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MATIJEVIC-ROBERTS TYPE THEOREMS, REES RINGS

AND ASSOCIATED GRADED RINGS

In memory of Professor Shiro Goto

Jun Horiuchi and Kazuma Shimomoto

Abstract. The aim of this article is to investigate interrelated struc-
tures lying among three notable problems in commutative algebra. These
are Lifting problem, Ascent/descent along associated graded rings, and
Matijevic-Roberts type problem.

1. Introduction

Historically, Rees rings and associated graded rings of Noetherian rings
were studied in connection with the problem of resolving singularities of Noe-
therian schemes by blowing up closed subschemes. The aim of the present
article is to study these objects from the ring-theoretic viewpoint. One of-
ten encounters a situation where many notable ring-theoretic properties can
be derived by studying associated graded rings. Geometrically, associated
graded rings correspond to exceptional divisors of a blown-up scheme. Let A
be a Noetherian ring with an ideal I ⊆ A and let R+(I) be its Rees ring. For
example, Barshay proved that if A is Cohen-Macaulay and I is generated by
a regular sequence, then R+(I) is also Cohen-Macaulay in [3]. Let G(I) be
the associated graded ring of A with respect to I. Then Goto and Shimoda
characterized the Cohen-Macaulayness/Gorensteinness of R+(I) in terms
of the corresponding property of G(I) and its attached a-invariant in [8].
Conversely, one can ask how the singularities of G(I) affect the singularities
of A. Suppose that P is one of the following properties: Cohen-Macaulay,
Gorenstein, reduced, domain, or normal. Then under a very mild condition,
if G(I) has P, then so does A (see [6, Theorem 4.5.7, Theorem 4.5.8 and
Theorem 4.5.9] for the proofs). We use Rees rings, extended Rees rings, and
associated graded rings to study the relationship among three notable prob-
lems in commutative algebra, which are Lifting Problem, Ascent/descent
Problem in associated graded rings, and Matijevic-Roberts type Problem.
Our guiding principle is explained by Proposition 3.1 and Proposition 3.5.
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As a test example, we consider the case P = weakly normal, seminormal.
See Theorem 3.6 and Theorem 3.8.

2. Notation

Let us fix some notation. Let A be a commutative Noetherian ring with
its proper ideal I ⊆ A. Let t be an indeterminate over A. For any integers
n ≤ 0, we set In = A by convention. The Rees ring of I is defined as
R+(I) := A[It] =

⊕
n≥0 I

ntn ⊆ A[t], extended Rees ring of I as R(I) :=

A[It, t−1] =
⊕

n∈Z I
ntn ⊆ A[t, t−1], and the associated graded ring of I as

G(I) := R+(I)/IR+(I) = R(I)/t−1R(I) =
⊕

n≥0 I
n/In+1. For an ideal

I ⊆ A, we say that I is normal if In is integrally closed for all n > 0. For a
graded ring A =

⊕
n∈ZAn with an ideal I ⊆ A, let I∗ denote the ideal of A

that is generated by all homogeneous elements contained in I.
As we already mentioned in the introduction, a remarkable aspect of

associated graded rings is that one can often derive a certain property of A
from G(I). For instance, it is known that if the associated graded ring with
respect to some proper ideal of A is Cohen-Macaulay, then A is also Cohen-
Macaulay. A similar statement holds for the Gorenstein property (see [13,
Proposition 1.2]). Let us recall some definitions. See a survey paper [19] for
other equivalent definitions of seminormality and weak normality.

Definition 2.1. Let A be a commutative reduced Noetherian ring. Consider
the following conditions.

(i) For any elements y, z ∈ A with y3 = z2, there is an element x ∈ A
satisfying y = x2, z = x3.

(ii) For any elements y, z, w ∈ A and any nonzero divisor d ∈ A with
zp = ydp and pz = dw for some prime integer p, there is an element
x ∈ A with y = xp and w = px.

A ring A which satisfies the condition (i) is called seminormal (see [19,
Definition 2.17.]), and which satisfies both conditions (i) and (ii) is called
weakly normal (see [19, Definition 3.12.]).

3. Lifting problem and associated graded rings

Set up: Let C be the category of Noetherian rings. We consider a sub-
category D of C satisfying the following condition.

• Let A ∈ D. Then any finitely generated A-algebra belongs D, the
localization of A with respect to any multiplicative subset of A be-
longs to D, and any subring B ⊆ A such that A is faithfully flat over
B belongs to D. Let I ⊆ A be an ideal. Then the (extended) Rees
ring of A with respect to I belongs to D.
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We note that if A → B is faithfully flat and B is Noetherian, then A is
also Noetherian. Henceforth, we fix D as above and consider a ring-theoretic
property P which is defined on any object of D. We consider the following
properties on the objects from D.

(P1) A has P if and only if the same holds on Ap for every prime ideal
p ⊆ A.

(P2) If A has P, then the polynomial algebra A[X] has P.
(P3) If A has P and B → A is a faithfully flat extension of rings, then B

has P.

In addition to the above properties, we consider the following problems.

(Lift) Let (A,m) be a local ring. If A/yA has P for any nonzero divisor
y ∈ m, then so does A (called “lifting property” for P ).

(Gr) Let (A,m) be a local ring with an ideal I ⊆ m. IfG(I) =
⊕

n≥0 I
n/In+1

has P, then so does A (called “ascent property along associated
graded rings” for P ).

(MR) Let A =
⊕

n∈ZAn be a graded Noetherian ring. Then A has P if
and only if the localization Am has P for every graded maximal ideal
m ⊆ A (called “Matijevic-Roberts type theorem” for P).

We prove two fundamental results (Proposition 3.1 and Proposition 3.5
below) which formulate how Problem (Lift), Problem (Gr) and Problem
(MR) are related to one another.

Proposition 3.1. Fix a subcategory D ⊆ C. Suppose that P satisfies (P2)
in D and that (Gr) is solved for an ideal I = yA for a nonzero divisor y ∈ m
for a local ring (A,m) in D. Then (Lift) is solved in D.

Proof. Let (A,m) be a local ring in D and let y ∈ m be a nonzero divisor
such that A/yA has P. Then we have a graded ring map:

ϕ : (A/yA)[X] → G(yA) =
⊕
n≥0

ynA/yn+1A

by letting X 7→ y ∈ yA/y2A. Then ϕ is an isomorphism in view of [11,
Theorem 16.2]. Since A/yA has P by assumption, the condition (P2) allows
us to say that (A/yA)[X] has P. By the graded isomorphism ϕ, we see that
the associated graded ring G(yA) has P. By virtue of assumption (Gr), it
follows that A has P. In other words, (Lift) is solved. □

We recall the following result (see [14, Proposition I.7.4]).

Theorem 3.2 (Seydi). Let A be a Noetherian ring with an element y ∈ A.
Assume that y is a nonzero divisor contained in the Jacobson radical of A.
If A/yA is an integrally closed domain, then so is A.
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An application of Proposition 3.1 is a new proof of Theorem 3.2, which was
already mentioned in [7, Remark 3.8]. However, it seems that most existing
research articles study (Lift) extensively, while (Gr) is less tractable. As a
side topic, we prove an ideal-theoretic analogue of Theorem 3.2 under some
conditions.

Proposition 3.3. Let (A,m, k) be a Noetherian local ring with a nonzero
divisor y ∈ m, and let I ⊆ m be an ideal. Assume that y is a nonzero divisor
on A/In for all n > 0, the image of I in A/yA is a normal ideal, and A/yA
is an integrally closed domain. Then I is a normal ideal in A.

Proof. Let R+(I) be the Rees ring with respect to I. Then using the pre-
sentation R+(I) =

⊕
n≥0 I

n, we get R+(I)/yR+(I) ∼=
⊕

n≥0 I
n/yIn.

Fix n > 0. Now the image of In in A/yA is equal to In/(In ∩ yA). We
prove that In/yIn = In/(In ∩ yA). It is clear that yIn ⊆ In ∩ yA and so we
prove that the reverse. Let a ∈ In∩ yA be any element and write a = yb for
some b ∈ A. Since a ∈ In and y is a nonzero divisor of A/In by assumption,
it follows that b ∈ In. Thus, a = yb ∈ yIn. We get

R+(I)/yR+(I) ∼=
⊕
n≥0

In/(In ∩ yA),

which is the Rees ring (A/yA)[(I/(I ∩ yA))t] ⊆ (A/yA)[t]. By assumption,
I/(I ∩ yA) ⊆ A/yA is a normal ideal and A/yA is integrally closed, so
(A/yA)[(I/(I ∩ yA))t] is integrally closed in a normal domain (A/yA)[t] in
view of [17, Proposition 5.2.1]. Hence R+(I)/yR+(I) is an integrally closed
domain. LetM := m⊕

⊕
n≥1 I

ntn, which is the unique graded maximal ideal

of R+(I). Since y ∈ M, it follows that R+(I)M is a local normal domain.
By applying [15, Proposition 2.2], we find that R+(I) is an integrally closed
domain. In particular, this ring is integrally closed in A[t], which gives that
I is a normal ideal by [17, Proposition 5.2.1]. □

Question 3.4. Does Proposition 3.3 hold true without assuming that y is a
nonzero divisor on A/In, or A/yA is integrally closed?

It will also be interesting to investigate the connection of Proposition 3.3
with the notion of superficial elements (see [5] for a good account).

Proposition 3.5. Fix a subcategory D ⊆ C. Suppose that P satisfies (P1)
and (P3) in D and that (Lift) and (MR) are solved in D. Then (Gr) is
solved in D.

Proof. Let (A,m) be a local ring in D and let I ⊆ m be an ideal such that
G(I) =

⊕
n≥0 I

n/In+1 has P. Then there is an isomorphism:

G(I) ∼= R(I)/t−1R(I),
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where R(I) = A[It, t−1] is the extended Rees ring. Note that R(I) has a
unique graded maximal ideal M = mR(I) + ItR(I) + t−1R(I) containing
t−1. Moreover, t−1 is a nonzero divisor of R(I). By (Lift) and (P1), we
find that the localization R(I)M has P. Then (MR) shows that R(I) has
P. By (P1), the localization R(I)[t] = A[t, t−1] has P. Since A[t, t−1] is
faithfully flat over A, the condition (P3) allows us to conclude that A has
P, as desired. □

We establish the Matijevic-Roberts type theorem for seminormality and
weak normality.

Theorem 3.6. Let A =
⊕

n∈ZAn be a graded Noetherian ring such that the
integral closure of A in its total ring of fractions is Z-graded.

(1) A is seminormal if and only if the localization Am is seminormal for
every graded maximal ideal m of A.

(2) A is weakly normal if and only if the localization Am is weakly normal
for every graded maximal ideal m of A.

Proof. Before starting the proof of each assertion, we prove that, under the
seminormal or weak normal condition on each localized ring Am, that A is
a reduced ring. Recall that seminormal rings and weakly normal rings are
always reduced. Let us consider the canonical diagonal mapping

f : A →
∏
m

Am,

where the product ranges over all graded maximal ideals. Since Am is re-
duced under the stated assumptions, it suffices to show that f is injective.
Assume that x ∈ A is a nonzero element in the kernel of f . LetN := Ax ⊆ A
and consider an associated prime p of N . It is known that every associated
prime ideal of a graded ring is graded by [6, Lemma 1.5.6], which shows
that p ⊆ m for some graded maximal ideal m ⊆ A, which we fix now. Then
0 ̸= (Ax)p ⊆ Ap. Since f(Ax) = 0, it follows that (Ax)m = 0. But as
we have a factorization Ax ⊆ A → Am → Ap, it follows that (Ax)p = 0,
which gives a contradiction. So we proved that f is injective and thus, A
is reduced. In particular, the total ring of fractions of A is a finite product
of fields. So the integral closure of A in the total ring of fractions of A is a
(possibly non-Noetherian) normal Z-graded ring by hypothesis. We denote
this integral closure by A.

(1): Since seminormality is a local property in view of [16, Proposition
3.7], the “only if” part is clear. It suffices to prove the “if” part. So assume
that Am is seminormal for every graded maximal ideal m. Again by [16,
Proposition 3.7], it suffices to show that Ap is seminormal for every maximal
ideal p ⊆ A. Let p∗ be the ideal generated by all homogeneous elements
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contained in p. Then it follows from [6, Lemma 1.5.6] that p∗ is a prime
ideal. Let A(p) and A(p∗) be the homogeneous localizations as in [6, p.31].
Then by the construction, we have A(p∗) = A(p). Since p∗ is graded, there
is a graded maximal ideal m such that p∗ ⊆ m. Then we have a localization
map A(m) → A(p∗) = A(p), which extends to

A(m) → A(p∗) = A(p) → Ap,

where the second map is also a localization. So to prove that Ap is seminor-
mal, it suffices to prove that the same property holds on A(m). Without loss

of generality, we may replace A by A(m) (resp. A by A(m) := A⊗A A(m)) to
assume that A is a Z-graded Noetherian ring with a unique graded maximal
ideal m such that Am is seminormal, and A, which is the integral closure of
A, is a normal Z-graded ring. We have a push-out diagram:

A −−−−→ Ay y
Am −−−−→ Am = A⊗A Am

Suppose that x ∈ A is a homogeneous element that satisfies x2, x3 ∈ A. Since
Am coincides with the integral closure of Am in its total ring of fractions, it
follows from the hypothesis that x

1 ∈ Am. Since x is a homogeneous element,
we can write

x

1
=

a

b
for homogeneous elements a ∈ A and b ∈ A \m.

However, as the only graded maximal ideal of A is m and b is a homogeneous
element not contained in m, we find that b is a unit element of A. That is,
we get x ∈ A. By applying [10, Proposition 2.4] (see also [1, Theorem 2]),
A is seminormal, as desired.

(2): The weak normality is a local property by [20, Corollary 2]. So as
in the first case, we may assume that A is a Z-graded ring with a unique
maximal ideal m and Am is weakly normal. Keep the notation as in (1).
In view of [18, Proposition 3.1], it suffices to show that if a homogeneous
element x ∈ A satisfies xp ∈ A and px ∈ A for some prime p, then x ∈ A.
By the weak normality of Am, it follows that x

1 ∈ Am and one can proceed
as in the first case to finish the proof. □

We recall the following result.

Theorem 3.7 (Heitmann, Murayama). Let (A,m) be a Noetherian local
ring with a nonzero divisor y ∈ m. If A/yA is seminormal (resp. weakly
normal), then A is also seminormal (resp. weakly normal).
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While the seminormal case due to Heitmann is found in [9], the weakly
normal case due to Murayama is found in [12, Proposition 4.10], where a new
proof of the seminormal case is also given. Recently, even another innovative
approach is discovered in [4]. The following result gives a realization of
Proposition 3.5. The corresponding statement in the normal case has been
already known. See for instance [6, Theorem 4.5.9].

Theorem 3.8. Let (A,m) be a Noetherian local ring of dimA ≥ 1 and let
I be an ideal of A. Then the following assertions hold.

(1) If G(I) is seminormal, then R+(I), R(I) and A are seminormal.
(2) If G(I) is weakly normal, then R+(I), R(I) and A are weakly nor-

mal.

Proof. (1): First, we prove that the extended Rees ring R(I) is seminormal.
Recall that G(I) ∼= R(I)/t−1R(I) and t−1 is a nonzero divisor of R(I).
Since A is local, R(I) has a unique graded maximal ideal M := mR(I) +
ItR(I) + t−1R(I) which contains t−1. By Theorem 3.7, the localization
R(I)M is seminormal. Since G(I) is reduced, it follows that the ring R(I)
is also reduced by [17, Exercise 5.9 at page 116]. Moreover, the integral
closure of R(I) in its total ring of fractions is a Z-graded ring in view of
[17, Proposition 5.2.4]. So Theorem 3.6 yields seminormality of R(I). Then
the localization R(I)[t] = A[t, t−1] is seminormal. Since A → A[t, t−1] is
faithfully flat, it follows that A is seminormal by [19, Theorem 2.22]. The
reducedness of G(I) gives that I is a normal ideal, that is In is integrally
closed for all n > 0 in view of [17, Exercise 5.7 at page 116]. So R+(I)
is integrally closed in the seminormal ring A[t] by [17, Proposition 5.2.1].
Hence R+(I) is seminormal as well.

(2): One can proceed as in the first case by applying Theorem 3.6. So
it suffices to recall that (Lift) holds for P = weak normality by Theorem
3.7. □

Remark 3.9. We applied Proposition 3.5 to prove Theorem 3.8. However,
we do not have to worry about specifying what the subcategory D ⊆ C
is, because the ideas appearing in the proof of Proposition 3.5 are mostly
essential.
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