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WRONSKIAN THEORY REVISITED FROM A LINEAR

ALGEBRAIC AND NULL SPACE VIEWPOINT

Tomomichi HAGIWARA

Abstract. This paper aims at providing a new fundamental frame-
work for the Wronskian theory by paying attention to the null space
of the Wronski matrix. It is first shown that identical vanishing of the
Wronskian leads to two different representations of vector-valued func-
tions that lie in the null space of the Wronski matrix. It is further
shown that they are algebraically linearly dependent, by which we are
immediately led to a key identity in the Wronskian theory, derived only
through very simple linear algebraic arguments. Most fundamental re-
sults on the Wronskian theory available in the literature can thus be
obtained in a quite straightforward fashion with a very clear perspec-
tive, and hence the relevant arguments are believed to be of pedagogical
value, too. Some further issues relevant to the null space viewpoint are
also discussed, where some other results available in the literature are
derived through the null space viewpoint in a somewhat strengthened
form.

1. Introduction

This paper aims at revisiting the Wronskian theory from what we call a
linear algebraic and null space viewpoint.

The Wronski matrix is well known to be quite important in deciding linear
dependence/independence of given functions of a single real variable. More
precisely, its determinant called the Wronskian is considered, and if it does
not vanish identically on the domain of the given functions, they are ensured
to be linearly independent. Although the converse is not true, in general,
some conditions are known that together with identical vanishing of the
Wronskian ensure their linear dependence. In connection with the studies
on the converse, various properties have been obtained for the Wronskian.
These results can be found, e.g., in [1, 2, 3] in the handbook/textbook level,
in [4, 5, 6] in the recent expository articles level, and in [7, 8, 9] in the
historical pioneering studies.

To the best understanding of the author, however, the literature in the
Wronskian theory deals mostly with the Wronskian rather than the under-
lying Wronski matrix itself. The author is led to this interpretation in the
sense that even when some rank properties of the Wronski or some relevant
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matrices are dealt with, little attention is paid on the vectors in the asso-
ciated null space, and the fundamental tools in developing the Wronskian
theory are essentially those fundamental results in calculus such as Rolle’s
theorem.

This paper aims at providing a new fundamental framework that focuses
precisely on the null space of the Wronski matrix, with which much of the
fundamental tools in the Wronskian theory is shifted to those in linear al-
gebra. The most important feature of the present paper is to show that
identical vanishing of the Wronskian leads to two different representations
of vector-valued functions that, for each fixed value of the real variable, lie
in the null space of the Wronski matrix evaluated at the same value of the
variable. Such vector-valued functions are constructed through the deter-
minants of some submatrices of the Wronski matrix, i.e., some minors. The
mere identical vanishing of the Wronskian, however, does not seem natural
to ensure the existence of two algebraically linearly independent vectors in
the null space. Thus we will be interested in showing algebraic linear depen-
dence of the two representations of vectors, and this will be established only
through linear algebraic arguments. This alignment of the two representa-
tions immediately leads to an alternative identity relevant to the Wronski
matrix whose determinant vanishes identically. The arguments up to this
point are actually quite simple and essentially use only linear algebraic ar-
guments, while the resulting alignment property is crucial in the arguments
of the pioneering study [8] as well as the present paper. Hence, the lin-
ear algebraic and null space viewpoint developed in the present paper can
be interpreted as providing very transparent and systematic treatment for
the core of the Wronskian theory. As such, the arguments leading to the
framework of the present paper is believed to be of pedagogical value, too.

The organization of the present paper is as follows. Section 2 describes
the motivation and standpoint of the present paper after reviewing some
fundamentals of the Wronskian theory. In particular, we state our key the-
orem (Theorem 2.3) to highlight the feature of our null space viewpoint.
What is important, however, is not the mere statement of this theorem
itself, but the approach and viewpoint themselves leading to this key theo-
rem, in which attention is paid precisely on the null space of the Wronski
matrix. Remarks relevant to this important viewpoint are provided and
the feature of the present paper is further discussed in that section. Then,
Section 3 proceeds to the proof of this key theorem after providing some
preliminary fundamental linear algebraic results that play key roles in the
proof. Derivation of two different representations of vector-valued functions
in the null space of the Wronski matrix is one of such fundamental results.
Another crucial result includes a fundamental formula about the derivative
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of the Wronskian. Fundamental results of the Wronskian theory for the case
of two functions are also reviewed at the end of the section. They consti-
tute a basis for completing our framework of the linear algebraic and null
space viewpoint developed in Section 4, which is attained by providing the
proof of the key theorem (Theorem 2.3) on the basis of the aforementioned
fundamental linear algebraic results provided in Section 3. In Section 5,
we further discuss relevant issues in the Wronskian theory. Subsection 5.1
shows that some well-known result for deciding linear dependence of func-
tions can also be obtained immediately through the null space viewpoint,
and further gives a simple helpful observation that follows readily from such
a viewpoint. On the other hand, Subsection 5.2 is relevant to another well-
known result about the Wronskian that is identically zero. More precisely,
the interest there mainly lies in whether the situation could be changed if
one more function is introduced to consider the associated Wronskian. We
first show that the well-known result can also be derived through the null
space approach developed in the present paper. We then suggest relevant
interesting questions to continue our discussions. In the course of such a
study, we further derive some relevant fundamental results in the literature
in a strengthened form through our null space approach. Furthermore, we
discuss some sort of relationship between the null space of the original Wron-
ski matrix and that of a larger Wronski matrix for one more function. We
close our paper in Section 6 by giving some concluding remarks.

2. Motivation and Standpoint of the Present Paper

Let I ⊂ R be an interval and suppose that the function fi : I → R be
given for i = 1, . . . , n. For notational simplicity, the set of these functions is
denoted by Fn(I). Note, however, that the underlying n is fixed throughout
the paper unless stated otherwise, and thus the relevant subscripts and/or
superscripts are sometimes dropped unless some confusion could arise. The
functions in Fn(I) are said to be linearly independent on I (or simply, Fn(I)
is linearly independent) if the identity

(2.1)
n∑

i=1

vifi(t) ≡ 0

on I with vi ∈ R (i = 1, . . . , n) implies that vi = 0 (i = 1, . . . , n); otherwise,
they are said to be linearly dependent on I (or simply, Fn(I) is linearly
dependent). To facilitate the arguments, we sometimes refer to t as time.

When all the functions in Fn(I) are n−1 times differentiable on I, which
is the standing assumption throughout the paper, it is well known that the
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Wronski matrix defined on I as

(2.2) W (t) =


f1(t) f2(t) . . . fn(t)

f
(1)
1 (t) f

(1)
2 (t) . . . f

(1)
n (t)

...
...

. . .
...

f
(n−1)
1 (t) f

(n−1)
2 (t) . . . f

(n−1)
n (t)


plays an important role in deciding linear independence of Fn(I) (see, e.g., [1,
2, 3]), where f

(k)
i denotes the kth order derivative of fi. More precisely, the

following result is well known for the determinant of the Wronski matrix
W (t) denoted

(2.3) w(t) := detW (t)

and called the Wronski determinant or the Wronskian for F(I).

Proposition 2.1. F(I) is linearly independent if w(t) ̸≡ 0 on I.

This result obviously motivates the study on the converse assertion, and
very interestingly, quite famous mathematicians such as Hermite and Jordan
have also tackled the issue to assert (even “prove”) that the converse also
holds; the historical side of the advances on the study about the converse
assertion is elaborated in [5], and according to this reference as well as [4]
and [3], it was Peano [7] who pointed out their wrong assertion for the first
time through the following counterexample.

Example 2.1. Suppose that n = 2, I = R, f1(t) = t2 and f2(t) = t|t|.
Then, f

(1)
1 (t) = 2t and f

(1)
2 (t) = 2|t|, so that we have

(2.4) W (t) =

[
t2 t|t|
2t 2|t|

]
, w(t) = detW (t) ≡ 0

on I. However, it is easy to confirm that f1(t) and f2(t) are linearly inde-
pendent on I.

It is surprising that the importance of this counterexample of Peano was
not immediately appreciated, but it definitely played an important role in
advancing the study on some form of a converse assertion of Proposition 2.1;
more precisely, the counterexample suggested the importance of introducing
some additional condition that, together with the condition w(t) ≡ 0, would
ensure that F(I) is linearly dependent.

It is Bôcher who gave such an additional condition for the first time in [8]
in the form of the following Proposition 2.2, who subsequently gave a further
generalized additional condition in [9], where the latter covers the additional
(analyticity) condition given in Proposition 2.2 as a special case.
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Proposition 2.2. If F(I) consists of analytic functions, it is linearly inde-
pendent if and only if w(t) ̸≡ 0 on I.

The present paper is motivated by these studies by Bôcher, but aims at
developing much more transparent arguments that give a clear perspective
leading to the following key theorem about a linear algebraic property of
the Wronski matrix W (t).

Theorem 2.3. If the Wronskian for Fn(I) satisfies w(t) ≡ 0 on I, then
there exist a subinterval I0 of I and a nonzero v ∈ Rn such that

(2.5) W (t)v ≡ 0

on I0.

Even though the statement itself of the above theorem could be regarded
merely as a restatement of a well-known result (used in the derivation of
Proposition 2.2), we would like to reiterate that we aim at developing a
new linear algebraic viewpoint/framework leading to this assertion through
a clear perspective. In this sense, even though we claimed Theorem 2.3 as a
key theorem of this paper, we would like to stress that the most important
feature of the present paper is a unique and transparent derivation process
of this key theorem, rather than its statement itself, where the process also
clarifies a construction procedure for an associated I0 and v.

With this in mind, we start from some obvious fact and then proceed
to subsequently state important suggestive remarks so that the standpoint
and feature of the present paper can be clarified further and the significant
viewpoint of the present paper (which we call an algebraic and null space
viewpoint) can be highlighted, totally distinguishing the direction of the
present approach from that in [8] and [9] and other related literature.

(i) First note the obvious relation that (2.1) holds on I if and only if
(2.5) holds on I for v = [v1, . . . , vn]

T .
(ii-a) Hence, there exists a nonzero v ∈ Rn satisfying (2.5) on I if and

only if Fn(I) is linearly dependent.
(ii-b) Furthermore, the set of v = [v1, . . . , vn]

T satisfying (2.1) on I coin-
cides with that of v satisfying (2.5) on I.

(iii-a) By (ii-a), Theorem 2.3 can be restated as
Theorem 2.3’ If w(t) ≡ 0 on I for Fn(I), there exists a
subinterval I0 of I such that Fn(I0) is linearly dependent.

and this is nothing but what has already been shown in [9] or [4].
If we were solely interested in the assertion of Theorem 2.3’ itself,
then the arguments in [4] would be the simplest.
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In view of this observation, we continue giving important sugges-
tive remarks on the standpoint and feature of the approach devel-
oped in the present paper. They are related to the fact that the
present approach leads to a useful framework of arguments that can
derive further crucial results from a linear algebraic and null space
viewpoint. We further discuss such an aspect in the following.

(iii-b) The observation (ii-b) would be interesting, since it is obvious that
the viewpoint about (2.5) is related to a “time-invariant null space”
of the Wronski matrix W (t) (rather than just looking at its determi-
nant w(t)). As such, it would be worth noting that the null space of
the Wronski matrix W (t) for the example of Peano is time-varying
on I = R; more precisely, what changes in t lies not only in the di-
rection of the null space but also in the dimension of the null space
(which depends on whether t ̸= 0 or t = 0). The present approach
is considered to be closely related to such changes in its ultimate
root, but no existing studies focus on such a (time-invariant) null
space aspect, to the best knowledge of the author. In fact., al-
though [8, 9, 4, 6] refer to Proposition 2.2, where [8] derived it for
the first time while the other three references also gave independent
derivations of the same result, none of them provides a null space
viewpoint as in Theorem 2.3. Through such a linear algebraic and
null space viewpoint developed in the present paper, a number of
existing results can actually be interpreted from a new perspective,
and new arguments and insight are further provided in Section 5.

(iv) With respect to the above novel null space viewpoint for the Wronski
matrix W (t) in the present paper, the derivation of Theorem 2.3 will
be carried out, roughly speaking, by finding two different represen-
tations of time-varying vectors in the null space, assuming that W (t)
always has a zero eigenvalue (i.e., w(t) ≡ 0). More precisely, these
two time-varying vectors in the null space are further shown to be
algebraically linearly dependent (i.e., always have the same direction
for each t ∈ I), and this in turn leads to the consequence that each
of the two time-varying vector representations in the null space is ac-
tually a constant vector in Rn multiplied by a scalar-valued function
on some subinterval I0 of I.

(v) The arguments of the present paper sketched briefly in the above
(iv) have a somewhat close connection with the arguments of [8]
(and [9]) in the treatment of determinants, but are entirely different
from the arguments available in the literature, because the present
paper develops a more sophisticated linear algebraic and null space
viewpoint for transparent and systematic treatment. Simply put,
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the present paper aims at developing a linear algebraic approach to
the Wronskian theory instead of the conventional calculus approach.
This is particularly true for the arguments up to Subsection 5.1, in
the sense that Rolle’s theorem playing a crucial role in the existing
studies is not used (until the latter part of Subsection 5.2, which is
devoted to more advanced issues in the Wronskian motivated by the
null space viewpoint).

Having stated the above important remarks on the standpoint and novel
feature of the arguments and approach in the present paper, which we hope
is interesting enough to motivate the arguments in the following sections, we
close this section by confirming a significant implication of Theorem 2.3; the
following corollary is its immediate consequence if we note (ii-a) above and
the identity theorem on analytic functions (which implies that each analytic
function in W (t)v defined on I is identically zero on I0 if and only if it is
on I).

Corollary 2.4. Suppose that F(I) consists of analytic functions on I. If
w(t) ≡ 0 on I, then there exists a nonzero v ∈ Rn such that (2.5) holds on
I. In other words, F(I) is linearly dependent.

Furthermore, the contrapositive restatement of this corollary together
with Proposition 2.1 immediately leads to the aforementioned pioneering
result of Bôcher, i.e., Proposition 2.2 stated earlier.

3. Preliminaries

3.1. Another Motivating Theorem. Since the theory of the Wronskian
is trivial when n = 1, this paper assumes, in principle, that n ≥ 2. The
purpose of this subsection is to introduce another key motivating theorem
given shortly (see Theorem 3.1) that motivates the overall arguments of this
paper; in particular, the relevant arguments to be motivated by Theorem 3.1
eventually lead to a transparent and systematic derivation process of our
key theorem, i.e., Theorem 2.3. This second key theorem introduced in
this section, which can be interpreted as lying behind the first key theorem,
implies that if the Wronskian satisfies w(t) ≡ 0 on I, then the Wronski
matrix W (t) has two different representations of time-varying vectors always
contained in its null space. More precisely, each of the two vectors evaluated
at t = t0 ∈ I is contained in the null space of the singular matrix W (t0).

To precisely state the second key theorem, however, we begin by intro-
ducing relevant notions and terms.

The arguments of this paper are based on the repeated treatment of sub-
matrices and their determinants (or minors) of a given matrix. Regarding
such a situation, no established fitted terms exist, to the best knowledge
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of the author, that are convenient and non-confusing enough for the devel-
opment of the arguments in this paper. For example, when we refer to a
minor, it could be confusing with a cofactor (which could differ from each
other only in their signs). Furthermore, when the (i, j) minor is referred
to, how to call the associated submatrix (whose determinant gives the (i, j)
minor) is not well-established. We would like to have some fitted term to
call it, where it is desirable that the term is close enough to the associated
term for calling its determinant so that their mutual connection is clearly
and strongly suggested by the proximity itself of their terms. With this in
mind, we introduce the following terms for convenience.

Definition 1. For X = (xij) ∈ Rn×n with n ≥ 2, the submatrix obtained by
removing the ith row and jth column of X is called the remainder matrix of
X with respect to xij (or the (i, j) remainder matrix of X) and denoted by

Xi,j ∈ R(n−1)×(n−1). The determinant of Xi,j is called the (i, j) remainder
determinant of X and denoted by xi,j . For ρij := xi,j , the matrix R(X) :=
(ρij) ∈ Rn×n is called the remainder determinant matrix of X.

With this notation, we define for each i = 1, . . . , n the remainder matrix

of the Wronski matrix W (t) with respect to f
(n−1)
i (t), which we denote by

(3.1) Mi(t) := W (t)n,i, i = 1, . . . , n

Note that Mi(t) is nothing but the Wronski matrix for the set of n − 1
functions Fn(I)\{fi}. Furthermore, we also define the associated remainder
determinant (or the Wronskian of the corresponding set of n− 1 functions)
denoted by

(3.2) mi(t) := detMi(t), i = 1, . . . , n

together with

(3.3) σi := (−1)n+i, i = 1, . . . , n

It readily follows from the expansion of the determinant of W (t) along its
last row that

(3.4) w(t) = σ1f
(n−1)
1 (t)m1(t) + · · ·+ σnf

(n−1)
n (t)mn(t)

We are in a position to state the following theorem, whose proof will be
given in Subsection 3.3.

Theorem 3.1. Let n ≥ 2 and mσ : I → Rn be

(3.5) mσ(t) =
[
σ1m1(t) . . . σnmn(t)

]T
and let m′

σ be its derivative on I. If w(t) ≡ 0 on I, it follows on I that

(3.6) W (t)mσ(t) ≡ 0
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(3.7) W (t)m′
σ(t) ≡ 0

Remark 1. Note that the identity corresponding to the last entry in (3.6)
is nothing but (3.4), since w(t) ≡ 0 by the assumption. Furthermore, (3.7)
except for its last entry, together with (3.6) has been used in the pioneering
studies [8, 9]. However, no attention has been paid on the last entry of (3.7)1.
Roughly speaking, (3.6) and (3.7) can be interpreted as showing that when
w(t) ≡ 0, the Wronski matrix W (t) has the “two time-varying eigenvectors”
mσ(t) and m′

σ(t) corresponding to the zero eigenvalue of W (t). However, it
is unlikely that W (t) has two such algebraically linearly independent vectors
simply because w(t) ≡ 0, and thus we will be motivated to show that they
are actually algebraically linearly dependent (i.e., have the same direction for
each t ∈ I). What plays the key role in the overall arguments in the present
paper is only the relevant arguments for establishing this algebraic alignment
assertion as well as (3.6). In other words, (3.7) itself will not actually be used
directly in the subsequent arguments once the above theorem is established
and the above alignment assertion is also suggested and then established.

Remark 2. As another important feature of the present paper, it could be
seen from the proof of this theorem given later that our derivation of (3.6)
and (the first n − 1 identities of) (3.7) is more straightforward than that
in [8]. For the relevance with the advanced arguments in Section 5, we
remark just in case that the first n− 1 identities in (3.6) as well as the n− 1
identities except the last but one in (3.7) hold even without the assumption
w(t) ≡ 0. Furthermore, the remaining identities in (3.6) and (3.7) fail if
w(t) ̸≡ 0, but still the relevant relations

(3.8) W (t0)mσ(t0) = 0, W (t0)m
′
σ(t0) = 0

hold for every t0 such that w(t0) = 0, as seen from the proof. This plays an
important role in the observation in Remark 6 in Subsection 5.2.

Remark 3. A further crucial feature of the present paper can be explained
as follows. In the arguments of the pioneering study [8], the key issue is to
derive on I the relation

(3.9) mn(t)m
′
i(t)−mi(t)m

′
n(t) ≡ 0, i = 1, . . . , n− 1

(which we also derive in the following section; see Lemma 4.2). The deriva-
tion of this key relation in the arguments of [8], however, is quite involved
and actually rather hard to follow. In contrast, our arguments can be inter-
preted as replacing its derivation with proving that the two vectors mσ(t)

1The reason seems to be either of the following: (i) justifying this last identity was
thought to require n times differentiability of the functions in Fn(I); (ii) this identity was
thought to be useless.
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and m′
σ(t) are algebraically linearly dependent for each t ∈ I. More pre-

cisely, an important property of the derivative m′
i(t) of the (n, i) remainder

determinantmi(t) of the Wronski matrixW (t) is first shown: m′
i(t) coincides

with another (i.e., (n − 1, i)) remainder determinant of W (t). In addition,
another important property between the singularity of a square matrix X
and a rank property of the associated remainder determinant matrix R(X)
consisting of the remainder determinants of X is shown. As it turns out,
combining these properties immediately leads to the key relation in the pi-
oneering study [8], i.e., (3.9), in a quite elementary and transparent fashion
in this paper. These features are the most significant advantages of the
arguments of this paper. Further advanced issues are studied in Section 5
along the line of such features.

3.2. Preliminary Results on Determinants and Remainder Deter-
minant Matrices. This subsection is devoted to providing some funda-
mental results used in the arguments of this paper. Eq. (3.11) in Lemma 3.2
below plays the most crucial role throughout the paper (for example, in the
derivation of (3.7) and the proof of Lemma 4.1 given later, which are crucial
results in this paper), while (3.10) and Lemma 3.3 also play a crucial role
in the treatment of remainder determinant matrices.

Lemma 3.2. Let G : I → Rl×l and G(t) =: [g
1
(t)T , . . . , g

l
(t)T ]T , where

g
1
(t) =

∑m
i=1 cig1,i(t) with ci ∈ R (i = 1, . . . ,m). Then, g(t) = detG(t)

satisfies the following.

(3.10) g(t) =

m∑
i=1

ci det


g
1,i
(t)

g
2
(t)
...

g
l
(t)



(3.11) g′(t) = det


g′
1
(t)

g
2
(t)
...

g
l
(t)

+ det


g
1
(t)

g′
2
(t)
...

g
l
(t)

+ · · ·+ det


g
1
(t)

g
2
(t)
...

g′
l
(t)


Proof. The assertions follow immediately from the definition of the deter-
minant

(3.12) detG(t) =
∑
π

sgn(π)

l∏
k=1

gkπ(k)(t)
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where gij(t) denotes the (i, j) entry of G(t), while π denotes a permutation
on the set {1, . . . , l}, sgn(π) denotes its sign, and the summation is taken
over the set of all permutations. □

Lemma 3.3. Let X ∈ Rn×n (n ≥ 2) and consider its remainder determinant
matrix R(X) ∈ Rn×n. Let Rk be a submatrix of R(X) consisting of k
different rows of R(X), where 2 ≤ k ≤ n. If detX = 0, then Rk always fails
to be of full row rank. Conversely, if detX ̸= 0, then R(X) is nonsingular.

Proof. For the first assertion, it suffices to give the proof for k = 2, and
without loss of generality, we may assume that the two rows taken from
R(X) are its first and second rows, because singularity of X is invariant
under the permutations of the rows of X. Let xi (i = 1, . . . , n) be the
ith row of X. If the n − 1 rows xi (i = 2, . . . , n) are linearly dependent,
then the first row of R(X) (and thus Rk) is zero. Hence, Rk fails to be of
full row rank. Otherwise if these n − 1 rows are linearly independent, the
assumption detX = 0 implies that the first row x1 can be represented as a
linear combination of the remaining n− 1 rows, i.e.,

(3.13) x1 =

n∑
i=2

cixi

with ci ∈ R (i = 2, . . . , n). Hence, it readily follows from (3.10) that

(3.14) r2(X) = c2r1(X)

where ri(X) denotes the ith row of R(X). Hence, Rk (consisting of the first
and second rows of R(X)) fails to be of full row rank.

For the second assertion, note thatDR(X)TD = adj(X) by the definitions
of the remainder determinant matrix R(X) and the adjugate matrix adj(X)
for X, where D = diag[1,−1, 1,−1, . . .] ∈ Rn×n. Since detX ̸= 0 implies
that adj(X) = (detX)X−1 is nonsingular, so is R(X). □

Remark 4. The above lemma is closely related to a special case of the results
in [10], but the above proof is much more straightforward.

We also give the following result just for reference, which is somewhat
relevant to our subsequent arguments.

Lemma 3.4. Let X ∈ Rn×n (n ≥ 2) and suppose that detX = 0. Then, the
remainder determinant matrix R(X) is nonzero if and only if dim(ker(X)) =
1.

Proof. Suppose that dim(ker(X)) ≥ 2. Then, X has n − 2 linearly inde-
pendent rows at most. Hence, whatever n− 1 rows are taken from X, they
are linearly dependent, and thus the matrix R(X) becomes zero. This com-
pletes the necessity proof. Conversely, if dim(ker(X)) = 1, then there exists
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i such that X with the ith row removed leads to a matrix with full row rank.
Hence, there exists j such that the remainder determinant xi,j is nonzero
for some j. This completes the sufficiency proof. □

3.3. Proof of Theorem 3.1. This subsection is devoted to the proof of
Theorem 3.1, our second key theorem, where we denote the Wronski matrix
W (t) as follows:

(3.15) W (t) =

 f
0
(t)
...

f
n−1

(t)


By the hypothesis of Theorem 3.1, we have detW (t) ≡ 0 on I. Letting

h(t) := f
n−1

(t) and expanding this determinant along the last row of W (t),

i.e., h(t), we readily see that

(3.16) σ1h1(t)m1(t) + · · ·+ σnhn(t)mn(t) ≡ 0

where h(t) =: [h1(t), . . . , hn(t)]; an equivalent alternative representation is

(3.17) h(t)mσ(t) ≡ 0

We next take h(t) = f
k
(t) and consider W (t) with the last row replaced by

h(t), which is obviously singular for each t and every k = 0, . . . , n−2 because
there are two identical rows. Hence, expanding its determinant along the
last row leads to (3.17) also with h(t) = f

k
(t) for k = 0, . . . , n − 2. Hence,

we have (3.6) as claimed.
Next, we first consider how m′

i(t) can be represented. Since mi(t) is the
determinant of the Wronski matrix for Fn(I)\{fi}, we can apply Lemma 3.2
to describe m′

i(t), where only one term can be nonzero in (3.11) (which
is actually the last term) because the determinant of a matrix with two
identical rows is zero (the same observation is found also in [9]). That is, if
G(t) is the Wronski matrix given by

(3.18) G(t) =

 γ
0
(t)
...

γ
l−1

(t)


where γ

k
(t) is the kth order derivative of γ

0
(t) for k = 1, . . . , l − 1, then

(3.19) (detG(t))′ = det


γ
0
(t)
...

γ
l−2

(t)

γ
l
(t)


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With this in mind, let us take h(t) := f
n−2

(t) and consider expanding

detW (t) (≡ 0) along the (n − 1)st row of W (t) (i.e., h(t)). Then, we
immediately see that

(3.20) h(t)m′
σ(t) ≡ 0

This is true also for h(t) = f
k
(t) (k = 0, . . . , n− 3) and h(t) = f

n−1
(t); this

can easily be seen by considering the expansion of the determinant of W (t)
with the (n − 1)st row replaced by h(t), which is nonsingular as a matrix
with two identical rows. Hence, we have (3.7) as claimed.

3.4. Preliminary Basic Results for n = 2. To facilitate the following ar-
guments by laying key preliminaries, this subsection is devoted to reviewing
some basic results of the Wronskian theory for the case n = 2 available in
the literature. The following result in [8] for n = 2 plays a crucial role also
in the present paper, which follows readily from (d/dt)(f2/f1) = w(t)/f2

1 .

Lemma 3.5. Let n = 2 and suppose that f1(t) ̸= 0, ∀t ∈ I. If w(t) ≡ 0 on
I, then there exists c0 ∈ R such that f2(t) = c0f1(t), ∀t ∈ I.

The following result is crucial in the arguments of [9] and [4], which is
also the case in the present paper. The proof is given just for the sake of
making the paper self-contained (by which the assertion of Theorem 2.3 for
n = 2 is implied).

Lemma 3.6. Let n = 2. If w(t) ≡ 0 on I, then there exists a subinterval
I0 of I such that F2(I0) is linearly dependent. In particular, if f1(t) ̸≡ 0 on
I, then one such I0 is any subinterval of I on which f1 never vanishes; in
that case, there exists c0 ∈ R such that f2(t) = c0f1(t), ∀t ∈ I0. Otherwise,
if f1(t) ≡ 0, then we can take I0 = I.

Proof. When f1(t) ≡ 0 on I, the assertion is obvious since 1·f1(t)+0·f2(t) ≡
0 on I, while if f1(t) ̸≡ 0 on I, the assertion is an immediate consequence
of the continuity of f1(t) together with Lemma 3.5. □

4. Proof of Theorem 2.3

This section is devoted to showing in what a transparent and systematic
fashion, the proof of the first key theorem (Theorem 2.3) can proceed on the
basis of Theorem 3.1 just established. The most essential point for the proof
is the derivation of the identity (3.9), as is the case with the arguments of
the pioneering study [8] in the proof of Proposition 2.2. The derivation in [8]
for the target identity is based on the assertion that taking an appropriate
linear combination of the n − 1 identities in (3.7) except the last one leads
to the desired result. Explicit coefficients for the linear combination are also
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stated in [8], which we could restate as follows in the terms introduced in
the present paper:

Consider the right-bottom entry f
(n−1)
n (t) of the Wronski

matrix W (t) and the associated remainder matrix Mn(t).
Then, the set of the coefficients should be taken as the ith
row of its cofactor matrix (and thus each coefficient is equal
to the remainder determinant with respect to an entry in the
ith row of the remainder matrix Mn(t), except for its sign).

Unfortunately, however, no detailed reason is stated why the linear combi-
nation with the coefficients constructed in this fashion indeed leads to the
ith target identity of (3.9). In other words, what should be quite informative
arguments on the explicit algebraic structure behind the construction of the
coefficients and derivation of the target identity is totally missing very unfor-
tunately. Thus, it is rather hard to understand the involved tedious calcula-
tions leading to the target identity. To the best understanding of the author,
this is true even if we note that the relevant n−1 identities in (3.7) except the
last one (whose linear combination is to be taken) may be restated with the
aid of Mn(t) (but also with another (n− 1)-dimensional vector-valued func-
tion), which is once again the Wronski matrix for Fn−1(I) = Fn(I) \ {fn},
so that the rationale behind the construction of the coefficients may be
somewhat relevant to our preceding simple arguments in Section 3.3.

Instead, the present paper takes a completely different approach with the
two vectors mσ(t) and m′

σ(t). More precisely, we aim at a quite straightfor-
ward derivation of (3.9) in a generalized form by showing that mσ(t) and
m′

σ(t) are algebraically linearly dependent vectors for each t ∈ I. We begin
with the following result to this end.

Lemma 4.1. The derivative m′
i(t) of mi(t), the determinant of the Wronski

matrix Mi(t) for Fn(I) \ {fi}, equals the the determinant of Mi(t) with the
last row replaced by its derivative. In other words,

(4.1) m′
i(t) = detW (t)n−1,i, i = 1, . . . , n

Proof. The proof is quite straightforward since it proceeds essentially in the
same fashion as the proof of the fact that the derivative of the Wronskian
g(t) = detG(t) is given by the right-hand side of (3.19). □

On the other hand, recall that mi(t) = detMi(t) = detW (t)n,i. This to-
gether with (4.1) leads to the following result, which is a generalized version
of the key identity (3.9).

Lemma 4.2. If w(t) ≡ 0 on I, then it also follows on I that

(4.2) mj(t)m
′
i(t)−mi(t)m

′
j(t) ≡ 0, i, j = 1, . . . , n
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Proof. It follows from the preceding observation and Lemma 4.1 that the
left-hand side of (4.2) can be interpreted as the determinant of a 2× 2 sub-
matrix contained in the last two rows of the remainder determinant matrix
R(W (t)). Hence, the assertion follows readily from Lemma 3.3. □

We remark just in case that since (4.2) is equivalent to (σjmj(t))(σimi(t))
′−

(σimi(t))(σjmj(t))
′ ≡ 0, it is easy to see the above proof is based on an

equivalent interpretation that the two time-varying vectors mσ(t) and m′
σ(t)

are algebraically linearly dependent for each t ∈ I.
If we note that the left-hand side of (4.2) is nothing but the Wronskian

for mi(t) and mj(t), the following result is an immediate consequence of
Lemma 3.6.

Lemma 4.3. Suppose that the Wronskian for Fn(I) satisfies w(t) ≡ 0 on
I. Once we fix i = 1, . . . , n, there exists for each j = 1, . . . , n a subinterval
I0 of I such that the two functions mi(t) and mj(t) are linearly dependent
on I0. In particular, if mi(t) ̸≡ 0 on I, then one such I0 is a subinterval
of I on which mi(t) never vanishes; in that case, mj(t) is a scalar constant
multiple of mi(t) on the subinterval for j = 1, . . . , n. Otherwise (i.e., if
mi(t) ≡ 0 on I), we can take I0 = I.

Note that each mi(t) is continuous by the standing assumption on Fn(I).
Hence, assuming that w(t) ≡ 0, it follows from the above lemma that unless
mi(t) ≡ 0 on I for all i = 1, . . . , n (or equivalently, mσ(t) ≡ 0 on I, so that
(3.6) and (3.7) are trivial), there exists i and I0 such that mj(t) = cjmi(t)
with some cj ∈ R on I0 for j = 1, . . . , n. This obviously implies that
mσ(t) = mi(t)v on I0 for some nonzero v ∈ Rn. Here, we may assume
without loss of generality that I0 is such that mi(t) never vanishes on it
(see the above lemma), and thus we are immediately led to the assertion
of Theorem 2.3 by (3.6) in this specific case (i.e., when mi(t) ̸≡ 0 on I for
some i).

For convenience in later reference to this fact, we state this result as fol-
lows, which is the first one of the two very important key results in the proof
of Theorem 2.3 as well as our further arguments in the following section.

Corollary 4.4. Let n ≥ 2. Suppose that the Wronskian for Fn(I) satisfies
w(t) ≡ 0 on I, while mi(t) ̸≡ 0 on I for some i = 1, . . . , n. Then, there
exist a subinterval I0 of I and a nonzero v ∈ Rn such that (2.5) holds (i.e.,
W (t)v ≡ 0) on I0, where any interval on which at least one of mi (i =
1, . . . , n) never vanishes can be taken as such I0.

Remark 5. Actually, the associated subinterval I0 on which mi(t) never van-
ishes is virtually independent of which i to choose, in the sense that as a
chosen mi(t) tends to zero, all the remaining mj(t) also tend to zero (by
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the preceding arguments given below Lemma 4.3). Furthermore, the corre-
sponding nonzero vector v on I0 can be constructed explicitly, in principle
(i.e., if we compute all mi(t) for i = 1, . . . , n and note their zeros and mutual
ratios). Hence, if the zero set of mi(t) does not have an accumulating point
in the closure of I, a possible direction for confirming linear dependence of
F(I) given the information w(t) ≡ 0 could be checking that v determined on
the subinterval I0 defined by taking two consecutive points in the zero set
of mi(t), i = 1, . . . , n (and the edges of I) does not depend on I0. A similar
idea can be found, e.g., in [9], but not in the null space viewpoint as in (2.5)
but just through the identity (2.1). In this connection, it may be interesting
to study the dimension of the linear space consisting of v satisfying (2.5),
because if the dimension is larger than 1, it may be easier for a nonzero v
to exist such that (2.5) holds on both (small) subintervals to the left as well
as to the right of a zero of mi(t). Lemma 3.4 is somewhat relevant but is
too weak to address such a direction, unfortunately.

If we recall the preceding arguments, what remains about the proof of
Theorem 2.3 is the treatment of the case when mi(t) ≡ 0 on I for i =
1, . . . , n. Such a case might be more or less relevant to the situation where
two or more linearly independent vectors v satisfying the identity (2.5) exist,
but this is not the case, in general; Lemma 3.4 cannot be applied to conclude
such a property, while generalizing this lemma to a direction convenient to
the situation here does not seem straightforward. In fact, a sort of coun-
terexample can be constructed without difficulties. Hence, this case is also
handled by proceeding to explicitly construct a nonzero v ∈ Rn satisfying
(2.5). In this connection, since mi(t), which is assumed to be identically
zero on I, is nothing but the Wronskian for the n−1 functions Fn(I)\{fi},
we can see that dealing with this case could be relevant to some recursive
treatment with respect to the underlying n.

To facilitate such arguments in a non-confusing fashion, we first introduce
the following notation.

Definition 2. Let n and Fn(I) satisfying the standing assumption for n be
given. For each 1 ≤ k ≤ n, the Wronski matrix for Fk(I), the set of the first
k functions in Fn(I), is denoted by W [k](t), and its determinant is denoted

by w[k](t). Furthermore, the remainder determinant of W [k](t) with respect

to its right-bottom entry is denoted by m[k](t) if k ≥ 2. Obviously, m[k](t) =

detW [k−1](t) = w[k−1](t), and for k = n, we have W [n](t) = W (t), w[n](t) =

w(t) and m[n](t) = mn(t) = detMn(t) = detW [n−1](t) = w[n−1](t).

With this notation, we indeed prove the following lemma by mathematical
induction on k; this is the second one of the two very important key results in
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the proof of Theorem 2.3; note that the assertion is valid without assuming
w(t) = w[n](t) ≡ 0 on I.

Lemma 4.5. Suppose that m[k](t) ≡ 0 on I for some 2 ≤ k ≤ n. Then,

there exists a nonzero v[k] ∈ Rk such that W [k](t)v[k] ≡ 0 on some subinterval
I0 of I.

Proof. The assertion holds for k = 2 with I0 = I and v[k] = [1, 0]T , because

the assumption on m[k](t) implies f1(t) ≡ 0 on I in that case.
Suppose that the assertion holds for k = k0 ≥ 2, and consider the case

with k = k0 + 1. Thus, we assume that m[k0+1] (= w[k0](t)) ≡ 0 on I as a
hypothesis of induction.
(i) The case with m[k0](t) ≡ 0 on I

Since the assertion holds for k = k0, there exists a nonzero v[k0] ∈ Rk0

such that W [k0](t)v[k0] ≡ 0 on some subinterval I0 of I. Since the (first k0)
functions in Fk0+1(I) are k0 times differentiable by the standing assump-

tion, the left-hand side is differentiable and we have (W [k0](t))′v[k0] ≡ 0 on

I0. These two identities imply that (W [k0+1](t)J)v[k0] ≡ 0 on I0, where

J denotes the identity matrix on R(k0+1)×(k0+1) with the last column re-
moved. Hence, W [k0+1](t)v[k0+1] ≡ 0 on I0, where v[k0+1] := Jv[k0] ∈ Rk0+1

is nonzero.
(ii) The case with m[k0](t) ̸≡ 0 on I

Note that m[k0+1](t) ≡ 0 on I by the hypothesis of induction, which

is equivalent to w[k0](t) ≡ 0 on I. Hence, by the continuity of m[k0](t),
Corollary 4.4 leads immediately to the existence of a subinterval I0 ⊂ I and
a nonzero v[k0] ∈ Rk0 such that W [k0](t)v[k0] ≡ 0 on I0. Then, v[k0+1] :=

Jv[k0] is nonzero and satisfies W [k0+1](t)v[k0+1] ≡ 0 on I0 as in (i).
This completes the proof of this lemma by induction. □

To summarize, we are finally in a position to finish the proof of Theo-
rem 2.3. Indeed, the assertion follows immediately from the above lemma
applied to k = n.

5. Further Relevant Results

This section is devoted to showing that the framework of the arguments
and the results derived in the preceding sections are helpful in straightfor-
ward derivations of some relevant results on the Wronskian available in the
literature, some times in a strengthened fashion. Note that even though
some of the following arguments might look straightforward if Theorem 2.3
is used, they are based instead on the framework itself of the arguments
used in its proof and the results derived in the preceding sections. This is
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because we are basically and eventually interested in the properties on the
original interval I rather than those valid only on some subinterval I0 of I.

5.1. Showing Linear Dependence via Decreasing the Number of
Functions. We begin by showing the following result about deciding linear
dependence of F(I) through the treatment of decreasing the number of
functions. This result is an immediate consequence of Corollary 4.4, and
is nothing but Theorem II of [9], Theorem 2 of [4] and Theorem 3.8 of [2]
stated with the notation in Definition 2.

Corollary 5.1. Let n ≥ 2, and suppose that the Wronskian w[n](t) for Fn(I)
satisfies w[n](t) ≡ 0 on I, while the Wronskian w[n−1](t) for Fn−1(I) :=
Fn(I)\{fn} never vanishes on I. Then, there exists a nonzero v ∈ Rn such
that (2.5) holds on I and thus Fn(I) is linearly dependent.

Note that the nonzero v in the above Corollary can be constructed, in
principle (see Remark 5).

It would be worth stating the following observation: suppose that w[n](t) ≡
0 on I but w[n−1](t) vanishes somewhere on I. Then, one might consider
reordering of the functions in Fn(I), so that the above corollary applied
to the reordered functions could conclude that Fn(I) is linearly dependent.

However, such a situation can never occur unless w[n−1](t) ≡ 0 on I in the
original order of the n functions; this can readily be seen by the arguments
below Lemma 4.3 or Remark 5. Some relevant observation can be found
also in [9] and [11].

5.2. Analysis on the Subinterval I0 and Increasing the Number
of Functions. We are finally interested in deriving the following theorem
(which is nothing but Theorem VIII of [9]) in the framework of the present
paper, as well as discussing relevant informative results, which are related
to the treatment of increasing the number of functions.

Theorem 5.2. Let n ≥ 1 and suppose that the Wronskian w[n](t) (=

m[n+1](t)) for Fn(I) = Fn+1(I) \ {fn+1} satisfies w[n](t) ≡ 0 on I. If
the nth order derivative of each function in Fn+1(I) is continuous on I,
then the Wronskian for Fn+1(I) satisfies w[n+1](t) ≡ 0 on I.

Some of the relevant results given later correspond to existing results in
the literature (e.g., Lemma II of [9]) in a strengthened form, while others
are new through our null space approach. What plays a crucial role in such
a direction of study is to clarify whether the subinterval I0 in Theorem 2.3,
or more importantly in Corollary 4.4 and Lemma 4.5, can be taken so that
it includes a given arbitrary t0 ∈ I. To tackle such an issue, we introduce
the following definition with respect to the zero set Z [k] of m[k](t) for k =
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2, . . . , n + 1, where m[n+1](t) is interpreted to mean w[n](t) (even when we

are actually interested only in Fn(I)). Note that when m[n+1](t) (= w[n](t))

is referred to in this subsection, we do not necessarily assume w[n](t) ≡ 0.

However, we refer to m[n+1](t) in a substantial fashion (i.e., we use the

relevant property arising from the treatment of Z [n+1]) only when m[n+1](t)

is continuous on I so that I [n+1]
̸=0 = I \ Z [n+1] in the following definition is

ensured to be an open set. It is indeed open (as an empty set) when w[n](t) ≡
0 is actually assumed on I. Alternatively, it is an open set also when we are
actually interested in Fn+1(I) satisfying the standing assumption, rather

than merely in Fn(I). Note that w[n+1](t) is not continuous, in general,
however.

Definition 3. For each 2 ≤ k ≤ n+1, define the zero set of m[k](t) denoted
by

(5.1) Z [k] := {τ ∈ I |m[k](τ) = 0}

Then, four mutually disjoint subsets of I such that I = I [k]
̸=0∪I [k]

= ̸=0∪I [k]
==0∪

I [k]
≡0 and Z [k] = I [k]

= ̸=0 ∪ I [k]
==0 ∪ I [k]

≡0 are defined as follows.

(a) I [k]
̸=0 := {τ ∈ I | τ ̸∈ Z [k]} (= I \ Z [k])

(b-1) I [k]
= ̸=0 := {τ ∈ I | ∃ an interval Iτ such that Iτ ∩ Z [k] = {τ}}

(= the set of the isolated points of Z [k])

(b-2) I [k]
==0 := {τ ∈ I | τ ∈ Z [k], τ ̸∈ I [k]

= ̸=0, ̸ ∃ an interval Iτ such that

τ ∈ Iτ and m[k](t) ≡ 0 on Iτ}
(= the set of the accumulation points of Z [k] whose every neighborhood

contains a point in I [k]
̸=0)

(c) I [k]
≡0 := {τ ∈ I | ∃ an interval Iτ such that τ ∈ Iτ and m[k](t) ≡ 0 on Iτ}

Under this definition, the following lemma relevant to the classification
into the four categories in Definition 3 is an immediate consequence of Corol-
lary 4.4 (since w[1](t) = W [1](t)).

Lemma 5.3. Suppose that t0 ∈ I [k+1]
≡0 , i.e., m[k+1](t) (= w[k](t)) ≡ 0 in

the neighborhood of t0 ∈ I for some 2 ≤ k ≤ n. Regarding the relation
between t0 and the pair of m[k](t) (= detW [k−1](t)) and W [k](t), we have
the following:

(a) If t0 ∈ I [k]
̸=0, then there exist an interval I0 satisfying t0 ∈ I0 and a

nonzero v[k] ∈ Rk such that W [k](t)v[k] ≡ 0 on I0.
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(b-1) If t0 ∈ I [k]
= ̸=0, then there exist an interval I0 satisfying t0 ̸∈ I0 and

t0 ∈ I0 and a nonzero v[k] ∈ Rk such that W [k](t)v[k] ≡ 0 on I0,
where I0 denotes the closure of I0.

(b-2) If t0 ∈ I [k]
==0, then for every ε > 0, there exist an interval I0 satis-

fying l(I0, t0) < ε and a nonzero (but I0-dependent) v[k] ∈ Rk such

that W [k](t)v[k] ≡ 0 on I0, where

(5.2) l(I0, t0) := sup
τ∈I0

|τ − t0|

Alternatively, if t0 ∈ I [2]
≡0, i.e., m

[2](t) (= w[1](t)) ≡ 0 in the neighborhood

I0 of t0 ∈ I, then v[1] := 1 satisfies W [1](t)v[1] ≡ 0 on I0.

Note that if we are led to t0 ∈ I [k]
≡0 (which corresponds to category (c) of

the classification in Definition 3) when 2 ≤ k ≤ n is such that t0 ∈ I [k+1]
≡0

in the above lemma, then we can either just decrement k by 1 to apply the
same lemma or apply the last part of the lemma.

More importantly, further note that W [k](t)v[k] ≡ 0 in the statement of

the above lemma can be differentiated to have W [n](t)v[n] ≡ 0 on I0 with

v[n] := [(v[k])T , 0]T ∈ Rn \ {0} (without assuming the continuity of the
(n − 1)st order derivative of each function in Fn(I)). Furthermore, if each
function in Fk(I) is actually l times differentiable for l ≥ n, then we readily
see on I0 that

(5.3) F
[k]
l (t)v[k] ≡ 0

for

(5.4) F
[k]
l (t) :=

 f [k]
0
(t)
...

f
[k]
l (t)


where f [k]

j
(t) denotes the jth order derivative of f [k]

0
(t) defined as the first row

of W [k](t) (see (3.15) for a relevant notation). If we apply this observation to

the case k = n and category (a) in the above lemma, i.e., to t0 ∈ I [n]
̸=0, then

the corresponding consequence immediately leads to the assertion of Lemma

II in [9], i.e., the rank deficiency property of F
[n]
l (t0) when w[n](t) ≡ 0 on

I and t0 ∈ I [n]
̸=0; more strongly, we see that if t0 ∈ I [n]

̸=0, there exists I0 such

that t0 ∈ I0 and F
[n]
l (t)v[n] ≡ 0 on I0 for the aforementioned v[n].

We can readily generalize the arguments to cover category (b-1) as well,

i.e., also when t0 ∈ I [n]
= ̸=0, because of the continuity of f

0
(t)v[n] on I0, where

the continuity immediately follows from that of the functions in Fn(I). More
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precisely (in the case of k = n), the identity f
0
(t)v[n] ≡ 0 on I0 means the

same identity also on I0, which can be differentiated there up to l times to

have F
[n]
l (t)v[n] ≡ 0 on I0, where t0 ∈ I0 by t0 ∈ I [n]

= ̸=0.

To summarize the arguments up to this point, we see that these two

categories correspond to the case where F
[n]
l (t)v[n] ≡ 0 holds on an interval

containing a given arbitrary t0 ∈ I.
Although this summary does not cover category (b-2), i.e., the case of

t0 ∈ I [n]
==0, the relevant part of the above lemma implies that the interval

I0 in Theorem 2.3 and Corollary 4.4 can be chosen arbitrarily close to the

given arbitrary t0 ∈ I [n]
==0 in the sense of l(I0, t0). With this observation

taken into account, we are now in a suitable position to give the proof of
Theorem 5.2.

Proof of Theorem 5.2. When we take an arbitrary t0 ∈ I, it follows from
Lemma 5.3 together with the associated above observations that except for
the situation

(⋆) t0 is such that t0 ∈ I [k]
≡0 for k = κ + 1, . . . , n + 1 and t0 ∈ I [κ]

==0 for
some 2 ≤ κ ≤ n,

we have shown the existence of a subinterval I0 ⊂ I containing t0 and a

nonzero v[n] ∈ Rn such that F
[n]
n (t)v[n] ≡ 0 on I0. This implies w[n+1](t0) = 0

because W [n+1](t)v[n+1] ≡ 0 on I0 for v[n+1] := [(v[n])T , 0]T ∈ Rn+1 \ {0},
and this is nothing but the assertion of this theorem (when t0 is not in the
above situation (⋆)).

In the remaining situation (⋆), on the other hand, the same observations
(above this proof) imply that for any ε > 0, there exists an interval I0 such

that l(I0, t0) < ε and a nonzero (but I0-dependent) v[n] ∈ Rn satisfying

F
[n]
n (t)v[n] ≡ 0 on I0. Since this implies W [n+1](t)v[n+1] ≡ 0 on I0 for the

aforementioned v[n+1] ∈ Rn+1 \ {0}, we have w[n+1](t) ≡ 0 on I0. Since

ε > 0 is arbitrary and w[n+1](t) is continuous on I by the assumption of this

theorem, we are led to w[n+1](t0) = 0. This completes the proof. □

Even though the established theorem (i.e., Theorem 5.2) asserts that

w[n+1](t) ≡ 0 on I, however, its proof does not provide any information

about a t0-dependent nonzero v[n+1] ∈ Rn+1 such that W [n+1](t0)v
[n+1] = 0,

when t0 is in the situation (⋆). It would thus be an interesting topic to
study how we could somehow continue our arguments toward the direction
of clarifying such v[n+1].

As a preliminary to a lemma relevant to such an issue (see Lemma 5.5
below), let us first consider the following lemma about the case when t0
is not in the situation (⋆). It corresponds to an alternative summary of
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the observations given below Lemma 5.3 (applied to a general k)2, where

a nonzero v[κ] ∈ Rκ on I0 (with κ defined essentially by the process with
which it is determined that t0 is not in the situation (⋆)) can be constructed
explicitly, in principle, for the same reason as stated in Remark 5.

Lemma 5.4. Given t0 ∈ I, suppose that either of the following conditions
holds:
(i) t0 ∈ I [κ+1]

≡0 and t0 ∈ I [κ]
̸=0 ∪ I [κ]

≠=0 for some 2 ≤ κ ≤ n.

(ii) t0 ∈ I [κ]
≡0 for κ = 2.

Then, there exist a subinterval I0 of I and a nonzero v[κ] ∈ Rκ such that
t0 ∈ I0 and W [κ](t)v[κ] ≡ 0 (and thus W [n+1](t)v[n+1] ≡ 0 for v[n+1] :=

[(v[κ])T , 0]T ∈ Rn+1 \ {0}) on I0.

The reason why we state the above lemma is that we should highlight the

difficulty associated with category (b-2) in Lemma 5.3 (i.e., when t0 ∈ I [κ+1]
≡0

and t0 ∈ I [κ]
==0 as in the situation (⋆)). In this case, we encounter the

difficulty that we cannot take a subinterval I0 such that t0 ∈ I0, and it is
not clear how the corresponding v[κ] ̸= 0 on I0 changes as I0 is chosen closer
to t0, i.e., as i tends to ∞ even in the following obvious result corresponding
to a special case of category (b-2).

Lemma 5.5. Suppose that t0 ∈ I [κ+1]
≡0 and t0 ∈ I [κ]

==0 for some 2 ≤ κ ≤ n.

Further suppose that t0 ∈ I [κ]
==0 is an isolated point of I [κ]

==0∪I
[κ]
≡0 (i.e., the set

of the accumulation points of Z [κ]), and let the sequence of τi (i = 0, 1, . . .)
be either of the following:
(i) the unique decreasing sequence tending to t0 such that the set {τi}∞i=0

equals Z [κ] ∩ (t0, τ0];
(ii) the unique increasing sequence tending to t0 such that the set {τi}∞i=0

equals Z [κ] ∩ [τ0, t0).
The intervals Iτi (i = 0, 1, . . . ) are then defined as (τi+1, τi) and (τi, τi+1)
for (i) and (ii), respectively. Then, for each i = 0, 1, . . ., there exists a

nonzero v
[κ]
i ∈ Rκ such that W [κ](t)v

[κ]
i ≡ 0 (and thus W [n+1](t)v

[n+1]
i ≡ 0

for v
[n+1]
i := [(v

[κ]
i )T , 0]T ∈ Rn+1 \ {0}) on Iτi.

In particular, it would be an interesting topic to study whether/when

the sequence of the nonzero v
[κ]
i (i = 0, 1, . . .) in the above lemma can be

taken in such a way that it converges to a nonzero v[κ] ∈ Rκ such that
W [n+1](t0)v

[n+1] = 0 for v[n+1] := [(v[κ])T , 0]T . Such a topic is indeed quite
relevant to the aforementioned deficient side of the proof of Theorem 5.2,

2No assumption is required about the continuity of the (n − 1)st order derivative of
each function in Fn(I).



WRONSKIAN THEORY REVISITED FROM A NULL SPACE VIEWPOINT 169

which unfortunately is the only part in the present paper that is not fully
along the null space viewpoint.

Before proceeding to such a topic, we give the following two results about
nonzero v[n+1] such that W [n+1](t0)v

[n+1] = 0 when t0 ∈ I is in (another
special case, other than that in the above lemma, of) the situation (⋆); note

as in the above lemma that their statements do not assume that w[n](t) ≡ 0
on I. The first result deals with the case κ = 2.

Proposition 5.6. Suppose that t0 ∈ I [2]
==0. Then, W [n](t0)v

[n] = 0 for

v[n] = [v[1], 0, . . . , 0] ∈ Rn with v[1] = 1. In addition, if each function in
Fn(I) is n times differentiable together with another function fn+1(t) on I,
then W [n+1](t0)v

[n+1] = 0 for v[n+1] = [v[1], 0, . . . , 0] = [1, 0, . . . , 0] ∈ Rn+1.

Proof. It suffices to show that f
(k)
1 (t0) = 0 for k = 0, . . . , n − 1 (and also

f
(n)
1 (t0) = 0, when f1(t) is n times differentiable). To this end, let Z(0)

1 be the

zero set of f1(t) in the neighborhood of t0. Since m[2](t) = f1(t), however,

Z(0)
1 is nothing but the intersection of Z [2] and the neighborhood. Hence, by

the assumption t0 ∈ I [2]
==0, it follows that t0 is an accumulation point of Z(0)

1

such that t0 ∈ Z(0)
1 . Let τ

(0)
i (i = 0, 1, . . .) be a monotonically decreasing or

increase sequence in Z(0)
1 converging to t0. Since f1(τ

(0)
i ) = 0 (i = 0, 1, . . .),

it follows from the continuity of f1(t) that f1(t0) = 0. Furthermore, since
f1(t) is differentiable, we have

(5.5) f ′
1(t0) = lim

i→∞

f1(τ
(0)
i )− f1(t0)

τ
(0)
i − t0

= 0

since f1(t0) = f1(τ
(0)
i ) = 0, and it also follows from Rolle’s theorem (together

with f1(τ
(0)
i ) = 0 (i = 0, 1, . . .)) that there exists a monotonically decreasing

or increasing sequence of the zeros of f ′
1(t) converging to t0, which we denote

by τ
(1)
i (i = 0, 1, . . .); they together with t0 constitutes a zero set Z(1)

1

of f ′
1(t), where t0 ∈ Z(1)

1 is an accumulation point of this set. Hence, if
f ′
1(t) is differentiable, then essentially the same arguments as above leads

to f
(2)
1 (t0) = 0. We can further apply Rolle’s theorem to f ′

1(t), if necessary,

to consider a zero set Z(2)
1 of f

(2)
1 (t), and repeating the same arguments

leads to f
(l)
1 (t0) = 0 (l = 0, . . . , n− 1) under the n− 1 times differentiability

assumption, and also to f
(n)
1 (t0) = 0 under the n times differentiability

assumption. This completes the proof. □

We further have the following result for the remaining case of 3 ≤ κ ≤ n
(as well as κ = n + 1), whose proof relies on a key lemma given soon after
this proposition.
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Proposition 5.7. Suppose that t0 ∈ I [κ]
==0, where 3 ≤ κ ≤ n + 1. If t0 ∈

I [κ−1]
̸=0 , then there exists a nonzero v[κ−1] ∈ Rκ−1 such that W [κ](t0)v

[κ] = 0

for v[κ] = [(v[κ−1])T , 0]T ∈ Rκ and W [n](t0)v
[n] = 0 for v[n] = [(v[κ−1])T , 0]T ∈

Rn. In addition, if each function in Fn(I) is n times differentiable to-

gether with another function fn+1(t) on I, then W [n+1](t0)v
[n+1] = 0 for

v[n+1] = [(v[κ−1])T , 0]T ∈ Rn+1.

Proof. The assumption t0 ∈ I [κ]
==0 implies that t0 is an accumulation point of

Z [κ] (i.e., the zero set of m[κ](t)) and t0 ∈ Z [κ]. It then follows from Rolle’s

theorem that t0 is also an accumulation point of the zero set of (m[κ])′(t).

In particular, we have (m[κ])′(t0) = 0 by essentially the same arguments as

the proof of Proposition 5.6, which further leads to (m[κ])(λ)(t0) = 0 (again
by repeating the same arguments) as long as the λth order derivative exists
(i.e., up to λ = n − κ + 1, or λ = n − κ + 2 under the additional n times
differentiability assumption).

On the other hand, the second assumption t0 ∈ I [κ−1]
̸=0 implies thatm[κ−1](t0) =

w[κ−2](t0) = detW [κ−2](t0) ̸= 0. Hence, the first κ − 2 rows of W [κ−1](t0)

are linearly independent. Here, note that detW [κ−1](t0) = w[κ−1](t0) =

m[κ](t0) = 0 since t0 ∈ Z [κ]. Hence, the last row of W [κ−1](t0) (i.e.,

f [κ−1]
κ−2

(t0)) is a linear combination of its first κ − 2 rows (i.e. the rows of

F
[κ−1]
κ−3 (t0)). Furthermore, since (m[κ])′(t) = (w[κ−1](t))′ = (detW [κ−1](t))′,

we see from (3.19) that (m[κ])′(t0) = 0 implies that f [κ−1]
κ−1

(t0) is also a linear

combination of the aforementioned κ− 2 rows, the rows of F
[κ−1]
κ−3 (t0).

We can summarize these arguments as follows: each of the κ rows of

F
[κ−1]
κ−1 (t0) ∈ Rκ×(κ−1) is a linear combination of its first κ − 2 rows. Since

(m[κ])(λ)(t0) = (detW [κ−1])(λ)(t0) = 0 for λ = 1, . . . , n − κ + 1 (and also
λ = n − κ + 2 under the additional n times differentiability assumption)
as stated in the first paragraph, it follows immediately from Lemma 5.8
given below (with k = κ − 1 and l = n − 1, or l = n under the additional

n times differentiability assumption) that there exists a nonzero v[κ−1] ∈
Rκ−1 such that F

[κ−1]
n−1 (t0)v

[κ−1] = 0 (and F
[κ−1]
n (t0)v

[κ−1] = 0 under the
additional n times differentiability assumption). Hence, the assertion follows
immediately. □

Remark 6. It is obvious from the above proof that the nonzero v[κ−1] ∈ Rκ−1

in the statement of the above proposition is such that F
[κ−1]
κ−3 (t0)v

[κ−1] = 0,

where F
[κ−1]
κ−3 (t0) ∈ R(κ−2)×(κ−1). This condition is equivalent to F

[κ−1]
κ−2 (t0)v

[κ−1] =

0 because of the situation where f [κ−1]
κ−2

(t0), the last row of F
[κ−1]
κ−2 (t0), is a
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linear combination of the rows of F
[κ−1]
κ−3 (t0). Here, note that F

[κ−1]
κ−2 (t) =

W [κ−1](t) and thus the condition is W [κ−1](t0)v
[κ−1] = 0. This determines

v[κ−1] (up to a scalar factor) because the rank deficiency of W [κ−1](t0) is 1

by the assumption that t0 ∈ I [κ−1]
̸=0 (which means that m[κ−1](t0) ̸= 0 and

thus W [κ−2](t0) is nonsingular). By the observations in Remark 2, partic-

ularly by the arguments around (3.8), such v[κ−1] ̸= 0 can be regarded as

the vector m
[κ−1]
σ (t0), where the vector-valued function m

[κ−1]
σ (t) is defined

as mσ(t) in (3.5) corresponding to the Wronski matrix W [κ−1](t). Note that
the continuity of the nth order derivatives of the functions in Fn+1(I) is not
used in these arguments, unlike in the statement of Theorem 5.2.

A key role was played by the following lemma in the above proof; note
that w[n](t) = detW [n](t) ≡ 0 on I is not assumed in its statement.

Lemma 5.8. Let k ≥ 2 and suppose that each function in Fk(I) is l times
differentiable at t = t0 ∈ I, where l ≥ k. If each of the k + 1 rows of

F
[k]
k (t0) ∈ R(k+1)×k is a linear combination of its first k − 1 rows (i.e., the

rows of F
[k]
k−2(t0)) and if (detW [k])(λ)(t0) = 0 (λ = 1, . . . , l − k + 1), then

rankF
[k]
l (t0) < k.

Proof. Assuming that each of the k+1 rows of F
[k]
k (t0) ∈ R(k+1)×k is a linear

combination of its first k−1 rows, it suffices to show that every row of F
[k]
l (t0)

is also a linear combination of these k− 1 rows if (detW [k])(λ)(t0) = 0 (λ =
1, . . . , l − k + 1). We prove it through the induction arguments on l.

First, the assertion holds obviously when l = l0 = k.
Next, suppose that the assertion holds for l = l0; that is, we assume that

(detW [k])(λ)(t0) = 0 (λ = 1, . . . , l0 − k + 1) and thus each of the l0 + 1

rows of F
[k]
l0

(t0) is a linear combination of the aforementioned k − 1 rows.
Then, to complete the proof by induction, we aim at showing the claim that

f
[k]
l0+1(t0) is also a linear combination of these k − 1 rows by assuming that

(detW [κ])(λ)(t0) = 0 also for λ = l0 − k + 2.

To show this claim, note that the functions in f
[k]
l0+1(t) arise in the deriva-

tive (detW [k])(λ)(t) for the first time when λ = l0−k+2. Since F
[k]
l0

(t0) fails
to be of full column rank by the aforementioned hypothesis of the induction
arguments, we can see by the repeated applications of (3.11) that

(5.6) (detW [k])(l0−k+2)(t0) = det

[
F

[k]
k−2(t0)

f
[k]
l0+1(t0)

]
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Since the left-hand side is zero by the aforementioned hypothesis of the
induction arguments, the claim has been established. This completes the
proof. □

To summarize, Propositions 5.6 and 5.7 have successfully characterized
nonzero v[n+1] ∈ Rn+1 such that W [n+1](t0)v

[n+1] = 0 (through an under-

lying nonzero v[κ−1] ∈ Rκ−1 and v[n+1] := [(v[κ−1])T , 0]T ) when t0 is in a
special case of the situation (⋆), i.e., when either of the following conditions
is further satisfied:
(i) κ = 2.

(ii) 3 ≤ κ ≤ n+ 1 and t0 ∈ I [κ−1]
̸=0 .

Even in such a special case, unfortunately however, it does not seem straight-
forward to relate the above v[κ−1] ∈ Rκ−1 or v[n+1] with those vectors
v
[κ]
i ∈ Rκ or v

[n+1]
i in Lemma 5.5. Furthermore, for the remaining case of

the situation (⋆), i.e., when 3 ≤ κ ≤ n+1 and m[κ−1](t0) = 0, characterizing

nonzero v[n+1] such thatW [n+1](t0)v
[n+1] = 0 does not seem straightforward.

These observations might suggest a sort of limit in the algebraic arguments
through the null space viewpoint developed in the present paper, but a
further elaborated study would be quite interesting, possibly with much
more emphasis on the treatment of the calculus side of the underlying subtle
issues; such a topic may be beyond the scope of this paper aiming at stressing
the clear perspective (particularly in the arguments up to Subsection 5.1)
and new insight offered by the linear algebraic and null space viewpoint.

In connection with the above special case (ii) under the situation (⋆), we
close this section by finally giving, just in case, the following example to
show that such a case is not vacuous.

Example 5.1. Let h(t) defined on I be a differentiable function such that
t = t0 ∈ I is an accumulation point of its zero set while it is not identically
zero in the neighborhood of t0. Then, for κ = 3, f1(t) = 1 and f2(t) = h(t),

we readily see that t0 ∈ I [κ]
==0 while t0 ∈ I [κ−1]

̸=0 . Obviously, taking f3(t) =

f1(t) further leads to w[κ](t) ≡ 0 on I (if h(t) is twice differentiable).

We also give the following example just in case to show thatm[κ−1](t0) = 0
is also possible.

Example 5.2. Let h(t) be as in the above example. Then, for κ = 3,

f1(t) = t − t0 and f2(t) = (t − t0)h(t), we readily see that t0 ∈ I [κ]
==0 while

m[κ−1](t0) = 0.
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6. Conclusion

The present paper aimed at developing a new framework for the Wron-
skian theory through what we call a linear algebraic and null space view-
point. The arguments can be summarized briefly as follows.

We first showed that when the Wronskian is identically zero, we can find
two representations of vector-valued functions contained in the null space
of the Wronski matrix. We then showed only through very simple linear
algebraic arguments that the two representations are algebraically linearly
dependent. This alignment property immediately led to a key identity rele-
vant to the Wronski matrix when its determinant vanishes identically. This
identity is a key also in the pioneering study on the Wronskian in [9], where
the feature of its derivation in the present paper is that it was carried out
only through a very straightforward linear algebraic and null space view-
point and thus offers a very clear perspective. Combining these discussions
with very fundamental results for the case of two functions leads readily to
those results available in the literature, as discussed in the arguments up to
Subsection 5.1. Due to the very clear perspective as well as straightforward
treatment only through a linear algebraic viewpoint, these discussions are
believed to be of pedagogical value, too.

In the last part of the paper, i.e., Subsection 5.2, we discussed further
relevant issues on the Wronskian through the null space viewpoint. In the
course of such a study, some relevant results in the literature were derived
through this specific viewpoint and in a strengthened form. Furthermore,
some interesting problems were suggested relevant to the interest in that
subsection, which is directly related to the null space viewpoint. Some par-
tial answers were given but it would be an interesting future topic to tackle
unresolved issues so that a much clearer view as well as insight can be ob-
tained about the properties of the null space of the identically vanishing
Wronski matrix. Such an extended study might actually go more or less be-
yond the linear algebraic aspect and thus is beyond the scope of the present
paper, possibly requiring more emphasis recovered on the calculus side be-
hind the unsolved issues. Such a direction might include brigding some gap
between the studies in [11] and [12].
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