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ON THE STRATIFICATION OF COMBINATORIAL
SPECTRA

Ryo HORIUCHI

ABSTRACT. In this note, we investigate a mixture of combinatorial spec-
tra and stratified simplicial sets, which would be thought of as a model
of the spectrum objects of (oo, 0o0)-categories.

1. INTRODUCTION

In this note, we investigate a mixture of combinatorial spectra and strat-
ified simplicial sets, which would be thought of as a model of the spectrum
objects of (0o, 00)-categories.

In [5], Kan introduced the notion of combinatorial spectrum, which is a
certain presheaf in pointed sets over a category Ay that is a stabilization
of the simplex category A in an appropriate sense. Intuitively speaking, a
combinatorial spectrum is a pointed simplicial set with Z-graded simplices.
In [6], Kan and Whitehead introduced a product for combinatorial spectra,
which may not give rise to a monoidal structure on the nose, and showed
that it works well up to homotopy. Later, Brown showed the category
of combinatorial spectra admits a model structure in [1]. Bousfield and
Friedlander showed there exists a chain of Quillen equivalences between that
and another model of spectra in [2].

In [10], Ozornova and Rovelli introduced the notion of prestratified sim-
plicial sets, which has already appeared in [15] without name and is also a
presheaf in sets over a category similar to A, denoted by tA. Intuitively
speaking, a prestratified simplicial set is a simplicial set with two layers of
simplices. Verity constructed in [16] a model structure on the category of
stratified simplicial sets, which are prestratified simplicial sets satisfying a
certain condition. Ozornova and Rovelli then constructed a model structure
on the category of prestratified simplicial sets based on Verity’s work and it
is expected the model structure models (oo, 00)-categories.

In this note we investigate the presheaves in pointed sets over a stabiliza-
tion of tA. Such a presheaf thus would be viewed as a pointed simplicial
set consists of two kinds of n-simplices with n € Z. We show the presheaf
category inherits a homotopy theory and the stratified analogue of Kan-
Whitehead product is compatible with that in an appropriate sense.
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2. PRELIMINARY

2.1. Stabilization of simplicial sets. In this section, we recall combina-
torial spectra from [5], [6] and [1]. We focus on Kan-Whitehead product and
Brown’s model structure of them.

Let A denote the simplex category and * : A x A — A denote the
concatenation functor. More precisely, for any [m],[n] € A, [m] % [n] =
[m+mn+1], and for 0 : [m] — [m/],7 : [n] — [n/] € A, the morphism
Ox7:m+n+1] — [m' +n' +1] is given by

0(i 0<:<
0 +)(0) = (954 < m,
Ti—m-1)+m'+1 (m+1<i<m+m'+1).
Remark 2.1. By definition we get the following equations:
dixs? = dios™t | sTxd = & Hos? | dixd” = AT odt, Tws? = s o4
for any face operators d’ : [n — 1] — [n] and d : [n/ — 1] — [0/], and
degeneracy operators s/ : [m + 1] = [m] and s7" : [m/ + 1] = [m/].

Using this concatenation functor, Chen, Kriz, and Pultr stabilized A in
the following sense.

Definition 2.2. We define the following shift functors:

K:A—- A, K@:[n]—[m])=0x[0]:[n+1 — [m+1]),
The other one J is the dual of K.

J: A=A, JO:[n]—[m])=(0]%0:[n+1] = [m+1]),
By using these functors we define the following categories:

Ay ::colim(AgAgAﬁw--),
Ay :zcolim(A#A#Ai%--),

Az =colim(A S A LA S AL AL .

Remark 2.3. (1)The first one Ay is defined in [3]. By definition, we have
JoK = K oJ. So we can change the order of the functors in the colimit
diagram of Agz.

(2)These three categories above admit the following descriptions respec-
tively. By abusing notation, the objects of Ay may be denoted by [n] for
all n € Z. The morphism of Ay are generated by the morphisms

d:n—1]—=[n], s :[n+1] = [n]
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for all n € Z and integers 7,7 > 0 subject to the following identities
did’ = d"Hdb (i < j),
slst = st (i < j),
disi=t (i <),
sd' = {id (iefsj+1}),
di=lsl (i>j+1).
Dually, the objects of Ag are denoted by [n] for all n € Z. The morphism
of Ay are generated by the morphisms
d:n—1]—=[n], s :[n+1] = [n]

for all n € Z and integers ,j < n subject to the same identities.
The objects of A2 are denoted by [n] for all n € Z. The morphism of
A2 are generated by the morphisms

d:[n—1]—[n], & :[n+1] = [n]
for all n,i,j € Z subject to the same identities.
(3)There is a functor rev : A — A defined by
rev(d' : [n—1] = [n]) = (d" 7 : [n — 1] = [n]),

rev(s': [n+1] = [n]) = (s"": [n+ 1] — [n)).

This fits into the commutative diagram

KA

A
A

— AL
J

This gives a functor Az — Ay, which we also denote by rev abusing
notation.

Definition 2.4 ([5], [3]). We let Set. denote the category of pointed sets
and pointed maps.

(1) A functor A% — Set, is called a stable simplicial set. A stable
simplicial set X satisfying the following condition is called a combi-
natorial spectrum: for every x € X, there exists an integer 4 such

op
that dyr = % when k£ > i. We denote by Set*A“ the category of
stable simplicial sets and natural transformations and by Comb the
full subcategory of combinatorial spectra.
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(2) A functor A%, — Set, is called a bistable simplicial set. A bistable
simplicial set X satisfying the following condition is called a combi-

natorial bispectrum: for every z € X, there exist integers ¢ and j
op

such that dyz = * when k > i or k < j. We denote by Set, *** the
category of bistable simplicial sets and natural transformations.

We construct the stable analogue of the concatenation functor as follows:
Let 0 : [n] — [n'] € Ay and 7: [m] — [m/] € Ag. By the definitions of Agy
and Ay, there exist k,l € N and morphisms 8, 7 € A such that

O:n+kl—[n+keA
represents 6 and

Fim+l—m +1eA
represents 7. We denote by 6 x 7 : [n] x [m] — [n] % [m/] the morphism in
Ag2 represented by

Ox7:n+m+k+1l—=[n+m +k+1 €A,
This defines the functor again denoted by
* 1 Agp X Agt — Astz.

For X)Y € Setfstp, we let X A”Y denote the point-wise smash product,
namely (X A" Y)([m],[n]) = X([m]) A Y([n]), where A denotes the smash
product of pointed sets.

Let X A'Y denote the left Kan extension of X A” Y with respect to

op op rev Xxid op op * op
Ay X Ay ———— A x Ay — AStQ.
. . AP AP A% .
This construction defines a functor Set, *¢ x Set, ¢ — Set, “2, which is

the stable analogue of the join construction of simplicial sets. To define the
op

op A
product on Set*A“ called reduced join in [6], we recall a functor Set, ** —

A°P
Set, .

Definition 2.5 ([5]). Let V € SethfQ. We define V_; € Setfgf as follows.
For any [n] € Ay, we set
Vor(n]) = {z € V(In+ 1)z = x,j < 1}
The generators of maps are given as follows:
d;i = di‘:_l,si = SXH,
where d}/ and s}/ are the generators for V.

Definition 2.6 ([6]). Let X,Y € Setfzg. The Kan-Whitehead smash prod-
uct X AY is (X N'Y)_q.
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Remark 2.7. In [6] Kan and Whitehead took a functor before applying the

op o
functor (-)_q : Setf“2 — Set*ASf. More precisely, by using freely generating
functor F : Set — Grp piecewise, where Grp denotes the category of
groups and homomorphisms, they considered (F(X A’ Y))_;. There the
celebrated fact that the underlying simplicial set of any simplicial group is
a Kan complex plays a pivotal role.

Kan and Whitehead have shown this product plays a role in the stable
homotopy theory. To describe that, we recall prespectra from [5].

As is pointed out in [7], Kan’s suspension functor ([5, Definition 2.2])
S : sSet, — sSet, is the left Kan extension along yoneda embedding of

A — sSet,, [n] — Aln + 1]+ /(An]4+ V A0]4).

Definition 2.8 ([5]). (1) A prespectrum L consists of

(i) a sequence of pointed simplicial sets L; with i € N,

(ii) a sequence of monomorphisms \; : S L; — L;+1 of pointed simplicial
sets with ¢ € N, where S denotes the suspension functor.

(2) A morphism v : {L;, \;} — {M;,p;} of prespectra is a sequence of
morphisms ; : L; — M; of pointed simplicial sets such that ;11 o \; =
i © S ;.

(3) A morphism v : {L;, \i} — {M;, i} of prespectra is called a weak
homotopy equivalence if for every g € Z the abelian group homomorphism

7Tq(’l[)) : Colimiﬁoo 7Ti+q(Li) — colimiﬁoo 7ri+q(Mi)
is an isomorphism.

Kan related combinatorial spectra and prespectra as follows.

Definition 2.9 ([5]). Let X € Setfgf. We define the corresponding pre-
spectrum Ps(X) = {X;, &} as follows.
For any ¢ € N, the pointed set of n-simplices in X; is given by

Xi([n]) ={a e X([n—1])|do---dnox = %, dja = %, (j > n)},

where * denotes (the degeneracy of) the base point. Face and degeneracy
operators on X; will be induced by those of X and X; is indeed a pointed
simplicial set with them.

For any i € N, the monomorphism & : SX; — X;41 is the obvious
inclusion.

Brown has shown that the weak homotopy equivalences give rise to a
model structure.

Theorem 2.10 ([1]). The category of combinatorial spectra admits the
model structure in which
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e cofibrations are precisely monomorphims,

e a morphism f is a fibration if and only if Ps(f); is a fibration for
all i in the classical model structure on pointed simplicial sets,

o weak equivalences are the morphisms which are weak homotopy equiv-
alences after taking Ps.

Kan and Whitehead has proven that the product is compatible with the
weak equivalences.

Theorem 2.11 ([6]). The functor
(F((-) A" (-)))-1 : Comb x Comb — Comb

preserves weak equivalences.

Let S be the stable simplicial set all of whose simplices are degenerate
except one simplex of degree 0 ([6, Example 2.2]). In other words, this is
the stable simplicial set corresponding to the simplicial set A[0]. It is shown
there that S acts as the unit of the product up to homotopy.

Theorem 2.12 ([6]). For any combinatorial spectrum X, (F(SN X))_1 is
weakly equivalent to X.

Remark 2.13. In [5, Section 10] Kan defined the ¢-th homotopy group
74(X) of a combinatorial spectrum X to be the homotopy group g ((F X);)
with an integer ¢ > —¢q, where F denotes the free group functor. This is
well-defined since 7, ((F X);) = mp41((F X);j41) for all n and j. It is shown
there that a morphism f of combinatorial spectra is a weak equivalence if
and only if the morphism Ps(f) of prespectra is a termwise weak homotopy
equivalence.

2.2. Stratification of simplicial sets. In this section, we recall (pre-
)stratified simplicial sets from mainly [10] and [16]. We focus on the join con-
struction, the lax Gray-Verity tensor product and Ozornova-Rovelli model
structure of them.

We recall the category tA from [10]. Its set of objects consists of [n] with
0 <n € Z and [m]; with 1 < m € Z. The morphisms in tA are generated
by the following morphisms

d:[m-1]—[m], 0<i<m,

Sim+1om, 0<i<m,
Soz[m]_)[m]ta

¢ lmA41) = [m], 0<i<m,

subject to the usual cosimplicial identities on d’’s and s'’s, and the following
additional relations
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o ('p=s":[m+1] = [m], 1 <mand 0 <i<m,
o st =giCt Im+2)y = [m],0<i<j<m.
We may view A as a subcategory of tA in the evident way.

Definition 2.14 ([10]). We let Set denote the category of sets and maps.
A prestratified simplicial set X is a functor X : tA°? — Set. A stratified
simplicial set X is a prestratified simplicial set such that the maps

"2 X([mlr) — X([m])

are injective for all m > 1. We let Set*»” denote the category of prestrat-
ified simplicial sets and natural transformations and let msSet denote the
full subcategory of stratified simplicial sets. We call an element in X ([n];)
a marked n-simplex for any X € Set’2” and n > 0.

For any X € Set!»”, We denote by mX the set of marked simplices of
X, and by dX the set of degenerate simplices of X.

Definition 2.15 ([10]). Let n be a natural number and k € [n].

e The standard thin n-simplex A[n]; is the simplicial set with marking
whose underlying simplicial set is the standard simplicial set Aln]

and
_ JdARJu{ldy} (n#0),
mAlnl = {dA[n] (n = 0).

e The k-admissible n-simplex AF[n] with n > 1! is the simplicial set
with marking whose underlying simplicial set is the standard simpli-
cial set A[n] and

mA*[n] = dAn] U {a € An]|{k — 1,k k +1} N [n] C Im(a)}.

e The (n — 1)-dimensional k-admissible horn A*[n] with n > 1 is the
regular simplicial subset with marking of A*[n] whose underlying
simplicial set is the usual simplicial k-th horn.

o AF[n]" (vespectively, A¥[n]') is the simplicial set with marking whose
underlying simplicial set is the same as that of A*[n] (respectively,
A*[n]) and its marked simplices are mA¥[n] (respectively, mA¥[n])
with all its (n — 1)-simplices.

o AF[n]) := Ak[n] U AFn)".

o A[3]c, is the simplicial set with marking whose underlying simplicial
set is A[3] and all n-simplices for n > 2 and the non-degenerate two
1-simplices 02 and 13 are marked, where

02:[1] — [3], 02(0) =0, 02(1) =2,

"n the case n = 0, hence k = 0, we define A° [0] to be the simplicial set with marking
whose underlying simplicial set is A[0] and mA°[0] = dA[0].
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13:[1] — [3], 13(0) =1, 13(1) = 3.
. A[3]ti is the simplicial set with marking whose underlying simplicial
set is A[3] with

mA[3* = | A[3]n.

n>1

Remark 2.16. (1)Note that the functor K preserves admissible simplices.
More precisely, for any morphism « : [r] — [n] with {k — 1,k k+ 1} N [n] C
Im(a), the morphism K(«) : [r + 1] — [n + 1] satisfies that {k — 1,k, k +
1}Nn+1] C Im(K(«)). The same holds for J.

(2)There are evident inclusions A*[n] — A¥[n], A¥[n] — AFn)", A[3]eq —
A[3]%, and A[n]*A[3]eq — An]*A[3]* for all k,n. We may call them elemen-
tary anodyne extensions. Note that by definition the inclusions A[0] — A[1]¢
are the elementary anodyne extensions AF[1] — AF[1] with k € {0, 1}.

We call prestratified simplicial sets having the right lifting property with
respect to elementary anodyne extensions precomplicial sets ([10]).

The following model structures are expected to model (oo, 00)-categories.
Theorem 2.17 ([10]). The category Set'®™ of prestratified simplicial sets

admits a model structure in which

e the cofibrations are precisely the monomorphisms,
e the fibrant objects are precisely the precomplicial sets.

These classes of morphisms give rise to a cofibrantly generated model struc-
ture on the category msSet of stratified simplicial sets. These two model
structures are Quillen equivalent.

We may call these model structures Ozornova-Rovelli model structures.
The following simple morphisms in A (or in tA) are used to define the
lax Gray-Verity product.

Definition 2.18 ([16]). For any (p,q) € N2, there are four maps in A:
AP [p] = [p+al, 19 =14,
A5 [g] = [p+q], LE@) =i+p,

i (0<i<p),

—H—Il)»q :[p+4q] — [p, —||—11)’q(0 - {p (p<i<p+gq)

0 (0<i<p),

Tg,q:[p+q] — [QL T11)7q(i): {i—p (p<i<p+Q)‘
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Remark 2.19. Let p, ¢ € N. We note that the morphisms L 7% : [p] — [p+d]
(resp. UE7:[q] — [p+q]) in A is compatible with J : A — A (resp.
K : A — A). More precisely,
JAPT) = WFTH K () = 15T
hold. Similarly, we also have
J(Tzf’q) — —|-|—113+1,Q7K(—“—I277Q) — J_g,q-i-l.
In addition, the morphisms 111" and 1157 in A correspond each other

via the endofunctor rev : A — A. Since by definition 1 §"? = sPosPtlo.. .0
sPTa=Land 1137 = s905%0--- 05 hold, so by the definition of rev we have

rev(1L}) = 147, vev(U5?) = 19",
Also, we have the equations below
Ty o1 =id, TH%o 18 =1id.

Remark 2.20. As is demonstrated in [15], the non-degenerate (p + q)-
simplices in the simplicial set A[p] x Alg| correspond to the shortest paths
from the left bottom corner (0,0) to the right upper corner (p,q) in the
figure below.

(0,9) (1,9) e (,q)

0,¢-1)—(1,¢-1) — - ——(p,g—1)

(07 1) (171) e (p7 1)

(O’O) (170) e (p) O)

For instance, the (p + ¢)-simplex (T4, 59 € (Alp] x Alg))([p + q])
corresponds to the shortest path turning the right bottom corner (p,0).

Definition 2.21 ([16]). Let X,Y € msSet. Their lax Gray-Verity product
X ®Y is the following stratified simplicial set: the underlying simplicial set
is the cartesian product X x Y and an n-simplex @ y € X ® Y is marked
if and only if for any (p,q) € N? with p+¢q = n, z - 1LP? € X([p]) or
y- 15" € Y([g).
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Remark 2.22. Let A[l] denote the prestratified simplicial set represented
by [l] € tA, which is a stratified simplicial set. Note that there is only
one unmarked (m + n)-simplex (77", T5"") in A[m] ® Aln]. Any other
(m + n)-simplex is marked by definiton. Intuitively speaking, discarding
marked simplices, A[m]® A[n] is similar to A[m+n|, while the join of A[m)]
and A[n] is Alm+n+1]. Note that A[m]® A[n] has one or more unmarked
k-simplices with k£ < m + n when m,n > 1.

We will extend the join construction of simplicial sets recalled in the last
section to prestratified simplicial sets. To do so, abusing the notation, we
now extend the concatenation functor x : A x A — A to % : tA X tA — tA.
Roughly speaking, viewing A C tA and x|axa = *, (*’s and ¢’s behave like
s’s and the identity morphisms respectively.

Definition 2.23. We define the concatenation functor x : tA X tA — tA as
follows.

(1) On the objects in tA, x acts as follows:
For m,n > 1,

[m] % [n] = [m] % [n]; = [m]y x [n]y = [m +n+ 1]y,
[m] x [n] = [m+n+1].
For m > 0,
[0] % [m] = [m] x [0] = [m +1].
For m > 1,
[0] x [m]s = [m]t = [0] = [m + 1];.
(2) On the generators of morphisms in tA, % acts as follows:
Viewing d'’s and s’’s in tA as in A, their concatenations are de-
fined as in Section 2.1. '
For ¢ : [m + 1]y — [m] and d" : [n — 1] — [n],
dx =do¢™, (Txd = dmtitig .
For ¢/ : [m + 1] — [m]; and s : [n + 1] — [n],
Sk =5t o ("I (T st = Mo (¢,
For ¢/ : [m + 1] — [m]¢ and ¢* : [n + 1] — [n]y,
Ci *C] — CZ o Cn+1+j7 C] *Si — Sm+1+i o Cj
For ¢ : [n] — [n]; and d* : [m — 1] — [m],
oxd =pod T dxp=pod.
For ¢ : [n] — [n]; and s : [m + 1] — [m],
n+1+¢

pxs' =pos , S'xp=pos.
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For ¢ : [n] — [n]; and ¢* : [m + 1]y — [m],

pxC=po " (Txp=po(l

For ¢, : [n] — [n]; and ¢y, : [m] — [m];, where we put subscripts
for convenience,

Pn* Pm = Pm * Pn = Pm+4n-

Remark 2.24. One might define [m] % [n]t to be [m + n + 1] for m,n > 1,
namely the concatenation of an unmarked simplex and a marked simplex
should be unmarked. But it and [0] x [n]; = [n + 1]; would imply [1] * [n]; =
([0] % [01) = [n]e # [0] x ([0] x [n]e) = [0] x [n + 1];.

We define the join functor (-) & (-) : Set'®” x Set'*” — Set'™™ to
be the Day convolution of x : tA x tA — tA. Note that our definition is
compatible with the join of stratified simplicial sets [16, Definition 33].

Proposition 2.25. For any X € msSet, the functors (-) X, X & (-) :
msSet — msSet are left Quillen functors with respect to Ozornova-Rovelli
model structure.

Proof. In [16, Chapter 6], it has been proven that for any stratified simplicial
set X, ()@ X and X @ (-) are left Quillen functors with respect to the model
structure for non-saturated weak complicial sets on msSet.

It is enough to show that the morphism A[3]e, ® X — A[f @ X is a
trivial cofibration with respect to Ozornova-Rovelli model structure. Since
A[3]eq @ Aln]? — A[3]F @ Aln]s is a trivial cofibration for any n € N, where
[n]7? denotes [n] or [n];, and the join construction is compatible with colimits,
the morphism A[3], @ X — A[3]* @ X is a trivial cofibration. O

Since every stratified simplicial set is cofibrant, we obtain the following.

Corollary 2.26. Let X, X', Y,Y’ € msSet. Suppose we have weak equiva-
lences f: X — X' and g : Y — Y'. Then the morphism f ®g: X dY —
X' @Y’ is also a weak equivalence.

Remark 2.27. In [8, §1.2.8], it is proven that the join of two quasi-categories
is a quasi-category. The same argument there shows that the join of two
precomplicial sets has the right lifting property with respect to the inclusions
A¥[n] — AF[n], but it may not show that the join has the right lifting
property with respect to the other anodyne extensions.

3. RESuLTS

3.1. Stratified stabilization of simplicial sets. In this section, by using
the functor x : tA x tA — tA, we define stratified analogue of Ay, Az and
A 2. To do that, by abusing notation, we define the following shift functors.
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Definition 3.1. We denote by K : tA — tA the shift functor (-) % [0] :
tA — tA and by J : tA — tA the other shift functor [0] x (-) : tA — tA

More explicitly, these functors act on the generators of morphisms as
follows:

K(d :[n—1]—[n])=d:[n] = [n+1],
K(s':[n+1] = n])=s":[n+2] = [n+1],
K(p:[n]—=[nl)=¢:[n+1] = [n+ 1],
K@+t ) =¢: +2) - [+ 1),
J(d:n—1] = [n]) =d™™ : [n] = [n+1],
Js' :n+1] —=[n])=s:[n+2] = [n+1],
J(p:[n]—=[nl) =¢:[n+1] = [n+ 1],
JC:n+1y =)= n4+2] = [n+ 1]
By using these functors we obtain the following categories:
tAg = colim(tA Eoin Eoan 5 L ),
tAgy := colim(tA Loin L s ),
tA,2 = colim(tA 55 tA LA Bin Loan 5 ).
Remark 3.2. (1)By definition, we have J o K = K o J. So we can change
the order of the functors in the colimit diagram of tAge.
(2)These three categories admit the following descriptions:
By abusing notation, the objects of tAg may be denoted by [n] or [n];
for all n € Z. The morphism of tAg are generated by the morphisms
d:n—1=[n], s :[n+1] = [n], ":[n+1] = [n], ¢: 0] = [l

for all n € Z and integers i, j, k > 0 subject to the stratified version of the
identities in Remark 2.3. Note that there is [0]; € tAg

Dually, the objects of tAg are denoted by [n] or [n]; for all n € Z. The
morphism of tAy are generated by the morphisms

di:[nfl]%[n], st [n+ 1] — [n], Ck:[n+1]t%[n], v :[n] = [n]

for all n € Z and integers i, j, k < n subject to the same identities.
The objects of tA 2 are denoted by [n] or [n]; for all n € Z. The morphism
of tA 2 are generated by the morphisms

d:n—1—=n), & :[n+1 —=n], F:n+1); = [n], ¢:[n] = [
for all n,i,j € Z subject to the same identities.

We may view in the evident way the categories Ay, Agr, and A e as
subcategories of tAg, tAg, and tA e respectively.
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(3)Abusing notation, we define the stratified analogue of rev : Ag — Agy.
To do that, we define rev : tA — tA as follows:

On the objects, rev([n]) = [n] and rev([n];) = [n];. On the generators of
morphisms,

rev(d' : [n—1] = [n]) =d" " : [n — 1] — [n],
s i n+1] = [n]) =s"": [n+1] = [n],

rev(p: [n] = [n]t) = ¢« [n] = [nls,
rev(Ct: [n+ 1]y — [n]) =" s [n+ 1] — [n],.

This fits into the commutative diagram

rev(

tA K A

TGVJ( J(I‘QV

tA — tA.

This defines a functor tAy — tAgy, which we also denote by rev abusing
notation.

By using the functor x : tA x tA — tA, we extend the functor * :
Agr X Ag — Agp2 to x 1 tAg X tAg — tA g2, again abusing notation.

Let 0 : [n]; — [n']> € tAg and 7 : [m]? — [m/]s € tAg, where [n],
denotes [n] or [n];. By the definitions of tAg and tAg, there exist k,l € N
and morphisms 0~, 7 in tA such that

0:[n+ky— [0 +ketA
represents 6 and
Folm 4l — [m +1), €tA
represents 7. Denote 6 x 7 : [n|? x [m]s — [n']7 *x [m/]? the map in tA,e
represented by
Ox7:n+m+k+1,— 0 +m +k+1ctA.

This construction defines a functor tAg X tAg — tAe2.

op
Definition 3.3. We let Set’™*" denote the category of functors tAY —
Set, and call the objects prestratified stable simplicial sets. For any X €

op
Set!® and [n]t € tAg, we call elements in X ([n];) marked n-simplices. A
stratified stable simplicial set X is a prestratified stable simplicial set such
that the maps
¢+ X([mls) = X (pm)

are injective for all m > 1.
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Remark 3.4. For any A € Set’®”, we may write ¥%° A for the correspond-
ing prestratified stable simplicial set

£ An]) = {f*(}["]) i =

and djo = * for any a € X A([m]) and j > m.

op
As we have defined the join product on Set*Ast, we here define an anal-
op op
ogous product on SetiASt. For X,Y € SetiA“, we let X A”Y denote the
point-wise smash product, namely (X A" Y)([m],[n]) = X([m]) A Y([n]),
where A denotes the smash product of pointed sets.
Let X A'Y denote the left Kan extension of X A”Y with respect to
rev X id *
tAY X TAY ——— tAY, X LAY = tAY,.
tA°P

op
This construction defines a functor (-) A" (-) : Set!® x Set!™st —
op

tA
Set, ***, which is the staratified analogue of the join construction of stable

op
simplicial sets. To define a product on SetiASt, the stratified analogue of

the Kan-Whitehead product on stable simplicial sets, we introduce a functor
tA°P op

Set, ** — SetiAst

op

st

tAP,
Definition 3.5. Let V € Set, **°. We define V_; € SetiA as follows. For

any [n], [m]: € tAY, we set

V_oi([n]) i={z € V([n+ 1])]d}/x =x%,7 <1},

V_i(Im]y) i={x € V([n+ 1]t)|d}/govx =x,j <1}

The operators are given as follows:

di = dz"/+17 S 1= 57?117 P = Sova CZ = Ci‘jrlv
where d}/, s}/, 0" and CJV are the operators for V.
Definition 3.6. Let XY € SetiAzf. The stratified Kan-Whitehead smash
product XAY is (X A'Y)_;.

By Remark 2.19, the following is well defined.

Definition 3.7. Let p,q € Z.

(1) We denote by 17 : [p] = [p+ ¢] the morphism in Ay represented
by a morphism JI_]erk’q :[p+k] — [p+q+k] in A for some k € N. Similarly,
we denote by 157 : [q] — [p+ ¢| the morphism in Ay represented by a
morphism il_g’quk g+ k] — [p+q+ k] in A for some k € N,
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(2) We denote the morphism rev(L7?) : [p] — [p+q] in Ay by LI :
[p] = [p+ ¢]. Similarly, we denote the morphism rev(157) : [¢] = [p+¢] in
Ay by LT < [g] = [p + gl

We may view these morphisms as those in tAg and tAgy respectively.

op
Definition 3.8. Let XY € SetiAst. The stable analogue of lax Gray-
Verity product X®Y is defined as follows:

e its underlying stable simplicial set is the point-wise smash product
XANY

e an n-simplex 2@y € X®Y is marked if and only if for any (p, q) € Z?
with p+¢g=mn, zo 1117 € X([p]¢) or yo 15T € Y([qls).

This product ® is a straightforward analogue of lax Gray tensor product
for stratified simplicial sets. The lax Gray-Verity product plays a pivotal role
in weak w-category theory ([17] and [12]). Thus, it would be fair to expect
that its stable analogue also would play a role in stable objects. We be-
low construct a natural morphism between it and stratified Kan-Whitehead
product.

Proposition 3.9. There exists a natural morphism XAY — XQY .

Proof. Let X,Y € SetiA:f and xAy be an unmarked n-simplex of XAY.
Then by the definition of XAY there exit p,q € Z with p 4+ ¢ = n such that
z € X([p]) and y € Y ([q]). We assign to it the n-simplex (z o T4, yoTHY)
of X®Y.

Let xAy be a marked n-simplex of XAY. Then there exist p,q € Z with
p 4+ q = n such that

(1) x € X([p];) and y € Y([q]) or
(2) = € X([p]) and y € Y([q]¢) or
(3) z € X([pl+) and y € Y ([q]¢)-

For each case, we again consider (zo T 7 yoTHY) of X®Y. We need to
show that (z o T,y o TH?) is marked. It is enough to see the first case,
the others are the same. Since (z o T7?) o I7"? = 2 and x € X is marked,
(x o9, yoThH?) € XR®Y is also marked by definition. This defines a
natural map XAY — X®Y. O

Remark 3.10. As we have seen in Remark 2.20, any non-degenerate (p+q)-
simplex in A[p] x Alg] can be expressed as a shortest path in the ordered
set [p] x [g]. The simplex (5%, T57) corresponds to the most right-lower
path.

We could take another pair of surjections 6 : [p+q] — [p] and 7 : [p+¢] —
[¢] and consider the map X ([p]) X Y ([q]) = (X®Y)piq, (x,y) — (0, yoT).
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But by definition, the simplices z 0o |l 1"? and yo 7o Il 57 are degenerate,
hence marked. Thus, (r06,yo7) € X®Y is always marked.

In this sense, the map we constructed in the proof above may be the only
suitable one.

3.2. A homotopy theory for stable precomplicial sets. In this section,
we introduce a homotopy theory on prestratified stable simplicial sets, which
is a straight forward analogue of the structure of a category of fibrant objects
on combinatorial spectra given by Brown [1].

Mimicking Kan’s suspension functor, we introduce the following functor.

Definition 3.11. The suspension functor S : Set!»” — Set!®” is the left
Kan extension along yoneda embedding of

tA = Set!>™,  [nls = (Aln+1]2)1/(Aln]z) 4 v Al0]4),
where (-); denotes the functor Set’>” — Set!*” adding the base points.

Definition 3.12. (1) A prestratified prespectrum L consists of

(i) a sequence of pointed prestratified simplicial sets L; with i € N,

(ii) a sequence of monomorphisms A; : S L; — L;41 of pointed prestratified
simplicial sets with ¢ € N.

(2) A morphism 1 : {L;, \;} — {M;, p;} of prestratified prespectra is a
sequence of morphisms ¢; : L; — M; of pointed prestratified simplicial sets
such that ;41 0 A; = p; 0 S;.

(3) A morphism 1 : {L;, \i} — {M;, u;} of prestratified prespectra is
called a weak equivalence if for every i € N, ¢; is a weak equivalence for the
pointed Ozornova-Rovelli model structure.

op
Definition 3.13. Let X € SetiA“. We define the corresponding prestrati-
fied prespectrum Ps(X) = {X;,&;} as follows.

For any i € N, the pointed set of n-simplices in X; is given by

Xi([n]) ={a e X([n—1])|do- - dna = *,djoc = %,(j >n)},
where * denotes (the degeneracy of) the base point. Similarly, the pointed
set of marked n-simplices in X; is given by
Xi([n]¢) :=={a € X([n —i]¢)|do - - - dn™a = %, djp*a = *,(j > n)},

The structure morphisms on X; will be induced by those of X and X; is
indeed a pointed prestratified simplicial set with them.

For any ¢ € N, the monomorphism &; : SX; — X;41 is the obvious
inclusion.

op
Remark 3.14. This defines a functor Ps : SetiASt — ppSp, by letting
PPSp denote the category of prestratified prespectra.. By construction, for
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any 17 € N X; is a stratified simplicial set if X is a stratified stable simplicial
set.

Brown has introduced the following notion in the study of shaves valued
in simplicial sets.

Definition 3.15 ([1]). Let C be a category with finite products and a final
object denoted by *. Assume that C has two distinguished classes of mor-
phisms, called the weak equivalences and the fibrations. A morphism in C
will be called an aspherical fibration if it is both a weak equivalence and a
fibration. We define a path object for an object B in C to be an object B!
together with morphisms

B Bl %, pyp,

where s is a weak equivalence, (dp,d;) is a fibration, and the composite is
the diagonal morphism.

We call C a category of fibrant objects if the following are satisfied

(A) Let f and g be morphisms such that gf is defined. If two of f, g,
gf are weak equivalences then so is the third. Any isomorphism is a weak
equivalence.

(B) The composite of two fibrations is a fibration. Any isomorphism is a
fibration.

(C) For any morphism A — C' and a fibration (resp. aspherical fibration)
B — C, the pullback A x¢ B exists and the projection A xo B — A is a
fibration (resp. aspherical fibration).

(D) For any object, there exists at least one path object.

(E) For any object B the morphism B — # is a fibration.

op

We define weak equivalences and fibrations in SetiA“ .

Definition 3.16. A morphism f in SetiAgf is
(1) a weak equivalence if for any i € N the morphism Ps(f); of pointed
prestratified simplicial sets is a weak equivalence for Ozornova-Rovelli
model structure,
(2) a fibration if for any ¢ € N the morphism Ps(f); of pointed pre-
stratified simplicial sets is a fibration for Ozornova-Rovelli model
structure.

We call a prestratified stable simplicial set X is fibrant if the unique mor-
phism X — x is a fibration.

Proposition 3.17. For any fibrant stratified stable simplicial set B, there
exists the diagram of fibrant objects

(do,d1)
0

B 2 Path(B) B x B,
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where s is a weak equivalence, (dgy,d1) is a fibration, and the composite is
the diagonal morphism.

Proof. Let B be a fibrant stratified stable simplicial set. Then we have a pre-
stratified prespectrum Ps(B) = {B;, 3;}, where B is a pointed stratified sim-
plicial set for any ¢ € N. For any ¢ € N, we have the mapping stratified sim-
plicial set (B;)2[*. There is an evident injection S((B;)2M) — (S(B;))AMk,
By composing this and the morphism (S(B;))2Mt — (B;11)2Mt induced by
Bi, we obtain f; : S((B;)2M¢) — (By11)2Me, which defines a prestratified
prespectrum {(B;)2Me, §;1.

Since the morphisms A[0] — A[l]; are elementary anodyne extensions
and B; is fibrant, the induced morphism (BZ-)AD]t — B; x B; is an acyclic
fibration.

We put Path(B) to be the mapping stratified stable simplicial set
where ¥°A[1]; is the stratified stable simplicial set corresponding to A[1];.
Then by construction, we have Ps(Path(B)) = {(B;)2!), 3;}. The mor-
phism s : B — Path(B) corresponds to the constant path and it is a weak
equivalence by the two out of three axiom. ([l

BEfA[I]t

Proposition 3.18. Let A, B,C be fibrant stratified stable simplicial sets.
For any morphism A — C and a fibration (resp. aspherical fibration) B —
C, the pullback A x¢c B is again a fibrant stratified stable simplicial set and
the projection A x¢c B — A is a fibration (resp. aspherical fibration).

Proof. By the definition of the functor Ps, we have
(A X B)Z = AZ Xy Bz’

for any ¢ € N. Since any fibration (resp. aspherical fibration) in Ozornova-
Rovelli model structure is preserved by pullback, (A x¢ B); — A4; is a
fibration for any ¢ € N. This completes the proof. ([

Corollary 3.19. The full subcategory of fibrant stratified stable simplicial

sets in SetiA“ admits a structure of a category of fibrant objects with the
weak equivalences and fibrations in Definition 3.16.

Remark 3.20. As is mentioned above, it is shown that the category of com-
binatorial spectra admits a model structure in [1] by using the cofibrantly
generated classical model structure on simplicial sets. It might be possible
to obtain the stratified analogue by using the cofibrantly generated model
structure on msSet given in [10].

Theorem 3.21. Suppose we have weak equivalences f : X — X' and
g : Y = Y’ of stratified stable simplicial sets. Then the morphism fAg :
XAY — X'AY" is also a weak equivalence.
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Proof. By definition, for i,n € N, we observe that (XAY);([n]) = {(z,y) €
(XAY)([n— i+ 1)~ dnsa(,y) = =, ds(2,9) = #(j < 0 or n+2 < )},
where d’s are the structure morphisms of XAY. Thus, (XAY); is the join
of two pointed stratified simplicial sets. Combining this observation and
Corollary 2.26, we obtain the desired result. O

Remark 3.22. (1) We do not know whether A is a product on the full
subcategory of fibrant stratified stable simplicial sets.

Let F : Set!2” — Set!»” denote a fibrant replacement functor with
respect to the pointed Ozornova-Rovelli model structure. For any pre-
stratified prespectrum {X;, &}, we have fibrant pointed prestratified set
F(X;) for all i € N. However there may not exsist the structure morphism
SAF(X;) = F(X;+1), which exists up to homotopy.

(2) Masuda constructed in [9] a monoidal structure for categorical spec-
tra, which is the stabilaization of (0o, co)-categories studied in [14], by using
Steiner’s theory of augmented directed complexes. It would be worth com-
paring that with our monoidal structure (in oco-categorical setting).

3.3. Reedy-like structure. In this article, we only investigate prestratified
stable simplicial objects in the category of (pointed) sets. It would be worth
studying such objects in other (co-)categories equipped with own homotopy
theories.

It is well known that A is a Reedy category and is shown in [10] tA is also
a Reedy category. Moreover, it is shown there that these two categories have
better properties, that is to say, they are regular skeletal. In this section,
we observe Ag and tAg also have similar properties.

Definition 3.23 ([4]). A Reedy category is a category R equipped with
two subcategories Ry and R_, both of which contain all the objects, and
a total ordering on the set ob(R) of objects, defined by a degree function
deg : ob(R) — N such that:

e Every nonidentity morphism in R raises degree,

e Every nonidentity morphism in R_ lowers degree, and

e Every morphism f in R factors uniquely as a morphism in R_ fol-

lowed by a morphism in R.

As is well known, A is a Reedy category with the following structure:
deg: ob(A) = N, [n]+— n.
The subcategories Ay and A_ consist of injective maps and surjective maps
respectively.
Theorem 3.24 ([10]). The category tA is a Reedy category with the follow-
ing structure: The degree map deg : ob(tA) — N is given by

deg([0]) = 0, deg([k]) = 2k — 1, deg([k]:) = 2k, k > 1.
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The subcategory tAy is generated by Ay and morphisms ¢ : [n] — [n]; for
alln > 1 and tA_ is generated by A_ and morphisms ¢* : [n+ 1] — [n] for
alln>1and 0 <7 <n.

Definition 3.25 ([10]). A Reedy category R is regular skeletal if the fol-
lowing conditions hold.

(1) Every morphism in R_ admits a section.

(2) Two parallel morphisms of R_ are equal if and only if they admit the
same set of sections.

(3) Every morphism of R, is a monomorphism.

It is easy to show that A is regular skeletal. Furthermore, Ozornova and
Rovelli have shown the following.

Theorem 3.26 ([10]). The Reedy category tA is reqular skeletal.

In [10], the fact that tA is a regular skeletal Reedy category with this
structure plays a pivotal role. We will show that tAg is almost a regular
skeletal Reedy category with an analogous structure. To do that, we show
that Ag is also almost regular skeletal.

We consider the following structure on Ag: deg : ob(Ag) — Z,[n] — n
The subcategories (Ag)— (resp. (Agt)4) is generated by identity morphisms
and s'’s (resp. identity morphisms and d'’s).

Lemma 3.27. (1) For any i and n, the morphism s* : [n + 1] — [n] in Ag
is an epimorphism.

(2) For any i and n, the morphism d* : [n — 1] — [n] in Ag is an
monomorphism.

Proof. We prove (1). (2) can be proven by the same argument. Assume
that as’ = Bs' for some morphisms «, 3 : [n] — [m] in Ag. Then these
morphisms s, o, and 3 are represented respectively by morphisms s° : [n +
14+ k] = [n+k and &, 3 : [n+ k] = [m + k] for some k € N and as’ = (s’
holds. Since s’ in A is an epimorphism, & = 3 in A. This shows that o = 3
in Ast- O

Lemma 3.28. FEvery morphism in Ag factors uniquely as a morphism in
(Agt)— followed by a mophism in (Agt)+.

Proof. Recall that every morphism f : [{] — [j] in A is uniquely decom-
posed as go h : [i] — [im(f) — 1] — [j] with ¢ a monomorphism and h an
epimorphism, where im(f) denotes the cardinarity of the image of f.

Let 6 : [m] — [n] be a morphism in Ay;. Then there exists a morphism 6 :
[m+k] — [n+k] in A with a natural number k& € N, which represents . The
morphism 6 in A can be written uniquely as & o 3 with & a monomorphism
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and /3 an epimorphism in A. Then the morphisms o and 3 in Ay represented
by & and B respectively are monomorphism and epimorphism respectively
by the lemma above, and we have § = a0 3. ([l

Expect for the fact that the codomain of the degree map is Z, Ag; satisfies
the all requirements for being a regular skeletal Reedy category.

Lemma 3.29. For each n € Z, the morphism ¢ : [n] — [n]s in tAg is a
monomorphism and an epimorphism.

Proof. This follows from that ¢ : [n] — [n]; in tA is a monomorphism and
an epimorphism proven in [10].

0

We consider the following structure on tAg: A map deg : ob(tA) — Z
given by
deg([0]) = 0, deg([K]) = 2k — 1, deg([k],) = 2k
for k # 0. The subcategory (tAg)+ is generated by (Ag )+ and morphisms
¢ : [n] = [n]¢ for all n > 1 and tA_ is generated by A_ and morphisms
¢t:[n+1); = [n]foralln >1and 0<i<n.
The arguments in [10, Proposition C.4] and above show the following.

Proposition 3.30. tAy; satisfy the conditions (1), (2) and (3) in Definition
3.25.
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