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RETRACT PROBLEM AND A SUBSET ADMITTING

COMPLETE BOOLEAN ALGEBRA STRUCTURE OF

MONOIDALLY DISTRIBUTIVE POSETS

Ryo Kato

Abstract. In [3], Hovey and Palmieri proved many interesing results
around the Bousfield lattice of the stable homotopy caregory of spec-
tra. In [4], the author, Shimomura and Tatehara defined monoidally
distributive posets as a generalization of the Bousfield lattice. In this
paper, we consider the retract problem and a subset admitting complete
Boolean algebra structure of monoidally distributive posets. In the last
section, we see that some results in [3] are given by our results in this
paper.

1. Introduction

Let p be a prime number and Sp the stable homotopy category of spectra
localized at p. For a spectrum X ∈ Sp, the Bousfield class ⟨X⟩ is defined
to be the class consisting of spectra Y such that the smash product X ∧ Y
is 0. We denote by B the collection of Bousfield classes. In [5], Ohkawa
showed that the collection B is a set. This set also has a lattice structure,
which is given by ⟨X⟩ ≤ ⟨Y ⟩ ⇔ ⟨X⟩ ⊃ ⟨Y ⟩. Immediately, we see that the
join of ⟨X⟩ and ⟨Y ⟩ is the Bousfield class of the wedge sum X ∨ Y . On
the other hand, the meet of ⟨X⟩ and ⟨Y ⟩ is not ⟨X ∧ Y ⟩. In [3], Hovey
and Palmieri considered a sup-sublattice DL of B (see [3, §3]). In DL, the
meet of ⟨X⟩ and ⟨Y ⟩ is the same as ⟨X ∧ Y ⟩. Furthermore, DL admits a
(complete) distributive lattice structure. For the inclusion DL ⊂ B, we have
its retraction r : B → DL. Hovey and Palmieri noticed that the retraction
r sends every “strange” Bousfield class to ⟨0⟩. On these backgrounds, they
proposed the retract conjecture on B ([3, Conj. 3.12], or Conjecture 5.3),
which claims that the retraction r induces an isomorphism from the quotient
lattice B/(strange classes) to DL.

In [4], the author, Shimomura and Tatehara considered monoidally dis-
tributive posets as a generalization of B (see §2), and extended some results
of [3] to monoidally distributive posets. A monoidally distributive poset B
is a lattice, and also it is a commutative monoid with 0. As a generalization
of DL, we consider

DL = {x ∈ B : x2 = x},
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the subset consisting of idempotent elements in B. The inclusion DL ⊂ B
has a retraction r : B → DL (see (3.3)). In this paper, we consider the
following problem (cf. [4, Conj. 3.18]).

Problem 1.1 (Retract problem). For a given lattice ideal I of a monoidally
distributive poset B, we consider the induced mapping

r∗ : B/I → DL; [x] 7→ r(x).

Is this a well-defined isomorphism?

This problem is a generalization of the retract conjecture. We consider
the subset

I = {c ∈ B : r(x ∨ c) = r(x) for any x ∈ B},
which is a lattice ideal of B (Proposition 3.10). In §3, we prove the following.

Theorem 1.2. (1) The induced mapping r∗ in Problem 1.1 is well-
defined if and only if I ⊂ I.

(2) If the mapping r∗ in Problem 1.1 is an isomorphism, then I = I.

Remark 1.3. Theorem 1.2 is an improved version of [4, Th. 3.16]. In [4], the
author, Shimomura and Tatehera considered the subset A = {x ∈ B : r(x) =
0} instead of I. However, we don’t know whether or not A is a lattice ideal
of B. Theorem 1.2 settles this problem.

We turn to the Bousfield lattice B, and consider the sup-sublattice DL. A
subset BA is defined to be the subset consisting of complemented Bousfield
classes (see [3, §4]). Then BA is a sublattice of DL, and also BA admits a
Boolean algebra structure. For them, we have a problem that DL is com-
plete and BA is not complete. On these backgrounds, Hovey and Palmieri
constructed a subset cBA (see [3, §6]) of B, which satisfies that

• BA ⊂ cBA ⊂ DL, and
• cBA admits a complete Boolean algebra structure.

They also proved that we can describe the structure of cBA under some
conjectures ([3, Prop. 6.13], or Theorem 5.12).

For a monoidally distributive poset B, we have an order-reversing map-
ping a : B → B (see (4.1)). For an element x of DL, we define A(x) =
r(a(x)) (see (4.4)). As a generalization of cBA, we consider a subset

cBA = {x ∈ DL : A2(x) = x}

of B. This subset has a complete Boolean algebra structure (Theorem 4.10).
A nonzero element f ∈ DL is fieldlike if, for any x ∈ B, we have xf ∈ {0, f}
(Definition 4.21). An element d ∈ DL is dense if A2(d) = 1 (Definition
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4.11). We put F = {f ∈ DL : f is fieldlike}, D = {d ∈ DL : d is dense},
and a(DL) = {a(x) : x ∈ DL}. For a subset S of B, we denote by∨

S =
∨
x∈S

x and
∧

S =
∧
x∈S

x,

the join and the meet, respectively. In §4, we prove the following.

Theorem 1.4. We suppose that

(1) r∗ in Problem 1.1 at I = I is an isomorphism,
(2) I is a complete ideal,
(3) I ⊂ a(DL), and
(4)

∨
F =

∧
D.

Then, cBA is isomorphic to the complete Boolean algebra generated by F ,
that is,

cBA ∼=
{∨

F0 : F0 is a subset of F
}
.

Here we remark that
∨
∅ = 0.

In the last section, we consider the case for B = B. Some results in [3]
are obtained from the viewpoint of this paper. In particular, we see that [3,
Prop. 6.13] is easily shown by Theorem 1.4 (see Theorem 5.12).

Acknowledgements. The author would like to thank the referee for many
useful comments.

2. Monoidally distributive posets

A commutative monoid with 0 is a commutative monoid M having an
element 0 such that 0x = 0 for any x ∈ M . In [4], the author, Shimomura
and Tatehara defined monoidally distributive posets as a generalization of
the Bousfield lattice B.

Definition 2.1 ([4, Def. 2.4]). A monoidal poset B = (B,≤, ·, 1, 0) cosists
of the following data.

(1) (B, ·, 0, 1) is a commutative monoid with 0.
(2) (B,≤) is a poset.
(3) The following are equivalent.

(a) x ≤ y.
(b) For any c ∈ B, yc = 0 implies xc = 0.

For an element x ∈ B, we put

(2.1) ⟨x⟩ = {c ∈ B : xc = 0}.
Then, Definition 2.1 (3) is rewriten as

(2.2) x ≤ y ⇔ ⟨x⟩ ⊃ ⟨y⟩.
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Remark 2.2. We immdiately see that, for a monoidal poset B, the following
hold.

• x ≤ y implies that xz ≤ yz for any z ∈ B.
• 0 is the minimum element, and 1 is the maximum element.
• For any x and y in B, we have xy ≤ x. In particular, x2 ≤ x.

In general, a commutative monoid (with 0) admitting an ordering is not a
monoidal poset. For example, the set R admits the ordinary multiplication
and ordering. In this case, for any nonzero x ∈ R, we have ⟨x⟩ = {0}. There-
fore, the condition (2.2) is not satisfied. As another example, we consider
the min-plus poset ([0,∞],≥op, 0,∞,+). In this case, for any x ∈ [0,∞), we
have ⟨x⟩ = {c ∈ [0,∞] : x + c = ∞} = {∞}. Therefore, the condition (2.2)
is not satisfied, and hence the min-plus poset is not a monoidal poset.

Remark 2.3. In general, from a commutative monoid M with 0, we obtain
the monoidal poset β(M) (see [4, §2]). Furthermore, by [4, Prop. 2.17 (2)],
M is a monoidal poset if and only if β(M) = M . A categorical argument
on monoidal posets is written in [4, §2].

Definition 2.4 ([4, Def. 3.6]). A monoidal poset B is a monoidally dis-
tributive poset if the following hold.

(1) B is a complete lattice.
(2) For any x ∈ B and {yλ} ⊂ B, we have x(

∨
λ yλ) =

∨
λ(xyλ).

Hereafter, throughout this paper, we assume that B is a monoidally dis-
tributive poset.

3. Retract problem

For a subset S of B, we denote∨
S =

∨
x∈S

x and
∧

S =
∧
x∈S

x.

We remark that
∨
∅ = 0 and

∧
∅ = 1. We also consider the subset

(3.1) DL = {x ∈ B : x2 = x}.

It is clear that

(3.2) x, y ∈ DL ⇒ xy ∈ DL.

Indeed, if x, y ∈ DL, then (xy)2 = x2y2 = xy.

Lemma 3.1. Let w ∈ DL and {x, y} ⊂ B. Then, w ≤ x ∧ y if and only if
w ≤ xy.
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Proof. By Remark 2.2, we have xy ≤ x and xy ≤ y, and so xy ≤ x ∧ y.
Hence, if w ≤ xy, then w ≤ xy ≤ x ∧ y. Conversely, we assume that
w ≤ x ∧ y. This implies w ≤ x and w ≤ y. Therefore, since w ∈ DL, we
have w = ww ≤ xw ≤ xy. □

Lemma 3.2. If S ⊂ DL, then
∨
S ∈ DL.

Proof. For any S ⊂ DL, we have∨
S ≥

(∨
S
)2

=
∨

x,y∈S
xy ≥

∨
x∈S

xx =
∨
x∈S

x =
∨

S.

Therefore (
∨
S)2 =

∨
S. □

We consider the following mapping.

(3.3) r : B → DL;x 7→
∨

{w ∈ DL : w ≤ x}.

By Lemma 3.2, this is well-defined, that is, r(x) belongs to DL for any
x ∈ B. It is easy to see that

(3.4) r(x) ≤ x for any x ∈ B,

and

(3.5) r(0) = 0, r(1) = 1.

Lemma 3.3. x ∈ DL if and only if x = r(x). In particular, the mapping r
is a retraction of the inclusion DL ⊂ B.

Proof. It is clear that x = r(x) implies x ∈ DL. Conversely, if x ∈ DL,
then x is the maximum element of the subset {w ∈ DL : w ≤ x}. Therefore,
r(x) =

∨
{w ∈ DL : w ≤ x} = x. □

Lemma 3.4 ([4, Prop. 3.5]). The mapping r satisfies the following.

(1) x ≤ y implies r(x) ≤ r(y).
(2) r2(x) = r(x) for any x ∈ B.
(3) r(x) ≤ xn for any x ∈ B and n ≥ 1.
(4) r(xy) = r(x ∧ y) = r(x)r(y) for any x and y in B. In particular,

r(x2) = r(x) for any x ∈ B.

Proof. (1) If x ≤ y, then {w ∈ DL : w ≤ x} ⊂ {w ∈ DL : w ≤ y}.
Hence r(x) =

∨
{w ∈ DL : w ≤ x} ≤

∨
{w ∈ DL : w ≤ y} ≤ r(y).

(2) By Lemma 3.3 and r(x) ∈ DL, we have r(x) = r(r(x)) = r2(x).
(3) Note that r(x)n = r(x) for any n ≥ 1. Therefore, by (3.4), we have

r(x) = r(x)n ≤ xn.



94 R. KATO

(4) Since we have

r(xy) =
∨

{w ∈ DL : w ≤ xy}

=
∨

{w ∈ DL : w ≤ x ∧ y} by Lemma 3.1

= r(x ∧ y),

the part r(xy) = r(x ∧ y) is shown. We turn to the part r(xy) =
r(x)r(y). By (1), we have r(xy) ≤ r(x) and r(xy) ≤ r(y). Hence

r(xy) = r(xy)r(xy) ≤ r(x)r(y).

We also have

r(x)r(y) =
(∨

{w ∈ DL : w ≤ x}
)(∨

{w′ ∈ DL : w′ ≤ y}
)

=
∨

{ww′ : w,w′ ∈ DL, w ≤ x, w′ ≤ y}

≤
∨

{w ∈ DL : w ≤ xy} by (3.2)

= r(xy).

Therefore, r(xy) = r(x)r(y).
□

Lemma 3.5. For any x and y in B, we have r(x ∨ y) = r(x ∨ yn) for any
n ≥ 1.

Proof. It suffices to show that r(x ∨ y) = r(x ∨ y2), which is given by

r(x ∨ y) = r((x ∨ y)2) by Proposition 3.4 (4)

= r(x(x ∨ y) ∨ y2)

≤ r(x ∨ y2) by Proposition 3.4 (1)

≤ r(x ∨ y) by Proposition 3.4 (1).

□

Let B′ be a subset of B. For a subset S of B′, if there exists the join

(resp. the meet) of S in B′, then we denote it by
∨B′

S (resp.
∧B′

S).

Proposition 3.6. The subset DL is complete, that is, for any subset S of
DL, there exist

∨DL S and
∧DL S. More details, we have

∨DL S =
∨
S

and
∧DL S = r(

∧
S).

Proof. Let S be a subset of DL. From Lemma 3.2, it is immdiately obtained
that

∨DL S =
∨
S. We turn to

∧DL S = r(
∧
S). By Lemma 3.4, for any

x ∈ S, we have DL ∋ r(
∧
S) ≤ r(x) = x. If DL ∋ w ≤ x for any x ∈ S,

then w = r(w) ≤ r(
∧
S) by Lemma 3.4 (1). Therefore

∧DL S = r(
∧
S). □
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Corollary 3.7. For any x and y in DL, we have x ∧DL y = xy.

Proof. If x and y are in DL, then

x ∧DL y = r(x ∧ y) by Proposition 3.6

= r(xy) by Lemma 3.4 (4)

= xy by (3.2) and Lemma 3.3.

□

Remark 3.8. By Proposition 3.6, the subset DL is a complete distributive
lattice, and therefore DL admits a complete Heyting algebra structure.

Remark 3.9. We may think that B is a category such that, for any x and y
in B, the set of morphisms from x to y is ∅ or {≤}. Similarly, the subset
DL becomes a category. Since B and DL are complete lattices, they are
complete and cocomplete categories. Furthermore, r : B → DL is a right
adjoint of the inclusion functor DL ⊂ B. Indeed, for any x ∈ DL and y ∈ B,
we have x ≤ y ⇔ x ≤ r(y). From this viewpoint, Proposition 3.6 means
that the right adjoint functor r : B → DL preserves limits.

We recall that a subset I of B is a lattice ideal if

• {x, y} ⊂ I implies x ∨ y ∈ I, and
• x ≤ y ∈ I implies x ∈ I.

For a lattice ideal I, the quotient B/I = {[x] : x ∈ B} is defined by

• [x] = {x′ ∈ B : x ∨ i = x′ ∨ i for some i ∈ I}, and
• [x] ≤ [y] iff x ≤ y ∨ i for some i ∈ I.

We define

(3.6) I = {c ∈ B : r(x ∨ c) = r(x) for any x ∈ B} .

Proposition 3.10. The subset I is a lattice ideal of B.

Proof. If c and d are in I, then, for any x ∈ B, we have

r(x ∨ c ∨ d) = r(x ∨ c) by d ∈ I

= r(x) by c ∈ I.

Therefore, c ∨ d is in I.
If c ≤ d ∈ I, then, for any x ∈ B, we have

r(x) ≤ r(x ∨ c) by Lemma 3.4 (1)

≤ r(x ∨ d) by Lemma 3.4 (1)

= r(x) by d ∈ I.

Hence r(x) = r(x ∨ c), and therefore c ∈ I. □

Lemma 3.11. If c ∈ I, then r(c) = 0.
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Proof. If c ∈ I, then

r(c) = r(0 ∨ c) = r(0) by c ∈ I

= 0 by (3.5).

□

For r : B → DL and a lattice ideal I of B, we consider the induced
mapping

(3.7) r∗ : B/I → DL; [x] 7→ r(x).

Proof of Theorem 1.2. (1) We assume that r∗ in (3.7) is well-defined. If
c ∈ I, then, for any x ∈ B, we have [x] = [x∨c] in B/I. This implies
r(x∨c) = r∗([x∨c]) = r∗([x]) = r(x), and so c ∈ I. Therefore I ⊂ I.

Conversely, we assume that I ⊂ I. If [x] = [y] in B/I, then
x ∨ c = y ∨ c for some c ∈ I(⊂ I). Thus, we have

r∗([x]) = r(x) = r(x ∨ c) by c ∈ I

= r(y ∨ c) by x ∨ c = y ∨ c

= r(y) by c ∈ I

= r∗([y]).

Therefore, r∗ is well-defined.
(2) We assume that r∗ is an isomorphism. By (1), it suffices to show

that I ⊂ I. If c ∈ I, then r(c) = 0 = r(0) by Lemma 3.11 and (3.5).
Thus, r∗([c]) = r(c) = r(0) = r∗([0]). Since r∗ is an isomorphism,
we have [c] = [0] in B/I, and so c ∈ I. Therefore I ⊂ I.

□

4. The subset cBA

We consider the following mapping.

(4.1) a : B → B;x 7→
∨

⟨x⟩ =
∨

{c ∈ B : xc = 0}.

Here, ⟨x⟩ is in (2.1). It is clear that

(4.2) xa(x) = 0 for any x ∈ B,

and

(4.3) a(0) = 1, a(1) = 0.

Indeed, we have xa(x) = x(
∨

xc=0 c) =
∨

xc=0 xc = 0, a(0) =
∨
⟨0⟩ =

∨
B =

1, and a(1) =
∨
⟨1⟩ =

∨
{0} = 0.

For any subset S of B, we denote

a(S) = {a(x) : x ∈ S}.
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Lemma 4.1 (cf. [3, Lemma 2.3]). The mapping a : B → B satisfies the
following.

(1) x ≤ y implies a(x) ≥ a(y).
(2) xy = 0 if and only if x ≤ a(y).
(3) a2(x) = x for any x ∈ B.
(4) For any S ⊂ B, we have a(

∨
S) =

∧
a(S) and a(

∧
S) =

∨
a(S).

Proof. (1) If x ≤ y, then ⟨x⟩ ⊃ ⟨y⟩ by (2.2). Hence a(x) =
∨
⟨x⟩ ≥∨

⟨y⟩ = a(y).
(2) If xy = 0, then x ∈ ⟨y⟩, and so x ≤

∨
⟨y⟩ = a(y). Conversely,

if x ≤ a(y), then xy ≤ ya(y). Since ya(y) = 0 by (4.2), we have
xy = 0.

(3) By (4.2) and (2), we have x ≤ a2(x) for any x ∈ B. This and (1)
imply a(x) ≥ a3(x). Furthermore, we have a(x)a2(x) = 0 by (4.2),
and so a(x) ≤ a3(x) by (2). Thus a(x) = a3(x), and so

cx = 0 ⇔ c ≤ a(x) by (2)

⇔ c ≤ a3(x) by a(x) = a3(x)

⇔ ca2(x) = 0 by (2).

Therefore x = a2(x).
(4) By (1), we have a(

∨
S) ≤ a(x) for any x ∈ S. If w ≤ a(x) for

any x ∈ S, then, by (1) and (3), a(w) ≥ a2(x) = x for any x ∈
S. This implies a(w) ≥

∨
S. Therefore, by (1) and (3), we have

w = a2(w) ≤ a(S), and so a(
∨

S) =
∧
a(S). Similarly, we see that

a(
∧

S) =
∨
a(S).

□

Remark 4.2. By Lemma 4.1 (3), we have a(S) = {x : a(x) ∈ S}.

We recall the subset DL in (3.1), and consider the following composite.

(4.4) A = ra : DL
a−→ B

r−→ DL.

Then, we have

(4.5) xA(x) = 0 for any x ∈ DL

and

(4.6) A(0) = 1, A(1) = 0.

Indeed, by (3.4) and (4.2), we have xA(x) = xr(a(x)) ≤ xa(x) = 0.
Furthermore, by (3.5) and (4.3), we have A(0) = ra(0) = r(1) = 1 and
A(1) = ra(1) = r(0) = 0.

Lemma 4.3. For any x and y in DL, we have A(x ∨ y) = A(x)A(y). In
particular, A(x ∨A(x)) = 0.
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Proof. If x, y ∈ DL, then

A(x ∨ y) = ra(x ∨ y)

= r(a(x) ∧ a(y)) by Lemma 4.1 (4)

= r(a(x))r(a(y)) by Lemma 3.4 (4)

= A(x)A(y).

In particular, A(x ∨A(x)) = A(x)A2(x) = 0 by (4.5). □

For any subset S of DL, we denote

A(S) = {A(x) : x ∈ S}.
As an analogue of Lemma 4.1, we see the following.

Lemma 4.4 (cf. [3, Lemma 6.2]). The mapping A satisfies the following.

(1) For any x and y in DL, x ≤ y implies A(x) ≥ A(y).
(2) For any x and y in DL, xy = 0 if and only if x ≤ A(y).
(3) For any x in DL, x ≤ A2(x) and A(x) = A3(x).

(4) For any S ⊂ DL, we have A(
∨DL S) =

∧DLA(S).

Proof. (1) By Lemma 3.4 (1), the mapping r is order-preserving. By
Lemma 4.1 (1), the mapping a is order-reversing. Therefore, the
composite A = ra is order-reversing.

(2) If xy = 0, then x ≤ a(y) by Lemma 4.1 (2). Hence , by x ∈ DL and
Lemma 3.4 (1), we have x = r(x) ≤ r(a(y)) = A(y). Conversely, if
x ≤ A(y), then xy ≤ yA(y) = 0 by (4.5).

(3) By (4.5), for any x ∈ DL, we have xA(x) = 0. This and (2) imply
x ≤ A2(x). We next turn to A(x) = A3(x). By (1), x ≤ A2(x)
implies A(x) ≥ A3(x). On the other hand, A(x)A2(x) = 0 by (4.5).
This and (2) imply A(x) ≤ A3(x). Therefore, we have A(x) = A3(x).

(4) For any S ⊂ DL, by (1), we have A(
∨DL S) ≤ A(x) for any x ∈ S.

Furthermore, we have

DL ∋ w ≤ A(x) for any x ∈ S ⇒ wx = 0 for any x ∈ S by (2)

⇒ w(
∨

S) = w(
∨
x∈S

x) =
∨
x∈S

(wx) = 0

⇒ w ≤ A(
∨

S) by Lemma 3.2 and (2).

Besides, by Lemma 3.6, A(
∨
S) = A(

∨DL S). ThereforeA(
∨DL S) =∧DLA(S).

□

Remark 4.5. For any x and y in B, we have

x ≤ y ⇔ a(x) ≥ a(y) by Lemma 4.1 (1)
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⇒ ra(x) ≥ ra(y) by Lemma 3.4 (1),

which is an analogue of Lemma 4.4 (1).

Lemma 4.6 (cf. [3, Lemma 6.5 (1)]). For any x and y in DL, we have
A(xy) = A(A2(x)A2(y)).

Proof. Let x, y ∈ DL. By Lemma 4.4 (3), we have x ≤ A2(x) and y ≤ A2(y).
These imply xy ≤ A2(x)A2(y). From this and Lemma 4.4 (1), we obtain
A(xy) ≥ A(A2(x)A2(y)). On the other hand, we have

xyA(xy) = 0 by (4.5) ⇒ yA(xy) ≤ A(x) by Lemma 4.4 (2)

⇒ yA(xy)A2(x) ≤ A(x)A2(x) = 0 by (4.5)

⇒ yA(xy)A2(x) = 0

⇒ A(xy)A2(x) ≤ A(y) by Lemma 4.4 (2)

⇒ A(xy)A2(x)A2(y) ≤ A(y)A2(y) = 0 by (4.5)

⇒ A(xy)A2(x)A2(y) = 0

⇒ A(xy) ≤ A(A2(x)A2(y)) by Lemma 4.4 (2).

Therefore A(xy) = A(A2(x)A2(y)). □

Corollary 4.7. For any x and y in DL, we have A2(xy) = A2(x)A2(y).

Proof. If x and y are in DL, then

A2(xy) = A2(A2(x)A2(y)) by Lemma 4.6

= A2(A2(x) ∧DL A2(y)) by Corollary 3.7

= A3(A(x) ∨DL A(y)) by Lemma 4.4 (4)

= A(A(x) ∨DL A(y)) by Lemma 4.4 (3)

= A2(x) ∧DL A2(y) by Lemma 4.4 (4)

= A2(x)A2(y) by Corollary 3.7.

□

We consider the subset

cBA = {x ∈ DL : A2(x) = x}

of DL.

Proposition 4.8. The subset cBA is complete, that is, for any subset S
of cBA, there exist

∨cBA S and
∧cBA S. More details, we have

∨cBA S =

A2(
∨

S) and
∧cBA S = A2(

∧
S).
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Proof. Let S be a subset of cBA. By Lemma 4.4 (1), the mapping A
is order-reversing. This implies that A2 : DL → DL is order-preserving.
Furthermore, by Lemma 4.4 (3), A2(x) belongs to cBA for any x ∈ DL.
Hence we have cBA ∋ A2(

∨
S) ≥ A2(x) = x for any x ∈ S. Assume that

cBA ∋ w ≥ x for any x ∈ S. This implies w = A2(w) ≥ A2(
∨
S), and so∨cBA S = A2(

∨
S). Similarly, we see that

∧cBA S = A2(
∧
S). □

Proposition 4.9. For any S ⊂ cBA, we have
∧cBA S =

∧DL S. In partic-
ular, for any x and y in cBA, we have x ∧cBA y = xy.

Proof. Let S ⊂ cBA(⊂ DL). Then, we have

cBA∧
S = A2(

∧
S) by Proposition 4.8

= ra(ra(
∧

S))

≥ ra(a(
∧

S)) by (3.4) and Remark 4.5

= r(
∧

S) by Lemma 4.1 (3)

=

DL∧
S by Proposition 3.6

≥
cBA∧

S by cBA ⊂ DL.

Therefore
∧cBA S =

∧DL S. Furthermore, if x and y are in cBA, then
x ∧cBA y = x ∧DL y = xy by Corollary 3.7. □

Theorem 4.10 (cf. [3, Th. 6.4]). The subset cBA is a complete Boolean
algebra.

Proof. By Proposition 4.8, cBA is a complete lattice. We note that, for any
x ∈ cBA, the element A(x) belongs to cBA. Besides, we have

x ∧cBA A(x) = x ∧DL A(x) by Proposition 4.9

= xA(x) by Corollary 3.7

= 0 by (4.5)

and

x ∨cBA A(x) = A2(x ∨A(x)) by Proposition 4.8

= A(A(x ∨A(x))) = A(0) by Lemma 4.3

= 1 by (4.6).

Therefore, A(x) is the complement of x in cBA.



RETRACT PROBLEM AND cBA 101

Furthermore, for x, y, z ∈ cBA, we have

x ∧cBA
(
y ∨cBA z

)
= A2(x) ∧cBA A2(y ∨ z) by x ∈ cBA and Proposition 4.8

= A2(x)A2(y ∨ z) by Proposition 4.9

= A2(x(y ∨ z)) by Corollary 4.7

= A2(xy ∨ xz)

= xy ∨cBA xz by Proposition 4.8

= (x ∧cBA y) ∨cBA (x ∧cBA z) by Proposition 4.9.

Therefore ∧cBA is distributive on ∨cBA. □

Definition 4.11 (cf. [3, Def. 6.6]). An element d ∈ DL is dense if A2(d) =
1.

Remark 4.12. By (4.6) and Lemma 4.4 (3), for an element d ∈ DL, it is
dense if and only if A(d) = 0.

Remark 4.13. As a typical example of a (complete) distributive lattice, we
have Ω(X), the set of open subsets of a topological space X. In this case,
for any {Uλ} ⊂ Ω(X), we have

∨
λ Uλ =

⋃
λ Uλ and

∧
λ Uλ = Int(

⋂
λ Uλ),

where Int(−) denotes the interior. Furthermore, we have 0 = ∅ in Ω(X).
Hence the mapping A of (4.4) on Ω(X) is given by

A : Ω(X) → Ω(X);U 7→ Int(X \ U).

Thus, in Ω(X), the equality A(U) = 0 means that Int(X \ U) = ∅, that
is, U is a dense subset. This is a reason for that we use the word “dense
element”.

We consider the following subsets.

D = {d ∈ DL : d is dense},
a(D) = {a(d) : d ∈ D} = {x ∈ B : a(x) ∈ D}.

Lemma 4.14. The subset I ∩ a(DL) is contained in a(D). Here, I is in
(3.6).

Proof. If c ∈ I ∩ a(DL), then a(c) ∈ DL and

A(a(c)) = ra(a(c)) = r(c) by Lemma 4.1 (3)

= 0 by Lemma 3.11.

By this and Remark 4.12, the element a(c) is dense. Therefore c ∈ a(D). □

Proposition 4.15. If the mapping r∗ : B/I → DL in Problem 1.1 at I = I
is an isomorphism, then I ∩ a(DL) = a(D).
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Proof. By Lemma 4.14, it suffices to show that a(D) ⊂ I ∩ a(DL). If
c ∈ a(D), then a(c) ∈ D ⊂ DL. Thus c ∈ a(DL). Furthermore, we have

r∗([c]) = r(c) = ra(a(c)) by Lemma 4.1 (3)

= A(a(c)) = 0 by a(c) ∈ D and Remark 4.12

= r∗([0]).

Since r∗ is an isomorphism, we have [c] = [0] in B/I. Therefore c ∈ I. □

Theorem 4.16 (cf. [3, Th. 6.7]). For any x and y in DL, the following are
equivalent.

(1) A2(x) = A2(y).
(2) There exists a dense element d such that xd = yd.

Proof. First we prove the part (2) ⇒ (1). If xd = yd for some dense elment
d, then

A2(x) = A2(x) · 1 = A2(x)A2(d) = A2(xd) by Corollary 4.7

= A2(yd) = A2(y)A2(d) by Corollary 4.7

= A2(y) · 1 = A2(y).

Next turn to the part (1) ⇒ (2). We assume that A2(x) = A2(y), then

(4.7)

A(xy) = A(A2(x)A2(y)) by Lemma 4.6
= A(A2(x)A2(x))
= A(A2(x)) by A2(x) ∈ DL
= A3(x) = A(x) by Lemma 4.4 (3).

We put d = xy ∨A(x) = xy ∨DL A(x). Then, we have

A(d) = A(xy ∨DL A(x)) = A(xy) ∧DL A2(x) by Lemma 4.4 (4)

= A(xy)A2(x) by Corollary 3.7

= A(x)A2(x) by (4.7)

= 0 by (4.5).

Hence, by Remark 4.12, the element d is dense. We also note that, by Lemma
4.4 (3), the condition A2(x) = A2(y) implies A(x) = A(y). Therefore, we
have

xd = x(xy ∨A(x)) = x2y ∨ xA(x) = xy by x ∈ DL and (4.5)

= xy2 ∨ yA(y) by y ∈ DL and (4.5)

= y(xy ∨A(y)) = y(xy ∨A(x)) by A(x) = A(y)

= yd.

Hence we see that (1) ⇒ (2). □
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For a subset S of B, we define

↑ S = {x ∈ B : x ≥ s for some s ∈ S},
↓ S = {x ∈ B : x ≤ s for some s ∈ S}.

Furthermore, for an element x ∈ B, we denote

(4.8) ↑ x = ↑ {x} and ↓ x = ↓ {x}.

Lemma 4.17. For any subset S of B, ↑ a(S) = a(↓ S) and ↓ a(S) = a(↑ S).

Proof. We have

x ∈ ↑ a(S) ⇔ x ≥ a(s) for some s ∈ S

⇔ a(x) ≤ s for some s ∈ S by Lemma 4.1 (1), (3)

⇔ a(x) ∈ ↓ S

⇔ x ∈ a(↓ S).

Therefore ↑ a(S) = a(↓ S). Similarly, we see that ↓ a(S) = a(↑ S). □

We note that a lattice ideal I is complete if and only if I = ↓
∨
I.

Proposition 4.18. We suppose the following.

(1) The mapping r∗ : B/I → DL is an isomorphism,
(2) I is complete, and
(3) I ⊂ a(DL).

Then
∧
D is a dense element. In particular,

∧
D is in DL.

Proof. Under the conditions, we have

(4.9)

D = a(I ∩ a(DL)) by Proposition 4.15
= a(I) by I ⊂ a(DL)
= a(↓

∨
I) since I is complete

= ↑ a(
∨
I) by Lemma 4.17

= ↑
∧
a(I) by Lemma 4.1 (4)

= ↑
∧
a(I ∩ a(DL)) by I ⊂ a(DL)

= ↑
∧
D by Proposition 4.15.

Therefore
∧
D ∈ ↑

∧
D = D, that is,

∧
D is dense. □

Example 4.10. We consider the following commutative monoid M with 0:

M = {0, x, y, 1} with x2 = 0, xy = 0, y2 = y.

This is a monoidally distributive poset under the ordering 0 ≤ x ≤ y ≤ 1.
In this case, we have r(x) = 0, r(y) = y, a(x) = y, and a(y) = x. These
imply

DL = {0, y, 1}, I = {0, x}, cBA = {0, 1}, D = {y, 1}.
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It is easy to see that M satisfies all conditions in Proposition 4.18. Further-
more, we have

∧
D = y ∈ DL.

Theorem 4.19. We suppose that the conditions in Proposition 4.18 hold.
Then, for any x and y in DL, the following are equivalent.

(1) A2(x) = A2(y).
(2) x(

∧
D) = y(

∧
D).

Proof. First, we prove the part (2) ⇒ (1). By Proposition 4.18, the element∧
D is dense. Hence, if x(

∧
D) = y(

∧
D), then A2(x) = A2(y) by Theorem

4.16.
Next turn to the part (1) ⇒ (2). By Proposition 4.18, the element

∧
D

is dense, and so
∧
D ∈ DL. Therefore, for any dense element d, we have

(4.11)
d(
∧
D) = d ∧DL (

∧
D) by Corollary 3.7

=
∧
D by d ∈ D.

By Theorem 4.16, if (1) holds, then xd0 = yd0 for some d0 ∈ D. Therefore,
we have

x(
∧

D) = xd0(
∧

D) by (4.11)

= yd0(
∧

D) by xd0 = yd0

= y(
∧

D) by (4.11).

□

For an element w ∈ B, we put

wcBA = {wx : x ∈ cBA} .

Corollary 4.20. We suppose that the conditions in Proposition 4.18 hold.
Then, the mapping

×(
∧

D) : cBA → (
∧

D)cBA;x 7→ x(
∧

D)

is an order-preserving bijection.

Proof. It suffices to show that the mapping is an injection. If x and y in
cBA satisfy x(

∧
D) = y(

∧
D), then A2(x) = A2(y) by Theorem 4.19. Since

x, y ∈ cBA, we have x = y. □

Definition 4.21. A nonzero element f ∈ DL is fieldlike if, for any x ∈ B,
we have xf ∈ {0, f}.

Remark 4.22. We consider the case for B = B, the Bousfield lattice of the
stable homotopy category. A spectrum K is a field spectrum if, for any
spectrum X, the smash product K ∧X is a wedge of suspensions of K. For
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such K, the Bousfield class ⟨K⟩ satisfies the condition of Definition 4.21.
This is a reason for that we use the word “fieldlike element”.

Lemma 4.23. If f0 and f1 are distinct fieldlike elements, then f0f1 = 0.

Proof. By definiton of fieldlike elements, if f0f1 ̸= 0, then f0 = f0f1 = f1.
This is a contradiction. □

A nonzero element m ∈ B is minimal if, for any x ∈ B, the inequality
0 ≤ x ≤ m implies x ∈ {0,m}.

Lemma 4.24. If m is a minimal element and m2 ̸= 0, then m is fieldlike.

Proof. Since m is minimal and 0 ̸= m2 ≤ m, we have m2 = m, that is, m is
in DL. For an element x, since mx ≤ m, we have mx ∈ {0,m}. Therefore
m is fieldlike. □

We put

(4.12) F = {f ∈ DL : f is fieldlike}.

Lemma 4.25. If two subsets F0 and F1 of F satisfy
∨
F0 ≤

∨
F1, then

F0 ⊂ F1.

Proof. If F0 ̸⊂ F1, then there exists a fieldlike element f ∈ F0 \ F1. Note
that Lemma 4.23 implies f(

∨
F0) = f and f(

∨
F1) = 0. By them and the

assumption
∨
F0 ≤

∨
F1, we have a contradiction f = f(

∨
F0) ≤ f(

∨
F1) =

0. □

Proposition 4.26. Let F0 be a subset of F . For any f ∈ F0, we have∨
F0 ≤ f ∨ a(f).

Proof. For f ∈ F0, we denote F f
0 = F0 \ {f}. By Lemma 4.23, we have

f(
∨
F f
0 ) = 0, and so

∨
F f
0 ≤ a(f). This implies

∨
F0 = f ∨

∨
F f
0 ≤

f ∨ a(f). □

For an element x ∈ B, we define

F (x) = {f ∈ F : xf = f}.

We then have

(4.13) x(
∨

F ) = x(
∨
f∈F

f) =
∨
f∈F

(xf) =
∨

F (x)

and the following.

Lemma 4.27. For any x and y in B, we have F (x∨ y) = F (x)∪F (y) and
F (xy) = F (x) ∩ F (y).
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Proof. If f ∈ F (x∨y), then fx∨fy = f(x∨y) = f . Thus fx ̸= 0 or fy ̸= 0,
and so f ∈ F (x) ∪ F (y). Conversely, if f ∈ F (x) ∪ F (y), then fx = f or
fy = f . This implies f(x ∨ y) = fx ∨ fy = f , and so f ∈ F (x ∨ y).

We turn to the second claim. If f ∈ F (xy), then fxy = f ̸= 0. This
implies fx ̸= 0 and fy ̸= 0, and so f ∈ F (x) ∩ F (y). Conversely, if f ∈
F (x) ∩ F (y), then fx = f and fy = f . Hence fxy = (fx)y = fy = f , and
so f ∈ F (xy). □

Lemma 4.28. For any x ∈ DL, we have F (A2(x)) = F (x). In particular,
for any subset F0 of F , we have F (A2(

∨
F0)) = F0.

Proof. Let f ∈ F . From

fA2(x) = 0 ⇔ f ≤ A3(x) by Lemma 4.4 (2)

⇔ f ≤ A(x) by Lemma 4.4 (3)

⇔ fx = 0 by Lemma 4.4 (2),

we obtain the lemma. In particular, for any subset F0 of F , we have
F (A2(

∨
F0)) = F (

∨
F0) = F0 by Lemma 4.23. □

Corollary 4.29. For any d ∈ D, we have F (d) = F .

Proof. By Lemma 4.28, we have F (d) = F (A2(d)) = F (1) = F . □

Corollary 4.30.
∨
F ≤

∧
D.

Proof. Let d be a dense element. By Corollary 4.29 and (4.13), we have∨
F =

∨
F (d) = d(

∨
F ) ≤ d for any d ∈ D, and so

∨
F ≤

∧
D. □

Remark 4.31. By Corollary 4.30, for the condition (4) of Theorem 1.4, the
half of the equality holds for any monoidally distributive poset.

Proof of Theorem 1.4. Since x(
∨
F ) =

∨
F (x) by (4.13), we have (

∨
F )cBA ⊂

{
∨

F0 : F0 is a subset of F}. On the other hand, for any subset F0 of F , we
have A2(

∨
F0) ∈ cBA by Lemma 4.4 (3). Thus∨

F0 =
∨

F (A2(
∨

F0)) by Lemma 4.28

= (
∨

F )A2(
∨

F0) by (4.13)

∈ (
∨

F )cBA by A2(
∨
F0) ∈ cBA,

and so {
∨

F0 : F0 is a subset of F} ⊂ (
∨
F )cBA. Therefore

(4.14) (
∨

F )cBA =
{∨

F0 : F0 is a subset of F
}
.

Since we suppose that
∧
D =

∨
F , by Corollary 4.20 and (4.14), we have

an order-preserving bijection

cBA
×(

∨
F )−−−−→

∼

{∨
F0 : F0 is a subset of F

}
.
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At last, we show that this is a lattice isomorphism, that is, this bijection
preserves joins and meets. For any x and y in cBA(⊂ DL), we have

(
∨

F )(x ∨cBA y) = (
∨

F )A2(x ∨ y) by Proposition 4.8

=
∨

F (A2(x ∨ y)) by (4.13)

=
∨

F (x ∨ y) by Lemma 4.28

=
∨

(F (x) ∪ F (y)) by Lemma 4.27

=
∨

F (x) ∨(
∨

F )cBA
∨

F (y) by (4.14)

= (
∨

F )x ∨(
∨

F )cBA (
∨

F )y by (4.13),

and

(
∨

F )(x ∧cBA y) = (
∨

F )xy by Proposition 4.9

=
∨

F (xy) by (4.13)

=
∨

(F (x) ∩ F (y)) by Lemma 4.27

=
∨

F (x) ∧(
∨

F )cBA
∨

F (y) by (4.14)

= (
∨

F )x ∧(
∨

F )cBA (
∨

F )y by (4.13).

□

Example 4.15. For the monoidally distributive poset M in Example 4.10,
we have F = {y}. (Remark that the element x satisfies xw ∈ {0, x} for any
w ∈ M , and however x ̸∈ DL. Hence x is not fieldlike.) Thus

∨
F = y =∧

D(=
∧
{y, 1}), and therefore M satisfies all conditions in Theorem 1.4.

Indeed, the mapping

cBA = {0, 1} ×
∨

F=×y−−−−−−→ (
∨

F )cBA = ycBA = y{0, 1} = {0, y}

=
{∨

F0 : F0 is a subset of F = {y}
}

is an isomorphism.

5. The case for B = B

The Bousfield lattice B of the stable homotopy category of (p-local) spec-
tra is a monoidally distributive poset. Indeed, we have 0 = ⟨0⟩, 1 = ⟨S0⟩,
where S0 is the sphere spectrum, and also, for any x = ⟨X⟩ and y = ⟨Y ⟩,
we have x ∨ y = ⟨X ∨ Y ⟩ and xy = ⟨X ∧ Y ⟩. In this section, we consider
the case for B = B, and we see that some results in [3] are obtained from
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the viewpoint of this paper. We remark that we use the notations DL and
cBA, instead of DL and cBA in [3], respectively.

We recall [3, Conj. 3.12]. Let

h = ⟨HFp⟩,

the Bousfield class of the mod p Eilenberg-MacLane specrum. We recall
that

(5.1) The class h is fieldlike, (particularly, h ∈ DL)

in the sense of Definition 4.21. We consider the subset

J = {c ∈ B : c < h}.

A class c ∈ B is strange if c ∈ J [3, Def. 3.9]. By use of the notation in
(4.8), we see the following.

Lemma 5.1 ([3, Lemma 3.10]). We have J = ↓ (h ∧ a(h)). In particular,
J is a complete ideal of B.

Proof. First we see that ↓ (h ∧ a(h)) ⊂ J . If c ∈ ↓ (h ∧ a(h)), then c ≤
h∧ a(h) ≤ h. Hence it suffices to show that c ̸= h. If c = h, then hc = h2 =
h ̸= 0 by (5.1). However, we have 0 ̸= h = hc ≤ h(h∧ a(h)) ≤ ha(h) = 0 by
(4.2), which is a contradiction. Therefore c ̸= h, and so ↓ (h ∧ a(h)) ⊂ J .

Next we show that J ⊂ ↓ (h ∧ a(h)). If c ∈ J , then c < h. Hence it
suffices to show that c ≤ a(h). If c ̸≤ a(h), then ch ̸= 0 by Lemma 4.1 (2).
This implies that ch = h by (5.1). However, this implies h = ch ≤ c < h,
which is a contradiction. Therefore c ≤ a(h). □

We note that

(5.2) (h ∧ a(h))2 = (h ∧ a(h))(h ∧ a(h)) ≤ ha(h) = 0.

Proposition 5.2 ([3, Prop. 3.11]). The induced mapping r∗ : B/J → DL,
the mapping in Problem 1.1 at (B, I) = (B, J), is well-defined.

Proof. By Theorem 1.2 (1), it suffices to show that J ⊂ I. If c ∈ J , then,
for any x ∈ B, we have

r(x) ≤ r(x ∨ c) by Lemma 3.4 (1)

≤ r(x ∨ (h ∧ a(h))) by Lemma 5.1

= r(x ∨ (h ∧ a(h))2) by Lemma 3.5

= r(x) by (5.2).

Hence r(x) = r(x ∨ c), and therefore c ∈ I. □
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Conjecture 5.3 (Retract conjecture [3, Conj. 3.12]). The well-defined map-
ping

r∗ : B/J → DL

in Proposition 5.2 is an isomorphism.

We remark that Problem 1.1 is a generalization of this conjecture.

Lemma 5.4. If Conjecture 5.3 holds, then J ⊂ a(DL).

Proof. First, we show that ↑ (a(h) ∨ h) ⊂ DL. If x ∈ ↑ (a(h) ∨ h), then

(5.3) x ≥ a(h) ∨ h ≥ h

and

(5.4) r(x) ≥ r(a(h) ∨ h) ≥ r(h) = h.

Since r∗ is an isomorphism and r∗([x]) = r(x) = r2(x) = r∗([r(x)]) by
Lemma 3.4 (2), we have [x] = [r(x)] in B/J . This and Lemma 5.1 imply

(5.5) x ∨ (h ∧ a(h)) = r(x) ∨ (h ∧ a(h)).

Hence

x = x ∨ h by (5.3)

= x ∨ h ∨ (h ∧ a(h))

= r(x) ∨ h ∨ (h ∧ a(h)) by (5.5)

= r(x) ∨ h

= r(x) by (5.4).

Therefore x ∈ DL, and so ↑ (a(h) ∨ h) ⊂ DL. This implies

J = ↓ (h ∧ a(h)) by Lemma 5.1

= ↓ a(a(h) ∨ h) by Lemma 4.1 (3), (4)

= a(↑ (a(h) ∨ h)) by Lemma 4.17

⊂ a(DL),

and our claim is shown. □

Let F (n) be a finite spectrum of type n, and K(n) the nth Morava K-
theory spectrum. We also consider the vn-telescope T (n) of F (n).

Conjecture 5.5 (Telescope conjecture [6, 10.5]). The Bousfield class ⟨K(n)⟩
is the same as ⟨T (n)⟩ for any n ≥ 0.

The spectrum A(n) is defined by the cofiber sequence

F (n) → LK(n)F (x) → A(n) → ΣF (n),

where LK(n) is the Bousfield localization functor with respect to K(n). In
[2, Prop. 1.6], Hovey proved that
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• ⟨T (n)⟩ = ⟨K(n)⟩ ∨ ⟨A(n)⟩ for any n ≥ 0, and
• The smash product A(n) ∧K(m) is 0 for any n and m.

Furthermore, we have

(5.6) A(n) ∧A(n) = A(n)

for any n ≥ 0 (see [2, §5]). By these facts, Conjecture 5.5 holds if and only
if ⟨A(n)⟩ = 0. On these backgrounds, Hovey and Palmieri proposed the
following conjecture as a weak version of Conjecture 5.5.

Conjecture 5.6 ([3, Conj. 5.1]). For any n ≥ 0, the Bousfield class ⟨A(n)⟩
is 0 or minimal.

Remark 5.7. In 2023, Burkland, Hahn, Levy, and Schlank announced that
Conjecture 5.5 doesn’t hold [1].

Hereafter, for the sake of simplicity, we denote

kn = ⟨K(n)⟩ and an = ⟨A(n)⟩.
Corollary 5.8. If Conjecture 5.6 holds, then any nonzero an is a fieldlike
element.

Proof. The class an is in DL by (5.6). Hence, if an is minimal, then it is
filedlike by Lemma 4.24. □

We recall the subset F in (4.12). We put

Fkah = {km, an, h : m ≥ 0, an ̸= 0}.
By Corollary 5.8,

(5.7) If Conjecture 5.6 is true, then Fkah ⊂ F.

We also recall that, by Proposition 4.26, we have
∨
Fkah ≤ f ∨ a(f) for any

f ∈ Fkah.

Conjecture 5.9 ([3, Conj. 6.12]).
∨

Fkah = h ∨ a(h).

Proposition 5.10. If Conjecture 5.6 and Conjecture 5.9 are true, then
Fkah = F , that is, any fieldlike element is one of kn’s, an’s, and h.

Proof. By (5.7), it suffices to show that F ⊂ Fkah. By Proposition 4.26 and
the assumption, we have

∨
F ≤ h ∨ a(h) =

∨
Fkah. From this and Lemma

4.25, we obtain F ⊂ Fkah. □

Remark 5.11. For a general monoidally distributive poset, we have an ana-
logue of Conjecture 5.9, which claims that there exists a fieldlike element
f ∈ F such that

∨
F = f ∨ a(f). For example, on the monoidally dis-

tributive poset M in Example 4.10 (or Example 4.15), this claim holds.
Indeed, for this M , we have x ≤ y, a(y) = x, and F = {y}. Thus∨
F = y = y ∨ x = y ∨ a(y).
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Theorem 5.12 ([3, Prop. 6.13]). If Conjecture 5.3, Conjecture 5.6 and
Conjecture 5.9 hold, then cBA is isomorphic to a complete Boolean algebra
generated by Fkah, that is,

cBA ∼=
{∨

F0 : F0 is a subset of Fkah

}
.

Proof. We note that the ideal J is complete by Lemma 5.1. If Conjecture
5.3 is true, then J = I by Theorem 1.2. Hence, by Lemma 5.4, all conditions
of Proposition 4.18 hold. We also have∧

D =
∧(

↑ a(
∨

I)
)

by (4.9)

=
∧(

↑ a(
∨

J)
)

by J = I

= a
(∨

J
)

= a(h ∧ a(h)) by Lemma 5.1

= a(h) ∨ h by Lemma 4.1 (3), (4)

=
∨

Fkah since we assume that Conjecture 5.9 holds.

We note that Fkah = F by Proposition 5.10. Therefore, by Theorem 1.4, we
have cBA ∼= {

∨
F0 : F0 is a subset of Fkah}. □
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