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RESOLUTION THEOREM OF THE ALGEBRAIC
K-THEORY AND ITS APPLICATIONS

MARIKO OHARA

ABSTRACT. The main objective is showing a variant of resolution the-
orem of connective Waldhausen K-theory in suitable situations. We
construct two sequences of subcategories, one is consisting of finitely
generated symmetric module spectra which satisfy the condition of the
resolution theorem and the other is consisting of the corresponding co-
subcategories of certain finitely generated module spectra. As an ap-
plication, we construct a sequence of subcategories consisting of certain
DG-modules satisfying the condition of a resolution theorem.

1. INTRODUCTION

A resolution theorem for connective K-theory, initiated by Quillen, is
a powerful tool for calculating the Quillen K-theory. It is mainly applied
to showing an equivalence between the Quillen K-theory of the category
of finitely generated projective modules and the Quillen K-theory of the
category of finite projective dimension or compact modules by constructing
a sequence of subcategories between these two categories.

However, the Quillen resolution theorem only works for exact categories,
with isomorphisms and admissible monomorphisms as cofibrations, and does
not cover more general categories with cofibrations and weak equivalences.
Therefore the several theorems, such as cofinality theorem in [34] and in
[17] and a resolution theorem in [27], have ever been proposed, which take
place of the Quillen resolution theorem in Waldhausen K-theory. As for
cofinality theorem, cofinality condition is strong, so that, for example, the
category of finitely generated modules of finite projective dimension and the
full subcategory of finitely generated projective modules with arbitrary weak
equivalences do not satisfy in general.

In this paper, we use a notion of left and right Waldhausen categories
arising from fibrations and cofibrations and use right and left algebraic K-
theory introduced in [11] and paraphrasing the notations between simplicial
categories and co-categories. We set up some assumptions and a technique
to demonstrate a variant of resolution theorem as in [27] with respect to
Tor-amplitude for the left algebraic K-theory, and as a special case, con-
struct two sequences of subcategories, one is consisting of subcategories of

Mathematics Subject Classification. Primary 18E99; Secondary 19D10.
Key words and phrases. K-theory, projective modules, Es-rings, infinity category.

113



114 M. OHARA

certain finitely generated symmetric module spectra which satisfy the con-
dition of a resolution theorem of Waldhausen K-theory and the other is
consisting of the corresponding co-subcategories of certain finitely generated
module spectra. We see that the Waldhausen K-theory of each subcategory
of certain symmetric module spectra is equivalent to the algebraic K-theory
of the corresponding oo-category of certain module spectra. As a conse-
quence, we show that the algebraic K-theory of the oo-category of finitely
generated projective module spectra is equivalent to that of co-category of
perfect module spectra as in Corollary 5.8. Also, as an application of reso-
lution theorem, we have the following : let R be a regular E;-ring with only
finitely many non-zero homotopy groups. Then, there is a weak equivalence
K(LMod;”) ~ K(Px,r). Here, we denote by Py, the category of finitely
generated projective mgR-modules. This is a variant of a consequence in [5].
As another application for constructing such sequences, we also construct
such sequences in the category of DG modules over a commutative ring with
the projective model structure. As a consequence, we give the comparison of
the algebraic K-theory of the category of perfect modules and finitely gen-
erated semi-projective modules as in Proposition 6.1. The projective model
category of DG modules is Quillen equivalent to the stable model category
of module spectra over the corresponding Eilenberg-Maclane ring spectra.
Let R be a cofibrant fibrant symmetric ring spectrum, Mg the category
of symmetric left R-module spectra endowed with the stable model structure
and Wy, the subcategory of weak equivalences. Then, Lurie [23, Theorem
1.3.4.20, Example 4.1.7.6] shows that there is an equivalence of co-categories

N((MR)*) Wy, ~ LModg,

where we denote by (—)¢ the subcategory of cofibrant objects, LModg by
oo-category of left R-modules and R’ is an image in Sp corresponding to
R, which becomes an Ei-ring [23, Theorem 4.3.3.17]. As a variant of this
consequence, we relate a full subcategory of the model category Mg with
full co-subcategory of LModg as in Proposition 3.2.

If a saturated Waldhausen category (C,w) admits a mapping cylinder
functor then the Segal-Waldhausen construction wSeC of (C,w) is homotopy
equivalent to the S’-construction wS,C of (C,w) cf. [9, Theorem 2.9].

Moreover, the K-theory given by S” construction [9] is equivalent to the
algebraic K-theory of the underlying oo-category in this case. By using
this consequence, we have an equivalence between connective K-theory of
suitable Waldhausen categories and that of their underlying oco-categories.
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We check that the left algebraic K-theory of each subcategory of Mg,
which is not a model category itself, which appears in the sequence is equiv-
alent to the algebraic K-theory of the corresponding oo-category of certain
module spectra.

We show an equivalence between a sequences of certain subcategories in
Mp and that in LModg, modify and apply a resolution theorem to the
sequence of subcategories in Mp.

Let R be a connective Ei-ring and M an R-module. We say that M is
finitely generated projective if it is a retract of a finitely generated free R-
module [23, Proposition 7.2.2.7]. We denote by LMod};® the oo-category
of finitely generated projective R-modules.

Let LMOd%erf be the smallest stable full co-subcategory of oco-category
LModp, of left R-modules which contains R and is closed under retracts [23,
Definition 7.2.4.1]. We say that an R-module M in LModp is a perfect if it
belongs to LMod’ﬁrf.

A connective ring spectrum R, or a connective Ei-ring R, is left coherent
if moR is left coherent (i.e. every finitely generated ideal is finitely presented
as left mo R-module) and 7, R is finitely presented left o R-module for n > 0.
If R is a left coherent E;-ring, by [23, Proposition 7.2.4.23 (4), Proposition
7.2.4.17], the condition of perfectness is described by the condition on ho-
motopy groups.

Theorem 1.1. Let R be a left coherent cofibrant Ei-ring. Let Mp be the
category of symmetric left R-module spectra. Let LModp be the co-category
of left R-modules.

(i) We obtain a sequence of subcategories M%p c---CcMpPC M%H’p C
- of Mg and a sequence of co-subcategories LMody, ™ ~ LMOd?_—Ep —
---LModTé’p — LModzH’p — -+ of LModg such that the underly-
ing oo-category of M%’p 18 LMod%’p. Moreover, we have an equiva-
lence KE(MRP)¢) ~ K(LModz?) and KL(MRP)T) ~ K(LModR?)
of connective right and left K-theory.
(ii) The inclusions of full subcategories induce equivalences K(MpP) ~
K(Mzﬂ’p) and K(LMod?) ~ K(LMod?zH’p) of right and left con-
nective K-theory, respectively.

We remark Lurie also shows the equivalence K (LMod? %) ~ K (LMod%"/)
of K-theory in completely oo-categorical setting for a connective E;-ring R
in his lecture [25]. It is a different kind of proof from ours. As an advantage
of our construction, we can calculate the algebraic K-theory of other mod-
ule categories by constructing a certain sequence of subcategories in other
module categories and comparing our sequence of subcategories with it.
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As an application, we see how things go in DG-module case. By [31],
there are Quillen equivalence between the category of H R-module spectra
endowed with the stable model structure and the category of DG R-modules
endowed with the projective model structure [21, Theorem 3.1]. The sta-
ble model structure is the same model structure as Mp in this paper if
R = HA. Here, we identified a DG algebra A with the corresponding
Eilenberg-Maclane spectrum HA. The underlying co-category is as in [23,
Definition 1.3.5.8], which includes bounded derived category as fully faith-
ful embedding [23, Proposition 1.3.5.24]. Note that we have a canonical
equivalence K(A) ~ K(HA).

The important point here is an appropriate definition of projective di-
mension. There are two notions of this, which are due to Yakutiel, or due
to Avramov and Foxby. We adopt that by Avramov and Foxby [1], because
it is suitable for extensions. We check that the sequence of subcategories
obtained via the projective dimension satisfies the resolution conditions de-
scribed in Definition 3.

Proposition 1.2 (DG-module case Proposition 6.1). Let A be a Noether-
ian connective DG algebra over a field k such that its differential 0, that
decreases degree by one, sends the degree 1 part A1 of A to zero.

Let Ca be the category of DG A-modules and C’} the full subcategory con-
sisting of DG A-module with the projective dimension is less than or equal
to n. Then, we obtain the sequence C C ---C% C CZ'H C -+ of full subcat-
egories satisfies the Resolution conditions. The category Cg is equivalent to
the category of finitely generated semi-projective DG A-modules.

We have a resolution theorem between the algebraic K-theory of finite
semi-projective DG modules and DG modules of finite projective dimension,
which is not stated explicitly ever.

Corollary 1.3. Assume that A is Noetherian connective DG algebra over
k such that its differential O sends the degree 1 part Ay of A to zero. The
algebraic K-theory of the category of perfect A-modules is equivalent to the
algebraic K-theory of the category of finitely generated semi-projective A-
modules.

2. RIGHT AND LEFT WALDHAUSEN CATEGORY

Let C = (C, Ac,wc) be a triple consisting of a pointed category C and
subcategories Ac and wc of C where both subcategories have the same ob-
jects of C. Here, these subcategories are assumed to have a specific 0, which
is preserved by inclusions of subcategories.

The definition of cofibrations and fibrations are as follows.
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A class of cofibrations is a class of morphisms in C which satisfies the
following conditions:

(i) 0 — X is a cofibration for any object X, where 0 stands for a specific
zero object in C.
(ii) The class Ac of cofibrations includes isomorphisms,
(iii) Any composition of cofibrations is a cofibration,
(iv) For a cofibration X — Y and a morphism X — Z, there exists a
cocartesian square

X——Y

L,

Z——W,
in which the morphism f is a cofibration.

A class of fibrations is a class of morphisms in C whose image in the opposite
category CP satisfies the axiom of a class of cofibrations.

According to Cisinski [11], we will introduce right and left Waldhausen
categories. We say that C = (C, Ac,wc) is a right Waldhausen category
if the triple C is a category with cofibrations and weak equivalences in the
sense of Waldhausen category [34]. A morphism f: z — y in Ac is called a
cofibration and a morphism in wc is called a weak equivalence. If the triple
of opposite categories C? = (C°P, AZP , wgp ) is a right Waldhausen category,
we say that C is a left Waldhausen category.

For a right Waldhausen category, a sequence of composable morphism

T 5y 2y 2 in C will be called a cofibration sequence if pi is the zero
morphism and if 7 is a cofibration and the canonical morphism y [, 0 — =
induced from the universal property of cofiber products is an isomorphism.

Dually, for a left Waldhausen category C' = (C', Ac/, wer), a morphism
firx — yin A is called a fibration and a morphism in wcs is called a

weak equivalence and a sequence of composable morphism = — y L 2inC
will be called a fibration sequence if pi is the zero morphism and if p is a
fibration and the canonical morphism z — 0 X,y induced from the universal
property of fiber products is an isomorphism.

If C and C’ essentially small and a right and left Waldhausen category,
respectively, we define Kf(C) and K¥(C’) to be the connective right and
left algebraic K-theory of C and C’, by setting Kf(C) = Q|wcS,C| and
KE(C) = Qw@S.C"P|, which is the loop space of the geometric realization
of pointed simplicial category wcSeC and wgg SeC'°?, where S stands for
Segal S-construction in [34].

We say that a full subcategory D < C is replete if any object « in C such
that it is isomorphic to an object y in D is also in D.
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For a triple (C, Ac,wc) and a full subcategory D < C, we say that D is
wc-closed in C if, for any object C' in C, if there exists an object D in D and
if there exists a zig-zag sequence of morphisms in w¢ which connects C' and
D, then C is in D.

Here, we give some example of cofibrations.

Example 2.1. We say that a cofibration f: z — y in C is D-admissible if z,
y and y ][, 0 are in D. We denote the class of all D-admissible cofibrations
by Cofcp. Then a replete full subcategory D becomes a right Waldhausen
category of C by setting the triple (D, Cofcp, wc N D). We say this subcat-
egory an admissible right Waldhausen subcategory.

Dually, we say that a fibration f: z — y in C is D-admissible if x, y and
x X 0t are in D.

Example 2.2. Furthermore, if the subcategory Cofc p is just Cofc N D,
we say that the triple (D,Cofc N D,wc N D) is a strictly right Waldhausen
subcategory of C.

Example 2.3. We say that a cofibration i:  — y is split if it is of the form
x — z [[y/z where y/z stands for y [, 0.

Example 2.4. Recall that a model category M = (M, Cofum, Fibm, wn) is
pointed if M has a zero object. We fix a specfic zero object 0 in M. Let
C be a full subcategory of M. We write C¢ and Cf for the full subcategory
of C consisting of all cofibrant objects and fibrant objects in C, respectively.
Note that the triple M® = (M€ Cofm me, wmnme) is a right Waldhausen
category and M/ = (Mf,fibMMf,meMf) is a left Waldhausen category,
respectively.

Example 2.5 (cf. [30]). We define a cofibration and fibration in the full
subcategory C of stable model category M as follows : we define a cofibration
X — Y in C if it is a cofibration in M in the sense of model category and
its cofiber lies in C. Then, we have a pushout diagram for a cofibration
i: A — B and an arbitrary map A — C

A—' .B

C—LBI[,C

in C since we have an isomorphism of cokernel i and ¢/, i.e., (B[], C) [ [~ 0 =
BTJ40. Therefore, C¢ is a right Waldhausen category with the cofibrations.

We also define a fibration as a dual notion and the class of fibrations make
C a left Waldhausen category.
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For example, the full subcategory of finitely generated projective mod-
ules in the category of finitely generated modules becomes admissible right
Waldhausen subcategory in the sense of Example 1. On the other hand, the
full subcategory of finitely generated modules of finite projective dimension
in the category of finitely generated modules becomes both admissible right
Waldhausen subcategory and strictly Waldhausen subcategory. In this case,
the algebraic K-theories of admissible and strictly right Waldhausen cate-
gory are known to be equivalent [24, Theorem 10]. Lurie [25] also showed
this equivalence in the setting of co-category in his unpublished note.

For a right Waldhausen subcategory D in C, we denote the connective
right algebraic K-theory of the triple (D, Cofc p,wc N D) by KE(D) in this
paper.

For a left Waldhausen category C' = (C', Fibc/, wer) and a replete full
subcategory D' < (', similarly we can define the notions of D’-admissible
fibrations, left Waldhausen subcategories of C' and strictly left Waldhausen
subcategories of C’ and the connective left algebraic K-theory K*(D').

2.1. S’-construction. Let C be a right Waldhausen category. A map f :
A — B issaid to be a weak cofibration if it has a zig-zag of weak equivalences
to a cofibration in Fun([1],C). We denote the full subcategory of Fun([1],C)
consisting of all weak cofibrations by W — Cofe.

Similarly, let C’ be a pointed category endowed with fibrations. A map
f:A— Bin ( is said to be a weak fibration if it has a zig-zag of weak
equivalences to a fibration in Fun([1],C). We denote the full subcategory
of Fun([1],C) consisting of all weak fibrations by W — Fibes. It is the dual
notion of weak cofibrations defined in [9, Definition 2.2].

From the functors [0] — [1], 0 — 0 and 0 — 1, we obtain the functors
s,t: Fun([1],C) — C. Let K be a full subcategory of Fun([1],C). We say
that C admits right functorial factorization for X if there exists a functor
T: K — C and natural transformations i: s — T and p: T" — t such that for
any object f: & — yin K, ig: © — T(f) is a cofibration and py: T(f) — y
is a weak equivalence and f = pyiy.

We say that C admits left functorial factorization for IC if there exists a
functor T: K — C and natural transformations i: s — T and p: T — t such
that for any object f: 2z — y in K, if: & — T(f) is a weak equivalence
and pg: T(f) — y is a fibration and f = priy. Especially, we say that
a pointed category C defined above admits the left functorial factorization
of weak fibrations if any weak fibration is factored functorially as a weak
equivalence followed by a fibration in C.
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Definition 1 ([10], Theorem 6.4). A category with weak equivalences is
called saturated if a map is a weak equivalence if and only if it is an isomor-
phism in the homotopy category.

In the case of Waldhausen category with functorial mapping cylinders
for weak cofibrations, the property of being saturated is equivalent to the
condition that the weak equivalences satisfying the two out of six property.

Remark ([8] 2.4, [9] 5.5, 6.4). We note that categories with weak equivalences
satisfying homotopy calculi of fractions admit coincide model of mapping
spaces in the Dwyer-Kan simplicial localization. Especially, the homotopy
additivity is preserved via the localiztion with respect to weak equivalences.

In full subcategory of model category cases, if we require functorial map-
ping cylinders for maps that are equivalent via a zig-zag of weak equivalences
to a cofibration, then the category has a homotopy calculus of left fractions.

Let C be a Waldhausen category that admits the right functorial fac-
torization of weak cofibrations and saturated. We have the Waldhausen
S-construction SeC, and also have S)-construction S,C by using weak cofi-
brations defined in [9, Definition 2.7] as follows.

For each integer n, let Arp, (C) be the full subcategory of Fun(N{(i, j) €
[n] X [n] : ¢ < j},C) spanned by those functors X satisfying the following
three conditions:

e For each i < j < k, the natural map X (i,5) — X(i,k) is a weak
cofibration.

e For each i, the object X(i,1) is 0.

e For each i < j <k, the diagram

X (i, j)—=X(i, k)

X (4, k)

is a pushout square.
We can also define wS],C by the nerve of the category of weak equivalences
in S;,C = weArp, (C). We denote by wS,C the bisimplicial set which sends
[n] € A to wS),C.

Proposition 2.6 ([9] Theorem 2.9). If C satisfies the right functorial fac-
torization for weak cofibrations and saturated, the inclusion wSeC — wS,C
induces a weak equivalence wSesC — wSLC of bisimplicial set. This means
that we have a weak equivalence wS,C — wS,,C for each n > 0.

0
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2.2. Notion of homotopically small model. Since the algebraic K-
theory is defined via taking simplicial set, it is basically defined for (es-
sentially) small category with some finiteness with respect to colimits. We
need to take a small model.

Note that, we take homotopically small model for just a category with
weak (co)fibrations, to proceed S’-construction and compare the algebraic
K-theory of co-category. We do not require the homotopicall small model
is a Waldhausen category.

We fix two uncountable strongly inaccessible cardinals kg9 < k1 and the
corresponding universes U € V. We say that a mathematical object T is
small if all the data defining T is collected by sets isomorphic to elements
of U, and large if all the data defining 7" is collected by sets isomorphic to
elements of V.

Definition 2 (cf. [29]). We say that a replete right and left Waldhausen full
subcategory C of a simplicial model category M is a homotopically essentially
small if there exists a small We-closed full subcategory C’ of C such that

(i) the inclusion functors €' < C¢ and C'/ < Cf induce equivalences of
categories ho(C'¢) =~ ho(C¢) and ho(C'T) ~ ho(C') as large mathemati-
cal objects,

(i) the inclusion functor induces equivalences Na(C'*f) ~ N(C'¢) (We, 1~
N(C¢)[W; '] of simplicial sets and both hands sides are co-categories [23,
Example 4.1.7.6] with weak cofibrations and weak fibrations via cofi-
brations and fibrations in C.

In this case, we call C’ a homotopically essentially small model of C.

In this case, we can define K %(C¢) to be the connective right (respectively
left) algebraic K-theory of C¢ by setting K(C¢) = QwS.LC'|. Similary, we
can define the connective left algebraic K-theory by KX (Cf) = QwPS.C"P|.
If the Waldhausen category C satisfies the conditions in Remark 2.1, by
approximation theorem, it turns out that this definition does not depend
upon a choice of C' up to homotopy equivalence.

3. COMPARISON WITH ALGEBRAIC K-THEORY FOR 00-CATEGORIES

Lurie gave a definition of the algebraic K-theory for pointed oco-category
as follows.

An oco-category with cofibrations is a pointed co-category C with a distin-
guished class of morphisms, which we will call co-cofibrations, which satisfy
the following axioms:

e All equivalences are co-cofibrations and the collection of co-cofibrations
is closed under composition.
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e For every object X in C, the canonical map 0 — X is an oo-
cofibration.

e For an oo-cofibration f : X — X’ and an arbitrary map X — Y,
there exists a pushout square

x—tox

|

Y——=Y/,
g

and the map ¢ is also an co-cofibration.

Let C be an oo-category with oo-cofibrations. For each integer n, we let
Gapy,)(C) denote the full subcategory of Fun(N{(4,j) € [n] x [n] : i < j},C)
spanned by those functors X satisfying the following three conditions:

e For each ¢ < j < k, the natural map X (i,7) — X(i,k) is an oo-
cofibration.

e For each i, the object X (4,%) is 0.

e For each i < j <k, the diagram

X(i,§)—=X (i, k)

0 X(j,k)

is a pushout square.

Note that an object X of Gapy,(C) is determined up to unique homotopy.

Let C be an oo-category with oo-cofibrations. We let S¢(C) denote the
simplicial space given by the formula S, (C) = Gapp,)(C)=. Let K(C) denote
the space given by |S¢(C)|, and we refer it to the right algebraic K-theory
for the co-category C.

We can also consider a notion of an co-category with oco-fibrations and
their left algebraic K-theory for the co-category.

Here is a comparison theorem with the algebraic K-theory for co-categories
as follows.

For a pair of simplicial sets X and Y, we denote the function space from
X to Y by Fun(X,Y).

Let Z be a simplicial subset of X. We say that Z is 0-full if for any
n-simplex x in X, x is in Z if and only if all vertices of x is in Z.

We say that Z is 1-full if for any n-simplex z in X (n > 1), z is in Z if
and only if all edges of x is in Z. For a pair of vertices x and y in a simplicial
set X, we write X (x,y) for the simplicial subset of Fun(A[l], X) consisting
of those n-simplexes f: Aln] x A[1] — X such that f|anx{o} = ¢nz and
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f|A[n]X{1} = ¢,y where ¢;: Xg — X; stands for the induced map from the
canoical map ¢, : [n] — [0].

Proposition 3.1 ([16] 4.18, [7] 7.11, [11] 4.10, 4.11). Let C = (C,Cofc,wc)
be a small right Waldhausen category. Assume that there exists a model
category M = (M, Cofm, Fibm, wm) and C is a right Waldhausen full sub-
category of M such that C — M¢C°. In this case, we have N(C)[wgl] ~
Na(LH(C,we)™®) where LT (C,wc) is a hammock localization of C with re-
spect to we and (—)ﬁb stands for the fibrant replacement with respect to
Bergner model structure on the category of small simplicial categories. Here,
Na is the homotopy coherent nerve given in [22, Definition 1.1.5.5] and [23,
Notation 1.3.4.11]. We define COfN(C)[wgl] to be the smallest 1-full subcate-

gory of N(C)[wgl] that is closed under homotopy relations and contains the
equivalences and the image of weak cofibrations from C.

If C admits a functorial factorization for weak cofibrations in C and wc
satisfies two out of six property, then we define the co-category N(C)[wgl] =
(N(C)[wgl],COfN(c)[wE1]) with oo-cofibrations and there exists a natural ho-

motopy equivalence of spectra
KH(C) = KH(N(C)lwe ')

O

Let C be a pointed oco-category and let P be a property of objects in C.

Assume that there exists a simplicial (small) model category M and a
weakly categorical equivalence f: NaM® — C. We say that a property P
is stable under equivalences if an object x in C has the propery P and an
object y is equivalent to z, then y also has the property P. Assume that P
is stable under equivalences.

We say that an object z in M€ has the property P via f if for a fibrant
replacement z’ of x, f(2') has a property P. This definition does not depend
upon a choice of /. We denote the 0-full subcategory of C and M¢ spanned
by all objects which have the property P by Cp and M% respectively.

Proposition 3.2. Assume that we have a weakly categorical equivalence
f: NAM — C and M be a simplicial model category. Assume that M ad-
mits a functorial factorization for weak cofibrations in M and waq satisfies
two out of siz property. We have the following:

(i) f induces a weakly categorical equivalence of co-categories NAM;f ~
Cp

(it) If M% is a right Waldhausen subcategory of M and Cp is closed under
weak equivalences and finite colimits, then f induces a homotopy equiv-
alence KE(MS) — KE(Cp) on connective K -theory. Here a class of
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oco-cofibrations in Cp is spanned by the image of weak cofibrations in

M(j{ via f.

To prove this proposition, we need some notations.

Let X and Y be a pair of simplicial sets and let f and g: X — Y be
simplicial maps. Recall that a natural transformation from f to g is a
simplicial map 6: X x A[l] — Y such that 0|x.q0y = f and 0|x, 1) = g-
For any vertex z in X, we write 0, for 6(¢7(z),idp)) where ¢7: Xo — Xi
stands for the induced map from the canonical map ¢7: [1] — [0].

A natural transformation 6 from f to g is a natural equivalence if 6, is
an isomorphism in 7'Y for any vertex x in X. Here 7! stands for the left
adjoint functor of the classical nerve functor N: Cat — Seta.

A simplicial map f: X — Y is a strongly categorical equivalence if there
exists a simplicial map ¢g: Y — X and natural equivalences idx — ¢f and
fg — idy. If both X and Y are oo-categories, it was shown by Joyal that f
is a strongly categorical equivalence if and only if it is a weakly categorical
equivalence.

Proof. First of all, we will show the following assertion.

Let f: X — Y be a strongly categorical equivalence between simplicial
sets and let S be a set of vertices in Y which is stable under equivalences.
Then the restriction of f to f~1(.9) induces a strongly categorical equivalence
f~YS) — S. Here, f71(S) and S be the 0-full simplicial subsets spanned
by f~1(S) in X and S in Y, respectively.

For this, let g: Y — X be a simplicial map such that there are natural
equivalences 0: idx — gf and n: fg — idy. We claim that g induces a
simplicial map S — f~!(S). Note that for any vertex z € S, = and fg(x)
are equivalent via 7,. Since S is stable under equivalences in Y, fg(x)isin S
and then g(x) is in f~1(S), i.e., for any integer n and any n-simplex z € S,,,
g(x) is in f_l(S)n. Since S and f~1(S) is O-full, g induces the simplicial
map S — f~1(S) which we denote by the same letter g for simplicity. Thus,
the restrictions of 6 and 7 are natural equivalences idx — ¢f and fg — idy
respectively.

Note that, for a small simplicial category M, the essential image of nerve
functor Na is the 0-full simplicial subset spanned by the image of objects in
M. We apply these argument to the case X = NaM®| Y =C and S = Cp.
Thus, we complete the proof of the assertion (i).

The assertion (ii) in the proposition follows from the assertion (i) and
Proposition 3.1. [l




RESOLUTION THEOREM OF THE ALGEBRAIC K-THEORY 125

4. RESOLUTION THEOREM AND COMPARISON

Let C = (C, Fibc,wc) be a left Waldhausen category. Let D < C be a
replete full subcategory of C.

Definition 3. We say that the inclusion functor D — C satisfies the reso-
lution condition if it satisfies the following three conditions:

(Resl) D is closed under extensions in C. Namely for a fibration sequence
x —y — zin C, if x and z are in D respectively, then y is also in D.

(Res2) For any object z in C, there exists a fibration sequence x — y — z
in C such that y is in D.

(Res3) For a fibration sequence x — y — z in C, if y and z are in D, then
x is also in D.

Let w be a class of morphisms in a category C. We say that w is a
multiplicative system of C if w is closed under finite compositions and closed
under isomorphisms. For a category C and a multiplicative system w of C,
we define the full subcategory C(m,w) of Funcat([m],C) of those functors
which take values in w for each m.

We say that the inclusion functor 7: D — C is satisfying the strong res-
olution conditions if for any non-negative integer m, D(m,w) — C(m,w)
satisfies the resolution conditions.

Theorem 4.1 (cf. [27] Theorem 1.13). Let C = (C,F,wc) be an essen-
tially small left Waldhausen category and let D — C be a full subcategory
of C. Assume the inclusion functor D < C satisfies the strong resolu-
tion conditions. Then the inclusion functor induces a homotopy equivalence
KY(D;we N D) — KE(C) on connective left algebraic K-theory. Here, a
morphism f: X =Y inD is a fibration if f is a fibration in C and the fiber
of f is in D.

[l

Let C = (C, Fibc,wc) be an essentially small left Waldhausen category
and let D — C be a replete full subcategory of C. For a non-negative integer
n and a full subcategory X of C, we write X (n,w) for the full subcategory
Fun([n], X) the category of functors from the totally ordered set [n] = {k €
Z|0 < k < n} to C consisting of those objects x: [n] — C such that for any
pair of integers 0 <i < j <mn, (i < j) is in wc.

For an object  and a morphism f: z — y in X(n,w) and for integers
0<k<nand0<j<n-—1, we write zy, fi and i for z(k), f(k) and
x(j < j+1). If X is a left Waldhausen subcategory of C, then we can
make X (n,w) into a left Waldhausen category. Namely for a morphism
p:x — y in X(n,w) is a fibration (respectively weak equivalence) if and
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only if px: x; — yi is a fibration (respectively weak equivalence) in X for
any 0 < k <n.

Proposition 4.2. Let C = (C, Fibc,wc) be an essentially small left Wald-
hausen category and let D — C be a replete full subcategory of C. we assume
the following two conditions:

(i) C satisfies the left functorial factorization for fibrations.
(ii) D is wc-closed.

Then if D — C satisfies the resolution conditions in Definition 3, then
D — C satisfies the strong resolution condition. In particular the inclusion
functor D < C induces a homotopy equivalence K*(D,w|p) — K*(C,w)
on connective left algebraic K -theory.

Proof. The last statement follows from [27, Theorem 1.13]. Since K*(C)
is defined to be the opposite Qw’ SeC?|. What we need to show is that
for any non-negative integer m, the inclusion functor D(m,w) — C(m,w)
satisfies the resolution condition.

Take a fibration sequence x — y — z in C(m,w). If x and z are objects
in D(m,w), for each 0 < i < m, x; and z; are in D. By condition (Res 1),
y; is in D for each i. Thus, y is in D(m,w) and we verify condition (Res 1)
for each m.

We show condition (Res3).

The condition (Res 3) is valid for m = 0. Take a fibration sequence
r—y—z€C(mw).

Lo——> =Ty 1L

T

yf : l yml—l yln
20 e Zm—1 Zm-

Here, the horizontal maps are weak equivalences. Assume that we have
a fibration y — z in D(m,w), i.e., each y; — z; is a fibration in D for
1 < ¢ < m. By condition (Res 3) for m = 0 and the assumption (ii), we
have a fibration sequence x; — y; — 2; in the full subcategory D of C for
each 0 <7 <m.

Now, we show condition (Res2). We proceed by induction on m. For
m = 0, assertion follows from assumption that the inclusion functor D — C
satisfies condition (Res 2). We assume that m > 1. Let = be an object in
C(m,w) and we define 2’ to be an object in C(m — 1, w) by setting 2’ =z ot
where ¢: [m—1] — [m] is the inclusion functor ¢(k) = k forall 0 < k < m—1.
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By inductive hypothesis, we have the following diagram:

yOH' . 'Hym—l

[

Tm—1 Tm,y

where the vertical morphisms are fibration. Then by applying condition (i)
to the composition ¥y,—1 — Tm—1 — Tm, it turns out that there exists y;,
such that there is a fibration p,,: ym — T, in C and a week equivalence

i 1t Ym—1 — Ym such that ppil | =% _1pm—1. Since ym,—1 is in D and
i¥ 4 is in wc, ym is in D by we-closedness. We define y and p : y — z to

be an object in D(m,w) and a fibration in C(m,w) by setting the following
way:
y { yo if0<k<m-1 { i f0<k<m-—2
k: = =

Ym ifk=m 'k im ifk=m
and
| fo<k<m-1
PE= pupr itk=m
Now we complete the proof. ]

5. RELATION BETWEEN CLASSICAL AND 00-CATEGORICAL SPECTRA

For a symmetric associative ring spectrum R, let Mg be a category which
consists symmetric left R-module spectra and the morphisms compatible
with the left R-module structure [19].

Since Mg, is built via the sequences of simplicial sets and has the set of
generating cofibrations and acyclic cofibrations by [26, Theorem 14.1], it is a
combinatorial model category for suitable cardinal [19, Proposition 3.2.3.13].
Therefore, we can take a cofibrant and fibrant replacement functorially [22,
Proposition 1.2.5].

Let A and B be cofibrant objects in Mpg. Let f: A — B be a morphism.
A mapping cylinder gives a functorial factorization for M$%, i.e., every map
f : A — B factors through A — M f — B, where the map A — M f is a
cofibration and M f — B has a natural section B — M f, which is a weak
equivalence. Moreover, M f is a cofibrant object.

Dually, a mapping path object gives a functorial factorization for the
opposite category (Mpg), i.e., every map f : A — B factors through
A — Nf — B of the map A — N f has a natural projection Nf — A,
which is a weak equivalence, and N f — B is a fibration.

5.1. Sequence of certain subcategories of R-modules. According to
(23, Definition 7.2.4.21], we define certain (oo-) categories LMod” and
M%’p , respectively, as follows.
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Thoroughout this section, we assume that R is cofibrant fibrant in the
model category of algebra objects in the category of the symmetric spectra.

Definition 4. Let R be a connective E;-ring.

(i) We say that a right R-module M is a discrete R-module if its homotopy
group 7, M vanishes if n is not equal to 0.

(ii) We say that a left R-module M in LModpg (resp. in Mp) has Tor-
amplitude less than or equal to n if, for all i > n, m(N ®r M) =0
for any discrete right R-module N (resp. any discrete cofibrant fibrant
right R-module N). We say that M has finite Tor-amplitude if there
exists an integer n such that M has Tor-amplitude less than or equal
to n.

(iii) For aleft coherent Ei-ring R, we write LMod;” for a full co-subcategory
of LMod’]’%6 rf consisting of the objects which are connective and have
Tor-amplitude less than or equal to n. Here, LMod}; "/ is the small-
est stable full co-subcategory of co-category LModp of left R-modules
which contains R and is closed under retracts [23, Definition 7.2.4.1].

(iv) For a left coherent ring spectrum R, a full subcategory M%, C Mp
is defined by those connective left R-modules M such that m,,M are
finitely presented mgR-modules for every m € Z and M have finite
Tor-amplitude less than or equal to n.

(v) For a left coherent ring spectrum R, we define a category Mp" C
MY, by a full subcategory of those connective left R-modules of Tor-
amplitude less than or equal to n for fixed n.

3 n,p
We show the first properties on M "

Lemma 5.1. Let M/ — M — M" be a fiber sequence of R-modules in
(MR
(i) Assume that M' and M" have Tor-amplitude less than or equal to n,
and M has Tor-amplitude less than or equal to n — 1. Then, M’ has
Tor-amplitude less than or equal to n — 1.
(ii) Assume that M’ and M" have Tor-amplitude less than or equal to n.

Then, M has Tor-amplitude less than or equal to n.
(iii) (MEP) is closed under extension in (M&)7.

Proof. Let N be a cofibrant fibrant discrete R-module. We prove that
(N @g M') ~ 0 for k > n. We have an exact sequence of homotopy
groups

T (N @p M") = mp(N @ M') — m,(N @ M).
We prove the assertion (i). If k > n, 1 (N ®@r M) and 7 (N @p M)
vanish by assumption that M"” has Tor-amplitude less than or equal to n
and M has Tor-amplitude less than or equal to n — 1.
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Ifk>n+1, m(N®r M) and 7, (N @ M") vanish in the above exact
sequence of homotopy groups. Therefore the assertion (i) is proved.
For (iii), the assertion (i4) shows (M'5)7 is closed under extension. [

Lemma 5.2. (i) The subcategory (MEF) < (Mg)/ is wM{%-closed in
(Mg)!.
(ii) (M'5P) is a left Waldhausen category with left functorial factorization
for weak fibrations.

Proof. Note that the condition of Tor-amplitude less than or equal to n
is stable under weak equivalences and so (Mz” ) s WD) s-closed. The
assertion (ii) follows from (i) and the existence of mapping path space. Note

that a mapping path space of a map between fibrant objects is also fibrant.
O

Proposition 5.3. Let R be a left coherent E1-ring. We have an equivalence
N((MEP)) Wi ] ~ LMody?.
R

Proof. By Lemma 5.2, the inclusion M%’p C Mp satisfies the assumption
of Proposition 3.2. O

Definition 5. We define a cofibration and a fibration in (M'5")¢ and (M5?)f
as follows.

(i) We define a cofibration X — Y in (M")¢ if it is a cofibration in M,
in the sense of model category and its cofiber lies in (M")C.
(ii) We define a fibration Y — Z in (M%F)/ if it is a fibration in /\/lé in
the sense of model category and its fiber lies in (M5F)/.
Then, (M3”)¢ is a right Waldhausen category with the cofibrations and

(M7EP) is a left Waldhausen category with the fibrations.

Note that, once we define the cofibrations and fibrations of (Mz”)¢ and
(M'EP)S, respectively, the weak cofibrations and weak fibrations in (M5?)</
are automatically determined.

Note that the mapping cylinder and mapping path space admits the func-
torial factorization of cofibrations and fibrations, respectively.

Thus, we obtain a left Waldhausen category (My” ). We proceed the
resolution theorem to this Waldhausen category in the next subsection.

5.2. Resolution theorem for left algebraic K-theory. Let R be a left
coherent E;-ring.

Theorem 5.4. Let C denote the category MY,. Let M denote the category
Mp. We consider the pair (M,C), i.e., the pair (Mg, M%). Then we have
the following :
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(i) C is a homotopically essentially small model of M.
(ii) C is waq-closed in M.
(iii) C is closed under extensions with respect to fibration sequences in M.
(iv) For each integer m, the inclusion functors M%’p — M%H’p satis-
fies the resolution conditions. In particular, it induces an equivalence
KE(MEP) = KE(METP) on connective K -theory.
(v) By colimit argument, we obtain an equivalence KL(M%:D) ~ KL (ME)
on left connective K -theory.
Proof. Let us take a full subcategory (M%)<! of (MF%,)/. We would recall
the inclusion (M%) — (Mp)ﬂ induces an equivalence Na((M%)<) ~
N((ME)) WY as simplicial sets (moreover oo-categories [23, Example
4.1.7.6]) where LHS can be regarded as a fibrant replacement of RHS with
respect to Bergner model structure on the category of simplicial model cat-
egories.

Let us take the full subcategory M of (M%) consisting of equivalence
classes. Since the category of finitely generated mo(R)-modules is essentially
small, since the class of objects of ho(M?%,) is small and since a family
indexed by a small set is also small, M becomes a homotopically essentially
small model of (M%) by [22, Proposition 5.4.1.2]. Thus, the Waldhausen
categories M% can be replaced by homotopically small Waldhausen category
M%’ which has the K-theory equivalent to that of M?,.

Since (MEF)/ c (ME)/ C (Mg)/ is a replete left Waldhausen full sub-
categories which are closed under weak equivalences and admit the left func-
torial factorizations for weak fibrations, respectively.

Therefore, it suffices to check that the inclusion (M%F)/ — (Mzﬂ’p )
satisfies the resolution conditions in Definition 3. It follows from Proposi-
tion 4.2 and Lemma 5.2. ]

By Proposition 3.1, we have the following.

Corollary 5.5. Let R be a left coherent E1-ring. Let LMod%’p C LModZH’p
be the inclusion of co-categories. Then, the induced map KL(LMod%’p) —
KL(LModzH’p) is an equivalence.
O
Lemma 5.6. (i) We have KX(LMod%") ~ KB(LMod%"). The left al-
gebraic K -theory KL(M%) is homotopy equivalent to the right alge-
braic K-theory KT'(M%,).
(ii) We have an equivalence K¥(LMod%y ™) ~ K%(LMod%™). The left
algebraic K -theory KL(M%’p) 1s homotopy equivalent to the right alge-
braic K -theory KR(M?DLP).
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Proof. The homotopy equivalence K L(LModgirf ) ~ K R(LMod%erf ) and

KR(LMody*) ~ K(LMod# ) may be known as the theory of exact co-
category.

Since Mp, is a stable model category and M%p and MY, is the wpq,-
closed homotopy additive full subcategories, a square in M%p and MY, is
homotopy cartesian if and only if it is homotopy cocartesian, respectively.
The class of weak cofibrations in simplicial nerve of them are sent to the class
of oco-cofibrations in their underlying oo-categories under the equivalences
in Proposition 3.1.

Note that we took admissible cofibrations and fibrations. Since an oco-
cofibration in a full co-subcategory X of a stable co-category with cofibra-
tions is a morphism A — B of the square

A——=B

|

0——C
where A, B and C are also in X and the square is homotopy cocartesian.
Dually, an oo-fibration in a full co-subcategory X of a stable oco-category
with fibrations is a morphism B — C' of the square

A——B

L

0——C
where A, B and C' are also in X and the square is homotopy cartesian. Since
M%’p and MY, are homotopy additive categories, we have K(LMod} rf ) o~
KR(LMod™) and K*(LMod? ) ~ KR(LMod? ™).

Note that M% is wa,-closed and a pushout of cofibrant objects is ho-
motopy pushout. We also note that a square consisting of cofibrant fibrant
object is homotopy pushout if and only if it is homotopy pullback since its
homotopy category is stable.

By [13, Proposition 5.2], we have equivalences

L (MFP)e) = LH((MGP)) = LH(MEP) = LH(MGP)eT
and
LI(MB)e) = LT (MB)!) = LT (M) ~ LH (MP)<]).

Here, L7 ( (M%p /) and L ((ME)ef) are fibrant replacements with respect
to Bergner model structure on the category of simplicial categories, so that
we can take theb algebraic K-theory of co-category. This implies that, on
M(})%’p and M?%, S’-constructions of weak cofibrations and weak fibrations
are weak equivalence, respectively. Thus, we obtain K L(M%) ~ K R(M%)
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and KT (M%p) ~ KR(M%p) by Proposition 3.1 together with left and right
functorial factorizations. 0

. By proceeding the same proof for M5 and LMod;”, we have the follow-
ing.

Corollary 5.7. We have equivalences of K -theory K*(MREP) ~ KL(MRP)
and KT'(LModz?) ~ KE(LMod%?) for n > 0.

U
Corollary 5.8. For a left coherent E;-ring R, K(LMod%mj) ~ K(LMod%eTf).

Proof. Note that LMod(I)%p ~ LMod’;{Oj by [23, Proposition 7.2.2.6 (3), Re-
mark 7.2.2.20]. By Proposition 3.2 (ii), we obtain an equivalence K (M%) ~

K(LMod%erf) on the K-theory. By Proposition 3.1 and Proposition 3.2 (i),
there exists a natural equivalence of spectra K (M%p ) ~ K(LModly o1 ) on
the K-theory. Then by Theorem 5.4, we obtain a natural equivalence of
spectra K (LMod2"/) ~ K (LMod? ) on the K-theory.

Let (LModIID_-ie rf )" be the oo-category of connective perfect R-modules.
Then, we have an equivalence colim,LMod” ~ (LMod}; "fyen from Defi-
nition 4. Since the K-theory commutes with filterd colimits, we have an
equivalence K(LMod% ) ~ K ((LMod%erf )"). Thus, it suffices to show
that K ((LMod%" )em) ~ K (LMod%"/) . Note that the Spanier-Whitehead

category of (LMod}; rf )" is LModfy "/ and to take Spanier-Whitehead cat-
egory does not change the K-theory.
Indeed, consider the following colimit

(LModl™yem 2, ... % (LModbe™/)em =,

This filterd colimit exists as an oco-category with weak cofibrations. From
this filtered colimit, colimy K ((LMod?"/)") ~ K (colimy (LMod? "/ )en).,
We will show that the following equivalences

colimgK((LModI;fo)C”) ~ K((LMOdI;%ETf)Cn)

and
K(colimg(LMod]grf)cn) ~ K(LMOdz;zerf)'

Since we have the following cofiber sequence in (LMod%; mfyen

td——=0

0——3,
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and ¥ induces —id on K-theory, colimy K ((LMod%erf )" is equivalent to
K ((LMod?™)en). We will show that colimy(LMod2" ) ~ LMod®™. 1t

suffices to show that colimg(LMod%e rf )™ is a stable oo-category. Indeed,
it has cofibers, and the endofunctor ¥ is an equivalence. By [23, Lemma

1.1.3.3], colimy (LMod"/)<" is stable. O

Let R be a coherent E;-ring. For a left coherent E;-ring R, an R-module
M is left coherent R-module if 7, M = 0 for sufficiently small n and large n,
and 7, M is finitely presented left mgR-module.

Blumberg and Mandell show that the algebraic G-theory of the ring myR
is equivalent to the algebraic K-theory of the category of coherent R-module
spectra which have only finitely many non-zero homotopy groups [9].

Let R be a left coherent E1-ring. R is said to be regular if any left coherent
R-module has Tor-amplitude less than or equal to n for some n € Z>( and
moR is regular [5], [9].

Together with the regularity, we have the following as an immediate corol-
lary.

Corollary 5.9. Let R be a regular Ei-ring with only finitely many non-zero
homotopy groups. Let Pr,r be an ordinary category of finitely generated

projective moR-modules. Then, K(LMod%Oj) ~ K(Pr,R)-

Proof. Since finitely generated projective R-modules are obtained by re-
tracts and finite direct sums of the truncated spectrum R, by Corollary 5.8
and the main theorem of [5] with the regularity of R, we obtain an equiva-

lence K(LModZ;{Oj) ~ K(LMOd%eTf) ~ K(ProRr)- U

6. APPLICATION TO SEMI-PROJECTIVE AND COMPACT DG-MODULES
CASE

By proving the similar results as Theorem 5.4 in DG module case, we are
going to show an equivalence between the algebraic K-theory of the cate-
gory of perfect DG A-modules and that of the category consisting of semi-
projective DG A-modules for a Noetherian connective differential graded
algebra A over a field k such that its differential 0 sends the degree 1 part
A; of A to zero.

First of all, we recall some notation for DG-modules as follows.

Definition 6 ( loc.sit. [1], [2]). Let A be a DG algebra.

(i) A DG A-module M is semi-projective if Homy4 (M, ) preserves surjec-
tive quasi-isomorphisms.
(ii) A DG A-module M is semi-free if it has a filtration of the form :

O=F'lc...FrcF"lc...
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where F™*1/F™ is isomorphic to a direct sum of suspensions of A and
UpF™ = F. When each subquotient F),1/F, is isomorphic to a finite
direct sum of suspensions of A and there exists n such that F,, = M,
we say that M is finite semi-free of length n.

(iii) A DG A-module M is perfect if M is isomorphic to a compact object
in the derived category of DG A-modules.

The key fact is that the definition of perfectness is equivalent to that M
is a retract of finite semi-free of finite length if A is a Noetherian connective
over a field k such that its differential 0 sends the degree 1 part A; of
A to zero [2, Theorem 4.2, Theorem 4.8] and in this case, perfectness is
also equivalent to finite homological dimension that relates with projective
dimension [1, Theorem 2.4.P (i), (iv)].

Let A be a DG algebra. Let C4 be the category of DG A-modules. Al-
though there are many model structures on the category of DG modules [3],
when we take the algebraic K-theory of a certain full subcategory of DG
modules, we adopt the projective model structure , i.e., g-model structure
in the sense of [3]. Note that every object is fibrant in g-model structure.

We denote by C% the full subcategory consisting of perfect DG A-modules.
I would like to take a proper sequence of subcategories of C4 as in Theo-
rem 5.4. The most non-trivial point is wheather each subcategory is closed
under extensions. To see this, we need to choose proper notion of projective
dimension which should be related to homological dimension.

The important issue is the appropriate notion of projective dimension.
Let us take projective dimension in the sense of Avramov and Foxby [1,
Definition 2.1.P], which is given by pda M = infpsup{n|P, # 0}, where P,
is a DG-projective complex equivalent to M.

Then, by [1, Theorem 2.4.P], we can control the projective dimension by
homology groups.

Definition 7. Assume that A is a Noetherian connective DG algebra over k
such that its differential 9 sends the degree 1 part A; of A to zero. We define
a subcategory C} C C4 consisting of finitely generated DG A-modules M
with projective dimension pda M < n. We define cofibrations and fibrations
in C?} to be cofibrations with respect to the projective model structure whose
cofiber is in C’} and fibrations with respect to the projective model structure
whose fiber is in C’}, respectively.

Then, we will take C and M in Theorem 5.4 as the category C% and Ca,
respectively, and show the following.

Proposition 6.1. The inclusion C7} C CTl satisfies the assumptions of
Theorem 5.4. The category CY is equivalent to the category of finitely gen-
erated semi-projective DG A-modules.



RESOLUTION THEOREM OF THE ALGEBRAIC K-THEORY 135

Proof. By taking a full subcategory (C4)®f of C4 consisting of cofibrant
(fibrant) objects with respect to the projective model structure, we can
assume that C is homotopycally essentially small by the same argument as
in the proof of Theorem 3 for M¥,.

By virtue of [2, Theorem 4.2 (i), (ii)] and [1, Theorem 2.4.P (i), (iv)], a
DG A-module M is pdaM < n if and only if it has Tor-amplitude n 4+ 1 and
(n+1)th Ext group Ezt(M, N) is 0 for any DG A-module N. Then, we can
control the projective dimensions by homology groups. Especially, closed
under extensions and fibration sequences induce the long exact sequences
of Tor and Ext. Therefore, we can do the same proof as in Lemma 5.1 as
follows.

Let M’ — M — M" be a fiber sequence of DG A-modules in C’}.

We have an exact sequence of homology groups

Hk-Jrl(M”) — Hk(M,) — Hk(M) — Hk(M”)
and Ext groups
Exth (M',N) — Ext™ (M",N) — Ext" (M, N) — Ext" ™ (M, N).

We prove the assertion (i) of Theorem 5.4. Assume that M’ and M”
have Tor-amplitude less than or equal to n and their (n — 1)th Ext group
are vanish for any DG A-module N. Then, obviously M has Tor-amplitude
less than or equal to n and Ext"; *(M, N) = 0 for all DG A-module N.

We prove the assertion (iii) of Theorem 5.4. Assume that M’ and M”
have Tor-amplitude less than or equal to n and their (n — 1)th Ext group
are vanish for any DG A-module N, and M has Tor-amplitude less than or
equal to n — 1 and Ext’y ?(M,N) = 0. If k > n, Hyy1(M") and Hy(M)
vanish by assumption that M"” has Tor-amplitude less than or equal to n
and M has Tor-amplitude less than or equal to n — 1. Then, M’ has Tor-
amplitude less than or equal to n — 1 and Ext’y *(M’, N) = 0 for all DG
A-module N.

Especially, we can see that C'} is closed under extension, has a direct sum.

For the assertion (i¢) of Theorem 5.4, we can take a surjective quasi-
isomorphism from a finitely generated semi-free DG A modules. Note that
such surjection is known as a cofibrant replacement, whose existence is al-
ways assured in DG case. Since semi-free is semi-projective, semi-free A-
modules are in Cg. g

Corollary 6.2. Assume that A is a Noetherian connective DG algebra over
k such that its differential 0, that decreases degree by one, sends the degree
1 part Ay of A to zero. The algebraic K-theory of the category of perfect
A-modules is equivalent to the algebraic K-theory of the category of finitely
generated semi-projective A-modules.
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We remark that there is a zig-zag of Quillen equivalence between the
model category of H A-modules and the model category of DG A-modules
by [31]. Although the Quillen equivalence is zig-zag, the sequence in Propo-
sition 6.1 is corresponding to the sequence constructed in Definition 4 in the
sense that it is completely determined by the homology groups.
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