explicit free
basis for induced modules (only for polynomial representations, but this is



not restrictive, essentially) are found in [7]. Now applying Theorem 32, we
have a base ring independent g-independent bicomodule filtration also for
R[GLy(n)] and R[SL,(n)], and we have Schur algebras for any poset ideal
of the set of dominant weights. As a result, we know that R[GLy(n)] and
R[SL,(n)] are R-free. As a special case, this family of Schur algebra includes
the g-Schur algebra S,(n, ) (see [13, 7], see also [2]) over arbitrary base R.

Note that for this case, we do not have any sufficiently powerful geomet-
ric machineries. The author for example does not know how to prove the
finiteness of Exts; (,)(V, W) for R-finite SL,(n)-modules V and W without
using (18), which is new here.
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A note on sums of geometrically linked ideals
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In this note, we will give some results on Betti numbers of Gorenstein graded algebras
constructed by sums of geometrically linked ideals, which are part of joint work in progress
with A. V. Geramita and Y. S. Shin [3].

1 Two conjectures

It is a standard fact of linkage theory that the sum I 4+ J of two geometrically linked
Cohen-Macaulay ideals I and J is an Gorenstein ideal of grade one greater [9]. This provides
a way to construct Gorenstein ideals from Cohen-Macaulay ideals of grade one smaller. It
seems natural to ask what properties are preserved under this construction, as we pass
from I or J to I+ J ([12], for example). Firstly, we state two conjectures concerning Betti
numbers of Gorenstein ideals which are sums of geometrically linked ideals.

1) Let I and J be two geometrically linked (with respect to (o) = (a1, -, a,)) Cohen-
Macaulay homogeneous ideals in R = k[zo, 71, . . ., Z,] of grade r(< n +1).
We consider the following property (P).

(P) I (resp. I+ J) has the maximal graded Betti numbers among all the C-M (resp.
Gorenstein) homogeneous ideals with the same Hilbert function.

A. M. Bigatti [1] and H. A. Hulett [8], independently, showed that the lex-segment ideal
with a given Hilbert function has the maximal Betti numbers among all homogeneous
ideals with the same Hilbert function. We would like to consider a question what sort of
Gorenstein ideals have the property (P). Put

o(R/I) = Min{i | A™R/TH(R/1,1) = 0},

where H(R/I,i) is the Hilbert function of R/I and A'H(R/I,i) = A'"'H(R/I,i) —
ATT'H(R/I,i — 1), that is , o(R/I) =(the socle degree of R/I)+1.

Conjecture 1 ([3]) Assume that 20(R/I) < o(R/(a)). If I has the property (P), then
I + J also has the property (P).

2) R/I has a minimal graded free resolution (as a graded R-module) of the form

F.:0—F, —..-— F, — F,=R(0) — R/I — 0,



where ,
F; = @ R(-ai)-
i=1

The integers b; and q;; are uniquely determined. We note that
b; = dim Tor?(R/1, k)

for all 1 < ¢ < r. We call §; = b; the i-th graded Betti number of R/I. Furthermore we
say that
Bi; = dimy Tor?(R/1,k);

is the (¢, j)-th graded Betti number of R/I. Also we call {a;1,ai2,...,ap} the numerical
characters of R/I. Put :
c=dega; +degay + -+ deg a,.

Conjecture 2 ([3]) Assume that 26(R/I) < o(R/(c)). Then the numerical characters of
R/I + J are as follows:

1-th: {a11,@12,.-.,81,,C— @r1,C— Qr2y...,C— Grp. };
2-th : {agyl, A22y 4302y C— Ar—11,C— Ar_12y...,C— ar-l’b'._l};
“th: {ai1,ai2,.., @b, C— Groig11,C— Groig12, -+, C— ar—i+1,br_e+1};

r-th: {ar,laa"r,% ceeylpp,C—A11,C— A1 2,.-.,C— al,bl};

(r+1)-th: {c}.

2 Some results
Let
K.:0—K —--— K — Ky=R(0)— R/(e) — 0

be the Koszul complex of R/(c). Then the inclusion (&) C I can be lifted to a degree
preserving map of complexes 3 : K. — F.. Let [g1,...,9s] be the matrix of the map
v, : K, — F,.

Peskine and Szpiro [9] showed a fundamental theorem of linkage theory: The mapping
cone of the dual of ¢ : K. — F'. is a free resolution of R/J. The following is obvious from
this theorem.

Proposition 2.1 Let {fi,..., fs,} be a minimal generators of I. Then

(1) I+J s generated by {fh' . 'afbuglw' '7gbr}'



(2) v(I+J)<v(I)+r(R/I),

where v( ) is the number of minimal generators of an ideal and r( ) is the C-M type of
an C-M ring.

First we prove the following theorem.
Theorem 2.2 Assume that 20(R/I) < o(R/(c)). Then

(1) I+ J is minimally generated by {f1,..., fors91,- -+, 96, }-
(2) (I +J) = (1) + r(R/1).
PROOF. First we note that a,4, < o(R/I), o(R/I) = a,,—7+1 and o(R/(a)) = c—r+1.
Hence since 20(R/I) < o(R/(a)), it follows that
2(arp, —T+1)<c—r+1, le,a1p <arp, —T+1 < Cc—arp,.

Thus

a1 a2 Sary Sc—arp, SC—arp—1 S S C— G

Here we recall a result concerning Hilbert functions under linkage (cf. [7, Theorem 2.1(4)]).
Hence it follows that

A*H(R/I + J,i) = A®H(R/I,3) for all 0 <i < a(R/(e)) —a(R/I) -1,
where d = dim R/I + J. Since 20(R/I) < o(R/(a)), it follows that

o(R/I)—1<o(R/(a)) —o(R/I)—1.

Hence
AYH(R/I+ J,i) = AH(R/1,3) for all 0 < i < o(R/I).
Thus
H(R/I+ J,1) = H(R/I,1) for all 0 <1 < o(R/I).
Therefore

dlmk(I + J), = dimy I;

for every 0 < i < o(R/I), ie., (I + J); = I; for such ¢ since I C I 4+ J. Hence it follows
that {f; | deg f; < o(R/I)} is a part of a minimal generators of I + J. Furthermore we
note that if a; 5, = o(R/I) then

{fi I degfi = U(R/I)} = {ft,ft+17"'7fb1}



is linearly independent in (I'+ J),(r/1)/Ri(I + J)o(r/r)-1. In fact, if {f; | deg f; = o(R/I)}
is not linearly independent in (I + J)s(g/r)/R1(I + J)o(R/I)-1, then

b1
o vifi € Ri(I+ J)o(r/n-1

1=t

for some y; € k. We may assume that y, # 0. Hence

by
fe+ Y vifi € Ri(I + J)or/n-1

i1=t+1
for some y; € k. Here we note that Ry( + J)o(r/1)-1 = Rils(r/1)-1. Thus
fe € (friseo s fimrs frrns oo )

This is a contradiction. Hence it follows that {f; | deg f; = o(R/I)} is linearly independent
in (I +J)or/ny/Ri(I + J)o(r/1)-1- Therefore the minimal generators {fi,..., fo,} of I is a
part of a minimal generators of I + J.

Now assume that

95 € (frse s fors 91505 Gi15 Git15 - - -5 G, )-

Then obviously v(I+J/I) < b,, that is, v(I +J/I) < r(R/I). On the other hand, we know
that v(I 4+ J/I) = r(R/I) (cf. [12, Proposition 1.2(c)]). This is a contradiction. Thus our
assertion (1) holds. Also (2) is obvious from (1). q.e.d.

As a corollary of this theorem, we obtain the following theorem.
Theorem 2.3 Conjecture 2 is true for the 1-th numerical characters.

Remark 2.4 It follows from [7, Theorem 2.1(3)] that Conjecture 2 is also true for the
(r 4 1)-th numerical characters.

In the following remark we recall a result from the proof of [11, Theorem 4.1].
Remark 2.5 Let
0— R(—s) — M, — - — My — My = R(0) — R/I+J —0

be a minimal graded free resolution of R/I + J, where

gi
M; = @R(—p,',j) and p;; < Pi2 < < Pigi-
i=1

* Then by the duality of a Gorenstein algebra, we have

® ¢ =¢r41—; for 1 <7 <rand



® Dij t Pro1—igep1_i—j+1 = $ for1<i<randl1<j<g.

Theorem 2.6 Conjecture 2 is true in the case r = 2. .
PROOF. This follows from Theorem 2.3, Remark 2.4 and Remark 2.5. q.e.d.
Theorem 2.7 Conjecture 2 is true in the case r = 3.

We need a lemma to prove Theorem 2.7.

Lemma 2.8 Let I and J be two C-M homogeneous ideals in R = k[zo, 21, ...,T,] which
are geometrically linked. Then

' 1
F(RIT +J,3) = F(R/L) + (~)A=*2F(R/L, ),
where d = dim R/I + J and 0 = o(R/I N J).

PROOF. First we note that

S AHH(R/I + J,i)N S AHH(R/IDN
F(R/I+J,)\) = T and F(R/1,\) = <=5

Furthermore, from [7, Theorem 2.1(2)], we have
A*H(R/I+ J,i) = AH(R/1,i) + A°H(R/I,0 — 2 — 1) — e(R/I),
where e(R/I) is the multiplicity of R/I. Hence
A H(R/T + J,i) = A% H(R/1,i) — A“YH(R/1,0 — 1 — ).

Thus
F(R/T,)) + (=1)*]\ "2 F(R/1, )

_ ZA“’“H(R/I,i))J 1)d/\a_d_22Ad+1H(R/I,i);1;
- om0 (L
Z:Ad“H(R/I,i))\" zAd*'lH(R/I,i))\"'l‘i
(1= - (1 — X)d+1
E{Ad“H(R/I,i) — Ad“H(R/I,a -1- i)})\‘
(1 =)+t
ZA““H(R/I + J,i))\i
(1= X)d+

= F(R/I+J,)).




Remark 2.9 We recall that INJ = (ay,...,a,) and ¢ = dega; + -+ + dega,. Since
ht(I+J) =r+1, wehaved = (n+1) — (r+1) = n — r. Furthermore since ht(INJ) =r,
we can check that c =c—r+1. Hencec —d—2=c—n—1.

PROOF OF THEOREM 2.7. Let
0 — My — Mz — M, — M; — Mo =R(0) — R/I+J — 0

be a minimal graded free resolution of R/I+J. Then it follows from Theorem 2.3, Remark
2.4 and Remark 2.5 that

My = {@®%, R(—a1;)} D{DL, R(—(c — a3;))}
M = {@®}, R(—a3;)} ®{®L, R(—(c — a1;))}
M4 = R(—C)

Put -
M; = P R(—ps,5)-

J=1

Hence
F(R/IT+ J,)) = (ITI)"_H-{I - (Z;’l:l PE 25:3:1 Ae=a3)
(TP AP29) — (S0 A% + T A7) + X}

On the other hand, it follows from Lemma 2.8 and Remark 2.9 that

F(R/I+J,)) = F(R/I,\) + (=1 A""'F(R/I, %).

Hence
F(R/T+ J, A)
1"2?:1 *“”+E:i; Aa?’j_233=1 A%,
= T-nr
+(__1)n—3/\c-—n—l 1_25;1 7\’117.‘-(12}:;;"3":2_,:{_2311 7’;7
= oy {l = (T A% + S5 Xm%0) 4 (T, A% + T2, Ae729)
_(ZI;:;I PR 221___1 AST95) 4 X°}.
Thus

92 62 bg
PR SES S
j=1 j=1

J=1



Therefore we can easily check that

b2 b2
M, = {EPI R(—az,;)} EB{E_BI R(—(c—az,))}-
q.e.d.

Theorem 2.10 Conjecture 1 is true in the case r = 2.

PROOF. Put ,
a(R/I) = Min{i | A¥™F/TH(R/1,7) is not generic},

i.e., a(R/I) is the initial degree of I. It follows from an inequality of Dubreil that if I has
the property (P), then
v(I)=a(R/I)+ 1.
Hence noting that r(R/I) = v(I) — 1 = a(R/I), we can check from Theorem 2.2(2) that
v(I+J)=2a(R/I)+1.
Furthermore we can check from [7, Theorem 2.1(4)] that a(R/I + J) = a(R/I). Hence
v(I+J)=2a(R/I+J)+1
Thus it follows by virtue of [2, Theorem 3.3] that I + J also has the property (P). q.e.d.

3 Minimal free resolutions of sums of geometrically linked height two ideals

In this section, we would like to add some additional observations concerning the two
conjectures for the case of height two (we must omit the proofs).

Let I and J be two geometrically linked (with respect to (a) = (a3, az)) C-M homoge-
neous ideals in R = k[zo, z1,...,2,] of height 2 (< n + 1), and put ¢ = deg oy + dega,.
Furthermore let {f1,..., fs;} be a minimal generators of I and

F.:0— éZBR(—aM) — élaR(—alyj) — R(0) — R/I — 0

7=1 7=1

the minimal free resolution of R/I.
Theorem 3.1 Assume that v(I) < v(J). Then the minimal free resolution of R/I 4+ J is

0— R(—¢) — [®71 R(—az,)] ®B}L1 R(~(c— a1))] —
(L1 R(—a1,)] BIB1 R(—(c — az;))] — R(0) — R/I+J — 0.

We need some lemmas to prove this theorem.

Lemma 3.2 In the same notation as in Section 2, we have the following.



(1) J is generated by {g1,...,9,,Q1,-- -, }.
(2) {91,---,95.} is a part of a minimal generators of J.
(3) {fer-- -y forr915- -, 6.} is a part of a minimal generators of I+J, where {fo, ..., f5,}

is a minimal generators of I modulo ().

Lemma 3.3 In the same notation as above, we have the following.
(1) v(I/(a)) = by —1,by or by + 1.
(2) If v(I/(a)) = by — 1, then {g1,...,9s,} is a minimal generators of J.

(3) If v(I/(e)) = by, then {g1,---, b, 1} o7 {g1,-.-,Gb,, @2} is a minimal generators of
J.

4) Ifv(I/(a)) = by + 1, then {91,---,95,,01,2} is a minimal generators of J.

(5) v(I) =1 < v(J) < v(I) + 1.

Lemma 3.4 In the same notation as above, we have the following.

(1) If v(I/(e)) = by — 1, then {f3,..., foy,91,---, 95, } is @ minimal generators of I + J,
where {fs,..., fo, } is a minimal generators of I modulo ().

(2) If v(I/(@)) = by or by + 1, then {fi,..., fo,,91,---,Gb,} i5 a minimal generators of
I+J.

(3) v(I+J)=2min{v(I),v(J)} - 1.
Question. Is Conjecture 2 true in the case r = 3 (and further, in general), without
assuming 20(R/I) < o(R/(a)) ?

Next we would like to consider a question whether Conjecture 1 is true in the case r = 2,
without assuming 20(R/I) < o(R/()).

Theorem 3.5 Assume that v(I/(a)) > by. If I has the property (P), then I + J also has
the property (P).

Theorem 3.6 Assume that v(I/()) = by — 1. If J has the property (P), then I + J also
has the property (P).

Remark 3.7 If v(I/(a)) = b, — 1, then 20(R/I) > o(R/(a)). In fact since v(I/(a)) =
b, — 1, it follows that {a;,a;} is a part of a minimal resolution of I. Hence 20(R/I) >
deg a; +deg a; = c. Thus since o(R/(a)) = c—1, we have 20(R/I) > o(R/(a)). Therefore



the two conditions v(I/(a)) = b, — 1 and 20(R/I) < o(R/(a)) don’t occur at the same
time.

The following is an example satisfying
* 20(R/I) > a(R/()),
e v(I/(a)) = by and
e I has the property (P).

Thus by Theorem 3.5, it follows that /+J has the property (P). Here we note that Theorem
2.10 can not apply to this example.

Example 3.8 Let X and Y be the two geometrically linked sets of points in P? as follows:

e x x Y

® X X

X o o *

Let I and J be the two ideals of X and Y in R = k[z¢, z;,2,], respectively. Then we
can check the following: o(R/I) = 3, o(R/(a)) = 5, v(I) = 3, b; = 2 and v(I/(a)) = 2.
Furthermore since a(R/I) = 2, we have v(I) = o(R/I)+1. Hence I has the property (P).

The following is an example satisfying
* 20(R/I) > o(R/(a)), 20(R/J) > o(R/(a)),
o u(I/(@) = b1, |
o I has the property (P) and
o Jand I +J don’t have the property (P).

Thus it follows that Conjecture 1 is not necessarily true in the case of r = 2, without

assuming 20(R/I) < o(R/()).

Example 3.9 Let X and Y be the two geometrically linked sets of points in P? as follows:

o *x x Y
o * x
X o o o

Let I and J be the two ideals of X and Y in R = k[zo, 21, z;], respectively. Then we
can check the following: o(R/I) =3, o(R/(a)) =5, v(I) = 3, by = 2 and v(I/(a)) = 1.
Furthermore since a(R/I) = 2, we have v(I) = a(R/I) + 1. Hence I has the property



(P). On the other hand we can check that v(J) = 2, o(R/I) = 2, v(I +J) = 3 and
a(R/I+J) = 2. Hence since v(J) < a(R/I)+1 and v(I+J) < 2a(R/I+ J)+1, it follows
that J and I+ J don’t have the property (P).

Theorem 3.10 Let I and J be two geometrically linked C-M ideals.
(1) Ifv(I) £ v(J) and I has (P), then I + J also have (P).

(2) IfI and J have (P), then I + J also have (P).

References

(1] A.M. Bigatti, Upper bounds for the Betti numbers of a given Hilbert function, Comm.
Algebra,21(7), 2317-2334 (1993).

[2] S.J. Diesel, Irreducibility and dimension theorems for families of height 3 Gorenstein algebras,
Pacific J. of Math. Vol. 172, No. 2, 365-397.

[3] A. V. Geramita, T. Harima and Y. S. Shin, Gorenstein ideals which are sums of linked ideals,
in preparation. '

[4] A.V. Geramita, H.J. Ko and Y. S. Shin, The Hilbert function and the minimal free resolution
of some Gorenstein ideals of codimension 4, preprint.

(5] A.V. Geramita, M. Pucci, Y.S. Shin, Smooth points of Gor(T), J. Pure Appl. Algebra,
(1997) to appear.

[6] A.V. Geramita and Y.S. Shin, k-configurations in P2 all have extremal resolutions, Queen’s
Papers in Pure and Applied Math., The Curves Seminar at Queen’s, Vol. XI, No. 105, (1997),
117-130.

(7] T. Harima, Some examples of unimodal Gorenstein sequences, J. Pure Appl. Algebra, 103,
(1995), 313-324.

(8] H.A. Hulett, Maximum Betti numbers of homogeneous ideals with a given Hilbert function,
Comm. Algebra,21(7), 2335-2350 (1993).

[9] C. Peskine and L. Szpiro, Liaison des Variétés Algébriques, I, Invent. Math.26, (1974), 271-
302.

[10] Y.S. Shin, The construction of some Gorenstein ideals of codimension 4, J. Pure Appl.
Algebra, to appear.

[11] R. Stanley, Hilbert functions of graded algebras, Advances in Math. 28, (1978), 57-83.
[12] B. Ulrich, Sums of linked ideals, Trans. Amer. Math. Soc. 318 (1990), 1-42.



CELLULAR RESOLUTIONS
Bernd Sturmfels

UC Berkeley and RIMS Kyoto, Japan

This lecture is about recent developments in the study of minimal free resolutions of monomial
ideals and toric ideals. All results presented are joint with Dave Bayer and Irena Peeva; details
can be found in our papers Monomial Resolutions (with D. Bayer and I. Peeva), Generic Lattice
Ideals (with 1. Peeva), and Cellular Resolutions of Monomial Modules (with D. Bayer).

Consider a monomial ideal M = (my, ..., m,) in the polynomial ring S = k[zy,...,z,]. A
well-known resolution of M over S is constructed as follows. For a subset I of {1,...,7} we
set my := lem(m; | @ € I). Let af € N™ be the exponent vector of mr and S(—ar) the free
S-module with one generator in multidegree ar. The Taylor resolution of M is the Z™-graded
module F = @y, -S(—ar) with basis denoted by {er};c(y, ) and equipped with the
differential

L. m
d(er) = Zieﬁzgn(z,[) gy ! “eni (1)

where sign(i, I) is (—1)7+! if 4 is the jth element in the ordering of I. Combinatorially this
resolution corresponds to the inclusion-exclusion formula for the N™-graded Hilbert series of
S/M:
—D g
Theé sum over all monomials not in M = ZIC{I’Z’"' ’T}( ) . (2)
(T—a2) (1= 2n)

If 7 > n then Taylor’s resolution is far from minimal and most terms in the numerator of (2)
cancel.

We define the following simplicial complex the set of generators of M:
Ay = {IC{1,...,r}| my#my forall JC{l,...,r} other than I} (3)

We call Ay the Scarf compler of M. The mathematical economist Herbert Scarf at Yale
University introduced it in his work on game theory in the early 1970’s. The Scarf complex
defines a submodule Fa,, := @Pjcap,, S(—ar) of the Taylor resolution F which is closed under
the differential (1).

The minimal free resolution of M always contains the complex Fa,,, but it can be larger.
However, Fa,, is exact for “almost all monomial ideals” in the following sense. We call a
monomial ideal M generic if no variable z; appears to the same degree in two minimal generators
of M. '

Theorem 1.. If M is generic, then the Scarf complez Fa,, is a minimal free resolution of M.

Corollary 2.. Let M be a generic monomial ideal.
(1) The number of j-faces of An equals the total Betti number §;(M) = dimy Torf(M, k).
(2) The minimal free resolution of M is characteristic free.
(3) The numerator of the Hilbert series (2) equals ) ;cn,, (=) . my, the N™-graded Euler
characteristic of the Scarf complez, and there are no cancellations in this alternating sum.



Example. Let M := (zyz, z*y3, 2395, y*23, y?2%, 2222). The Scarf complex of this generic

monomial ideal consists of two triangles and an edge meeting at a vertex. Hence M has 6
generators, 7 first syzygies and 2 second syzygies. The complex A, is not shellable, but it is
contractible.

Theorem 3.. The Scarf complex Aps of a generic monomial ideal M is contractible.

One technique to apply the Scarf complex to all monomial ideals is deformation of ezponents.
Suppose M is not generic. Let a; = (a;1,-..,a;,) denote the exponent vector of m;. Choose
vectors € = (€1,...,€n) € R™ for 1 <4 < r such that, for all i and all s # ¢, the numbers
ais + €5 and a; + €; are distinct, and a;5 + €;5 < as + €;; implies a;; < ai. Each vector ¢;
defines a monomial x* = 7 -.-zg~ with real exponents. We formally introduce the generic
monomial ideal

M. = (my-x*,mg-x%2,...,m,. xX).

Let Apz, be the Scarf complex of M. Let F. be the restriction of Taylor’s resolution of M to
Apy..

€

Theorem 4.. The complez F. is a free resolution of M over S.

Convex polytopes are a powerful tool for structuring combinatorial data appearing in many
branches of algebra. Also the nice properties of the Scarf complex are best understood by looking
at a certain polytope Pys in R™. We fix a sufficiently large real number T >> 0 and define

Py = the convex hull of { (T°*,T%2,...,T%") ¢ R"| 1<i<r }- (4)

The combinatorial type of Py is independent of the choice of T' for large T. Theorem 3 is a
consequence of the following convexity result, which is essentially due to Herbert Scarf.

Proposition 5.. Let M be a generic monomial ideal. Then Ay is isomorphic to the subcomplez
of the boundary of Py consisting of all faces supported by a strictly positive inner normal vector.

Corollary 6.. If M is artinian and generic, then Ay is a regular triangulation of the (n —1)-
simplex.

Corollary 2 (1), Theorem 4 and Proposition 5 imply that the Betti numbers §;(M) of any
monomial ideal M satisfy the inequalities of the Upper Bound Theorem for Convez Polytopes.

Corollary 7.. Let M be any monomial ideal with r generators in n variables. Then

Bi(M) < ¢n,r) for1<i<n-—2,
and  Pp1(M) < cp_i(n,r) —1.

where c;(n,) denotes the number of i-dimensional faces of the cyclic n-polytope with r vertices.

These inequalities are not tight in general. For instance, for n = 4 and r = 13, Agnarsson
showed that 6;(M) < 77, and this bound is tight, while c¢;(4,13) = 78. This gap is not yet well
understood. There are fascinating connections to the dimension theory for partially ordered
sets.

Here is a second approach to resolving non-generic monomial ideals which preserves given
structures (e.g. symmetry) much better than Theorem 4. For any monomial ideal M define the



Scarf polytope Pas as in (4). Let Hps be the polyhedral complex consisting of all bounded faces
of the polyhedron Py + R%. For a face F' € Hy we let mp be the least common multiple of
monomials indexed by vertices of F', and let ap be the exponent vector of mp. On pairs of faces
there is an incidence function €(F, F') which takes values {0,1,—1}, is 0 unless F’ is a facet
of F, and compares orientations of F/ and F when nonzero. The hull resolution of M is the
Z"-graded module @ pcy, S(—ar) with basis denoted by {er}recu, and equipped with the
differential

j— / . ___.mF . Y]
dlep) = ZFIGer(F ,F) o eR (5)
Theorem 8.. The hull resolution of any monomial ideal M is a free resolution.

The hull resolution may be minimal even if M is non-generic. This happens, for instance, for
the ideal M generated by the monomials z7'z52---z%» where o runs over all permutations of
{1,2,...,n}. Here Py is the permutohedron, and the i-th syzygies of M are just the i-faces of
Py

The idea of the hull resolution and its minimality for generic objects can be extended to the
setting of toric varieties as follows. Let £ be any sublattice of Z™. Its associated lattice ideal is

Ipr == (x*-xP:abeN" and a—beLl),
where monomials are denoted x* = z7* - - - 22~ for a = (ay,... ,a,). We call a lattice £ generic
if the lattice ideal I, it is generated by binomials with full support, i.e.,

Ip = (x® —xP x82 _xb2 xar_ xbr) (1.1)

where none of the r vectors a; —b; has a zero coordinate. The term “generic” is justified by a
recent result in integer programming due to Barany and Scarf. In our setting it translates to:

Theorem 9.. (Barany and Scarf 1996)  The set
{X-B : \>0,BeZ™? and the lattice spanned by the columns of B is generic}
is dense in R™*? in the classical topology.

Suppose that £ contains no nonnegative vectors. This ensures that I is positively graded.
For any finite subset J of £ we define maz(J) to be the vector which is the coordinatewise
maximum of J. We extend the definition (3) to the infinite subset £ of Z™ as follows:

A = {JCL : maz(J) # maz(J') for all finite subset J' C L different from J}.

This is an infinite simplicial complex of dimension < n — 1. There is a natural action of the
lattice £L on A, since J € A, if and only if J+a € A, for any a € £. We identify A, with
its poset of non-empty faces, and we form the quotient A,/L. This poset is called the Scarf.
complez of L.

Lemma 10.. Let £ be any sublattice of Z™.
(a) The simplicial complez A is locally finite, i.e., the link of every vertez in Ay is finite.
(b) The Scarf complez Az /L is a finite poset.

Consider the quotient poset N™/L. Its elements are the congruence classes of monomials
modulo I;; they are called fibers. The partial order on fibers is Co < C; if and only if
x" - Cy C C) for some monomial x*. If C' is a fiber then ged(C) denotes the greatest common
divisor of all monomials in C. A fiber C is called basic if ged(C) =1 and ged(C\{x®}) # 1
for all x* € C.



Lemma 11.. Let C be a basic fiber and m a monomial in C. The monomials in C\{m} divided
by their greatest common divisor form a basic fiber.

We consider the finite subposet of (N™/L, <) whose elements are all basic fibers.
Theorem 12.. The poset of basic fibers is isomorphic to the Scarf complez Ap/L.
The algebraic Scarf complez of a lattice ideal I, is the complex of free S-modules

F, = @ S-Ec,
CeAc/L

where E¢ denotes a basis vector in homological degree |C] — 1, and the sum runs over all basic
fibers C. By Lemma 11 it is well defined to take the differential acting as in (1), namely,

AEc) = Y. __ sign(m,C)-ged(C\{m}) Ec\m,

where sign(m, C) is (—=1)!*1 if m is in the I’th position in the lexicographic ordering of C.

Theorem 13.. The complex F is contained in the minimal free resolution of I; over S. If
the lattice L is generic then F coincides with the minimal free resolution of I over S.
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Abstract

Let M = (my1,...,m,) be a monomial ideal of S = k[z1,...,zn)].
Bayer-Peeva-Sturmfels [1] studied a subcomplex Fa of the Taylor res-
olution, defined by a simplicial complex A C 2". They proved that
if M is generic (i.e., no variable z; appears with the same non-zero
exponent in two distinct monomials which are minimal generators),
Fp,, is the minimal free resolution of S/M, where Ay is the Scarf
complez of M.

In this paper, we prove the following: for a generic (in the above
sense) monomial ideal M and each integer depth S/M < i < dim S/M,
there is an embedded prime P € Ass(S/M) of dim S/P = i. Thus a
generic monomial ideal with no embedded primes is Cohen-Macaulay
(in this case, Ay is shellable). We also study a non-generic monomial
ideal M whose minimal free resolution is Fa for some A. Especially,
we prove that if M is pure dimensional (i.e., all associated primes of
M have the same height) then M is Cohen-Macaulay, and A is pure
and strongly connected.

In Section 3, we will study lattice ideals. For a lattice ideal I C
S, Peeva and Sturmfels ([6, 7]) constructed a subcomplex F. of the
minimal free resolution, which is defined by a simplicial complex. F
is analogous to Fa,, of a monomial ideal M, and has a very simple
structure. If ht I = 2 but not a complete intersection, or I is generic
(see Definition 3.2), then Fy is acyclic and coincides with the minimal
free resolution. In this paper, we will see that a lattice ideal I, has
some remarkable properties if F is acyclic.



1 Preliminary results

Let S = k[z1,...,z,] be a polynomial ring over a field k. S has a natural
N"-grading such that each homogeneous component is a 1-dimensional k-
vector space spanned by a single monomial. Let M be a monomial ideal (not
necessarily minimally) generated by monomials my, ..., m, (my,...,m, and
M are used in this sense throughout this paper). For a subset I C {1,...,7}
we set m; = lem{m;|i € I}. Let a; € N™ be the exponent vector of m;
and S(—ay) the free S-module with one generator in multidegree a;. Taylor
resolution of S/M is the N graded module F' = @;cy,. ;3 S(—ar) with basis
denoted by {er}icq1,..r} and equipped with the differential

d(er) = _sign(s,I) -

i€l

mr

m €1\i»

where sign(s, I) is (—1)*! if  is the j-th element in the ordering of I. This
is an IN" graded free resolution of S/M over S having length r and 2" terms.
The minimal free resolution of S/M is always an N™ graded subcomplex of
the Taylor resolution F', but F' is far from minimal when r > n.

We say that A C 2{bm} is a simplicial complez, if I € A and J C I
always imply J € A. An element of A is called a face, and the dimension
of a face I is defined by dimJ = |I| — 1. The dimension of the simplicial
complex A is dimA = max{dim/|I € A }. Note that the empty set ¢
is a face (of dimension —1) of any non-empty simplicial complex. Faces of
dimension 0 (resp. 1) are called vertices (resp. edges). Maximal faces under
inclusion are called facets. A simplicial complex with only one facet is called
a simplez.

For a simplicial complex A C 21} we define a submodule Fp :=
@1ca S(—arg) of the Taylor resolution F. Since Fj is closed under the differ-
ential d, Fa is a subcomplex of the Taylor resolution.

Definition 1.1 (Bayer-Peeva-Sturmfels) Let M = (my,...,m,) be a
monomial ideal. We define a simplicial complex:

Ay :={IcC{l,...,r}|m; #myforall J C{1,...,r} other than I}.
We call Ay the Scarf complez of M.

For each 1 < ¢ < r, {i} € Ay if and only if m; is a minimal generator
of M. It is easy to see that Fa, is always contained in the minimal free
resolution of S/M as a subcomplex (moreover, a direct summand of F o s a
direct summand of the minimal free resolution too). But Flj,, is not acyclic
in general. For example, if M = (zy,yz, 2z) then Ay isof theforme o o



and Fa,, is of the form 0 — S* — S — 0. This is clearly non-acyclic. If
A ¢ 2{123} is 3 simplicial complex whose facets are two edges (of course this
A is not unique), then Fj, is the minimal free resolution.

Definition 1.2 (Bayer-Peeva-Sturmfels) A monomial ideal M is called
generic if no variable z; appears with the same non-zero exponent in two
distinct monomials which are minimal generators of M.

(z%y3, 2322, zyz, y?) is a generic monomial ideal, but (zy, zz) is not.

Theorem 1.3 (Bayer-Peeva-Sturmfels) If M is generic, then the com-
plex Fa,, defined by the Scarf complez Ay is acyclic and gives the minimal
free resolution of S/M over S.

Example 1.4 (1) Any monomial ideal M C k[z,y] is always generic and
can be written as
M = (z%y™, z%y", ... a¥y"),

where a; > ap > -+ > a, and b; < by < -+ < b,. The facets of Ay, are edges
{1,2},{2,3},...,{r — 1,7}. So the combinatoric property of Ajs depends
only on r. The minimal free resolution Fa,, is of the form 0 — S™"! — 5™ —
S — 0. When 7 > 2, we have that

S/M is Cohen-Macaulay <= dim S/M =0 <= a, = b; = 0.

Even if M is generic, Ajs does not determine fundamental properties of M
such as ht M, dim S/M and Cohen-Macaulayness.

(2) Set M := (zy,zz) C k[z,y,2]. M is not generic, but Fa,, is the
minimal free resolution of S/M (in this case, Ajs is a 1-simplex). A similar
phenomenon occurs when M = (z3y?, %22, 2322, z2y%2?). In this case, the
Scarf complex A, is three edges joined at one vertex, and M is Cohen-

Macaulay.

If M is a monomial ideal which is not generic, then typically, the minimal
free resolution of S/M cannot be written as Fa for any A. Though Bayer-
Peeva-Sturmfels [1] proved that there is a simplicial complex A of dim A <
n — 1 such that Fj is acyclic.

2 Main Results

Roughly speaking, we first show that a generic monomial ideal M has many
embedded associated primes if M is not Cohen-Macaulay.



Definition 2.1 Let A be a simplicial complex. We say A is pure if all its
facets are of the same dimension. A pure simplicial complex is shellable if
the facets of A can be given a linear order Iy,. .., I satisfying the following
condition: for all 4,5, 1 < j <4 < t, there exist some v € I; \ I; and some
s€{1,2,...,i— 1} with I, \ I, = {v}. A linedr order satisfying the above
condition is called a shelling of A.

Let A be a pure simplicial complex. We say A is strongly connected, if
A satisfies the following condition: for any two facets I and I’, there is a
sequence of facets I, I, - -, I; such that I = I, I' = I, and dim(L; N ;) =
dim A — 1 for each 1 <7 < s— 1. It is easy to see that a shellable simplicial
complex is always strongly connected.

Lemma 2.2 Let M = (my,...,m,) be a generic monomial ideal, and let
P,P'" be associated primes of M such that ht P < ht P'. Then for each
integer s such that ht P < s < ht P/, there is an embedded associated prime
Q € Ass(S/M) of ht Q = s.

Proof. Choose an integer D larger than the (total) degree of any minimal
generator of M. Consider an artinian monomial ideal
M* =M+ (zP,22,...,20).

cydp

Here we consider m,,; = zP for 1 <4 < n, and Ay is a simplicial complex
on {1,...,7 +n}. M* is also generic and the Scarf complex Ay is pure
(n — 1)-dimensional (see [1], also Theorem 2.10 below). If ¢ € M for some
d, zP is not a minimal generator of M* and {r + i} & Ap.. Bayer-Peeva-
Sturmfels [1] also showed that Ay is shellable (this is a consequence from
convex geometry). In particular, Ay is strongly connected.

For a facet I of Ay, we set

Pr:= (z;]1 <i<nsuchthat r+1i ¢ I).

By [1, Theorem 8.1], we have Ass(S/M) = {P;|I is a facet of Ay-}. Since
Ay is pure (n — 1)-dimensional, we have dim(S/P;) = [INW|=n—|INV]|
where W = {r+1,---,7+n} and V = {1,...,7}. Hence ht(P;) = |[INV]|.
There are facets I and I' of Ay such that P = P and Py = P'. Since
Ajp+ is strongly connected, there is a sequence of facets I;, Iy, - - -, I, such
that I = I, I' = I; and dim(/; N [;y;) =dimA — 1 foreach 1 <i<s—1.

Let 7 be an integer such that 1 < i < s — 1. Set {c} := I;\ I;;; and
{d} =Iij1s \ ;. IfhtP;, > htPp, ,thence Vandd gV (ie,c g W
and d € W). Hence we have ht P, = htP;,,, + 1 and P, D Pp,,. If
ht P, < ht Pr,,,, then ht P, = ht P;,,, — 1 and P, C Pp,,,. So we can prove
the assertion.



Theorem 2.3 Let M = (my,...,m,) be a generic monomial ideal. Then
there is an embedded associated prime P € Ass(S/M) of dimS/P = i for
each integer 1 such that depth S/M < i < dim S/M.

Proof. Let M* be an artinian monomial ideal defined in the proof of Lemma
2.2, and let J € A be afacet of dim J = dim A,s. Since Ay is a subcomplex
of Ay, there is a facet I of Ape such that J = IN{l,...,7}. Let Pr €
Ass(S/M) be an associated prime defined in the proof of Lemma 2.2. Since
F is the minimal free resolution, we have '

dim(S/P;) = n—|J| = n—(dim ,AM+1) = n—proj.dim(S/M) = depth(S/M).

On the other hand, there clearly exists a prime ideal P € Ass(S/M) with
dim S/M = dim S/P. So the assertion follows from Lemma 2.2.

Bayer-Peeva-Sturmfels [1] proved that a generic monomial ideal M is
Cohen-Macaulay, if M is pure dimensional, i.e., all associated primes of M
have the same height. But we can prove a stronger result.

Corollary 2.4 Let M = (my,...,m,) be a generic monomial ideal. If M
has no embedded associated primes; then M is Cohen-Macaulay. In this case,
A is shellable. o

Proof. The former statement immediately follows from Theorem 2.3. So
it suffices to prove the shellability of Ay;. Let M* be as in the proof of
Lemma 2.2, and I € Ay a facet. Let Py € Ass(S/M) be as in the proof
of Lemma 2.2. We see that ht(P;) = |I N {1,...,r}|. Since M is Cohen-
Macaulay, we have [I N {1,...,7}| = ht M. In particular, the cardinarity
|[IN{1,...,r}| does not depend on the choise of a facet I. So Ay is shellable
by [3, Theorem 11.13]

If M is not Cohen-Macaulay, Aj; may be non pure.

Corollary 2.5 Let M be a generic monomial ideal with dim S/M > 2. If
S/M has FLC (e.g., Buchsbaum), then S/M must be Cohen-Macaulay.

Proof. If S/M has FLC and depth(S/M) > 1, then M is pure dimen-
sional. Hence S/M is Cohen-Macaulay by Corollary 2.4. So we may assume
that depth(S/M) = 0 (i.e., (z1,...,2,) € Ass(S/M)). By Theorem 2.3,
for each 0 < ¢ < dim S/M, there is an associated prime P € Ass(S/M) of
dim S/P = 4. This is a contradiction (in fact, £(H% (S/M)) = oo for all
1<i<dimS/M — 1, where m := (z1,...,%,) is a graded maximal ideal).



Remark 2.6 The definition of a generic monomial ideal can be weakened
in the following way (c.f. [2]): If there are distinct minimal (monomial)
generators m,, m € M such that deg,, m, = deg, m; > 0 for some i, then
there exists the third monomial m € M which divides m' := lem{m,, m;}
and satisfies supp(m’/m) = suppm'. Here we set deg, ([[z{*) := a; and
supp(ITz{*) := {¢]a; > 0}.

If a monomial ideal M satisfies the above condition, then Ay, coincides
with Ay, where M. is a degeneration of M (c.f. [1]). Hence Fja,, is acyclic.
Moreover, Theorem 2.3 and Corollary 2.4 hold under this weaker assumption.

We now study a non-generic monomial ideal M whose minimal free res-
olution can be written as Fa for some A. It is easy to see that A always
contains the Scarf complex Ay, as a subcomplex. Some results on generic
monomial ideals remains valid for M in slightly weaker form.

Remark 2.7 Let I be a generic lattice ideal (this notion is introduced by
[7]. See Definition 3.2 of this note), and let M := in(I.) be the initial ideal of
I under a degree reverse lexicographic order. Gasharov, Peeva and Welker
(5] proved that Fa,, is acyclic, although M is not a generic monomial ideal
in general (see [7]).

Theorem 2.8 Let M = (my,...,m,) be a (not necessarily generic) mono-
mial ideal. Suppose that there is a simplicial complez A on {1,...,7} such
that Fa is the minimal free resolution of S/M. If A has a facet of dimension
i — 1, then there is an associated prime P € Ass(S/M) with ht P = 1.

Proof. It is well known that dim Ext%(S/M,S) < n — i, and the equality
holds iff there is an associated prime P € Ass(S/M) with ht M =1 (c.f. [4,
Theorem 8.1.1.]).

On the other hand, Ext%(S/M,S) is the i-th cohomology of the cochain
complex FA := Hom(F,,S). Let I € A be a facet of dimension i — 1, and
e} € (FX)' the dual base of e; € (Fa);. Since I is a facet, e} is a cocycle of
F%. So we can regard e} € Ext$(S/M, S). For some ideal L C S, we have

S/L ~ S-e; C Ext5(S/M, S).

Note that |I| = ¢ and
d(e[) = Zm; . 61\]‘,

jeI
for some monomials m/, ..., m!. These monomials are non-constant, since F
1 ) o ) A
is minimal. We have L' := (m/{,...,m}) D L, and

dim Ext%(S/M, S) > dim S/L > dim S/L' > n — i,



by Krull’s theorem. By the remark above, dim Ext(S/M,S) = n — i and
there is an associated prime P € Ass(S/M) with ht P = .

Even if M is generic, there is the case that the Scarf complex Aj; dose
not have a facet of dimension 7 — 1 though we have ht P = i for some P €
Ass(S/M). In fact, there is a generic monomial ideal M C S of ht M =1
such that Ay is an (n — 1)-simplex.

Corollary 2.9 Let M = (my,...,m,) be a monomial ideal. Suppose that
there is a simplicial complez A on {1,...,7} such that Fa is the minimal
free resolution of S/M. Then there is an associated prime P € Ass(S/M) of
dim S/P = depth S/M.

Proof. By the previous theorem, there is an associated prime P € Ass(S/M)
of ht(P) = dim A + 1. Since Fj is minimal, we have dim S/P = depth S/M
by the same argument as the proof of Theorem 2.3.

Set M = (zw,yw, zw) C k[z,y,2,w]. Then the Scarf complex A, of
M is a 2-simplex, and Fj,, is the minimal free resolution of S/M. We have
M = (z,y,2) N (w) and depth S/M = 1. Note that M has no embedded
associated primes nor associated primes of height 2. So Theorem 2.3 does
not hold for a non-generic monomial ideal M, even if Fj,, is acyclic.

Corollary 2.10 Let M = (my,...,m,) be a monomial ideal. Suppose that
there is a simplicial complez A on {1,...,7} such that Fa is the minimal free
resolution of S/M. If M is pure dimensional, then S/M is Cohen-Macaulay.
In this case, A is pure and strongly connected.

Proof. The former assertion immediately follows from Corollary 2.9. The
purity of A easily follows from Theorem 2.8. We now prove the strongly
connectedness. Let F} := Hom(Fa,S) be the S-dual of the complex Fa.
By the local duality, F{ gives the minimal free resolution of the canonical
module wg/ys up to degree shifting (c.f., [4]). If I € A is a facet, then the
dual base e} corresponds to a minimal generator of wgsss. If a face L € A of
dim L = dim A — 1 is contained in facets I1,...,[; € A, then e}, corresponds
a relation among ej, ...,ej,. Conversely, if G = Go — wg;y — 0 is the
minimal representation, then G is generated by

{e;| Le AofdimL =dimA — 1}.

‘Hence, if A is not strongly connected, then wgy is not indecomposable. This
is a contradiction.



Corollary 2.11 Let M be a monomial ideal. Suppose that there is a simpli-
cial complez A C 217} such that Fy is the minimal free resolution of S/M.
If M is Gorenstein, then it is complete intersection. In particular, when M
is generic, S/M is Gorenstein if and only if it is complete intersection.

Proof. By the Corollary 2.10, A is pure. Since Fp is the minimal free
resolution of S/M, the number of the facets of A is equal to the Cohen-
Macaulay type of S/M. So A is a simplex in this case. Since S/M is Cohen-
Macaulay, we have

ht(M) = proj.dim S/M = dimA+1
= the number of vertices of A
= the minimal number of generators of M.

Even if M is generic, there is the case that the Scarf complex A, is a
simplex but M is not complete intersection. For example, M = (z%, zy) or
M = (z%y,y?z, 2°z). That is, there is a non-complete intersection (generic)
monomial ideal whose minimal free resolution coincides with the Taylor res-
olution. The next result follows from Corollary 2.10 immediately (this is
maybe a well-known result).

Proposition 2.12 Let M = (my,...,m,) be a (not necessarily generic)
monomial ideal. Suppose that the Taylor resolution of M gives the mini-
mal free resolution of S/M. If M is pure dimensional, then M is complete
intersection (of course, the Taylor resolution coincides with the Koszul com-
plez in this case).

Remark 2.13 If F is acyclic, then it has a structure of a DG-algebra (skew
commutative associative differential graded S-algebra) structure (see [1]).
Hence the Taylor resolution itself and the minimal free resolution of a generic
monomial ideal have DG-algebra structures. But there is a monomial ideal
M whose minimal free resolution does not have a DG-algebra, structure. The
minimal free resolution of this ideal cannot be written as Fa for any A.

Let M be a codimension 3 Gorenstein monomial ideal. It is well known
that the minimal free resolution of S/M has a DG-algebra structure. But if
M is not complete intersection, F is not the minimal free resolution of S/M
for any A by Theorem 2.11. Thus a DG-algebra structure of the minimal
free resolution F is not a sufficient condition for the existence of a simplicial
complex A such that F ~ Fj.



3 Generic Lattice Ideals

Let S = k[z1,...,z,] be a polynomial ring. Throughout this section, £ is a
sublattice of Z™ which contains no nonnegative vectors. The lattice ideal I
associated to L is defined by

I = (x*-~x"|a,beN" and a—beL),

where x* = z{* - - - 2% for a = (a1,...,an) € N™.

Since £ contains no nonnegative vectors, I is homogeneous with respect
to some grading where deg(z;) is a positive integer for each i. Set I' :=
Z"/L. Then S/I; is a I'-graded ring, and the dimension of each homogeneous
component is at most one. It is easy to see that ht I, = rank L.

Set £%%¢ := {a € Z"|n-a € L for n > 0}. Then the following three
conditions are equivalent; (1) £ = £, ie., I is torsion free, (2) I is a
prime ideal, and (3) I is a toric ideal (i.e., S/I. is an affine semigroup ring).
Even if I, is not a prime ideal, all monomials are non-zero divisors in S/,
and all associated primes of I have the same height.

Example 3.1 Let £ C Z? be a lattice generated by (2,—2). Then I, =
(z? — y?). This is not a prime ideal, i.e., I is a lattice ideal which is not a
toric ideal. S/I. is a Z%/((2,—2))-graded ring, and not an affine semigroup
ring. The associated primes of I are (z — y) and (z + y).

Definition 3.2 (Peeva-Sturmfels [7]) We call a lattice ideal I generic if
it is generated by binomials with full support, i.e.,

b

Ip=(x% —xb, x% —xP . x —x")

where none of the r vectors a; — b; € N™ has a zero coordinate.
The term “generic” is justified by [7, Theorem 4.1].
Example 3.3 The defining ideal of k[t?°,t%*,¢%, 3] is
(a4 — bed, a®c® — b%d?, a?b® — Ad?, ab’c — de‘,‘a4 —a%cd, b*c? — ad?, ¢* — abd)

in k[a, b, c,d], so this is a generic lattice ideal. The corresponding lattice in
Z* is spanned by (4,-1,—1,-1), (3,-2,2,-2) and (2, 3,-2,-2).

Peeva-Sturmfels [6] defined the Scarf complex A of a lattice ideal I,
and constructed a I'-graded complex (of free S-modules) F associated to
Ayz. They called it the algebraic Scarf compler of I;. Fp is not acyclic



in general, but it is always contained in the minimal free resolution as a
subcomplex. If F is acyclic, then it gives a minimal free resolution.

I do not give the construction of F here. I only note that F, : --- —
F, = F; — Fy(~ S) — 0 has the following remarkable property: Let e € F},
[ > 1, be a base of a free S-module F;. Then

141
de)=> +1-m;-¢;

i=1

where m; € S is a monomial and e; is a base of F;_;. In other words, d(e) is
a linear combination of I +1 “monomials”, (in Fa,, of a monomial ideal M,
d(e) is a linear combination of ! “monomials”).

The algebraic Scarf complex F of a lattice ideal I is acyclic (hence F
is a minimal free resolution of S/I;) in the following cases.

e I, is not a complete intersection and ht I, = 2 ([6]).

e I is generic ([7]).

Next we will recall a result from the local duality (c.f. [4, §]).

Proposition 3.4 Let I C S = k[z1, -, z,] be a homogeneous ideal (un-
der certain grading such that deg(z;) is a positive integer for each i) with
dim S/I = d. If all associated primes of I have the same height (e.g., I is a
lattice ideal), then dim Ext2*(S/I,S) <i—1 for alli < d. I satisfies the S,
condition iff dim Ext2*(S/I,S) <4 —1 for all i < d.

Theorem 3.5 Suppose that I is a lattice ideal whose algebraic Scarf com-
plex Fy is acyclic (e.g., Ir is generic). Then dim Exty *(S/I;,S) > e —1,
where e := depth S/I,.

Proof. We can prove this by an argument similar to Theorem 2.8 and Corol-
lary 2.9.

The next result follows from Proposition 3.4 and Theorem 3.5 immedi-
ately.

Corollary 3.6 Suppose that I is a lattice ideal whose algebraic Scarf com-

plez F¢ is acyclic (e.g., I is generic). If S/I; satisfies Serre’s condition S,,
then S/I; is Cohen-Macaulay.



Remark 3.7 (1) If F; is not acyclic, then the above statement is false. The
So-ness of an affine semigroup ring does not depend on the characteristic of
k, although the Cohen-Macaulayness may depend on the characteristic (see
9):

(2) Lemma 2.4 states that a generic monomial ideal which satisfies the
Si-condition is Cohen-Macaulay.

Proposition 3.8 Let I be a generic lattice ideal, and M the initial ideal of
I under a degree reverse lexicographic order. If S/ is not Cohen-Macaulay
(of course, S/M 1is not Cohen-Macaulay in this case), then M has an em-
bedded associated prime P with dim S/P = depth S/M.

Proof. Gasharov-Peeva-Welker [5] shows that Fj,, is acyclic. By Corol-
lary 2.9, there is an associated prime P € Ass(S/M) with dimS/P =
depth S/M. Since I is pure dimensional, P must be an embedded prime.

Proposition 3.9 Let I be a lattice ideal whose dlgebmz’c Scarf complex F,
is acyclic. If S/I is Gorenstein, then it is a hypersurface.

Proof. 1f S/I; is Gorenstein, we have Hom(Fy, S) ~ F;. So Hom(Fp, S) gives
the minimal free resolution of S/I, again. But if ht Iz > 2, then I must be
a monomial ideal by the structure of Hom(F, S). This is a contradiction.

Corollary 3.10 (c.f. [5, Theorem 1.1 (2)]) A generic lattice ideal is a
Gorenstein ideal if and only if it is a principal ideal.
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Stanley-Reisner rings of Alexander dual
complexes

NAOKI TERAI

Introduction

" Recenty Alexander duality theorem plays an important role in the study
on a minimal free resolution of Stanley-Reisner rings. (See [Br-He,], [Te-
Hi;], [Te-Hip}, for example.) In particular, Eagon and Reiner introduced
Alexander dual complexes and proved the following interesting theorem:

THEOREM 0.1 ([Ea-Re]). Let k be a field. and let A be a simplicial com-
plez and A* its Alezander dual complez. Then k[A] has a linear resolution
if and only if k[A*] is Cohen-Macaulay.

The above result is a starting point of this article. We generalize it in
the following way.

THEOREM 0.2. Let k be a field. Let A be a (d— 1)-dimensional complez
on the vertez set [n]. Suppose d <n —2. Then

reg In —indeg Io = dim k[A*] — depth k[A*].
Note that Theorem 0.2 corresponds to Theorem 0.1 in the case that

either side of the equality is 0. - »
Using the Auslander-Buchsbam formula, we have the following corollary:

COROLLARY 0.3. Let k be a field. Let A be a (d — 1)-dimensional
complez on the vertez set [n]. Supposed < n —2. Then

reg Io = prodim k[A*].



On the other hand, it is one of important problems to characterize the
h-vectors of a good class of homogeneous k-algebras (i.e., noetherian graded
k-algebras gererated by elements in degree one and degree 0 part is k) for
a field k. This kind of a problem was originated in Macaulay’s work (see
Theorem 1.1 in §1), and developed by a lot of mathematicians in algebraic,
geometric, and/or combinatoric methods. See, for example, [St,] and [St3] to
survey this topic. In this article we give a necessary and sufficient condition
for a sequence of integers to be the h-vector of a homogeneous k-algebra
R = k[zy,2,,...,2,]/] with reg I — indeg I < ¢ for a fixed ¢ > 0, as an
application of the above theorem using the Grobner basis theory.

As another application, we give some upper bound for the multiplici-
ties of homogeneous k-algebras. In [He-Sr] Herzog and Srinivasan give a
conjecture for the upper bound for multiplicities as follows:

Conjecture 0.4 ([He-Sr, Conjecture 2]). Let k be a field and let R be a
homogeneous k-algebra of codimension A;. Then

h1 .
e(R) < "——Hiﬂ d.(R),
hy!

where d;(R) := max{j | 5 ;(R) # 0}.
We obtain a bound as follows:

THEOREM 0.5. Let k be a field and let R = k[z1,29,...,2,)/1 be a
homogeneous k-algebra of codimension hy > 2. Then

regl+hy—1 reg I —indeg I + h; — 1
e(R)S( hll _ hl 1 '

As a corollary we obtain some partial affirmative result on Conjecture
0.4 as in [He-S1].

The author would like to appreciate Professors J. A. Eagon, D. Eisenbud,
J. Herzog, C. Miyazaki, M. Miyazaki, V. Reiner, and K. Yanagawa for their
helpful coments.

§1. Preliminaries

We first fix notation. Let N(resp. Z) denote the set of nonnegative
integers (resp. integers). Let | S | denote the cardinality of a set S.



We recall some notation on simplicial complexes and Stanley-Reisner
rings according to [St;]. We refer the reader to, e.g., [Br-He], [Hi], [Ho]
and [St;] for the detailed information about combinatorial and algebraic
background.

A simplicial complez A on the vertez set [n] = {1,2,...,n} is a collection
of subsets of [n] such that (i) {¢} € A for every 1 <1 <n and (ii) F € A,
G C F = G € A. Each element F of A is called a face of A. We call
F e Aani-faceif | F |=1+1 We set d = max{| F || F € A} and define
the dimension of A to be dimA =d — 1.

Let f; = fi(A), 0 <1 < d—1, denote the number of i-faces in A. We
define f_y = 1. We call f(A) = (fo, f1,---, fa-1) the f-vector of A. Define
the h-vector h(A) = (ho, b1, ..., ha) of A by

d d
3 fia(t—1)4 =3 Attt
=0 =0
If F is a face of A, then we define a subcomplex linka F' as follows:
linkaF={GEA|FNG=0,FUG € A}.

Let H;(A; k) denote the i-th reduced simplicial homology group of A with
the coeflicient field k.

Let A = k[z1,z3,...,%,] be the polynomial ring in n-variables over a
field k. Define I5 to be the ideal of A which is generated by square-free
monomials z; z;, -z, 1 <4y <1y < -+ <1, < n, with {¢4,23,...,%,} &

A. We say that the quotient algebra k[A] := A/I, is the Stanley-Reisner
ring of A over k.

Next we summarize basic facts on the Hilbert series. Let k be a field
and R a homogeneous k-algebra. We means a homogeneous k-algebra R by
a noetherian graded ring R = @;>q R; generated by R; with Ry = k. In
this case R can be written as a quotient algebra k[z,, s, ...,z,]/I, where
deg z; = 1. In this article we always use the representatation A/I with
A = k[zq,23,...,2,] a polynomial ring and with I; = (0).

Let M be a graded R-module with dimy M; < oo for all 7 € Z, where
dimy M; denotes the dimension of M; as a k-vector space.

The Hilbert series of M is defined by

F(M,t) =" (dimy M;)t".
1€Z



It is well known that the Hilbert series F(R,t) of R can be written in

the form
ho+ hit + - + h,t°

F(R,t) = (1—t)dmR ’

where ho(= 1), hy,. .., h, are integers with e(R) := hg + by + --- + h, > 1.
The vector h(R) = (ho, by, ..., k) is called the h-vectorof R and the number
e(R) the multiplicity of R.

Let f and i be positive integers. Then f can be uniquely written in the

T )t

where n; > n;_y > -+ >n; > j > 1. Define

<i> _ [nit1 ni1+1 n;+1
o= (i+1>+( i )T+

<> = .

THEOREM 1.1 (Macaulay, Stanley [St3, Theorem 2.2]). Let h = (h;)i»o
be a sequence of integers. Then the following conditions are equivalent:
(1) There ezists a homogeneous k-algebra R with F(R, t) Yiso(dimy Bt
(2) ho =1 and 0 < h;yy < AS™> fori > 1. -

We say that a sequence b = (h;)i>o of integers is an O-sequence if it
satisfies the equivalent conditions in Theorem 1.1.

For a finite sequence (hg, hy,...,k,), we identify it with the infinite
sequence (hg, hy,...,h,,0,0,...).

We consider k[A] as the graded algebra k[A] = @5, k[A]; with deg z; =
1for1 < j < n. The Hilbert series F'(k[A],t) of a Stanley-Reisner ring k[A]
can be written as follows:

fiort!
Bve

ho + kit + - + hgt?
1-t) ’

where dim A = d—1, (fo, f1,-- -, fa—1) is the f-vector of A, and (hg, by, .. ., hy)
is the h-vector of A.

F(k[A],1)




THEOREM 1.2 (Hochster’s formula on the local cohomology modules
(cf. [St1, Theorem 4.1])).

. : B -1 \IFl

where Hjy (k[A)]) denote the i-th local cohomology module of k[A] with re-
spect to the graded mazimal ideal m.

Let A be the polynomial ring k[z, 2, .. .,z,) for a field k. Let M be a
finitely generated graded A-module and let

0 — @A(_j)ﬂh,j(M) e — @A(_j)ﬂn.j(M) — M —0
i€z J€Z
be a graded minimal free resolution of M over A. We call 3;(M) = Y.z B; j(M)
the i-th Betti number of M over A. We sometimes denote 84 (M) for §;(M)

to emphasize the base ring A. We define a Castelnuovo-Mumford regularity
reg M of M by

reg M = max {j —i | (M) # 0}.
We define an initial degree indeg M of M by

indeg M = min {i | M; # 0} = min {j | fo,;(M) # 0}.

THEOREM 1.3(Hochster’s formula on the Betti numbers[Hoc,
Theorem 5.1]).

BiklA) = Y. dimpH_ioa(AF; K),
FC[n), |F|=5

where
Ap={GeA|GCF}.

Finally we quote some result on Grobner bases we use later. See [Ei,
Chapter 15] for complete explanation.

Let A be the polynomial ring k[zy,z,,...,Z,] for a infinite field k. Let
I be a homogeneous ideal in A. We denote Gin (I) to be a generic initial

ideal of I with respect to the reverse lexicographic order. It is well known
that A(A/Gin (I)) = h(A/I) and, in particular, e(A/Gin (1)) = e(A/I).



Further we have:

THEOREM 1.4 ([Ba-St)).
depth A/Gin (I) = depth A/I
and

reg Gin (I) =reg I.

§2. Alexander duality and some generalization of the
Eagon-Reiner theorem

First we recall the definition of Alexander dual complexes.

Definition ([Ea-Re]). For a simplicial complex A on the vertex set [n],
we define an Alezander dual compler A* as follows:

A*={F C[n]: [n]\ F ¢ A}.
If dim A < n—3, then A* is also a simplicial complex on the vertex set [n].

In the rest of the paper we always assume dim k[A] = d and dim k[A*] =
d* for a fixed field k.

Now we give some generalization of the Eagon-Reiner theorem.

THEOREM 2.1. Let A be a (d — 1)-dimensional complez on the vertex
set [n]. Suppose d <n —2. Then

reg I —indeg Io = dimk[A*] — depth k[A*].

Proof. Put depth k[A*] = p*. By Hochster’s formula on the local
cohomology modules, we have

. . . t—l lFl
F(Hpm(K[A%]), t) = 3 dimg Ay (linkae Fi &) (| —— ) .
PR 1—t

Hence if I < p*, then H_jp|_1(linka« F; k) = (0) for all F € A*. By the proof
in [Ea-Re, Proposition 1], we have I:I,,_I_Q(AF; k) = (0) for all F C [n]. By



Hochster’s formula on the Betti numbers this means that 3;;,,_;_;(k[A]) =
0 for 7 > 1. Hence

Bijitn(Ia) = Bijyn—1(Ia) = -+ = Biign—p41(la) =0

for 1 > 0. Similarly, since Hp_po_o(Appri k) 2 Hpe o1 (linkae Fi k) #
(0) for some F' € A, we have f;;yn_p+(In) # 0 for some 7 > 0. Hence
reg In = n — p*. By the definition of the Alexander dual complex we have
indeg Ip = n—d*. Therefore, we have reg Ip —indeg Ip = d*—p*. Q.E.D.

Let h = (hg, hq,...,h,) be a finite seqence with hy = 1 and h; > 1. Put
p:=min{i > 1| h; # (h”;."l)}. We define the dual sequence h* = (h})i>o
by

Zh,!.t,' _ 1 —th1(h0+ hl(l — t) 4+ 4 h,(l _t)s)
>0 _ (1-12)p :

LEMMA 2.2. A7 =0 fori > hy + s.

Proof. We have

i _ 1=tM(ho+h(1 =)+ -+ hy(1-2))
.'Zzoh"t = =i
1=tk (E;.=0(_1)j(;j)tj)
- (1—tp
_ 1= (-1 (E hi(§) i
- -0 '

For I > hy + s, we have

- () B ()
(:+h1)+1n— =] J m

p+11 “‘1 Jih' P+l—h1—1—1
i)\ T=h—j—1

J= =g

p+l-1
l

) —0
p+1— 1) ° (i)<p+l—h1—j—1)
= h S (-1 .
( ! =0 ]Z—(:) ) J l_hl_]—l
- ) h
=0

ﬁj.(”“ bt ) (IR, Pages (5))



p+l—1 _"Z-:l hi+i—1\[p+1-h—i—1
1=0 2 l_hl

- (” +i- 1) _ (p +; - :1 B ’1; h‘) ([Ri, Page8 (3b)])

p+l—1> (p+l—1)
h !

= 0.
QE.D.

By the above lemma we can define A* by

tM(ho + ha(1—t) + - + hy(1 = 1))
= 1—(1—t)?(hg+hjt+ -+ ky , th+?).

We justify the notation ~* by the following lemma:
LEMMA 2.3. Let A be a simplicial complex on the vertex set [r]. Then

we have

R*(A) = h(A®).

Proof. By the definition we have fi(A*) = (‘ +1) fni—2(A). Put

7 =1—t. Then we have

ho(A) + hy(A)t + - - - + ha(A)t?

(1—1t)
f,_l(A t
- L5
= ((,) - fn—i—l(A*))t‘
B P
n ( )t' fn—:—l A*)t'
B Z g (1—1) Z[:, a—ty
" fn—l—l A*) "_i
(l+m) _(l—t) Z; (1 — 1)
— - ( t ) ho(A"‘)+h1(A“)7-+...+hd_(Aa-)Td
CEDE 1-t 1-7)&



6 (ho(A7) £ hy(AT)(1 = )+ -+ har(AT)(1 = )
a—tn (1-t) '

Therefore, since p = n — d* we have

(1 — )" 4(ho(A) + hy(A)t + - - - + ha(A)t?)
= 1—t"(ho(A") + hy(A") (1 — t) + - + hae(A™)(1 = 1)F)

Q.E.D.

§3. Application to the h-vectors of homogeneous rings

For a sequence h = (h;)i»o of integers, we define the partial sum sequence

Sh of h by

Sh_—' (ho,ho+h1,h0+h1+h2,...,2hj,...).

3=0

And inductively we define the i-th iterated partial sum sequence S'h by
S'h = S(S*1h).

The next proposition is a variation of Stanley.

PROPOSITION 3.1(cf. [Sts, Corollary 3.11]). Let h = (ho, h1,---,h,) be
a seqence of integers with ho+ hy + -+ + hy; > 0. We fiz an integer ¢ > 0.
Then the following conditions are equivalent:
(1) There ezists a simplicial complezx A with dimk[A] — depth k[A] < ¢
such that h = h(k[A]).
(2) There ezists a homogeneous k-algebra R with dim R—depth R < ¢ such
that h = h(R).
(8) The c-th iterated partial sum sequence S°h of h is an O-sequence.

Proof. We may assume | k |= co. Put dim R = d.

(1)= (2). Trivial.

(2)= (3). (A)Case d—c < 0. The c-th iterated partial sum sequence S°h
of h is the (c — d)-th iterated partial sum sequence of (dimy R;);>o. Then
S¢h is an O-sequence. -

(B)Case d — ¢ > 0. We have depthR > d — c. Let {y1, ¥2,...%a_c} be a
regular sequence in k[A];. Then the c-th iterated partial sum sequence S°h
of h is (dim(R/(y¥1, ¥2,---Yd—c))i)izo, Which is an O-sequence.



(3)= (1). There exists a monomial ring R (i.e., R = A/I, where I is
generated by monomials) whose Hilbert function is S°h. Note that dim R =
c. Let k[A] be a polarization of R (See [St-Vo] for the definition and basic
properties of the polarization). Then

dim k[A] — depth k[A] = dim R — depth R
< dimR

= C.

QE.D.

We have the following theorem which gives a characterization of h-vector
of homogeneous k-algebras R = A/I with reg I —indeg I < c.

THEOREM 3.2. Let h = (ho, hy,---,h,) be an integer sequence with
hi > 2, and ho+ hy + --- + hy > 0. We fiz an integer ¢ > 0. Then the
following conditions are equivalent:

(1) There ezists a homogeneous k-algebra R = A/ with

reg I — ind'eg I<c

such that h = h(R), where A is a polynomial ring and I is a homogeneous
ideal with I, = (0).
(2) There ezists a simplicial complez A with

reglp —indeg Ip < ¢

such that h = h(A).
(3)The c-th iterated partial sum sequence S°(h*) of the dual sequence h* of
h is an O-sequence.

Proof. We may assume | k |= co. (1)=(2). Let R = A/I be a k-algebra
satisfying the conditions in (1). Since we have reg Gin(I) = reg I, we have
reg Gin(7) — indeg Gin(I) < ¢

and h = h(A/Gin([I)). Considering the polarization, we obtain a Stanley-
Reisner ring k[A] satisfying the conditions in (2).

(2)=(1). Trivial.

(2)=(3). If A is a simplicial complex with the conditions in (2), then
Theorem 2.1 we have

dim k[A*] — depth k[A*] < <.



And by Lemma 2.5 we have h* = h(k[A*]). Hence by Proposition 3.1, the
condition (3) holds for A.

(3)=>(2). If h* satisfies the condition (3), there exists a simplicial com-
plex A such that for its Alexander dual complex A*, h* = h(k[A*]) and

dim k[A*] — depth k[A*] < e.
then we have h = h(k[A]) and
regls — indeg Ip < c.
Q.ED.
Remark. The inequality reg Ipn — indeg Ip < ¢ means that at most

(indeg Ia, indeg Ip +1,...,indeg I + ¢ )-linear parts appear in the min-
imal free resolution of I,.

§4. On upper bounds for multiplicities

In this section we give some upper bound for the multiplicities of homo-
geneous k-algebras. And we deduce some partial affermative result on the
Herzog-Srinivasan conjecture.

First we prove the following lemma:

LEMMA 4.1.

e(k[A]) = By p, (K[A™]).

Proof. We have

ho(A) + hy(A)(1 — ) + -+ + ha(A)(1 — 1) (1)
1— (1= )% (ho(A%) + b1 (At + -+ + hae (A%)") 2
tn—d )

by Lemma 2.5. Since indeg Ia« = n — d = hy, we have
B1n-a(k[AT])
(the coefficient of "% in — (1 — ¢)" ™" (hg(A*) + hy(A™)t + -+ - + hge(A%)E))
= (the coefficient of "¢ in the numerator in (2))
)d

— lim(ho(A) + hy(A)(1 1) + -+ ha(A)(1 —
= e(k[A]).

)



QED.

THEOREM 4.2. Let R = A/I be a homogeneous k-algebra of codimension
h1 > 2. Then

e(R) < (regI-i};lhl - 1) 3 (reg I—md;::]+h1—1)'

Proof. We may assume | k |= co. By Theorem 1.4, we have reg Gin(I) =
reg I and h(A/I) = h(A/Gin(I)). Considering the polarization, we obtain
a Stanley-Reisner ring k[A] = B/Is with e(A/I) = e(k[A]) and reg I =
reg Ia. Put p* = depth k[A*]. By Theorem 2.1, we have d* — p* =reg I —
(n — d*), where n = embdim k[A*]. Hence reg I = n — p*.

Let 41,42, . .., Yy be aregular sequence in k[A*];, and let 21, 2o, .. ., 2ge_p+ €
(K[A*)/(y1,¥25 - - - 1 ¥p*) )1 be asystem of parameters of k[A*]/(y1,¥2, - - - , Yp+ )-
We have k[z1, 23, .. ., Zas—ps] C E[A*]/(y1,¥2, .. -, Yp+). Since k[z1, 23, . . ., 2ge_pe]
is isomorphic to the polynomial ring with d* — p* variables, we have
dimyg (K[A*]/(y1, 925 2 Yp* ) Dby = (d'_";;’h"l). By Lemma 4.2 we have

Bin (K[A™])
— f}{lelvyz,...,yp-)(k[An]/(yl’ Yo, .- ’yp.))
= dimk(B/(yl’ Y2,-- -5 yP'))hl - dlmk(k[A*]/(yla Y2, yP'))hl

< n—p*+h —1 d*—p*+h -1
- hl h] )

COROLLARY 4.3 ([He-Sr]). Let R = A/I be a homogeneous k-algebra
of codimension hy > 2 with ﬂo,reg 1 # 0. Then Conjecture 0.8 holds.

e(k[A])

QE.D.

Proof. Since d;(R) =teg I +i—1for 1 <1 < hy, we have

reg I+ hy — 1) _ T2, d(R)

e(R)g( . Mz, 20

QE.D.
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NON-COMMUTATIVE GROBNER BASES
FOR COMMUTATIVE ALGEBRAS

Bernd Sturmfels
UC Berkeley and RIMS Kyoto, Japan

1. Introduction

Let k be a field, let k[z] = k[z1,...,2,) be the polynomial ring in n variables
and k(X) = k(Xy,...,X,) the free associative algebra in n variables. Consider
the natural map v : k(X) — k[z] taking X; to z;. It is sometimes useful to
regard a commutative algebra k[z]/I through its non-commutative presentation
k[z]/I = k(X)/J, where J = y~1(I). This is especially true in the construction
of free resolutions as in [An]. Non-commutative presentations have been exploited
in [AR] and [PRS] to study homology of coordinate rings of Grassmannians and
toric varieties. These applications all make use of Grébner bases for J (see [Mo]
for non-commutative Grébner bases.) In this note we give an explicit description
(Theorem 2.1) of the minimal Grébner bases for J with respect to monomial orders
on k(X) that are lexicographic extensions of monomial orders on k[z].
Non-commutative Grébner bases are usually infinite; for example, if n = 3 and
I = (z12973) then y~1(I) does not have a finite Grébner basis for any monomial
order on k(X). (There are only two ways of choosing leading terms for the three
commutators, and both cases are easy to analyze by hand.) However, after a linear
change of variables the ideal becomes I' = (X;(X1 + X2)(X1 + X3)), and we
shall see in Theorem 2.1 that X;(X; + X2)(X; + X3) and the three commutators
X;X; — X;X; are a Grobner basis for v~ (I’) with respect to a suitable order. This
situation is rather general: Theorems 2.1 and 3.1 imply the following result:

Corollary 1.1. Let k be an infinite field and I C k[z] be an ideal. After a general
linear change of variables, the ideal v~(I) in k(X) has a finite Grébner basis. In
characteristic 0, if I is homogeneous, such a basis can be found with degree at most
mazx{2,regularity(I)}.

The behavior of y~1(I) is in sharp contrast to what happens for arbitrary ideals
in k(X). For example if one takes a defining ideal in k(X) of the group algebra of
a group with undecidable word problem, then there exists no finite Grébner basis.

In characteristic 0 the Grébner basis of y~!(I) in Corollary 1.1 may be obtained
by lifting the Grébner basis of I, but this is not so in characteristic p; see Example
4.2. Furthermore, y~1(I) might have no finite Grébner basis at all if the field is
finite; see Example 4.1.

In the next section we present the basic computation of the initial ideal and
Grobner basis for J = v71(I). In §3 we give the application to finiteness and
liftability of Grobner bases.

This is a joint work with D. Eisenbud and I. Peeva.



NON-COMMUTATIVE GROBNER BASES FOR COMMUTATIVE ALGEBRAS

2. The Grébner basis of y71(I)

Throughout this paper we fix an ideal I C k[z] and J := y~!(I) C k(X). We shall
make use of the lericographic splitting of -y which is defined as the k-linear map

§ ¢ klz) = k(X), i@z Xy Xey o X if i1 <ip <o <y

Fix a monomial order < on k[z]. The lezicographic eztension < of < to k(X) is
defined for monomials M, N € k(X) by

(M) < y(N) or

M <« N if
' { v(M) =~vy(N) and M is lexicographically smaller than N.
Thus for example X;X;<X;X; if ¢ < j.
To describe the <«-initial ideal of J we use the following construction: Let L be
any monomial ideal in k[z]. If m =z, ---2; € L and 4; < --- <4, denote by

Ur(m) the set of all monomials u € k[z;, 41, ... ,2;, 1] such that neither u™ nor
i

ug lies in L. For instance, if L = (z12273, zg) then U (z12223) = {2} | j <d}.

Theorem 2.1. The non-commutative initial ideal in(J) is minimally generated
by the set { X;X; | j <i} together with the set

{ 6(u-m) | m is a generator of ins(I) and u € Usp,_(1y(m) }-

In particular, a minimal <«-Grébner basis for J consists of {X; X; — X; X, : j <1}
together with the elements 6(u - f) for each polynomial f in a minimal <-Grébner
basts for I and each monomial u € U, (1)(in<(f)).

Proof. We first argue that a non-commutative monomial M = X; X,,--- X;_lies
in in(J) if and only if its commutative image y(M) is in in<(I) or i; > ij41
for some j. Indeed, if i; > ¢;4; then M € ing(J) because X, X; — XX, € J has
initial term X, X; with s > ¢. If on the contrary i; <--- <4, but y(M) € in(I)
then there exists f € I with in<(f) = v(M). The non-commutative polynomial
F = 6(f) satisfies in4(F) = M. The opposite implication follows because
induces an isomorphism k[z]/I = k(X)/vy~1(I).

Now let m’ = u-m, where m = z;, -- - z;, is a minimal generator of in(I) with
13 < -+ < i,. We must show that §(u-m) is a minimal generator of in(J) if
and only if u € U,_(1y(m).

For the “only if” direction suppose that §(u - m) is a minimal generator of
in¢(J). Suppose that u contains the variable z;. We must have j > i; since else,
taking j minimal, we would have 6(u-m) = X; 6(%m) Similarly j < i,.. Thus
u € k[Ti 41,... ,T;,—1]. This implies 6(u-m) = X;, 6(u%) = 6(u- %) - X
Therefore neither 6(u%) nor 6(u£) lies in in¢(J) and hence neither u% nor
ug lies in in<(I).

For the “if” direction we reverse the last few implications. If u € U, (r)(m)
then neither 6(u£‘:) nor 6(u£) lies in in(J) and therefore §(u-m) is a minimal
generator of iny(J). O
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3. Finiteness and lifting of non-commutative Grobner bases

‘We maintain the notation described above. Recall that for a prime number p the
Gauss order on the natural numbers is described by

s<pt if (i) # 0 (mod p).

We write <g=< for the usual order on the natural numbers. A monomial ideal
L is called p-Borel-fized if it satisfies the following condition: For each monomial
generator m of L, if m is divisible by z* but no higher power of z;, then (z;/z;)*m €
L forall t < j and s <p .

Theorem 3.1. With notation as in Section 2:
(a) If ing(I) is 0-Borel fized, then a minimal <-Gréobner basis of J is obtained by
applying 6 to a minimal <-Grébner basis of I and adding commutators.
(b) If in4(I) is p-Borel-fized for any p, then J has a finite <-Grébner basis.

Proof. Suppose that the monomial ideal L := in<(I) is p-Borel-fixed for some p.
Let m = z;, ---x;. be any generator of L, where ¢; < --- < i, and let zfr be
the highest power of z;, dividing m. Since t <, t we have zjm/zt € L for each
! < i,. This implies ztm/z; € L for | < i,, and hence every monomial u € Ur(m)
satisfies degy, (u) < ¢t for iy < ! < i,. We conclude that Uz (m) is a finite set. If
p = 0 then U (m) consists of 1 alone since z;m/x; € L for all I < i,. Theorem
3.1 now follows from Theorem 2.1. 0

Proof of Corollary 1.1. We apply Theorem 3.1 together with the following results
due to Galligo, Bayer-Stillman and Pardue which can be found in [Ei, Section 15.9]:
if the field k is infinite, then after a generic change of variables, the initial ideal
of I with respect to any order < on k[z] is fixed under the Borel group of upper
triangular matrices. This implies that in(I) is p-Borel-fixed in characteristic p > 0
in the sense above. If the characteristic of k is 0 and I is homogeneous then, taking
the reverse lexicographic order in generic coordinates, we get a Grébner basis whose
maximal degree equals the regularity of I. 0

We call the monomial ideal L. squeezed if ML(m) = {1} for all generators m of
L or if, equivalently, m = z;, ---z; € L and ¢; < --- < 4, imply a:l——- € L or
:z:l— € L for every index [ Wlth 11 < | < 4. Thus Theorem 2.1 1mphes that

a minimal <-Grébner basis of I lifts to a Grébner basis of J if and only if the
initial ideal in<(I) is squeezed. Monomial ideals that are 0-Borel-fixed, and more
generally stable ideals (in the sense of [EK]), are squeezed. Squeezed ideals appear
naturally in algebraic combinatorics:

Proposition 3.2. A square-free monomial ideal L is squeezed if and only if the
simplicial complezr associated with L is the complez of chains in a poset.

Proof. This follows from Lemma 3.1 in [PRS]. O
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4. Examples in characteristic p
Over a finite field Corollary 1.1 fails even for very simple ideals:

Example 4.1. Let k be a finite field and n = 3. If I is the principal ideal generated
by the product of all linear forms in k[, zo, z3], then y~1(I) has no finite Grobner
basis, even after a linear change of variables.

Proof. Theideal I is invariant under all linear changes of variables. The «-Grébner
basis for J is computed by Theorem 2.1, and is infinite. That no other monomial
order on k(X) yields a finite Grobner basis can be shown by direct computation as
in the example in the second paragraph of the introduction. O

Sometimes in characteristic p > 0 no Grobner basis for a commutative algebra
can be lifted to a non-commutative Grébner basis, even after a change of variables:

Example 4.2. Let k be an infinite field of characteristic p > 0, and consider the
Frobenius power

L = ((:171, T2, $3)3)[p] C k[$1,$2,$3]

of the cube of the mazimal ideal in 3 variables. No minimal Grébner basis of L
lifts to a Grébner basis of v~1(L), and this is true even after any linear change of
variables.

Proof. The ideal L is invariant under linear changes of variable, so it suffices to
consider L itself. Since L is a monomial ideal, it is its own initial ideal, so by

Corollary 3.2 it suffices to show that L is not squeezed, that is, that neither of

—1 -1 . . .. . .
2?2528 and 2fa8™aE™! s in L. This is obvious, since the power of each

variable occurring in a generator of L is divisible by p and has total degree 3p. O
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1 Background

(1.1) Let G be a finite connected simple graph on the vertex set V(G) = [d] =
{1,...,d} and E(G) = {e1,...,e,} the set of edges of G. Here, a graph G is
simple if G has no loop and no multiple edge. The vertez-edge incidence matriz
of G is the n x d matrix A(G) = (aij)1<i<n,1<j<a With a;; = 1 if ; € E(G)
is adjacent to j € [d] and with a;; = 0 otherwise. Identifying each row vector
(ai1, .- .,a;q) to be a point of RY, we may regard A(G) to be a configuration
of n points in R?. Let Pg denote the convex hull of A(G) in R?. The convex
polytope Pg C R? is called the edge polytope of G. Then, A(G) coincides with
the vertex set of Pg. Moreover, dimPg = d — 2 if G is bipartite, i.e., has no
odd cycle, and dimPg = d — 1 if G has at least one odd cycle.

(1.2) Let K[t1,...,tq] denote the polynomial ring in d indeterminates over a
field K and K[G] the subalgebra of K[t;,...,ts] generated by those square-
free quadratic monomials t,t, with {p,q} € E(G). The affine semigroup ring
K[G] is called the edge ring of G. Then, Krull — dim K[G] = dimPg. Let
K[x] = KJz1,...,z,] denote the polynomial ring in n indeterminates and
define the surjective homomorphism of semigroup rings 7 : K[x] — K[G] by
7(x;) = toty if e, = {p,q}. Let I denote the kernel of # and call I the toric
ideal of K[G].

We will assume that the reader is familiar with fundamental material re-
lated with Grobner bases discussed in, e.g., [Stu]. First, recall that a term
order on K[x] is a linear order < on the set of monomials of K[x] such that



1 < u for all monomials u # 1 and that if u and v are monomials and if u < v
then uw < vw for all monomials w. Given a term order < on K|[x], the initial
monomial of a non-zero polynomial f € K[x] is the monomial in(f) which is
a unique maximal monomial with respect to < among the monomials appear-
ing in f with non-zero coefficients. Now, the initial ideal of I with respect
to < is the ideal in4(Ig) of K[x] which is generated by all initial monomials
ing(f) with f € I¢. A finite set G C I is a Grobner basis for I with respect
to < if in4(Ig) is generated by {in<(g); g € G}

(1.3) A triangulation of Pg C RY is a collection A of subgraphs G’ of G
satisfying the following conditions:

(i) if G’ € A, then Pg: is a simplex in R? with dimPg = dim Pg;

(i) if G',G"” € A, then Pg: N Pgn is a face of Pg: and of Pgu;

(111) P = UgreaPa:.
A triangulation A of Pg is called unimodularif the normalized volume [Stu, p.
36] of Pg: is equal to 1 for every subgraph G’ belonging to A. A unimodular
covering of Pg is a collection A of subgraphs G’ of G satisfying the above
conditions (i) and (iii) such that the normalized volume of Pg: is equal to 1
for every subgraph G’ belonging to A.

(1.4) Fix a term order < on K[x] and let in<(Ig) be the initial ideal of
the toric ideal I of K[G] with respect to <. We write A(in(Ig)) for the
set of subgraphs G’ of G with dimPg: = dimPg such that He,-eE(G')‘”i ¢
Vin4(Ig). It then follows that A(ing(Ig)) is a regular triangulation [Stu, pp.
64 — 65] of P C R? and that every regular triangulation of Pg is of the form
A(ing(Ig)) for some term order < on K[x]. Moreover, a regular triangulation
A(ing(Ig)) is unimodular if and only if ing(Ig) is square-free, i.e., generated
by square-free monomials ([Stu, Corollary 8.9]).

(1.5) We say that an edge polytope Pg is normal if its edge ring K[G] is
normal, i.e., integrally closed in its quotient field. It is a fundamental fact that
Pg is normal if Pg possesses a unimodular covering.

(1.6) Many fundamental problems from viewpoints of both commutative alge-
bra and combinatorics now arise. For example, given a finite connected simple
graph G, it is reasonable to present the questions below:

(1.6.1) Is Pg normal ?

(1.6.2) Does Pg possess a unimodular covering ?

(1.6.3) Does Pg possess a unimodular triangulation ?

(1.6.4) Does Pg possess a regular unimodular triangulation ?

If G is the complete graph on [d], then the answer to all questions (1.6.1) -



(1.6.4) is yes. When G is bipartite, since the vertex-edge incidence matrix of
G is unimodular, the answer of the questions (1.6.1) — (1.6.4) is yes.

2 Normal polytopes and unimodular coverings

We now study the problem (1.6.1) when Pg is normal and the problem (1.6.2)
when Pg possesses a unimodular covering. Let, as before, G be a finite con-
nected simple graph on the vertex set V(G) = [d] = {1,...,d}. Recall that,
when G is bipartite, the answer of the questions (1.6.1) — (1.6.4) is yes. A
fundamental observation for the study on triangulations of edge polytopes of
non-bipartite graphs is

Lemma 2.1 ([Stu, Lemma 9.5]).  Suppose that G has an odd cycle, i.e.,
dimPg = d—1 and let G’ be a subgraph of G. Then, Pg: s a simplex with
dimPg = d— 1 if and only if (i) G’ is a spanning subgraph of G having d
edges and (i) every connected component has exactly one odd cycle and 1t is a
unique cycle in the component. Moreover, the normalized volume of a simplex
Per of dimension d—1 is equal to 2"~1, where h is the number of the connected
components of G'.

In general, when two subgraphs G; and Gy of G are disjoint, i.e., have
no common vertex, a bridge of G; and G5 is an edge combining a vertex of
G, with a vertex of G3. Following [Sta], we say that a finite graph G is an
FHM-graph if an arbitrary pair of disjoint two odd cycles C' and C’ in G have
a bridge. It is shown implicitly in [F-H-M] that the edge polytope Pg of a
finite connected graph G is normal if and only if G is an FHM-graph.

Theorem 2.2 ([O-H;]). Let G be a finite connected simple graph. Then, the
following conditions are equivalent:

(1) the edge polytope Pg is normal;

(ii) the edge polytope Pg possesses a unimodular covering;

(1) G is an FHM-graph.

Sketch of Proof. First, if G has two odd cycles with no common vertex and
with no bridge, then the edge ring K[G] is not normal since G is connected.
Thus (i) = (iii); while (ii) = (i) is known. Now, to see why (iii) = (ii) is
true, suppose that G is a non-bipartite graph on [d] and let A denote the set
of all spanning subgraphs G’ of G having d edges such that every connected
component of G’ has exactly one odd cycle and it is a unique cycle in the
component. Then, by Lemma 2.1, we have Pg = Ug/eaPg'. Let T' denote the
subset of A which consists of all connected subgraphs G’ € A. Now, [O-H;,
Lemma 2.5] guarantees that, in an FHM-graph G, Pg = UgrerPg:. Since the



normalized volume of Pg: with G’ € A is 1 if and only if G’ € T, we have (iii)
= (ii) as required. Q. E. D.

At present, we do not know an example of a normal (0,1)-polytope which
possess no unimodular covering.

We now describe the normalization of the edge ring K [G] of an arbitrary
graph G explicitly. Let, as before, G be a finite connected simple graph
on the vertex [d]. A pair I = {C,C'} of disjoint two odd cycles in G is
called ezceptional if neither C' nor C’ has a chord and if II has no bridge.
Given an exceptional pair I = {C,C’} in G, we write My for the monomial
(Leveyts)Tjev(enti) in Klta, ..., ta], where V(C) is the vertex set of C.

Theorem 2.3 ([O-H;]). Let G be a finite connected simple graph on the
verter set [d] and K[G] the edge ring of G. Let II; = {C1,C1},..., 0, =
{Cqy, Cy} denote the exceptional pairs in G. Then, the normalization of K[G]
is generated by the monomials Mn,, Mn,, ..., Mn, as an algebra over K[G].
More precisely, as a module over K[G], the normalization of K[G] is generated
by those (square-free) monomials of the form M, My, - Mp,, with 1 <
i <y < oo < < g such that (V(G )UV(C))N(V(C,)UVI(C!)) =0
forall1< f<g<Lt.

Sketch of Proof. The normalization of K[G] is isomorphic to the Ehrhart ring
[O-Hs] of the edge polytope Pg of G. The technique appearing in the sketch
of proof of Theorem 2.2 enables us to describe the Ehrhart ring of the edge
polytope Pg explicitly. Q. E. D.

In [O-H,], we study a finite connected graph G allowing loops and having
no multiple edge and its edge ring K[G]. Then, the above Theorem 2.3 is also
valid if we regard a loop is an odd cycle of length 1. Moreover, if G is discon-
nected and if Gy, ..., Gy are the connected components of G, then the normal-
ization of K'[G] is the tensor product of the normalizations of K[G1], ..., K[G}]
over K. Hence, the normalizations of all affine semigroup rings generated by
quadratic monomials can be obtained. To describe the normalizations of edge
rings is of interest, however, the highlight of this section is the existence of a
unimodular covering of a normal edge polytope. We also remark that Theorem
2.3 is also obtained in [S-V-V] independently by purely ring-theoretical tech-
nique without the notion of Ehrhart rings. However, in [S-V-V], they never
discuss unimodular coverings of edge polytopes.



3 An exciting example

It was conjectured that P is normal if and only if Pg possesses a regular
unimodular triangulation. On the other hand, for a long time, it was unknown
if there exists a lattice polytope (not necessarily (0, 1)-polytope) which pos-
sesses a unimodular triangulations and none of whose regular triangulations is
unimodular.

We are now in the position to discuss an exciting example of normal edge
polytope none of whose regular triangulations is unimodular. The first example
of a normal (0, 1)-polytope none of whose regular triangulations is unimodular
given in [O-H,] is the edge polytope of the following graph below.

It then turns out that this edge polytope does possesses a unimodular trian-
gulation (Firla and Ziegler, De Loera). No other example of a lattice polytope
which possesses a unimodular triangulation and none of whose regular trian-
gulations is unimodular must be known. On the other hand, at present, we do
not know an example of a normal edge polytope which possesses no unimodular
triangulation.
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Let (R, m, k) be a complete Gorenstein local ring. We consider the fol-
lowing subcategories of the category mod R consisting of finitely generated
R-modules:

CM(R): the category of maximal Cohen-Macaulay modules.
F(R): the category of modules with finite projective dimensions.

Let us remind the definition of Cohen-Macaulay approximation.

Theorem 1 (Auslander-Buchweitz [2], Kato [3]) An arbitrary M €

mod R has the following exact sequences.

0—=Yy = Xy—M—0  (Cohen-Macaulay approzimation),
0>M—-YM 5 XM 50 (finite projective hull),
0-X—>M®P—Y —0 (origin extension )

where Yar, YMY € F(R), Xpr, XM, X € CM(R), and P is a free module.

Two modules M and M’ are called stablly equivalent and denoted as M £
M if projective modules P and P’ exist such that M § P = M' @ P'. A
stable module refers to a module without non-zero free summand. For a full

subcategory C of mod R, the projctive stabilization C is defined as follows.

o Each object of C is an object of C.



e For M,N € (C, a set of morphisms from M to M’ is
Homp(M,N)/P(M,N) where P(M,N) := {f € Homp(M,N) |
f factors through some projective module}.

We can identify an element of C as a stable equivalence class of a module in
C.

We want to know
st
My::{MEmodRIYM%’Y}

for a fixed Y € F(R).

It is easy to see the following. For the proof, see [4] for example.

Remark 2 Let M and M' be an element of My with the minimal finite pro-
jective hulls

0-yaprDxM_ o

0-vaepr Y xM o
The following conditions are equivalent.

st
1) M2 M.

2) There exist isomorphisms iy € Homp(XM™, XM") and iy € Autp (Y)
such that tx f — giy factors through a projective module.

For two homomorphisms f : M — N and g : M’ — N’, we write f ~ ¢ if
isomorphisms iy : M — M’ and iy : N — N’ exist such that iprg — fin fac-
tors through projective. Each element of My bijectively corresponds to that of
Uxecam (ry Homp(Y, X)/ ~. From the viewpoint of Cohen-Macaulay approxi-
mations, naturally we feel like regarding My as a subcategory of CM(R). We
shall do this by using a functor 7' : mod R — CM(R).

1 Functor 7.

For M € mod R, TM := Q& 'tr Q& 'trM with d := dim R is a stable Cohen
Macaulay module. There is a natural map @y : M — TM for each M €
mod R. To obtain this, let Fjs, be an R-free complex such that

dp dp
= Fary B Py B Fayg— M



is the minimal free resolution of M and
drure” drp,
= Fyt, S Fyg 5 Fui—tt M

is the minimal free resolution of tr M. Since R is Gorenstein, Q% (tr M) is a

stable Cohen-Macaulay module. We can take an exact free R-complex

oy,

EMQ:"'_)EMn EMn—l_)"‘

with Cokerdg,, ;" = Q%' (tr M). The identity map on Q& (tr M) induces a
chain map ¢, : Fare = Enme with @pr, = idp,,, for n < —d.

Faye: ooo—= Fan — Fuo — Fyoy — = Fy_gpn — Fuog — -
J"Pl lv’u lw_l l¢—4+1 “
Esme: = Eyy — Emo — Byoy — - — Ey_gp — Ey_q — -

Obviously TM = Coker dg,,, and ¢ is induced by ¢pr,. Remember that
E, is completely exact, that is, both Exre and Epy dualized by R are exact.
The chain map ¢ becomes isomorphism on sufficiently small degree, and is

unique up to chain homotopy with respect to this property.

Lemma 3 1) M & TM if and only if M € CM(R).
2) TM is zero if and only if tr M € F(R).

3) Each homomorphism f : M — M' of modules induces a homomor-
phism Tf : TM — TM'such that Tf opr ~ emf. In other words, T
defines a functor mod R — CM(R).

proof. From the construction above, it is easy to see Cokerdg,,,” £ Xir M
and ¢,* induces the stable part of the map X¢; 5, — tr M. Hence 1) is
obvious. While we have Ey;, = 0 if and only if Xi; ,, is free, which means
tr M € F(R).

We shall prove 3). Given homomorphism f induces a chain map f, :
ToFre — ToFnre, which again induces the lower part fo : Farg — Fuyr,. The

negative part

freq: Fuv-a — Fu_g froasr: Fu—aor — Furogn
[ [ and I [

Enr—a Eni_g Ey_ g4 Eyv_gq



induce a chain map fg, : Eye — Emr,. Since o fr; — friom; = 0 for
i < —d, ormofFe — fEJPM, is homotopic to zero. As the chain map fg,
induces 1'f, oar f — T fonr factors through projective. (q.e.d.)

Proposition 4 Let § : 0 - A — B — C — 0 be an exact sequence of R-
modules such that the sequence 0 — C* — B* — A* — 0 dualized by R is also
eract. The given sequence induces the following commutative diagram with

exact rows
- A - B - C = 0

l@A lgbB l«pc
0 - TA - TBeP — TC — 0
where P a free module and the stable part of ¢g is ¢p.

proof. The assumption says that tr 8§ : 0 - tr C - tr B®Q — tr A — 0
with some free module @ is exact; [2], Lemma (3.9). It follows that the chain
map Or, : T1Fcep1 — ToF4e corresponding to § is extended on the negative
part to the chain map 0, : Fpeyy — Fa,. Similarly as in the proof of 2) of
Lemma 3 , we get a chain map 0g, : Frey; — Fa, such that the diagram

OF
FC. — FAo—l

e [

73]
EC. = EAo—l

commutes up to homotopy; Og.0c, — Ya.0re = dE,he — hedr,,. This leads

us to the commutative diagram with exact rows

0 — F4 — Cone(fr), — Feo — 0

o 5. Je.

0 —» E4 — Cone(0g), —» Eco — 0

% — (SOA. h. )
* 0 o,

We easily observe the following:

where

o Cone (0F), is a direct sum of Fp, and the split exact sequence of free

modules.
o Cone (0g), is completely exact as well as E4, and Ec¢,.

® g, is an isomorphism for 7 < —d.



st
In other words, Cone (0r), = Fp, with Coker dcone (65), = B, Cone (0g), =

st
Eg,, and pg = ppg. Taking the 0-th truncation homology of the diagram, we

get the required diagram. (g.e.d.)

The next Lemma gives us a key to the classification by the functor T'.

Lemma 5 Let M € mod R and X € CM(R). For every f € Homgp(M, X),
there exists f' € Homp(T M, X) such that f ~ ' oum.

proof. From 3) of Lemma 3, T fom — @ox f factors through projective. The
first statement 1) of Lemma 3 tells us ¢x is an isomorphism on stable part.

Applied px~1, px~! Tfop — f factors through projective. So we may take
f'=pxtTf. (qed)

Now fix a stable module ¥ € F(R). As we mentioned in Remark 2, each
element of M € M is determined by a stable part f of the surjective map on

the minimal finite projective hull
0—>M—>Y€5P(ﬁ>)XM——+O.

In terms of the above lemma, there exists f' € Hompg(TY, X™) such that f ~
f'oar; in other words, the natural map ¢y : Y — TY yields a generator of My-.
For each element of My, we can find an element of Uxecat(r) Homp(T'Y, X).
Our next step is to get the relation that determines the class corresponding to

each element of My.

Proposition 6 The following are equivalent for f,9 € Uxeea(r) Homr(Y, X).
1) f~y.
2) Tf~Tyg.

By Lemma 5, f ~ Tf ¢y and g ~ T'g ¢y. So Proposition 6 is equivalent
to the following.

Proposition 7 The following are equivalent for f',¢" € Uxeca(r) Homr(TY, X).
1) f'~g"

2) flgoy ~ gl(py'



proof. 2) = 1). Let f' € Homg(Y,X) and ¢’ € Homg(Y, X’) for X, X' €
CM(R). We may assume X and X’ are stable. By assumption, isomorphisms
ix € Homp(X,X’) and iy € Autp Y exist such that ixfloy ~ ¢'oyiy.
The isomorphism 7y induces isomorphism 77y € Autgp Y. We claim that
ixf' ~ g'Tiy. Homomorphism f’, ¢’, iy, ix and Ty of modules induce chain

! !/ . . .
maps f o) 9 o1 LFyqy UFx, and lEye-

B, 2 By, O Fx,
lin'. liEY. lin.

Fro 5 By, & Py,
It is easy to see ¢',@y,iFy, = ixof sy, Up to chain homotopy. Also we have
©YoiFy, = LEy,PY,. up to chain homptopy, and ¢y is isomorphic on degree
less than —d+ 1. Therefore ¢’ i, , = ix.f’, on degree less than —d +1, hence
on every degree, since Fy,, Fx, and Fx/, are all completely exact.

Now for the harder part 1) = 2). For given f' € Hompg(TY, X), clearly

ix oy ~ f'oy. So we have only to show f'oy ~ f'izypy for arbitrary ipy €
AutpTY . Using Lemma 8, we can take some homomorphism p and p’ from free
modules to Y such that both of (f'¢y p) and (f'iryey p') are surjective and
Ker (f'¢y p) z Ker (f'iryey p'). The last relation implies f'oy ~ flirypy
from Remark 2. (q.e.d.)

Lemma 8 Let X,Y,Z € mod R and let ¢ € Homg(Y,Z), f € Homg(Z, X)
and 1 € AutrZ. Take homomorphisms p and p’' from some free module to X

such that (fop) and (fipp). Then Ker (fp p) £ Ker (fip p).

proof. Take 7 : P — Z with a free module P to make Y @ P 1) 7 surjective
and put N := Ker(pm). Take p : @ — X with a free module Q to make
YoQ 7o x surjective and put U := Ker (fp). Putting M := Ker (f¢ fr p)



and M’ := Ker (fip fir p), we shall show M z M’
0

!

0 = N - Y®P®Q ‘=’ Z®Q — 0
| [
- Y®POQ

0 —

Ce— Te— T —

Considering the mapping cone of f, : Fz, — Fx, induced by f and ¢, : Fy, —
Fz, induced by ¢, we have

Fx, Fn » Fzy,  Fyy
U £ Coker By (drxz S , N £ Coker Foi ((drzz o1 .
70 \ 0  dry, Yo\ 0 dr,

It is easy to see

Fzy, Fyy Fxy Fz

Fx, Fyy Fz, (dr,y, 1 0 1

Fx, (dez f1<p1) ét: Coker Fyy 0 dFle 0. 0
0 dry, Fx,| 0 0 dryy,
Fzo 0 0 0  dpy,

st
M = Coker
Yo

As an element of Extg(U, N), the right-handside is isomorphic to

Fzo Fyy Fxy, Fgy

Fzy (dpy,y, o1 0 4t Fx, Fyy
Coker Fro 0 dry, 0 0 g’ Coker Fxi [dry,  fitier '2’ M.
Fxy 0 0 dry, hi Fyo 0 dpy,
Fzo\ 0 0 0 dpy,
(q.e.d.)

We are now to state the conclusion of this section. The proof is straight-

forward from Proposition 6 and Proposition 7.



Theorem 9 There is a one-to-one correspondence between isomorphic classes

of My and those of Uxecrmry Homp(TY, X)/ ~.

Example 10 Let R := k[z,y]]/(zy). All the My’s for any indecomposable
Y € F(R) are isomorphic to each other, since TY = R/zcR&® R/yR.

2 Approximations.

Let M € mod R. The natural homomorphism ¢ : M — TM is not sur-
jective in general. The minimal projective cover Py — Coker s induces a
homomorphism s : Ppy — T'M to make @i : M@ Py Conr 7o
Denote Ker gy := NM.

Now let Y € F(R) and M € My. Lemma 5 is described as the following

commutative diagram that commutes up to projective modules

‘M surjective.

0 - NY —- YoPh — TY — 0

| e

0 - M - yM 5 XM 9

where the stable part of idy is an identity map on Y. In other words, NY ¢
My is a generating element of My. What is the difference between a generic
element of My and this NY?
Since the finite projective hull of M remains exact when dualized by R,
from Proposition , we have a commutative diagram
0 - MePy — YMePy — XM - 0
|5 s e

0 — TM - TYMgP > TXM 5 0

with free modules P and Pps. We may take as ¢pr and pym are surjective.
Notice that ¢ x ar is isomorphic. Observing this, we have the following Lemma.

Lemma 11 ForY,Y' € F(R), NY 2 NY' if and only if Y Ly,



proof. On the pushout diagram
0 0

| l

0 — NY - Y®oFP — TY — 0

| | n

0 - Yah — W —- TY — 0

! l

TY’ = TY'
| |
0 0

the second row and the second column both split; Y ® Py ®TY Y’ @ Py @
TY'. Since TY and TY" are stable Cohen-Macaulay, Y @ Py =Y @ Py. The

converse is clear. (q.e.d.)

Next we introduce a new type of approximation that is a dual notion of
the origin extension. Let us consider a full subcategory of mod R; N(R) :=
{M € mod R | TM = 0} which is a dual of F(R). A Cohen-Macaulay module

with positive codimension is contained in A'(R).
Theorem 12 For an M € mod R, there is an ezact sequence
0>Z—->M®P—-X—0

with Z € N(R), X € CM(R), and a free module P. We call this exact

sequence « NCM-approximation of M.

Definition and Theorem 13 A NCM approzimation 0 — Z — M @ P —
X — 0 of M with minimal rank of P is called a minimal NCM approzimation
of M. Each NCM approzimation of M is a direct sum of a minimal NCM

approzimation of M and some split exact sequence of free modules.

As we see in next example, two categories A'(R) and CM(R) do not an-
nihilate each other. In other words, NCM approximation is an approximation

without Auslander-Buchweitz context.

Example 14 [t is obvious that k € N(R). However Exth(k, X) # 0 for any
X €CM(R) if dmR=1.



References

(1] M.Auslander and M.Bridger, “ The stable module theory,” Memoirs of
AMS. 94.. 1969.

(2] M.Auslander and R.O.Buchweitz, The homological theory of mazimal
Cohen-Macaulay approzimations, Soc. Math. de France, Mem 38(1989),
5-37.

(3] K.Kato, Cohen-Macaulay approzimations from the viewpoint of triangu-
lated categories, to appear in Comm.Alg.

[4] T.Kawasaki, Local cohomology modules of indecomposable surjective-
Buchsbaum modules over Gorenstein rings, J. Math. Soc. of Japan 48
(1996), 551-566.



Examples of Local Rings

Jun-ichi NISHIMURA

Mathematics, Sapporo College, Hokkaido University of Education,
Sapporo, 002, JAPAN
email: nisimura@atson.sap.hokkyodai.ac. jp

INTRODUCTION

BE<HshTWnasXSIT,
1. LREx—4 8 A OfE Q(A) DARRREIERGE L IT5
FN2 ADKB B(ACBCL) BWDObX—¥—EHTHS,
2. 2RFTEF—F—BIR A OBPD AZF—F—REMN AL AD
FEER B(AC BC A) 3T LbR—F—ERTIERWN,
3. 3RTHR—F B A OBBAG A I Krull |WRED, £FLdFR—
& —BR TN,
Z T,
1. 2RTEF—Y—RFAEE A T, A LBHAE A LOFMERE BN
F—& —BR TR
2. 2RTER—F —ERRFBE A THEITHIBK TRV,
3. SRTF—F—RFAEH A T A OEHAG A NRx—F—|TRK
218
25X 5,
ISR T B, BOEEN2THD, LML, 0280—
RERTRBROFIVERTE S (137,

Example 0.1. k 2VE¥ 2 O, R = k[X? X?], P, = (X2, X})R;
(i=1,2,...) N R, OBMKAF TN THBELE, R =@R &, TOM
BfE S=R\UPR K&V, LRT*—¥—%H R=R; 2565,

&T. R=R[Xy,...,X;...] € R OBWKICBI2EMHE, C =
R[[T)], D = R[[T]] T. ¥hZh. R-FEE—EHRNEHRER. RHEEK
—EENREBBERERT.
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Example 0.2. R, R, EER#k. C = R[[T,U]]], D= R[[T,U]] T.
FNTN. RABCERREREER,. R CERNERIHREERT.
D 0)7—{:(4)1 = ZiXZi—lTi\ Wy = ziXQjUj E&D\ W = wi + wsy &



F<. 0w C OFfk QIO) KIIEENRWV, LAL, C DEAFTT
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Example 0.3. 512, 3RmTFx—F —8 Clw] DEZEDEAA T
7 M TORFHE Cluly 2. %DT A, ZOBWEICBIT2RHBaZ
ALRT. D ARR—F—BTIIRN,

1. TWO-DIMENSIONAL LOCAL DOMAIN WHICH HAS NON
NEOTHERIAN INTERMEDIATE DOMAINS WITHIN ITS DERIVED
NORMAL RING.

Let k be a field of characteristic 2. Taking indeterminates X;, we set
R; = k[X?, X}] with (fixed) maximal ideal p; = (X2, X3), i =1,2,....
Put R' = ®R; and S = R'\ |J,p;R’. Let R = Rs. Then
e Maximal ideals q; of R are in one-to-one correspondence with N
via 1 — q; = le

® Ry, = (Ki®:Ri)s,, where K; = k(... , Xi;_1, Xiy1, ... ) is an exten-
sion field of £ and q; = q;(K;®x R;). (Note that p; is an absolutely
prime ideal.)

e Any non-zero element of R is contained in only a finite number of

maximal ideals.

Hence R is a one-dimensional Noetherian domain with field of quotients
K = k(Xy,...,Xi,...) [1]. Let R be the derived normal ring of R.
Then R = R[X1,..., X, ...] and the set R? = {r? | r € R} is contained
in R. Moreover, for any non-zero prime g; of R, R, is not normal, but
its derived normal ring Ry, is a finite Ry,-module.

Now taking two more indeterminates T and W, we set B = R[[T]],
C = RJ[[T]]. Let

(1.1) w= iXiT" € C,
(12)  f(W)=W?-uw®€ B[W]and g(W) =W —w € C[W].

Then f(W) = g(W)? in C[W] and the set C[W]? = {h? | h € C[W]}
is contained in B[W]. We claim



Lemma 1.1. f(W) is a prime element of B[W].

Proof. We note that g(W) is a prime element of C[W], because C —
CW]/gCW]. Put Q = gC[W] N B[W] a prime ideal of B[W]. Then
the set {¢? | ¢ € Q} is contained in fB[W]. Hence Q* C fB[W] for
some sufficiently large v > 0. Consequently, @ is the only minimal
prime of the principal ideal fB[W]. Moreover, as B[W] is (locally)
Cohen-Macaulay, @ is the only associated prime of fB[W]. Therefore,
to get the assertion, it is sufficient to show

(1.3) f(W) is a prime element of B[W]qg.

Let L be the field of quotients of B. Then, as @ N B = (0), (1.3) is
equivalent to

(1.4) f(W) is irreducible in L[W].

Proof of (1.4). Suppose that f(W) is reducible in L[W]. Then
f(W) = (W 4+ w)? in L[W]. Hence, we find o, 3 € B such that
w = fB/a, that is, aw = 3. Let

(1.5) o= Z anT™ and = anT" with a,,, b, € R.

m=0 n=0

We compare the coefficients of 7™ in the relation above. Then

(1.6) Z amX; = b, for any n > 0.

m+j=n
So, if we write a = a,, where mg = min{m | a,, # 0}, we have
@’ X; € R for any j > 0. Consequently

(1.7) R=R[X1,Xa,...,Xj,...] C Ra.
This contradicts our first remarks. Thus (1.4) is proved. O

By Lemma 1.1, B[w] = B[W]/fB[W] is a two-dimensional Noether-
ian domain, which is canonically contained in C. Take a maximal ideal
m of B and a maximal ideal ¢ = mN R of R. Let B}, be the T'B-adic
completion of By,. Then B: = Ry[[T]].

Let n be the corresponding maximal ideal of C' and Cy be the T'Cy-
adic completion of C,. Then C% = Ry[[T]] = B, ®r R, because Ry is
a finite Ry-module. Hence C; ®r K = B;, ®r K.

. Now put M = nNB[w]. Then the T B[w]y-adic completion (Blw]p)*
of B[w]ys is isomorphic to B:[W]/fBx[W]. Thus

(18)  (Blwlm)" ®r K = (C; ®r K)[W]/F(C; ®r K)[W].



On the other hand, we have already seen that f(W) = g(W)? in
C[W] (cf. (1.2)). Therefore

(1.9 (Blw]ar)* is not reduced.

Lemma 1.2. With notation above, let a be a non-zero element of
M B[w)y and (Blw]a)*™* the aBlw]y-adic completion of Blw]y. Then
(Blw]a)** is not reduced.

Proof. Suppose that (Blw]a)** is reduced. Then, as Blw]y/aB[w]y
is a Nagata ring by our first remarks, Marot’s Theorem [2] implies
that (B[w]a)** is a reduced Nagata ring. Hence, B[w]y, is analytically
unramified. Contradiction (cf. (1.9)). O

Let P be a height-one prime ideal of B[w]ys. Since the regular local
ring C, is integral over Blw]y, there exists a prime element 7 of C,
such that 7C, N B{w]yr = P. Let a = 7% € Blw]y and (B[w]a)** the
aB[w]y-adic completion of B{w]ys. Then, as aBlw]ys is P-primary, we
have a canonical injection: (B[w]y)** — (B[w]p)". Hence

(1.10) (B[w]p)" is not reduced (cf. Lemma 1.2).

Lemma 1.3. With notation above, let Blw|y be the derived normal
ring of Blw]y and (Blw]a)* the TBlw]ym-adic completion of Blw]a.
Then (Blw]y)* = Cr. Hence (Blw]u)* is a regular local ring.

Proof. First we note that, because B[w]y, is two-dimensional, B[w] s is

Noetherian [3, (33.12)]. Next, as C,, is integral over the normal domain

Blw]p, we see that T¥C,, N Blw]y = T Blw] for any v > 0.
Moreover, there exist canonical injections

(1.11) Ry — Blw|p/TBw]y — Co/TCy = R,.

Thus we have an isomorphism: Blw]u/T”Blw]y — Cy/T"C, for any
v>0. O

Example 1.4. With notation above, take a non-zero element a of
MBlw]y and let D = Blw]y N (Blw]ar)[1/a] the integral closure of
Blw]pm in (Blw]a)[1/a]. Then D is not Noetherian.

This gives an example of a two-dimensional local domain which has
an infinite number of non Noetherian quasi-local over-rings between
the domain and its derived normal ring.

Proof. Suppose that D is Noetherian. Because a”Blw]y N D = a”D
for any v > 0, we have a canonical injection

(1.12) D/a’"D — Blw]p/a” Blw]y for any v > 0.




Then the aD-adic completion D** of D is reduced (cf. Lemma 1.3).
Now take any prime ideal Q" of D which contains aD. Let Q be the
prime ideal of Bw]ys such that @ N D = Q' and let Q = Q' N Blw]u.
Note that the residue field x(Q) is a finite algebraic extension of x(Q)
(cf. [3, (33.10)]). Then, because Blw]r/Q is a Nagata ring, D/Q’ is
a finite (B[w]p/Q)-module, and D/Q’ also is a Nagata ring. Conse-
quently, D/aD is a Nagata ring. Therefore, D** is a reduced Nagata
ring by Marot’s Theorem [2]. Hence D is analytically unramified. Thus,
for any prime ideal P of D[1/a] = (B[w]wm)[1/a], Dp(= Blw]p is also
analytically unramified. This contradicts (1.10). ]

2. TWO-DIMENSIONAL LOCAL DOMAIN WHICH IS ANALYTICALLY
RAMIFIED AND THREE-DIMENSIONAL LOCAL DOMAIN WHOSE
DERIVED NORMAL RING IS NOT NOETHERIAN.

Let k be a field of characteristic 2 as above. Taking indeterminates Y;,
Z;, we set Ry = k[Y2, Y] with (fixed) maximal ideal py; = (Y}, Y}?)
and Ry = k[Z?,Z}] with (fixed) maximal ideal py; = (Z7,Z}) for
3,7=1,2,.... Put R' = ®:Ry; ®% ®kR2j and S = R’ \ Ue,! pee R with
e=1,2and £=1,2,.... Let R = Rs. Then

e Maximal ideals q;; and qg; of R are in one-to-one correspondence

with {1,2} x N via (¢,£) — qee = peeR.

o Ry, = (Ku ®k Ru)g, with gui = q1:(K1 ®& Ry), where Ky; =

k(...,Yio1,Zi1,Z;,Yit1, Zita, . . . ) is an extension field of k.
o Ry, = (Ka; ®x Raj)gy, With Go; = a2;(Ka; @k Ry;), where Ky; =
k(...,Y;-1,2Z;-1,Y;,Y41, Zjt1, - - - ) is an extension field of k.
e Any non-zero element of R is contained in only a finite number of
maximal ideals. ’
Hence R is a one-dimensional Noetherian domain with field of quotients
K=k,2,...,Y:,Z;,...). Let R be the derived normal ring of R.
Then R = R[Y4,Z1,...,Y:, Z;,...] and the set R? = {r? | r € R} is
contained in R. Moreover, for any non-zero prime q of R, R is not
normal, but its derived normal ring R, is a finite R-module.

Now taking three more indeterminates T, U and W, we set a three-
dimensional Noetherian domain B = R[[T]], a three-dimensional regu-
lar ring C' = R[[T]] and let

(2.1) W) = ZY,T’} Wy = ZZjUj € C and w = wy + ws,

i=1 j=1

(22)  f(W)=W?-w?€ B[W]and g(W)=W —w e C[W].



Then f(W) = g(W)? in C[W] and the set C[W]? = {h? | h € C[W]}
is contained in B[W].

Let L be the field of quotients of B. Then a similar argument as in
the proof of Lemma 1.1 shows that

(2.3) w ¢ L, and f(W) is a prime element of B[W].

Take a prime ideal P = (T,U)B of B, then Bp is a two-dimensional
regular local ring with its completion Bp" = K[[T, U]]. We get

Example 2.1. With notation above, let Blw] = B[W]/fB[W] and let
@ be the prime ideal of B[w] such that @ N B = P. Then

(2.4) Blw]g = Bp[w] is normal.

This gives an example of a two-dimensional normal local ring which
is analytically ramified.

Proof of (2.4). Let a be an element of L(w). Then « can be expressed
as B + yw, where (3, v € L. So the element « is integral over Bp[w] if
and only if

(2.5) B + v*w® = B* + y*w? € Bp.

Let f =b/a and v = c/a with a, b, ¢ € Bp. Then (2.5) is expressed as

24 2 2
(2.6) H% = d € Bp, that is, b? 4+ c*w? = da®.
We claim

(27) ¢ € aBp.

Before we show (2.7), we make some more remarks in fixing notation.
First, we note that Bp is the ring of quotients of B with respect to the
muultiplicatively closed set

S ={)_r,T'U’ € R[[T,U]] with oo # 0}.
i,j
Then, for any element = of Bp, we can find a non-zero element s of

R such that z € R[[T,U]]. Hence we may assume that there exists a
non-zero elements s of R such that

a, b, ¢, d € R[[T, U]] and that

2.8 e
(28) a, b, ¢ have no common divisor in Bp.



Thus, we can express a, b, ¢, d as formal power series in T" and U with
coefficients in R,:

a= ZaijTin, b=ZbijTin’ c= ZC,;J‘,Tin,
(2.9) W - W ' W
and d = d,;T*U%
i,j
where Qij, bij, Cij, d,’j € R, (’L, ] = O, 1,2, .. )
Next, comparing the coefficients of T%U? in (2.6), we have
(210)  bh+ > A YZ 4 D duZi= Y dundl,

my+ma=1i ni+na=i k1+ka=i
£1+E2=]

for any non-negative integers ¢, j. :
If a ¢ PBp, our claim (2.7) is clear. Hence we may assume that
a € PBp. This means that agy = 0 in (2.9). Moreover, we remark

(2.11) There exists an ¢ > 0 such that a;o # 0.

Proof of (2.11). Suppose that a;o = 0 for any « > 0. Consider the
relation (2.6) modulo UR;[[T, U]]. Then, denoting by Z the class of an
element z of R,[[T, U]] modulo UR,[[T, U]], we have b* + c*w? = 0.
Consequently, as w? = w? and b¢ # 0 (cf. (2)), w is contained in
the field of quotients of R,[[T]]. The proof of (1.4) shows that this is
impossible. a

Finally, because Bp" = K|[[T,U]] is faithfully flat over Bp, to get
our assertion, it is sufficient to show

(2.12) ¢ € aR[[T, U]] for some non-zero element s of R.

Proof of (2.7). With assumptions and notation above, suppose that
c & aBp. Let ig = min{i | a; # 0} (cf. (2.11)). By (2.12) above, we
may also assume

(213) Aig0 = 1.

Now let jb = min{j | ¢;; # 0 for some ¢ > 0} and 4, = min{s | ¢;j, # 0}
Then, by adding a suitable multiple of a to c if necessary, we may
further assume

(214) i1 < g and Citjo = 1 (Cf (212))

From now on, we fix a non-zero element s of R which ensures the
assumptions (2), (2.13) and (2.14). Under these assumptions, we shall



show
(2.15) Z; € Ry[11,Y,,...] for any j > 0.

Proof of (2.15). First we check two preliminary steps.

Step 1. Let n > —1. Putting R,[Y1,Ya,...]2 = {f?| f € R,["1,Y2,...]},
we suppose that

(2.16) dij € Rs[Y1,Y3,...]* for any j < n and i > 0 and that
(2.17) Zy € R[Y1,Ys,...] for any k <n—jo+ 1.

Under these assumptions, we compare the coefficients of T2(o+:){y2(n+1)
n (2.6). Then

2 2 2 2 2
b(i0+i)("+1) + Z le(n+1)Ym2 + Z C(io+i)n1 an
mi+me=io+i ni+nz2=n+1

(n2<n—jo+1)

= di(ny1) + > dinal,, (cf (210), (213), (2.14)).

k1+k2=ig+i
O1+£€o=n+1
(k1<i or £1<n+1)

By induction on ¢ > 0, we get din41) € Rs[Y1,Y2,...]? for any ¢ > 0.
Step 2. Let n be a non negative integer. Suppose that
(2.18) dij € Rs[Y1,Ys,...]* for any j < n and 4 > 0 and that
(2.19) Zy € Ry[Y1,Ys,...] for any k < n — jp.

Under these assumptions, we compare the coefficients of T2 U2(™+1) in
(2.6). Then

b"?l (n+1) + Z c?nl (n+1) Y’n?l,z + Z c?]’lu Z’I%z

m1+me=i1 nit+nz=n+1

(n2<n—jo)
= > dundk,, (df (210), (214).
k1+k2=11
£&1+L=n+1
(2>0)

Hence Z(n_jo41) € Rs[Y1,Y2,...].
Now we prove (2.15) by induction. Let m be a non negative integer
and suppose that

(2.20) Zy € Rs[V1,Ys,...] for any k < m with Z; = 0.

By double induction on 4 and j, we see that di; € R,[Y1,Y3,...]* for
any 7 < m+ jo and for any ¢ > 0 (cf. Step 1).



Hence, the assumptions (2.18) and (2.19) in Step 2 for n = m+j, are
fulfilled. Therefore Z,,11 € R,[Y1,Y5,...]. This completes the proof of
(2.15). O

Final step of the proof of (2.7). By (2.15), we have
(2.21) R=RY1,2,,...,Y:,Z;,...] C RN, Ys, ... ].
This contradicts our first remarks of this section. a

Final step of the proof of (2.4). We have already shown that v € Bp
(cf. (2.7)). Then B becomes also integral over Bp. Hence 8 € Bp,
because Bp is regular. Thus o =+ yw € Bp[w]. O

Example 2.2. With notation above, take a maximal ideal M of Blw).
Then Blw]y is a three-dimensional Noetherian local domain. Let
Blw]ys be the derived normal ring of Blw]y. Then

(2.22) Blw]ys is not Noetherian.

This gives an example of a three-dimensional local domain whose
derived normal ring is not Noetherian.

Proof of (2.22). Suppose that B{w]ys is Noetherian. Let n be the max-
imal ideal of C such that n N Blw] = M and let M N R = q, say qy;.
Then, because C, is integral over the normal domain B{w]ys, we have

(2.23) Z7Co N Blw]y = Zj Blw]y for any v > 0.
Further, there exist canonical injections:

Ko([T, U]l = B/2;B — Blw]u/Z; Blwlm — Ca/Z;Cn = Ky4{[T, U]].

Hence, we have an isomorphism

(2.24) Blw]y/Z; Blw]y = Co/ZjC, for any v > 0.

Now let (B[w]ar)*™* be the Z; Blw|p-adic completion of Blw]y and C;*
the Z;C,-adic completion of C,. Then

(2.25) (Blulw)™ = C>*  (cf. (2.24)).

Then, Blw]y is regular, because C = R[[T]] is a three-dimensional
regular ring. Thus, because Blw|ygy = Blwlg, Blw]g is analytically
unramified, and this contradicts Example 2.1. a
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1 Introduction

Let k be an algebraically closed field of characteristic zero. Let k[z,y] be a polynomial ring in two
variables z,y over k, let A = k[z,y, f~!] for an irreducible element f of k[z,y] and let X = Spec A. Let
a : X — X be an étale endomorphism of X as an algebraic variety. For A\ € k, F, denotes an affine
curve defined by f = A. Then a family of curves A = {F); f = A (A € k)} is called a linear pencil on A2
defined by f. Let ¢ : A2 — A! be the associated morphism. Then ¢, induces a morphism X — Al
which we denote by p: X — Al

We recall the following well-known result due to (7, 6].

Lemma 1.1 Let ¢ : X — Y be a dominant morphism of algebraic varieties X|Y. Assume that a
general fiber X, = ¢~ 1(y) of  over a general point y € Y is an irreducible curve. Then we have the
following inequalities for the logarithmic Kodaira dimensions:

R(X) 2 ®’(Y) + E(Xy) (1)
dimY +®(X,) >®(Y) (2)
Applying lemma 1.1 to the morphism p : X — AL, we obtain the inequalities
14 7(F) > ®(X) > R(AL) +R(F)

The purpose of the present article is to determine a pair (X, f) with X = Speck[z,y, f~1] and an étale
endomorphism « : X — X which is not an automorphism if it exists. Since ¢ is an étale endomorphism
and since « is not an automorphism, & < 2 by the following result of litaka [6]:

Lemma 1.2 Let X be a nonsingular algebraic variety with the logarithmic Kodaira dimension equal to
dimX. Let f : X — X be a quasi-finite endomorphism. Then f is an automorphism.

Main results of the present article are the following results:

Theorem 1.3 Assume that §(X) = —oco. After a suitable change of coordinates of k[z,y], we have

f =z. Then an étale endomorphism « of X has the following associated algebra homomorphism o* :

klz,y,1/z] — k[z,y,1/z]:
o a*(z) =cz”, o (y)=z"y+dg(z)

where c,d € k,c # 0,7 € Z,r > 0 and g(z) € k[z]. The endomorphism o is then a finite étale endomor-

phism. .

Theorem 1.4 Suppose ®(X) > 0. Then X has no étale finite endomorphisms which are not automor-
phisms, unless X is isomorphic to one of the folowing surfaces:

(1) Al x AL |
(2) A% — Fy, where Fy is a curve on A? defined by y™ — z™ = 0 for positive integers m,n with
ged(m,n) = 1.

For any of these two surfaces, there ezist étale finite endomorphisms of X whose degree ezceeds an
arbitrarily given integer.



2 Case g(X)=-00

First of all, we remark that the assumption that f be irreducible is not necessary in the present case
®(X) = —oo. In fact, we have the following result due to Miyanishi [10].

Lemma 2.1 Suppose ®(X) = —oo and that one of the following conditions is satisfied:
(1) X is irrational but not elleptic ruled,
(2) T(X,9x)* # k* and rank (T'(X,9x)*/k*) > 2 if X is rational.

Then an étale endomorphism f : X — X 1is an automorphism.

Since X = AZ — Fp, X is a rational surface and I'(X,0x)*/k* is generated by prime factors of f.
By the above lemma, rank (I'(X,dx)*/k*) = 1 provided « is not an automorphism. So, f is irreducible.
Furthermore, since P! — {0, 00} = Al and 5(Al) = 0, we have §(C) = —oo by the formula (1), where C
is a general fiber of p : X — Al. Furthermore, the second theorem of Bertini implies that C is a smooth
curve. We shall then show the following:

Claim. C = A!

Proof. Let C be a smooth compactification of C' and let D be the reduced boundary divisor. Then
C—-D = Cand k(C) = &(C, Ke+D). Ifg= g(C) > 1, there exists a section which belongs to I(C, Kg).
So, Ks+D is linealy equivalent to some effective divisor. Therefore, ho(a, n(K5+ D)) >1forn>1.
Hence %(C) > 0. Since §(C) = —oo, this is a contradiction. So, g = 0 and C = PL. Then, D consists of
one point. Since K& ~ —2P, if D consists of two or more points, h°(C, Oz(Kz + D)) > h°(C, Oz =1
we have %(C) > 0. Thus, D must consists of one point. So, C = P! — one point = A1l.

Here, we shall use the embedded line theorem of Abhyanker-Moh [1].

Lemma 2.2 Let C = A C X C A% Then there ezist coordinates u, v on Al such that k[z,y] = k[u, ]
and C is defined by u = 0.

By the above lemma, we may assume that a general fiber C of p, that is to say F for X € &, is
definded by u = 0. Then, the curve F, defined by f = 0 is defined by u+ X = 0. So, Fy = Al. We
may assume that f = z. Hence, after a change of variables, the coordinate ring A of X is isomorphic to
k[z,y,1/z]. Then, X = Al x AL

We shall show that o* is written as stated in Theorem 1.3, where o* is the algebra homomorphism
of the coordinate ring corresponding to a given étale endomorphism « of X. Note that the multiplica-
tive group A* of invertible elements of A is generated by k* and the element z. Since a* induces a
multiplicative group homomorphism from A* to A*, we may write

p(z,y)

@)=t o'y =28

where o(z,y) € k[z,y],c € k*,n,m € Z,m > 0. Then we obtain the following matrix relation for the
differentials
-1
dat@) \ _ D) (@
dorly) ) = | 2Zome | gy
z2m zm

Since o* is unramified, the determinant of this matrix must be an invertible element of A. Hence we have

z"'ltp_r"‘z =c gt forsome ¢/ € k* and £ € Z.
T

nc

Namely, we have

/
oy = L pm=ntl  with l+m—-n+1>0
ne
This implies that

p~z'y+dg(z) forsomedek,r=I1+m—n—1>0andg(z)€ k[z],



where ~ means that p(z,y) is determined by the right hand side up to an element of k*. Furthermore,
we shall show that k[z,y, 1/z] is integral over k[a*(z), a*(y), 1/a*(z)]. From the above arguments, we

have
g’y +dg(z) 1

™ ' gn

o (2), o (0) 7] = K", I

Since y = (¢"y + dg(z))/«” — dg(z)/z", we have k[z,y,1/z] = k[z,2"y + dg(z),1/z]- Since k[z,z"y +
dg(z),1/z] is integral over k[z",z"y + dg(z),1/z"] and since

z'y+dg(z) 1
m

,—
T ™

1 1
k[z", ="y + dg(z), :c_“] C k[z", ] C klz, 2"y + dg(z), ;]

we know that k[z,y, 1/z] is integral over k[a*(z), a*(y), 1/a*(z)]- So, o* is a finite étale endomorphism.
This completes a proof of Theorem 1.3.

3 Case E(X)=0

Since X = A% — Fy, X is a smooth affine rational surface. Furthermore, since A = k[z,y,1/f]is a UFD,
it follows that Pic (X) = 0. We recall first the following crucial result of Fujita [3, (8.64)):

Lemma 3.1 Let X be an smooth affine rational surface with ®(X) = 0 and Pic (X) = 0. Then X is
isomorphic to either one of the following two surfaces:

(1) X = P?— D, where D is a sum of three non confluent kines.

2) x = P? _ D, where D is a sum of a line and a smooth conic meeting each other transversally.

In the case (1), X = P?— D with D = £+ £, + £5, where £; (i = 1,2, 3) are lines. Then X = Al x Al
and the coordinate ring of X is written as A = k[z,y,1/zy].

In the case (2) X = P2 _ D with D = £, + C, where £ is a line and C is a smooth conic. Then X is
isomorphic to A2 — C, where the present A2 might differ from the A2 we started with. Hence we may
assume that f is an irreducible polynomial of degree 2. By an affine change of coordinates {z,y} of A2,
we obtain

f@.9)~a®+by+c or f(a,y)~zy+e.
The first case is excluded because the conic on P? defined by a homogeneous equation z3+bz;z24-cz? = 0
is tangent to the line at infinity £,,, which is defined by z, = 0, at (0,1,0). So, the second case remains.
we may clearly assume ¢ = 1.

Summarizing the above arguments, we know that, after a suitable change of coordinates ¢,y on A2,
the surface X = A? — V/(f) is isomorphic to one of the following surfaces:

(1) f==y,
(2) f=zy+1.

We shall start with the case (1). Let o* : A — A be the endomorphism of A attached to an étale
endomorphism o of X. Since a* sends the invertible elements of A to the invertible elements of A4, we
may write

a*(z) — Cl‘syt, (!*(y) - dI“yv (1)

with s,t,u,v € Z and ¢,d € k*. Then, taking the differentials, we have the following matrix relation:
do*(z) \ _ [ csa*~lyt  ctztyiT! dz
do*(y) )~ \ duz~ly’ dozvy’~? dy

The determinant of this matrix, which is equal to

cd(sv — tu)gs Tyt

must be an invertible element of A because o is étale. In particular, sv # tu. Conversely, if sv # tu,
the endomorphism o* defined by (1) is an étale endomorphism. Then, k[z,y,1/x,1/y] is integral over

kla*(z), o*(y), 1/ (),



1/a*(y)]- In fact, since the lattice subgroup G := ((s,t), (u,v)) of Z& Z = ((1,0), (0, 1)) is a free abelian
group of rank 2, G @z Q = Q @ Q. So, there exists an integer m € Z such that (mp, mq) € G for every
(p,q) € Z ® Z. Then, for any (p,q) € Z ® Z, we have

s, t\a u,v\b
cz’y*)%(dzty
(zpyq)m _ ( )caE.lb )

for some a,b € Z. Hence o is a finite morphism.

4 Caser(X)=1
We need the following lemma of Kawamata [8] ; see also Gurjar-Miyanishi [4, Lemma 10] :

Lemma 4.1 Let X be an affine smooth rational surface with ®(X) = 1. Then there ezists a morphism
p: X — B onto a nonsingular rational curve B which defines a twisted or untwisted Al-fibration.

In the case where p is a twisted Al-fibration, Pic (X) contains a nonzero 2-torsion element. Since
Pic (X) = (0) in our case, the Al-fibration p must be untwisted.

We shall show that

B=P! Al or Al

Since B is rational, B is isomorphic to P! minus n points. Since f is irreducible, rank I'(X, Ox)*/k* = 1.
If n > 3, then rank I'(B,0p)*/k* > 2. Since I'(B,Op)*/k* is a subgroup of I'(X,0x)*/k*, this is a
contradiction. So, n < 2. This implies the above assertion.

Here we have two cases which we consider below separately.

I) Case p extends to an Al-fibration,
P *
(IT) Case p does not extend to an Al-fibration.

In the case (I), let 5 : A2 — B be the extension of p. Then F;, can not meet the general fibers of p-
Indeed, if it meets a general fiber, some more points are deleted from Al), which is not the case. So, F,
is isomorphic to either A} or an irreducible component of a singular fiber of 5. Assume that Fy = A,.
We recall the following lemma of Saito [9, Theorem 2.3] [11]:

Lemma 4.2 Let f be a generically rational polynomial in k[z,y] with two places at infinity. Then, after
a suitable change of coordinates, f is reduced to either one of the following two forms:

(1) f~2zy® +1, where o, >0 and ged(a,f) =1.

(2) f ~ z%(z'y + p(z))? + 1, where @,B,1 > 0,gcd(a, ) = 1 and p(z) € k[z] with degp(z) <
1 and p(0) # 0.

These two cases in the above lemma give two cases to consider in the case (I).
Next suppose that Fy is isomorphic to an irreducible component of a singular fiber of 5. Given an
Al-fibration, we can classify all possible types of singular fibers by the following of Miyanishi [10]

Lemma 4.3 Let p : X — B be an Al-fibration on an affine nonsingular surface X over a nonsingular
curve B, and let S be a singular fiber of p. Then S is written as a divisor in the form S = T + A, where

(1) T=00rT =l witha>1andT; = Al orT = a;T1 4050y, where ay > 1,03 > 1,1 =Ty = Al
and T'; and Ty meet each other transversally in one point.

2) A >0 aend Supp A is a disjoint union of connected components isomorphic to Al provided A > 0.
2 19

From the above result, Fj is isomorphic to Al or Al. If Fy = Al, then f is a generically rational
polynomial and we are done by Lemma of Saito. If Fy = A!, we have A = k[z,y,1/z] by Theorem of
Abhyankar-Moh and X = A! x Al = P! x P! — D, where D = £y 4+ my 4 m, with a fiber ¢; of a ruling
on P! x P! and fibers mg, m; of another ruling. So, we have %(X) = —co, which is a contradiction. So,
the case Fy = A! is excluded.
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Next we consider the case (II) where 5 does not extend to an Al-fibration on A2. We have the
following two cases to consider:

(1) Case the closures of the general fibers of p in A2 have one common point P which lies on the curve
Fo. Let S be the closure of a general fiber S of p. Then § = S U {P}, where the point P is a one-place
point of §. Therefore S is a topologically contractible curve. Then the following lemma of Gurjar and
Miyanishi [5] is available:

Lemma 4.4 Let C C A2 be an irreducible algebraic curve which is topologically contractible. Then there
ezist affine coordinates x,y on A2such that in terms of these coordinates C is defined by an equation
z™ = y", where gcd(m,n) = 1.

So, we may assume that S is defined by £™ — A\y” = 0, where X € k, and the point P is the point
of origin. If X moves in P! = A! U {co}, the curves {z™ — Ay™ = 0;) € P!} is a linear pencil on A?
parametrized by P!. Since the curve Fy is irreducible and reduced, we may assume that f = z™ — ¢".

(2) Case p can be extended to an Al-fibration p: A2 — B. Then Fj is necessarily a cross-section of
p. Indeed, p|, : Fy — B is injective and Fj is smooth. Since the general fiber of p is isomorphic to Al,
we may assume that it is defined by z = A. The curve & = A meets the cross-section f(z,y) = 0 at one
point. So, f(A,y) = 0 has only one solution. Write

f(l‘, y) = ao(w)y" + Lll(:l:)y"_1 + -+ an(z)

where ag(z),...,an(z) € k[z] and ag(z) # 0. Then ag(A) # 0 for a general element ) € k. Hence we
have n = 1. So, f(z,y) = ao(z)y + a1(z), where ged(ag(z), a1(z)) = 1 because f(z,y) is irreducible.

Summarizing the above arguments, we have the following:

Theorem 4.5 Suppose that €(X) = 1. Then, after a suitable change of coordinates z,y, the polynomial
f(z,y) is reduced to one of the following forms:

1) Case where the given Al-fibration p: X — B extends to an Al-fibration 5: A2 — B.
* P * P

(1) f ~z%yP + 1, where a, 8> 0 and ged(a, B) = 1. In this case, B= A! and B = Al
(2) f ~ 2*(z'y + p(x))’ + 1, where o, f,1 > 0,ged(a, f) = 1 and p(z) € k[z] with degp(z) <
I and p(0) # 0. In this case, B = Al and B= Al
(I1) Case where the given Al-fibration p: X — B is not extended to an Al-fibration on A2.
(3) f ~ ao(z)y + ar(z), ged(ao(z),ar(z)) = 1. In this case, the Al-fibration p: X — B extends
to an Al-fibration p: A2 — B, where B= B= Al.
(4) f ~ ™ — y*, ged(m,n) = 1. In this case, the closures of the fibers of the Al-fibration

p: X — B form a linear pencil {z™ — Ay} parametrized by A € P! = kU{oco}, which has the
point of origin as a base point. Furthermore, B = Al.

5 Proof of Theorem 1.4

Let a : X — X be an étale finite endomorphism. By the Lefschetz principle, we may and shall assume
that the ground field k is the complex number field. First of all, we note the following easy result (cf.
[10, p. 361]:

Lemma 5.1 Let o : X — X be as above and let d = deg o. Then the Euler number E(X) must be zero
provided d > 1.
Proof. We have E(X) = dE(X), whence E(z) =0ifd > 1. QE.D.

In the case £(X) = 0, either X = Al x Al or f ~ zy + 1. In the latter case, X = A? — {f =0} has
the Euler number E(X) = 1. Hence we are done.

So, we consider the case ®(X) = 1. We shall look into the four cases separately, i.e., the cases (1)
and (2) of Lemma 4.2 and the cases (3) and (4) of Lemma 4.5. We shall start with the cases (1) and (2).
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Then the curve f = 0 is isomorphic to Al (cf. [9, Theorem 2.3]). Hence X = A% — {f = 0} has again
the Euler number F(X) = 1. So, by the same reason as above, o : X — X must be an automorphism.
Let us consider the case (3) in Theorem 4.5. Here we need the following lemma of Gurjar and Miyanishi

[5].

Lemma 5.2 Let X be a smooth affine surface and let p : X — B be a morphism onto a smooth curve
B whose general fibers are irreducible and reduced. Then we have the following equality of the Euler
numbers:

B(X) = B(B)B(F) + Y (B(R) ~ E(F))
where F' is a general fiber of p and the summation is over all the singular fibers F; of p. Furthermore,
| E(R) > B(F)
for all ; and the equality occurs if and oﬁly if either F= Al or F =2 Al and (F))rea = F.

In the case (3), write f ~ ao(z)y + a1(z), where z is a parameter of the base curve B = Al. Let n
be the number of distinct roots of the equation ag(x) = 0. If f(c) = 0 for ¢ € k. Then the fiber of p
over the point z = ¢ is isomorphic to A'. Hence the fibration p : X — B has as many singular fibers as
the distinct roots of ag(z) = 0 which are isomorphic to Al, and the other fibers of p are isomorphic to
Al By Lemma 5.2, we then have E(X) = n. Hence the endomorphism o : X — X is an automorphism
unless n = 0. If n = 0 then aq(z) is a constant and the curve F, defined by f = 0 on A2 is isomorphic
to Al. Then X is isomorphic to A! x Al and K(X) = —oo, which contradicts the hypothesis RX)=1

It remains to considér the case (4). We shall show that, given an arbitrarily big integer N, X has a
cyclic Galois étale covering o : X — X whose order is bigger than N. For this purpose, we need some
preparations.

In the case (4), we have f ~ y™—gz" with gcd(m,n) = 1. Let Y = A2—{0}. Then X = Speck[z,y, f~}]
is a Zariski open set of Y. In fact, X = Y — Fy, where Fj is the curve defined by f = 0. There is an
Alfibration 5 : Y — B, where B = P1, and the Al-fibration p : X — B is the restriction of 7 onto
the open set X. The Al-fibration p: X — B is umquely determined by the surface X by virtue of the
following result.

Lemma 5.3 Let X be a smooth algebraic curve with §(X) = 1, and let p : X — B be an Al-fibration.
Let (V, D) be a pair of a smooth projective surface and an effective reduced divisor with szmple normal
crossings such that V — D = X and the Al-fibration extends to a Pl-fibration p: V — C, where C is a
smooth projective curve containing B as an open set. Then dim [n(D+ Kv)| > 0 for some n > 0 and the
movable part of |n(D + Kv)| is composed of the pencil associated with the fibration p: V — C.

Proof. By the hypothesis ®(X) = 1 there exist a pair (V, D) as above and an integer n > 0 such that
dim [n(D + Kv)| > 0 and the movable part M of the linear system |n(D + Ky)| is composed of a pencil.
It suffices to show that (F - G) = 0 for a general fiber F of p and a general member G of M. Note that
the fiber F is the closure of a general fiber F of p in V and that F consists of F and two smooth points
on D. Hence (f D) = 2. Since (_F‘_z) = 0, we have (f KV) —2. Hence (F n(D + Ky)) = 0. Write
|n(D + Kv)| = M + H, where H is the fixed part. Then (F- M) > 0 and (F - H) > 0. Hence we have
(F-G) =0 QED.

As a corollary of this lemma we have:

Corollary 5.4 Let X = Speck[z,y,f!] and p : X — B be the same as above. Let o : X — X be
an étale finite endomorphism of degree d. Then there exists an endomorphism B : B — B such that

poa=Lfop.
Proof. Let F' be a general fiber of p. Since FF = Al and aince the pull-back of Al by an étale finite
morphism is a disjoint union of the curves isomorphic to Al, it follows from the uniqueness of the Alx-

fibration on X that o~!(F) consists of finitely many fibers of p for the upper X. ! Hence a general
fiber F, on the upper X maps to a general fiber of p on the lower X. In other words, the endomorphism

1For an endomorphism « : X — X we call the source X (resp. the target X) the upper (resp. the lower) X.
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o« : X — X induces a rational endomorphism 8 : B — B, which is a morphism because B is a smooth
curve. It is clear that poa = B o p. Q.E.D.

The endomorphism § : B — B extends to an endomorphism B : B — B, where B = Al and
B =~ PLl. We denote the point B — B by P,,. Then ﬂ 1(P,,) consists of a single pomt P,,. Hence ,B
is totally ramified over P,,. We shall look into the ramification of the morphism 3 on B. Note that
p~1(B)=p"1(B)=B

Lemma 5.5 Let the notation and the assumptions be the same as above. Then the following assertions
hold:

(1) Let P be a point of B such that the fiber of p over P is reduced. Then B is unramified over P.

(2) Let Py and P, be the points of B such that the fibers of p over Py and P, are multiple fibers
of respective multiplicities m and n. Then B~1(Pp) (resp. B~1(Py)) consists of one unramified
point and points ﬁél), .. .,ﬁé") with ramification indez m (resp. one unramified point and points
}31(1), . ..,}31(’) with ramification indez n).

Proof. (1) Let ¢t be a local parameter of B at the point P. Let P be a point of B which maps to P.
Suppose §*(t) ~ r* at the point P with a > 1: Let R be a smooth point of the fiber p=1(P) and let u
be a local parameter of the curve p=!(P) at R. Then {t,u} is a local system of parameters of X at the
point R. Let Rbea point on the fiber of p over the point + = 0 such that ﬂ(é) =R.Sincef: X - X is
unramified at R, the set {B*(t), 8*(u)} is a local system of parameters, while this is not the case because
B*(t) ~ r¢. This is a contradiction. Hence 3 is unramified over P.

(2) Let @ be a point of B which maps to Py. Suppose that g ramifies at the point @ with ramlﬁcatlon
index e. Take a local parameter ¢t of B at the point Py and a local parameter r at the point Q. Then
B*(t) ~ r¢. Write p*(Py) = mI'p with Iy = Al. Take a smooth point R on I'y and a local parameter u
of I'y at the point R. Then ¢ ~ u™. In the subsequent arguments, we denote 8*(u) by the same letter
u for the sake of simplifying the notation. Take a point E of the upper X which maps to Q by p and
R by a. Then, near the point, we have ¢ ~ 4™, where we note again that ¢t* ~ u™ is synonimous to
te/u™ =0o w1th a(R) #0. Let £ = gcd(e m) and write e = ¢’¢ and m = m/¢. Since X is normal at R the
relation (te Ju™ ) — ¢ implies that ¢/ = ¢¢ /um is an invertible element of the local ring O xR Then
the Euclidean algorithm implies that there exists an element v of @ Y B such that ¢ ~ v™ and u ~ v°’.
Since u forms a local system of parameters at R with another element and since o is étale, it follows that
¢/ = 1. Hence e = £ and m = m’e. Suppose that m’ > 1. Then the fiber p~1(Q) is a multiple fiber.
Hence its multiplicity is either m or n. Since u ~ v and t ~ v™ , it follows that m/ is the multiplicity
and m = m’. In this case e = 1. If m’ = 1. Then e = m. This yields the assertion for the point P;. The
argument is the same for the point P;. Q.E.D.

A consquence of the above lemma is the following:
Corollary 5.6 Let 3: B — B be the endomorphism defined as above. Then @ is an automorphism.

Proof. Let § be the degree of 3. Since § is totally unramified over the point P,,. Hence, by the
Riemann-Hurwitz formula, we have
l1+mr=6=1+ns 1

—2==26+(6-1)+(m—-1L)r+(n—1)s (2)
By (1) we have mr = ns and by (2) we have
§—1=mr+ns—(r+s)
Replacing § by 6§ = 1+ ns, we have s = (m — 1). Similarly, we have r = (n — 1)s. Hence
s=(m-1)(n-1)s

Since m > 1 and n > 1, this implies s = (. Similarly, + = 0. This implies § = 1. Hence g is an
automorphism. Q.E.D.
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Let K be the function field of B over k and let X be the generic fiber of p, i.e., Xg = X x5 Spec K.
Then X = Al - = Spec k[u, u™!] because the Al-fibration p is untwisted. Set

m

Y
y™m — gn !
Then B = Spec k[t] and K = k(t). The generic fiber X is the affine curve
t
m o __ n
voEIIT (3)
on A% with the point (z,y) = (0,0) deleted off. Normalizing the curve (3) by taking the fractions of the
powers of z and y, we may assume that y = y*/z* and

-t cn t dm
y—(m) u —(m) u

for some integers a, b, ¢, d. On the other hand, the étale endomorphism « : X — X induces an étale finite
endomorphism ag : Xgx — Xg, which must be a cyclic Galois covering. Indeed, o’ (u) = u?, where d is
the degree of . Let G = Z/dZ, a cyclic group of order d. Then G acts.on Xk and the quotient Xk /G
is the lower X .

Let ¢ be a primitive d-th root of unity. Then the G-action is given by u — (u, and hence we have

g (T, y— "y

This implies that the G-action on Xy extends to a G-action on the upper X. Let X' = X /G and let
7 : X — X' be the quotient morphism. Then « : X — X factors as

X Tx 2x .
Since the G-action on X is free on the open set {z # 0,y # 0}, the degree of 7 is d and hence o’ : X' — X
is a birational finite morphism. Since X is smooth and X’ is normal, o/ is an isomorphism by Zariski’s
Main Theorem. This implies that « : X — X is a cyclic Galois covering with group G and the G-action

on the upper X extends to the affine plane A7. Suppose that gcd(d,m) = ged(d, n) = 1. Replacing a
primitive d-th root ¢ by ¢! with m¢ =1 (mod d), we may normalize the G-action as

z—(z, y— (Y,

where ¢ is the unique integer such that 0 <e < dand em=n (mod d).

Conversely, we shall construct an example of G-action on X which induces an étale finite endomor-
phism a : X — X. For this purpose, we define the integers gq,q;,...,¢, by the following Euclidean
algorithm applied to the given positive integers m,n with m < n and ged(m,n) = 1:

n = gmp+m;, 0<my<myg
mg = @mit+mz, 0<my <my
Ms_2 = gs—1Ms_1+m,, 0<m,_; <m,
ms_; = g¢m,, my=1

where mg = m. Consider a linear pencil A = {y™ = Az"},¢p1, Where the member is z" = 0 if A = oo.
The pencil A has base points at the point (z,y) = (0,0) and its infinitely near points. The blowing-ups
with centers at these base points will give exceptional curves whose weighted dual graph is given as
follows:

—(q1+2) —(gs +2) —(gs—1+2) -1
lgo —1—0—H¢ —1]—O0— -~ —O0—¢. -1
G,
[41 - 1] N e [43—3 - 1] —O_[q=—1 - 1]
—(gs +2) —(gs—2 +2) —(gs +1)

ifs=0 (mod2)
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—(qg1+2) —(g3 +2) —(gs—2 +2) —(gs +1)
i~ 1F—0——fpp 1} ——0—+ Oy —1]-

O

g —1——O0—— - lgs—2 — 1] g — 1}
_(qs + 2) _(qs—Z + 2) -1

ifs=1 (mod2)

where [g; — 1] means a linear chain of (—2) curves of length ¢; — 1. The (—1) curve in the middle of the
graph is a cross-section of the proper transform of the pencil A.The closure in P? of a curve y™ = \z"
of the pencil A is defined by Y™Z"~™ = X", where X,Y,Z are homogeneous coordinates such that
z = X/Z and y = Y/Z. We denote by the same symbol A the linear pencil formed by the closures in
P2 of the members of A. The pencil A on P2 has base points at the point (X,Y,Z) = (0,1,0) and its
infinitely near points. If we eliminate these base points as well we have a nonsingular projective surface
and a P!-fibration p : V — C onto a complete curve C isomorphic to P! such that

(1) the proper transform E, of the curve z = 0 (or equivalently X = 0 on P2) on V is a (—1) curve
and it is an irreducible component with multiplicity n of a degenerate fiber F,, of p whose weighted
graph is a linear chain consisting of the curve E_, the left hand side (the upper side) T',, of the
(—=1) curve in the above weighted dual graph and a similar graph A, determined uniquely by T,

T Ex A

where ‘T, is the reversed graph of I'y,, i.e., the vertex of I',, conected to (—1) curve in the above
dual graph G, is a tip (= an end vertex) of the dual graph of F;

(2) the proper transform FEj of the curve y = 0 (or equivalently Y = 0 on P2) on V is a (—1) curve
and it is an irreducible component with multiplicity m of a degenerate fiber Fy of p whose weighted
dual graph is a linear chain consisting of the curve Ey, the right hand side (the lower side) *I'y of
the (—1) curve in the above weighted dual graph and a similar graph A, determined uniquely by
To;

To Ey Ay

(3) the (—1) curves My and M, arising the elimination of the base points accumulated at the points
(X,Y,2) =(0,0,1),(0,1,0) respectively are the cross-sections of the P!-fibration p.

Now we replace the (—1) curve in the graph G, by a (—2) curve and denote the modified graph by G..
Then it is the resolution graph of a cyclic quotient singular point. More precisely, we have the following
result. For the resolution of cyclic quotient singularity, see for example [2, p. 84].

Lemma 5.7 With the above notations, let d = mn+ 1 and e = n(m —my) + qo + 1. Let a cyclic group
G of order d act on the affine plane A? = Spec k[z,y] vie ¢ — (z and y — (°y, where ¢ is a primitive
d-th root of unity. Then the resolution graph of the quotient singular point P of A?/G is the graph @:
given as above.
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Proof. Write the graph G, as

—ar —ar-1 —az —a

where the vertex with weight —a, is the left-end vertex of G, The assertion is then equivalent to showing
that the continued fraction associated with the graph G is equal to a fraction d/e:

d 1
—=a;—

e 1

as —

1
ar—1 — —
aRr
Namely, we have to show that if we write the continued fraction in the form of a single fraction d/e then
the numerator d and the denominator e are given respectively by d and e specified in the statement. If
we show the assertion that the numerator is equal to mn + 1 then the denominator is obtained uniquely
by solving the congruence equation

em=n (modmn+1) and O0<e<mn+1.
Indeed, e = n(m — my) + go + 1 is a unique solution.

We prove the last assertion by induction on s. If s = 1 or 2 the assertion is straightforward. Suppose
s > 2. Let H be the graph obtained by removig the following string from G, :

—(1+2)
(g0 — 1] O

Then the reversed graph H is the dual graph obtained from a pair (my,mg) instead of (m,n). Hence,
by the induction hypothesis, the continued fraction associated with *F is equal to a fraction

mom;i + 1
mo(my —ma) + 1 +1

Then the continued fraction associated with G, is obtained by making the following calcurations:

mo(my —my) +q1 + 1
2 —
an+ mgomi + 1
goa — (g0 — 1)b
(90 — 1)a — (g0 — 2)b

where a, b, ¢, d are positive integers with ged(a, b) = ged(d’, ¢’) = 1. A straightforward computation shows
that & = mn + 1. Then we will be done if we note the well-known fact that the continued fractions
associated with G, and !G, have the same numerator if they are written as single fractions with coprime
numerators and denominators. Q.E.D.

UK o) 0

Let G and its action on A? be the same as in Lemma 5.7. Note that f = y™—¢" is then a semi-invariant
of weight n. Let p : X — B be the Al-fibration associated with the linear pencil {y™ — Az"},¢p1, Where
B = Al. Since B = Spec k[t] with



and ¢ is a invariant under the G-action, we know that the group G acts on X in such a way that @
preserves each fiber of p. We shall show that X /G is isomorphic to X and that the quotient morphism
¢ : X — X/G thereby gives rise to an étale finite endomorphism « : X — X with degree mn + 1.

The above G-action on A? extends to a G-action on P2 by setting
(X,Y,2)— ((X,C°Y,2) .

The birational morphism ¢ : V — P2 which eliminates the base points of the linear pencil A is, in
fact, a composite of the G-equivariant blowing-ups in the sense that the centers of the blowing-ups are
the G-fixed points. Furthermore, the cross-sections My, M., are pointwise G-fixed curves and the fibers
of the P!-fibration p are preserved under the G-action. Each component of the fibers F; and F,, are
G-stable. Let V be the quotient V/G and let 7 : V — V be the quotient morphism. Then V is a
normal projective surface with a P!-fibration 5 : V — C, where 5- = = p, and the morphism 7 is a finite
morphism. Furthermore, 7 is totally ramified over Ny := m(M) and N, := m(M,,) and hence V is
smooth in the neighborhoods of the curves Ny and N, which are the cross-sections of the P1-fibration
p. The morphism r is unramified along the fibers of p possibly except for the fibers F and F.,. Let Fy
and F, be the images of Fy and Foo under 7. Then there appear finitely many cyclic quotient singular
points lying on the curves Fy and F.,. Let 7 : W — V be the minimal resolution of these singular points
and let g =F-7: W — C be the induced P!-fibration.

Let Ay and A, denote respectively the set-theoretic inverse images by 7 of the union of the images
by 7 of the irreducible components of the fibers F; and F,, corresponding to the graphes I'y and I'y,
Then Ay and A, are the linear chains of the curves isomorphic to P! because they are the parts of the
degenerate fibers of the P-fibration q. Let I'y and I'y, denote respectively the weighted dual graphes
corresponding to Ay and A,,. By the abuse of notations, we may write

To = 774(7(To)), Teo = 77 H(m(Tss)) -

Then Lemma 5.7 asserts that the graph

-
8
F
!
o

with all (—1) curves and subsequently contactible curves contracted down is the resolution graph G, of
the quotient singular point P of A%2/G under the G-action on A? specified therein, where Ny is the proper
transform of Ny by 7. In particular, if we denote by N, the image of N by this contraction, we have

(V') = -2, while (Ng')=(No?)=~d

Let By and B, denote respectively the inverse images by 7 of the union of the images By 7 of the
irreducible components of the fibers Fj; and F,, corresponding to the graphes A, and A,. We contract
also the (—1) curves and subsequently contractible curves contained in By and B,,. We thus obtain a

birational morphism 7: W — W. Set N, := ?(ﬁ;), where N, is the proper transform of Ny by 7,
and let H, be the weighted dual graph of 7(By) + New + 7(Boo)-

\/\/

X c P2 V=V/G

X CcV
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The P!-fibration g : W — C induces a P!-fibration §: W — C on the surface W for which N, and N,
are the cross-sections of 7. Let Fy be the fiber of p : V — C corresponding to the member y™ = z7 of
the pencil A on P2 and let F; be the proper transform of m(F1) by 7. 7-1. Then Fj is a smooth fiber
of §: W — C. Now apply an elementary transformation with center at the point N, N F;. Namely,
blow up this point and contract the proper transform of Fi. Let 7/ : W’ — W be the elementary
transformation and let Fy be the fiber on W’ corresponding to F; on W. Let N} be the proper transform
of Ny. Then (N(’)z) = —1 and the graph G, changes back to the graph G,. Now remove all the irreducible
curves correspondingto the graphes a':,ff, and the fiber F| from W’ to obtain an openset /. By the
construction of W, the open set U is isomorphic to the surface X. More precisely, X is contained in the
surfaces V, W, W and W’ and X is intact under the birational mappings r,7 and 7. Hence the restiction
of the quotient morphism 7 : V — V induces an étale finite endomorphism which is a Galois covering
with group G.
We have thus proved the following result.

Theorem 5.8 Let X = Spec k[z,y, f~1] with f = y™ — ™, where m,n are integers larger than 1 with
ged(m,n) = 1. Then there exists an étale finite endomorphism o : X — X of degree mn + 1 which is a
cyclic Galots covering.

REMARK 5.9 In the above argument, we used the graph a: which is obtained from the graph G, by
replacing the (—1) curve by a (—2) curve. The same argument as above applies to the graph @;(t)
obtained from G, by replacing the (—1) curve by a (—t) curve witht > 2. We obtain thereby an étale

finite endomorphism of X of degree different from mn + 1.
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HOMOGENEITY CONDITION FOR NOETHERIAN R-ALGEBRAS

KENJI NISHIDA (Nagasaki University)

1. Cohen-Macaulay approzimation

Let A be a left and right Noetherian ring and w a A-bimodule. Denote the category of
finitely generated left (right) A-modules by modA (A%).
Put

C(A) =Cy,(A) := {M € modA : Extj(M,w) =0, >0}
addw:={M € modA: M @ M' Zw™, Im, IM'}
addw := {M € modA :30 - G,, & --- = Go > M — 0 (exact), G; € addw}
addw :={M €modA:30 5> M - ¥y — --- > ¥, —» 0 (exact), Y; € addw}
P:={M € modA : pdy M < oo}
7T :={M € modA :idpM < oo}.
Consider the following conditions on w:
(d1) Homp(w,w)=A (d2) Exti(w,w)=0 i>1 (d3) idaw < oo

(di)?? (i=1,2,3) right version. (d) := (d1)+(d2)+(d3).
In this section, we prepare more or less well-known results about Cohen-Macaulay
approximation (eg. [1, 4, 5, 7]) and characterize a module with finite injective dimension.

1.0 (Miyashita [4], Lemma 1.1) T' € modA. Consider the following exact sequence:

0 - M - X, — Xng — ... — Xo = N = 0

I N\ / N\ / l
Yn }/n—l 1/1 Yo

(r) Exti(T,Xy)=0( >0, 0<k<n—1) .
= Ext} (T, N) 2 Ext{ (T, Y1) & --- 2 Extyi™(T, M) i>0

(cor) Extj(Xs,T)=0(j >0, 0<k<n—1) ‘
= Ext}(M,T) & Exti(Yo_y,T) = --- 2 Exti™(N,T) 7 >0

1.1. Assume (d)°®. Then M € C(A) = M* := Homy(M,w) € C(A°?) and M** = M,
canonically.

1.2. Asuume (d) and (d)®*. M € modA. Then

3(C) 0-Y - X — M — 0 exact ( Cohen-Macaulay approximation)
) 0-M-Y — X' — 0 exact
X, X' €C(A); Y, Y' € addw.
Proof. By induction on d(M) below (see [1, T]).

1.2.1 Put d(M) := sup{s : Ext} (M,w) # 0}. Then

The detailed version of this paper will be submitted for publication elsewhere.
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(i) 0 £ d(M) < idpw < o0,
(i) d(M) =0 <= M € C(A),
(iii) Let 0 = X — Y — Z — 0 be exact. Then

dY)<d(Z) = d(X)=4d(Z) - 1.

1.3. Assume (d) and (d)° and idpw= idperw= e. Then
I= a,c:ldw

1.3.1. (i) C € C(A), X € addw = Ext}(C,X) =0 i > 0.
(ii) X € modA, 3m such that Ext}(C,X) =0fori>m, C € C(A) = idy X < m+e.
(i) X €e C(A) and idpX =m < oo =30 X - Wy — --- — W,, - 0 exact, W, €
addw.
1.3.2. Proof of 1.3. Let M € I. Take (I) 0 —> M — Yy —» X — 0 (exact), X €
C(A), Yoe€ addw. Then idy X < oo. Thus there exists an exact sequense 0 - X — Y, —
-+ —= Y, — 0, Y; € addw by (iii). Combine two sequences.

Conversely, let 0 = M - Yy, = --- =Y, =0, Y, € aadag, be exact. Since we have
Exty(X,Y:) = 0 for any X € C(A), ¢ >0, k > 0 by (i), Ext}(X,M) = 0 for any 1 > n
by (r) 1.0. Hence idaAM < n + e by (ii).

2. On the condition (hc)

Let (R, m) be a Cohen-Macaulay (commutative) local ring with the canonical module
K. Let A be an R-algebra such that A is a finitely generated R-module and a Cohen-
Macaulay R-module with dimgA = dimR = d. Let M* := Hompg(M, K) for M € modA.
Then M* € modA°. Put w = A* a A-bimodule. Then idyw = idperw = d. We have

Cu(A) =Cq:={M € modA : M is a C-M R-module of dimpM = d}

All the results in §1 holds whenever we replace C(A) by Cy and Hom, (—,w) by Hompg(—, K)
(Note Homy (—,w) = Hompg(—, K') on modA).

We study the following condition:
(he) idpaM =dfor every M € C4NT

Let M € modA.

2.0. d <idaM (by [3], Theorem 3.7).

2.1. idaM < 0o & M € addw, i.e. T = addw (by 1.3).
2.2. id\M =d & M € addw.

2.2.1. (i) idaM = n,depthgX =t = Exti(X,M) =0 i >n —t.
(i) M €Cy, idgaM =n=>30->M > Wy - --- = W,_4 — 0 exact, W; € addw (cf.
1.3.1(iii)).

2.2.2. Me€CyandidyM =d < M € addw.
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2.2.3. Proof of 2.2. <: We have idyM < d by 1.3.1 (i), (ii), hence equality holds
by 2.0.

=: Let idyM =d. Take (C) 0—-Y —- X - M — 0 exact, Y € addw, X € C,.
Since idpY = d by the part <, idp X = d. Thus X € addw by 2.2.2, hence M € addw.

2.2.4. Corollary. ((2)-(5) in [1], Proposition 4.6) The following are equivalent.
(1) A satisfies (hc).

()M eI =idyM =d.

(2) addw = addw.

(3)0 = M — Wy —» W; — 0 exact, Wy, W) € addw = M € addw.
4)0->M-—->Wy—>W; - = W, =0 exact, W; € addw = M € addw.

(5) M € Cy and 3n; Exty (C,M)=0 i>n, C €Cy = M € addw.

2.3. The following are equivalent.

(1) A is Gorenstein.

(2) A is a Cohen-Macaulay R-module of dimgA = d, satisfies (hc), idaA < co.
(3) A is a Cohen-Macaulay R-module of dimpA = d, satisfies (hc)?, idjw A < 0.

2.4. Remark. (1) ‘4%Q,A) > 0 VQ € MaxA’ = (hc), where p? is the Bass

number|(3]. ' :
All the cases; Gorenstein, A/J(A) simple ring, commutative, satisfy ‘...’, hence (hc).
(2) (hc) is not (left-right) symmetric.

3. Category equivalence T ~ P

A and R are the same as in section 2 and w = A* in 3.1, 3.2.

3.1. Assume that A satisfies (hc). Po:= {M € P : Tor?(w, M) =0 i > 0}.
Then there is a category equivalence Z ~ Py induced from F' := Homy(w,—) : T — Py

and G:=wQ®p —: Po— 1.

3.2. If d =0, then w = Homg(A, E), E = Eg(R/m) an injective hull of an R-module
R/m. Then we have:

Po=P & (he)? & fpdA =0,
where fpdA = sup{pd,M : M € P}

3.3. Further developments. (a) In case w = A* and d > 0, the problem when
P = Py is very valuable. Of course, if A is commutative, it holds that P = Py by
Sharp[5]. This is the starting point of 3.1.

(b) (Assuming or not assuming (hc)) In case w is a A-bimodule with (d), (d), and
idpw = idpepw > d, the problem when P = Py, or even what is Py, is also a valuable
problem. Auslander and Reiten [2] study the case d = 0 (not assuming (hc)) and get the
following:

F and G induce a category equivalence 7 ~ P if and only if w satisfies (d2), (d3),
(d2)°7, (d3)°?, addsw = Z(A), addperw = I(A®) (that is, w is a strong cotilting module)
and (d1).
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REGULARITY OF POLYNOMIAL IDEALS

CHIKASHI MIYAZAKI

The Castelnuovo-Mumford regularity is one of the most important invari-
ants in studying the minimal free resolution of the defining ideals of the
projective varieties. There are some bounds on the Castelnuovo-Mumford
regularity of the projective variety in terms of the other basic measures such
as dimension, codimension and degree.

The purpose of this note is to provide a short overview of the recent
developement on bounding the Castelnuovo-Mumford regularity and to en-
courage the readers to make familiar with this topic.

Let X be a projective scheme of P¥ over a field K. Let S = K([zo, -~ ,Zn]
be the polynomial ring and m = (2o, - ,xn) be the irrelevant ideal. Then
we put PY = Proj(S). We denote by Zx the ideal sheaf of X. Let m be
an integer. Then X is said to be m-regular if H'(P¥,Zx(m —1)) = 0 for
all i > 1. The Castelnuovo-Mumford regularity of X C P¥, introduced by
Mumford by generalizing ideas of Castelnuovo, is the least such integer m
and is denoted by reg(X). The interest in this concept stems partly from the
well-known fact that X is m-regular if and only if for every p > 0 the mini-
mal generators of the p-th syzygy module of the defining ideal I of X C PY
occur in degree < m + p, see, e.g., 7, 12, 13]. In particular, reg(X) > 1 for
any projective scheme X C P¥ and reg(X) > 2 if the projective scheme X
is nondegenerate, that is, X is not contained in any hyperplane of PY.

Let I be an ideal @zl (PY,Zx (£)) of S. We call I as the defining ideal
of X. Let in(I) be the initial ideal of I with respect to the reverse lexi-
cographic order. In [8] they obtained that reg(X) is equal to the maximal
degree of minimal generators of in(I).

Let M be a finitely generated graded S-module with dim(M) =d+1 >
0. We write [M], for the n-th graded piece of M, and M(p) for the
graded module with [M(p)]n = [M]pn. Then, for i = 0,--- ,d + 1, we
set a;(M) = max{n | [Hi(M)], # 0} if there exists, and a;(M) = —oo oth-
erwise. The Castelnuovo-Mumford regularity of the S-module M is defined
as reg(M) = max{a;(M) +1i|i =0,--- ,d+ 1}. For the projective scheme
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X and its defining ideal I, it is easy to show that reg(X) = reg(I).

There are interesting topics on the behaviour of the regularity without as-
suming X is irreducible and reduced. The Gotzmann-type theorem, started
in [19, 20], is generalized for exterior algebras in [3, 21] as an application of
generic initial ideals. The asymptotic property, that is, how is reg(I™) writ-
ten as a function on n, has been studied in [10, 11, 15, 31, 57]. In [10, 15],
reg(I™) < nreg(I) for the case dim(X) = 0 and reg(I™)%** < nreg(I) for
dim X =1 are shown, where J%* is the saturation of the ideal J. In general
case, she obtained in [57] that reg(I™) < Knreg(I) for a constant K by
using the uniform Artin-Rees Theorem. The further recent research is also
founded in [11, 31]. The other interesting topic is the relationship with the
arithmetic degree, which starts from [7]. The recent developement is also

described in [28, 56, 40].

Now let us assume that X is irreduceble reduced. We will begin with
stating the Eisenbud-Goto conjecture [13].

Conjecture. Let X be a nondegenerate projective variety in PI}{’ over an
algebraically closed field K. Then

reg(X) < deg(X) — codim(X) + 1

The conjecture is solved for dim(X) = 1 in [22]. Under the assumption
that X is smooth over an algebraically closed field K of characteristic zero,
the conjecture is solved for dim(X) = 2 in [50, 30], and for A(X,O(1)) < 5,
that is, the right hand side of the conjecture less than or equal to 7, in [2].
The toric case is also solved for codim(X) = 2 in [48]. Recently a weaker
bound reg(X) < deg(X) — codim(X) + 2 is given in [32] for dim(X) = 3 if
X is smooth and char(K) = 0.

Let us describe another attempt to getting the bound on the regularity for
nondegenerate projective varieties. We will introduce an invariant measuring
the intermediate cohomologies. Let k be a nonnegative integer. Then X is
called k-Buchsbaum if the graded S-module M!(X) = @,ezH (P¥, Zx (£)),
called the deficiency module of X, is annihilated by m* for 1 < i < dim(X),
see, e.g., [35, 36]. Further we call the minimal nonnegative integer n, if
there exists, such that X is n-Buchsbaum, as the Ellia-Migliore-Miré Roig
number of X and denote by k(X). In case X is not k-Buchsbaum for all
k > 0, then we put k(X) = oco. It is known that the numbers k(X) are
invariant in a liaison class, see, e.g., [35, 55]. Note that k(X) < oo if and
only if X is locally Cohen-Macaulay and equi-dimensional, and that k = 0
if and only if X is arithmetically Cohen-Macaulay.
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In what follows, for a rational number £ € Q, we write [£] for the minimal
integer which is larger than or equal to £.

In recent years upper bounds on the Castelnuovo-Mumford regularity of a
projective variety X have been given by several authors in terms of dim(X),
deg(X), codim(X) and k(X), see, e.g., [25, 26, 27, 39, 45, 46]. The follow-
ing bound, which is firstly obtained in [46] and refined in [39], is the most
optimal among the known results.

Theorem. Let X be a nondegenerate projective variety in P% over an
algebraically closed field K. Then

reg(X) < [%" + max{k(X) dim(X), 1}.

The problem is whether this bound is sharp or not. For arithmetically
Cohen-Macaulay varieties, the varieties having such upper bounds are clas-
sified in [58] for char(K), and later in [42] for the positive characteristic
case. Furthermore, such study is found in [60] for arithmetically Buchs-
baum curves, that is, k(X ) = 1 and dim(X ) = 1 and in [43] for arithmetically
Buchsbaum varieties. We will state the result for general case, following [38].

Theorem. Let X be a nondegenerate projective variety in P¥ over an
algebraically closed field K of characteristic zero. Assume that k(X) > 1,
deg(X) > codim(X)? + 2codim(X) + 2 and

deg(X) -1

oodeel D) } + k(X) dim(X).

reg(X) = {
Then dim(X) =1 and X is a curve on a rational ruled surface Y.
More precisely, X is a divisor on a rational ruled surface Y constructed as
follows:

Let 7 : Y = P(£) — Pk be a projective bundle, see, e.g., [24, (V.2)],
where £ = Op1 @ Op1, (—e) for some e > 0. Let Z be a minimal section
of m corresponding to the natural map & — (’)P}{ (—e) and F be a fibre
corresponding to w*Op}{ (1). We have an embedding of Y in P¥ by a very
ample sheaf corresponding to a divisor H = Z +n - F (n > e), where
N =2n—e+1. Then X is a divisor on Y linearly equivalent toa-Z +b- F
such that a>1and an+2<b<(a+2)n—e+1.

In this case, codim(X) = 2n —e, deg(X) = a(n —e) + b, k(X) =
|(b—an—2)/(n—e€)] +1and reg(X) = [(b—an—2)/(n —e)] +a +2.

These results motivate us to state the following problems.

Problem. Let X be a nondegenerate projective variety in PY over an al-
gebraically closed field K. Then is the inequality reg(X) < [(deg(X) —
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1)/codim(X)] + max{k(X), 1} true?

Problem. Describe the behaviour of k(X) for the projective variety X
after a generic hyperplane section. For instance, for a projective variety
X and a generic hyperplane H in P¥ with dim(X) > 1, is the inequality
2k(X NH) > k(X) true?
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§1. Main theorem

Given a homogeneous ideal I of height p > 2 in a polynomial ring R := k[zy,..., z,],
there is a finitely generated torsion-free graded R-module M with no free direct sum-
mand satisfying Exth(M, R) =0 for i = 1,...,p — 1 that fits into an exact sequence of
the form

0—Sp1—Sp0—— 8 —S®M —I(c) —0,

where c is an integer and S; (0 <3 < p—1) are finitely generated graded free R-modules
(see e.g. [7], [17]). By this sequence one obtains

HZYR/I)(c) 2 HL(M) for i=1,...,dim(R/I)=r—p,

Since Hi(M)=0fort=r—p+1,...,7—1 and ¢ = 0 by local duality, considering the
local cohomologies of R/I is the same thing as considering those of M. When p = 2, the
above sequence is often called a Bourbaki sequence and the map from So ® M to I(c) is
obtained essentially by taking maximal minors of the map from S; to Sp @ M. Besides,
it is well known that for any M as above there is a homogeneous ideal I of height two
fitting into a Bourbaki sequnce if p = 2 (see [10, 11, 14, 16, 17]). Here a question arises.
Given a p > 2 and an M, does there always exist an I connected with M by the above
sequence? The following theorem answers to this question.

Theorem 1.1. Let p > 2 be an integer and let M be a finitely generated torsion-
free graded R-module with no free direct summand satisfying Exto(M,R) = 0 for i =
1,...,p—1. Then there exists a homogeneous ideal I in R of height p which fits into an
exact sequence of the form

(%) 0— S 13— — 85 —=S®&M — I(c) — 0,

where c is an integer and S; (0 < i < p—1) are finitely generated graded free R-modules.
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For the proof we refer the reader to [9]. The core of our proof is to take the mapping
cones of successive chain maps from Koszul complexes to the finite free complex

1 p. Pp—1 - —
F.;...“’L,Fp_ﬂ’,pp_l’;,...ﬁ)plﬂ,poﬂ,p_lﬂ,p_z"’_ﬂ...
such that
..ﬁt?_,pp_‘f’l’.) p_l_“ﬁ’:}_,...ﬁplil_,po_)M_,o

is a minimal free resolution of M over R and

Vv 2
L Y L Y5 BY L Im(pY) — 0
is a minimal free resolution of Im(¢Y) over R. The ideals I obtained by our method are
far from good. Thus any general answer to the following problem is not given yet.

Problem 1.2. Let p > 2 and M be as in Theorem 1.1.
(1) Does there exist an I fitting into () such thatR/I is reduced?
(2) Does there exist an I fitting into (%) such thatR/I is an integral domain?

Of course it is well known that the answer is affirmative, if M is generalized Cohen-
Macaulay, HL(M) =0, p=2, and r > 4 (see e.g. [15, Section 3]).

§2. Project

Let p > 2 be an integer and let M be a finitely generated torsion-free graded R-module
with no free direct summand satisfying Exth(M,R) =0for i =1,...,p—1. Let further
J(M,p) denote the set of all homogeneous ideals I in R of height p fitting into exact
sequences of the form (x). Theorem 1.1 implies that J(M,p) # 0. Perhaps the most
popular way to study the structure of J(M,p) is to do so in the framework of even
linkage theory (see [10, 16, 17, 19]). But we would like to propose another approach
based on the analysis of Weierstrass bases and basic sequences (see the next section or
[4, 6)).

Let I € 3(M,p). Then we can associate with M and I their basic sequences Br(M) =
(¥44% -+ ;7"*) and Bg(I) = (A% @%--- ;A7™1). By the results of [7], they satisfy

(2.1) =4 +c for i=p+1,....,r+1,

(2.2) P = (0',7" +¢)

up to permutation with a suitable sequence of integers @', where a+c = (a;+c, ..., a;+c)
for a sequence @ = (ay, ..., a;). This means that the essential information on Bg(I) lies
in Br(M), (n;n2;---;nAP), and c. Assume that the variables z1,...,z, are chosen

sufficiently generally. The ideal of the initial monomials of the elements of I with
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respect to the reverse lexicographic order has a Weierstrass basis { in(z, f{) | 1
i <r+1, 1<1<m}, where in(z; f}) € k[zy,...,z:]z;. Using them, let I:
P L in(z; f})k[zs, ..., 2,]. Then

IN

(2.3) I is a Cohen-Macaulay Borel fixed monomial ideal in R of height p
such that Bg(l) = (a';--- ;7P).

The conditions described above, however, are not enough for characterizing all possible
basic sequences of homogeneous ideals in J(M,p). We have to find other ones to get an
answer to the following

Problem 2.4. Let p > 2 and M be as above. Describe all sequences of integers
(AY; 7% ;A™*) for which there exists a homogeneous ideal I € J(M,p) such that
Bgr(I) = (n%;n?%---;ath). '

There are two successful cases.

In the case M is Buchsbaum and char(k) = 0, the conditions (2.1), (2.2) and (2.3) are
necessary and sufficient for the existence of a homogeneous Buchsbaum ideal I € 3(M, p)
with Bg(I) = (';n?;--- ;A"*!) (see 2, Section 3], [4, Sections 5 and 6]).

When p = 2, the situation is very clear. In fact, there is a unique integer ops and a
unique sequence of integers By = (Bar1, - - -  Bu,ry,) Which have the following properties,
with only one minor exception in the case rankg(M) = 1. There exists a homogeneous
ideal I € J(M,2) with Br(I) = (@';a%--- ;7™*) if and only if the conditions (2.1)
and (2.3) hold, ¢ > o3 + v for an integer v > 0, and A% = (W, B + ¢, 7% + ¢) up to
permutation, where @ = (wi, . .., w,) is a sequence of integers (see [8, Theorems 2.4 and
2.5]). Note that @ = (@, By + c) up to permutation. This sequence @ corresponds to
the numerical function fx, defined by S. Nollet in [18] in the context of linkage theory
of two-codimensional projective schemes, which plays an important role in the criterion
of existence of prime ideals (see [3], [4, Section 7] also).

§3. Generic Grobner basis, Weierstrass basis, and
basic sequence

For the convenience of the readers, we describe here briefly the definitions of Weierstrass
basis and basic sequence of a graded R-module. See [4, Section 1] and [6, Section 2]
for the detail. Given a finitely generated graded R-module E, there exist a finitely
generated graded k|zi, ..., z,]-submodule El ¢ F and a finitely generated graded free
k[z;, ..., z,]-submodule E® C E for each i =1,...,r + 1 such that

(i) EWN = E, Er+1 = Eor+1)
(ii) EW = E® @ E+Y as k[z;41,. .., z,]-module and
(iil) zE*Y C (zigq, ..., z,)ED @ B+l
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forallt=1,...,r, if and only if
- (3.1) - mb(z,,...,241)E g 3 C (2y,...,7541)E for some t; €N

forall i = 1,...,r (filter-regularity of z,,...,z;). When this is the case, the structures
of E® and El are uniquely determined up to isomorphism over k[z;, ..., z,] for each
t=1,...,7+ 1 by the conditions (i), (ii) and (iii). If the submodules as above exist,
denoting homogeneous free bases of E® by e} (1 <1< m;), wecall W:={ei |1<i<
T+1, 1 <1< m; } a weak Weierstrass basis of E . We may replace the condition (iii)
with a stronger one, and in that strong formulation, we call W a Weierstrass basis of
E. Now assume that zy,...,z, are sufficiently general. Then the condition (3.1) must
necessarily be satisfied and a Weierstrass basis of E always exists. We define the basic

sequence Br(E) of E to be the sequence (Al;n?;--- ;™!

) made of the nondecreasing
sequences of integers 7' (1 < 4 < r + 1) such that 7' = (degel,...,degel, ) up to

permutation. There are cases where ¢ = (). For instance
depthy(F) =r+1—max{ s |n*#0 }.

In the case E is a homogeneous ideal I and z,...,z, are sufficiently general, one can
take as W a Grobner basis with respect to reverse lexicographic order satisfying some
additional conditions (see [6, Example 4.1]). ‘

We also note that one can construct in a canonical way a free resolution of E starting
with its Weierstrass basis, though it is not necessarily minimal (see [1, Section 2], [4,
Section 3]).

84. Examples obtained with the help of a cmputer

In this section let R := Q[v, w, z,y, 2], K, the Koszul complex of v, w, z,y, z with respect
to R, pe : Ko — K._3, C, its mapping cone and (P, 1, ) the minimal part of C, (see [9,
(1.1)]). Let further N :=Im(t). Then N is a torsion-free graded quasi-Buchsbaum R-
module such that HL(N) = R/m(-2), H3(N) & R/m, and Hi(N) =0 for i # 1, 2, 5.
Although meaningless, we give here two examples of ideals in J(NN, 3) obtained by the
method of the proof of our main theorem. The computation was done with the use of
computer algebra system SINGULAR [13]. The module N in Example 4.1 and that in
Example 4.2 are not isomorphic with each other.

Example 4.1. po =(0,0,0,0,1,1,1,1,1,1). I is generated by

vw? — vwz, — w3 + 2w’z — we?, —wd+wlz+ vy,
—wd +wlz + My, — w® 4+ wlz + Ty, —w® +wlz + vy2 —wlz+ WIZ,
— vz + x2.
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Example 4.2. p, =(0,0,1,1,1,1,1,1,1,1). I is generated by

z3, wz? — w2y + 0?2, vz?,
w?z — wzy + 02z — xQz, viz — w2y - zzy + vzz, w® — w2y + v2z,
vw? — w2y + vzz, viw — wzy + U2Z, V¥ — wzy + vz
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Tate-Vogel completions of functors
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1 Introduction

In the following R is always a commutative ring, and we denote the category
of R-modules by C. By a functor we mean an additve, R-linear, covariant
and half-exact functor from C to itself, where a functor F' is half-exact iff
F(A) = F(B) — F(C) is exact whenever 0 = A — B — C — 0 is exact
inC. (E.g. Ext'(M, ), Tor;(M, ), H: and Hom(M, ) where Hom(M, X) is
defined to be the quotient module of Hom(M, X') by the submodule consisting
of homomorphisms factoring through projectives.) For a given functor F', we
may consider tow kind of homological variants of F. The first one is the
derived functor: For an object X € C, the right derived functors R*F and
the left derived functors L, F' are defined respectively as the n-th homology
of F(I%) and F(PJX) where I} (resp. PX )is an injective (resp. a projective
) resolution of X. The second one is a more primitive one called satellite: For
X € C, taking an n-th syzygy 0 — Q. (X) = PX, — - = Bf - X =0,
we define the left satellite S, F(X) as the kernel of F(Q,(X)) — F(PX)).
Similarly, take the cosyzygy 0 = X — I$ — -+ = I%71 = Q*(X) — 0 and
define the right satellite S"F(X) as the cokernel of F(I¥™") — F(Q"*(X)).
It is easy to see that S"*1F = SY(S™F), Spy1F = Si(Sn.F) and they are
half-exact again.
As shown in [1] there are natural transformations:

F.o—5 58 F o= SpS™"F = Sy S™MF =
F < S'SiF  S"S,F SIS (Feon.

The following fact is one of our motivations to consider them.

Fact 1.1 Let R be a Gorenstein local ring of dimension d and let M be a f.g.
R-module. Then S,S"Hom(M, ) is stationary for n 2 d and is isomorphic
to Hom(Xyy, ), where Xy is the Cohen-Macaulay approzimation of M.
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Naturally from this fact we are interested in the asymptotic properties of
S,5"F and S"S,F.

Definition 1.2 Define FV = liﬂSnS“F and F" = @SHS”F, and call
them the Tate-Vogel completions of F. :

Of course there are natural transformations F — FV and F* — F which
should be considered as generalizations of CM approximations.

2 Comparison with Tate-Vogel homologies

Let us denote the Tate-Vogel homologies by Tor;(M, X) and Ext'(M, X).
See [2] for the Tate-Vogel homologies. Then one can easily see that there
are natural transformations Ext'(M, )V — Ext'(M, ) and Tor;(M, ) —
Tor;(M, ). It will be justified by the following theorems to call my functors
the Tate-Vogel completions.

Theorem 2.1 The natural transformation Ext'(M, )V — Exti(M, ) is an
isomorphism if i 2 0. (If i <0, then this is not isomorphism.)

Theorem 2.2 Suppose that R is a Gorenstein ring or an Artinian ring.
Then the natural transformation Tor;(M, ) — Tor;(M, )" is an isomorphism
fori20.

As a general poperty of the Tata-Vogel completions, F (resp. F") an-
nihilate modules of finite projective (resp. injective) dimension.

3 G-dimensions

The Tate-Voegel completions are easily computed in case that the functor
has finite G-dimension.

Definition 3.1 [1] We say G-dimF = 0 if LyS™F = R°S,F = 0 for any n >
0. And for an integer n 2 1, the right G-dimension rG-dimF (resp. the left
G-dimension £G-dimF) is equal to n iff G-dimS™F' # 0 and G-dimS™*'F = 0
(resp. G-dimS,F' # 0 and G-dimS, 1 F = 0).

For an R-module M, G-dimgM is defined to be rG-dim Hom(M, ) which
is known to equal /G-dim Hom(trM, ).

It is known that G-dimgM = 0 iff M has a complete resolution.
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Theorem 3.2 The following two conditions are equivalent for a functor F.
(1) G-dimF =0,
(2) For any n 2 0, the natural transformations S*F — (S"F)Y and
(S, YN — S, F are isomorphisms.

If R is a Gorenstein ring, then the following condition is also equivalent
to the above.
(3) The natural transformations F' — F and F" — F are isomorphisms.

If the G-dimension of F is finite, one has the following

Theorem 3.3 Suppose rG-dimF = n < oo, then for any i > n we have
an isomorphism FV = S'F . Q,. Similarly, if {G-dimF = n < oo, then
FAN=>= S;F-Q fori>n.

Using this theorem one can compute the Tate-Vogel completions of sev-
eral functors. Particulary, if R is a Gorenstein ring, then the functors
Hom(M, ),Ext'(M, ), Tor;(M, ) has finite left and right G-dimensions, and
hence the theorem can be applied. Each formula obtained in this way will
saggest us a different kind of approximation theory of modules over a Goren-
stein ring.

4 ¢ and 7 invariants

An advatage to consider the Tate-Vogel completions is that we can associate
some invariants to a given functor.

Definition 4.1 Let (R, m, k) be a local ring and let F' be a functor. Then
define £(F) as the k-dimension of the kernel of the natural map F(k) —
FY(k). Likewise, n(F) is the k-dimension of the cokernel of the natural map
FMNk) — F(k).

The following is a mitivation of this definition.

Lemma 4.2 If R is a Gorenstein local ring, then we have the following equal-
ities for any f.g.R-module M and any 1 2 0:

E(Ext'(M, ) = n(Tor;(M, )) = §(M),
where the RHS is Auslander’s higher delta invariant.

If M has finite projective dimension, then ¢(Ext'(M, )) = n(Tor;(M, ))
is just the i-th Betti number of M. On the other hand, one can show the
following theorem which is essentially due to Martsinkovsky [4].
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Theorem 4.3 (Auslander-Martsinkovsky vanishing) Suppose (R, m,k)
is a non-regular local ring. Then we have {(Ext'(k, )) = n(Tor;(k, )) = 0.

The following theorems are some of miscellaneous results in this direction.

Theorem 4.4 Let (R, m,k) be a local ring.

(1) For a f.g.R-module M, if grade(M) > 0 (i.e. Hom(M,R) = 0), then
&(Tor,(M, ) = n(Ext'(M, )) = Bi(M). (If grade(M) = 0, then this is not
true in general.)

(2) For 0 <4 < dimR, we have tG-dimH}, = oo, (HL)Y =0 and £(HL) = &
(Kronecker’s delta).

(3) Assume that R is a CM ring. Then {G-dimH}, = oo, (H.)" = 0 and
n(Hp) = bio-

Questions 4.5 (1) Does the set {i | £(Ext(M, )) # 0} have a finite bound?
(Yes, if R is a Gorenstein local ring. In this case dimR is a bound for any
M.)

(2) In the most cases, F" is half-ezact again. What condition leads the half-
eractness of F™ ¢

(3) Related with € invariant, when is the natural morphism F — FY a
monomorphism ?
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ABSTRACT. Let I be an m-primary ideal in a Cohen-Macaulay local ring (4, m). In
this paper, we investigate the Buchsbaum property of the associated graded ring of
I. Because it is well known that G(I) is Cohen-Macaulay if I? = qI, we handle the
ideals I that the length £4(I?/qI) = 1 for some minimal reduction q of I, as one of
the most simple cases that I? # gl.

1. INTRODUCTION.

Let I be an ideal of a Noetherian local ring (A4, m). The associated graded
ring G(I) of I is a graded A-algebra of the form G(I) = @,>0l™/I™"1. G(I)
possesses the unique graded maximal ideal M = mG(I) + G(I)4, where G(I)4 =
®n>0l™/I™*1. In this paper, we investigate the Buchsbaum property of the local
ring G(I) -

G(I)p is not always a Buchsbaum ring, even if A is a Cohen-Macaulay and
I = m. Besides, there are not so many results on its Buchsbaumness yet for
even m-primary ideals in Cohen-Macaulay local rings. One can see recent results
handling the Buchsbaumness in such a situation in [G]. In the article, we assume
that A is a Cohen-Macaulay ring and I is an m-primary ideal. Suppose that there is
a minimal reduction q of I. It is well known that G(I) is Cohen-Macaulay if I? = qI
([VV]). So, we need to think of ideals that I? does not coincide with qI. Which
classes of ideals shall we see? We handle the ideals I that the length £4(I2/qI) is
exactly equal to 1, as one of the most simple cases that I2 # qI. Note that this
condition is independent of the choice of a minimal reduction ([V]).

The study of ideals I with £4(I%/qI) = 1 is begun by Sally ([S2]). It seems that
she takes up this condition on her way researching the behavior of the coefficients of
the Hilbert polynomial of I. She also proved in [S2] that the depth of G(I) is bigger
than or equal to dim A — 1 for such ideals I under an additional condition. In the
case that I = m, Rossi-Valla ([RV]) and Wang ([W]) showed the same estimation
with respect to the depth of G(m) when £4(m2/qm) = 1. On the other hand,
Goto ([G]) characterized the Buchsbaumness of G(I)ys in terms of the forms of
local cohomology modules of G(I) and the reduction number of I with respect to
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q for ideals I having minimal multiplicity, that is mI = mgq, in a Cohen-Macaulay
local ring. In view of the above observation, we try characterizing the Buchsbaum
property of G(I)a in terms of the local cohomology modules and the reduction
number, and so on, for ideals with £,4(I2/qI) = 1. Our main result is the following

Theorem (1.1). Let (A,m) be a d-dimensional Cohen-Macaulay local ring with
infinite residue field A/m. Let I be an m-primary ideal with £4(1%/ql) = 1 for a
manimal reduction q of I. Then the following conditions are equivalent:
(1) G(I)p is a Buchsbaum ring.
(2) depthG(I) > d — 1 and the d — 1-th local cohomology module H4;* (G(I))
is concentrated in only one homogeneous component.

When this is the case, it holds that

(a) the reduction number rq(I) is at most 3,
(b) H‘}w_l(G(I)) is concentrated in degree rq(I) —d—1, and
(c) the Buchsbaum invariant I(G(I)) is at most 1.

We here give an explanation for some concepts appearing in the theorem. Let
E be a finitely generated module over a Noetherian local ring A. We call E a
Buchsbaum A-module if one of the following equivalent conditions is satisfied ([SV;

Ch. I)).

(1) The difference £4(E/qE)—eq(E) is independent of the choice of a parameter
ideal q of E, where e4(E) stands for the multiplicity of F with respect to g.

(2) Any system aj,as,...,as of parameters of E forms a weak-sequence on E,
i.e., the equality (a1, aq,...,a;—1)E : a; = (a1, az, ...,a;—1)E : m holds for all
1<i<s. '

(3) Every system a1, a,..., a5 of parameters of E forms a d-sequence on E
([H]), that is the equality (ay,...,a;_1)E : a;a; = (a1,...,a;—1)E : a; holds
forall1<i<j<s.

We say that A is a Buchsbaum ring if A is a Buchsbaum module over itself. We call
the difference in (1) the Buchsbaum invariant of E and denote it by I(E). When
E' is Buchsbaum, E has finitely generated local cohomology modules, i.e., H: (E)
is a finitely generated A-module for i < dimE. By [SV; Ch. I, (2.6)], I(E) is

s—1

coincident with Zf;g ; -£4(H: (E)) when E is Buchsbaum. Next we give

some notations concerning with associated graded rings. Let I be an ideal of A
and suppose that the field A/m is infinite. An ideal J C I is called a reduction
of I, if I"*! = JI™ for some integer n > 0. If J is a minimal ideal among all
of the reductions of I, then J is called a minimal reduction of I. When I is
an m-primary ideal of d-dimensional local ring A, any minimal reduction of I is
minimally generated by d-elements ([NR]). When J is a minimal reduction of I, we
put ry(I) = min{n € Z | I**! = JI™} and call it the reduction number of I with
respect to J.

We state a brief orientation for this paper. In Section 2, we give the proof of
Theorem (1.1). We there show that firstly assertion (1) in the theorem implies
assertion (a), secondly (1) leads that the depth G(I) > dim A — 1 using the fact of
(a). Then, we can reduce all of the situations to the case of dimension 1. Then, we
show the equivalence between (1) and (2), and that both (b) and (c) follow under
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the case of dimension 1. When dim A = 1, as can be seen in (2.6), it is not so hard
to check the Buchsbaumness for certain classes of ideals. But, in higher dimensional
cases, that may be a little quite hard even for the maximal ideal, because it is not
easy to check that a homogeneous s.o.p. of G(I) forms a d*-sequence on G(I) (see
(2.7)). In section 3, we argue the case where dim A = 2 and I = m. We shall there
see a behavior of ideals in this situation.

Before closing this section, the author gratefully thanks Professor Shiro Goto for
his many suggestions and encouragement throughout this research.

Throughout this paper, let (A, m) be a Noetherian local ring of dimension d.
For a finitely generated A-module E we denote by ¢4(E), eq(E) and H: (E), re-
spectively, the length of E, the multiplicity of E' with respect to an ideal a when
¢4(E/aFE) is finite, and the i-th local cohomology module of E with respect to m.

2. PrROOF OF THEOREM (1.1).

Throughout this section, let (A,m) be a d-dimensional Cohen-Macaulay local
ring with infinite residue field A/m. Let I be an m-primary ideal and q a minimal
reduction of I. We fix a system a;, as, ..., aqg of generators of q. The Rees algebra
R(I) of I is a subring of a polynomial ring A[t] of the form R(I) = A[lt]. We
put f; = a;t (1 <1i < d), which are elements in R(I). We can identify G(I) with
the factor ring R(I)/IR(I) and then f1, f2,..., fa forms a homogeneous system of
parameters for G(I) as a graded R(I)-module. We put R = R(I), G = G(I) for
simplicity, and denote the graded maximal ideal of R by M.

Because the equality £4(A/I1?) = er(A)+d-La(A/I)—La(I?/qI) always holds (see
[V, 1.1]), the length of I?/qI is independent of the choice of the minimal reduction
q. We assume that £4(I%2/ql) = 1/throughout the section. We put 7 = rq(I). In
our context, 7 must be bigger than 1.

The following lemma is originally given by Rossi-Valla ([RV]). Although they
show similar assertions for only the maximal ideal, their proof is available to any
m-primary ideal. For convenience, we give its brief proof below.

Lemma (2.1) (cf. [RV, 1.2]). The following conditions hold.

(1) Either I3 = qI? (i.e. v = 2) or there ezists ¢ € I such that ['*1 = gl +
(c9*1) for every j > 1.
o 1 ifl<j<r
2) LA(I7FY/qI7) =
@ gy = {105
(3) I7+2 C qlI7 for every j > 1

Proof. (1): We can choose c,d € I satisfying the equality 1> = qI + (cd). Here, c
might be equal to d. If ¢ € qI, then we have

I3 =gl + cdl C qI® +cI® = qI% + (3d) C qI% + &I = qI2.
q

If ¢® ¢ g, then it holds that I2 = gI + (c?). When this is the case, by induction
on j, we get ["t1 = qI7 + (¢#*1) for every j > 1.

(2) and (3): These statements readily follows from (1). (Note that mI7+1 C qI7 for
all j > 1 because mI% C ql.)

For an element o € R, let @ stand for the reduction @ mod IR. So, we can
regard @ as a element of G.
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~ Proposition (2.2). If Gu is a Buchsbaum ring, then r < 3.

Proof. Supposing r > 4, we shall lead a contradiction. Take ¢ € I as the above
lemma. We firstly show the following

Claim. c" € g?I™3.
Proof of Claim. By (2.1) (3), ¢" is in qI"~2. Since r — 2 > 2, it follows from (2.1)
(1) that
c" e q(qI’_a +(c"2)) = *I" 2 + (a1¢"7 %, apc" 2, ..., agc"2).
Suppose that ¢” € q2I"~3. Then for some a;c"~2, it holds that
aic’2 € ?I"3 4 (a1 2, ...,(:c—rjz, ey @aC ) + (")

Note here that q/7=2/q2I"~3 is a vector space by (2.1) (2). We may assume i = d
without loss of generality. Multiplying ¢ to the above, we have agc™! € q2I7~2 +
(a1, ..., ag—1)c""t, since ¢"*! € qI" by definition of r and since qI” C ¢%I7~2 by (2.1)
(3). From a simple calculation it follows that agc™! € a3I""2 + (ay,...,aqg—1)I" L.
Multiplying the indeterminate ¢, putting g = ct, and considering them in R, we
have f3-g""1 € (fl, +fa—1, f2)R. Then there exists h = "2, with £ € I7~2
such that f4-¢"" ! — f2-h € ( f1, ., fa—1)R. The Buchsbaum property of the local
ring G yields that '

gr— - fd ~he (fl) "'7fd—1)G ‘G fd = (flv")fd—l)G ‘G M
because f1, f2,..., fa forms a homogeneous weak-sequence for G as an R-module,
In particular, g(g"=! — fa- h) € (fl,---,fd- )G. Hence ¢” € (f1, fa,--, fa)G. This
implies that ¢™ € qI™"! + I"*! = qI"~! and that I" = qI""! by (2.1)(1). Thls
contradicts to the definition of » and Claim follows.

By Claim, we have an expression ¢" = ) .. - Digj cijaza; with ¢;; € I™3. This
yields the equation in G of the form . ¢;;tm cit"3f;f; = 0. We put i = cijtm3.
Because fi, fo, ..., f4 is a d-sequence on G, a relation Yoici <; ¢;; IiT; with respect to
f1, f2, .-, fa in a polynomial extension G[T},T3,...,T,] can be expressed by linear
relations. In other words, there exist, in the polynomial extension, linear forms
Ee1Th + &1+ ... +&kaTa (1 < k < 1) with &k fi +€kafo+ ... +€kafs = 0 and linear
forms g1 Ty + k2 T2 + ... + MkaTy (1 < k < 1) such that

!
ZC:JTzTJ = Z(flel +&k2To + ... + EpaTa) (Me1Th + Mk2T2 + ... + NkaTy)-
i<y k=1
Let 5(” ) (resp. n(p )} denote the p-th homogeneous component of £x; (resp. nks)

in G. Let ufn.) € IP (resp. v,(cp ) e I?) be a representative of 5,(5) (resp. n(p ))
[G]p = I?P/IP*!. Then, we have

kamkz Z Z ¢Pn@  and

k=1 p+q=r—3

('Ekznkj + ékjnkz) - Z Z 6](35)77}(;3) + 51(5)77;“)),

k=1 p+q=r-3
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where 7 < j. These yield that

l
(WY T ert

k=1 p+q=r-3
1
(p), (q) (»),,(a) -2
-0 Y @Eud ufud)er
k=1 p+g=r-3

We put d;; = ¢;; — Zi_l 2p+q_r 3u§£)v D for 1 < i <d, and d;; = ¢ —
Eic:l > pig=r—3( ug)v,(cg) + ukj) (q)) for 1 <i < j < d. Then, we obtain

= E Cijaia; = E Ciia; +E CijQiQ;j

i<j 1<J

_Zdla +ZZ Z ufc’:)al v,(:i)az +Zdz]a,a3

1=1 k=1 p+q=r-3 1<j

+ ZZ Z ug)al v,(;)aj) + (ufc’;)aj)(v,(c‘i)a,))

i<j k=1p+g=r—3

’ l
=Y dyan;+3 Y @@+ +ufad) (vl + .+ ofa).
1<j k=1 p+q=r—3

Because §k1) fit+ 4T (e) fd 0in G, it follows that u(p )al + ...+u§c’;)ad € IP*2 while
we have v Q)al +.. +v(q) € qI9. Thus, ¢” must be in qI"~! since d;ja;a; € q2172
and p+q=r-3, Wthh is a contradiction. This completes the proof.

For a graded R-module L, we put aj(L) = max{n € Z | [H (D)]n # (0)}. In
particular, agim (L) is called the a-invariant of L, which is defined in [GW]. Let
Q = (f1, f2,---, fa)G. This is a homogeneous parameter ideal of G. Besides, we put
g; = (a1,az,...,a;)A and Q; = (fl,fz, 4 fi)G for each 0 < j < d. We call fi,
foyesfa a d+-sequence on G when f{", f32, ..., f7¢ is a d-sequence in any order and
for all integers ny,na,...,nqg > 0. One can get estimations a;_,(G/Qq4—;) < T—j+k
with 0 < k < j from a general theory of d+-sequence. However, in our context, we
have a little bit better one as follows, which is crucial in the sequel.

Lemma (2.3). Suppose that f1, fa,...,fa forms a d*-sequence on G. Then for
each 0 < j < d, we have

(1) aj(G/Qa-j) =7 -,

(2) H)(G/Qd—j)lr—; = A/m,

(3) aj—k(G/Qa—j) ST —j—1+k foreach 1 <k <j.

Proof. Induction on j. The highest degree of G/Qq is r, and the r-th component is
isomorphic to I™/qI"~!, whose length is equal to 1 by (2.1)(2). Thus, the assertion
is true when j = 0. Suppose that j > 0 and that it is true for j — 1. Consider the
exact sequence:

G/Qd—j(—l) =5 G/Q4-; — G/Q4—j4+1 — 0.
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It yields that the long exact sequence of local cohomology modules:

0 —H}*(G/Qas) — HirH(G/Qay1) —
B *(G/Qany)(-1) - Hr 1 (G/Qay).

for each 1 < k < j because fq_j11 ‘Hﬂk(G/Qd_j) = (0) (cf. [GY, 6.18]). If
"~k > 2, then a;_k(G/Q4-j+1) < 7 — j — 1+ k by hypothesis of induction. Thus,
we get aj_k(G/Qq—;) < r—j— 1+ k. This implies that assertion (3) is true for
k > 2. Assume that k = 1. Since « is surjective map and since a;j_1(G/Q4—j+1) =
7 — j+1 by hypothesis of induction, we get a;(G/Qq-;) = r—j. Hence (1) follows.
Furthermore, the isomorphism [H3;(G/Qa_;+1)]r—j+1 = A/m, which also follows
from the hypothesis of induction, yields that [wa(G/Qd_j)]r_j =~ A/m. Hence
(2) follows. Besides, we have [HjA;l(G/Qd_j)]n =(0) for n > r—j+ 1. Thus,
aj—1(G/Q4-;) < r—j. Consequently, (3) follows too when k = 1.

Proposition (2.4). Suppose that Gy is a Buchsbaum ring. Then depthG > d—1.

Proof. Induction on d. We have nothing to say if d = 1. Suppose that d > 1 and
that it is true for d — 1. Take a generating system aj,as,...,aq of q so that a; should
be a superficial element for I. Let A = A/(a;), I = IA, and § = qA. Note that.
62(72 Jal) < 1. If = al, then G(I) is a d — 1 dimensional Cohen-Macaulay ring.
In particular, depth G(I) > 0. This leads that depth G = depth G(T) + 1 = d by
[HM, 2.2]. So, we may assume that KK(TZ/EIT) = 1. Then (a;) N I? C qI since
T /al = 12/qI + (a;) N I%. A simple argument for a regular sequence leads that
(a1) N 1?2 = a;1. Let L be the kernel of the canonical surjection G/(f;) — G(I).
L is a graded R-module of finite length, whose n-th homogeneous component, say
L, is isomorphic to ((a1) NI™ + I"*1)/(a; I"~! + I™*+1). Now, we have a injection
L — H%,(G/(f1)), while it follows that Ly = L; = Ly = (0). Furthermore, by
(2.3)(3) it holds that ao(G/(f1)) < r—1 < 2 since r < 3 by (2.2). This implies
that L = (0). Hence f; is a regular element for G. By hypothesis of induction,
depth G(I) > d — 2, so we conclude that depth G > d — 1, as required.

We here argue the case of dimension 1 because the proof of Theorem (1.1) is
showed after reducing to such a case.

Lemma (2.5). Let d = 1. Then, the following conditions are equivalent:

(1) Gar is a Buchsbaum ring.
(2) HY,(G) is concentrated in only one homogeneous component.

When this is the case, HS,(G) is concentrated in degree r — 2 and I(G) < 1.

Proof. Let q = (a). Note that Gy is a Buchsbaum ring if and only if M -HS,(G) =
(0) ([SV, Ch. I (2.12)]).

(2) = (1): Suppose that H},(G) is concentrated in degree n and take zt* €
[H8;(G)]n. Then, we have az € I"*2 since at - zt* = 0 in G, while m["+2 C aI™*!
by (2.1)(2), we thus get maz C aI™*! and mz C I™*! since a is a non-zero-divisor.
Hence, we have m-[H3,(G)], = (0). Consequently, we obtain that M -HS,(G) = (0)
because it obviously holds that It - H$,(G) = (0). Assertion (1) follows.
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(1) = (2): We first show that [H%,(G)], = (0) for all n > r — 1. Indeed, if
zt* € [H3,(G)],, then as can be seen above we get az € I"*2. For any n > r — 1
we have az € aI™t!, hence z € I™*!. This implies that zt® = 0 in G. When r = 2,
HY,(G) is necessarily concentrated in degree 0. So, the remaining is the case where
r = 3 by (2.2). We shall show that H3,(G) is concentrated in degree 1. To see
it, it is enough to verify that [H$,(G)]o = (0). Suppose that » = 3 and take an
element ¢ € I as can be chosen in (2.1)(1). Suppose that there exists z € A such
that 0 # z € [H9,(G)]o. Then az € I2 = al +(c?). Taking a suitable representative
of Z, we may assume that az = wc? for some w € A. If w € m, then az € al since
wc? € al by (2.1)(2). Thus w € m, while cz € I? since ct - 7 = 0. Hence, we get
3 = (1/w)acz € al?, and the equality I = al? follows. This is a contradiction.

We finally show that I(G) < 1. When 7 = 2, the length of [H3,(G)]o is at most
1 because there is a embedding [H,(G)]o — I? : a/I and there is a isomorphism
I?:a/I 2 I?/al. When 1 = 3, we also have £4([H$,(G)]1) < 1 because [H%,(G)}
can be embedded in I3 : a/I? and there is an isomorphism I3 : a/I? = I3/al?,
which is a module of length 1 by (2.1)(2). In any case, we obtain I(G) < 1.

From the above, the following corollary immediately follows.

Corollary (2.6). Suppose d=1. Then

(1) ifr =2, then G is Buchsbaum,
(2) if I =m, then G is Buchsbaum if and only if r < 3.

Now, we give the proof of the theorem.

Proof of (1.1). Suppose that depth G > d — 1 and that H%7(G) is concentrated in
degree n for some/ n € Z. Then one can check, by induction on 7, that depth G/Q; >
d—j—1and Hﬁ,;j*“l(G/Qj) is concentrated in degree n+j for 0 < j < d - 1.
Thus, the sequence fi, ..., fq of elements satisfies that f;1; - H},(G/Q;) = (0)
for i + j < d, which implies that f), ..., fq forms a d*-sequence on G (cf. [GY,
6.18]). Therefore, assuming each of (1) and (2) in the theorem guarantees that fj,
..., fa forms a d*-sequence and depth G > d — 1 (see (2.4)). Thus, f1, ...,fa—1 is
a G-regular sequence and we have an isomorphism H}"le(G) ~ HS,(G(D))(1 - d)
as graded R-modules, where I = I/(ay,...,aq_1). Hence, to show the theorem, we
can reduce the situation to the case of dimension 1. Then, the proof immediately
follows from (2.5).

Corollary (2.7).

(1) Suppose that r = 2. Then G is a Buchsbaum ring if and only if fi1, ..., fa
forms a d*-sequence on G.

(2) Suppose that I = m. Then G ts a Buchsbaum ring if and only if r < 3 and
fi, ---sfd forms a d* -sequence on G.

Proof. 1t is guaranteed that depthG > d — 1 by [S2, (2.3)] if r = 2. The same
is guaranteed by [RV, (2.1)] or [W, (3.1)] if I = m. Thus, together with the fact
that f1, ...,fq forms a d*-sequence on G, we obtain that fi, ...,f4—1 is a G-regular
sequence and H471(G) = HY,(G(T))(1-d), where I = I/(a1,...,ag—1). This implies
that it is enough to give the proof in the case of dimension 1. That follows from
(2.6).
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Before closing this section, we give simple examples. Let k be an infinite field.

Example (2.8). Let A = k[[z*, 25 2%, 27]] be a subring of a formal power series
ring k[[z]]. For n > 4, let I = (z",z"*!) and J = (2",2"*},2"*2). Then G(J)um
is a Buchsbaum ring, but not so is G(I)as

Proof. Let q = (z™). It is easy to check that q is a minimal reduction for both I
and J, 14(I) = 3 and rq(J) = 2. The Buchsbaumness of G(J) s follows from (2.5).
Now, zn+2 € G(I) belongs to [H3;(G(I))]o because z" - z"*2 € I2, while z7+2 # 0
in G(I) since z"*2 ¢ 1. This implies that [H%,G(I)]o 76 (0) and it contradicts to
the Buchsbaumness of G(I)as by (1.1)(b).

Example (2.9) (cf. [S1, 2.2]). Let A = k[[z*,2% 27]) and q = (z*). Thenqisa
minimal reduction of the maximal ideal m = (2%, z%,27) of A. It is easy to check
that rq(m) = 3. Thus G(m)), is a Buchsbaum ring by (2.5)

3. THE CASE WHERE dimA = 2 AND ] = m.

We have seen examples in 1-dimensional cases in the previous section. To see
_higher dimensional cases, it is a little bit quite hard to check whether f;, ...,fs
forms a d*-sequence on G. In this section, we assume that dim A = 2 and I = m as
one of the most simple cases among higher dimensional cases. We shall see when
f1, f2 is a d*-sequence on G = G(m) and when G is a Buchsbaum ring in this
situation. Let (A, m) be a 2-dimensional Cohen-Macaulay local ring with infinite
residue field and q a minimal reduction of m. For a homogeneous s.o.p. «, 3 of G,
we put I(a, 8; G) = €c(G/(a, B)) —€(a,p)(G). By virtue of [T; 2.1] and [GY 6.18], it
follows that c, 3 is a d*-sequence if and only if the equahty Yo, 8;G a?, 32 /G)
holds.

Lemma (3.1). Suppose that m* = qm, £4(m?/qm) = 1, and that there ezistsc € m
such that m? = qm + (c?). Then, for any system a, b of generating set of q, the
following conditions hold.

(1) m™N (a2, b?) = (a2,b2)m™"2 if either n < 3 orn > 6.

(2) m5 = (a?,b*)m3 + (abc®).

(3) Gu is a Buchsbaum ring if and only if m* N (a?,b?) = (a2, b%)m?.

Proof. (1): Let a = (a?,b%). The assertion obviously holds for n < 2. If n > 6, it
also follows since m™ = ¢®m™~3 = am™~2. The remaining is the case that n = 3.
Let f = at and g = bt, which are elements in R. Take ¢ € m® N a and write
¢ = za® 4 yb? with z,y € A. Then ¢ yields a relation Zf2 + 7g2 = 0 in G. Thus
T =7 = 0 since f2, g2 forms a homogeneous s.0.p. for G. Hence z,y € m and we
get ¢ e am.

(2): m® = ¢*m® = g?(qm? + (c ))—am + (abe?).

(3): ("only if” part) Take ¢ € m* Na and write ¢ = za? + yb2 As can be seen
above, z,y € m, so ¢ yields a relation 7tf2 + ytg? = 0 in G. Then it follows that

zt € (¢°G ¢ %) = 9(9G :¢ f) + ((0) g f)

from Goto’s Lemma ([SV; p.139]). Now, we have (0) :g f = (0) by (2.4) since (0) :q
f is of finite length, which follows from the Buchsbaumness of Gz, furthermore,
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it obviously holds that [gG :g flo = (0). Hence, we obtain zt = 0 and = € m2.
Similarly, y € m? also follows.
("if” part) We shall show that f,g forms a d*-sequence on G. To see it, it is
enough to check that I(f2, g% G) < 1 because the inequality I(f, g; G) < I(f g 2. G)
holds in general by [T, 2. 2] Let L be the kernel of the canonical surjective map
G/ (12, 2) — G(I/a). Then L is a graded G-module with the n-th component
= (m"*! + m® Na)/(m™*! + am™ 2) so, L is concentrated in degree 5 by (1)
and our hypothesis. On the other hand, we have the equality ¢g(L) =1 (£%,9%G)
since

0c(G(I/a)) = La(A/a) = der(A) = deg, (G) = e(s2,92)(G).

Consequently, we obtain I(f2, g%; G) = £4(Ls), whence the 1nequahty I( f ,9%G) <
1 follows because Ls is contamed in a cyclic vector space m®/(m® + am?).

Corollary (3.2). Let A, m, q and ¢ € m be as in (3.1). (Note that c® belongs to
gm.) Suppose that ¢> = ax where € m and a is part of a minimal generating set
of q. Then,

(1) if r € m?, then G is a Cohen-Macaulay ring,
(2) if z & m2, then Gy is not a Buchsbaum ring.

Proof. (1): Suppose that ¢3 € qm2. It yields that m® = qm?®. Hence, G is Cohen-
Macaulay by [S1, 2.1].

(2) Take b € q so that q = (a,b), besides we put a = (a?,b?). We shall show that
m4 ﬁa;éam2 Now, ac3—a:c€m Na, but a?z ¢ am?. Indeed, if a®?z € am?,

then 1, € m? since am ﬂ( 2) = a?m?.

Proposition (3.2). Let B = k[z1,Z2,...,%s) (s > 4) be a 2-dimensional Cohen-
Macaulay graded ring over an infinite field k with degr; = degxz = 2 and degw; =
1 for 3 < i < s. n denotes the mazimal homogeneous ideal of B. We assume
that q = (z1,z2) is @ homogeneous parameter ideal of B satisfying that 14(n) = 3,
¢g(n2/qn) = 1 and n? = qn + (z3). We further write T3 = y121 + Yoz for some
Y1,Y2 € [n)1, this is possible by our hypothesis. Let A= B, and m = nA. Then the
- following conditions are equivalent;

(1) G(m)ps is a Buchsbaum ring,
(2) v1,y2 spans a 2-dimensional subspace in n/n2.

Proof. (1) = (2): Let 7; stand for the reduction of y; in n/n?. Suppose that the
dimension of the subspace spanned by 71, ¥z in n/n? is at most 1. We may assume
that yo = pyy (p € k) without loss of generality. Then z3 = y1(z1+ px2). Applying
(8.2) for the generating set x; 4 pz2, T2 of g, the Buchsbaumness of Guy leads that
v, € n?, hence y; = 0. Applying (3.2) again, we also get yo = 0. Thus, z3 = 0.
This contradicts to the reduction number of m.

(2) = (1): Let us denote a = 11, b =23, c = 73 and a = (a?,b?)B. It is enough to
show that n®Na = an? by (3.1)(3). Note that n* = an?+ (abc?, ac3,bc®) B. We take
a homogeneous element ¢ € (abc?, ac®,bc®) BNa and write ¢ = uabc® +vac® +wbc3.
Then degp > 5 unless ¢ = 0. If degcp > 7, then u,v and w belong to n. Hence
¢ € n® C an? (note that abc® € abgn C an ). Let degyp = 6. Then, u € k and
v,w € n. So, we have uabc? € a, whence uc? € q since a,b is a regular sequence on
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B. On the other hand, it always holds that g "' n? = gn. Hence uc? = 0 because
uc® € [n]; and [qn); = (0). Consequently, ¢ = vac® + wbc® € n®. Thus, ¢ € an?,
too. We finally assume that degy = 5. Then ¢ can be written as ¢ = vac® + wbc3
where v,w € k. Substituting ¢ = y;1a + y2b, we get vy, + wy; € q since a,b is
a regular sequence, while [q]; = (0), hence vy, + wy; = 0. We therefore obtain
v = w = 0 because y;,ys is linearly independent in [n];. Consequently, we have
¢ = 0. This completes the proof.

Example (3.4). Let B = k|a,b, ¢, z,y] be a polynomial ring over an infinite field
k where dega = degb = 2 and degc = degz = degy = 1. Let J be a homogeneous
ideal of B of the form J = (z,y)(z,y,c) + (c*, ¢ — ax — by). Then we can check
that B = B/J is a 2-dimensional Cohen-Macaulay graded ring, furthermore, for
the maxlrnal ideal n of B and q = (a,b)B, it holds that rq(n) = 3, ¢5(n%/qn) =1,
and n? = gqn + ¢?B. We have a relation ¢® = az + by in B and z,y is linearly
independent in [B];. So, by (3. -3) G(m)as is a Buchsbaum ring for the maximal
ideal m = nB, in the local ring B.. )
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ON THE ASSOCIATED GRADED RINGS OF POWERS
OF PARAMETER IDEALS IN BUCHSBAUM RINGS

KIKUMICHI YAMAGISHI

In this note we shall discuss a few results on the associated graded rings of ideals in
Buchsbaum rings.

Let (A, m) be a Noetherian local ring. For an ideal I of A let G(I) denote the associated
graded ring of I, namely

G(I) .= @1/

n>0

Moreover M denotes its unique graded maximal ideal, i.e., M = mG(I) + G(I)4.

Let A be a Buchsbaum ring of dimension d > 0. Then concerning the Buchsbaum-
ness of the asscociated graded rings, in 1982/1983 S. Goto (Meiji University) showed
the following two results: G(m)jys is Buchsbaum if A has maximal embedding dimen-
sion [G1]; G(q)ar is Buchsbaum for any parameter ideal q [G2]. In 1996, these Goto’s
results are generalized by the work of Y. Nakamura [N] as follows: if I = gI holds
for some parameter ideal q contained in I, then G(I)y is Buchsbaum if and onmly if
(a2,a%,...,d3) NI" = (a?,d3,...,a3)""2 holds for each 3 < n < d+ 1 (and hence
for all n € Z), where q = (a1, ag,... ,aq).

On the other hand, in 1976, G. Valla studied the associated graded rings of powers of
ideals generated by A-regular sequences, where A is Cohen-Macaulay, [V], cf. also {B].

Motivated by these works we shall pose the following questions:

Problem. Let A be a Buchsbaum ring. (1) Is G(q™)ps Buchsbaum for every parameter
ideal q and integer n > 2 ? (2) Suppose that A has mazimal embedding dimension. Then
is G(m™) s Buchsbaum for alln >2 2

§1. MAIN RESULTS

Let h*(A) denote the length of the ¢-th local cohomology module of A, namely R (A) :=
14(H: (A)). We denote by I(A) the Buchsbaum invariant of A, namely

d-1 — 3
I(A) = ;0 (d i 1> - hi(A).

With these notations, our results are stated as follows.

Typeset by AMS-TEX
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Theorem 1. Let A be a Buchshaum ring and I an m-primary ideal. Let G(I) be the
associated graded ring of I and M = mG(I)+G(I)+. Let q = (a1,az,... ,aq) be a minimal
reduction of I, i.e., I"*' = qI" for some integer r > 0. Then the following statements are
equivalent.

(1) G(I)m is Buchsbaum and R (G(I)p) = W (A) for each 0 < i < d.

(2) G(I)u is FLC (i.e., h"(G(I)p) < oo for all i # d) with I(G(I)ar) = I(A).

(3) (a%,d%,...,a2)NI" = (a?,d},... ,a3)I"2 for every3<n <r+d.
When this is the case, every power I™, n > 2, of the ideal I satisfies these equivalent
conditions too.

Notice that for the cases ] = m and r = 1 our theorem is already given by S. Goto in
[G3, Theorem (3.3)] and Y. Nakamura [N, Theorem (1.1)], respectively. The equivalence of
(2) and (3) in our theorem is also established in [GY, Proposition (7.13)]. Moreover, even
though G(I)as is Buchsbaum, the equality I(G(I)ar) = I(A) does not necessarily hold. In
[G4] we can find such Buchsbaum rings G(I)s, namely it occurs I(G(I)ar) > I(A4) = 0.

As consequences of our theorem we have the following corollaries.

Corollary 2. Let A be a Buchsbaum ring. Then G(q™)ar is Buchsbaum for every param-
eter ideal q and integer n > 2.

Corollary 3. Suppose that a Buchsbaum ring A has mazimal embedding dimension. Then
G(m™) s is Buchsbaum for allm > 2.

Throughout this note, let A be a Buchsbaum ring and I an m-primary ideal of A. We
denote by R(I) the Rees algebra of an ideal I and by N its unique graded maximal ideal,
namely

R(I):=@I", N:=mR(I)+R(D);.
n>0
When we set I = (aj,az,...,a,), the Rees algebra R(I) is regared as the A-subalgera
Alait, ast, . .. ,ayt] of the polynomial ring A[t], where ¢ is an indeterminate over A.
Here we introduce tow more useful notations. Let 7, j be integers. We denote by [z, j]

the set of integers n such that ¢ <n < j. Of course, [i,j] =0 if ¢ > j. Moreover, for a set
S, we sometimes use the notation |S|, instead of §5, to indicate the number of all elements

in S.
§2. PRELIMINARIES
In this section we shall recall several arguments in Chapter 7 of [GY]; see also [T, §5].

Lemma 4 [GY, Lemma (2.5)]. Let q = (aj,az,...,aq) be a minimal reduction of I, i.e.,
I™ 1 = qI" for some integer r > 0. Then the following statements are equivalent.
(1) The eguality
@ [leL)nI* =) otI*™
leL

holds for all L C [1,d],m; > 0 and n € Z.
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(2) The equality
(a2,d3,...,63)NI" = (a},d3,... ,al) "2

holds for all3 <n <r+d.
When this is the case one has G(I)/a;t - G(I) =2 G(I/(as))-
Proposition 5 [GY, Theorem (7.12), Proposition (7.13)]. Let q = (a1, az,... ,aq) still be
a minimal reduction of I. Then the following statements are equivalent.
(1) G(I)ar is quasi-Buchsbaum and R{(G(I)pr) = h*(A) for each 0 < i < d.
(2) G(I)n is FLC (i.e., h*(G(I)m) < o0 for all i # d) with 1(G(I)ar) = I(A).
(3) The equlity

(a2,d2,...,d%)NI" = (a2,d2,... ,a%) "2
holds for all3 <n <r+d. )
When this is the case ait,ast, ... ,aqt form a u.s.d-sequence on G(I).

§3. SKETCH OF PROOF OF MAIN RESULTS

By Proposition 5, the proof of Theorem 1 is completely covered by the following theorem.
Namely we need

Theorem 6. IfI(G(I)a) =I(A), then G(I)a is a Buchsbaum ring.
Let v = pa(m), and w = pa(I).

Lemma 7. There erist systems of elements in A, say T1,T2,... ,Ty and aj,az,... L Quw,
which satisfy the following conditions:
(1) ai,az,...,a, is a minimal system of generators of I;
(2) any d-elements of a1, as,. .. ,ay, form a minimal reduction of I;
(3) z1,2,... Ty is a minimal system of generators of m;
(4) any d-elements of 1,23,... ,Zy,01,02,. .. ,4y form a system of parameters for A.
Let us assume that z,z2,...,T, and aj,asz,... ,qy, be elements in A satisfying four

conditions in Lemma 7 as above. _

Let K'(z, at; G(I)) be the Koszul (co-)complex generated over R by the system z :=
T1,Z2,... Ty, and at := ait,ast,... ,a,t with respect to G(I). Since z,at is a minimal
system of generators of N, this complex K'(z,at; G(I)) is uniquely determined by the
ideal N upto isomorphisms not depending on the particular choice of a minimal system of
generators, cf., [SV, $ 1 of Chapter 0, pp. 27]. Hence we denote it by K'(V; G(I)) simply.

Notice that the Koszul complex K (N; G(I)) is a complex of direct sums of copies of a
graded R(I)-module G(I). Hence we have an expression of it as follows:

K(N;GUI)= @ 6W)-ef, KW;c)= @ GU) €]
3%[[1115]] |LI+|J|=4

where {e% | L C [1,w],J C [1,v]} is the graded free basis with deg ek = —|L|.
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Proof of Theorem 6. Assume that I(G(I)ar) = I(A) holds. Then we shall prove that the
canonical map

3.1 HY(N; G(I)) — Hy(G(I))

is surjective for all 0 <7 < d. By the usual method of using induction on d, however, the
surjectivity of the canonical maps (3.1) is led from the fact that the canonical map

(3.2) HY(N; HY (G(1))) — HY(N; G(I))
is injective for all 0 <4 < d, cf., [SV, Theorem (2.15) in Chap. 1]. Again by induction on
d, it is enough to check only for ¢ = d, namely we must show that the canonical map

(3.3) HY(N; HY (G()) — HA(N; G(I))

is injective.
To get the injectivity of the map (3.3) , look at the following commutative diagram

K4N;HY(G()) —— KUN;G(D))

o Ts
KIHN;HY (G(1))) —— KH(N;G(I)

and choose a homogeneous element 7 of K471(N; G(I)) of degree n € Z and put £ = (7).
Moreover, we assume that £ € K¢(N;H$,(G(Z))). Our goal is to show £ = 0. So we write

¢, n as follows:
€= Z 65'657 n= Z 775‘66,
[LI+]J|=d IP|+|Q|=d-1

where £5 € [G(I)]nt 2| and 7§ € [G(I)]n+|p|- Then we have

] L\{l
Jj€J leL

where we define J(j) as follows J(j) :=#{j’ € J | 7/ < j}, and L(l) is also defined in the
same way.

Then, our assumption means £} € HQ;(G(I)) for each L,J with |L| +|J| = d, and our
goal is to prove that £¥ = 0 for all such L, J. :

Since 175 € [G(I)]n+|p| We can choose a representation cg € I"HPl of 175, ie., % = "75,
here we denote by ¢ the homogeneous element cmod I™*! in G(I) of degree n for each
¢ € I™". Now, using these representations cg’s we define the element, say bﬁ, of A as

follows: .
bﬁ - Z(_l)-](])a:] . 65\{1} + E(_1)|JI+L(1)al . C.III\{I}
jed leL

Then clearly we have bl = €%, namely this element b% is one of the representations of 137
Unfortunately, this definition of bf depends on a choice of the representations cs ’s.
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Lemma 8 (Key-Lemma). Let L, J be such that L C [1,w], J C [1,v] and |L|+|J| =d.
Suppose that there exists another subset L' of [1,w] such that L' D L, |L'| = |L| +1 and
that bf,l =0 for all J' C J with |J'| = |J| = 1. Then it follows that b% = 0, under a
suitable exchange of the representations cg\{l} s (1 € L). (Notice that, in the case L = 0,
the assertion b% = 0 follows with no exchange of the representations.)

Proof. First of all, we deal with the case |L| = d. Notice that in this case our hypothesis
in Lemma is always considered to be fulfilled. Then, clearly J = @, and we have

{é, _ Z(—l)L(l)alt . né’\{l}'
leL
This implies
& € (ut|le L)-G(I) NHY(G()) = (0)
because a;t’s from a u.s.d-sequence on G(I), by Proposition 5. Thus
S )EVac M € (@ | Le Lyn I = () | L€ L)
leL
by Lemma 4. So, we can choose elements f;’s of I"*¢ such that
Z(_l)L(l)alcg\{l} _ Z(_l)L(l)alfl
leL leL '

in A. Then we have

MGt O

because of né’ M [G(D]pya—1 = I*T4"1/I"F4. Therefore, after exchanging a represen-
tation cé'\{l} of né’ M for the element c;j\{l} — fi, we obtain that

by =5 (-1)HWaeM =0,
leL

Next, let |L| < d. At first, we claim the following.
Claim. ZjeJ(—l)J(j)mjcg‘\{j} € (q|lel).
Proof of Claim. Let j € J. Applying the hypothsis to each J\ {j} we have
_pL NGYG) o oL JI-1+L' (@), LNV}
0=thgy= Y (DNPOzpelgin+ Y OV Oape s’
i'eN{s} el

Multiplying by (—1)7Wz; and taking the sum ) ; we get that

0=Z Z (=1)7G) (—1)\ G )zjzj,cg\{j’j,}

jeJ j'el\{s}
_ 1y . L\N{U
+ 30 (I ey (301 e
Vel Jj€J
_ 1oy . L\l
= 3 (VI (Z(_l)J(J)mij\\{g}})
el JeJ
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in A, because of 3.3 :Ea:]-:z:jlc%{j’j,} = 0. Choose the element I € L'\ L. Then clearly
L =1"L'\{l"}. Hence we see from the above equation that

Y (-1)7Ozch sy e l(@lle D) ap]n(zj|jed)=(a]|le L),
jed 4
because z;’s and a;’s form a system of parameters for A by our choice of them (recall that
|L| +|J|=d)and (a; |l €L):ap =(ay |l €L):m=(a;|l € L):z; for some j € J.
Since cg\ uy €1 7Ll we see by Claim that
D (1) Oajel oy € (@ le Ly nI"HH = (a; | 1€ L)mHEAL,
jeJ

This means

ek = Z(—I)J(j):c jcg\ @t z(_1)|J|+L(l)al cj\“}
jeJ . leL
€ (ait| 1 € L)- G(I) NHY(G(I)) = (0)

in G(I), because of the u.s.d-sequence property of a;t’s. Thus we get

j L\{l
bl = Z(-l)J(ﬂ)xjc’;\ o+ Z(_1)|J|+L(l)ach\{ }
JjeJ - leL

€(q|leL)ynI™tE+l — (g | 1 € L)L

in A. Therefore, after exchanging each representation cg\{l} of nf\{l} € [vHLI=1/ L]
we finally conclude bfj = 0 in the same way described at the first step of our proof. This
completes the proof of Lemma 8.

Now we finish our proof of Theorem 6. Let &, 7, 55’ , 775 , 05 and bf be the same notations
described as above. In order to obtain {5’ = 0, we show that bf = 0, under a suitable
exchange of the representations c§’s.

Let L,J be fixed and put k := d — |L|. Then, we make such a nice choice of the
representations cS’s by an inductive way on k. For k = 0, our assertion is true by Lemma
8 as above. Now let & > 0. Then we can find a sequence of subsets of [1,w], say

L,w]D2LoD2LiD---DLg=L

such that |L;| =d—i for 0 < i < k. Note that |[L;_1| = |L;|+1for 1 <i <k and |Ly|=d
. We define one more notation A;, 0 < < k, as follows:

A= O {(P,Q) | P =L;\{I} where l € L;,Q C J with |Q| = 5}
Jj=0 '

Note that Ay is a disjoint union of Ag_; and the set {(L\ {l},J) |l € L}. Moreover, in
the case k = d, we consider Ay to be equal to Ay_;, namely we define Ag:= Ay_;. Then
it is a routine to show, for each ¢ = 0,... ,k, that bg," =0 for all J' C J with |J'| =i,
under suitable exchange of the representations cg’s, where (P,Q) € A;. This finishes the
proof of Theorem 6. :
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EE(1.1) G = 9%), a = a(G)& B, A iZGorenstein BFF R T. G it
Cohen-Macaulay®R& 35, €D & &d = {Pe V(Fl) | htAP = dimGP/PGP} L BT
TAIZETEVWAREEGTHo T, ROEHIZFEMETH S,

(1) GitGorensteinZRTH 5,

(2) REG-INEED B 5 G(a)— KG PHET 5,

(3) $_TD Pesd I L Gp iGorensteinF TH - T, a=a(Gp) # Y L2,

{BL. KGHGOE#IBE, a(G)iEGna - FEREET, b
a(G):=sup {neZ![H (G)] #0) (M=mG+Gy
ThHb [GWle TOFEIZL S LABERDERI 1L ICEINS,

#(1.2) ([HSV], Proposition (1.1)) AlZGorenstein BFFiRE 5, 2Dk X,
4(F)A*Cohen-Macaulay®ig 2 & 13G(F)1ZGorensteinFR TH 5 ,

#(1.3) ([GN], Part I, Corollary (5.8)) AidGorensteinBFTER T, PZADEAS
7z, Pk ocporgmsr£L, 5=p™) L enc, cors
R(F)DNoetherIRTH 5 %2 61X, ROFEMIZEMBETH %,

(1) 4(%)itGorensteinIR TH 5,

(2) 4(F)ixCohen-Macaulay®RTdH > T, 4(PAp)iZGorensteinZR TH 5,

FEBOGEHIIHE 2EH TIT I A5, ZhUlid. ROGE (1.4)TERRENDLYF)DIEH
% Fb T ADIERENMBEK, DWOIMBEORISERE2RE 2 R-T,

& (1.4) AlZGorensteinZRDO#EFAEUZ T, 4(F)iZCohen-MacaulayRe ¥ 5 &,
ROFEM% ‘Zﬁ7:TKA@%ﬂﬁ}bﬂﬁa)ﬁ'ﬁw={wi}iezﬁ§"ﬁ“oﬁﬁ‘f 5,

(1) o,  Cw;, VieZ

2) Fiwj c Ot Vi, j EZ.

3) o, = Ky, Vi <-a(G)-1.

(4)Dj g @ 2R (F)DTEHANBETEH 3,

ZDEE, ®iz-a(G) w; 1/ 0 FYUF)DIEENFETH S,
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ZLTHEIMTIIERNBEOR 2 IO, DFD., A% GorensteindRDEREUZ L L,
1(+A)EADAFT VT, Z0dbreductiond 77 v Qifs=hts 1 BOTTTLRE S
N5 ERET B, £ IZs=0LZ13Q=(0)E X %, FIZ I TADRIRBEHEBMED & X,
IiZequimultipleZ’z £ 77 WiZI3n7 b %2\, 12 QIZBI$ AIMDreduction number
Bl IATFTTVOENIAOREIZALT S, %L TYF)iZCohen-MacaulayH

ETnL, E (1.4)ICH 2 REZIOBERBERYDOEENHEEDT0Z, UTOL
AT TIVOFTETEDT I EATE,

£®(1.5) 4(I)iiCohen-MacaulayR: §5L, TXTDi € ZITH L TRHAIEEL VY,
1) s21DEE, o =Qi's+f+1KA;KA1f Thb,

_ —(O)- A=
(2) S—O@ t g N 0)1 —(O)KAI 'Ci)é o

CORHAE L TROERMFOL Nz,

%(1.6) [cf. [W] Proposition 9., [O] Theorem 1.5] 4(I)iZCohen-Macaulay#R
EThHE, RIELV,

(1) s21D & &, ROEEFMETS 5,
(a) 4(1)ixGorensteinE&d 5,
(b) Ai¥GorensteinBid o T, I'=Ql: \IT (1=visr) A Y 12,
(2) s=0D & &, ROELHEIFMETH 5,
(a) YI)iXGorensteiniRd 5,
(b) AltGorensteinBid o, I7+1=(0): , 11 (1<visr) #5ih L2,

2 FEEDIIEA
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%o $TROMBERY Z L OUED D,
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PEET 5,

SEB RiZCohen-Macaulay}) Té > T, dimR =dimA +1 2D T, [TVZ] i
ERDFMF(1) 5 (5) & 725Ky OESIMBEDKEK=(K. }lezﬁﬁﬁﬁ*é (1)K0_ KA
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LERET S, I ( FA)EADATTIVT s=htyl EBL, FLTLIE, sEDITTAER
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ENbreductiond TTIVQEFDERERY Lo £ {IZs=0& 2i1IQ=(0)¢:E X 3,1
ZQIZBA§ A1 Dreduction number: 35, FATFTTIVOENITADREIZAL T
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SE# s=hty QT & Y AidCohen-MacaulayRFTRZ DT, Qid& & sDIERIFI TR
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EARRIEIH LT bKgq) = zlez QK@ Al EERLT LV, 87T,
C=R/R(QE L TROKBR(Q)-MBEDZLINEE X B
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—152—



w, = nnEZ(Qi-SﬂH-lKA:KAIn)
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Qu; 3132, CCTEEG.1)N)EHATEEEBES, O

pEB/NERROMEE L T 5 L, Cohen-Macaulay®! r(x) 1ZRD L) icEkb+ &
BWTE B,

RE(3.3) KAWY IO,
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Linear maximal Cohen-Macaulay modules over a
one-dimensional Cohen-Macaulay homogeneous k-algebra

Ken-ichi Yoshida
Graduate School of Mathematics
Nagoya University
Chikusa-Ku, Nagoya 464-01, Japan

1 Introduction.

The main purpose of this talk is to prove the following theorem.

Theorem 1.1 (cf. Yoshida [9]) Let k be an algebraically closed field and A = k[A;] a homo-
geneous Cohen-Macaulay k-algebra with dim A = 1. Then A is reduced if and only if gr LC(A)
is of finite representation type, that is, there are only a finite number of isomorphism classes of
indecomposable graded linear maximal Cohen-Macaulay A-modules up to degree shifting.

Moreover, in this case, any graded linear maximal Cohen-Macaulay A-module is isomorphic
to a finite direct sum of copies of A/p, where p runs through minimal prime ideals of A.

Before proving the above theorem, we recall some basic terminology. Throughout this paper,
let k be an infinite field and let A = k[A;] be an N-graded Cohen-Macaulay k-algebra which is
generated in degree one and we call such A a homogeneous Cohen-Macaulay k-algebra.

Let gr M(A) (resp. grC(A) ) be the category of finite graded A-modules (resp. maximal
Cohen-Macaulay (abbr. MCM) A-modules) and graded A-homomorphisms preserving degree.

In general, if M is a graded MCM A-module then the inequality
pa(M) < ea(M)

holds, where pa(M) denotes the minimal number of generators of M and es(M) denotes the
multiplicity of M with respect to the irrelevant maximal ideal m := A, of A. M is said
to be linear MCM A-module if the equality holds in the above inequality. Then M satisfies
mM = gM for any minimal reduction q of m, and the converse is also true. Note that any -
direct sum of linear MCM A-modules and any direct summand of a linear MCM A-module are
also one. See e.g. [2],[5] for details.

Let gr LC(A) denote the full subcategory of grC(A) which consists of graded linear MCM
A-modules. Under the above notation, we give the definition of finite representation type.
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Definition 1.2 (cf. [8]) We say that the category gr £LC(A) (tesp. grC(A)) is of finite rep-
resentation type if there are only a finite number of isomorphism classes of indecomposable
graded linear MCM (resp. MCM) A-modules up to degree shifting. Moreover, then we also say
that A is of finite linear CM (resp. finite CM ) representation type.

Now let k be an algebraically closed field of characteristic 0. Then the complete classification
of homogeneous Cohen-Macaulay k-algebras of finite CM representation type has been given
due to Eisenbud-Herzog [3]; see also Remark 3.

In connection with this result, we propose the following question.
Question 1.3 When is gr LC(A) of finite representation type ?

However, there exists a still open conjecture saying that any Cohen-Macaulay k-algebra,
admits at least one linear MCM A-module. So we must add some superficial conditions to
consider the above question. On the other hand, the existence of (graded) linear MCM A-
modules are already known in the following cases:

i) A is a strict complete intersection; see Herzog et.al. 5].

(
(ii) A has a maximal embedding dimension; see Brennan et.al. [2, Proposition (2.5)].
(ili) dim A < 1.

(

iv) A is a two-dimensional homogeneous Cohen-Macaulay domain over an infinite field; see
brennan et.al. [2, Theorem (4.8)].

In this paper, we give an answer to the above Question (1.3) in the case of diim A = 1 and
k=k.

2  Proof of Theorem (1.1).

In this section, we give a proof of Theorem (1.1). We first prove the only if part. In fact, the
following proposition gives a structure theorem for linear MCM A-modules over a homogeneous
reduced k-algebra with dim 4 = 1.

Proposition 2.1 Let k be an algebraically closed field of any characteristic and A = k[A;] a
reduced homogeneous k-algebra with dim A = 1. Then any graded linear MCM A-module M
can be written as follows:

M=ZFRoFRhe.. &F,

where Min(A) = {py, ... ,p.}, the set of minimal prime ideals of A and each F; is a graded
finite free A/p;-module.

In particular, gr LC(A) is of finite representation type.

Before proving this proposition, we recall the following well-known lemma needed later.

Lemma 2.2 (cf. Goto and Watanabe [4, Proposition (2.2.11)]) Let k be an algebraically closed
field and A = k[A,] a homogeneous k-algebra with dim A = 1. If A is an mtegml domain, then
A 15 k-isomorphic to a polynomial ring over k.

In particular, if p is a minimal prime ideal of A, then we can write as follows:

A:k[xlv sy Ty—1, 171,], p= ($1, )xv—l)‘
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We now give a proof of the above proposition. By virtue of Lemma (2.2), for any minimal
prime ideal p, we have that A/p is a polynomial ring over k and thus is a graded linear MCM
A-module. Moreover, it goes without saying that it is indecomposable as an A-module.

We prove the converse, that is, any graded linear MCM A-module M can be written as
MZFoFRhe...dF,

where each F; is a graded finite free A/p;-module.

We first note that m®~! is a linear MCM A-module, where e = e(A) is the multiplicity of A
with respect to m. In order to see this, let uA a minimal reduction of m and let » be a reduction
exponent of m, the smallest non-negative integer 7 which satisfies the equality m"*! = um".
Because A is a homogeneous Cohen-Macaulay k-algebra, we know that this integer  equals the
integer s such that A, # 0, A, = 0 for all integer n > s + 1, where A = A/uA. Therefore we
get e = [(A) > r + 1; hence mm®¢™! = um®~!. Namely, m*~! is a linear MCM A-module; hence
pa(met) = eq(met) =e.

On the other hand, by virtue of Lemma (2.2) again, we can easily obtain that p; + p; = m
for all 1 <7 < j < e. Therefore we get

mh = Y g

1<i<e

In fact, since py -« P; -~ -pe NP1 P; - - pe = 0 for all ¢ # j, it follows that

m = D prpipe

1<i<e

Thus each p; - - - P; - - - pe is also a non-zero linear MCM A-module; hence pa(pr - i - - pe) = 1.
So we put py---p;- - "pe = g;A  for every 1.

Now let M be any graded linear MCM A-module. Then since uM = mM, we get
M2y M=m"M=¢gM+.. +g.M
As g;g; = 0 for ¢ # j, we have
me 1M N (g ..., 9.)M] =0.

It follows that N := gy M N (g2, ..., g.)M is a module of finite length. On the other hand, as
N is a submodule of M, it must be zero. Therefore

M2gM&.. &gM.

Then because of p;g; = 0 we have that g;M is a graded linear MCM A/p;-module and thus is
a finite direct sum of A/p;, for A/p; is a polynomial ring over k. It follows that M itself can
be written as the required form. QED

Example 1 Let A = k[X] be a polynomial ring in one variable. Then any graded MCM A-
module is a graded finite free A-module.
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Example 2 Let A =k[X, Y, Z]/(XY, XZ, YZ(Y + Z)). Then

Min(4) = {(z, y), (=, 2), (¥, 2), (z,y + 2)}
and we have

m® = (2, ¥’ (y + 2), 22(y + 2), ¥’2)A.

Example 3 Let A = k[X1, X2, ..., X]/(XiX; |1 <i<j<wv)and put u = 21+ ... + z,.
Then e = v and for any graded linear MCM A-module M we have

MEonwM=z2M®...®z,M

and each ;M is a finite direct sum of A/(zq, ... ,Tiy ..., T,)A.

In order to complete the proof of Theorem (1.1), we next prove if part.

Proposition 2.3 Let k be an algebraically closed field and A = k[A1] a homogeneous Cohen-
Macaulay k-algebra with dim A = 1. If gr LC(A) is of finite representation type, then A is
reduced.

Proof. First of all, we may assume that A is irreducible. Actually, let (0) = ¢ N...N¢g. be
a homogeneous irredundant primary decomposition of (0) in A. Then since A/g; also satisfies
the assumption of this proposition, if the assertion is true in the irreducible case, we can obtain
that A/g; is an integral domain. It follows that A is reduced. '

We assume that A is irreducible and Min(A4) = {p}. By virtue of Lemma (2.2), we can
write as

S=k[X1, ..., Xo1, Xu], P=(X1,...,X01)S, A=S/I and p=P/I,

where X, ..., X, are indeterminates over k. Moreover, we may assume that ¢ = X, mod [
generates a minimal reduction of m = A,. For simplicity, we put z; = X; mod[ for ¢ =
1, ...,v—1

Suppose that A is not an integral domain (that is, not a polynomial ring over k). Then
A := A/tA is a homogeneous Artin k-algebra and we have A, # 0, A, = 0 for some positive
integer s and for all n > s+ 1. Putting S’ := k[X;, ..., X,_1] C S, we can write as follows:

A=51J=40A ...0 A,

For each integer 7 with 1 < i < s, we take elements Fp1, ..., Fp;, € S; the images of which
form a k-basis of A,, where i, = dimj A,. Then we define the following ideal I, of A for every
integer n > s+ 1:

L= (0 {fo ™} 0=1,...,5;5=1,... ie) A,
where f;; denotes the image of Fy; in A.

Then since I, contains a non-zero divisor t*, it is an m-primary ideal, and thus is a graded
MCM A-module. Moreover, it follows that every I, is an indecomposable A-module from the
following remark.
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Remark 1 Let A be a one-dimensional homogeneous Cohen-Macaulay irreducible k-algebra
Then for any homogeneous m-primary ideal I, it is a graded indecomposable A-module.

Proof. Suppose that there exists a non-trivial decomposition I = I; ® I; of I. Then both
I; and I, are homogeneous ideals of A and ;1> = 0. If at least one of them is an m-primary
ideal (say I,), then I; contains a non-zero divisor of A, which implies I = 0. This contradicts
the assumption. Therefore both I; and I, are contained in the unique minimal prime ideal p
of A. Then I itself is contained in p; this is a contradiction. a

We return to the proof of the above proposition. We show that the above I, is a linear
MCM A-module for every n > s + 1.

Let e = ¢(A) be the multiplicity of A with respect to m. Then we shall prove the following
claim.
Claim: {t", {fg,jts_z}g,j} form a minimal basis of I,.

Suppose not. Noting deg(t®) = n > s and deg(fy;1*™¢) = s, we get either one of the
following equation:

t"= Y fo;t*lg,;  forsome gp; € A, Eq.(1)
1<€<s
1<5<1,
or
Z clljfl,jt’_l =0 for some ¢ ; € k with {cg;} # {0} - Eq.(2)
1<e<s
1<j5<1,

Now first suppose that Eq.(1) holds. Then as f; € p = (1, ... ,Z,—1)A we have t* € p;
hence t € p, which contradicts the choice of t. Next suppose that Eq.(2) holds. Then we have

1y
ch,jfs,j=0 in A
=1

Since {fi ;}j=1,.. 4, form a k-basis of Ay, we can get c,; = 0 for all j; then Eq.(2) can be
replaced with

s—1—£ __
D cuifest =0,
1<€<s-1
1<j<i,

because t is a non-zero divisor of A. Then

1y—1

z cs—l,jfs—l,j =0 in —A_
j=1

This implies that c¢,_; ; = 0 for all j. Repeating this argument, we can obtain that ¢, ; = 0 for
all£ =1, ... ,s and for all j; this is a contradiction. This completes the proof of the claim.

Therefore every I, is a graded indecomposable linear MCM A-module and the minimal (resp.
maximal) degree of its minimal system of generators equals s (resp. n). In particular, {In}n>s+1
are infinite non-isomorphic graded indecomposable linear MCM A-modules. QED

Example 4 (cf. [8, Example (6.5)]) Let A = k[X, Y]/(Y?). Put I, = (z", y)A for every
positive integer n. Then {I,}n>1 is the complete list of non-isomorphic graded indecomposable
linear MCM A-modules.

—1656—



Any zero-dimensional homogeneous k-algebra is of finite linear CM representation type.
In fact, in this case, the residue field k is a unique indecomposable linear MCM A-module.
Therefore we have the following corollary.

Corollary 2.4 Let k be an algebraically closed field and A = k[A;] a homogeneous Cohen-
Macaulay k-algebra with dim A < 1. Then A is of finite linear CM representation type if and
only if it is of isolated singularity.

Remark 2 Auslander [1] has proved that if A is of finite CM representation type then it is an
isolated singularity.

In the final of this section, we quote one-dimensional case of the Classification Theorem for
homogeneous Cohen-Macaulay k-algebras with finite CM representation type which is due to
Eisenbud-Herzog [3].

Remark 3 (cf. [3],[8, Theorem (17.10)]) Let k be an algebraically closed field of characteristic
0 and A = k[A;] be a homogeneous Cohen-Macaulay k-algebra with diim A = 1. If A s of finite
CM representation type, then A is k-isomorphic to one of the following rings:

(1) k[X].
(2) kX, Y]/(XY).

(3) k[X, Y]/(XY(X +Y)).
(4) k[X, Y, 2)/(XY, Y Z, ZX).

3 Two-dimensional cases.

In case of a certain two-dimenional Cohen-Macaulay homogeneous k-algebra, the author has
proved an analogy of Theorem (1.1) in [10].

Theorem 3.1 (cf. Yoshida [10]) Let k be an algebraically closed field of characteristic # 2
and A = k[A;] a homogeneous Cohen-Macaulay k-algebra with dim A = 2. Furthermore, we
suppose that A has a maximal embedding dimension, that is, dimjy A; = dim A + e(A4) — 1,
where e(A) is a multiplicity (degree) of A. Then the following conditions are equivalent.

(1) gr LC(A) is of finite representation type, that is, there are only a finite number of isomor-
phism classes of indecomposable graded linear maximal Cohen-Macaulay A-modules up
to degree shiting.

(2) grLB(A) is of finite representation type, that is, there are only a finite number of iso-
morphism classes of indecomposable graded linear maximal Buchsbaum A-modules up to
degree shifting.

(3) A is a normal domain.
(4) A is k-isomorphic to the rational normal scroll of type (e), where e = e(A);

A= k‘[Xo, Xl, ,Xe]/IZ ( ?((g §; X)e(—l > R where deg(X,) =1.
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REMARKS ON A DEPTH FORMULA, A GRADE
INEQUALITY AND A CONJECTURE OF AUSLANDER

TOKUJI ARAYA
GRADUATE SCHOOL OF HUMAN AND ENVIRONMENTAL STUDIES
KYOTO UNIVERSITY, KYOTO 606-01, JAPAN

1. A DEPTH FORMULA
Let (R, m, k) be a Noetherian local ring and let M and N be finitely gener-
ated R-modules. We define the integer ¢®(M, N) as follows; '
q®(M, N) = sup{i| Tor®(M, N) # 0}.
Theorem 1. Let M and N be finitely generated R-modules with pd N < oo.

Putting ¢ = ¢®(M, N), if depth Tor;(M,N) £ 1 or if ¢ = 0, then we have the
equality

depth M + depth N = depth R + depth Tor}(M, N) — q.
It is proved by Auslander. Huneke and Wiegand observe the case of ¢ =0

and define that M and N satisfy the depth formula prov1ded the following
equality is hold;

depth M + depth N = depth R + depth M @z N.
And they show the following;
Theorem 2. Let R be a ring of complete intersection, and let M and N be

finitely generated R-modules with ¢®(M,N) = 0. Then M and N satisfy the
depth formula.

We show in the following a unified version of these two theorems using CI
dimension whose definition is due to Avramov-Gasharov-Peeva.

Theorem 3. Let M and N be finitely generated R-modules with CI-dimg N <
00 and assume that ¢ = ¢®(M,N) < . IfdepthTorR(M,N) Slorg=0,
then we have the equality

depth M + depth N = depth R + depth Tor (M,N) -
So M and N satisfy the depth formula if CI- dlmRN < 00 and zf g=0

2. A GRADE INEQUALITY

For finitely generated R-modules L and M, recall that grade(L, M) is defined
as follows;
grade(L, M) = inf{i| Exty(L, M) # 0}.
Note that grade(k, M) = depth M for any finitely generated R-module M.
Hence the depth formula can be described in the following form;

grade(k, M) + grade(k, N) = grade(k, R) + grade(k, M @ N).
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And it is hold if CI-dimg N < oo and ¢®(M, N) = 0 by Theorem 3. We are
interested in when the equality is hold for an R-module L instead of k.

Theorem 4. Let M and N be finitely generated R-modules and suppose that
pd N < oo and ¢®(M,N) = 0. Then, for any finitely generated R-module L,
we have the inequality

grade(L, M ®g N) < grade(L, M) < grade(L,M ® g N) + pd N

Example 5. For any non-negative integers! £ m < n, there exists an example
such that grade(L, M @ N) =1 grade(L M) = m, and grade(L, M ®r N) +
pdN =n.

3. A CONJECTURE OF AUSLANDER

We define the integer p?(M, N) = sup{i| Ext’é(M, N) # 0}. Then we can
prove the followings;

Theorem 6. Let M and N be finitely generated R-modules. Assume that
Cl-dimg M < oo and p®(M,N) < co. Then we have the equality

p®(M, N) = depth R — depth M.
In particular, pR(M ,N) is independent of N in this case.

Auslander conjectured that for a finitery generated R-module M, the con-
dition Exthy(M @ R,M & R) = 0 for all i > 0 would imply that M is free. It
is proved by Auslander for the cases where R is a complete intersection but it
is still open for general cases. We prove it for the cases where M has finite CI
dimension.

Theorem 7. Let M be a finitely generated R-module with CI-dimg M < oo.
If pR(M, M) = 0, then M is free.

Proof. Since CI-dimg M < o0, there exists a quasi-deformation R —» R « S
with pdg M’ < oo, and we may assume that R is complete local ring
by [3] Propl.13. Without loss of generality we may assume that (S,n)
is a deformation of R of codimension r. Since pR(M,M) = 0, we have
Ext}(M,M) = 0, so M is liftable to S, i.e. there exists an S-module N
such that N ®s R = M and Tor{(N,R) = 0 for i > 0. See [2] (1.7) or
 [8] (1.6) . Let x= 21,3, ,%, € n be an S-sequence with S/(x) = R.
Then x is also N-sequence. Since pdg M < oo and N/(x)N = M, we have
pdg N < oo and hence pdg M < oo. Thus we get from theorem 6 that
pdp M = depth R — depth M = pR(M, M) = 0, hence M is free. 0O

Corollary 8. Let M be a finitely generated R-module with CI-dimg M < oo.
Then we have the equality pdg M = p®(M, M).

Example 9. Schulz showed that there is a counterexample if R is non-
commutative.

Let L be a division ring and a is an element of L such that inner derivation
0, : T+ az — za is surjective. Such L exists according to [4]. Let K = L((T))
be the field of formal Laurent series in variable T' which commutes with L. We
put R=K < X,Y > /(X% Y% XY + TYX) where X and Y are variables
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which commute with K. For cach ¢ = 0, we define left R homomorphisms
di:R>aw— a(X+alV)€R Inthiscase, - > RS RS'R— ... 8
is exact sequence. So we put M = Cokerdp, then M is not projective but
Exty(M,M) =0 for all i > 0.

The last of my talk, I said two problems.
Problem

(1) If G-dimg M < oo and if Ext’é(M , M) =20for alli > 0, Then M is free.

(2) If ExtiR(M, R) =0 for all ¢ > 0, then it hold Ext’}i.(tr]\/{, R) = 0 for all
1> 0.

But Miyachi told me that there is a counterexample for (2) if R is non-
commutative.

Example 10. Let k be a commutative field, R = k < X, Y > /(X% Y2 XY —
AY X) where X and Y are variables which commute with k£ and A is non zero
element of k such that (=A\)" # 1 foralli>0, and M = R/R(X +Y).

1
We put A = <103 RJX") , aX = (Q%M>.
Then we have Ext’y (X, A) = 0 for all i > 0.
On the other hand, by the following exact sequence;

0 — Extl(trX,A) - X — X — Ext’(trX,4) — 0,
and since X is not reflexive, we have Ext, (trX, A) # 0 or Ext}(trX, A) # 0.
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Introduction

Let R be a Noetherian ring containing the rational number field Q and let A =
R[X]/I, where R[X] is a polynomial ring in one variable over R and [ is an ideal of
R[X]. We denote by 2z(A) the module of differentials of A over R and by d4/r the
universal R-derivation A — Qg(A). Then C' = ker(da/g) is an R-subalgebra of
A, which is not Noetherian in general even if R is a regular ring. It is thus natural
to ask what conditions imply that C is again Noetherian. The purpose of this note
is to give some results on this problem under the assumption that ¢(I) contains a
regular element of A; here ¢(I) is the ideal of R generated by the coefficients of the
polynomials in I. Our main result is the following

Main Theorem. Let R be a Noetherian ring containing the rational number field
Q and let A= R[X]/I, where I is an ideal of R[X]. We set C = ker(da/r). If ¢(I)
contains a reqular element of A, then the following three conditions are equivalent
to each other:

(1) C is finitely generated over R/(I N R);

(2) C is Noetherian; ’

(3) ¢c(I) = R.

This note is a summarization of our paper [4].
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1. Preliminary lemmas

We employ the same notation and assumption as in the introduction. For the
proof of the main theorem stated above we need some preliminary lemmas.

Let m: R[X] — A be the natural R-algebra map and let a = m(X). We set
I' = §(I), where 6§: R[X] — R[X] stands for the canonical R-derivation of R[X]
defined by 6(f(X)) = f'(X) for f(X) € R[X]. Then the map ¢: A — A/n(I")
defined by ¢(g(a)) = ¢'(a) mod m(I') is a well-defined R-derivation, and there exists
an A-module isomorphism p: A/m(I') — Qgr(A) such that p- ¢ = dy/p (cf. [1,
p. 195]). Hence we have ker(da/g) = ker(¢). It is then easy to check the following

Lemma 1.1. We have C = w(671(I)), and in particular C C R+ ¢(I)A.

The following two lemmas play important roles in the proof of the theorem. The
proofs of the lemmas are omitted.

Lemma 1.2. Let a be a non-zero element of ¢(I). Then there erists a positive
integer v such that aa™* € C+ Ca+ -+ Ca™! for every i > 0.

Lemma 1.3. The element « is integral over C if and only if ¢(I) = R.

2. Proof of the main theorem

By making use of the lemmas in the previous section, we can prove our main
theorem as follows:

Since the implication (1) = (2) is obvious, it suffices to check (3) = (1) and
(2) = (3). Let S = R/(INR). Then we have Qr(A) = Qs(A), and ker(d/g) =
ker(da/s). Moreover we have I N R C ¢(I). Hence, replacing R by S if necessary,
we may assume that I N R = (0).

First, suppose that ¢(I) = R and let @ = X mod I. Then, by Lemma 1.3, a is
integral over C, and hence

"+ e =0

for some positive integer r and ¢y, ¢3,...,¢ € C. Let B = R[cy,¢p,...,¢]. Then A
is a finite B-module because A = B|a] and « is integral over B. Since BC C C A
and B is Noetherian, it then follows that C' is also a finite B-module. Thus C is
finitely generated over R.

Next, suppose that C' is Noetherian and let a € ¢(I) be a regular element of A.
Then, by Lemma 1.2, there exists a positive integer r such that

aa™teM:=C+Ca+---+Ca"!

—184—



for every i > 0. Since a is a regular element of A, this implies that Cla"] C (1/a)M.
Hence C[a"] is a finite C-module because C' is Noetherian and (1/a)M is a finite
C-module. Thus a" is integral over C, and so is a over C. Then, by Lemma 1.3, we
have ¢(I) = R. Q.E.D.

Recall that, in the case where ¢(I) contains a regular element of R, if A is flat
over R, then ¢(I) = R (cf. [5, Corollary 1.3]). Hence, the main theorem implies the
following

Corollary 2.1. Let R be a Noetherian ring containing Q and let A = R[X]/I.

Assume that ¢(I) contains a regular element of R. If A is flat over R, then C =

ker(da/r) is finitely generated over R/(I N R).

Concerning the case where ¢(I) contains no regular elements of A, we give the
following two examples.

Example 2.2. Let R be a ring containing Q and let A = R[X]/(af(X)), where
a is a regular element of R and f(X) is a monic polynomial in R[X] of positive

degree d. Let 3; = c!aXi_lf(X)dX for each 7 > 1 and let fy = 1. Then C =
g 0

R+ RB1+---+ RBs_1. In fact, we have C = R+ Rf + RB; + - -- by Lemma 1.1.
Hence, to see the assertion, it suffices to check that 844, € Cp := R+RB1+-- -+ RBy_
for every ¢ > 0. The proof is by induction on % ; we omit details.

Example 2.3. Let k be a field of characteristic 0 and let R = k[z,y], where
z and y are indeterminates. Let A = R[X]/(zX?— yX, zyX). Then we have
C = R+ Rya®+ Rya® +--- by Lemma 1.1. We will show that C is not Noetherian.
Assume that C' were Noetherian. Then the ideal J = (ya?,ya?®,...)C would be
finitely generated, say, J = (yo?,ya?,...,ya™)C. Note that y?a = 0 because

X = zyX? —y(zX?—yX) € (zX?—yX, zyX).
Hence we have J = Ryo? + - -- + Rya™. Since ya™*t! € J, it follows that
0 yX" = (e X+ ey X" = (@X -y X)F(X) + oy XG(X)

for some F(X), G(X) € R[X] and 3, ¢c3,.. ., € R. From (3) we have zX?F(X) €
yR[X], which implies that F'(X) = yFy(X) for some Fy(X) € R[X]. We then have

y X" — (uX?+ -+ cyX™) = zy(X*R(X) + XG(X)) — YV XFi(X).

Comparing the coefficient of X™*! in the left hand side with that in the right hand
side, we have y € (zy, y?)R, which is a contradiction.
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Example 2.2 shows that the converse of Corollary 2.1 does not hold in general.
However, the converse holds if the extension R C A = R[X]/I is anti-integral ; it
is known that if R C R[a] & R[X]/I is an anti-integral extension of Noetherian
domains, then R[a] is flat over R if and only if ¢(I) = R (cf. [2, Proposition 2.6]).
Hence, by the main theorem, we have the following

Theorem 2.4. Let R C A = R[a] be an anti-integral extension of Noetherian
domains and let C = ker(da/g). If R contains Q, then the following three conditions
are eqivalent to each other:

(1) C s finitely generated over R ;

(2) C is Noetherian;

(3) A is flat over R.

Remark 2.5. We can generalize the main theorem to the case where C is the kernel
of an R-derivation D: A — M for some A-module M. (cf. [3]).
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Some results on Hilbert-Kunz multiplicity *

Kei-ichi WATANABE,
Dept. of Math., College of Humanities and Sciences,
Nihon University 2
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Introduction.

The theory of Hilbert-Kunz multiplicity (HK multiplicity, in short) was
developed by E. Kunz and P. Monsky. Yet there are many fundamental
facts to become clear.

Also, since HK multiplicity is finer than the usual one, we can expect
it will be a good invariant when we classify “singularities”.

The other merit to consider HK multiplicity is that it will be a powerfull
guide in the theory of tight closure of ideals and will help us to find
important properties of tight closures.

Some parts of this article (including the most important ones) are either
joint work with Ken-ichi Yoshida at Nagoya University or his results. I
want to thank him for the collaboration. The detail of the proof not
included here will appear in [WY].

Also, we want to thank the organizer of this conference for giving the
chance of disscussion. In fact, Thorem 2.1 was found in the discussion
during this conference.

I want to thank P. Monsky for giving me many informations and also
to R.-O. Buchweitz and Q. Chen for sending me the TEX file of their
paper [BCP].

§1. Fundamental Properties.

Definition (1.1) Let (A4, m) be a Noetherian local ring of dim A =d

1 Partially supported by a grant under The Monbusho Science Research Program:
B, “The Application of Frobenius endomorphism to Commutative Ring Theory and
Algebraic Geometry.

2 e-mail address: watanabe math.chs.nihon-u.ac.jp
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of characteristic p > 0 and I be an m-primary ideal. We always agree to
use the letter ¢ for powers of p. Then

La(A/ 1)

enx(l) == }LI& and epg(A) :=egg(m).

Also, for a finitely generated A module M, we define

n [a]
d! —IA(MLI M), egx(I, M) := lim —-———IA(M/dI M)

gq—oo q

e(I,M) = lim

n—oo

We write e(I) = e(I, A) for the usual multiplicity of m primary ideal I
and write e(A) = e(m).

From this definition, it is clear that eyg (/) = qenx(I) for every
m-primary ideal I. This formula will be used in the proof of (2.1).

Hilbert-Kunz multiplicity characterizes tight closures in the same man-
ner that usual multiplicity characterizes integral closures.

Theorem (1.2) [HH] Let I O J be m-primary ideals. If I C J* then
eux(I) = egx(J). The converse holds if A is reduced and equidimen-
sional.

The following lemma of Lech is fundamental in the theory of HK mul-
tiplicity.
Lech’s Lemma (1.3) If (z,...,24) is a s.0.p. of a finitely generated
A module M, then
La(M/(z3,...,z™)M)

T1] yeeeyTg—> 0O ng---Ng

=e(M,(z1,...,%q)).

Corollary (1.4) For a parameter ideal I of A (resp. M), we have
e(I) = egx(I) (resp. e(M,I) = egx(M,I)).

Proposition (1.5) [M] (1) eax(I) exists and
e()
(2) Let My, M, be A modules which satisfy (M;)p = (Ma)p for every
minimal prime ideal p of A, then we have exx (I, M1) = egx (I, My).
In particular, if A is an integral domain, ey (I, M) = rank M.egx(A).
(3) If A is regular, then egx(I) = la(A/I) (in particular, egx(4) = 1).
In general, egx(A) > 1. '



Remark (1.6) Let A = k[[X;,..., Xg]]") be the r-th Veronese subring
of k[[X1,...,Xa]]. We can show that egx(A4) = (d+r — 1)!/((d)(!)
by (1.8). If we fix d and let r — oo, then lim, o enx(A)/e(A) = 1/d!.
Hence the inequalitis in (1.5)(1) are best possible. Does ther exist some
A with d = dim A > 2 with the equality e(A) = d!.egx(4) ?

The following criterion of Kunz for regular local rings is essential to
prove (2.1).

Theorem (1.7) (Kunz [K1]) Let A be a local ring of characteristic
p > 0. Then the following conditions are equivalent.

(1) A is a regular local ring.

(2) A is reduced and it is flat over A? = (a?|a € A).

(3) la(A/mldl) = ¢? forall g=p°, e>1.

In general, HK multiplicity is very hard to calculate. (I hope the cal-
culation will be much easier in the future.) But if A has a regular ring as
a finite extension, then ey (I) is rather easy to calculate. The follwoing
formula is found by Buchweitz, Chen and Pardue independently ([BCP]).

Proposition (1.8) Let A C B be a finite ring extension with rank 4B
7. Then for an m primary ideal I of A, we have egg(I) = w. If,

in particular, B is regular, then we have

cun(l) — 12BLIB)

T

The proof follows easily from (2) and (3) of (1.5).

§2. Colength and HK multiplicity. Characteriza-
tion of regular local rings.

It is well known that A is regular if and only if A is unmixed and
e(A) = 1 ([N] (40.6)). This also holds for HK multiplicity. Also, our
proof seems to suggest a relation between colength and HK multiplicity
of an m-primary ideal.

Theorem (2.1) (with Ken-ichi YOSHIDA) If A is unmixed with
exk(A) =1, then A is regular.
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To prove this theorem, we begin with the “reverse” inequality for mul-
tiplicity and colength for the tight closure of parameter ideals.

First, we consider the following condition (#) for parameter ideals.

(2.1.1) 9= (a4, ...,aq) satisfies the condition (#) if

(#i) a; is A;_y/H} (Ai-1)-regular, where A;_; = A/(ay, ...,a;_;)A for
eachi=1,...,d-1.

(#ii) 0:4,_, aa =014, , aZ.

Theorem (2.2) (K. YOSHIDA) If q satisfies (#), then e(q) > [4(A4/q*),
where e(q) is the usual multiplicity of q and q* is the tight closure of q.

To show this we study the ideal £(q) defined by Yamagishi-Goto as

d
S(a) =) (a1, ...,8...,04) 1 ai + (a1, -..,a0)A.

i=1

We can show that if q satisfies (#), then e(q) > 14(A/X(q)). Then we
use the “colon capturing” property of the tight closure to show £(q) C ¢*
and get (2.2).

Now, we ask, “What if the equality hols (2.2) 7” We don’t know the

general answer yet, but we have the following.

Theorem (2.3) (K. Yoshida) Let A be an excellent local ring with
d :=dim A > 2. Suppose that the following two conditions hold:

(1) A/H},(A) satisfies (S,).

(2) e(q) = 14(A/X(q)) for every system of parameters q which satisfies

(#)-
Then A/H} (A) is Cohen-Macaulay.

Now assume that egx(A) = 1. Take a parameter ideal q which satisfy
the condition (#) and take a composition series

AdDL=mD>...DI,=¢".

Since I;/I;11 = A/m for every j, there is a surjection A/mld — IJ[.q]/IJ[-‘ﬂ1
for every j. Taking the length and dividing by ¢%, we have

la(A/a")-enx(A) > enk(a") = enx(a) = e(q).
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Combinig this with (2.2) and putting egx(A) = 1, we have e(q) >
la(A/q*).enx(A) and we must have equality everywhere. If we assume
the condition (S;) for A, then by (2.3), A is Cohen-Macaulay and e(q) =
la(A/q*). Hence we have q = q*, which implies that A is F-rational.

We assumed the condition (S;) for A in the argument above. But we
can show that to prove (2.1), we can reduce to the case A satisfies (S,)
after some discussion. The detail will appear in [WY].

Now, we will finally prove (2.1). The argument above shows that A is
Cohen-Macaulay and it suffices to show the following.

Proposition (2.4) If A is Cohen-Macaulay with egg(A) = 1, then A
is regular.

(Proof) Take arbitrary m-primary ideal I and take a parameter ideal
g C I. Taking a composition series from A through I to q and note 2
inequalities

Lo(A/T9) < L4(A/D)da(A/mD),  14(19/q9) < 14(1/q).La(A/ml).

Since egx(A) = 1, we have egx(I) < 14(A/I) and egk(a) — eqx(I) <
14(I/q). On the other hand, we have egx(q) = e(q) = l4(A/q) since A is
Cohen-Macaulay. This shows that [4(A/I) = egx(I) for arbitrary I.

Now, take I = ml4. Then we have [4(A/ml¥) = ey (mld) = ¢?.exx(A) =
¢®. By Kunz’ criterion, A is regular.

Conjecture (2.5) Assume A is unmixed. If I4(A/q") = e(q) for a
parameter ideal q, is A F-rational ?

§3. Rings of dimension 2 with small HK multiplic-
ity.

In this section, we seek the possibility to classify singularities in terms
of HK-multiplicity. As the first step, we will classify the 2-dimensional
singularities with small HK-multiplicity.

It turns out that HK-multuplicity classifies F-rational double points
very sharply and gives very important invariant. Also, we have only one
triple point with egx(A) = 2. The next value of egx(A) after 2 seems

to be —.
o be
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Theorem (3.1). Let A be a Cohen-Macauly local ring of dimension 2.
(1) enx(A) < 2 if and only if A is an F-rational double point. If A

is not regular, then egx(A) > 3
(2) enx(A) = 2if and only if either A is a non-F-rational double point
or A is an “ordinary triple point” (that is, Gm(A) & A/m[s%, s%¢, st?, t3]).

(Proof) First, let e(A) = 2. Then A has a parameter ideal q with
l4(A/q) = 2. Namely, q CmC Ais the composition series. Then by (1.2)
and (1.4), we have (1).

Rational double points are classified by Artin [A1,A2] and Lipman [L].
Among them, F-rational double points are those which can be expressed
as a pure subring of a regular ring. Except the singularities of type (4,),
they are “quotient singularities” by a finite subgroup of SL(2,k). Then
their HK-multiplicity are given by the following.

Example (3.2) (1) If A = k[[X,Y]]¢ with G a finite subgroup of
SL(2,k), then egx(A) =2 - 1/|G|
(2) If A= k[[x,y,z]]/(xy — z"), then egx(4) =2 — 1/n.

To prove (3.1), we first exclude rings with e(A) > 4 and non-F-rational
triple points.

Lemma (3.3) Let q be a minimal reduction of m. If m/q* is mini-

mally generated by r elements (note that r < e(A) — 1), then egx(4) >
r+2

2(r + 1)e(A).
By this lemma, if A is not F-rational with e(A) = 3, then we have
enx(A) > % and if e(A) > 4, then we have e(4) > g

Then it remains to show that for a F-rational triple point, egx(A) = 2
if and only if the associated graded ring Gm(A) is an integral domain.
Detail will appear in [WY].

Question (3.4) What are possible values of egx(A) if A moves all 2-
dimensional singularities ? Up to now, we have accumulation points from
below (2, for example) but no accumulation points from above.
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