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WRONSKIAN THEORY REVISITED FROM A LINEAR
ALGEBRAIC AND NULL SPACE VIEWPOINT

TomomMmIicHI HAGIWARA

ABSTRACT. This paper aims at providing a new fundamental frame-
work for the Wronskian theory by paying attention to the null space
of the Wronski matrix. It is first shown that identical vanishing of the
Wronskian leads to two different representations of vector-valued func-
tions that lie in the null space of the Wronski matrix. It is further
shown that they are algebraically linearly dependent, by which we are
immediately led to a key identity in the Wronskian theory, derived only
through very simple linear algebraic arguments. Most fundamental re-
sults on the Wronskian theory available in the literature can thus be
obtained in a quite straightforward fashion with a very clear perspec-
tive, and hence the relevant arguments are believed to be of pedagogical
value, too. Some further issues relevant to the null space viewpoint are
also discussed, where some other results available in the literature are
derived through the null space viewpoint in a somewhat strengthened
form.

1. INTRODUCTION

This paper aims at revisiting the Wronskian theory from what we call a
linear algebraic and null space viewpoint.

The Wronski matrix is well known to be quite important in deciding linear
dependence/independence of given functions of a single real variable. More
precisely, its determinant called the Wronskian is considered, and if it does
not vanish identically on the domain of the given functions, they are ensured
to be linearly independent. Although the converse is not true, in general,
some conditions are known that together with identical vanishing of the
Wronskian ensure their linear dependence. In connection with the studies
on the converse, various properties have been obtained for the Wronskian.
These results can be found, e.g., in [1, 2, 3| in the handbook/textbook level,
in [4, 5, 6] in the recent expository articles level, and in [7, 8, 9] in the
historical pioneering studies.

To the best understanding of the author, however, the literature in the
Wronskian theory deals mostly with the Wronskian rather than the under-
lying Wronski matrix itself. The author is led to this interpretation in the
sense that even when some rank properties of the Wronski or some relevant
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matrices are dealt with, little attention is paid on the vectors in the asso-
ciated null space, and the fundamental tools in developing the Wronskian
theory are essentially those fundamental results in calculus such as Rolle’s
theorem.

This paper aims at providing a new fundamental framework that focuses
precisely on the null space of the Wronski matrix, with which much of the
fundamental tools in the Wronskian theory is shifted to those in linear al-
gebra. The most important feature of the present paper is to show that
identical vanishing of the Wronskian leads to two different representations
of vector-valued functions that, for each fixed value of the real variable, lie
in the null space of the Wronski matrix evaluated at the same value of the
variable. Such vector-valued functions are constructed through the deter-
minants of some submatrices of the Wronski matrix, i.e., some minors. The
mere identical vanishing of the Wronskian, however, does not seem natural
to ensure the existence of two algebraically linearly independent vectors in
the null space. Thus we will be interested in showing algebraic linear depen-
dence of the two representations of vectors, and this will be established only
through linear algebraic arguments. This alignment of the two representa-
tions immediately leads to an alternative identity relevant to the Wronski
matrix whose determinant vanishes identically. The arguments up to this
point are actually quite simple and essentially use only linear algebraic ar-
guments, while the resulting alignment property is crucial in the arguments
of the pioneering study [8] as well as the present paper. Hence, the lin-
ear algebraic and null space viewpoint developed in the present paper can
be interpreted as providing very transparent and systematic treatment for
the core of the Wronskian theory. As such, the arguments leading to the
framework of the present paper is believed to be of pedagogical value, too.

The organization of the present paper is as follows. Section 2 describes
the motivation and standpoint of the present paper after reviewing some
fundamentals of the Wronskian theory. In particular, we state our key the-
orem (Theorem 2.3) to highlight the feature of our null space viewpoint.
What is important, however, is not the mere statement of this theorem
itself, but the approach and viewpoint themselves leading to this key theo-
rem, in which attention is paid precisely on the null space of the Wronski
matrix. Remarks relevant to this important viewpoint are provided and
the feature of the present paper is further discussed in that section. Then,
Section 3 proceeds to the proof of this key theorem after providing some
preliminary fundamental linear algebraic results that play key roles in the
proof. Derivation of two different representations of vector-valued functions
in the null space of the Wronski matrix is one of such fundamental results.
Another crucial result includes a fundamental formula about the derivative
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of the Wronskian. Fundamental results of the Wronskian theory for the case
of two functions are also reviewed at the end of the section. They consti-
tute a basis for completing our framework of the linear algebraic and null
space viewpoint developed in Section 4, which is attained by providing the
proof of the key theorem (Theorem 2.3) on the basis of the aforementioned
fundamental linear algebraic results provided in Section 3. In Section 5,
we further discuss relevant issues in the Wronskian theory. Subsection 5.1
shows that some well-known result for deciding linear dependence of func-
tions can also be obtained immediately through the null space viewpoint,
and further gives a simple helpful observation that follows readily from such
a viewpoint. On the other hand, Subsection 5.2 is relevant to another well-
known result about the Wronskian that is identically zero. More precisely,
the interest there mainly lies in whether the situation could be changed if
one more function is introduced to consider the associated Wronskian. We
first show that the well-known result can also be derived through the null
space approach developed in the present paper. We then suggest relevant
interesting questions to continue our discussions. In the course of such a
study, we further derive some relevant fundamental results in the literature
in a strengthened form through our null space approach. Furthermore, we
discuss some sort of relationship between the null space of the original Wron-
ski matrix and that of a larger Wronski matrix for one more function. We
close our paper in Section 6 by giving some concluding remarks.

2. MOTIVATION AND STANDPOINT OF THE PRESENT PAPER

Let Z C R be an interval and suppose that the function f; : Z — R be
given for ¢ = 1,...,n. For notational simplicity, the set of these functions is
denoted by F,,(Z). Note, however, that the underlying n is fixed throughout
the paper unless stated otherwise, and thus the relevant subscripts and/or
superscripts are sometimes dropped unless some confusion could arise. The
functions in F,,(Z) are said to be linearly independent on Z (or simply, F,,(Z)
is linearly independent) if the identity

n

(2.1) > wifi(t) =0

i=1

onZ with v; € R (i = 1,...,n) implies that v; =0 (i = 1,...,n); otherwise,
they are said to be linearly dependent on Z (or simply, F,(Z) is linearly
dependent). To facilitate the arguments, we sometimes refer to ¢ as time.
When all the functions in F,,(Z) are n— 1 times differentiable on Z, which
is the standing assumption throughout the paper, it is well known that the
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Wronski matrix defined on Z as

S
02) . f1:<t> fz:(t) fn:(t)
A () N 2 Gl () NP Al ()

plays an important role in deciding linear independence of F,,(Z) (see, e.g., [1,

2, 3]), where fi(k) denotes the kth order derivative of f;. More precisely, the
following result is well known for the determinant of the Wronski matrix
W (t) denoted

(2.3) w(t) := det W(t)
and called the Wronski determinant or the Wronskian for F (7).
Proposition 2.1. F(Z) is linearly independent if w(t) Z 0 on Z.

This result obviously motivates the study on the converse assertion, and
very interestingly, quite famous mathematicians such as Hermite and Jordan
have also tackled the issue to assert (even “prove”) that the converse also
holds; the historical side of the advances on the study about the converse
assertion is elaborated in [5], and according to this reference as well as [4]
and [3], it was Peano [7] who pointed out their wrong assertion for the first
time through the following counterexample.

Example 2.1. Suppose that n = 2, T = R, fi1(t) = t? and fao(t) = t|t|.
Then, fl(l)(t) =2t and f2(1)(t) = 2|t|, so that we have

(2.4) W(t) = [ Z ;'ﬁh ] w(t) = det W(t) = 0

on I. However, it is easy to confirm that fi(t) and fa(t) are linearly inde-
pendent on L.

It is surprising that the importance of this counterexample of Peano was
not immediately appreciated, but it definitely played an important role in
advancing the study on some form of a converse assertion of Proposition 2.1;
more precisely, the counterexample suggested the importance of introducing
some additional condition that, together with the condition w(¢) = 0, would
ensure that F(Z) is linearly dependent.

It is Bocher who gave such an additional condition for the first time in [8]
in the form of the following Proposition 2.2, who subsequently gave a further
generalized additional condition in [9], where the latter covers the additional
(analyticity) condition given in Proposition 2.2 as a special case.



WRONSKIAN THEORY REVISITED FROM A NULL SPACE VIEWPOINT 151

Proposition 2.2. If F(Z) consists of analytic functions, it is linearly inde-
pendent if and only if w(t) Z0 on Z.

The present paper is motivated by these studies by Bocher, but aims at
developing much more transparent arguments that give a clear perspective
leading to the following key theorem about a linear algebraic property of
the Wronski matrix W(t).

Theorem 2.3. If the Wronskian for F,(I) satisfies w(t) = 0 on Z, then
there exist a subinterval Zy of I and a nonzero v € R™ such that

(2.5) W(t)v=0
on 1.

Even though the statement itself of the above theorem could be regarded
merely as a restatement of a well-known result (used in the derivation of
Proposition 2.2), we would like to reiterate that we aim at developing a
new linear algebraic viewpoint/framework leading to this assertion through
a clear perspective. In this sense, even though we claimed Theorem 2.3 as a
key theorem of this paper, we would like to stress that the most important
feature of the present paper is a unique and transparent derivation process
of this key theorem, rather than its statement itself, where the process also
clarifies a construction procedure for an associated Zy and wv.

With this in mind, we start from some obvious fact and then proceed
to subsequently state important suggestive remarks so that the standpoint
and feature of the present paper can be clarified further and the significant
viewpoint of the present paper (which we call an algebraic and null space
viewpoint) can be highlighted, totally distinguishing the direction of the
present approach from that in [8] and [9] and other related literature.

(i) First note the obvious relation that (2.1) holds on Z if and only if
(2.5) holds on T for v = [v1,...,v,]T.
(ii-a) Hence, there exists a nonzero v € R™ satisfying (2.5) on Z if and
only if F,(Z) is linearly dependent.
(ii-b) Furthermore, the set of v = [v1, ..., v,]T satisfying (2.1) on Z coin-
cides with that of v satisfying (2.5) on Z.
(ili-a) By (ii-a), Theorem 2.3 can be restated as
Theorem 2.3’ If w(t) =0 on Z for F,,(Z), there exists a
subinterval Zy of Z such that F;,(Zp) is linearly dependent.
and this is nothing but what has already been shown in [9] or [4].
If we were solely interested in the assertion of Theorem 2.3’ itself,
then the arguments in [4] would be the simplest.
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In view of this observation, we continue giving important sugges-
tive remarks on the standpoint and feature of the approach devel-
oped in the present paper. They are related to the fact that the
present approach leads to a useful framework of arguments that can
derive further crucial results from a linear algebraic and null space
viewpoint. We further discuss such an aspect in the following.

The observation (ii-b) would be interesting, since it is obvious that
the viewpoint about (2.5) is related to a “time-invariant null space”
of the Wronski matrix W (¢) (rather than just looking at its determi-
nant w(t)). As such, it would be worth noting that the null space of
the Wronski matrix W (t) for the example of Peano is time-varying
on Z = R; more precisely, what changes in ¢ lies not only in the di-
rection of the null space but also in the dimension of the null space
(which depends on whether ¢ # 0 or t = 0). The present approach
is considered to be closely related to such changes in its ultimate
root, but no existing studies focus on such a (time-invariant) null
space aspect, to the best knowledge of the author. In fact., al-
though [8, 9, 4, 6] refer to Proposition 2.2, where [8] derived it for
the first time while the other three references also gave independent
derivations of the same result, none of them provides a null space
viewpoint as in Theorem 2.3. Through such a linear algebraic and
null space viewpoint developed in the present paper, a number of
existing results can actually be interpreted from a new perspective,
and new arguments and insight are further provided in Section 5.
With respect to the above novel null space viewpoint for the Wronski
matrix W (t) in the present paper, the derivation of Theorem 2.3 will
be carried out, roughly speaking, by finding two different represen-
tations of time-varying vectors in the null space, assuming that W (t)
always has a zero eigenvalue (i.e., w(t) = 0). More precisely, these
two time-varying vectors in the null space are further shown to be
algebraically linearly dependent (i.e., always have the same direction
for each t € Z), and this in turn leads to the consequence that each
of the two time-varying vector representations in the null space is ac-
tually a constant vector in R™ multiplied by a scalar-valued function
on some subinterval Zy of 7.

The arguments of the present paper sketched briefly in the above
(iv) have a somewhat close connection with the arguments of [§]
(and [9]) in the treatment of determinants, but are entirely different
from the arguments available in the literature, because the present
paper develops a more sophisticated linear algebraic and null space
viewpoint for transparent and systematic treatment. Simply put,
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the present paper aims at developing a linear algebraic approach to
the Wronskian theory instead of the conventional calculus approach.
This is particularly true for the arguments up to Subsection 5.1, in
the sense that Rolle’s theorem playing a crucial role in the existing
studies is not used (until the latter part of Subsection 5.2, which is
devoted to more advanced issues in the Wronskian motivated by the
null space viewpoint).

Having stated the above important remarks on the standpoint and novel
feature of the arguments and approach in the present paper, which we hope
is interesting enough to motivate the arguments in the following sections, we
close this section by confirming a significant implication of Theorem 2.3; the
following corollary is its immediate consequence if we note (ii-a) above and
the identity theorem on analytic functions (which implies that each analytic
function in W (t)v defined on Z is identically zero on Zj if and only if it is
on7Z).

Corollary 2.4. Suppose that F(I) consists of analytic functions on L. If
w(t) =0 on I, then there exists a nonzero v € R™ such that (2.5) holds on
Z. In other words, F(I) is linearly dependent.

Furthermore, the contrapositive restatement of this corollary together
with Proposition 2.1 immediately leads to the aforementioned pioneering
result of Bocher, i.e., Proposition 2.2 stated earlier.

3. PRELIMINARIES

3.1. Another Motivating Theorem. Since the theory of the Wronskian
is trivial when n = 1, this paper assumes, in principle, that n > 2. The
purpose of this subsection is to introduce another key motivating theorem
given shortly (see Theorem 3.1) that motivates the overall arguments of this
paper; in particular, the relevant arguments to be motivated by Theorem 3.1
eventually lead to a transparent and systematic derivation process of our
key theorem, i.e., Theorem 2.3. This second key theorem introduced in
this section, which can be interpreted as lying behind the first key theorem,
implies that if the Wronskian satisfies w(t) = 0 on Z, then the Wronski
matrix W (t) has two different representations of time-varying vectors always
contained in its null space. More precisely, each of the two vectors evaluated
at t = tp € Z is contained in the null space of the singular matrix W (to).

To precisely state the second key theorem, however, we begin by intro-
ducing relevant notions and terms.

The arguments of this paper are based on the repeated treatment of sub-
matrices and their determinants (or minors) of a given matrix. Regarding
such a situation, no established fitted terms exist, to the best knowledge
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of the author, that are convenient and non-confusing enough for the devel-
opment of the arguments in this paper. For example, when we refer to a
minor, it could be confusing with a cofactor (which could differ from each
other only in their signs). Furthermore, when the (7,j) minor is referred
to, how to call the associated submatrix (whose determinant gives the (i, j)
minor) is not well-established. We would like to have some fitted term to
call it, where it is desirable that the term is close enough to the associated
term for calling its determinant so that their mutual connection is clearly
and strongly suggested by the proximity itself of their terms. With this in
mind, we introduce the following terms for convenience.

Definition 1. For X = (z;;) € R™*" with n > 2, the submatrix obtained by
removing the ith row and jth column of X is called the remainder matrix of
X with respect to x;; (or the (4, ) remainder matrix of X) and denoted by
X4 ¢ R=1Dx(=1) " The determinant of X*7 is called the (i, j) remainder
determinant of X and denoted by /. For p;; := %/, the matrix R(X) :=
(pij) € R™™ is called the remainder determinant matrix of X.

With this notation, we define for each ¢ = 1,...,n the remainder matrix
of the Wronski matrix W (t) with respect to fi(n_l)(t), which we denote by
(3.1) M;(t) == W)™, i=1,...,n

Note that M;(t) is nothing but the Wronski matrix for the set of n — 1
functions F,,(Z)\{fi}. Furthermore, we also define the associated remainder
determinant (or the Wronskian of the corresponding set of n — 1 functions)
denoted by

(3.2) m;(t) == detMi(t), i1=1,...,n
together with
(3.3) o= (—=D)" i=1,...,n

It readily follows from the expansion of the determinant of W (t) along its
last row that

(3.4) w(t) = o fD (Oma () + -+ o SO ()ma (D)

We are in a position to state the following theorem, whose proof will be
given in Subsection 3.3.

Theorem 3.1. Letn > 2 and my, : Z — R"™ be

(3.5) mo(t) = [ avmi(t) ... ouma(t) "

and let m! be its derivative on Z. If w(t) =0 on Z, it follows on T that
(3.6) W (t)my(t) =0
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(3.7) W(t)mL(t) =0

g

Remark 1. Note that the identity corresponding to the last entry in (3.6)
is nothing but (3.4), since w(t) = 0 by the assumption. Furthermore, (3.7)
except for its last entry, together with (3.6) has been used in the pioneering
studies [8, 9]. However, no attention has been paid on the last entry of (3.7)!.
Roughly speaking, (3.6) and (3.7) can be interpreted as showing that when
w(t) = 0, the Wronski matrix W (¢) has the “two time-varying eigenvectors”
me(t) and m/ (t) corresponding to the zero eigenvalue of W (t). However, it
is unlikely that T (¢) has two such algebraically linearly independent vectors
simply because w(t) = 0, and thus we will be motivated to show that they
are actually algebraically linearly dependent (i.e., have the same direction for
each t € 7). What plays the key role in the overall arguments in the present
paper is only the relevant arguments for establishing this algebraic alignment
assertion as well as (3.6). In other words, (3.7) itself will not actually be used
directly in the subsequent arguments once the above theorem is established
and the above alignment assertion is also suggested and then established.

Remark 2. As another important feature of the present paper, it could be
seen from the proof of this theorem given later that our derivation of (3.6)
and (the first n — 1 identities of) (3.7) is more straightforward than that
in [8]. For the relevance with the advanced arguments in Section 5, we
remark just in case that the first n — 1 identities in (3.6) as well as the n —1
identities except the last but one in (3.7) hold even without the assumption
w(t) = 0. Furthermore, the remaining identities in (3.6) and (3.7) fail if
w(t) # 0, but still the relevant relations

(3.8) W (to)mo(to) =0, W(to)m, (to) =0

hold for every to such that w(tp) = 0, as seen from the proof. This plays an
important role in the observation in Remark 6 in Subsection 5.2.

Remark 3. A further crucial feature of the present paper can be explained
as follows. In the arguments of the pioneering study [8], the key issue is to
derive on Z the relation

(3.9) mp(t)mi(t) —mi(t)m, (#) =0, i=1,...,n—1

)

(which we also derive in the following section; see Lemma 4.2). The deriva-
tion of this key relation in the arguments of [8], however, is quite involved
and actually rather hard to follow. In contrast, our arguments can be inter-
preted as replacing its derivation with proving that the two vectors m,(t)

IThe reason seems to be either of the following: (i) justifying this last identity was
thought to require n times differentiability of the functions in F,,(Z); (ii) this identity was
thought to be useless.
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and m/ (t) are algebraically linearly dependent for each t € Z. More pre-
cisely, an important property of the derivative m/(t) of the (n,) remainder
determinant m;(t) of the Wronski matrix W (t) is first shown: m/(¢) coincides
with another (i.e., (n — 1,4)) remainder determinant of W (¢). In addition,
another important property between the singularity of a square matrix X
and a rank property of the associated remainder determinant matrix R(X)
consisting of the remainder determinants of X is shown. As it turns out,
combining these properties immediately leads to the key relation in the pi-
oneering study [8], i.e., (3.9), in a quite elementary and transparent fashion
in this paper. These features are the most significant advantages of the
arguments of this paper. Further advanced issues are studied in Section 5
along the line of such features.

3.2. Preliminary Results on Determinants and Remainder Deter-
minant Matrices. This subsection is devoted to providing some funda-
mental results used in the arguments of this paper. Eq. (3.11) in Lemma 3.2
below plays the most crucial role throughout the paper (for example, in the
derivation of (3.7) and the proof of Lemma 4.1 given later, which are crucial
results in this paper), while (3.10) and Lemma 3.3 also play a crucial role
in the treatment of remainder determinant matrices.

Lemma 3.2. Let G : T — R™! and G(t) =: [gl(t)T,...,gl(t)T}T, where
g,(t) = X% cig, (1) with ¢; € R (i = 1,...,m). Then, g(t) = det G(t)
satisfies the following.

g,,(®)
(3.10) g(t) = i ; det 92:@)
- glit)
g, (t) g,(t) g,(t)
(3.11)  g'(t) = det 92:@) + det g;ft) + o+ det *2@
g,(1 g,() g(t)

Proof. The assertions follow immediately from the definition of the deter-
minant

l
(3.12) det G(t) = Y _sgn(m) [ [ grri(®)
T k=1
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where g;;(t) denotes the (7, j) entry of G(t), while 7 denotes a permutation
on the set {1,... 1}, sgn(w) denotes its sign, and the summation is taken
over the set of all permutations. O

Lemma 3.3. Let X € R™™ "™ (n > 2) and consider its remainder determinant
matriz R(X) € R"™™.  Let Ry be a submatriz of R(X) consisting of k
different rows of R(X), where 2 < k <mn. Ifdet X =0, then Ry always fails
to be of full row rank. Conversely, if det X # 0, then R(X) is nonsingular.

Proof. For the first assertion, it suffices to give the proof for K = 2, and
without loss of generality, we may assume that the two rows taken from
R(X) are its first and second rows, because singularity of X is invariant
under the permutations of the rows of X. Let z; (i = 1,...,n) be the
ith row of X. If the n — 1 rows z; (i = 2,...,n) are linearly dependent,
then the first row of R(X) (and thus Ry) is zero. Hence, Ry fails to be of
full row rank. Otherwise if these n — 1 rows are linearly independent, the
assumption det X = 0 implies that the first row z; can be represented as a
linear combination of the remaining n — 1 rows, i.e.,

n
(3.13) T, = Zci%
=2

with ¢; € R (i = 2,...,n). Hence, it readily follows from (3.10) that
(3.14) ro(X) = cory (X)

where r,(X) denotes the ith row of R(X). Hence, Ry (consisting of the first
and second rows of R(X)) fails to be of full row rank.

For the second assertion, note that DR(X)? D = adj(X) by the definitions
of the remainder determinant matrix R(X) and the adjugate matrix adj(X)
for X, where D = diag[l,—1,1,—1,...] € R™™. Since det X # 0 implies
that adj(X) = (det X)X ! is nonsingular, so is R(X). O

Remark 4. The above lemma is closely related to a special case of the results
n [10], but the above proof is much more straightforward.

We also give the following result just for reference, which is somewhat
relevant to our subsequent arguments.

Lemma 3.4. Let X € R™*" (n > 2) and suppose that det X = 0. Then, the
remainder determinant matriz R(X) is nonzero if and only if dim(ker(X)) =
1.

Proof. Suppose that dim(ker(X)) > 2. Then, X has n — 2 linearly inde-
pendent rows at most. Hence, whatever n — 1 rows are taken from X, they
are linearly dependent, and thus the matrix R(X) becomes zero. This com-
pletes the necessity proof. Conversely, if dim(ker(X)) = 1, then there exists
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1 such that X with the ith row removed leads to a matrix with full row rank.
Hence, there exists j such that the remainder determinant z*’ is nonzero
for some j. This completes the sufficiency proof. O

3.3. Proof of Theorem 3.1. This subsection is devoted to the proof of
Theorem 3.1, our second key theorem, where we denote the Wronski matrix
W (t) as follows:

£,
(3.15) W(t) = :
in—l (t)

By the hypothesis of Theorem 3.1, we have det W (¢) = 0 on Z. Letting
h(t) := f__,(t) and expanding this determinant along the last row of W(t),

i.e., h(t), we readily see that

(3.16) orthi(t)mi(t) + -+ + ophn(t)my(t) =0

where h(t) =: [h1(t),..., hn(t)]; an equivalent alternative representation is
(3.17) h(tyma (1) =0

We next take h(t) = f, (t) and consider W(t) with the last row replaced by
h(t), which is obviously singular for each ¢ and every k = 0, ...,n—2 because
there are two identical rows. Hence, expanding its determinant along the
last row leads to (3.17) also with h(t) = f, (¢) for k =0,...,n — 2. Hence,
we have (3.6) as claimed.

Next, we first consider how m/(t) can be represented. Since m;(t) is the
determinant of the Wronski matrix for F,,(Z)\{ fi}, we can apply Lemma 3.2
to describe m/(t), where only one term can be nonzero in (3.11) (which
is actually the last term) because the determinant of a matrix with two
identical rows is zero (the same observation is found also in [9]). That is, if
G(t) is the Wronski matrix given by

Y, (t)
(3.18) G(t) = :
%)
where v, (t) is the kth order derivative of vy (t) for k =1,...,1—1, then
Yo (t)
(3.19) (det G(t)) = det :
7,50

f)

2
7,(
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With this in mind, let us take h(¢) := f (t) and consider expanding
det W(t) (= 0) along the (n — 1)st row of W(t) (i.e., h(t)). Then, we
immediately see that

(3.20) h(t)m. () =0

This is true also for h(t) = f,(t) (k=0,....,n—3) and h(t) = f__ (¢); this
can easily be seen by considering the expansion of the determinant of W (t)

with the (n — 1)st row replaced by h(t), which is nonsingular as a matrix
with two identical rows. Hence, we have (3.7) as claimed.

3.4. Preliminary Basic Results for n = 2. To facilitate the following ar-
guments by laying key preliminaries, this subsection is devoted to reviewing
some basic results of the Wronskian theory for the case n = 2 available in
the literature. The following result in [8] for n = 2 plays a crucial role also
in the present paper, which follows readily from (d/dt)(fa/f1) = w(t)/f?.

Lemma 3.5. Let n =2 and suppose that f1(t) #0, Vt € Z. If w(t) =0 on
Z, then there exists co € R such that fo(t) = cof1(t), Vt € .

The following result is crucial in the arguments of [9] and [4], which is
also the case in the present paper. The proof is given just for the sake of
making the paper self-contained (by which the assertion of Theorem 2.3 for
n = 2 is implied).

Lemma 3.6. Let n = 2. If w(t) =0 on Z, then there exists a subinterval
Ty of T such that Fo(Zy) is linearly dependent. In particular, if fi(t) £ 0 on
I, then one such Iy is any subinterval of T on which fi1 never vanishes; in
that case, there exists co € R such that fa(t) = cof1(t), Vt € Zy. Otherwise,
if f1(t) =0, then we can take Zyp = T.

Proof. When f1(t) = 0 on Z, the assertion is obvious since 1- f1(¢)+0- fao(t) =
0 on Z, while if fi(¢) # 0 on Z, the assertion is an immediate consequence
of the continuity of fi(t) together with Lemma 3.5. O

4. PROOF OF THEOREM 2.3

This section is devoted to showing in what a transparent and systematic
fashion, the proof of the first key theorem (Theorem 2.3) can proceed on the
basis of Theorem 3.1 just established. The most essential point for the proof
is the derivation of the identity (3.9), as is the case with the arguments of
the pioneering study [8] in the proof of Proposition 2.2. The derivation in [8]
for the target identity is based on the assertion that taking an appropriate
linear combination of the n — 1 identities in (3.7) except the last one leads
to the desired result. Explicit coefficients for the linear combination are also
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stated in [8], which we could restate as follows in the terms introduced in
the present paper:

Consider the right-bottom entry fT(Ln_l)(t) of the Wronski
matrix W (t) and the associated remainder matrix M,(t).
Then, the set of the coefficients should be taken as the ith
row of its cofactor matrix (and thus each coefficient is equal
to the remainder determinant with respect to an entry in the
ith row of the remainder matrix M, (t), except for its sign).

Unfortunately, however, no detailed reason is stated why the linear combi-
nation with the coeflicients constructed in this fashion indeed leads to the
ith target identity of (3.9). In other words, what should be quite informative
arguments on the explicit algebraic structure behind the construction of the
coefficients and derivation of the target identity is totally missing very unfor-
tunately. Thus, it is rather hard to understand the involved tedious calcula-
tions leading to the target identity. To the best understanding of the author,
this is true even if we note that the relevant n—1 identities in (3.7) except the
last one (whose linear combination is to be taken) may be restated with the
aid of M,,(t) (but also with another (n — 1)-dimensional vector-valued func-
tion), which is once again the Wronski matrix for F,_1(Z) = Fn(Z) \ {fn},
so that the rationale behind the construction of the coefficients may be
somewhat relevant to our preceding simple arguments in Section 3.3.

Instead, the present paper takes a completely different approach with the
two vectors m, (t) and m/ (t). More precisely, we aim at a quite straightfor-
ward derivation of (3.9) in a generalized form by showing that m,(t) and
m, (t) are algebraically linearly dependent vectors for each ¢t € Z. We begin
with the following result to this end.

Lemma 4.1. The derivative m}(t) of m;(t), the determinant of the Wronski
matriz M;(t) for Fn(Z)\ {fi}, equals the the determinant of M;(t) with the
last row replaced by its derivative. In other words,

(4.1) mi(t) =det W(t)" b, i=1,...,n
Proof. The proof is quite straightforward since it proceeds essentially in the

same fashion as the proof of the fact that the derivative of the Wronskian
g(t) = det G(t) is given by the right-hand side of (3.19). O

On the other hand, recall that m;(t) = det M;(t) = det W (¢)™*. This to-
gether with (4.1) leads to the following result, which is a generalized version
of the key identity (3.9).

Lemma 4.2. If w(t) =0 on Z, then it also follows on T that
(4.2) m(t)ymi(t) —mi(t)m5(t) =0, i,7=1,...,n

i
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Proof. 1t follows from the preceding observation and Lemma 4.1 that the
left-hand side of (4.2) can be interpreted as the determinant of a 2 x 2 sub-
matrix contained in the last two rows of the remainder determinant matrix
R(W(t)). Hence, the assertion follows readily from Lemma 3.3. O

We remark just in case that since (4.2) is equivalent to (o;m;(t))(oim,(t)) —
(oim;(t))(ojm;(t)) = 0, it is easy to see the above proof is based on an
equivalent interpretation that the two time-varying vectors m(t) and m/ (¢)
are algebraically linearly dependent for each t € Z.

If we note that the left-hand side of (4.2) is nothing but the Wronskian
for m;(t) and m;(t), the following result is an immediate consequence of
Lemma 3.6.

Lemma 4.3. Suppose that the Wronskian for F,(Z) satisfies w(t) = 0 on
Z. Once we fixi=1,...,n, there exists for each j = 1,...,n a subinterval
Ty of T such that the two functions m;(t) and m;(t) are linearly dependent
on Ly. In particular, if m;(t) £ 0 on Z, then one such Ly is a subinterval
of T on which m;(t) never vanishes; in that case, m;(t) is a scalar constant
multiple of m;(t) on the subinterval for j = 1,...,n. Otherwise (i.e., if
m;(t) =0 on Z), we can take Io = T.

Note that each m;(t) is continuous by the standing assumption on F,,(Z).
Hence, assuming that w(t) = 0, it follows from the above lemma that unless
m;(t) =0onZ for all i = 1,...,n (or equivalently, my(¢) = 0 on Z, so that
(3.6) and (3.7) are trivial), there exists i and Zy such that m;(t) = c¢;m;(t)
with some ¢; € R on Zy for j = 1,...,n. This obviously implies that
me(t) = m;(t)v on Iy for some nonzero v € R". Here, we may assume
without loss of generality that Zy is such that m;(t) never vanishes on it
(see the above lemma), and thus we are immediately led to the assertion
of Theorem 2.3 by (3.6) in this specific case (i.e., when m;(t) # 0 on Z for
some 7).

For convenience in later reference to this fact, we state this result as fol-
lows, which is the first one of the two very important key results in the proof
of Theorem 2.3 as well as our further arguments in the following section.

Corollary 4.4. Let n > 2. Suppose that the Wronskian for F,(I) satisfies
w(t) = 0 on Z, while m;(t) # 0 on I for some i = 1,...,n. Then, there
exist a subinterval Iy of T and a nonzero v € R™ such that (2.5) holds (i.e.,
W(t)v = 0) on Zy, where any interval on which at least one of m; (i =
1,...,n) never vanishes can be taken as such Iy.

Remark 5. Actually, the associated subinterval Zy on which m;(t) never van-
ishes is virtually independent of which ¢ to choose, in the sense that as a
chosen m;(t) tends to zero, all the remaining m;(t) also tend to zero (by
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the preceding arguments given below Lemma 4.3). Furthermore, the corre-
sponding nonzero vector v on Zy can be constructed explicitly, in principle
(i.e., if we compute all m;(¢) for i = 1,...,n and note their zeros and mutual
ratios). Hence, if the zero set of m;(t) does not have an accumulating point
in the closure of Z, a possible direction for confirming linear dependence of
F(Z) given the information w(t) = 0 could be checking that v determined on
the subinterval Zy defined by taking two consecutive points in the zero set
of mi(t), i =1,...,n (and the edges of Z) does not depend on Zy. A similar
idea can be found, e.g., in [9], but not in the null space viewpoint as in (2.5)
but just through the identity (2.1). In this connection, it may be interesting
to study the dimension of the linear space consisting of v satisfying (2.5),
because if the dimension is larger than 1, it may be easier for a nonzero v
to exist such that (2.5) holds on both (small) subintervals to the left as well
as to the right of a zero of m;(t). Lemma 3.4 is somewhat relevant but is
too weak to address such a direction, unfortunately.

If we recall the preceding arguments, what remains about the proof of
Theorem 2.3 is the treatment of the case when m;(t) = 0 on Z for i =
1,...,n. Such a case might be more or less relevant to the situation where
two or more linearly independent vectors v satisfying the identity (2.5) exist,
but this is not the case, in general; Lemma 3.4 cannot be applied to conclude
such a property, while generalizing this lemma to a direction convenient to
the situation here does not seem straightforward. In fact, a sort of coun-
terexample can be constructed without difficulties. Hence, this case is also
handled by proceeding to explicitly construct a nonzero v € R™ satisfying
(2.5). In this connection, since m;(t), which is assumed to be identically
zero on Z, is nothing but the Wronskian for the n —1 functions F,,(Z) \ { fi},
we can see that dealing with this case could be relevant to some recursive
treatment with respect to the underlying n.

To facilitate such arguments in a non-confusing fashion, we first introduce
the following notation.

Definition 2. Let n and F,(Z) satisfying the standing assumption for n be
given. For each 1 < k < n, the Wronski matrix for Fy(Z), the set of the first
k functions in F,(Z), is denoted by Wl (¢), and its determinant is denoted
by w¥l(#). Furthermore, the remainder determinant of W¥l(#) with respect
to its right-bottom entry is denoted by m¥l(¢) if k > 2. Obviously, m!*(¢) =
det W= (t) = wlk=1(t), and for k = n, we have W () = W (t), wi™(t) =
w(t) and m™(t) = m,,(t) = det M, (t) = det WI—1(t) = wi=1(2).

With this notation, we indeed prove the following lemma by mathematical
induction on k; this is the second one of the two very important key results in
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the proof of Theorem 2.3; note that the assertion is valid without assuming
w(t) = wl"(t) =0 on T.

Lemma 4.5. Suppose that m*(t) = 0 on T for some 2 < k < n. Then,
there exists a nonzero v!¥! € R¥ such that W (t)vl¥] = 0 on some subinterval

Z(_) OfI

Proof. The assertion holds for k = 2 with Zy = Z and v/*l = [1,0]7, because
the assumption on m!*(¢) implies f1(t) =0 on Z in that case.

Suppose that the assertion holds for k = ky > 2, and consider the case
with k = kg + 1. Thus, we assume that mFo+1 (= wlkl(t)) =0 on 7 as a
hypothesis of induction.

(i) The case with m[kl(t) =0 on T

Since the assertion holds for k = kg, there exists a nonzero vkl e Rko
such that Wkol(¢)vlk] = 0 on some subinterval Zy of Z. Since the (first k)
functions in Fy,41(Z) are ko times differentiable by the standing assump-
tion, the left-hand side is differentiable and we have (Wkol(t))"v*ol = 0 on
To. These two identities imply that (Wt (¢).)wlkol = 0 on Ty, where
J denotes the identity matrix on R(FotD)x(ko+1) with the last column re-
moved. Hence, Wkot1(¢)yplko+1l = 0 on 7, where vlkot1] .= Jjylkol ¢ Ro+1
is nonzero.

(ii) The case with mlFl(t) # 0 on T

Note that m[fo*1(t) = 0 on Z by the hypothesis of induction, which
is equivalent to wl*l(t) = 0 on Z. Hence, by the continuity of m!*ol(t),
Corollary 4.4 leads immediately to the existence of a subinterval Zy C Z and
a nonzero vl € R¥o such that Wkol(t)vlFol = 0 on Zy. Then, vkt .=
JulFol is nonzero and satisfies W kot (#)plko+1l = 0 on Zy as in (i).

This completes the proof of this lemma by induction. ]

To summarize, we are finally in a position to finish the proof of Theo-
rem 2.3. Indeed, the assertion follows immediately from the above lemma
applied to k = n.

5. FURTHER RELEVANT RESULTS

This section is devoted to showing that the framework of the arguments
and the results derived in the preceding sections are helpful in straightfor-
ward derivations of some relevant results on the Wronskian available in the
literature, some times in a strengthened fashion. Note that even though
some of the following arguments might look straightforward if Theorem 2.3
is used, they are based instead on the framework itself of the arguments
used in its proof and the results derived in the preceding sections. This is
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because we are basically and eventually interested in the properties on the
original interval Z rather than those valid only on some subinterval Zy of Z.

5.1. Showing Linear Dependence via Decreasing the Number of
Functions. We begin by showing the following result about deciding linear
dependence of F(Z) through the treatment of decreasing the number of
functions. This result is an immediate consequence of Corollary 4.4, and
is nothing but Theorem II of [9], Theorem 2 of [4] and Theorem 3.8 of [2]
stated with the notation in Definition 2.

Corollary 5.1. Letn > 2, and suppose that the Wronskian w!™ (t) for F,,(T)
satisfies w™(t) = 0 on I, while the Wronskian w™=(t) for Fn,_1(T) =
Fo(D)\{fn} never vanishes on . Then, there exists a nonzero v € R™ such
that (2.5) holds on T and thus F,(Z) is linearly dependent.

Note that the nonzero v in the above Corollary can be constructed, in
principle (see Remark 5).

It would be worth stating the following observation: suppose that w!™ (t) =
0 on Z but w*~1(t) vanishes somewhere on Z. Then, one might consider
reordering of the functions in F,,(Z), so that the above corollary applied
to the reordered functions could conclude that F,,(Z) is linearly dependent.
However, such a situation can never occur unless w!»~1(t) = 0 on Z in the
original order of the n functions; this can readily be seen by the arguments
below Lemma 4.3 or Remark 5. Some relevant observation can be found
also in [9] and [11].

5.2. Analysis on the Subinterval 7; and Increasing the Number
of Functions. We are finally interested in deriving the following theorem
(which is nothing but Theorem VIII of [9]) in the framework of the present
paper, as well as discussing relevant informative results, which are related
to the treatment of increasing the number of functions.

Theorem 5.2. Let n > 1 and suppose that the Wronskian wi™(t) (=
mTU@)) for Fo(Z) = Frns1(Z) \ {fns1} satisfies w™(t) = 0 on I. If
the nth order derivative of each function in Fpni1(Z) is continuous on I,
then the Wronskian for Fp.1(Z) satisfies w1 (t) =0 on T.

Some of the relevant results given later correspond to existing results in
the literature (e.g., Lemma II of [9]) in a strengthened form, while others
are new through our null space approach. What plays a crucial role in such
a direction of study is to clarify whether the subinterval Zy in Theorem 2.3,
or more importantly in Corollary 4.4 and Lemma 4.5, can be taken so that
it includes a given arbitrary tg € Z. To tackle such an issue, we introduce
the following definition with respect to the zero set Z¥ of mFl(t) for k =
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2,...,n+ 1, where m["t1(¢) is interpreted to mean w!”(¢) (even when we
are actually interested only in F,,(Z)). Note that when m™*1(t) (= wl"(¢))
is referred to in this subsection, we do not necessarily assume w!™(t) = 0.
However, we refer to m["t1(¢) in a substantial fashion (i.e., we use the
relevant property arising from the treatment of Z[+1) only when m!["+1(¢)
is continuous on Z so that I;[Z;r Vo1 \ Z[**1] in the following definition is
ensured to be an open set. It is indeed open (as an empty set) when w!™(t) =
0 is actually assumed on Z. Alternatively, it is an open set also when we are
actually interested in F,,4+1(Z) satisfying the standing assumption, rather

than merely in F,(Z). Note that w!»*1(t) is not continuous, in general,
however.

Definition 3. For each 2 < k < n+1, define the zero set of m!¥l(t) denoted
by

(5.1) zZH .= {7 e Z|mF(r) = 0}

Then, four mutually disjoint subsets of Z such that Z = I;[Z]) UIE;]&O UIELO U
Iﬂ% and ZK = IE;]AO U IE]:O U I!é are defined as follows.

(a) Iy = {r € I |7 ¢ ZW} (=7 2W)

(b-1) IE;]AO := {7 € 7|3 an interval Z, such that Z, N Z¥ = {7}}
(= the set of the isolated points of Z[¥])
(

b-2) IE]:O ={reZ|rezlW r¢ Igéo, A an interval Z, such that
7€ Z, and m¥(t) =0 on Z,}

(= the set of the accumulation points of Z¥!

whose every neighborhood
contains a point in I;[Z]))

(c) Ig(]) := {r € 7|3 an interval Z, such that 7 € Z, and m*(t) = 0 on Z,}

Under this definition, the following lemma relevant to the classification

into the four categories in Definition 3 is an immediate consequence of Corol-
lary 4.4 (since wll (t) = wit (t)).
Lemma 5.3. Suppose that ty € IEH}, i.e., mFH() (= wlH(t) = 0 in
the neighborhood of to € I for some 2 < k < n. Regarding the relation
between to and the pair of mM(t) (= det WF=U(¢)) and W (t), we have
the following:

(a) If ty € I%, then there exist an interval Iy satisfying to € Iy and a
nonzero vkl € R* such that W (t)v!* = 0 on .
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(b-1) If tg € Iﬁio, then there exist an interval Iy satisfying to & Zo and
to € Zo and a nonzero v!¥! € R¥ such that W (t)vl = 0 on Ty,
where Iy denotes the closure of Iy.

(b-2) Ifty € I@:o; then for every € > 0, there exist an interval Iy satis-
fying 1(Zo, to) < € and a nonzero (but Ty-dependent) v!¥) € R* such
that W (t)vl¥] = 0 on Ty, where

(5.2) l(Zo, to) = sup |1 — to|

T€1o
Alternatively, if to € 1[52(]), i.e., mPl(t) (= wl(t)) = 0 in the neighborhood
Ty of to € I, then vV :=1 satisfies Wl (t)v[l] =0 on Ip.

Note that if we are led to ¢y € I!(]) (which corresponds to category (c) of

the classification in Definition 3) when 2 < k < n is such that ¢y € Iggr 1
in the above lemma, then we can either just decrement k by 1 to apply the
same lemma or apply the last part of the lemma.

More importantly, further note that Wl (¢)v* = 0 in the statement of
the above lemma can be differentiated to have WM (t)vl"” = 0 on Zy with
ol = [T 0T € R™ \ {0} (without assuming the continuity of the
(n — 1)st order derivative of each function in F,(Z)). Furthermore, if each
function in Fj(Z) is actually [ times differentiable for [ > n, then we readily
see on Zg that

(5.3) FE @ =0
for
M)
(5.4) =
g0

where igk] (t) denotes the jth order derivative of f, ([)k} (t) defined as the first row

of W () (see (3.15) for a relevant notation). If we apply this observation to
the case k = n and category (a) in the above lemma, i.e., to ty € I%, then
the corresponding consequence immediately leads to the assertion of Lemma
IT in [9], i.e., the rank deficiency property of Fl[n] (to) when w[™(t) = 0 on
7 and tg € I;[Z]); more strongly, we see that if tg € I;[Z]), there exists Zy such

that tg € Zp and Fl[n} (t)v[”] = 0 on Zp for the aforementioned v[™.

We can readily generalize the arguments to cover category (b-1) as well,

n;]ﬁo’ because of the continuity of f O(t)v[”] on Zy, where

the continuity immediately follows from that of the functions in F,,(Z). More

i.e., also when tg € 7t
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precisely (in the case of k = n), the identity f O(t)v["} = 0 on Zy means the
same identity also on Zo, which can be differentiated there up to [ times to

have Fl[n] (t)v[”} = 0 on Zg, where ty € Zg by tg € IE;]AO'

To summarize the arguments up to this point, we see that these two
categories correspond to the case where Fl[n] (t)v!" = 0 holds on an interval
containing a given arbitrary tg € Z.

Although this summary does not cover category (b-2), i.e., the case of

ty € I@:O, the relevant part of the above lemma implies that the interval
Zp in Theorem 2.3 and Corollary 4.4 can be chosen arbitrarily close to the
given arbitrary ty € E]:o in the sense of 1(Zp,tg). With this observation
taken into account, we are now in a suitable position to give the proof of

Theorem 5.2.

Proof of Theorem 5.2. When we take an arbitrary tg € Z, it follows from
Lemma 5.3 together with the associated above observations that except for
the situation

(%) to is such that ¢y € Ig(]) fork=x+1,....,n+1and ¢y € IE]:O for
some 2 < k < n,
we have shown the existence of a subinterval Zy C Z containing tg and a
nonzero v € R” such that F." (t)vl"l = 0.on Zy. This implies w1 () = 0
because W () v"*t1) = 0 on Z for v+t = [(w")T 0]7 € R™H1\ {0},
and this is nothing but the assertion of this theorem (when ty is not in the
above situation (x)).

In the remaining situation (%), on the other hand, the same observations
(above this proof) imply that for any € > 0, there exists an interval Zy such
that 1(Zy,%9) < ¢ and a nonzero (but Zy-dependent) vl € R” satisfying
FM ()l = 0 on Ty. Since this implies W+ (¢)ol"1] = 0 on Z, for the
aforementioned v["*1 ¢ R*1\ {0}, we have w"t(t) = 0 on Zy. Since
e > 0 is arbitrary and w(+1] (t) is continuous on Z by the assumption of this
theorem, we are led to w1 (ty) = 0. This completes the proof. O

Even though the established theorem (i.e., Theorem 5.2) asserts that
wlnt] (t) = 0 on Z, however, its proof does not provide any information
about a to-dependent nonzero v["*1 € R"*! such that W+ (¢y)ul*+1 =0,
when ¢ is in the situation (). It would thus be an interesting topic to
study how we could somehow continue our arguments toward the direction
of clarifying such v[*+1],

As a preliminary to a lemma relevant to such an issue (see Lemma 5.5
below), let us first consider the following lemma about the case when tg

is not in the situation (x). It corresponds to an alternative summary of
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the observations given below Lemma 5.3 (applied to a general k)2, where
a nonzero v"l € R* on 7 (with x defined essentially by the process with
which it is determined that ty is not in the situation (x)) can be constructed
explicitly, in principle, for the same reason as stated in Remark 5.

Lemma 5.4. Given ty € Z, suppose that either of the following conditions
holds:
(i) to € I[;OJFH and ty € I;[:(]) UIE;LO for some 2 < Kk < n.

(i) to € Ig(]) for k =2.

Then, there exist a subinterval Iy of I and a nonzero vl € R% such that
to € Ty and WH ()W = 0 (and thus W ()ol ] = 0 for o) =
(YT 0T € R*\ {0}) on To.

The reason why we state the above lemma is that we should highlight the

difficulty associated with category (b-2) in Lemma 5.3 (i.e., when ¢y € Ig(;r Y

and ty € I[—_K]:o as in the situation (x)). In this case, we encounter the
difficulty that we cannot take a subinterval Zy such that ty € Zy, and it is
not clear how the corresponding v!®! # 0 on Zy changes as Ty is chosen closer
to to, i.e., as ¢ tends to oo even in the following obvious result corresponding
to a special case of category (b-2).

Lemma 5.5. Suppose that tg € IEOH] and tg € I[__F"]ZO for some 2 <k < n.
Further suppose that ty € I@ZO is an isolated point ofIE]ZOUIg]J (i.e., the set
of the accumulation points of ZI¥1), and let the sequence of 7; (i =0,1,...)
be either of the following:

(i) the unique decreasing sequence tending to to such that the set {7;}32,
equals Z% 0 (to, 0);

(i1) the unique increasing sequence tending to to such that the set {r;}32,
equals Z1% N [10, o).

The intervals Z,, (i = 0,1,...) are then defined as (Ti+1,7;) and (7;, Ti+1)
for (i) and (ii), respectively. Then, for each i = 0,1,..., there exists a
nonzero vzw e R* such that W (t)vl[ﬁ] =0 (and thus W+l (t)vl[nﬂ] =0

A= ()T 0T € R\ {0}) on T,

for v,

In particular, it would be an interesting topic to study whether/when
Eﬁ] (¢ =0,1,...) in the above lemma can be
taken in such a way that it converges to a nonzero vl®l € R* such that
Wt (ol = 0 for v .= [(w[*HT 0]7. Such a topic is indeed quite

relevant to the aforementioned deficient side of the proof of Theorem 5.2,

the sequence of the nonzero v

2No assumption is required about the continuity of the (n — 1)st order derivative of
each function in F, (7).
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which unfortunately is the only part in the present paper that is not fully
along the null space viewpoint.

Before proceeding to such a topic, we give the following two results about
nonzero v+ such that W+l (t)vl*t1) = 0 when ty € T is in (another
special case, other than that in the above lemma, of) the situation (x); note
as in the above lemma that their statements do not assume that w!™(t) = 0
on Z. The first result deals with the case k = 2.

Proposition 5.6. Suppose that ty € IE]ZO. Then, W (to)ol = 0 for
ol = [wil0,...,0] € R* with vl = 1. In addition, if each function in
Fn(Z) is n times differentiable together with another function fn41(t) on Z,
then Wt (tg)wlnt1 = 0 for ot = (v 0, ... 0] = [1,0,...,0] € R**1,

Proof. 1t suffices to show that fl(k) (to)) =0 for k =0,...,n— 1 (and also
fl(n) (to) = 0, when f1(¢) is n times differentiable). To this end, let Z{O) be the
zero set of fi(t) in the neighborhood of ty. Since m[?(t) = f1(t), however,

Zl(o) is nothing but the intersection of Z[2 and the neighborhood. Hence, by

the assumption tg € I[:Q}ZO, it follows that tg is an accumulation point of Z{O)

such that tg € Zfo). Let Ti(o) (1=0,1,...) be a monotonically decreasing or
increase sequence in Zl(o) converging to to. Since f; (Ti(o)) =0(i=0,1,...),
it follows from the continuity of fi(¢) that fi(tgp) = 0. Furthermore, since
f1(t) is differentiable, we have

(0)
(5:5) fito) = lim hir (02 — fi(to)
1—r 00 to

T; -

=0

since f1(to) = f (Ti(o)) = 0, and it also follows from Rolle’s theorem (together

with fi (TZ-(O)) =0(i=0,1,...)) that there exists a monotonically decreasing
or increasing sequence of the zeros of f{(t) converging to to, which we denote
by Tz-(l) (i = 0,1,...); they together with #y constitutes a zero set Z}l)
of f{(t), where ty € ZF) is an accumulation point of this set. Hence, if
f1(t) is differentiable, then essentially the same arguments as above leads
to f1(2) (to) = 0. We can further apply Rolle’s theorem to fi(t), if necessary,

to consider a zero set 21(2) of f1(2) (t), and repeating the same arguments

leads to fl(l)<t0) =0(=0,...,n—1) under the n — 1 times differentiability
assumption, and also to fl(n) (to) = 0 under the n times differentiability
assumption. This completes the proof. ]

We further have the following result for the remaining case of 3 < x <n
(as well as Kk = n + 1), whose proof relies on a key lemma given soon after
this proposition.
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Proposition 5.7. Suppose that ty € Z@ZO, where 3 < k < n+1. Ifty €
I;[’Zo_l]: then there exists a nonzero vl"=1 € R*=1 such that W (o)l = 0
forvl = [(wF=1T 0]T € R and WM (tg)vl™ = 0 for o™ = [(v[+=1)T 0] €
R™. In addition, if each function in F,(Z) is n times differentiable to-
gether with another function fn1(t) on I, then W (tg)wln Tl = 0 for
pintll = [(U[n—l])T70]T c R,

Proof. The assumption tg € IE]:O implies that tg is an accumulation point of
ZMHl (i.e., the zero set of mll(t)) and ty € ZI¥. Tt then follows from Rolle’s
theorem that to is also an accumulation point of the zero set of (m!%)(¢).
In particular, we have (m!")/(ty) = 0 by essentially the same arguments as
the proof of Proposition 5.6, which further leads to (m!))M(ty) = 0 (again
by repeating the same arguments) as long as the Ath order derivative exists
(ie,uptoA=n—k+1, or A\ =n — K+ 2 under the additional n times
differentiability assumption).

On the other hand, the second assumption tg € I;[:O_ U implies that ms—1] (to) =
wl=2(tg) = det WIF=2(to) # 0. Hence, the first x — 2 rows of W1(ty)
are linearly independent. Here, note that det Wls—1(ty) = wlv—1(ty) =
mll(tg) = 0 since to € Z[. Hence, the last row of WIE=l(to) (i.e.,
fi
F,LISI] (to)). Furthermore, since (m!)/(t) = (wlF=1(t))" = (det W= (¢)Y,
we see from (3.19) that (m!")/(ty) = 0 implies that fl[f:ll] (to) is also a linear

*21] (to)) is a linear combination of its first K — 2 rows (i.e. the rows of

combination of the aforementioned x — 2 rows, the rows of F, ,£'$__31] (to)-

We can summarize these arguments as follows: each of the x rows of
FE’__II] (to) € R®¥(*=1) is a linear combination of its first k — 2 rows. Since
(mFEHYN(tg) = (det WEHYN(tg) = 0 for A = 1,...,n — k + 1 (and also
A = n — k + 2 under the additional n times differentiability assumption)
as stated in the first paragraph, it follows immediately from Lemma 5.8
given below (with k = k — 1 and [ = n — 1, or [l = n under the additional
n times differentiability assumption) that there exists a nonzero ols—1l e

R~ such that Fg@__ll](to)v["*l] = 0 (and F%K_l](to)v[”*” = 0 under the
additional n times differentiability assumption). Hence, the assertion follows

immediately. U

Remark 6. It is obvious from the above proof that the nonzero v[F=1) € RF—1
in the statement of the above proposition is such that F ,L'igl] (to)v["*u =0,

where F,E'SH (to) € RF=2x(5=1)  This condition is equivalent to FIE'SH (to)vl—1 =

0 because of the situation where ﬂ::;} (to), the last row of F,L’i_gl] (to), is a
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linear combination of the rows of F,_EH_EH (to). Here, note that F,E”__Ql] (t) =
W=1l(¢) and thus the condition is W~ (tg)vl*=1 = 0. This determines
vl*=1 (up to a scalar factor) because the rank deficiency of W= (tg) is 1

by the assumption that ¢y € Z;[Z; 1 (which means that m!"~!(tg) # 0 and
thus W =2(ty) is nonsingular). By the observations in Remark 2, partic-
ularly by the arguments around (3.8), such vlF=1 £ 0 can be regarded as
the vector my (to), where the vector-valued function ml (t) is defined
as me(t) in (3.5) corresponding to the Wronski matrix W*~1(¢). Note that
the continuity of the nth order derivatives of the functions in F,1(Z) is not

used in these arguments, unlike in the statement of Theorem 5.2.

A key role was played by the following lemma in the above proof; note
that wl™(t) = det W[ (t) = 0 on Z is not assumed in its statement.

Lemma 5.8. Let k > 2 and suppose that each function in Fi(Z) is | times
differentiable at t = tg € I, where | > k. If each of the k + 1 rows of
Fik] (to) € REFDXE s g linear combination of its first k — 1 rows (i.e., the
rows of F,Lk_]Q(to)) and if (det WEYN (1) =0 (A =1,...,1 — k + 1), then
mnk’FZ[k] (to) < k.

Proof. Assuming that each of the k+1 rows of Fg/,k] (to) € RF+HDXK ig o linear

combination of its first k—1 rows, it suffices to show that every row of Flm (to)
is also a linear combination of these k — 1 rows if (det WM (t5) =0 (A =
1,...,l —k+1). We prove it through the induction arguments on [.

First, the assertion holds obviously when | = [y = k.

Next, suppose that the assertion holds for | = lyp; that is, we assume that
(det WHENN () = 0 (A = 1,...,1p — k + 1) and thus each of the Iy + 1
rows of Fl[ok] (to) is a linear combination of the aforementioned k — 1 rows.
Then, to complete the proof by induction, we aim at showing the claim that

L[];]Jrl(to) is also a linear combination of these k — 1 rows by assuming that
(det W) (29) = 0 also for A =1y — k + 2.
To show this claim, note that the functions in f

(k]
lo+1

tive (det W) (¢) for the first time when A = lo—k+2. Since £ (¢o) fails
to be of full column rank by the aforementioned hypothesis of the induction
arguments, we can see by the repeated applications of (3.11) that

(t) arise in the deriva-

(%]
F t
(5.6) (det W [k])(lo_k+2)(t0) = det [ [Iff]_z( ’ ]
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Since the left-hand side is zero by the aforementioned hypothesis of the
induction arguments, the claim has been established. This completes the
proof. O

To summarize, Propositions 5.6 and 5.7 have successfully characterized
nonzero v"*t1 € R**! such that W*(tg)vl*+1 = 0 (through an under-
lying nonzero vl*~1 € R*1 and »[**1 = [(wl=1)T 0]7) when to is in a
special case of the situation (%), i.e., when either of the following conditions
is further satisfied:

(i) k= 2.

(i) 3<k<n+1andtyeZy .

Even in such a special case, unfortunately however, it does not seem straight-
forward to relate the above vl*~1 e R*=1 or v[*t1) with those vectors
vl[“] € R” or UZ[nH] in Lemma 5.5. Furthermore, for the remaining case of
the situation (%), i.e., when 3 < k < n+1 and ml*~1(ty) = 0, characterizing
nonzero vt such that W+ (t)v["+1 = 0 does not seem straightforward.

These observations might suggest a sort of limit in the algebraic arguments
through the null space viewpoint developed in the present paper, but a
further elaborated study would be quite interesting, possibly with much
more emphasis on the treatment of the calculus side of the underlying subtle
issues; such a topic may be beyond the scope of this paper aiming at stressing
the clear perspective (particularly in the arguments up to Subsection 5.1)
and new insight offered by the linear algebraic and null space viewpoint.

In connection with the above special case (ii) under the situation (x), we
close this section by finally giving, just in case, the following example to
show that such a case is not vacuous.

Example 5.1. Let h(t) defined on I be a differentiable function such that
t =ty € L is an accumulation point of its zero set while it is not identically
zero in the neighborhood of tg. Then, for k =3, f1(t) =1 and fao(t) = h(t),

we readily see that ty € Z@ZO while ty € I;[:O_I]. Obviously, taking fs(t) =
f1(t) further leads to wl¥l(t) = 0 on T (if h(t) is twice differentiable).

We also give the following example just in case to show that mls—1] (tg) =0
is also possible.

Example 5.2. Let h(t) be as in the above example. Then, for Kk = 3,
Filt) =t —to and fot) = (t — to)h(t), we readily see that to € T, while
m[nfl} (to) =0.
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6. CONCLUSION

The present paper aimed at developing a new framework for the Wron-
skian theory through what we call a linear algebraic and null space view-
point. The arguments can be summarized briefly as follows.

We first showed that when the Wronskian is identically zero, we can find
two representations of vector-valued functions contained in the null space
of the Wronski matrix. We then showed only through very simple linear
algebraic arguments that the two representations are algebraically linearly
dependent. This alignment property immediately led to a key identity rele-
vant to the Wronski matrix when its determinant vanishes identically. This
identity is a key also in the pioneering study on the Wronskian in [9], where
the feature of its derivation in the present paper is that it was carried out
only through a very straightforward linear algebraic and null space view-
point and thus offers a very clear perspective. Combining these discussions
with very fundamental results for the case of two functions leads readily to
those results available in the literature, as discussed in the arguments up to
Subsection 5.1. Due to the very clear perspective as well as straightforward
treatment only through a linear algebraic viewpoint, these discussions are
believed to be of pedagogical value, too.

In the last part of the paper, i.e., Subsection 5.2, we discussed further
relevant issues on the Wronskian through the null space viewpoint. In the
course of such a study, some relevant results in the literature were derived
through this specific viewpoint and in a strengthened form. Furthermore,
some interesting problems were suggested relevant to the interest in that
subsection, which is directly related to the null space viewpoint. Some par-
tial answers were given but it would be an interesting future topic to tackle
unresolved issues so that a much clearer view as well as insight can be ob-
tained about the properties of the null space of the identically vanishing
Wronski matrix. Such an extended study might actually go more or less be-
yond the linear algebraic aspect and thus is beyond the scope of the present
paper, possibly requiring more emphasis recovered on the calculus side be-
hind the unsolved issues. Such a direction might include brigding some gap
between the studies in [11] and [12].
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