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ON GROUPS OF UNITS OF COMMUTATIVE FINITE

RINGS

Chiteng’a John Chikunji

Abstract. Let R be a commutative completely primary finite ring with
unique maximal ideal J such that J 3 = {0} and J 2 ̸= {0}. In this
paper, we investigate and determine the structure of the group of units
U(R) of the ring R of characteristic p3 without giving any conditions on
the generators for the maximal ideal J or on the invariants of the ring
R.

1. Introduction

A finite ring R with identity 1 ̸= 0 is called completely primary if all its
zero divisors including the zero element form the unique maximal ideal J .
Completely primary finite rings are local rings with unique maximal ideals.

Throughout this paper, all rings are finite and commutative (unless oth-
erwise stated) with identity element 1 ̸= 0, subrings have the same identity,
ring homomorphisms preserve 1 and modules are unital. For a given com-
pletely primary finite ring R, J will denote the Jacobson radical of R. We
denote the group of units of R by U(R); if g is an element of U(R), then
o(g) denotes its order, and < g > denotes the cyclic group generated by
g. Further, for a subset A of R or U(R), |A| will denote the number of
elements in A. The ring of integers modulo the number n will be denoted
by Zn, and the characteristic of R will be denoted by charR. We denote a
direct product of r cyclic groups of Zm by Zr

m or by Zm × · · · × Zm︸ ︷︷ ︸
r

. The

character p represents a prime.
Although finite rings have been studied extensively in recent years ([6], [7])

and the tools necessary for describing completely primary finite fings have
been available for some time, their classification into well known structures
(which are necessarily given in [1], [6], [7]) is not complete.

Much of the recent work on completely primary rings has demonstrated
fundamental importance of these rings in the structure theory of finite rings
with identity. Let R be a finite ring. It turns out that R has a unique
maximal ideal if and only if it is a full matrix ring over a completely primary
ring. In particular, rings with a unique maximal ideal are not necessarily
completely primary. Therefore, the study of rings with a unique maximal
ideal (i.e. local rings) reduces to the study of completely primary rings.
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More evidence for the importance of completely primary rings comes from
the fact that any commutative finite ring is a direct sum of completely
primary rings. Moreover, any finite ring R is of the form S + N , where
S ∩N = (0) with N a subgroup of the Jacobson radical of R and S a direct
sum as an additive abelian group of certain matrix rings over completely
primary rings.

Because of the feeling that completely primary rings play an important
role in the classification of all finite rings with identity, they have been
the subject of a good deal of research in recent years. Perhaps the most
important results here are theorems of Raghavendran [6], which show that
the zero-divisors of any completely primary finite ring R form the Jacobson
radical J of R, and that |R| = pnr, R/J ∼= GF (pr), char(R) = pk with
(1 ⩽ k ⩽ n), and J n = (0) for some prime p and positive integers n, r, k.
The group of units U(R) of R contains a cyclic subgroup < b > of order
pr−1, and it is a direct (semi-direct in case R is non-commutative) product
of 1 + J by < b > (see Section 2).

We now assume that R is a completely primary finite ring with unique
maximal ideal J such that J 3 = (0), J 2 ̸= (0), R/J ∼= GF (pr). Then
following Raghavedran’s work [6], these rings are either of characteristic p,
p2 or p3. In [1], the author gave constructions and treated the isomorphism
problem of these rings according to their characteristics. In [2] through [5],
we obtained the structure of the group of units of these rings under various
conditions. After noticing that for such a ring, U(R) is a direct product of
a cyclic group by a p-group 1 + J , we attempted to solve the problem by
concentrating on determining the structure of 1 + J . This problem is not
completely solved because the structure of the p-subgroup 1 + J of U(R)
may be quite involving.

In earlier work, we approached the problem of determining the group of
units by first fixing the dimensions of the vector spaces J /J 2 and J 2 over
the residue field R/J to 2 and 1, respectively; and when the dimension of J 2

over R/J is the maximal possible, for all the characteristics. In these cases,
the structure of U(R) and its generators depend on the structural matrices
and its parameters. We also determined U(R) when the dimensions of J /J 2

and J 2 over R/J are both equal to 2 when the characteristic of R is p. In
these particular cases, we assumed that ann(J ) = J 2. We further extended
the problem to the case when J 2 ⊆ ann(J ), dimension of J /J 2 is 3 and
dimension of J 2 is 1, and to when the dimensions of J /J 2 and J 2 over R/J
are both equal to 2, and the characteristic of R is p. In subsequent work, we
determined the structure of U(R) when the characteristic of R is p2 and the
dimension of J /J 2 is greater that 2 while the dimension of J 2 is lesser than
the maximum possible and the structure of U(R) was determined without
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considering structural matrices of isomorphic classes of these types of rings.
When the characteristic of R is p2, various cases were further taken into
consideration: when p ∈ J − J 2 and p ∈ J 2, in determining the structure
of 1 + J . It was clear that these cases lead to distinct structures of 1 + J .

In this paper, we extend the above problem to the case when the char-
acteristic of R is p3, without giving any conditions on the generators for J
or on the invariants of the ring R. We leave the problem where we consider
fixed dimensions and bases for the vector spaces J i/J i+1 (i = 1, 2) over
the residue field R/J and where we fix the order of the ideal J 2, for further
inverstigation.

The rest of the paper is organised as follows. In section 2, we state without
proofs some of the general results on completely primary finite rings and on
their groups of units which are relevant to our work. In section 3, we give an
explicit description of certain completely primary finite rings with J 3 = {0},
J 2 ̸= {0} whose groups of units have been considered earlier in [2], [3], [4]
and [5]. Finally, in section 4, we determine the structure of the group of
units of the rings of characteristic p3 for any fixed prime number p. This
complements the author’s earlier solution of the problem in the cases when
the characteristic of R is p and p2 studied under various conditions.

2. Completely primary finite rings

Let R be a completely primary finite ring with maximal ideal J . Then
|R| = pnr, J is the Jacobson radical of R, Jm = (0), where m ⩽ n, |J | =
p(n−1)r, and the residue field R/J ∼= GF (pr), the finite field of pr elements,
for some prime p and positive integers n, r. The characteristic of R, charR =
pk, where 1 ⩽ k ⩽ m. If k = n, then R = Zpk [b], where b is an element of R
of order pr−1; J = pR and Aut(R) ∼= Aut(R/pR) (see Proposition 2 in [6]).
Such a ring is called a Galois ring, denoted by GR(pkr, pk), and a concrete
model is the quotient Zpk [X]/ < f(X) >, where f(X) is a monic polynomial
of degree r, irreducible modulo p. Any such polynomial will do: the rings are
all isomorphic. Trivial cases are GR(pn, pn) = Zpn and GR(pn, p) = Fpn .
The Galois ring GR(pnr, pn) is a completely primary ring of characteristic
pn with maximal ideal pGR(pnr, pn) and residue field isomorphic to Fpr .
Its group of units is well known and we present it below in Theorem 2, for
easy reference. Furthermore, if k < n and charR = pk, it can be deduced
from [6] and [7] that R has a coefficient subring Ro of the form GR(pkr, pk)
which is clearly a maximal Galois subring of R. The maximal ideal of Ro is

Jo = pRo = J ∩Ro, and Ro/Jo
∼= GF (pr).

Let ψ : Ro −→ Ro/Jo be the canonical map. Since b has order pr − 1 and
Jo ⊂ J , we have that ψ(b) is a primitive element of Ro/Jo. Let Ko =<
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b > ∪{0} and let Ro = Zpk [b] be a coefficient subring of R of order pkr.
Then it is easy to show that every element of Ro can be written uniquely as∑k−1

i=0 λip
i, where λi ∈ Ko. Also, there exist elements m1, m2, . . . , mh ∈ J

and automorphisms (in case R is noncommutative) σ1, . . . , σh ∈ Aut(Ro)
such that

R = Ro ⊕
h∑

i=1

Romi (as Ro-modules), mir = rσimi,

for every r ∈ Ro and any i = 1, . . . , h. Further, σ1, . . . , σh are uniquely
determined by R and Ro. The maximal ideal of R is

J = pRo ⊕
h∑

i=1

Romi.

Let R be a completely primary ring (not necessarily commutative) of
order pnr with unique maximal ideal J . Then the set R − J consisting of
invertible elements in R forms a group with respect to the multiplication
defined on R, called the group of units of R. The following facts are useful
(e.g. see [6, §2]): The group of units U(R) of R contains a cyclic subgroup
< b > of order pr − 1, and it is a semi-direct product of 1+J by < b >; the
group U(R) is solvable; if G is a subgroup of U(R) of order pr − 1, then G
is conjugate to < b > in U(R); if U(R) contains a normal subgroup of order
pr−1, then the set Ko =< b > ∪{0} is contained in the center of the ring R;
and (1 + J i)/(1 + J i+1) ∼= J i/J i+1 (the left hand side as a multiplicative
group and the right hand side as an additive group). It is easy to check

that |U(R)| = p(n−1)r(pr − 1) and that |1 +J | = p(n−1)r, so that 1 +J is a
p-group.

3. Some known groups of units of finite rings with J 3 = (0)

Now, let R be a commutative completely primary finite ring with maximal
ideal J such that J 3 = (0) and J 2 ̸= (0). The author gave constructions
describing these rings for each characteristic and for details, we refer the
reader to Sections 4 and 6 of [1]. Then, R/J ∼= GF (pr) and the charR is
pk, where 1 ⩽ k ⩽ 3. Let Ro = GR(pkr, pk) be a Galois subring of R.
Let s, t, λ be numbers in the generating sets for Ro-modules U, V, W ,
respectively. From Constructions A and B in [1], we can represent R and J
as

R = Ro ⊕ U ⊕ V ⊕W

and

J = pRo ⊕ U ⊕ V ⊕W,

respectively.
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The structure of R is characterized by the invariants p, n, r, d, s, t and
λ; and the linearly independent matrices (αk

ij) definite in the multiplication.

In [1], d ⩾ 0 denotes the number of the mi ∈ {m1, . . . , mh} with pmi ̸= 0.
In [2] we have determined the group of units U(R) of the ring R and its

generators when s = 2, t = 1, λ = 0, characteristic of R is p; and when
t = s(s + 1)/2, λ = 0, for a fixed s, for all the characteristics of R. It was
noted that U(R) and its generators depended on the structural matrices
(aij) and on the parameters p, k, r and s. In [3] we obtained the structure
of U(R) and its generators when s = 2, t = 1, λ = 0 and characteristic of
R is p2 and p3; and the case when s = 2, t = 2, λ = 0 and characteristic
of R is p. In both papers [2] and [3], we assumed that λ = 0 so that the
annihilator of the maximal ideal J coincides with J 2. It was also noted
that our strategy of considering different types of symmetric matrices was
not viable any more and we followed a different approach; that of considering
structural matrices of isomorphic classes of these types of rings with the same
invariants p, r, k, s, and t.

In [4], we proved that 1+J is a direct product of its subgroups 1+pRo⊕
U ⊕V and 1+W and further determined the structure of 1+W , in general.
We also determined the structure of U(R) and its generators when s = 3,
t = 1, λ ⩾ 1 and charR = p. We then generalised the structure of U(R)
in the cases when s = 2, t = 1; t = s(s + 1)/2 and charR = p , for a fixed
s, and for all characteristics of R; and when s = 2, t = 2 and charR = p ;
determined in [2] and [3], to the general case when ann(J ) = J 2 +W so
that λ ⩾ 1. This complemented our earlier solution to the problem in the
case when ann(J ) = J 2. In [5], we determined the structure of U(R) when
the characteristic of R is p2, s ⩾ 3 and 1 ⩽ dimRo/pRo

(J 2) < s(s + 1)/2,
without considering structural matrices of isomorphic classes of these types
of rings.

In Section 4 of this paper, we extend the above problem to the case when
the characteristic of R is p3, without giving any restrictions to the generators
or invariants of these types of rings.

4. Group of units of finite rings of characteristic p3

We now consider the structure of the group of units of commutative com-
pletely primary finite rings with maximal ideals J such that J 3 = (0), J 2 ̸=
(0), and with characteristic p3.

4.1. A construction of commutative rings of characteristic p3. Let
Ro = GR(p3r, p3) be a Galois subring of characteristic p3 and order p3r.
Let V be an Ro/pRo-space, which when considered as an Ro-module, has
a generating set {v1, . . . , vt} with t elements and let U be an Ro-module
with an Ro-module generating set {u1, . . . , us} of s elements; and suppose
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that d ⩾ 0 of the ui are such that pui ̸= 0. Since Ro is commutative, we can
think of them as both left and right Ro-modules.

Assume 1 + d + t ⩽ s(s + 1)/2. Let (amij ) be s × s linearly independent

symmetric matrices over Ro/pRo for 1 ⩽ m ⩽ 1 + d+ t.
On the additive group R = Ro ⊕ U ⊕ V , define multiplication by the

following relation:

uiuj = a0ijp
2 +

d∑
l=1

alijpul +

t∑
k=1

ad+t
ij vk;

uivk = vkui = uiujuλ = p2ui = pvk = vkvl = vlvk = 0;

uiα = αui, vkα = αvk; (1 ⩽ i, j, λ ⩽ s; 1 ⩽ l ⩽ d; 1 ⩽ k ⩽ t);

where α, a0ij , a
l
ij , a

d+t
ij ∈ Ro/pRo.

By the above relations, R is a commutative completely primary finite
ring of characteristic p3 with Jacobson radical J = pRo ⊕ U ⊕ V , J 2 =
p2Ro ⊕ pU ⊕ V and J 3 = (0). We call (amij ) the structural matrices of the
ring R and the numbers p, n, r, d, s, t invariants of the ring R.

The following result is proved in [1, Theorem 6.1]

Theorem 1. Let R be a ring. Then R is a commutative completely pri-
mary finite ring of characteristic p3 with maximal ideal J such that J 3 =
(0), J 2 ̸= (0), J 2 lies in the annihilator of J , if and only if R is isomorphic
to one of the rings given by the above relations.

Remark 1. We know that R = Ro⊕Rom1⊕ . . .⊕Romh, where the elements
mi ∈ J ; and that J = pRo ⊕ Rom1 ⊕ . . . ⊕ Romh. Since J 3 = (0) and
J 2 ⊆ ann(J ), with J 2 ̸= (0), we can write

{m1, . . . , mh} = {u1, . . . , us, v1, . . . , vt}
where u1, . . . , us ∈ J − J 2 and v1, . . . , vt ∈ J 2, so that s+ t = h.

In view of the above considerations and by [1.8] in [1], the non-zero ele-
ments in the set

{1, p, p2, u1, . . . , us, pu1, . . . , pus, v1, . . . , vt}
form a “basis”for R over Ro/pRo.

Note that since characteristic of R is p3 it is clear that p2m = 0 for every
m ∈ J and pm = 0 for every m ∈ ann(J ) ⊇ J 2. It then follows that
p ∈ J − J 2 and p2 ∈ J 2.

Remark 2. Suppose that d ⩾ 0 is the number of the elements pui which are
non-zero. Suppose, without lose of generality, that pu1, . . . , pud are the d
non-zero elements. Then, the above set becomes

{1, p, p2, u1, . . . , us, pu1, . . . , pud, v1, . . . , vt};
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and by Proposition 3.2 of [1], we have 1 ⩽ 1+ d+ t ⩽ s(s+1)/2 and hence,
every element of R may be written as

λo + λ1p+ λ2p
2 +

s∑
i=1

αiui +

d∑
l=1

βlpul +

t∑
k=1

γkuiuj ;

where λo, λ1, λ2, αi, βl, γk ∈ Ro/pRo.
Clearly, the product uiuj ∈ J 2. Hence,

uiuj = a0ijp
2 +

d∑
l=1

alijpul +
t∑

k=1

ad+k
ij vk,

and dimRo/pRo
(J 2) ⩽ 1 + d + t, where in this particular case d ⩾ 0 and

t ⩾ 0.

Now, since p2, pul, vk ∈ J 2 (l = 1, . . . , d; k = 1, . . . , t), we can write
them as sums of products of elements of J . In particular, p2, pul, vk can
be written as linear combinations of p2, pui and uiuj with coefficients in
Ro/pRo. Hence, since p2, pul, vk ∈ J 2 (l = 1, . . . , d; k = 1, . . . , t) is a
basis for J 2 over Ro/pRo, we conclude that p

2, pui and uiuj (i, j = 1, . . . , s)
generate J 2.

Clearly, |R| = p3r · p2dr · p(s−d)r · ptr = p(3+s+d+t)r and |J | = p(2+s+d+t)r.
(Notice that |Roui| = p2r if pui ̸= 0, and |Roui| = pr, if otherwise.)

4.2. The group of units. We know that for a commutative completely
primary finite ring R,

U(R) =< b > ·(1 + J ) ∼= F×
pr × (1 + J );

and F×
pr is cyclic of order pr − 1, so it suffices to determine the structure of

the p-group 1 + J in order to obtain the complete structure of U(R).
There are many important results on the group of units of certain finite

rings. For example, it is well known that the multiplicative group of the
finite field GF (pr) is a cyclic group of order pr − 1, and the multiplicative
group of the finite ring Z/pkZ, the ring of integers modulo pk, for p a prime
number, and k a positive integer, is a cyclic group of order pk−1(p−1) if p is
odd, and is a direct product of a cyclic group of order 2 and a cyclic group
of order 2k−2, if p = 2.

Let U(Ro) denote the group of units of the Galois ring Ro = GR(pnr, pn).
Then U(Ro) has the following structure [6]:

Theorem 2. U(Ro) =< b > ×(1 + pRo), where < b > is the cyclic group

of order pr − 1 and 1 + pRo is of order p(n−1)r whose structure is described
below.
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(i) If (a) p is odd, or (b) p = 2 and n ⩽ 2, then 1 + pRo is the direct

product of r cyclic groups each of order p(n−1).
(ii) When p = 2 and n ⩾ 3, the group 1 + pRo is the direct product of a

cyclic group of order 2, a cyclic group of order 2(n−2) and r−1 cyclic groups
each of order 2(n−1).

4.3. Structure of the group of units of characteristic p3. Suppose
that the 1 + s elements p, u1, . . . , us generate J /J 2 over Ro/pRo under
the multiplication and relations defined above, and suppose that 1 + d + t
elements p2, pu1, . . . , pud, v1, . . . , vt generate J 2 over Ro/pRo, where
d ⩾ 0 and t ⩾ 0. We first note that in this case 1 + d+ t ⩽ s(s+ 1)/2. The
following lemma is useful.

Lemma 1. Suppose charR = p3. If ui ∈ J and pui = 0, then ui ∈ ann(J ).

Proof. This is obvious following comments after Remark 1. □

Following the above lemma, if pui = 0, then uiuj = 0, for every j =
1, . . . , s; and if pui ̸= 0, then

uiuj = a0ijp
2 +

d∑
l=1

alijpul +
t∑

k=1

ad+k
ij vk,

where a0ij , a
l
ij , a

d+k
ij ∈ Ro/pRo.

Theorem 3. Let R be a ring of characteristic p3 with maximal ideal J
such that J 3 = {0}, J 2 ̸= {0}. Suppose further that J consists of elements
u1, . . . , us such that the multiplication in R is defined by pui ̸= 0, for
i = 1, . . . , d, pui = 0, for i = d + 1, . . . , s, and u2i = uiuj = 0, for every
i, j = 1, . . . , s. Then

U(R) ∼=



Z2r−1 × Z2 × Z2 × Zr−1
4 × Zr

4 × · · · × Zr
4︸ ︷︷ ︸

d

×Zr
2 × · · · × Zr

2︸ ︷︷ ︸
s−d

×Zr
p × · · · × Zr

p︸ ︷︷ ︸
t

, if p = 2

Zpr−1 × Zr
p2 × Zr

p2 × · · · × Zr
p2︸ ︷︷ ︸

d

×Zr
p × · · · × Zr

p︸ ︷︷ ︸
s−d

×Zr
p × · · · × Zr

p︸ ︷︷ ︸
t

, if p ̸= 2

Proof. For the rest of this paper, we shall take r elements ε1, . . . , εr in Ro

with ε1 = 1 such that {ε̄1, . . . , ε̄r} is a basis for the quotient ring Ro/pRo

regarded as a vector space over its prime subfield GF (p). Suppose without
generality, that puj ̸= 0 for at least one j = 1, . . . , s. Let a = 1 + x be an
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element of 1+J with the highest possible order and assume that x ∈ J −J 2.
Then o(a) = p2. This is true because, for any εi (i = 1, . . . , r),

(1 + εix)
p = 1 + pεix+

p(p− 1)

2
(εix)

2 (since x3 = 0).

If p is odd, then (1 + εix)
p = 1 + pεix, since px

2 = 0.
Now,

(1 + pεix)
p = 1 + p2εix+

p(p− 1)

2
(pεix)

2

= 1, since p2x = 0.

Hence, (1 + εix)
p2 = 1.

For any odd prime number p and for each i = 1, . . . , r, we see that

(1 + εip)
p2 = 1, (1 + εiuj)

p2 = 1, for j = 1, . . . , d, while (1 + εiul)
p = 1,

for l = d+ 1, . . . , s, (1 + εivk)
p = 1.

For integers li ⩽ p2, nij ⩽ p2, mil ⩽ p and qik ⩽ p, we assert that

r∏
i=1

{(1 + εip)
li} ·

r∏
i=1

d∏
j=1

{(1 + εiuj)
nij} ·

r∏
i=1

s∏
l=d+1

{(1 + εiul)
mil} ·

r∏
i=1

t∏
k=1

{(1 + εivk)
qik} = 1,

will imply li = p2, nij = p2, mil ⩽ p and qik ⩽ p, for all i = 1, . . . , r,
j = 1, . . . , d, l = d + 1, . . . , s and for all k = 1, . . . , t. (Notice that we
may as well include the case when d = 0 and t = 0.

If we set

Di = {(1 + εip)
li : li = 1, . . . , p2},

Eij = {(1 + εiuj)
nij : nij = 1, . . . , p2},

Fil = {(1 + εiul)
mil : mil = 1, . . . , p},

Gik = {(1 + εivk)
qik : qik = 1, . . . , p},

for all i = 1, . . . , r, we see that Di, Eij , Fil and Gik are all subgroups of
1 + pRo ⊕

∑
Roui ⊕

∑
Rovk and that Di and Eij are both of order p2 and

the others are all of order p as indicated in their definition. Also, pairwise
intersection of these subgroups is trivial.

The argument above will show that the product of the r subgroups Di,
dr subgroups Eij , (s−d)r subgroups Fil, and the tr subgroups Gik is direct.
Thus, their product will exhaust 1 + pRo ⊕

∑
Roui ⊕

∑
Rovk, and we see

that the proof for the case when p is odd is complete.
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Now assume that p = 2. Then (1 + 2ε1)
2 = 1, (1 + 4ε1)

2 = 1 and
(1 + 2εi)

4 = 1 for i > 1. Next, for each i = 1, . . . , r, we see that if 2uj = 0,
then (1 + εiuj)

2 = 0 and if 2uj ̸= 0, then (1 + 2εiuj)
2 = 1 + 2εiuj + ε2iu

2
j ,

and (1 + εiuj)
4 = 1. Also, (1 + εivk)

2 = 0, for every j + 1, . . . , s and every
k = 1, . . . , t. (This includes the case when d = 0 and t = 0)

For integers l1 ⩽ 2, k1 ⩽ 2, li ⩽ 4, mij ⩽ 4, nil ⩽ 2 and qik ⩽ 2, we assert
that

(1 + 2ε1)
l1 · (1 + 4ε1)

k1 ·
r∏

i=2

{(1 + 2εi)
li} ·

r∏
i=1

d∏
j=1

{(1 + εiuj)
nij}

·
r∏

i=1

s∏
l=d+1

{(1 + εiul)
mil} ·

r∏
i=1

t∏
k=1

{(1 + εivk)
qik} = 1,

will imply l1 = 2, k1 = 2, li = 4, for all i = 2, . . . , r; mil = 2 , for
all l = d + 1, . . . , s; nij = 4 for all j = 1, . . . , d; and qik = 2, for all
k = 1, . . . , t and for all i = 1, . . . , r.

If we set

A1 = {(1 + 2ε1)
l1 : l1 = 1, 2}

B1 = {(1 + 4ε1)
k1 : k1 = 1, 2}

Cli = {(1 + 2εi)
li : li = 1, . . . , 4; i = 2, . . . , r}

Dij = {(1 + εiuj)
nij : nij = 1, . . . , 4; i = 1, . . . , r}

Eil = {(1 + εiul)
mil : mil = 1, 2; i = 1, . . . , r}

Gik = {(1 + εivk)
qik : qil = 1, 2; i = 1, . . . , r},

we see that A1, B1, Cli , Dij , Eil and Gik are all subgroups of 1 + pRo ⊕∑
Roui ⊕

∑
Rovk and that Cli and Dij are of order 4 and the rest are of

order 2, respectively, as indicated in their definition. Moreover, pairwise
intersection of these subgroups is trivial.

The argument above will show that the product of A1, B1, the r − 1
subgroups Cli , the dr subgroupsDij , (s−d)r subgroups Eil and tr subgroups
Gik is direct. Thus, their product will exhaust 1+ pRo⊕

∑
Roui⊕

∑
Rovk,

and this completes the proof. □

This completes our investigation of the structure of the group of units
of commutative completely primary finite rings of characteristic p3 with
unique maximal ideals J such that J 3 = (0), J 2 ̸= (0) without constraints
on minimal generators for J or on invariants in the definition of R.
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