

ON THE STRATIFICATION OF COMBINATORIAL SPECTRA

RYO HORIUCHI

ABSTRACT. In this note, we investigate a mixture of combinatorial spectra and stratified simplicial sets, which would be thought of as a model of the spectrum objects of (∞, ∞) -categories.

1. INTRODUCTION

In this note, we investigate a mixture of combinatorial spectra and stratified simplicial sets, which would be thought of as a model of the spectrum objects of (∞, ∞) -categories.

In [5], Kan introduced the notion of combinatorial spectrum, which is a certain presheaf in pointed sets over a category Δ_{st} that is a stabilization of the simplex category Δ in an appropriate sense. Intuitively speaking, a combinatorial spectrum is a pointed simplicial set with \mathbb{Z} -graded simplices. In [6], Kan and Whitehead introduced a product for combinatorial spectra, which may not give rise to a monoidal structure on the nose, and showed that it works well up to homotopy. Later, Brown showed the category of combinatorial spectra admits a model structure in [1]. Bousfield and Friedlander showed there exists a chain of Quillen equivalences between that and another model of spectra in [2].

In [10], Ozornova and Rovelli introduced the notion of prestratified simplicial sets, which has already appeared in [15] without name and is also a presheaf in sets over a category similar to Δ , denoted by $t\Delta$. Intuitively speaking, a prestratified simplicial set is a simplicial set with two layers of simplices. Verity constructed in [16] a model structure on the category of stratified simplicial sets, which are prestratified simplicial sets satisfying a certain condition. Ozornova and Rovelli then constructed a model structure on the category of prestratified simplicial sets based on Verity's work and it is expected the model structure models (∞, ∞) -categories.

In this note we investigate the presheaves in pointed sets over a stabilization of $t\Delta$. Such a presheaf thus would be viewed as a pointed simplicial set consists of two kinds of n -simplices with $n \in \mathbb{Z}$. We show the presheaf category inherits a homotopy theory and the stratified analogue of Kan-Whitehead product is compatible with that in an appropriate sense.

2. PRELIMINARY

2.1. Stabilization of simplicial sets. In this section, we recall combinatorial spectra from [5], [6] and [1]. We focus on Kan-Whitehead product and Brown's model structure of them.

Let Δ denote the simplex category and $\star : \Delta \times \Delta \rightarrow \Delta$ denote the concatenation functor. More precisely, for any $[m], [n] \in \Delta$, $[m] \star [n] = [m + n + 1]$, and for $\theta : [m] \rightarrow [m'], \tau : [n] \rightarrow [n'] \in \Delta$, the morphism $\theta \star \tau : [m + n + 1] \rightarrow [m' + n' + 1]$ is given by

$$(\theta \star \tau)(i) = \begin{cases} \theta(i) & (0 \leq i \leq m), \\ \tau(i - m - 1) + m' + 1 & (m + 1 \leq i \leq m + m' + 1). \end{cases}$$

Remark 2.1. By definition we get the following equations:

$$d^i \star s^j = d^i \circ s^{n+j}, \quad s^j \star d^i = d^{m+1+i} \circ s^j, \quad d^i \star d^{i'} = d^{n+1+i'} \circ d^i, \quad s^j \star s^{j'} = s^{m+1+j'} \circ s^j$$

for any face operators $d^i : [n-1] \rightarrow [n]$ and $d^{i'} : [n'-1] \rightarrow [n']$, and degeneracy operators $s^j : [m+1] \rightarrow [m]$ and $s^{j'} : [m'+1] \rightarrow [m']$.

Using this concatenation functor, Chen, Kriz, and Pultr stabilized Δ in the following sense.

Definition 2.2. We define the following shift functors:

$$K : \Delta \rightarrow \Delta, \quad K(\theta : [n] \rightarrow [m]) = (\theta \star [0] : [n+1] \rightarrow [m+1]),$$

The other one J is the dual of K .

$$J : \Delta \rightarrow \Delta, \quad J(\theta : [n] \rightarrow [m]) = ([0] \star \theta : [n+1] \rightarrow [m+1]),$$

By using these functors we define the following categories:

$$\Delta_{st} := \text{colim}(\Delta \xrightarrow{K} \Delta \xrightarrow{K} \Delta \xrightarrow{K} \dots),$$

$$\Delta_{st'} := \text{colim}(\Delta \xrightarrow{J} \Delta \xrightarrow{J} \Delta \xrightarrow{J} \dots),$$

$$\Delta_{st^2} := \text{colim}(\Delta \xrightarrow{K} \Delta \xrightarrow{J} \Delta \xrightarrow{K} \Delta \xrightarrow{J} \Delta \xrightarrow{K} \dots).$$

Remark 2.3. (1) The first one Δ_{st} is defined in [3]. By definition, we have $J \circ K = K \circ J$. So we can change the order of the functors in the colimit diagram of Δ_{st^2} .

(2) These three categories above admit the following descriptions respectively. By abusing notation, the objects of Δ_{st} may be denoted by $[n]$ for all $n \in \mathbb{Z}$. The morphism of Δ_{st} are generated by the morphisms

$$d^i : [n-1] \rightarrow [n], \quad s^j : [n+1] \rightarrow [n]$$

for all $n \in \mathbb{Z}$ and integers $i, j \geq 0$ subject to the following identities

$$d^i d^j = d^{j+1} d^i \quad (i \leq j),$$

$$s^j s^i = s^i s^{j+1} \quad (i \leq j),$$

$$s^j d^i = \begin{cases} d^i s^{j-1} & (i < j), \\ \text{id} & (i \in \{j, j+1\}), \\ d^{i-1} s^j & (i > j+1). \end{cases}$$

Dually, the objects of $\Delta_{st'}$ are denoted by $[n]$ for all $n \in \mathbb{Z}$. The morphism of $\Delta_{st'}$ are generated by the morphisms

$$d^i : [n-1] \rightarrow [n], \quad s^j : [n+1] \rightarrow [n]$$

for all $n \in \mathbb{Z}$ and integers $i, j \leq n$ subject to the same identities.

The objects of Δ_{st^2} are denoted by $[n]$ for all $n \in \mathbb{Z}$. The morphism of Δ_{st^2} are generated by the morphisms

$$d^i : [n-1] \rightarrow [n], \quad s^j : [n+1] \rightarrow [n]$$

for all $n, i, j \in \mathbb{Z}$ subject to the same identities.

(3) There is a functor $\text{rev} : \Delta \rightarrow \Delta$ defined by

$$\text{rev}(d^i : [n-1] \rightarrow [n]) = (d^{n-i} : [n-1] \rightarrow [n]),$$

$$\text{rev}(s^i : [n+1] \rightarrow [n]) = (s^{n-i} : [n+1] \rightarrow [n]).$$

This fits into the commutative diagram

$$\begin{array}{ccc} \Delta & \xrightarrow{K} & \Delta \\ \text{rev} \downarrow & & \downarrow \text{rev} \\ \Delta & \xrightarrow{J} & \Delta. \end{array}$$

This gives a functor $\Delta_{st} \rightarrow \Delta_{st'}$, which we also denote by rev abusing notation.

Definition 2.4 ([5], [3]). We let \mathbf{Set}_* denote the category of pointed sets and pointed maps.

- (1) A functor $\Delta_{st}^{\text{op}} \rightarrow \mathbf{Set}_*$ is called a stable simplicial set. A stable simplicial set X satisfying the following condition is called a combinatorial spectrum: for every $x \in X$, there exists an integer i such that $d_k x = *$ when $k > i$. We denote by $\mathbf{Set}_*^{\Delta_{st}^{\text{op}}}$ the category of stable simplicial sets and natural transformations and by \mathbf{Comb} the full subcategory of combinatorial spectra.

(2) A functor $\Delta_{st^2}^{op} \rightarrow \mathbf{Set}_*$ is called a bistable simplicial set. A bistable simplicial set X satisfying the following condition is called a combinatorial bispectrum: for every $x \in X$, there exist integers i and j such that $d_k x = *$ when $k > i$ or $k < j$. We denote by $\mathbf{Set}_*^{\Delta_{st^2}^{op}}$ the category of bistable simplicial sets and natural transformations.

We construct the stable analogue of the concatenation functor as follows: Let $\theta : [n] \rightarrow [n'] \in \Delta_{st'}$ and $\tau : [m] \rightarrow [m'] \in \Delta_{st}$. By the definitions of $\Delta_{st'}$ and Δ_{st} , there exist $k, l \in \mathbb{N}$ and morphisms $\tilde{\theta}, \tilde{\tau} \in \Delta$ such that

$$\tilde{\theta} : [n+k] \rightarrow [n'+k] \in \Delta$$

represents θ and

$$\tilde{\tau} : [m+l] \rightarrow [m'+l] \in \Delta$$

represents τ . We denote by $\theta \star \tau : [n] \star [m] \rightarrow [n'] \star [m']$ the morphism in Δ_{st^2} represented by

$$\tilde{\theta} \star \tilde{\tau} : [n+m+k+l] \rightarrow [n'+m'+k+l] \in \Delta.$$

This defines the functor again denoted by

$$\star : \Delta_{st'} \times \Delta_{st} \rightarrow \Delta_{st^2}.$$

For $X, Y \in \mathbf{Set}_*^{\Delta_{st}^{op}}$, we let $X \wedge'' Y$ denote the point-wise smash product, namely $(X \wedge'' Y)([m], [n]) = X([m]) \wedge Y([n])$, where \wedge denotes the smash product of pointed sets.

Let $X \wedge' Y$ denote the left Kan extension of $X \wedge'' Y$ with respect to

$$\Delta_{st}^{op} \times \Delta_{st}^{op} \xrightarrow{\text{rev} \times \text{id}} \Delta_{st'}^{op} \times \Delta_{st}^{op} \xrightarrow{\star} \Delta_{st^2}^{op}.$$

This construction defines a functor $\mathbf{Set}_*^{\Delta_{st}^{op}} \times \mathbf{Set}_*^{\Delta_{st}^{op}} \rightarrow \mathbf{Set}_*^{\Delta_{st^2}^{op}}$, which is the stable analogue of the join construction of simplicial sets. To define the product on $\mathbf{Set}_*^{\Delta_{st}^{op}}$ called reduced join in [6], we recall a functor $\mathbf{Set}_*^{\Delta_{st^2}^{op}} \rightarrow \mathbf{Set}_*^{\Delta_{st}^{op}}$.

Definition 2.5 ([5]). Let $V \in \mathbf{Set}_*^{\Delta_{st^2}^{op}}$. We define $V_{-1} \in \mathbf{Set}_*^{\Delta_{st}^{op}}$ as follows. For any $[n] \in \Delta_{st}$, we set

$$V_{-1}([n]) := \{x \in V([n+1]) \mid d_j^V x = *, j < 1\}$$

The generators of maps are given as follows:

$$d_i := d_{i+1}^V, s_i := s_{i+1}^V,$$

where d_j^V and s_j^V are the generators for V .

Definition 2.6 ([6]). Let $X, Y \in \mathbf{Set}_*^{\Delta_{st}^{op}}$. The Kan-Whitehead smash product $X \wedge Y$ is $(X \wedge' Y)_{-1}$.

Remark 2.7. In [6] Kan and Whitehead took a functor before applying the functor $(-)_- : \mathbf{Set}_*^{\Delta_{st}^{op}} \rightarrow \mathbf{Set}_*^{\Delta_{st}^{op}}$. More precisely, by using freely generating functor $F : \mathbf{Set} \rightarrow \mathbf{Grp}$ piecewise, where \mathbf{Grp} denotes the category of groups and homomorphisms, they considered $(F(X \wedge' Y))_-$. There the celebrated fact that the underlying simplicial set of any simplicial group is a Kan complex plays a pivotal role.

Kan and Whitehead have shown this product plays a role in the stable homotopy theory. To describe that, we recall prespectra from [5].

As is pointed out in [7], Kan's suspension functor ([5, Definition 2.2]) $S : \mathbf{sSet}_* \rightarrow \mathbf{sSet}_*$ is the left Kan extension along yoneda embedding of

$$\Delta \rightarrow \mathbf{sSet}_*, [n] \mapsto \Delta[n+1]_+ / (\Delta[n]_+ \vee \Delta[0]_+).$$

Definition 2.8 ([5]). (1) A prespectrum L consists of

- (i) a sequence of pointed simplicial sets L_i with $i \in \mathbb{N}$,
- (ii) a sequence of monomorphisms $\lambda_i : S L_i \rightarrow L_{i+1}$ of pointed simplicial sets with $i \in \mathbb{N}$, where S denotes the suspension functor.

(2) A morphism $\psi : \{L_i, \lambda_i\} \rightarrow \{M_i, \mu_i\}$ of prespectra is a sequence of morphisms $\psi_i : L_i \rightarrow M_i$ of pointed simplicial sets such that $\psi_{i+1} \circ \lambda_i = \mu_i \circ S \psi_i$.

(3) A morphism $\psi : \{L_i, \lambda_i\} \rightarrow \{M_i, \mu_i\}$ of prespectra is called a weak homotopy equivalence if for every $q \in \mathbb{Z}$ the abelian group homomorphism

$$\pi_q(\psi) : \text{colim}_{i \rightarrow \infty} \pi_{i+q}(L_i) \rightarrow \text{colim}_{i \rightarrow \infty} \pi_{i+q}(M_i)$$

is an isomorphism.

Kan related combinatorial spectra and prespectra as follows.

Definition 2.9 ([5]). Let $X \in \mathbf{Set}_*^{\Delta_{st}^{op}}$. We define the corresponding prespectrum $\text{Ps}(X) = \{X_i, \xi_i\}$ as follows.

For any $i \in \mathbb{N}$, the pointed set of n -simplices in X_i is given by

$$X_i([n]) := \{\alpha \in X([n-i]) \mid d_0 \cdots d_n \alpha = *, d_j \alpha = *, (j > n)\},$$

where $*$ denotes (the degeneracy of) the base point. Face and degeneracy operators on X_i will be induced by those of X and X_i is indeed a pointed simplicial set with them.

For any $i \in \mathbb{N}$, the monomorphism $\xi_i : S X_i \rightarrow X_{i+1}$ is the obvious inclusion.

Brown has shown that the weak homotopy equivalences give rise to a model structure.

Theorem 2.10 ([1]). *The category of combinatorial spectra admits the model structure in which*

- *cofibrations are precisely monomorphisms,*
- *a morphism f is a fibration if and only if $\text{Ps}(f)_i$ is a fibration for all i in the classical model structure on pointed simplicial sets,*
- *weak equivalences are the morphisms which are weak homotopy equivalences after taking Ps .*

Kan and Whitehead has proven that the product is compatible with the weak equivalences.

Theorem 2.11 ([6]). *The functor*

$$(\text{F}((-) \wedge' (-)))_{-1} : \mathbf{Comb} \times \mathbf{Comb} \rightarrow \mathbf{Comb}$$

preserves weak equivalences.

Let \mathbb{S} be the stable simplicial set all of whose simplices are degenerate except one simplex of degree 0 ([6, Example 2.2]). In other words, this is the stable simplicial set corresponding to the simplicial set $\Delta[0]$. It is shown there that \mathbb{S} acts as the unit of the product up to homotopy.

Theorem 2.12 ([6]). *For any combinatorial spectrum X , $(\text{F}(\mathbb{S} \wedge' X))_{-1}$ is weakly equivalent to X .*

Remark 2.13. In [5, Section 10] Kan defined the q -th homotopy group $\pi_q(X)$ of a combinatorial spectrum X to be the homotopy group $\pi_{q+i}((\text{F} X)_i)$ with an integer $i > -q$, where F denotes the free group functor. This is well-defined since $\pi_n((\text{F} X)_j) = \pi_{n+1}((\text{F} X)_{j+1})$ for all n and j . It is shown there that a morphism f of combinatorial spectra is a weak equivalence if and only if the morphism $\text{Ps}(f)$ of prespectra is a termwise weak homotopy equivalence.

2.2. Stratification of simplicial sets. In this section, we recall (pre-)stratified simplicial sets from mainly [10] and [16]. We focus on the join construction, the lax Gray-Verity tensor product and Ozornova-Rovelli model structure of them.

We recall the category $t\Delta$ from [10]. Its set of objects consists of $[n]$ with $0 \leq n \in \mathbb{Z}$ and $[m]_t$ with $1 \leq m \in \mathbb{Z}$. The morphisms in $t\Delta$ are generated by the following morphisms

$$d^i : [m-1] \rightarrow [m], \quad 0 \leq i \leq m,$$

$$s^i : [m+1] \rightarrow [m], \quad 0 \leq i \leq m,$$

$$\varphi : [m] \rightarrow [m]_t,$$

$$\zeta^i : [m+1]_t \rightarrow [m], \quad 0 \leq i \leq m,$$

subject to the usual cosimplicial identities on d^i 's and s^i 's, and the following additional relations

- $\zeta^i \varphi = s^i : [m+1] \rightarrow [m]$, $1 \leq m$ and $0 \leq i \leq m$,
- $s^i \zeta^{j+1} = s^j \zeta^i : [m+2]_t \rightarrow [m]$, $0 \leq i \leq j \leq m$.

We may view Δ as a subcategory of $t\Delta$ in the evident way.

Definition 2.14 ([10]). We let **Set** denote the category of sets and maps. A prestratified simplicial set X is a functor $X : t\Delta^{op} \rightarrow \mathbf{Set}$. A stratified simplicial set X is a prestratified simplicial set such that the maps

$$\varphi^* : X([m]_t) \rightarrow X([m])$$

are injective for all $m \geq 1$. We let $\mathbf{Set}^{t\Delta^{op}}$ denote the category of prestratified simplicial sets and natural transformations and let **msSet** denote the full subcategory of stratified simplicial sets. We call an element in $X([n]_t)$ a marked n -simplex for any $X \in \mathbf{Set}^{t\Delta^{op}}$ and $n > 0$.

For any $X \in \mathbf{Set}^{t\Delta^{op}}$, We denote by mX the set of marked simplices of X , and by dX the set of degenerate simplices of X .

Definition 2.15 ([10]). Let n be a natural number and $k \in [n]$.

- The standard thin n -simplex $\Delta[n]_t$ is the simplicial set with marking whose underlying simplicial set is the standard simplicial set $\Delta[n]$ and

$$m\Delta[n]_t = \begin{cases} d\Delta[n] \cup \{\text{Id}_{[n]}\} & (n \neq 0), \\ d\Delta[n] & (n = 0). \end{cases}$$

- The k -admissible n -simplex $\Delta^k[n]$ with $n \geq 1^1$ is the simplicial set with marking whose underlying simplicial set is the standard simplicial set $\Delta[n]$ and

$$m\Delta^k[n] = d\Delta[n] \cup \{\alpha \in \Delta[n] \mid \{k-1, k, k+1\} \cap [n] \subset \text{Im}(\alpha)\}.$$

- The $(n-1)$ -dimensional k -admissible horn $\Lambda^k[n]$ with $n \geq 1$ is the regular simplicial subset with marking of $\Delta^k[n]$ whose underlying simplicial set is the usual simplicial k -th horn.
- $\Delta^k[n]''$ (respectively, $\Lambda^k[n]'$) is the simplicial set with marking whose underlying simplicial set is the same as that of $\Delta^k[n]$ (respectively, $\Lambda^k[n]$) and its marked simplices are $m\Delta^k[n]$ (respectively, $m\Lambda^k[n]$) with all its $(n-1)$ -simplices.
- $\Delta^k[n]' := \Delta^k[n] \cup \Lambda^k[n]'$.
- $\Delta[3]_{eq}$ is the simplicial set with marking whose underlying simplicial set is $\Delta[3]$ and all n -simplices for $n \geq 2$ and the non-degenerate two 1-simplices $\overline{02}$ and $\overline{13}$ are marked, where

$$\overline{02} : [1] \rightarrow [3], \quad \overline{02}(0) = 0, \quad \overline{02}(1) = 2,$$

¹In the case $n = 0$, hence $k = 0$, we define $\Delta^0[0]$ to be the simplicial set with marking whose underlying simplicial set is $\Delta[0]$ and $m\Delta^0[0] = d\Delta[0]$.

$$\overline{13} : [1] \rightarrow [3], \quad \overline{13}(0) = 1, \quad \overline{13}(1) = 3.$$

- $\Delta[3]^\sharp$ is the simplicial set with marking whose underlying simplicial set is $\Delta[3]$ with

$$m\Delta[3]^\sharp = \bigcup_{n \geq 1} \Delta[3]_n.$$

Remark 2.16. (1) Note that the functor K preserves admissible simplices. More precisely, for any morphism $\alpha : [r] \rightarrow [n]$ with $\{k-1, k, k+1\} \cap [n] \subset \text{Im}(\alpha)$, the morphism $K(\alpha) : [r+1] \rightarrow [n+1]$ satisfies that $\{k-1, k, k+1\} \cap [n+1] \subset \text{Im}(K(\alpha))$. The same holds for J .

(2) There are evident inclusions $\Lambda^k[n] \rightarrow \Delta^k[n]$, $\Delta^k[n]' \rightarrow \Delta^k[n]''$, $\Delta[3]_{eq} \rightarrow \Delta[3]^\sharp$, and $\Delta[n] \star \Delta[3]_{eq} \rightarrow \Delta[n] \star \Delta[3]^\sharp$ for all k, n . We may call them elementary anodyne extensions. Note that by definition the inclusions $\Delta[0] \rightarrow \Delta[1]_t$ are the elementary anodyne extensions $\Lambda^k[1] \rightarrow \Delta^k[1]$ with $k \in \{0, 1\}$.

We call prestratified simplicial sets having the right lifting property with respect to elementary anodyne extensions precomplicial sets ([10]).

The following model structures are expected to model (∞, ∞) -categories.

Theorem 2.17 ([10]). *The category $\mathbf{Set}^{t\Delta^{op}}$ of prestratified simplicial sets admits a model structure in which*

- *the cofibrations are precisely the monomorphisms,*
- *the fibrant objects are precisely the precomplicial sets.*

These classes of morphisms give rise to a cofibrantly generated model structure on the category \mathbf{msSet} of stratified simplicial sets. These two model structures are Quillen equivalent.

We may call these model structures Ozornova-Rovelli model structures.

The following simple morphisms in Δ (or in $t\Delta$) are used to define the lax Gray-Verity product.

Definition 2.18 ([16]). For any $(p, q) \in \mathbb{N}^2$, there are four maps in Δ :

$$\underline{\mathbb{1}}_1^{p,q} : [p] \rightarrow [p+q], \quad \underline{\mathbb{1}}_1^{p,q}(i) = i,$$

$$\underline{\mathbb{1}}_2^{p,q} : [q] \rightarrow [p+q], \quad \underline{\mathbb{1}}_2^{p,q}(i) = i+p,$$

$$\overline{\mathbb{1}}_1^{p,q} : [p+q] \rightarrow [p], \quad \overline{\mathbb{1}}_1^{p,q}(i) = \begin{cases} i & (0 \leq i \leq p), \\ p & (p < i \leq p+q), \end{cases}$$

$$\overline{\mathbb{1}}_2^{p,q} : [p+q] \rightarrow [q], \quad \overline{\mathbb{1}}_2^{p,q}(i) = \begin{cases} 0 & (0 \leq i < p), \\ i-p & (p \leq i \leq p+q). \end{cases}$$

Remark 2.19. Let $p, q \in \mathbb{N}$. We note that the morphisms $\underline{\mathbb{U}}_1^{p,q} : [p] \rightarrow [p+q]$ (resp. $\underline{\mathbb{U}}_2^{p,q} : [q] \rightarrow [p+q]$) in Δ is compatible with $J : \Delta \rightarrow \Delta$ (resp. $K : \Delta \rightarrow \Delta$). More precisely,

$$J(\underline{\mathbb{U}}_1^{p,q}) = \underline{\mathbb{U}}_1^{p+1,q}, K(\underline{\mathbb{U}}_2^{p,q}) = \underline{\mathbb{U}}_2^{p,q+1}$$

hold. Similarly, we also have

$$J(\underline{\mathbb{U}}_1^{p,q}) = \underline{\mathbb{U}}_1^{p+1,q}, K(\underline{\mathbb{U}}_2^{p,q}) = \underline{\mathbb{U}}_2^{p,q+1}.$$

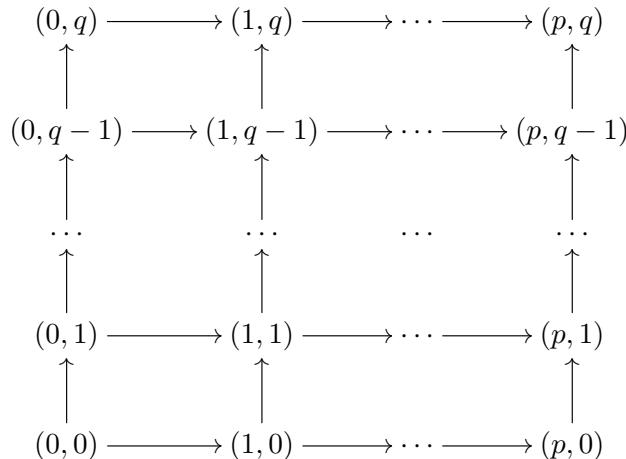
In addition, the morphisms $\underline{\mathbb{U}}_1^{p,q}$ and $\underline{\mathbb{U}}_2^{p,q}$ in Δ correspond each other via the endofunctor $\text{rev} : \Delta \rightarrow \Delta$. Since by definition $\underline{\mathbb{U}}_1^{p,q} = s^p \circ s^{p+1} \circ \dots \circ s^{p+q-1}$ and $\underline{\mathbb{U}}_2^{q,p} = s^0 \circ s^1 \circ \dots \circ s^q$ hold, so by the definition of rev we have

$$\text{rev}(\underline{\mathbb{U}}_1^{p,q}) = \underline{\mathbb{U}}_2^{q,p}, \text{rev}(\underline{\mathbb{U}}_2^{p,q}) = \underline{\mathbb{U}}_1^{q,p}.$$

Also, we have the equations below

$$\underline{\mathbb{U}}_1^{p,q} \circ \underline{\mathbb{U}}_1^{p,q} = \text{id}, \quad \underline{\mathbb{U}}_2^{p,q} \circ \underline{\mathbb{U}}_2^{p,q} = \text{id}.$$

Remark 2.20. As is demonstrated in [15], the non-degenerate $(p+q)$ -simplices in the simplicial set $\Delta[p] \times \Delta[q]$ correspond to the shortest paths from the left bottom corner $(0,0)$ to the right upper corner (p,q) in the figure below.



For instance, the $(p+q)$ -simplex $(\underline{\mathbb{U}}_1^{p,q}, \underline{\mathbb{U}}_2^{p,q}) \in (\Delta[p] \times \Delta[q])([p+q])$ corresponds to the shortest path turning the right bottom corner $(p,0)$.

Definition 2.21 ([16]). Let $X, Y \in \text{msSet}$. Their lax Gray-Verity product $X \otimes Y$ is the following stratified simplicial set: the underlying simplicial set is the cartesian product $X \times Y$ and an n -simplex $x \otimes y \in X \otimes Y$ is marked if and only if for any $(p, q) \in \mathbb{N}^2$ with $p + q = n$, $x \cdot \underline{\mathbb{U}}_1^{p,q} \in X([p]_t)$ or $y \cdot \underline{\mathbb{U}}_2^{p,q} \in Y([q]_t)$.

Remark 2.22. Let $\Delta[l]$ denote the prestratified simplicial set represented by $[l] \in t\Delta$, which is a stratified simplicial set. Note that there is only one unmarked $(m+n)$ -simplex $(\mathbb{T}_1^{m,n}, \mathbb{T}_2^{m,n})$ in $\Delta[m] \otimes \Delta[n]$. Any other $(m+n)$ -simplex is marked by definiton. Intuitively speaking, discarding marked simplices, $\Delta[m] \otimes \Delta[n]$ is similar to $\Delta[m+n]$, while the join of $\Delta[m]$ and $\Delta[n]$ is $\Delta[m+n+1]$. Note that $\Delta[m] \otimes \Delta[n]$ has one or more unmarked k -simplices with $k \leq m+n$ when $m, n \geq 1$.

We will extend the join construction of simplicial sets recalled in the last section to prestratified simplicial sets. To do so, abusing the notation, we now extend the concatenation functor $\star : \Delta \times \Delta \rightarrow \Delta$ to $\star : t\Delta \times t\Delta \rightarrow t\Delta$. Roughly speaking, viewing $\Delta \subset t\Delta$ and $\star|_{\Delta \times \Delta} = \star$, ζ^i 's and φ 's behave like s^i 's and the identity morphisms respectively.

Definition 2.23. We define the concatenation functor $\star : t\Delta \times t\Delta \rightarrow t\Delta$ as follows.

(1) On the objects in $t\Delta$, \star acts as follows:

For $m, n \geq 1$,

$$\begin{aligned} [m]_t \star [n] &= [m] \star [n]_t = [m]_t \star [n]_t = [m+n+1]_t, \\ [m] \star [n] &= [m+n+1]. \end{aligned}$$

For $m \geq 0$,

$$[0] \star [m] = [m] \star [0] = [m+1].$$

For $m \geq 1$,

$$[0] \star [m]_t = [m]_t \star [0] = [m+1]_t.$$

(2) On the generators of morphisms in $t\Delta$, \star acts as follows:

Viewing d^i 's and s^j 's in $t\Delta$ as in Δ , their concatenations are defined as in Section 2.1.

For $\zeta^j : [m+1]_t \rightarrow [m]$ and $d^i : [n-1] \rightarrow [n]$,

$$d^i \star \zeta^j = d^i \circ \zeta^{n+j}, \quad \zeta^j \star d^i = d^{m+1+i} \circ \zeta^j.$$

For $\zeta^j : [m+1] \rightarrow [m]_t$ and $s^i : [n+1] \rightarrow [n]$,

$$s^i \star \zeta^j = s^i \circ \zeta^{n+1+j}, \quad \zeta^j \star s^i = s^{m+1+i} \circ \zeta^j.$$

For $\zeta^j : [m+1] \rightarrow [m]_t$ and $\zeta^i : [n+1] \rightarrow [n]_t$,

$$\zeta^i \star \zeta^j = \zeta^i \circ \zeta^{n+1+j}, \quad \zeta^j \star \zeta^i = \zeta^{m+1+i} \circ \zeta^j.$$

For $\varphi : [n] \rightarrow [n]_t$ and $d^i : [m-1] \rightarrow [m]$,

$$\varphi \star d^i = \varphi \circ d^{n+1+i}, \quad d^i \star \varphi = \varphi \circ d^i.$$

For $\varphi : [n] \rightarrow [n]_t$ and $s^i : [m+1] \rightarrow [m]$,

$$\varphi \star s^i = \varphi \circ s^{n+1+i}, \quad s^i \star \varphi = \varphi \circ s^i.$$

For $\varphi : [n] \rightarrow [n]_t$ and $\zeta^i : [m+1]_t \rightarrow [m]$,

$$\varphi \star \zeta^i = \varphi \circ \zeta^{n+1+i}, \quad \zeta^i \star \varphi = \varphi \circ \zeta^i.$$

For $\varphi_n : [n] \rightarrow [n]_t$ and $\varphi_m : [m] \rightarrow [m]_t$, where we put subscripts for convenience,

$$\varphi_n \star \varphi_m = \varphi_m \star \varphi_n = \varphi_{m+n}.$$

Remark 2.24. One might define $[m] \star [n]_t$ to be $[m+n+1]$ for $m, n \geq 1$, namely the concatenation of an unmarked simplex and a marked simplex should be unmarked. But it and $[0] \star [n]_t = [n+1]_t$ would imply $[1] \star [n]_t = ([0] \star [0]) \star [n]_t \neq [0] \star ([0] \star [n]_t) = [0] \star [n+1]_t$.

We define the join functor $(-) \oplus (-) : \mathbf{Set}^{t\Delta^{op}} \times \mathbf{Set}^{t\Delta^{op}} \rightarrow \mathbf{Set}^{t\Delta^{op}}$ to be the Day convolution of $\star : t\Delta \times t\Delta \rightarrow t\Delta$. Note that our definition is compatible with the join of stratified simplicial sets [16, Definition 33].

Proposition 2.25. *For any $X \in \mathbf{msSet}$, the functors $(-) \oplus X, X \oplus (-) : \mathbf{msSet} \rightarrow \mathbf{msSet}$ are left Quillen functors with respect to Ozornova-Rovelli model structure.*

Proof. In [16, Chapter 6], it has been proven that for any stratified simplicial set X , $(-) \oplus X$ and $X \oplus (-)$ are left Quillen functors with respect to the model structure for non-saturated weak complicial sets on \mathbf{msSet} .

It is enough to show that the morphism $\Delta[3]_{eq} \oplus X \rightarrow \Delta[3]^\sharp \oplus X$ is a trivial cofibration with respect to Ozornova-Rovelli model structure. Since $\Delta[3]_{eq} \oplus \Delta[n]_? \rightarrow \Delta[3]^\sharp \oplus \Delta[n]_?$ is a trivial cofibration for any $n \in \mathbb{N}$, where $[n]_?$ denotes $[n]$ or $[n]_t$, and the join construction is compatible with colimits, the morphism $\Delta[3]_{eq} \oplus X \rightarrow \Delta[3]^\sharp \oplus X$ is a trivial cofibration. \square

Since every stratified simplicial set is cofibrant, we obtain the following.

Corollary 2.26. *Let $X, X', Y, Y' \in \mathbf{msSet}$. Suppose we have weak equivalences $f : X \rightarrow X'$ and $g : Y \rightarrow Y'$. Then the morphism $f \oplus g : X \oplus Y \rightarrow X' \oplus Y'$ is also a weak equivalence.*

Remark 2.27. In [8, §1.2.8], it is proven that the join of two quasi-categories is a quasi-category. The same argument there shows that the join of two precomplicial sets has the right lifting property with respect to the inclusions $\Lambda^k[n] \rightarrow \Delta^k[n]$, but it may not show that the join has the right lifting property with respect to the other anodyne extensions.

3. RESULTS

3.1. Stratified stabilization of simplicial sets. In this section, by using the functor $\star : t\Delta \times t\Delta \rightarrow t\Delta$, we define stratified analogue of Δ_{st} , $\Delta_{st'}$ and Δ_{st^2} . To do that, by abusing notation, we define the following shift functors.

Definition 3.1. We denote by $K : t\Delta \rightarrow t\Delta$ the shift functor $(-) \star [0] : t\Delta \rightarrow t\Delta$ and by $J : t\Delta \rightarrow t\Delta$ the other shift functor $[0] \star (-) : t\Delta \rightarrow t\Delta$

More explicitly, these functors act on the generators of morphisms as follows:

$$\begin{aligned} K(d^i : [n-1] \rightarrow [n]) &= d^i : [n] \rightarrow [n+1], \\ K(s^i : [n+1] \rightarrow [n]) &= s^i : [n+2] \rightarrow [n+1], \\ K(\varphi : [n] \rightarrow [n]_t) &= \varphi : [n+1] \rightarrow [n+1]_t, \\ K(\zeta^i : [n+1]_t \rightarrow [n]) &= \zeta^i : [n+2] \rightarrow [n+1]_t, \\ J(d^i : [n-1] \rightarrow [n]) &= d^{i+1} : [n] \rightarrow [n+1], \\ J(s^i : [n+1] \rightarrow [n]) &= s^{i+1} : [n+2] \rightarrow [n+1], \\ J(\varphi : [n] \rightarrow [n]_t) &= \varphi : [n+1] \rightarrow [n+1]_t, \\ J(\zeta^i : [n+1]_t \rightarrow [n]) &= \zeta^{i+1} : [n+2] \rightarrow [n+1]_t. \end{aligned}$$

By using these functors we obtain the following categories:

$$\begin{aligned} t\Delta_{st} &:= \text{colim}(t\Delta \xrightarrow{K} t\Delta \xrightarrow{K} t\Delta \xrightarrow{K} \cdots), \\ t\Delta_{st'} &:= \text{colim}(t\Delta \xrightarrow{J} t\Delta \xrightarrow{J} t\Delta \xrightarrow{J} \cdots), \\ t\Delta_{st^2} &:= \text{colim}(t\Delta \xrightarrow{K} t\Delta \xrightarrow{J} t\Delta \xrightarrow{K} t\Delta \xrightarrow{J} t\Delta \xrightarrow{K} \cdots). \end{aligned}$$

Remark 3.2. (1) By definition, we have $J \circ K = K \circ J$. So we can change the order of the functors in the colimit diagram of $t\Delta_{st^2}$.

(2) These three categories admit the following descriptions:

By abusing notation, the objects of $t\Delta_{st}$ may be denoted by $[n]$ or $[n]_t$ for all $n \in \mathbb{Z}$. The morphism of $t\Delta_{st}$ are generated by the morphisms

$$d^i : [n-1] \rightarrow [n], \quad s^j : [n+1] \rightarrow [n], \quad \zeta^k : [n+1]_t \rightarrow [n], \quad \varphi : [n] \rightarrow [n]_t$$

for all $n \in \mathbb{Z}$ and integers $i, j, k \geq 0$ subject to the stratified version of the identities in Remark 2.3. Note that there is $[0]_t \in t\Delta_{st}$

Dually, the objects of $t\Delta_{st'}$ are denoted by $[n]$ or $[n]_t$ for all $n \in \mathbb{Z}$. The morphism of $t\Delta_{st'}$ are generated by the morphisms

$$d^i : [n-1] \rightarrow [n], \quad s^j : [n+1] \rightarrow [n], \quad \zeta^k : [n+1]_t \rightarrow [n], \quad \varphi : [n] \rightarrow [n]_t$$

for all $n \in \mathbb{Z}$ and integers $i, j, k \leq n$ subject to the same identities.

The objects of $t\Delta_{st^2}$ are denoted by $[n]$ or $[n]_t$ for all $n \in \mathbb{Z}$. The morphism of $t\Delta_{st^2}$ are generated by the morphisms

$$d^i : [n-1] \rightarrow [n], \quad s^j : [n+1] \rightarrow [n], \quad \zeta^k : [n+1]_t \rightarrow [n], \quad \varphi : [n] \rightarrow [n]_t$$

for all $n, i, j \in \mathbb{Z}$ subject to the same identities.

We may view in the evident way the categories Δ_{st} , $\Delta_{st'}$, and Δ_{st^2} as subcategories of $t\Delta_{st}$, $t\Delta_{st'}$, and $t\Delta_{st^2}$ respectively.

(3) Abusing notation, we define the stratified analogue of $\text{rev} : \Delta_{st} \rightarrow \Delta_{st'}$. To do that, we define $\text{rev} : t\Delta \rightarrow t\Delta$ as follows:

On the objects, $\text{rev}([n]) = [n]$ and $\text{rev}([n]_t) = [n]_t$. On the generators of morphisms,

$$\begin{aligned}\text{rev}(d^i : [n-1] \rightarrow [n]) &= d^{n-i} : [n-1] \rightarrow [n], \\ \text{rev}(s^i : [n+1] \rightarrow [n]) &= s^{n-i} : [n+1] \rightarrow [n], \\ \text{rev}(\varphi : [n] \rightarrow [n]_t) &= \varphi : [n] \rightarrow [n]_t, \\ \text{rev}(\zeta^i : [n+1]_t \rightarrow [n]) &= \zeta^{n-i} : [n+1] \rightarrow [n]_t.\end{aligned}$$

This fits into the commutative diagram

$$\begin{array}{ccc} t\Delta & \xrightarrow{K} & t\Delta \\ \text{rev} \downarrow & & \downarrow \text{rev} \\ t\Delta & \xrightarrow{J} & t\Delta. \end{array}$$

This defines a functor $t\Delta_{st} \rightarrow t\Delta_{st'}$, which we also denote by rev abusing notation.

By using the functor $\star : t\Delta \times t\Delta \rightarrow t\Delta$, we extend the functor $\star : \Delta_{st'} \times \Delta_{st} \rightarrow \Delta_{st^2}$ to $\star : t\Delta_{st'} \times t\Delta_{st} \rightarrow t\Delta_{st^2}$, again abusing notation.

Let $\theta : [n]_? \rightarrow [n']_? \in t\Delta_{st'}$ and $\tau : [m]_? \rightarrow [m']_? \in t\Delta_{st}$, where $[n]_?$ denotes $[n]$ or $[n]_t$. By the definitions of $t\Delta_{st'}$ and $t\Delta_{st}$, there exist $k, l \in \mathbb{N}$ and morphisms $\tilde{\theta}, \tilde{\tau}$ in $t\Delta$ such that

$$\tilde{\theta} : [n+k]_? \rightarrow [n'+k]_? \in t\Delta$$

represents θ and

$$\tilde{\tau} : [m+l]_? \rightarrow [m'+l]_? \in t\Delta$$

represents τ . Denote $\theta \star \tau : [n]_? \star [m]_? \rightarrow [n']_? \star [m']_?$ the map in $t\Delta_{st^2}$ represented by

$$\tilde{\theta} \star \tilde{\tau} : [n+m+k+l]_? \rightarrow [n'+m'+k+l]_? \in t\Delta.$$

This construction defines a functor $t\Delta_{st'} \times t\Delta_{st} \rightarrow t\Delta_{st^2}$.

Definition 3.3. We let $\mathbf{Set}_*^{t\Delta_{st}^{op}}$ denote the category of functors $t\Delta_{st}^{op} \rightarrow \mathbf{Set}_*$ and call the objects prestratified stable simplicial sets. For any $X \in \mathbf{Set}_*^{t\Delta_{st}^{op}}$ and $[n]_t \in t\Delta_{st}$, we call elements in $X([n]_t)$ marked n -simplices. A stratified stable simplicial set X is a prestratified stable simplicial set such that the maps

$$\varphi^* : X([m]_t) \rightarrow X([m])$$

are injective for all $m \geq 1$.

Remark 3.4. For any $A \in \mathbf{Set}^{t\Delta^{op}}$, we may write $\Sigma_+^\infty A$ for the corresponding prestratified stable simplicial set

$$\Sigma_+^\infty A([n]) = \begin{cases} A([n]) \coprod \{*\} & (n \geq 0), \\ \{*\} & (n < 0), \end{cases}$$

and $d_j \alpha = *$ for any $\alpha \in \Sigma_+^\infty A([m])$ and $j > m$.

As we have defined the join product on $\mathbf{Set}_*^{\Delta_{st}^{op}}$, we here define an analogous product on $\mathbf{Set}_*^{t\Delta_{st}^{op}}$. For $X, Y \in \mathbf{Set}_*^{t\Delta_{st}^{op}}$, we let $X \wedge'' Y$ denote the point-wise smash product, namely $(X \wedge'' Y)([m], [n]) = X([m]) \wedge Y([n])$, where \wedge denotes the smash product of pointed sets.

Let $X \wedge' Y$ denote the left Kan extension of $X \wedge'' Y$ with respect to

$$t\Delta_{st}^{op} \times t\Delta_{st}^{op} \xrightarrow{\text{rev} \times \text{id}} t\Delta_{st'}^{op} \times t\Delta_{st}^{op} \xrightarrow{\star} t\Delta_{st^2}^{op}.$$

This construction defines a functor $(-) \wedge' (-) : \mathbf{Set}_*^{t\Delta_{st}^{op}} \times \mathbf{Set}_*^{t\Delta_{st}^{op}} \rightarrow \mathbf{Set}_*^{t\Delta_{st^2}^{op}}$, which is the staratified analogue of the join construction of stable simplicial sets. To define a product on $\mathbf{Set}_*^{t\Delta_{st}^{op}}$, the stratified analogue of the Kan-Whitehead product on stable simplicial sets, we introduce a functor $\mathbf{Set}_*^{t\Delta_{st^2}^{op}} \rightarrow \mathbf{Set}_*^{t\Delta_{st}^{op}}$.

Definition 3.5. Let $V \in \mathbf{Set}_*^{t\Delta_{st^2}^{op}}$. We define $V_{-1} \in \mathbf{Set}_*^{t\Delta_{st}^{op}}$ as follows. For any $[n], [m]_t \in t\Delta_{st}^{op}$, we set

$$V_{-1}([n]) := \{x \in V([n+1]) \mid d_j^V x = *, j < 1\},$$

$$V_{-1}([m]_t) := \{x \in V([n+1]_t) \mid d_j^V \varphi^V x = *, j < 1\}.$$

The operators are given as follows:

$$d_i := d_{i+1}^V, \quad s_i := s_{i+1}^V, \quad \varphi := \varphi^V, \quad \zeta_i := \zeta_{i+1}^V,$$

where d_j^V, s_j^V, φ^V and ζ_j^V are the operators for V .

Definition 3.6. Let $X, Y \in \mathbf{Set}_*^{t\Delta_{st}^{op}}$. The stratified Kan-Whitehead smash product $X \hat{\wedge} Y$ is $(X \wedge' Y)_{-1}$.

By Remark 2.19, the following is well defined.

Definition 3.7. Let $p, q \in \mathbb{Z}$.

(1) We denote by $\underline{\sqcup}_1^{p,q} : [p] \rightarrow [p+q]$ the morphism in $\Delta_{st'}$ represented by a morphism $\underline{\sqcup}_1^{p+k,q} : [p+k] \rightarrow [p+q+k]$ in Δ for some $k \in \mathbb{N}$. Similarly, we denote by $\underline{\sqcup}_2^{p,q} : [q] \rightarrow [p+q]$ the morphism in Δ_{st} represented by a morphism $\underline{\sqcup}_2^{p,q+k} : [q+k] \rightarrow [p+q+k]$ in Δ for some $k \in \mathbb{N}$.

(2) We denote the morphism $\text{rev}(\underline{\sqcup}_1^{p,q}) : [p] \rightarrow [p+q]$ in $\Delta_{st'}$ by $\underline{\sqcup}_2^{q,p} : [p] \rightarrow [p+q]$. Similarly, we denote the morphism $\text{rev}(\underline{\sqcup}_2^{p,q}) : [q] \rightarrow [p+q]$ in Δ_{st} by $\underline{\sqcup}_1^{q,p} : [q] \rightarrow [p+q]$.

We may view these morphisms as those in $t\Delta_{st}$ and $t\Delta_{st'}$ respectively.

Definition 3.8. Let $X, Y \in \mathbf{Set}_*^{t\Delta_{st}^{op}}$. The stable analogue of lax Gray-Verity product $X \tilde{\otimes} Y$ is defined as follows:

- its underlying stable simplicial set is the point-wise smash product $X \wedge Y$
- an n -simplex $x \tilde{\otimes} y \in X \tilde{\otimes} Y$ is marked if and only if for any $(p, q) \in \mathbb{Z}^2$ with $p + q = n$, $x \circ \underline{\sqcup}_1^{p,q} \in X([p]_t)$ or $y \circ \underline{\sqcup}_2^{p,q} \in Y([q]_t)$.

This product $\tilde{\otimes}$ is a straightforward analogue of lax Gray tensor product for stratified simplicial sets. The lax Gray-Verity product plays a pivotal role in weak ω -category theory ([17] and [12]). Thus, it would be fair to expect that its stable analogue also would play a role in stable objects. We below construct a natural morphism between it and stratified Kan-Whitehead product.

Proposition 3.9. *There exists a natural morphism $X \tilde{\wedge} Y \rightarrow X \tilde{\otimes} Y$.*

Proof. Let $X, Y \in \mathbf{Set}_*^{t\Delta_{st}^{op}}$ and $x \tilde{\wedge} y$ be an unmarked n -simplex of $X \tilde{\wedge} Y$. Then by the definition of $X \tilde{\wedge} Y$ there exist $p, q \in \mathbb{Z}$ with $p + q = n$ such that $x \in X([p])$ and $y \in Y([q])$. We assign to it the n -simplex $(x \circ \underline{\sqcap}_1^{p,q}, y \circ \underline{\sqcap}_2^{p,q})$ of $X \tilde{\otimes} Y$.

Let $x \tilde{\wedge} y$ be a marked n -simplex of $X \tilde{\wedge} Y$. Then there exist $p, q \in \mathbb{Z}$ with $p + q = n$ such that

- (1) $x \in X([p]_t)$ and $y \in Y([q])$ or
- (2) $x \in X([p])$ and $y \in Y([q]_t)$ or
- (3) $x \in X([p]_t)$ and $y \in Y([q]_t)$.

For each case, we again consider $(x \circ \underline{\sqcap}_1^{p,q}, y \circ \underline{\sqcap}_2^{p,q})$ of $X \tilde{\otimes} Y$. We need to show that $(x \circ \underline{\sqcap}_1^{p,q}, y \circ \underline{\sqcap}_2^{p,q})$ is marked. It is enough to see the first case, the others are the same. Since $(x \circ \underline{\sqcap}_1^{p,q}) \circ \underline{\sqcup}_1^{p,q} = x$ and $x \in X$ is marked, $(x \circ \underline{\sqcap}_1^{p,q}, y \circ \underline{\sqcap}_2^{p,q}) \in X \tilde{\otimes} Y$ is also marked by definition. This defines a natural map $X \tilde{\wedge} Y \rightarrow X \tilde{\otimes} Y$. \square

Remark 3.10. As we have seen in Remark 2.20, any non-degenerate $(p+q)$ -simplex in $\Delta[p] \times \Delta[q]$ can be expressed as a shortest path in the ordered set $[p] \times [q]$. The simplex $(\underline{\sqcap}_1^{p,q}, \underline{\sqcap}_2^{p,q})$ corresponds to the most right-lower path.

We could take another pair of surjections $\theta : [p+q] \rightarrow [p]$ and $\tau : [p+q] \rightarrow [q]$ and consider the map $X([p]) \times Y([q]) \rightarrow (X \tilde{\otimes} Y)_{p+q}$, $(x, y) \mapsto (x \circ \theta, y \circ \tau)$.

But by definition, the simplices $x \circ \theta \circ \underline{\sqcup}_1^{p,q}$ and $y \circ \tau \circ \underline{\sqcup}_2^{p,q}$ are degenerate, hence marked. Thus, $(x \circ \theta, y \circ \tau) \in X \tilde{\otimes} Y$ is always marked.

In this sense, the map we constructed in the proof above may be the only suitable one.

3.2. A homotopy theory for stable precomplicial sets. In this section, we introduce a homotopy theory on prestratified stable simplicial sets, which is a straight forward analogue of the structure of a category of fibrant objects on combinatorial spectra given by Brown [1].

Mimicking Kan's suspension functor, we introduce the following functor.

Definition 3.11. The suspension functor $S : \mathbf{Set}_*^{t\Delta^{op}} \rightarrow \mathbf{Set}_*^{t\Delta^{op}}$ is the left Kan extension along yoneda embedding of

$$t\Delta \rightarrow \mathbf{Set}_*^{t\Delta^{op}}, \quad [n]_? \mapsto (\Delta[n+1]_?)_+ / (\Delta[n]_?)_+ \vee \Delta[0]_+,$$

where $(\cdot)_+$ denotes the functor $\mathbf{Set}^{t\Delta^{op}} \rightarrow \mathbf{Set}_*^{t\Delta^{op}}$ adding the base points.

Definition 3.12. (1) A prestratified prespectrum L consists of

- (i) a sequence of pointed prestratified simplicial sets L_i with $i \in \mathbb{N}$,
- (ii) a sequence of monomorphisms $\lambda_i : S L_i \rightarrow L_{i+1}$ of pointed prestratified simplicial sets with $i \in \mathbb{N}$.

(2) A morphism $\psi : \{L_i, \lambda_i\} \rightarrow \{M_i, \mu_i\}$ of prestratified prespectra is a sequence of morphisms $\psi_i : L_i \rightarrow M_i$ of pointed prestratified simplicial sets such that $\psi_{i+1} \circ \lambda_i = \mu_i \circ S \psi_i$.

(3) A morphism $\psi : \{L_i, \lambda_i\} \rightarrow \{M_i, \mu_i\}$ of prestratified prespectra is called a weak equivalence if for every $i \in \mathbb{N}$, ψ_i is a weak equivalence for the pointed Ozornova-Rovelli model structure.

Definition 3.13. Let $X \in \mathbf{Set}_*^{t\Delta_{st}^{op}}$. We define the corresponding prestratified prespectrum $Ps(X) = \{X_i, \xi_i\}$ as follows.

For any $i \in \mathbb{N}$, the pointed set of n -simplices in X_i is given by

$$X_i([n]) := \{\alpha \in X([n-i]) \mid d_0 \cdots d_n \alpha = *, d_j \alpha = *, (j > n)\},$$

where $*$ denotes (the degeneracy of) the base point. Similarly, the pointed set of marked n -simplices in X_i is given by

$$X_i([n]_t) := \{\alpha \in X([n-i]_t) \mid d_0 \cdots d_n \varphi^* \alpha = *, d_j \varphi^* \alpha = *, (j > n)\},$$

The structure morphisms on X_i will be induced by those of X and X_i is indeed a pointed prestratified simplicial set with them.

For any $i \in \mathbb{N}$, the monomorphism $\xi_i : S X_i \rightarrow X_{i+1}$ is the obvious inclusion.

Remark 3.14. This defines a functor $Ps : \mathbf{Set}_*^{t\Delta_{st}^{op}} \rightarrow \mathbf{ppSp}$, by letting \mathbf{ppSp} denote the category of prestratified prespectra.. By construction, for

any $i \in \mathbb{N}$ X_i is a stratified simplicial set if X is a stratified stable simplicial set.

Brown has introduced the following notion in the study of shaves valued in simplicial sets.

Definition 3.15 ([1]). Let \mathcal{C} be a category with finite products and a final object denoted by $*$. Assume that \mathcal{C} has two distinguished classes of morphisms, called the weak equivalences and the fibrations. A morphism in \mathcal{C} will be called an aspherical fibration if it is both a weak equivalence and a fibration. We define a path object for an object B in \mathcal{C} to be an object B^I together with morphisms

$$B \xrightarrow{s} B^I \xrightarrow{(d_0, d_1)} B \times B,$$

where s is a weak equivalence, (d_0, d_1) is a fibration, and the composite is the diagonal morphism.

We call \mathcal{C} a category of fibrant objects if the following are satisfied

(A) Let f and g be morphisms such that gf is defined. If two of f , g , gf are weak equivalences then so is the third. Any isomorphism is a weak equivalence.

(B) The composite of two fibrations is a fibration. Any isomorphism is a fibration.

(C) For any morphism $A \rightarrow C$ and a fibration (resp. aspherical fibration) $B \rightarrow C$, the pullback $A \times_C B$ exists and the projection $A \times_C B \rightarrow A$ is a fibration (resp. aspherical fibration).

(D) For any object, there exists at least one path object.

(E) For any object B the morphism $B \rightarrow *$ is a fibration.

We define weak equivalences and fibrations in $\mathbf{Set}_*^{t\Delta_{st}^{op}}$.

Definition 3.16. A morphism f in $\mathbf{Set}_*^{t\Delta_{st}^{op}}$ is

- (1) a weak equivalence if for any $i \in \mathbb{N}$ the morphism $\text{Ps}(f)_i$ of pointed prestratified simplicial sets is a weak equivalence for Ozornova-Rovelli model structure,
- (2) a fibration if for any $i \in \mathbb{N}$ the morphism $\text{Ps}(f)_i$ of pointed prestratified simplicial sets is a fibration for Ozornova-Rovelli model structure.

We call a prestratified stable simplicial set X is fibrant if the unique morphism $X \rightarrow *$ is a fibration.

Proposition 3.17. For any fibrant stratified stable simplicial set B , there exists the diagram of fibrant objects

$$B \xrightarrow{s} \text{Path}(B) \xrightarrow{(d_0, d_1)} B \times B,$$

where s is a weak equivalence, (d_0, d_1) is a fibration, and the composite is the diagonal morphism.

Proof. Let B be a fibrant stratified stable simplicial set. Then we have a pre-stratified prespectrum $\text{Ps}(B) = \{B_i, \beta_i\}$, where B_i is a pointed stratified simplicial set for any $i \in \mathbb{N}$. For any $i \in \mathbb{N}$, we have the mapping stratified simplicial set $(B_i)^{\Delta[1]_t}$. There is an evident injection $S((B_i)^{\Delta[1]_t}) \rightarrow (S(B_i))^{\Delta[1]_t}$. By composing this and the morphism $(S(B_i))^{\Delta[1]_t} \rightarrow (B_{i+1})^{\Delta[1]_t}$ induced by β_i , we obtain $\tilde{\beta}_i : S((B_i)^{\Delta[1]_t}) \rightarrow (B_{i+1})^{\Delta[1]_t}$, which defines a prestratified prespectrum $\{(B_i)^{\Delta[1]_t}, \tilde{\beta}_i\}$.

Since the morphisms $\Delta[0] \rightarrow \Delta[1]_t$ are elementary anodyne extensions and B_i is fibrant, the induced morphism $(B_i)^{\Delta[1]_t} \rightarrow B_i \times B_i$ is an acyclic fibration.

We put $\text{Path}(B)$ to be the mapping stratified stable simplicial set $B^{\Sigma_+^\infty \Delta[1]_t}$, where $\Sigma_+^\infty \Delta[1]_t$ is the stratified stable simplicial set corresponding to $\Delta[1]_t$. Then by construction, we have $\text{Ps}(\text{Path}(B)) = \{(B_i)^{\Delta[1]_t}, \tilde{\beta}_i\}$. The morphism $s : B \rightarrow \text{Path}(B)$ corresponds to the constant path and it is a weak equivalence by the two out of three axiom. \square

Proposition 3.18. *Let A, B, C be fibrant stratified stable simplicial sets. For any morphism $A \rightarrow C$ and a fibration (resp. aspherical fibration) $B \rightarrow C$, the pullback $A \times_C B$ is again a fibrant stratified stable simplicial set and the projection $A \times_C B \rightarrow A$ is a fibration (resp. aspherical fibration).*

Proof. By the definition of the functor Ps , we have

$$(A \times_C B)_i = A_i \times_{C_i} B_i$$

for any $i \in \mathbb{N}$. Since any fibration (resp. aspherical fibration) in Ozornova-Rovelli model structure is preserved by pullback, $(A \times_C B)_i \rightarrow A_i$ is a fibration for any $i \in \mathbb{N}$. This completes the proof. \square

Corollary 3.19. *The full subcategory of fibrant stratified stable simplicial sets in $\text{Set}_*^{t\Delta_{st}^{\text{op}}}$ admits a structure of a category of fibrant objects with the weak equivalences and fibrations in Definition 3.16.*

Remark 3.20. As is mentioned above, it is shown that the category of combinatorial spectra admits a model structure in [1] by using the cofibrantly generated classical model structure on simplicial sets. It might be possible to obtain the stratified analogue by using the cofibrantly generated model structure on msSet given in [10].

Theorem 3.21. *Suppose we have weak equivalences $f : X \rightarrow X'$ and $g : Y \rightarrow Y'$ of stratified stable simplicial sets. Then the morphism $f \tilde{\wedge} g : X \tilde{\wedge} Y \rightarrow X' \tilde{\wedge} Y'$ is also a weak equivalence.*

Proof. By definition, for $i, n \in \mathbb{N}$, we observe that $(X \tilde{\wedge} Y)_i([n]) = \{(x, y) \in (X \tilde{\wedge} Y)([n - i + 1]) \mid d_1 \cdots d_{n+1}(x, y) = *, d_j(x, y) = * (j \leq 0 \text{ or } n + 2 \leq j)\}$, where d 's are the structure morphisms of $X \tilde{\wedge} Y$. Thus, $(X \tilde{\wedge} Y)_i$ is the join of two pointed stratified simplicial sets. Combining this observation and Corollary 2.26, we obtain the desired result. \square

Remark 3.22. (1) We do not know whether $\tilde{\wedge}$ is a product on the full subcategory of fibrant stratified stable simplicial sets.

Let $F : \mathbf{Set}_*^{t\Delta^{op}} \rightarrow \mathbf{Set}_*^{t\Delta^{op}}$ denote a fibrant replacement functor with respect to the pointed Ozornova-Rovelli model structure. For any pre-stratified prespectrum $\{X_i, \xi_i\}$, we have fibrant pointed prestratified set $F(X_i)$ for all $i \in \mathbb{N}$. However there may not exist the structure morphism $S \wedge F(X_i) \rightarrow F(X_{i+1})$, which exists up to homotopy.

(2) Masuda constructed in [9] a monoidal structure for categorical spectra, which is the stabilization of (∞, ∞) -categories studied in [14], by using Steiner's theory of augmented directed complexes. It would be worth comparing that with our monoidal structure (in ∞ -categorical setting).

3.3. Reedy-like structure. In this article, we only investigate prestratified stable simplicial objects in the category of (pointed) sets. It would be worth studying such objects in other (∞) -categories equipped with own homotopy theories.

It is well known that Δ is a Reedy category and is shown in [10] $t\Delta$ is also a Reedy category. Moreover, it is shown there that these two categories have better properties, that is to say, they are regular skeletal. In this section, we observe Δ_{st} and $t\Delta_{st}$ also have similar properties.

Definition 3.23 ([4]). A Reedy category is a category \mathcal{R} equipped with two subcategories \mathcal{R}_+ and \mathcal{R}_- , both of which contain all the objects, and a total ordering on the set $\text{ob}(\mathcal{R})$ of objects, defined by a degree function $\text{deg} : \text{ob}(\mathcal{R}) \rightarrow \mathbb{N}$ such that:

- Every nonidentity morphism in \mathcal{R}_+ raises degree,
- Every nonidentity morphism in \mathcal{R}_- lowers degree, and
- Every morphism f in \mathcal{R} factors uniquely as a morphism in \mathcal{R}_- followed by a morphism in \mathcal{R}_+ .

As is well known, Δ is a Reedy category with the following structure:

$$\text{deg} : \text{ob}(\Delta) \rightarrow \mathbb{N}, \quad [n] \mapsto n.$$

The subcategories Δ_+ and Δ_- consist of injective maps and surjective maps respectively.

Theorem 3.24 ([10]). *The category $t\Delta$ is a Reedy category with the following structure: The degree map $\text{deg} : \text{ob}(t\Delta) \rightarrow \mathbb{N}$ is given by*

$$\text{deg}([0]) = 0, \quad \text{deg}([k]) = 2k - 1, \quad \text{deg}([k]_t) = 2k, \quad k \geq 1.$$

The subcategory $t\Delta_+$ is generated by Δ_+ and morphisms $\varphi : [n] \rightarrow [n]_t$ for all $n \geq 1$ and $t\Delta_-$ is generated by Δ_- and morphisms $\zeta^i : [n+1]_t \rightarrow [n]$ for all $n \geq 1$ and $0 \leq i \leq n$.

Definition 3.25 ([10]). A Reedy category \mathcal{R} is regular skeletal if the following conditions hold.

(1) Every morphism in \mathcal{R}_- admits a section.

(2) Two parallel morphisms of \mathcal{R}_- are equal if and only if they admit the same set of sections.

(3) Every morphism of \mathcal{R}_+ is a monomorphism.

It is easy to show that Δ is regular skeletal. Furthermore, Ozornova and Rovelli have shown the following.

Theorem 3.26 ([10]). *The Reedy category $t\Delta$ is regular skeletal.*

In [10], the fact that $t\Delta$ is a regular skeletal Reedy category with this structure plays a pivotal role. We will show that $t\Delta_{st}$ is almost a regular skeletal Reedy category with an analogous structure. To do that, we show that Δ_{st} is also almost regular skeletal.

We consider the following structure on Δ_{st} : $\deg : \text{ob}(\Delta_{st}) \rightarrow \mathbb{Z}$, $[n] \mapsto n$. The subcategories $(\Delta_{st})_-$ (resp. $(\Delta_{st})_+$) is generated by identity morphisms and s^i 's (resp. identity morphisms and d^i 's).

Lemma 3.27. (1) For any i and n , the morphism $s^i : [n+1] \rightarrow [n]$ in Δ_{st} is an epimorphism.

(2) For any i and n , the morphism $d^i : [n-1] \rightarrow [n]$ in Δ_{st} is a monomorphism.

Proof. We prove (1). (2) can be proven by the same argument. Assume that $\alpha s^i = \beta s^i$ for some morphisms $\alpha, \beta : [n] \rightarrow [m]$ in Δ_{st} . Then these morphisms s^i , α , and β are represented respectively by morphisms $s^i : [n+1+k] \rightarrow [n+k]$ and $\tilde{\alpha}, \tilde{\beta} : [n+k] \rightarrow [m+k]$ for some $k \in \mathbb{N}$ and $\tilde{\alpha}s^i = \tilde{\beta}s^i$ holds. Since s^i in Δ is an epimorphism, $\tilde{\alpha} = \tilde{\beta}$ in Δ . This shows that $\alpha = \beta$ in Δ_{st} . \square

Lemma 3.28. Every morphism in Δ_{st} factors uniquely as a morphism in $(\Delta_{st})_-$ followed by a morphism in $(\Delta_{st})_+$.

Proof. Recall that every morphism $f : [i] \rightarrow [j]$ in Δ is uniquely decomposed as $g \circ h : [i] \rightarrow [im(f)-1] \rightarrow [j]$ with g a monomorphism and h an epimorphism, where $im(f)$ denotes the cardinality of the image of f .

Let $\theta : [m] \rightarrow [n]$ be a morphism in Δ_{st} . Then there exists a morphism $\tilde{\theta} : [m+k] \rightarrow [n+k]$ in Δ with a natural number $k \in \mathbb{N}$, which represents θ . The morphism $\tilde{\theta}$ in Δ can be written uniquely as $\tilde{\alpha} \circ \tilde{\beta}$ with $\tilde{\alpha}$ a monomorphism

and $\tilde{\beta}$ an epimorphism in Δ . Then the morphisms α and β in Δ_{st} represented by $\tilde{\alpha}$ and $\tilde{\beta}$ respectively are monomorphism and epimorphism respectively by the lemma above, and we have $\theta = \alpha \circ \beta$. \square

Expect for the fact that the codomain of the degree map is \mathbb{Z} , Δ_{st} satisfies the all requirements for being a regular skeletal Reedy category.

Lemma 3.29. *For each $n \in \mathbb{Z}$, the morphism $\varphi : [n] \rightarrow [n]_t$ in $t\Delta_{st}$ is a monomorphism and an epimorphism.*

Proof. This follows from that $\varphi : [n] \rightarrow [n]_t$ in $t\Delta$ is a monomorphism and an epimorphism proven in [10]. \square

We consider the following structure on $t\Delta_{st}$: A map $\deg : \text{ob}(t\Delta) \rightarrow \mathbb{Z}$ given by

$$\deg([0]) = 0, \deg([k]) = 2k - 1, \deg([k]_t) = 2k$$

for $k \neq 0$. The subcategory $(t\Delta_{st})_+$ is generated by $(\Delta_{st})_+$ and morphisms $\varphi : [n] \rightarrow [n]_t$ for all $n \geq 1$ and $t\Delta_-$ is generated by Δ_- and morphisms $\zeta^i : [n+1]_t \rightarrow [n]$ for all $n \geq 1$ and $0 \leq i \leq n$.

The arguments in [10, Proposition C.4] and above show the following.

Proposition 3.30. *$t\Delta_{st}$ satisfy the conditions (1), (2) and (3) in Definition 3.25.*

ACKNOWLEDGEMENTS

The author would like to thank the anonymous referee for carefully reading the paper and for providing valuable suggestions.

REFERENCES

- [1] Kenneth S. Brown, Abstract Homotopy Theory and Generalized Sheaf Cohomology, *Transactions of the American Mathematical Society*, 186 (1973) 419–458
- [2] A. K. Bousfield and E. M. Friedlander, Homotopy theory of Γ -spaces, spectra, and bisimplicial sets, *Geometric applications of homotopy theory* (Proc. Conf., Evanston, Ill., 1977), II Lecture Notes in Math., vol. 658, Springer, Berlin, 1978, pp. 80–130.
- [3] Ruian Chen, Igor Kriz and Ales Pultr, Kan’s combinatorial spectra and their sheaves revisited, *Theory and Applications of Categories*, Vol. 32, 2017, No. 39, pp 1363–1396.
- [4] Philip Hirschhorn, *Model Categories and Their Localizations*, AMS Math. Survey and Monographs Vol 99 (2002)
- [5] Daniel Kan, Semisimplicial spectra, *Illinois J. Math.* Volume 7, Issue 3 (1963), 463–478
- [6] Daniel Kan, George Whitehead, The reduced join of two spectra, *Topology* Vol. 3, Suppl. 2, pp. 239–261. Pergamon Press 1965
- [7] PAUL LESSARD, *Z-CATEGORIES I*, arXiv:2206.13725
- [8] Lacob Lurie, *Higher Topos Theory*, Annals of Mathematics Studies 170, Princeton University Press (2009).

- [9] Naruki Masuda, The algebra of categorical spectra, PhD thesis
- [10] Viktoriya Ozornova and Martina Rovelli, Model structures for (∞, n) -categories on (pre)stratified simplicial sets and prestratified simplicial spaces, *Algebr. Geom. Topol.* 20 (2020), no. 3, 1543–1600. MR 4105558
- [11] Viktoriya Ozornova and Martina Rovelli, Fundamental pushouts of n -complicial sets, *Higher Structures* 6 (2022), no. 1, 403–438. arXiv:2005.05844
- [12] Viktoriya Ozornova, Martina Rovelli, and Dominic Verity, Gray tensor product and saturated N-complicial sets, *Higher Structures*, 7 (2023), no. 1, 1–21.
- [13] Riehl, Emily, Complicial sets, an overture. 2016 MATRIX annals, 49–76, MATRIX Book Ser., 1, Springer, Cham, 2018.
- [14] German Stefanich, Higher Quasicoherent Sheaves, UC Berkeley, 2021
- [15] D. Verity, Complicial sets, characterising the simplicial nerves of strict ω -categories, *Mem. Amer. Math. Soc.*, vol. 905, American Mathematical Society, 2008.
- [16] D. Verity, Weak complicial sets. I. Basic homotopy theory, *Adv. Math.* 219 (2008), no. 4, 1081–1149.
- [17] D. Verity, 2007, Weak complicial sets. II. Nerves of complicial Gray-categories , in Categories in algebra, geometry and mathematical physics , volume 431 of *Contemp. Math.*, 441-467, Amer. Math. Soc., Providence, RI.

(Received December 30, 2024)

(Accepted June 21, 2025)