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RETRACT PROBLEM AND A SUBSET ADMITTING
COMPLETE BOOLEAN ALGEBRA STRUCTURE OF
MONOIDALLY DISTRIBUTIVE POSETS

Ryo KaTo

ABSTRACT. In [3], Hovey and Palmieri proved many interesing results
around the Bousfield lattice of the stable homotopy caregory of spec-
tra. In [4], the author, Shimomura and Tatehara defined monoidally
distributive posets as a generalization of the Bousfield lattice. In this
paper, we consider the retract problem and a subset admitting complete
Boolean algebra structure of monoidally distributive posets. In the last
section, we see that some results in [3] are given by our results in this

paper.

1. INTRODUCTION

Let p be a prime number and S, the stable homotopy category of spectra
localized at p. For a spectrum X € S, the Bousfield class (X) is defined
to be the class consisting of spectra Y such that the smash product X AY
is 0. We denote by B the collection of Bousfield classes. In [5], Ohkawa
showed that the collection B is a set. This set also has a lattice structure,
which is given by (X) < (V) < (X) D (V). Immediately, we see that the
join of (X) and (Y) is the Bousfield class of the wedge sum X VY. On
the other hand, the meet of (X) and (V) is not (X AY). In [3], Hovey
and Palmieri considered a sup-sublattice DL of B (see [3, §3]). In DL, the
meet of (X) and (Y) is the same as (X AY). Furthermore, DL admits a
(complete) distributive lattice structure. For the inclusion DL C B, we have
its retraction r: B — DL. Hovey and Palmieri noticed that the retraction
r sends every “strange” Bousfield class to (0). On these backgrounds, they
proposed the retract conjecture on B ([3, Conj. 3.12], or Conjecture 5.3),
which claims that the retraction r induces an isomorphism from the quotient
lattice B/(strange classes) to DL.

In [4], the author, Shimomura and Tatehara considered monoidally dis-
tributive posets as a generalization of B (see §2), and extended some results
of [3] to monoidally distributive posets. A monoidally distributive poset B
is a lattice, and also it is a commutative monoid with 0. As a generalization
of DL, we consider

DL = {x € B: 2* = 2},
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the subset consisting of idempotent elements in B. The inclusion DL C B
has a retraction r: B — DL (see (3.3)). In this paper, we consider the
following problem (cf. [4, Conj. 3.18]).

Problem 1.1 (Retract problem). For a given lattice ideal I of a monoidally
distributive poset B, we consider the induced mapping

r«: B/I — DL;[z] — r(z).
Is this a well-defined isomorphism?

This problem is a generalization of the retract conjecture. We consider
the subset

J={ceB:r(xVc)=r(zr)for any x € B},
which is a lattice ideal of B (Proposition 3.10). In §3, we prove the following.

Theorem 1.2. (1) The induced mapping r. in Problem 1.1 is well-
defined if and only if I C 7.
(2) If the mapping ry in Problem 1.1 is an isomorphism, then I = 7.

Remark 1.3. Theorem 1.2 is an improved version of [4, Th. 3.16]. In [4], the
author, Shimomura and Tatehera considered the subset A = {x € B: r(z) =
0} instead of J. However, we don’t know whether or not A is a lattice ideal
of B. Theorem 1.2 settles this problem.

We turn to the Bousfield lattice B, and consider the sup-sublattice DL. A
subset BA is defined to be the subset consisting of complemented Bousfield
classes (see [3, §4]). Then BA is a sublattice of DL, and also BA admits a
Boolean algebra structure. For them, we have a problem that DL is com-
plete and BA is not complete. On these backgrounds, Hovey and Palmieri
constructed a subset cBA (see [3, §6]) of B, which satisfies that

e BA C cBA C DL, and
e cBA admits a complete Boolean algebra structure.

They also proved that we can describe the structure of cBA under some
conjectures ([3, Prop. 6.13], or Theorem 5.12).

For a monoidally distributive poset B, we have an order-reversing map-
ping a: B — B (see (4.1)). For an element x of DL, we define A(z) =
r(a(x)) (see (4.4)). As a generalization of cBA, we consider a subset

cBA ={x € DL: A*(z) =z}

of B. This subset has a complete Boolean algebra structure (Theorem 4.10).
A nonzero element f € DL is fieldlike if, for any x € B, we have zf € {0, f}
(Definition 4.21). An element d € DL is dense if A%(d) = 1 (Definition
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4.11). We put F = {f € DL: f is fieldlike}, D = {d € DL: d is dense},
and a(DL) = {a(x): x € DL}. For a subset S of B, we denote by

\/S:\/ZL' and /\S:/\x,
€S €S
the join and the meet, respectively. In §4, we prove the following.

Theorem 1.4. We suppose that

(1) 7y in Problem 1.1 at I =T is an isomorphism,

(2) J is a complete ideal,

(3) 3 Ca(DL), and

(4) VF=AD.

Then, cBA is isomorphic to the complete Boolean algebra generated by F,
that 1is,

cBA = {\/FO: Fy is a subset ofF}.
Here we remark that \/ & = 0.

In the last section, we consider the case for B = B. Some results in [3]
are obtained from the viewpoint of this paper. In particular, we see that [3,
Prop. 6.13] is easily shown by Theorem 1.4 (see Theorem 5.12).

Acknowledgements. The author would like to thank the referee for many
useful comments.

2. MONOIDALLY DISTRIBUTIVE POSETS

A commutative monoid with 0 is a commutative monoid M having an
element 0 such that 0z = 0 for any € M. In [4], the author, Shimomura
and Tatehara defined monoidally distributive posets as a generalization of
the Bousfield lattice B.

Definition 2.1 ([4, Def. 2.4]). A monoidal poset B = (B, <,-,1,0) cosists
of the following data.

(1) (B,-,0,1) is a commutative monoid with 0.
(2) (B, <) is a poset.
(3) The following are equivalent.

(a) x <y.

(b) For any ¢ € B, yc =0 implies xzc = 0.

For an element = € B, we put
(2.1) () ={ce€ B: zc=0}.
Then, Definition 2.1 (3) is rewriten as

(2.2) <y (2) DY)
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Remark 2.2. We immdiately see that, for a monoidal poset B, the following
hold.

o z < y implies that xz < yz for any z € B.
e 0 is the minimum element, and 1 is the maximum element.
e For any z and y in B, we have zy < z. In particular, 2% < z.

In general, a commutative monoid (with 0) admitting an ordering is not a
monoidal poset. For example, the set R admits the ordinary multiplication
and ordering. In this case, for any nonzero z € R, we have () = {0}. There-
fore, the condition (2.2) is not satisfied. As another example, we consider
the min-plus poset ([0, oc], >, 0, 00, +). In this case, for any z € [0, 00), we
have (x) = {c € [0,00]: x + ¢ = o0} = {o0}. Therefore, the condition (2.2)
is not satisfied, and hence the min-plus poset is not a monoidal poset.

Remark 2.3. In general, from a commutative monoid M with 0, we obtain
the monoidal poset B(M) (see [4, §2]). Furthermore, by [4, Prop. 2.17 (2)],
M is a monoidal poset if and only if S(M) = M. A categorical argument
on monoidal posets is written in [4, §2].

Definition 2.4 ([4, Def. 3.6]). A monoidal poset B is a monoidally dis-
tributive poset if the following hold.

(1) B is a complete lattice.
(2) For any x € B and {y»} C B, we have x(\/, yx) = V, (2yr)-

Hereafter, throughout this paper, we assume that B is a monoidally dis-

tributive poset.

3. RETRACT PROBLEM

For a subset S of B, we denote

\/S:\/x and /\S:/\l'.

€S zeS
We remark that \/ @ =0 and /\ @ = 1. We also consider the subset
(3.1) DL ={x € B: 2* = z}.
It is clear that
(3.2) x,y € DL = zy € DL.

Indeed, if z,y € DL, then (zy)? = 2%y? = zy.

Lemma 3.1. Let w € DL and {x,y} C B. Then, w < xz Ay if and only if
w < zY.
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Proof. By Remark 2.2, we have zy < x and zy < y, and so zy < x A y.
Hence, if w < zy, then w < zy < z Ay. Conversely, we assume that
w < x Ay. This implies w < z and w < y. Therefore, since w € DL, we
have w = ww < zw < xy. O

Lemma 3.2. If S C DL, then \/ S € DL.
Proof. For any S C DL, we have

\/SZ(\/S)2: \/ Ty > \/3333:\/33:\/5.

z,yeS zes zeS

Therefore (\/ S)? =V S. O
We consider the following mapping.
(3.3) r:B—>DL;x|—>\/{w€DL:w§m}.

By Lemma 3.2, this is well-defined, that is, r(x) belongs to DL for any
x € B. It is easy to see that

(3.4) r(x) < z for any x € B,
and
(3.5) r(0) =0, r(1)=1.

Lemma 3.3. x € DL if and only if x = r(z). In particular, the mapping r
is a retraction of the inclusion DL C B.

Proof. 1t is clear that x = r(x) implies x € DL. Conversely, if x € DL,
then z is the maximum element of the subset {w € DL: w < x}. Therefore,
r(z) =\{weDL: w <z} =ux. O

Lemma 3.4 ([4, Prop. 3.5]). The mapping r satisfies the following.
(1) z <y implies r(x) < r(y).
(2) 12(a) = r(z) for any € B.
(3) r(xz) < z™ for any x € B and n > 1.
(4) r(xy) = r(x ANy) = r(z)r(y) for any © and y in B. In particular,
r(x?) = r(x) for any x € B.

Proof. (1) If 2 < y, then {w € DL: w < 2z} C {w € DL: w < y}.
Hence r(z) = \/{w e DL: w <z} <\/{w € DL: w <y} < r(y).
(2) By Lemma 3.3 and r(z) € DL, we have r(z) = r(r(z)) = r?(x).
(3) Note that r(x)™ = r(z) for any n > 1. Therefore, by (3.4), we have
r(x) =r(z)" <z



94 R. KATO

(4) Since we have
r(zy) = \/{w € DL: w < zy}
— \/{w € DL: w <z Ay} by Lemma 3.1
= r(zAy)

r(z A y) is shown. We turn to the part r(zy) =
we have r(zy) < r(z) and r(zy) < r(y). Hence

the part r(zy) =
r(z)r(y). By (1),
r(zy) = r(zy)r(zy) <r(z)r(y).
We also have
r@rw) = (ViweDL:w<a}) (i € DL <y))
= \/{ww': w,w' € DL, w<z, w <y}
\/{w € DL: w<zy} by (3.2)
= r(zy).
Therefore, r(zy) = r(z)r(y).

IN

O

Lemma 3.5. For any x and y in B, we have r(z V y) = r(z V y") for any
n>1.

Proof. Tt suffices to show that 7(x V y) = r(x V y?), which is given by
r(zVy) = r((zVy)?) by Proposition 3.4 (4)
= r(a(zVy)Vy’)
r(zVy*) by Proposition 3.4 (1)
r(z Vy) by Proposition 3.4 (1).

VANVAN

O

Let B’ be a subset of B. For a subset S of B’, if there exists the join
(resp. the meet) of S in B, then we denote it by \/Z S (resp. AZ 9).

Proposition 3.6. The subset DL is complete, that is, for any subset S of
DL, there exist \/P*S and \P*S. More details, we have \/P*S = \/ S
and NP¥'S =r(\S).

Proof. Let S be a subset of DL. From Lemma 3.2, it is immdiately obtained
that \/PX' S = \/ 5. We turn to APY'S = r(A S). By Lemma 3.4, for any
x € S, we have DL > r(A\S) <r(z) =z. If DL > w < z for any z € S,
then w = r(w) < r(/\ S) by Lemma 3.4 (1). Therefore AP S =r(AS). O
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Corollary 3.7. For any x and y in DL, we have x APL y = zy.

Proof. If x and y are in DL, then
e APy = r(zAy) by Proposition 3.6
= r(zy) by Lemma 3.4 (4)
= a2y by (3.2) and Lemma 3.3.
]

Remark 3.8. By Proposition 3.6, the subset DL is a complete distributive
lattice, and therefore DL admits a complete Heyting algebra structure.

Remark 3.9. We may think that B is a category such that, for any  and y
in B, the set of morphisms from z to y is @ or {<}. Similarly, the subset
DL becomes a category. Since B and DL are complete lattices, they are
complete and cocomplete categories. Furthermore, r: B — DL is a right
adjoint of the inclusion functor DL C B. Indeed, for any x € DL and y € B,
we have z < y < x < r(y). From this viewpoint, Proposition 3.6 means
that the right adjoint functor r: B — DL preserves limits.
We recall that a subset I of B is a lattice ideal if
e {z,y} C I implies x Vy € I, and
o z <y €l implies z € I.
For a lattice ideal I, the quotient B/I = {[x]: © € B} is defined by
o [z]={2' € B:axVi=2a'Viforsomeie€ I}, and
o [z] <y]iff x <yVifor some i€ I
We define
(3.6) J={ceB:r(xVec)=r(z) for any x € B}.
Proposition 3.10. The subset J is a lattice ideal of B.

Proof. If ¢ and d are in J, then, for any x € B, we have
r(zVevd) = r(xVe) byded
= r(x) bycel.
Therefore, ¢V d is in J.
If ¢ < d €7, then, for any x € B, we have
r(z) < r(zxVe) by Lemma 3.4 (1)
< r(xVvd) by Lemma 3.4 (1)
= r(z) byde?d.
Hence r(z) = r(z V ¢), and therefore ¢ € J. O
Lemma 3.11. Ifc € J, then r(c) = 0.
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Proof. If ¢ € J, then
r(c) = r(0OvVe)=r(0) byced
= 0 by (3.5).
O

For r: B — DL and a lattice ideal I of B, we consider the induced
mapping

(3.7) r«: B/I — DL;[z] — r(x).

Proof of Theorem 1.2. (1) We assume that r, in (3.7) is well-defined. If
¢ € I, then, for any € B, we have [z| = [V ¢| in B/I. This implies
r(zVe) =ro([zVe]) = re([z]) = r(z), and so ¢ € J. Therefore I C J.

Conversely, we assume that I C J. If [2] = [y] in B/I, then
xVe=1yVcfor some c € I(C7J). Thus, we have
r«([z]) = r(x)=r(xVve) byceld
= r(yVe) byxVe=yVe
= r(y) byced
= 7«([y))-
Therefore, r, is well-defined.

(2) We assume that r, is an isomorphism. By (1), it suffices to show
that 3 C I. If ¢ € J, then r(¢) = 0 = r(0) by Lemma 3.11 and (3.5).
Thus, 7.([c]) = 7(c) = r(0) = r.([0]). Since r. is an isomorphism,
we have [c] = [0] in B/I, and so ¢ € I. Therefore J C I.

O

4. THE SUBSET cBA

We consider the following mapping.

(4.1) a:B—>B;x»—>\/<x>:\/{c€B:wc:0}.
Here, (x) is in (2.1). It is clear that

(4.2) za(x) =0 for any x € B,

and

(4.3) a(0)=1, a(l)=0.

Indeed, we have za(z) = (V.o ¢) = Vyeeorc =0, a(0) = \/(0) =\ B =
1, and a(1) = V(1) = {0} = 0.

For any subset S of B, we denote
a(S) ={a(z): z € S}.
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Lemma 4.1 (¢f. [3, Lemma 2.3]). The mapping a: B — B satisfies the
following.
(1) x <y implies a(z) > a(y).
(2) xy =0 if and only if x < a(y).
(3) a*(x) = x for any x € B.
(4) For any S C B, we have a(\/ S) = A\ a(S) and a(\S) =V a(9).

Proof. (1) If x < y, then (z) D (y) by (2.2). Hence a(z) = \/(z) >
V(y) = a(y).

(2) If zy = 0, then = € (y), and so z < \/(y) = a(y). Conversely,
if x < a(y), then zy < ya(y). Since ya(y) = 0 by (4.2), we have
zy = 0.

(3) By (4.2) and (2), we have z < a?(x) for any # € B. This and (1)
imply a(z) > a®(x). Furthermore, we have a(z)a?(z) = 0 by (4.2),
and so a(x) < a®(z) by (2). Thus a(x) = a®(z), and so

ct=0 & c<a(x) by (2)
& c<d¥(x) bya(z) =d(z)
& ca*(r) =0 by (2).
Therefore z = a?(x).

(4) By (1), we have a(\/S)
any x € S, then, by (1)
S. This implies a(w)
w = a%(w) < a(S), a
a(AS) = Va(S).

< a(x) for any x € S. If w < a(z) for
and (3), a(w) > a®(x) = z for any x €
\/ S. Therefore, by (1) and (3), we have
soa(\/S)=A (S) Similarly, we see that

>
nd s

O
Remark 4.2. By Lemma 4.1 (3), we have a(S) = {z: a(x) € S}.

We recall the subset DL in (3.1), and consider the following composite.

(4.4) A=ra: DL% B DL.
Then, we have

(4.5) zA(x) =0 for any x € DL
and

(4.6) A(0)=1, A(1)=0.

Indeed, by (3.4) and (4.2), we have zA(x) =
Furthermore, by (3.5) and (4.3), we have A(0) =
A(l) =ra(l) =r(0) =0.

Lemma 4.3. For any x and y in DL, we have A(z V y) = A(z)A(y). In
particular, A(x V A(z)) = 0.

( ( ) < za(z) = 0.
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Proof. If x,y € DL, then
A(zVy) = ra(zVy)

= r(a(z)Aa(y)) by Lemma 4.1 (4)

= r(a(z))r(a(y)) by Lemma 3.4 (4)

= A(x)A(y)-
In particular, A(x V A(x)) = A(z)A%(x) = 0 by (4.5). O

For any subset S of DL, we denote
A(S) = {A(x): x € S}.

As an analogue of Lemma 4.1, we see the following.

Lemma 4.4 (c¢f. [3, Lemma 6.2]). The mapping A satisfies the following.
(1) For any x and y in DL, x <y implies A(z) > A(y).

(2) For any x andy in DL, xy = 0 if and only if x < A(y).

(3) For any x in DL, z < A%(z) and A(z) = A3(x).

(4) For any S C DL, we have A(\PL S) = A\PF A(S).

Proof. (1) By Lemma 3.4 (1), the mapping r is order-preserving. By
Lemma 4.1 (1), the mapping a is order-reversing. Therefore, the
composite A = ra is order-reversing.

(2) If zy = 0, then x < a(y) by Lemma 4.1 (2). Hence , by x € DL and
Lemma 3.4 (1), we have z = r(z) < r(a(y)) = A(y). Conversely, if
x < A(y), then zy < yA(y) = 0 by (4.5).

(3) By (4.5), for any € DL, we have xA(x) = 0. This and (2) imply
r < A%(z). We next turn to A(z) = A3(x). By (1), z < A?%(x)
implies A(x) > A3(x). On the other hand, A(z)A?(z) = 0 by (4.5).
This and (2) imply A(z) < A3(x). Therefore, we have A(z) = A3(x).

(4) For any S C DL, by (1), we have A(\/?*'S) < A(z) for any z € S.

Furthermore, we have
DL>w< A(x) forany z € S = wz=0forany z €S by (2)

= w(\/S) =w(\/ 2)=\/(wz) =0

zeS zeS
= w< A(\/ S) by Lemma 3.2 and (2).

Besides, by Lemma 3.6, A(\/ S) = A(\/P* S). Therefore A(\/PL 5) =

AP A(S).
O

Remark 4.5. For any x and y in B, we have

<y & a(r)>a(y) by Lemma 4.1 (1)
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= ra(x) > ra(y) by Lemma 3.4 (1),
which is an analogue of Lemma 4.4 (1).

Lemma 4.6 (cf. [3, Lemma 6.5 (1)]). For any x and y in DL, we have
A(zy) = A(A(2)A%(y)).

Proof. Let x,y € DL. By Lemma 4.4 (3), we have z < A%(z) and y < A%(y).
These imply zy < A%(x)A%(y). From this and Lemma 4.4 (1), we obtain
A(zy) > A(A%(z)A%(y)). On the other hand, we have

zyA(zy) =0 by (4.5)

!

yA(zy) < A(z) by Lemma 4.4 (2)
yA(wy) A%(z) < A(x)A%z) =0 by (45)
(

< A(y) by Lemma 4.4 (2)
(¥)A%(y) =0 by (4.5)

bbby
AAE/—\

8
\_/\_/S/\_/

%
=2EEE

%

<

IN

e o

z)A%(y)) by Lemma 4.4 (2).
Therefore A(xy) = A(A%(x)A%(y)). O
Corollary 4.7. For any x and y in DL, we have A%(zy) = A%(x)A%(y).
Proof. If x and y are in DL, then
A%(zy) = A*(A%(z)A%(y)) by Lemma 4.6

= A%(A%(x) AP A%(y)) by Corollary 3.7

= A3(A(z) VP A(y)) by Lemma 4.4 (4)

= A(A(z) VPT A(y)) by Lemma 4.4 (3)

= A%(z) APL A%(y) by Lemma 4.4 (4)

= A?*(z)A%*(y) by Corollary 3.7.

We consider the subset
cBA ={x € DL: A*(z) =z}
of DL.

Proposition 4.8. The subset cBA is complete, that is, for any subset S
of cBA, there exist \/°P4 S and NP4 S. More details, we have \/*P4 S =
A%(\/ 8) and NP4 S = A2(\S).
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Proof. Let S be a subset of ¢cBA. By Lemma 4.4 (1), the mapping A
is order-reversing. This implies that A?: DL — DL is order-preserving.
Furthermore, by Lemma 4.4 (3), A?(x) belongs to cBA for any 2 € DL.
Hence we have cBA > A%(\/ S) > A?(x) = x for any = € S. Assume that
cBA > w > z for any € S. This implies w = A?(w) > A%(\/ S), and so
\/eBAS = A2(\/ S). Similarly, we see that AP4 S = AZ(A 9). O

Proposition 4.9. For any S C cBA, we have /\CBA S = /\DL S. In partic-

ular, for any = and y in cBA, we have x A°BA y = zy.
Proof. Let S C ¢BA(C DL). Then, we have

cBA

/\ S = AQ(/\ S) by Proposition 4.8

= ra(ra(/\ S))
> ra(a(/\ S)) by (3.4) and Remark 4.5
= r(/\ S) by Lemma 4.1 (3)

DL

= /\'S by Proposition 3.6
cBA
> /\'S bycBACDL.

Therefore AP48 = APL'S. Furthermore, if 2 and y are in ¢BA, then
x NBAy = 2 APL y = 2y by Corollary 3.7. g

Theorem 4.10 (c¢f. [3, Th. 6.4]). The subset cBA is a complete Boolean
algebra.

Proof. By Proposition 4.8, cBA is a complete lattice. We note that, for any
x € cBA, the element A(z) belongs to cBA. Besides, we have

z ABAA() = 2 APL A(z) by Proposition 4.9
= zA(xz) by Corollary 3.7
= 0 by (4.5)
and
e VeBA A(x) = A2%(zV A(z)) by Proposition 4.8
= A(A(zV A(z))) = A(0) by Lemma 4.3
1 by (4.6).

Therefore, A(x) is the complement of x in cBA.
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Furthermore, for x,vy, z € cBA, we have

x N°BA (y vebA z) = A%(z) ABA A%(y v 2) by 2 € ¢BA and Proposition 4.8

= A%(z)A%*(yV z) by Proposition 4.9
= A%(z(yVz)) by Corollary 4.7

= A%(axyVzz)

= zyVvB42z by Proposition 4.8

= (2 ABAy) veBA (2 A°BA ) by Proposition 4.9.
Therefore AB4 is distributive on VB4, O

Definition 4.11 (cf. [3, Def. 6.6]). An element d € DL is dense if A%(d) =
1.

Remark 4.12. By (4.6) and Lemma 4.4 (3), for an element d € DL, it is
dense if and only if A(d) = 0.

Remark 4.13. As a typical example of a (complete) distributive lattice, we
have Q(X), the set of open subsets of a topological space X. In this case,
for any {Ux} C Q(X), we have \/, Uy = |, U and A, Uy = Int(N, Uy),
where Int(—) denotes the interior. Furthermore, we have 0 = @ in Q(X).
Hence the mapping A of (4.4) on Q(X) is given by
A: QX)) = QUX);U = Int(X\U).

Thus, in Q(X), the equality A(U) = 0 means that Int(X \ U) = &, that
is, U is a dense subset. This is a reason for that we use the word “dense
element”.

We consider the following subsets.
D = {de DL: dis dense},
a(D) = {a(d):de D} ={x € B: a(z) € D}.
Lemma 4.14. The subset 3 N a(DL) is contained in a(D). Here, J is in
(5.6).
Proof. If c € 3N a(DL), then a(c) € DL and
A(a(c)) = ra(a(c)) =r(c) by Lemma 4.1 (3)
= 0 by Lemma 3.11.
By this and Remark 4.12, the element a(c) is dense. Therefore ¢ € a(D). O

Proposition 4.15. If the mapping r«: B/3 — DL in Problem 1.1 at I =7
is an isomorphism, then 3N a(DL) = a(D).
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Proof. By Lemma 4.14, it suffices to show that a(D) C JNa(DL). If
c € a(D), then a(c) € D C DL. Thus ¢ € a(DL). Furthermore, we have
r«([c]) = r(c) =ra(a(c)) by Lemma 4.1 (3)
= A(a(c)) =0 by a(c) € D and Remark 4.12
= 7.([0]).
Since 7, is an isomorphism, we have [c] = [0] in B/J. Therefore c€ 3. O

Theorem 4.16 (cf. [3, Th. 6.7]). For any x and y in DL, the following are
equivalent.

(1) A%(z) = A%(y).
(2) There ezists a dense element d such that xd = yd.

Proof. First we prove the part (2) = (1). If zd = yd for some dense elment
d, then

A%(z) = A%(z)-1= A%*(2)A%(d) = A%*(xzd) by Corollary 4.7

= Ay)-1=4%Qy)
Next turn to the part (1)

A(zy) = A(A%(x)A%(y)) by Lemma 4.6
W) (42(2) A%(z))
' = gAQ(x)) by A%(z) € DL

|
oS SO S S

() = A(z) by Lemma 4.4 (3).
We put d = xy V A(x) = 2y VPL A(z). Then, we have
A(d) = A(zy VPE A(x)) = A(zy) APL A%(x) by Lemma 4.4 (4)
= A(zy)A%(x) by Corollary 3.7
A(z)A%(x) by (4.7)

= 0 by (4.5).
Hence, by Remark 4.12, the element d is dense. We also note that, by Lemma
4.4 (3), the condition A%(z) = A?(y) implies A(z) = A(y). Therefore, we
have

xd = z(zyV Az)) = 2%y VvV zA(z) =xy by z € DL and (4.5)
= xy’ VyA(y) by y € DL and (4.5)

y(zy vV A(y)) = y(zy vV A(z)) by A(z) = A(y)
yd.
Hence we see that (1) = (2). O
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For a subset S of B, we define

1S = {xe€B:x>sforsomeseS},
1S = {x€B:x<sforsomese S}
Furthermore, for an element = € B, we denote
(4.8) tx=1{z} and Jz=]{z}.

Lemma 4.17. For any subset S of B, T a(S) = a(] S) and | a(S) = a(1 5).
Proof. We have

x€talS) & x> a(s) for some s € S
& a(x) < s for some s € S by Lemma 4.1 (1), (3)
< alz)el S
& zea(lS).
Therefore 1 a(S) = a({ S). Similarly, we see that | a(S) = a(1 9). O

We note that a lattice ideal I is complete if and only if I = | \/I.

Proposition 4.18. We suppose the following.
(1) The mapping r«: B/3 — DL is an isomorphism,
(2) J is complete, and
(3) 3 C a(DL).

Then \ D is a dense element. In particular, \ D is in DL.

Proof. Under the conditions, we have

D = a(Jna(DL)) by Proposition 4.15
a(J) by I Ca(DL)

a(L \/J) since J is complete

1t a(\/J) by Lemma 4.17

T Aa(3) by Lemma 4.1 (4)

T Aa(@Nna(DL)) by I Ca(DL)
= 1T AD by Proposition 4.15.

Therefore A D € + A D = D, that is, A D is dense. O

(4.9)

FEzample 4.10. We consider the following commutative monoid M with 0:
M ={0,2,y,1} with 22 =0, 2y =0, y*> = 4.
This is a monoidally distributive poset under the ordering 0 < z <y < 1.
In this case, we have r(z) = 0, r(y) = y, a(zx) = y, and a(y) = x. These
imply
DL ={0,y,1}, 3={0,z}, c¢BA={0,1}, D ={y,1}.
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It is easy to see that M satisfies all conditions in Proposition 4.18. Further-
more, we have A D =y € DL.

Theorem 4.19. We suppose that the conditions in Proposition 4.18 hold.
Then, for any x and y in DL, the following are equivalent.

(1) A%(z) = A%(y).

(2) z(AD) =y(A\D).
Proof. First, we prove the part (2) = (1). By Proposition 4.18, the element
A\ D is dense. Hence, if z(A\ D) = y(A D), then A%(z) = A%(y) by Theorem
4.16.

Next turn to the part (1) = (2). By Proposition 4.18, the element A D

is dense, and so /\ D € DL. Therefore, for any dense element d, we have

d(AD) = dAPE(AD) by Corollary 3.7
= AD bydeD.

By Theorem 4.16, if (1) holds, then zdy = ydy for some dy € D. Therefore,
we have

(4.11)

2(\D) = zdo(\D) by (4.11)
= ydo(/\ D) by xdy = ydo
= y(AD) by (411).

For an element w € B, we put
weBA = {wz: x € cBA}.

Corollary 4.20. We suppose that the conditions in Proposition 4.18 hold.
Then, the mapping

x(/\D): ¢cBA — (/\ D)cBA;z — 2(/\ D)
is an order-preserving bijection.

Proof. It suffices to show that the mapping is an injection. If x and y in
cBA satisty z(\ D) = y(/\ D), then A%(z) = A%(y) by Theorem 4.19. Since
z,y € cBA, we have x = y. O

Definition 4.21. A nonzero element f € DL is fieldlike if, for any x € B,
we have xf € {0, f}.

Remark 4.22. We consider the case for B = B, the Bousfield lattice of the
stable homotopy category. A spectrum K is a field spectrum if, for any
spectrum X, the smash product K A X is a wedge of suspensions of K. For
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such K, the Bousfield class (K) satisfies the condition of Definition 4.21.
This is a reason for that we use the word “fieldlike element”.

Lemma 4.23. If fo and f1 are distinct fieldlike elements, then fofi = 0.

Proof. By definiton of fieldlike elements, if fyfi # 0, then fo = fof1 = fi.
This is a contradiction. O

A nonzero element m € B is minimal if, for any x € B, the inequality
0 <z < m implies = € {0, m}.
Lemma 4.24. If m is a minimal element and m? # 0, then m is fieldlike.
Proof. Since m is minimal and 0 # m? < m, we have m? = m, that is, m is

in DL. For an element z, since mz < m, we have mx € {0, m}. Therefore
m is fieldlike. O

We put
(4.12) F={feDL: f is fieldlike}.

Lemma 4.25. If two subsets Fy and Fy of F satisfy \/ Fo < \/ F1, then
Fy C Fy.

Proof. If Fy ¢ Fy, then there exists a fieldlike element f € Fy \ Fj. Note
that Lemma 4.23 implies f(\/ Fp) = f and f(\/ F1) = 0. By them and the
assumption \/ Fy <\/ F1, we have a contradiction f = f(\/ Fo) < f(V F1) =
0. O

Proposition 4.26. Let Fy be a subset of F'. For any f € Fy, we have
VFy < fVal(f).

Proof. For f € Fj, we denote F({ = Fy \ {f}. By Lemma 4.23, we have
f(\/FOf) = 0, and so \/Fg < a(f). This implies \/ Fy = f\/\/Fg <
fva(f). O

For an element = € B, we define

F(z)={f € F:af = f}.

We then have

(4.13) 2\ F)=a(\/ )=\ @f) =\ F)
feF fEF

and the following.

Lemma 4.27. For any x and y in B, we have F(xVy) = F(z)UF(y) and
F(zy) = F(z) N F(y).
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Proof. If f € F(xVy), then fzV fy = f(xVy) = f. Thus fx # 0or fy #0,
and so f € F(z)U F(y). Conversely, if f € F(xz)U F(y), then fz = f or
fy = f. This implies f(x Vy) = fzV fy=f,and so f € F(xVy).

We turn to the second claim. If f € F(xy), then fxy = f # 0. This
implies fxr # 0 and fy # 0, and so f € F(x) N F(y). Conversely, if f €
F(x) N F(y), then fr = f and fy = f. Hence faxy = (fx)y = fy = f, and
so f € F(zy). O
Lemma 4.28. For any x € DL, we have F(A%(z)) = F(z). In particular,
for any subset Fy of F, we have F(A%(\| Fy)) = Fy.

Proof. Let f € F. From
fA%(x) =0 & f<A%z) by Lemma 4.4 (2)
& f<A(x) by Lemma 4.4 (3)
< fr=0 by Lemma 4.4 (2),

we obtain the lemma. In particular, for any subset Fy of F', we have

F(A%(\/ Fy)) = F(\ Fy) = Fy by Lemma 4.23. O
Corollary 4.29. For any d € D, we have F(d) = F.
Proof. By Lemma 4.28, we have F(d) = F(A%(d)) = F(1) = F. O

Corollary 4.30. \/ F < A D.

Proof. Let d be a dense element. By Corollary 4.29 and (4.13), we have
VF=\F(d)=d(\/F)<dforanyde D,andso \/ F < A D. O

Remark 4.31. By Corollary 4.30, for the condition (4) of Theorem 1.4, the
half of the equality holds for any monoidally distributive poset.

Proof of Theorem 1.4. Since z(\/ F)) = \/ F(z) by (4.13), we have (\/ F)cBA C
{V Fo: Fp is a subset of F'}. On the other hand, for any subset F of F', we
have A%(\/ Fy) € cBA by Lemma 4.4 (3). Thus

VE = \/F(*(\/FR)) byLemma 4.28
= (\VP)A*(\/ Fo) by (4.13)
€ (\/F)ecBA by A*(\V Fy) € cBA,
and so {\/ Fy: Fp is a subset of F'} C (\/ F)cBA. Therefore
(4.14) (\/ F)eBA = {\/ Fy: Fy is a subset of F} .

Since we suppose that A\ D = \/ F, by Corollary 4.20 and (4.14), we have
an order-preserving bijection

cBA % {\/FO: Fy is a subset of F}
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At last, we show that this is a lattice isomorphism, that is, this bijection
preserves joins and meets. For any x and y in ¢BA(C DL), we have

\/ F)(zVveBAy) = (\/ F)A*(zVy) by Proposition 4.8
= \/F(A*@xVy)) by (4.13)
= \/ F(zVy) by Lemma 4.28
= \/(F(z)UF(y)) by Lemma 4.27
= \/ F(x) vVVEIBAN/ F(y) by (4.14)
= (\/ Pz vVEBAN/Fyy by (4.13),

and

(\/ F)(x ABAy) = \/ F)zy by Proposition 4.9
= \/F xy) by (4.13)
= \/(F(m) N F(y)) by Lemma 4.27
= \/ F(a) \VIBAN F(y) by (4.14)
= (\V/ Pz AVEIBAN/Fyy by (4.13).

O

Ezxample 4.15. For the monoidally distributive poset M in Example 4.10,
we have F' = {y}. (Remark that the element z satisfies zw € {0, 2} for any
w € M, and however x ¢ DL. Hence x is not fieldlike.) Thus \/ F =y =
A D(= A{y,1}), and therefore M satisfies all conditions in Theorem 1.4.
Indeed, the mapping

X\ F=xy
XV F=xy,

¢cBA ={0,1} (\/ F)eBA = yeBA=y{0,1} = {0,y}

= {\/F()i Fy is a subset of F' = {y}}

is an isomorphism.

5. THE CASE FOR B =B

The Bousfield lattice B of the stable homotopy category of (p-local) spec-
tra is a monoidally distributive poset. Indeed, we have 0 = (0), 1 = (SY),
where SY is the sphere spectrum, and also, for any z = (X) and y = (Y),
we have z Vy = (X VY) and zy = (X AY). In this section, we consider
the case for B = B, and we see that some results in [3] are obtained from
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the viewpoint of this paper. We remark that we use the notations DL and
c¢BA, instead of DL and cBA in [3], respectively.
We recall [3, Conj. 3.12]. Let

h = <HIFP>7

the Bousfield class of the mod p Eilenberg-MacLane specrum. We recall
that

(5.1) The class h is fieldlike, (particularly, h € DL)
in the sense of Definition 4.21. We consider the subset
J={ceB:c<h}.

A class ¢ € B is strange if ¢ € J [3, Def. 3.9]. By use of the notation in
(4.8), we see the following.

Lemma 5.1 ([3, Lemma 3.10]). We have J = | (h A a(h)). In particular,
J is a complete ideal of B.

Proof. First we see that | (h Aa(h)) C J. If ¢ € | (hAa(h)), then ¢ <
h Aa(h) < h. Hence it suffices to show that ¢ # h. If ¢ = h, then hc = h? =
h # 0 by (5.1). However, we have 0 # h = he < h(h Aa(h)) < ha(h) =0 by
(4.2), which is a contradiction. Therefore ¢ # h, and so | (h A a(h)) C J.
Next we show that J C | (h Aa(h)). If ¢ € J, then ¢ < h. Hence it
suffices to show that ¢ < a(h). If ¢ € a(h), then ch # 0 by Lemma 4.1 (2).
This implies that ch = h by (5.1). However, this implies h = ch < ¢ < h,
which is a contradiction. Therefore ¢ < a(h). O

We note that
(5.2) (h A a(h))2 = (hAa(h))(hAa(h)) < ha(h) =0.

Proposition 5.2 ([3, Prop. 3.11]). The induced mapping r.: B/J — DL,
the mapping in Problem 1.1 at (B,I) = (B,J), is well-defined.

Proof. By Theorem 1.2 (1), it suffices to show that J C J. If ¢ € J, then,
for any = € B, we have

r(z) < r(zVe) by Lemma 3.4 (1)
< r(xV(hAa(h))) by Lemma 5.1
r(zV (hAa(h))?) by Lemma 3.5
= r(z) by (5.2).

Hence r(z) = r(x V ¢), and therefore ¢ € 7. O
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Conjecture 5.3 (Retract conjecture [3, Conj. 3.12]). The well-defined map-
ping
r«: B/J — DL
in Proposition 5.2 is an isomorphism.
We remark that Problem 1.1 is a generalization of this conjecture.
Lemma 5.4. If Conjecture 5.8 holds, then J C a(DL).

Proof. First, we show that 1 (a(h) V h) C DL. If x € 1 (a(h) V h), then

(5.3) x>a(h)Vh>h

and

(5.4) r(z) > r(a(h) V h) > r(h) = h.

Since 7, is an isomorphism and 7.([z]) = r(z) = 7*(x) = r.([r(z)]) by
Lemma 3.4 (2), we have [z] = [r(x)] in B/J. This and Lemma 5.1 imply
(5.5) xV (hANa(h)) =r(x)V (hAa(h)).

Hence

x = xzVh by(53)
= axVhV(hAa(h))
= r(z)VhV(hAa(h)) by (5.5)
= r(x)Vh
) by (5.4).
Therefore € DL, and so 1 (a(h) V h) C DL. This implies
J = J(hAa(h)) by Lemma 5.1

r(x

—

= Ja(a(h)Vh) by Lemma 4.1 (3), (4)
= a(f (a(h) Vh)) by Lemma 4.17
C a(DL),
and our claim is shown. ([l

Let F(n) be a finite spectrum of type n, and K(n) the nth Morava K-
theory spectrum. We also consider the vy,-telescope T'(n) of F'(n).

Conjecture 5.5 (Telescope conjecture [6, 10.5]). The Bousfield class (K (n))
is the same as (T'(n)) for any n > 0.

The spectrum A(n) is defined by the cofiber sequence
F(n) — LK(n)F(x) — A(n) — XF(n),

where L () is the Bousfield localization functor with respect to K (n). In
[2, Prop. 1.6], Hovey proved that
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e (T'(n)) = (K(n))V (A(n)) for any n > 0, and

e The smash product A(n) A K(m) is 0 for any n and m.
Furthermore, we have
(5.6) A(n) AN A(n) = A(n)

for any n > 0 (see [2, §5]). By these facts, Conjecture 5.5 holds if and only
if (A(n)) = 0. On these backgrounds, Hovey and Palmieri proposed the
following conjecture as a weak version of Conjecture 5.5.

Conjecture 5.6 ([3, Conj. 5.1]). For any n > 0, the Bousfield class (A(n))
15 0 or minimal.

Remark 5.7. In 2023, Burkland, Hahn, Levy, and Schlank announced that
Conjecture 5.5 doesn’t hold [1].

Hereafter, for the sake of simplicity, we denote
kn=(K(n)) and a,=(A(n)).
Corollary 5.8. If Conjecture 5.6 holds, then any nonzero a, is a fieldlike
element.

Proof. The class a, is in DL by (5.6). Hence, if a, is minimal, then it is
filedlike by Lemma 4.24. ]

We recall the subset F' in (4.12). We put
Fran = {km,an,h: m >0, a, # 0}.
By Corollary 5.8,
(5.7) If Conjecture 5.6 is true, then Fy,p C F.
We also recall that, by Proposition 4.26, we have \/ Fiq, < f Va(f) for any
I € Fran-
Conjecture 5.9 ([3, Conj. 6.12]). \/ Fyen = h V a(h).

Proposition 5.10. If Conjecture 5.6 and Conjecture 5.9 are true, then
Fron = F, that is, any fieldlike element is one of ky’s, an’s, and h.

Proof. By (5.7), it suffices to show that F' C Fjup. By Proposition 4.26 and
the assumption, we have \/ F < h V a(h) = \/ Fiqpn. From this and Lemma
4.25, we obtain F' C Fiup. O]

Remark 5.11. For a general monoidally distributive poset, we have an ana-
logue of Conjecture 5.9, which claims that there exists a fieldlike element
f € F such that \/ F = f Va(f). For example, on the monoidally dis-
tributive poset M in Example 4.10 (or Example 4.15), this claim holds.
Indeed, for this M, we have z < y, a(y) = z, and F = {y}. Thus

VF=y=yVz=yValy).
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Theorem 5.12 ([3, Prop. 6.13]). If Conjecture 5.3, Conjecture 5.6 and
Conjecture 5.9 hold, then cBA is isomorphic to a complete Boolean algebra
generated by Fyqp, that is,

cBA = {\/ Fy: Fy is a subset of Fkah}.

Proof. We note that the ideal J is complete by Lemma 5.1. If Conjecture
5.3 is true, then J = J by Theorem 1.2. Hence, by Lemma 5.4, all conditions
of Proposition 4.18 hold. We also have

AD = /\(Ta(\/’J)) by (4.9)
= A(ta\/n) bys=3

(
- o(v9)
= a(hAa(h)) by Lemma 5.1
= a(h)Vh by Lemma 4.1 (3), (4)
= \/ Fiqn  since we assume that Conjecture 5.9 holds.

We note that Fj,, = F by Proposition 5.10. Therefore, by Theorem 1.4, we
have cBA = {\/ Fy: F} is a subset of Fup}. d
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